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Abstract  

Asthma and Chronic Obstructive Pulmonary Disease (COPD) are two of the most 

common chronic respiratory diseases causing a major burden of ill health to 

populations across the world. Respiratory medication prescribing can be used as an 

indicator of air pollution effect on asthma and COPD, capturing patients with any 

severity of disease from mild to severe. In contrast, the traditional indicators of 

asthma exacerbation, such as hospital admissions and emergency room visits, only 

capture events of patients who suffer severe symptoms.  

In this study, I aimed to develop statistical models for assessing the spatio-

temporal patterns of salbutamol prescribing in relation to air quality, in a primary 

health care setting. Salbutamol represents 93% of short-acting β2-agonists, which 

are prescribed for quick-relief of symptoms and acute exacerbations to individuals 

that suffer from asthma or COPD. I analysed salbutamol medication (approximately 

67 billion Average-Daily-Quantities) prescribed by 64 GP practices in Newcastle and 

North Tyneside Primary Care Trusts, Northeast England, in 2002-2006. I used a 

mixed-effects model suitable for data that are not independent in time or space.  

My study found ambient Particulate Matter (PM10) concentrations to have a 

significant relationship to salbutamol prescribing in primary care.  An increase of 

10µg/m3 in ambient PM10 concentrations was associated with an increase of 1% in 

salbutamol prescribing. Income deprivation and average age of patients registered 

per practice also had a significant relationship with salbutamol prescribing. The 

findings showed that the variation of salbutamol prescribing was subject not only to 

health needs caused by deprivation and air quality, but also random effects that 

were practice specific, such as facilities within the practice or experience and 

prescribing pattern of practitioners. Overall, the findings demonstrated that 

respiratory prescribing in primary care can be used as indicator of air pollution 

effect on asthma and COPD, increasing the scope of its use for health surveillance 

in the future.  
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Preface 

Asthma and Chronic Obstructive Pulmonary Disease (COPD) are two of the most 

common chronic respiratory diseases. According to the latest WHO estimates, 

approximately 300 million people have asthma and 210 million people have COPD. 

It is recognised that COPD is an under-diagnosed disease and is expecting to be the 

third biggest cause of death during the coming decades (2008). In Europe, it is 

estimated that 30 million people are asthmatics, six million suffer symptoms which 

are characterised as severe, and 1.5 million people live in fear of dying from an 

attack.   

Early epidemiologic studies have used data from secondary and tertiary care, such 

as admissions to hospital or emergency room visits, to quantify air pollution effect 

on respiratory exacerbations. However, those indicators capture patients that suffer 

from relatively severe symptoms. Primary care data offer a great source of 

information as the vast majority of patients suffering from respiratory diseases are 

fully treated at primary care level. Prescribing of respiratory medication in primary 

care, as an indicator of air pollution effect on asthma and COPD can capture 

patients with all levels of severity.  

The majority of primary care consultations in the UK are by patients with 

respiratory disease compared to any other type of illness (British Thoracic Society, 

2006, Pinnock and Sheikh, 2009). This figure emphasizes the important role of 

primary care in managing respiratory diseases. The World Health Assembly set out 

an action plan in 2008, to prevent and control chronic non-communicable diseases, 

including asthma and COPD (World Health Organization, 2008a). Part of this action 

plan is to strengthen the management of the diseases at primary care level. The 

WHO report also suggested that accessibility to medication in primary care can be 

used as indicator to monitor progress (World Health Organization, 2008b). One of 

the main long-term priorities for National Health Service (NHS) reform in UK, is the 

shift from provision of hospital-based acute care to proactive care, delivered in 

primary care (Department of Health, 2006, Department of Health, 2005). In the 

case of asthma, 75% of hospital admissions are avoidable (Asthma UK, 2010), no 

equivalent information was available for COPD. The importance of exploiting data at 

primary care level and especially data of respiratory diseases is discussed below.  
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Aims and Objectives 

Statistical models should account sufficiently for temporal and spatial variation of 

the variables that are not distributed independently in space and time. A key 

weakness of traditional statistical techniques is that they have to assume 

independence of health events. Complex spatio-temporal associations of health 

hazards, exposures and outcomes may therefore be misrepresented or result in 

associations being biased.  

My study aimed to develop an adequate statistical model at the level of primary 

care to assess the relationship between asthma/COPD medication prescribing and 

air quality. I tested the hypothesis that exposure to air pollution increases the 

frequency and duration of asthma and COPD symptoms, generating a consequent 

increase in the use of salbutamol medication and consequently an increase of 

prescriptions. Salbutamol represents 93% of short acting β2-agonists (Prescription 

Pricing Authority, 2006), which are prescribed for quick-relief of symptoms and 

acute exacerbations to individuals that suffer from asthma or COPD. I evaluated 

possible time-lags in response to medication use and air quality. I also considered 

contextual factors of the local environment, such as income, employment and 

educational deprivation and demographic factors (age and gender of patients) as 

covariates.  

To the best of my knowledge, this study is the first in the UK to assess the effect of 

air pollution on prescribing of respiratory medication, at GP practice level. In order 

to achieve the aim of this study, the following objectives had to be met: 

• To collate data on potential explanatory variables of the association between 

air pollution exposure and respiratory prescribing.  

• To explore the potential relevance of covariates, as well as understand the 

structure of the data, in order to build an adequate statistical model. 

• To quantify and evaluate the relationship between salbutamol prescribing, 

air quality indicators and the other covariates. 

• To examine delayed responses of salbutamol prescribing to the trigger 

factors of asthma/COPD exacerbations. 
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A Brief Outline of the Thesis 

The thesis comprises five chapters. The first chapter outlines the scientific 

background and consists of five sections. I initially present an overview of the 

literature on asthma and COPD prevalence as well as their main risk factors. I then 

focus on the pharmacological interventions for asthma and COPD, and present a 

comprehensive review of studies that used respiratory prescribing as indicator of air 

pollution effect on respiratory diseases. The fourth section discusses the role of 

primary care on respiratory diseases and its application in environmental 

epidemiology. In the last section I present the literature on the main aspects of 

spatial and spatio-temporal analysis, as they apply to this study. 

The second chapter, consisting of four sections, describes the data collection, 

collation and exploration process. In the first section I present the prescribing data 

and GP registered population that I used to create GP service areas. In the second 

section I give details on the indicators of air quality. The third part describes the 

deprivation data, and the final section reports on the demographic data. 

Chapter three presents the statistical analysis and consists of four sections. The 

first section is dedicated to describing the methods of statistical analysis. The 

second section presents the preliminary stages of the statistical model 

development. The third section describes the modelling of salbutamol prescribing 

seasonal variation, while in the fourth section I present the final model and its 

findings. The main discussion points are presented in chapter four while the 

conclusions as well as main limitations and strengths of the thesis are presented in 

chapter five.  
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Chapter 1. Scientific Background 

1.1  Chronic Respiratory Diseases – Asthma and Chronic Obstructive 

Pulmonary Disease (COPD) 

Hundreds of millions of people suffer every day from chronic respiratory diseases, 

which are chronic diseases of the airways and other structures of the lung. The two 

most common respiratory diseases are asthma and Chronic Obstructive Pulmonary 

Disease (COPD), also known as obstructive lung diseases. Asthma is a disease in 

which inflammation of the airways causes airflow into and out of the lungs to be 

restricted (Figure 1-1). COPD is a lung ailment the main components of which are 

chronic bronchitis and emphysema (Global Initiative for Chronic Obstructive Lung 

Disease (GOLD), 2008). Chronic bronchitis and emphysema used to be considered 

separate conditions but the terms are now replaced by COPD (Global Initiative for 

Chronic Obstructive Lung Disease (GOLD), 2008). In people with chronic bronchitis, 

the airways are narrowed, tight, swollen and are often filled mucus, resulting in 

reduced airflow. In emphysema, air sacs (alveoli) in the lungs are damaged and 

overstretched, resulting in air being trapped in the lungs, limiting the space for air 

exchange (Figure 1-2). 
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Figure 1-1. Airway (bronchiole) with inflammation (MedlinePlus - A.D.A.M. Inc, 

2006). 

 

 

 

 

 

 

 

 

 

 

Figure 1-2. Alveoli damaged by COPD. 
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1.1.1 Asthma Prevalence   

According to the latest WHO estimates, currently 300 million people have asthma 

(World Health Organization, 2009a). In 1992, the World Health organisation (WHO) 

formed the Global Initiative for Asthma (GINA) to promote the investigation of the 

disease. In Europe it is estimated that 30 million people are asthmatics, six million 

suffer symptoms which are characterised as severe, while 1.5 million people live in 

fear of dying from an attack (European Federation of Allergy and Airways Diseases 

Patients Associations, 2003). The United Kingdom (UK) is one of the countries with 

the highest asthma prevalence in the world (Woodruff and Fahy, 2001, Masoli M. et 

al., 2004c) along with USA, Canada, Australia, New Zealand, Brazil, Peru and South 

Africa (Figure 1-3). 

 

 

Figure 1-3. World map of The Prevalence of Asthma, Source: Global Initiative for 

Asthma (GINA) (2004) (Masoli M. et al., 2004b). 

 

Figure 1-4 shows fatality rates of asthma; the highest mortality rates occurred in 

countries with some of the lowest prevalence of the disease, such as Russia, China 

and Mexico. In contrast, countries with a very high prevalence of asthma often 

have the lowest rates of fatality, including the UK, Canada, Finland, and Australia 

(Masoli M. et al., 2004c). Asthma fatality rate corresponds to the number of deaths 

caused by asthma to the number of diagnosed cases of asthma. The pattern 

observed indicate that the countries with low asthma fatality rate are better on 

containment of mild cases.
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Figure 1-4. World map of the asthma case fatality rates, Source: Global Initiative 

for Asthma (GINA) (2004) (Masoli M. et al., 2004a). 

 

For England, data from the Quality and Outcomes Framework (QOF) showed that 

asthma prevalence was 5.9% (NHS The Information Centre for Health and Social 

Care, 2010). Asthma UK estimated that there are approximately 5.4 million people 

in UK (8.9% of the total UK population) with asthma (Prescription Pricing Authority, 

2006, Asthma UK, 2004); (Prescription Pricing Authority, 2007). Comparing asthma 

prevalence based on Asthma UK and QOF data, the latter appears to be an 

underestimate, however the figures are not directly comparable as QOF does not 

include the populations of Scotland, Wales and Northern Ireland.  

I compared data from the 4th Morbidity Study and Asthma UK in order to review the 

trend of asthma prevalence in UK over the most recent decade. According to the 4th 

Morbidity Study (Calverley and Sondhi, 1998) the diagnosed prevalence of asthma 

in UK was 4% (approximately 2.5 million people) at the end of 1990s. Comparing 

this figure to current Asthma UK estimate of approx. 8.9%, would show an increase 

of 4.9%. I also compared the estimate of 5.4% of UK’s population from Asthma UK 

in 1998 (called National Asthma Campaign) to the current Asthma UK estimate of 

8.9% that showed a 3.5% increase in asthma prevalence, during the last decade. 

The two numbers (4.9% and 3.5%) differ by approximately 1.5%. These indicative 

numbers of asthma prevalence increase in England during the last decade, are 

lower compared to asthma prevalence increase rates observed in earlier decades. 
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Experts were finding it difficult to understand why rates, world-wide, were rising by 

50% on average during the 1970s and 1980s (World Health Organization, 2000). 

Asthma prevalence was increasing worldwide at such a rate that asthma was 

classified as epidemic. Figure 1-5 shows the significant increase of asthma 

medication for England, between 1980 and 1993. However, for the last 10-15 years 

there are conflicting views on time trends of asthma, as recent trends show that the 

asthma epidemic has slowed down and prevalence may have declined. There are 

some studies indicating that asthma prevalence may be stabilising in high & middle 

income countries (Bollag et al., 2005, Fleming et al., 2000). Bollag et al., (2005) 

argued that asthma consultations in Switzerland have declined and suggest further 

research to be conducted in other cities and regions, in order to assess if the 

asthma epidemic has started to stabilise or even decline. In their recent work, 

Bollag et al (2009) also observed a fall in the proportion of asthma patients who 

had hay fever, and have argued that the asthma prevalence in Switzerland has 

been reduced because allergic induced asthma has declined.  

Those results were consistent with findings of an English study in children 

(Anderson et al., 2004). Anderson et al (2004) also found no increase in prevalence 

of asthma symptoms in children 12-14 years old, in British Isles.  The study on the 

British Isles reported decreases of eczema and hay fever as well. This would be 

similar with another study in Switzerland where prevalence rates of asthma and 

current asthmatic symptoms remained constant, and at the same time no further 

increase was observed for hay fever rates and allergic sensitisation rates (Braun-

Fahrlander et al., 2004). However, a study in Australia found a fall in asthma 

prevalence but an increase in prevalence of eczema and hay fever (Robertson et 

al., 2004). 
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Figure 1-5. Number of prescriptions for asthma preparations in England between 

1980-1993, Source: (Department of Health, 1995). 

 

The reported findings on the stabilisation or even decrease of the asthma 

prevalence over the last decade are to some extent reassuring but “should not be 

taken to indicate that the global pandemic of asthma is easing and that the worst is 

over” (Pearce and Douwes, 2005) page 763. The International Study of Asthma and 

Allergy in Childhood (ISAAC) phase III showed that the increase of asthma 

prevalence in Latin American countries may lead to describing asthma as a 

“Spanish and Portuguese speaking rather than an English speaking disease” (Asher 

et al., 2006). 

ISAAC is one of the two major multicentre studies that are able to provide evidence 

on the trends of asthma prevalence. The second one is the European Community 

Respiratory Health Survey (ECHRS) that focuses on centres of high income 
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countries, located mainly in Western Europe. I will now describe these two studies 

in more detail.    

1.1.1.1 International Study of Asthma and Allergy in Childhood  

ISAAC phase I has shown an approximately thirty-fold variation of asthma 

prevalence between countries, from data collected by June 1996 (ISAAC Steering 

Committee, 1998b). The survey was completed in 156 collaborating centres in 56 

countries with a total of over 700,000 children, aged 6-7 and 13-14 years, 

participating. The highest 12-month prevalence for asthma symptoms were 

reported from centres in UK, New Zealand, Australia, and Republic of Ireland 

(Figure 1-6).   

The time trend of the asthma prevalence was assessed by ISAAC survey phase III, 

carried out between 2001 and 2002 (Asher MI et al., 2006). This time 193,404 

children aged 6-7 years in 37 countries and 304,679 children aged 13-14 years 

from 106 centres in 56 countries participated. For the UK an increase of the 12-

month prevalence of asthma in children 6-7 years old was observed, while a 

decrease of asthma was reported for children aged 13-14 years (Asher MI et al., 

2006). The results from the ISAAC III study showed no increase in the prevalence 

of asthma symptoms in centres with pre-existing high prevalence in the older age 

group (age 13-14), such as UK 
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Figure 1-7). At the same time the results showed an increase in the prevalence of 

asthma in many other centres, such as Spain, Portugal and in countries of Latin 

America. 
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Figure 1-6. 12-month prevalence of self-reported asthma symptoms from written 

questionnaires, Source: ISAAC Steering Committee (1998) (ISAAC Steering 

Committee, 1998a). 
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Figure 1-7. World map showing direction of change in prevalence of asthma 

symptoms for 6–7 year and 13–14 year age-group (Asher et al., 2006). 
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1.1.1.2 European Community Respiratory Health Survey 

The European Community Respiratory Health Survey (ECRHS) started in 1993 

aiming to estimate the geographical variation in asthma prevalence in young adults 

(20-44 years) (Janson et al., 1997). Data were collected on a total of 17,029 

individuals from 34 centres in 14 countries. The highest prevalence of diagnosed 

asthma was found in New Zealand. In Europe, the highest asthma prevalence was 

found in all centres of the UK and in some of the centres in France (Figure 1-8). 

A follow up of ECRHS was conducted in 14 countries 5-11 years later, collecting 

data between 1998 and 2003 from 11,168 subjects, 20-44 years, in 1991-3 (Chinn 

S et al., 2004, Janson et al., 2001).  

Figure 1-9 shows the geographical variation of asthma as measured by people 

having an attack of asthma in the last 12 months and/or currently taking medicine 

for asthma. The ECHRHS found large geographical differences in the prevalence of 

asthma. Some of the UK fell within the category with the highest asthma 

prevalence >7% (Janson et al., 2001). The ECRHS follow-up found an increase in 

the number of people diagnosed with asthma but the same was not reported for the 

symptom prevalence. 
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Figure 1-8. Age-sex standardised prevalence of physician-diagnosed asthma and 

antiasthma medication, adjusted for non-participation, Source: Janson et al (1997) 

http://www.ecrhs.org/. 
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Figure 1-9. Geographical variation in prevalence of asthma (having an attack of 

asthma in the last 12 months and/or currently taking medicine for asthma), 

Source: Janson et.al. (2001) 

1.1.2 COPD Prevalence  

Similar maps to those produced for asthma prevalence by GINA do not exist for 

COPD. The Global Initiative for Chronic Obstructive Lung Disease (GOLD) was 

formed in 1998, in an effort to carry out similar work for COPD.  According to the 

latest WHO estimates, currently 210 million people have COPD. However, it is 

recognised that COPD is an under-diagnosed disease (World Health Organization, 

2009a). Estimates of the European Federation of Allergy and Airways Diseases 

Patients Associations (EFA) stated that “there are more than 600 million people 

worldwide with COPD”, which is almost three times higher than the estimate 

provided by WHO (European Federation of Allergy and Airways Diseases Patients 

Associations, 2009a).  

COPD is one of the leading causes of death worldwide and was predicted to become 

the third leading cause of death by 2030 (World Health Statistics, 2008). In 2005, 3 

•   < 4% 

   4–7% 
   > 7% 
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million people across the world died of COPD, which was considerably higher than 

the numbers who died of asthma (250,000). In 2006 though, WHO launched The 

Global Alliance against Chronic Respiratory Diseases (GARD) aiming to establish an 

integrated approach on monitoring (surveillance) of chronic respiratory diseases 

and their determinants as well as to strengthen national policies for their prevention 

and control. The WHO GARD Planning Committee also works with the EFA patient 

society as well as respiratory, allergological and general practitioners societies and 

government organisations (World Health Organization, 2009b, Viegi et al., 2007). 

EFA is a European network of allergy, asthma patient organizations that was 

founded in 1991, in Sweden and added COPD to its mandate, in 2002 (European 

Federation of Allergy and Airways Diseases Patients Associations, 2009b) 

In Europe there are currently, approximately 44 million people suffering from COPD 

(European Federation of Allergy and Airways Diseases Patients Associations, 

2009a). I reviewed data on COPD prevalence in UK.  According to the 4th Morbidity 

Study (Calverley and Sondhi, 1998), the diagnosed prevalence of COPD in the UK 

was 1% (approximately 600,000 people). Data from the Quality and Outcomes 

Framework (QOF) showed that 816,341 (1.6% of England’s population) people 

were registered with COPD between April 2009 and March 2010 (NHS The 

Information Centre for Health and Social Care, 2008), however the QOF database 

was considered to underestimate the prevalence of some disease domains (Martin 

and Wright, 2009, Prescription Pricing Authority, 2007). In addition, the QOF figure 

(1.4%) is not directly comparable to that published by the 4th Morbidity Study (1%) 

because the latter was based on the whole UK population, while the former was 

based on the population of England only.  

COPD is often under-diagnosed (Coultas and Mapel, 2003, Vestbo, 2004) because 

repeated measurements are required to establish the diagnosis and differentiate it 

from other respiratory diseases, such as asthma (Vestbo and Lange, 2002).  The 

availability of spirometry tests in primary care can also influence the degree of 

under-diagnosis and under-treatment (Cazzola et al., 2009, Walters et al., 2008). 

Because spirometry is underused for the assessment of COPD in primary care, the 

development of simple and standardised questionnaires has been suggested by 

Miravitlles et al (2009) for the assessment of COPD severity. A study in Northern 

Sweden by Lindberg et al (2006a) recently estimated the under-diagnosis of COPD 

by disease severity and reported that COPD under-diagnosis is related to disease-

severity.  

The Northern Ireland Cost and Epidemiology of COPD (NICECOPD) study, estimated 

COPD prevalence to be 6.3% in adults aged 44-69 years (Murtagh et al., 2005). 
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The project PLATINO (Proyecto Latinoamericano de Investigación en Obstrucción 

Pulmonar) in five Latin American cities on populations aged ≥40 years, showed 

prevalence estimates ranging from 11.9% in Mexico City (Mexico) to 19.4% in 

Montevideo (Uruguay) (Menezes et al., 2005, Menezes et al., 2008).  

In Asian countries a high prevalence of COPD was reported as well. In Korea, the 

COPD prevalence was 17.2% among adults aged ≥45 years, while 7.8% among 

adults aged >18 years (Kim et al., 2005). Prevalence of airflow limitation was 

10.9% in adults aged ≥ 40 years, in Japan (Fukuchi et al., 2004). The overall 

prevalence of COPD was 8.2%, in a Chinese study (Zhong et al., 2007). 

In Scandinavia, surveys of population samples provided estimates of newly 

occurring cases (incidence rates). The 7-years cumulative incidence of COPD was 

11.0% and 4.9% in middle-aged and elderly adults respectively, in Northern 

Sweden (Lindberg et al., 2006b). The 30-yr cumulative incidences of chronic 

bronchitis and COPD in middle-aged males from two rural Finish cohorts, were 42% 

and 32% for continuous smokers, respectively, compared to 22% and 12% for 

never smokers, respectively (Pelkonen et al., 2006). 

Large variability in the prevalence and incidence of COPD may occur depending on 

the definition of airway obstruction (Viegi et al., 2000). Lindberg et al (2005) 

estimated prevalence of COPD using the guidelines of the British Thoracic Society 

(BTS), the European Respiratory Society (ERS), the Global Initiative for Chronic 

Obstructive Lung Disease (GOLD), and the American Thoracic Society (ATS). The 

ATS and ERS have issued guidelines for the diagnosis and treatment of patients 

with COPD (Celli et al., 2004), in order to make comparable data on COPD. 

Halbert et al. (2006) conducted a systematic review and meta-analysis on global 

burden of COPD, the results of which approximated a COPD prevalence of 9-10%  

in adults aged ≥ 40 yrs. They suggested though that bodies such as the GOLD 

should help to standardise COPD prevalence measurement. A regional study in the 

North East of England conducted by Melville et al. (2010), in 6,000 males and 

6,000 females aged 45–69 randomly selected from a primary care database, also 

showed a COPD prevalence of 10%. 

The ECRHS project is the largest multicentre study providing information on COPD 

prevalence. More details on the results of the ECHRS are presented below.   
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1.1.2.1 European Community Respiratory Health Survey 

The ECHRS assessed the prevalence of COPD in high income countries, mainly  

located in Western Europe, analysing data on more than 18,000 young adults (20-

44 years). According to ECHRS results, in total 3.6 % had COPD and 11.8% had 

chronic respiratory symptoms, without airflow limitation (De Marco et al., 2004). 

The former is classed as COPD stage I+ and the latter COPD stage 0, according to 

WHO GOLD standards. Overall, ECHRS found COPD to be a considerable issue on 

young adults. This added to the evidence that COPD is not a burden only in elderly 

population. Studies that focused on middle age or elderly subjects limit the findings 

of real COPD burden and the view that COPD is a disease of those aged >50 yrs 

should be revised (Viegi et al., 2007, Vestbo, 2004). 

ECHRS findings also reported that female gender was significantly associated with 

chronic cough and phlegm (Cerveri et al., 2003). This finding is contrary to the old 

belief that COPD is a disease of males (Siafakas et al., 1995). In 2000, the number 

of COPD deaths in USA was higher in females than males. A retrospective cohort of 

British patients with COPD, found that, from 1990 to 1997, COPD became more 

frequent in 20-44 year old females (Soriano et al., 2000). This is likely to be related 

to the increase in smoking prevalence in women. 
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1.2 Aetiology and Risk factors for Asthma and COPD 

Asthma has a long history described first by Hippocrates and his school (460-360 

B.C.) (Hippocrates, 1881), however it is difficult to determine whether in referring 

to "asthma," Hippocrates meant a distinct clinical entity or simply a symptom. 

Asthma in now well defined as a disease but its causes are not fully understood. 

Asthma aetiology has a genetic component and there is also evidence that 

environmental factors are linked to its development (Mutius E. et al., 1992, Cullinan 

P. and A., 2003). The development of COPD is also considered to be influenced by 

genetic susceptibility but its main cause is considered to be inhalation of tobacco 

smoke and other inhaled particles.  

There is epidemiologic evidence that long-standing asthma can lead to COPD and 

patients can have both diseases (Bleecker, 2004, Global Initiative for Chronic 

Obstructive Lung Disease (GOLD), 2008, Viegi et al., 2007, Soriano et al., 2003, 

Viegi et al., 2004, Lange et al., 1998).  A major difference between asthma and 

COPD is that the airways obstruction in asthma is reversible while that in COPD is 

not fully reversible and gets progressively worse over time. Asthma can disappear 

particularly in children, however in a substantial proportion of cases the disease 

may come back (Martinez et al., 1995, Strachan et al., 1996, Sears et al., 2003).  

The incomplete understanding of causes of both asthma and COPD has motivated 

many studies investigating avoidable risk factors that exacerbate symptoms in 

those who already have the disease.  

1.2.1 Exacerbation of Asthma and COPD  

Studies have found that air pollution is a major risk factor for both asthma and 

COPD exacerbation (Romeo et al., 2006, Donaldson et al., 2000, Halbert et al., 

2006, Anderson et al., 1997, Katsouyanni et al., 2001). Poor air quality caused by 

tobacco smoke or inhaled particles is one of the major triggers for worsening 

symptoms and exacerbations for COPD and asthma (Pope C.A. et al., 1995). Other 

environmental factors that can worsen symptoms are cold air and respiratory 

infections. 

Asthma exacerbations are also linked to allergens like pollen and fungal spores that 

are seasonal.  Few studies have focused on the association of allergens and asthma 

(Rossi et al., 1993, Atkinson et al., 2006, Glikson et al., 1995). The majority of 

studies for asthma and COPD have focused on analysing their association with air 
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pollution, as environmental exposure can potentially become an avoidable risk 

factor. Socioeconomic differences are associated with asthma and COPD like many 

other diseases (e.g ischaemic heart disease, many types of cancer, mortality 

related to alcohol and violence) and this has been reported in the literature since 

the 1970’s.  

1.2.2 Air Pollution as Risk Factor for Asthma and COPD Exacerbations 

I present below major studies that have focused on analysing the association of 

asthma and COPD to air pollution. First, I describe the air pollutants analysed in 

those studies.  

1.2.2.1 Air Pollutants 

The concentration of air pollutants is often used to assess air quality and to define 

thresholds that can be harmful to human health and the environment.  An air 

pollutant is a substance in the air that can have the form of a gas, solid particles 

and liquid droplets. Pollutants are classified as either primary or secondary based 

on their origin. The primary pollutants are emitted directly from sources such as 

vehicle exhausts, factories or volcanic eruptions. The major primary pollutants 

produced by human activities are: 

 

• Sulfur dioxide (SO2), which is produced in various industrial processes. 

• Nitrogen dioxide (NO2) that is emitted from high temperature combustion. 

Traffic emissions are a major source of NO2. 

• Carbon monoxide (CO) that is a product of incomplete combustion of fuels 

such as natural gas, coal or wood. Traffic emissions are a major source of 

carbon monoxide. 

• Particulate matter (PM) consists of tiny particles of solid or liquid, suspended 

in a gas and is categorised with respect to size. The most widely used 

definition of PM size is the aerodynamic diameter, the ranges of which are 

presented in Table 1-1. Human activities, such as the burning of fossil fuels 

in vehicles, and power plants, and various industrial processes can generate 

significant amounts of PM. 
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Fraction  Size range 
PM10  ≤10 µm 
PM2.5   ≤ 2.5 µm 
PM1  ≤ 1 µm 
Ultrafine (UFP or UP)  ≤ 0.1 µm 
Table 1-1. Size of Particulate Matter Fractions. 

 

• Volatile organic compounds (VOCs) are numerous and vary a lot as chemical 

compounds. They are often divided into the separate categories of methane 

(CH4) and non-methane (NMVOCs). Methane is a greenhouse gas. Within 

the NMVOCs, the aromatic compounds benzene, toluene and xylene are 

known or suspected carcinogens. 

Secondary pollutants are formed when primary pollutants react or interact. The 

main secondary pollutants are: 

• Particulate matter (PM) formed from gaseous primary pollutants and 

compounds in photochemical smog. 

• Ground level ozone (O3) formed by the reaction of sunlight on air containing 

NOx and VOCs.  

There are many studies that have investigated the effect of a range of air pollutants 

on asthma and/or COPD, in an environmental epidemiology context. I present some 

of those studies in the next section. 

1.2.2.2 Association of Air Pollution to Asthma and COPD 

The Air Pollution and Health - A European Approach (APHEA) study analysed air 

pollution in relation to respiratory diseases in 10 European countries. APHEA is the 

largest scale study in Europe in the field of respiratory diseases and air pollution 

and analysed the following main types of pollutants: PM, SO2, NO2 and O3. APHEA 

looked at hospital admissions for asthma, asthma and COPD and all-respiratory 

disease admissions. The study confirmed that air pollution in European cities was 

positively associated with increased numbers of admissions for respiratory diseases 

(Katsouyanni et al., 2001, Atkinson et al., 2001b, Anderson et al., 1997, Sunyer et 

al., 1997, Katsouyanni et al., 1997). Variation in air pollutants effect estimates 

between cities could be explained by cities’ characteristics.  
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Romeo et a.l (2006) conducted a review of the time series and panel studies on the 

short term effects of PM10 on increases of the illness in childhood. The results 

showed that exposure to PM10 was associated with an increase in hospitalizations 

for asthma. In addition, exposure to PM10 of asthmatic children was associated with 

the frequency of asthmatic symptoms (wheezing and cough), the use of anti-

asthma medications (in addition to regular therapy) and a decrease in lung 

function. 

A study in London investigated the relationship between daily GP consultations for 

asthma and other lower respiratory diseases (LRD) and air pollution. Associations 

were found between air pollution and daily consultations for asthma and other 

lower respiratory disease. The most significant associations were observed in 

children and the most important pollutants were NO2, CO, and SO2, while in adults 

the only consistent association was with PM10 (Hajat et al., 1999). 

Some studies assessed the relationship between air pollution and respiratory 

diseases by using indicators measured directly in individuals with asthma. In 

Germany, the association between particulate air pollution and asthma medication 

use and symptoms was investigated, in a panel study of 53 adult asthmatics, 

during the winter 1996/1997. The study reported that asthma medication use and 

symptom increase was associated with particulate air pollution and gaseous 

pollutants, such as nitrogen dioxide (von Klot et al., 2002). A study in eight North 

American cities, investigated the relationship between ambient concentrations of 

five pollutants and asthma exacerbations (daily symptoms and use of rescue 

inhalers) among 990 children (November 1993-September 1995). PM10 and O3 were 

found unrelated to exacerbations while strong association was found with CO3 and 

NO2 (Schildcrout et al., 2006).   

COPD emergency department visits were associated with the daily ambient 

concentrations of PM10, SO2, NO2, CO and O3 in the City of São Paulo, Brazil (Arbex 

M A  et al., 2009). PM10 and SO2 readings showed both acute and lagged effects on 

COPD emergency department visits. Increases in CO concentration showed impacts 

in the female and elderly groups. NO2 and O3 presented mild effects on the elderly 

and in women, respectively (Arbex M A  et al., 2009). A study in Barcelona, found 

significant associations between the number of emergency room admissions for 

COPD and SO2 and Black Smoke (BS) (Sunyer et al., 1993). 

Medina-Ramon et al. (2006) analysed hospital admissions of COPD and pneumonia 

in relation to O3 and PM10 in 36 US cities. The study confirmed an increased risk of 

COPD and pneumonia admissions associated with ambient concentrations of PM10 

and O3. This study included a large number of cities and analysed more years of 
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follow-up than previous multicity studies on respiratory effects of PM10 and O3 

(Medina-Ramon et al., 2006). 

Pope A.C. et al (2004) observed, unlike previous studies, no association of elevated 

exposures to PM with prevalence of COPD symptoms. A possible reason for this is 

that the study relied on cause-of-death coding that has a potential for estimation 

bias for specific causes of death, such as COPD. COPD patients are likely to die 

from pneumonia or cardiovascular disease (Speizer et al., 1989, Pope Iii et al., 

2004). A study focusing on COPD patients living in rural areas of England, between 

2006 and 2007, did not observe any positive association between PM10, O3 and 

COPD, while positive relationships were observed between CO, NO2  and COPD 

admissions (Sauerzapf et al., 2009). 

Overall, the existing evidence suggests that air pollution contributes to the 

exacerbation of asthma and COPD, while the type of pollutants as well as the air 

pollution levels is modified by city characteristics, such as widely varying climates 

and geomorphology. 

1.2.3 Socioeconomic Status as Risk Factor for Asthma and COPD 

Socio-economic factors are linked to asthma and COPD, just like so many other 

diseases. Socio-economic characteristics of an area expressed as indicators of 

poverty or housing are linked to susceptibility (Jerrett and Finkelstein, 2005, Yen 

and Syme, 1999, Pickett and Pearl, 2001). Using local areas’ contextual data is an 

ecological approach accounting for population susceptibility. Even studies that 

control covariates at the individual level, such as cohort studies, can potentially 

misinterpret the impact of individuals susceptibility, when not taking into account 

local area effects (Jerrett and Finkelstein, 2005, Yen and Syme, 1999). According to 

Pickett and Pearl (2001) this is because “population inequalities in disease are not 

accounted for, by any known combination of individual genetic and environmental 

risk and must therefore be attributable to other unmeasured factors, some of which 

may operate at an aggregate level”. The community-level variables are discussed in 

detail in relevant literature (Wilkinson, 1996, Robert, 1998, Kennedy et al., 1996, 

Diez-Roux et al., 1997, Diez-Roux, 1998). 

1.2.3.1 Association of Socioeconomic Status to Asthma and COPD 

A relationship between social class and respiratory symptoms in adults was 

observed in an early UK study (Speizer and Tager, 1979). Many late studies 
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confirmed this (Cohen et al., 1977, Marmot et al., 1984, Higgins et al., 1977, Burr 

and Holliday, 1987, Demissie et al., 1996, Lebowitz et al., 1990).  

Two recent studies have shown significant association between greater 

neighborhood income inequality and higher childhood asthma hospitalization rates 

(Watson et al., 1996, Cagney and Browning, 2004). In New Zealand, Salmond et al. 

(1999) found a linear increase in a 12-month period prevalence of asthma with 

increasing area deprivation. In Vancouver, Canada, Lin et al. (2004) found that 

exposures to nitrogen dioxide were associated with asthma hospitalization for 

males in the low socioeconomic group but not in the high socioeconomic group. 

Nauenberg et al (1999) showed that low family income could predict better asthma 

exacerbations associated with air pollution than lack of insurance coverage, while 

Neidell (2004) reported that the effect of pollution was greater for children of lower 

socio-economic status (SES). 
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1.3 Medication for Asthma and COPD   

The majority of epidemiological studies that have investigated risk factors for 

asthma and COPD have used hospitalization and visits to emergency departments, 

to assess the relationship between respiratory conditions and ambient air pollution. 

In recent years, prescribing of respiratory medication has been used increasingly as 

a marker of respiratory diseases’ morbidity. I used prescribing of respiratory 

medication to assess asthma and COPD exacerbation in relation to air pollution. 

Next, I will describe the pharmacological interventions for asthma and COPD and 

review the studies that have adopted prescribing of respiratory medication as an 

indicator of air pollution effects on asthma and COPD. 

1.3.1 Pharmacological Interventions in Asthma and COPD  

The medication for asthma and COPD is classed into two main types: 1) β2-

agonists that dilate the airways (bronchi and bronchioles) facilitating airflow and 2) 

corticosteroids that are used for long-term management of asthma and COPD 

(British National Formulary, 2009). There are two types of β2-agonists, the short-

acting and long-acting β2-agonists. Short-acting β2-agonists (SABA) - often called 

short-acting bronchodilators or “quick relief” medication – help reduce asthma and 

COPD symptoms or stop the symptoms of an attack in progress. In cases where the 

airways obstruction is more severe the short-acting β2-agonists are prescribed 

regularly. In patients who remain symptomatic or have two or more exacerbations 

in a year, long-acting β2-agonists are prescribed (British National Formulary, 

2009). 

Mucolytic medication is related to COPD management, as it hydrolyzes mucus 

reducing its viscosity. This type of medication was used in many countries, such as 

Germany but currently its use is controversial. Studies on their efficacy at 

preventing exacerbations have shown that they are effective in preventing acute 

exacerbations (Allegra et al., 1996, Petty, 1990) but also that they are ineffective 

at preventing exacerbations or deterioration of lung function (Decramer et al., 

2005). Long-term studies with mucolytics have shown little effect on lung function 

or symptoms, although some have shown a reduction in exacerbations. The GOLD 

guidelines state that the widespread use of mucolytics cannot be recommended for 

COPD management, given the current evidence (Global Initiative for Chronic 

Obstructive Lung Disease (GOLD), 2008).  
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1.3.1.1  Prescribing of short-acting β2- agonists   

Respiratory prescriptions account for 7% of all prescribed drugs, in the UK (British 

Thoracic Society, 2006).  In England in 2004 about 51 million prescriptions were 

dispensed in the community for the prevention and treatment of respiratory 

disease. Almost half of these (24,785,000 or 49%) were for inhaled β2-agonists 

(bronchodilators) used in the treatment of asthma (Table 1-2) (British Thoracic 

Society, 2006).  

 

 
Prescriptions 

(thousands) 
General respiratory drugs  
Inhaled bronchodilators 24,785 
Inhaled corticosteroids 13,480 
Cromoglycate and realted therapy 74 
Leukotriene receptor antagonists 597 
Antihistamines, hyposensitisation and allergic 
emergencies 8,741 
Oxygen 704 
Mucolytics 97 
Aromatic inhalations 22 
Cough preparations 1,672 
Systemic nasal decongestants 624 
  
Antituberculous Drugs 71 
  
Cystic fibrosis drugs (pancreatin) 153 
  

Total 51,020 
this table does not include drugs dispensed in hospitals  

Table 1-2. Prescriptions used in the prevention and treatment of respiratory 

disease. England 2004 (Department of Health, 2004). 

 

Figure 1-10 shows the quantities of different types of medication prescribed for 

asthma and COPD in general practices in England. One of the most notable 

observations is that the short-acting β2-agonists were prescribed most often to 

treat asthma and COPD in England compared to other medication.  
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Figure 1-10. Prescribing of drugs for Asthma and COPD in General Practices in 

England (Prescription Pricing Authority, 2007). 

 

A second observation is that prescribing of medication increased over the last five 

years and this is mainly due to increased prescribing of Symbicort and Seretider 

(Figure 1-10). These are combination products containing a long-acting β2-agonist 

plus corticosteroid. However, concerns have been expressed recently regarding the 

side effects of the components of such combination products and the effectiveness 

of therapy and discontinuing of drugs that do not produce measurable 

improvements is reviewed (Prescription Pricing Authority, 2007). The prescribing of 

short-acting β2-agonists has not had any noticeable changes during the period of 

2002–2007, other than increasing in the quarter to December each year (Figure 

1-10). The drug salbutamol represents 93% of all prescribing for short-acting β2-

agonists and 89% of the cost (Prescription Pricing Authority, 2006).  

1.3.1.2 Respiratory Prescribing as Indicator for Respiratory Diseases 

The majority of studies that have analysed the association between air pollution 

and asthma and COPD used hospital admissions and attendance & emergency visits 

as indicators (Walters et al., 1994, Schwartz, 1994, Atkinson et al., 2001a, Tolbert 



Scientific Background     

26 
 

et al., 2000, Arbex M A  et al., 2009, Sunyer et al., 1993, Sunyer et al., 1997, 

Medina-Ramon et al., 2006). These indicators capture patients with severe asthma 

or COPD symptoms.  

According to the National Asthma Campaign only 20% of people with asthma are 

described as having a 'severe or very severe' asthma (National Asthma Campaign). 

There is lack of epidemiological data on COPD severity but a few studies that have 

investigated COPD severity reported that the majority of subjects analysed had 

mild COPD (Lindberg et al., 2006a). COPD prevalence was studied in Japan, and 

56% of cases were found to be mild, 38% moderate, 5% severe, and 1% very 

severe (Fukuchi et al., 2004), while a study in Korea reported that the majority of 

these cases were found to be mild in degree (Kim et al., 2005). 

The main advantage of prescribing in relation to traditional indicators for asthma 

and COPD is therefore the fact that prescribing is considered to capture patients 

from any severity class. The Asthma Insights and Reality in Europe (AIRE) Survey 

is a multi-national survey for the severity, control and management of asthma in 

children and adults (Vermeire et al., 2002). Medication usage was assessed among 

many other aspects of asthma control and management. Figure 1-11 shows that 

quick relief medication was prescribed to patients with any severity type. More 

details on AIRE study are presented in Appendix A. 

 

 

 

 

 

 

 

 

 

 

Figure 1-11. Asthma medication use per symptoms’ severity, Source: Asthma Insights 

and Reality in Europe (AIRE) Survey.  
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No similar data exist on use of medication per COPD severity class. As mentioned 

earlier, COPD is under-treated, which means a lack of appropriate medication use, 

especially corticosteroids that are suitable for long-term management of COPD. The 

lack of appropriate prescribing for long term management of COPD leads to patients 

having more frequent exacerbation of symptoms, making them rely more on the 

use of β2-agonists (quick relief medication). Therefore, I would expect that β2-

agonists would also be used often by COPD patients of any severity. 

Naureckas et. al. (2005) evaluated the use of short acting β2-agonist prescriptions 

as a surrogate indicator for asthma exacerbation with respect to traditional 

indicators (hospital admissions & emergency-department visits) during 1996-1998 

in Illinois, Chicago. They concluded that a very strong and significant association 

was observed between those two indicators, which suggested that β2-agonists 

prescriptions can be used as a marker for asthma morbidity (Naureckas et al., 

2005). 

1.3.2 Respiratory Prescribing as Indicator of Air Pollution Health Effects – 

Literature Review 

I found only a few studies that used respiratory prescribing as an indicator of the 

air pollution effect on respiratory exacerbations. I used the databases Web of 

Science, Medline and Scopus for my search. The searching keywords were 1) 

Topic=(respiratory prescribing) AND Topic=(air pollution), 2) Topic=(respiratory 

drug sales) AND Topic=(air pollution) and 3) Topic=(respiratory drug sales) AND 

Topic=(air pollution).  

My searches in May 2010 returned four studies  that analysed the association of 

respiratory prescribing in relation to air pollution (Laurent et al., 2009, Pitard et al., 

2004, Zeghnoun et al., 1999, Vegni et al., 2005). Three of the four studies were 

from France, while the fourth was conducted in Italy. To conduct such studies 

requires the availability of prescribing data at population level. Such availability is 

determined by the structure of the health care system of each country. I also 

located an unpublished study, currently in development, in California, US (Griffiths 

et al., 2009, Griffiths et al., 2003). I present below the studies and then discuss the 

main aspects on them.  

1.3.2.1 Literature Review Outcome 

Zeghnoun et al.’s (1999) study had a temporal ecological design, choosing 

respiratory medication sales data as an indicator for the short-term effects of 
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ambient air pollution in the city of Le Havre (200,000 inhabitants), in France, from 

June 1993 to December 1996. Mucolytic medication, prescribed for the 

management of COPD, as well as anti-cough medication for children and adults, 

were assessed in this study. The total number of daily respiratory drug sales data 

was related to daily ambient air concentrations of SO2, NO2, and black smoke (BS). 

The air pollutants concentration data were recorded by a number of stations and 

exposure was calculated as the average of values from the selected stations, 

defining a spatially homogenous air pollution exposure. They employed an 

autoregressive Poisson regression model adjusting for time trends, seasonal 

variations, influenza epidemics, and weather. Respiratory drug sale was associated 

with BS-24h, NO2-24h and SO2-1h, with reported lag 0 to 3 days. The strongest 

association was observed for BS-24h, where an increase of two standard deviations 

above the mean (13.2 to 36µg/m3) was linked to a 3.7% increase in respiratory 

drug sales, for 1 day lag. For NO2 and SO2, an increase of two standard deviations 

above the mean of NO2 h (33.7 to 64 µg/m3, 1 day lag) and SO2 h (97.8 to 355 

µg/m3, 3 days lag) was associated respectively with an increase of 3.3% and 2.7% 

of respiratory drug sales. Respiratory drug sales were associated with most 

pollutants studied with lags varying from 1 to 9 days (Zeghnoun et al., 1999).  

Pitard et al. (2004) also used a temporal ecological design to assess the effect of air 

pollution on bronchodilators (β2-agonists), and cough and cold preparation sales in 

the city of Rouen (106,592 inhabitants), in France, from July 1998 to June 2000. 

Asthma and COPD medication was used (β2-agonists and corticosteroids) that 

represented 33% of the total respiratory drug sales in the city as well as cough and 

cold medication that represented 67% of the total respiratory drug sales. The air 

pollution exposure was calculated as the average of daily concentrations of NO2, 

SO2 and BS recorded by two air pollution stations, defining a spatially homogenous 

air pollution exposure. Lags of up to 10 days were included in the analysis for each 

pollutant. A generalized additive model (GAM) was employed, adjusting for day of 

the week, seasonal variation, influenza epidemics, weather and bank holidays. A 

10- µg/m3 BS increase was significantly associated with a 6.2% (95% CI, 2.4-

10.1%) increase in the sales of anti-asthmatic and COPD medication, and with a 

9.2% (95% CI, 5.9-12.6%) increase in the sales of cough and cold preparation for 

children aged under 15 years. For the anti-asthma and COPD medication, 

associations were found for lags ranging from 5 to 7 days with NO2, and for lags 

ranging from 1 to 7 days with BS. There was no association between SO2, and anti-

asthmatic and COPD drug sales. The results of this study suggested that an 

increase in anti-asthmatic and COPD drug sales was directly associated with BS and 

NO2 concentrations but not with SO2 (Pitard et al., 2004).  
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Vegni et al. (2005) also used a temporal ecological design. They evaluated 

respiratory drug dispensing data as a health indicator in relation to air pollution in 

the city of Como (84,713 inhabitants), in Italy, for 1995-1997. For this study, 

respiratory drugs were defined as the anti-asthma therapeutic group including both 

β2-agonists as well as corticosteroids prescribed by GPs. They used two health 

indicators: 1) count of individual patients with respiratory drug dispensed (Cases) 

and 2) weekly dispensed Daily Defined Doses (DDD) of drugs. Weekly air mean 

concentrations of total suspended particles (TSP) were recorded by one available 

station, defining a spatially homogenous exposure. The health indicators were 

modelled using a random effects Poisson regression model adjusted for long-term 

trends, seasonal variations, calendar variations due to holidays, and weather. The 

analysis showed a strong association of health indicators with pollution, with an 

increase of 8.2% (95% CI 0.2%-16.9%) of cases and 13.7% (95% CI 4.4%-

23.8%) for DDD from the 10th to 90th percentile of TSP (29-92 µg/m3). Overall, 

these results were interpreted as an approximate increase of 13% of Cases and 

22% of DDD for a 100 µg/m3 increase of TSP (Vegni et al., 2005).  

Laurent et al.’s (2009) spatio-temporal ecological study evaluated the short-term 

relations between ambient air pollution and sales of short-acting β2-agonists 

(SABA), in Strasbourg (450,000 inhabitants), France in 2004. The date, age group, 

sex and census block of residence were also extracted for each SABA sale. The 

Atmospheric Dispersion Modelling System (ADMS) urban Gaussian dispersion model 

was used to model hourly mean concentration of PM10, NO2 and O3  at small-area 

level (census block). Socioeconomic status, meteorological data, pollen counts as 

well as counts of influenza cases were included in the conditional logistic regression 

model. Increases of 10µg/m3 in ambient PM10, NO2, and O3 concentrations were 

associated, respectively, with increases of 7.5% (95% confidence interval [CI], 4 to 

11.2%), 8.4% (95% CI, 5 to 11.9%), and 1% (95% CI,- 0.3 to 2.2%) in SABA 

sales. Deprivation had no influence on these relations.  

The study by Griffiths et al (2009) is work in progress and I have not located 

relevant publications in peer reviewed journals as yet. Griffiths et al.’s (2009) 

spatio-temporal ecological study examined the effects of chronic exposure to air 

pollution on asthma exacerbation through asthma prescriptions for quick-relief 

medications (β2-agonists) in California, US, for each quarter from 1998 to 2001. 

They aggregated information on the use of maintenance therapies by each patient 

at the 5 digit zip code level in California. Using individual data they were able to 

stratify prescribing data by asthma severity as well as by age. The spatial variation 

of exposure to air pollutants PM10 and O3 was predicted for each zip code in 

California using ordinary kriging, capturing a spatial prediction of the ambient 
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pollution and weather conditions for each zip code, defining a heterogenous 

exposure (Griffiths et al., 2009). A negative binomial model was employed to 

approximate the expected number of prescriptions for each zip code  with additional 

covariates, such as the population demographics (e.g., median household income, 

percent urban population, race/ethnicity). In general, they reported a positive 

relationship between asthma and both PM10 and O3 levels (Griffiths et al., 2009). 

1.3.2.2 Discussion of Literature Review 

The points of discussion regarding these studies lie in the following areas: 1) air 

pollutants, 2) exposure assessment and 3) medication type. I will compare and 

discuss those areas below, in order to highlight the variation and challenges on this 

area of research. 

Respiratory medication 

The five studies presented above use asthma and/or COPD medication to 

investigate the association between air pollution and asthma and/or COPD. Two 

earlier studies (Pitard et al., 2004, Vegni et al., 2005) used β2-agonists and 

corticosteroids as indicators of respiratory symptoms (asthma and COPD), while the 

two most recent studies (Griffiths et al., 2009, Laurent et al., 2009) focused on 

short-acting β2-agonists as indicator of asthma exacerbation. The earliest study in 

this field, conducted by Zeghnoun et al. (1999), used mucolytic medication and 

anti-cough medication. 

Zeghnoun et al.’s  (1999) study initiated the use of respiratory prescribing as a 

health indicator of air pollution effects in respiratory diseases, however the specific 

medication they used as marker of COPD exacerbation should not be used 

anymore, given contradictory evidence on its efficacy. Choosing a medication as an 

indicator of a medical condition is not straightforward and a very good knowledge 

on medication and the disease under study is required.  

Air pollutants 

The Zeghnoun et al. (1999) and Pitard et al. (2004) studies from France used 

ambient concentrations of SO2, NO2, and BS as indicators of air quality. Vegni et al. 

(2005) in Italy used total suspended particles (TSP). The most recent published 

study by Laurent et al. (2009) used concentrations of PM10, NO2 and O3, and the 

unpublished study by Griffiths et al. (2009) also used concentrations of PM10 and O3 

as indicators of air quality.  
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Black smoke consists of fine solid particles suspended in air, which mainly arise 

from the incomplete burning of fossil fuels, in the domestic, industrial or transport 

sectors. Total suspended particulate matter (TSP) is a collective name for airborne 

particles or aerosols that are less than 100 micrometers. Most modern air pollution 

stations have stopped measuring BS or TSP and instead record  particulate matter 

of specific sizes (Table 1-1 page 19), such as PM10. The BS and TSP were reported 

by the earliest studies (Zeghnoun et al., 1999, Vegni et al., 2005, Pitard et al., 

2004), while the recent studies (Laurent et al., 2009, Griffiths et al., 2009) have 

used PM10. I have also used PM10 as air quality indicator,  therefore my study is 

most similar to the two most recent studies.   

Pollutants recorded in the same station are correlated most of the time. Zeghnoun 

et al. (1999), Pitard et al. (2004), Laurent et al. (2009) and Griffiths et al. (2009) 

also reported that the mean levels of air pollutant concentrations measured at 

stations appear to be highly correlated in time. Due to the correlation of air 

pollutants replication of information can occur when using all in the same model, as 

indicators of air quality. 

Air pollution exposure 

The previous studies on air pollution and respiratory prescribing assumed 

homogenous air quality exposure except the study of Laurent et al. (2009)  where 

heterogeneous exposure was estimated at census block level. The study under 

development has also used heterogeneous exposure (Griffiths et al., 2009). 

Preliminary work for this study in 2003, had assumed homogenous exposure and 

the authors had reported that their initial model suffered from the lack of 

heterogeneity (Griffiths et al., 2003). 

The assumption of homogenous air pollution exposure on the other studies may be 

related to the absence of an air pollution monitoring network. Many epidemiological 

studies in the past have used homogenous exposure (Katsouyanni et al., 1996). 

Vegni et all (2005) explicitly stated the presence of only one monitoring station in 

the area. The most recent published study by Laurent et al. (2009) reported the 

use of the existed urban atmospheric dispersion model ADMS to model air exposure 

in time (hourly) and at small-area level (census block).   
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Covariates 

All previous studies used air pollutants, which are the primary factors of concern 

but also included additional covariates that are relevant to worsening of respiratory 

symptoms. The three earlier studies (Zeghnoun et al., 1999, Vegni et al., 2005, 

Pitard et al., 2004) controlled for seasonal factors, influenza, pollen levels, and 

weather (temperature and humidity). In addition, the studies by Zeghnoun et al. 

(1999) and Pitard et al (2004) took into consideration  the day of the week and 

bank holidays. Both studies analysed daily data and observed zero pharmacy sales 

of respiratory medication (prescribed by GPs) on specific days (i.e. Sundays).  

Vegni et al. (2005), on the other hand, stated that they aggregated the data on a 

weekly basis avoiding assumptions on the closure days of different pharmacies and 

complicating the model. 

Vegni et al.’s (2005) model investigated only the effect of air pollution on a weekly 

basis. No attempt was made to assess lag times on cumulative periods of exposure 

and respiratory medication sales. In contrast, other studies tested whether there 

may be a lag period between air pollution exposure and sales/prescribing of 

respiratory medication. Zeghnoun et al. (1999) investigated lags of 1 to 14 days 

and found strong associations for lags 0 to 3 days as well as 6 to 9 days. Pitard et 

al. (2004) included lags up to 10 days. The strongest associations were observed 

for 6 to 7 days lag with NO2, and 2 to 5 days lag for BS. The most recent published 

study (Laurent et al., 2009) observed associations involving latency periods of 4 to 

10 days. Finally, no analysis of lag days was reported in the ongoing study of 

Griffiths et al (2009), even though they discussed that increase in asthma 

medication use due to air pollution exposure eventually (perhaps with a lag) leads 

to the filling of a prescription. 

The recent study in France (Laurent et al., 2009) accounted for socioeconomic 

characteristics in addition to the other covariates. They used an index of 

socioeconomic status built from 52 socioeconomic variables (income, educational 

level, employment, housing characteristics). Overall, socioeconomic status was not 

found to be a significant covariate. The authors discussed that similar studies in 

other settings should confirm whether the lack of interaction with deprivation was 

due to specific local conditions. The ongoing study by Griffiths (2009) includes 

population characteristics, such as median household income, percent urban 

population and race/ethnicity as well as seasonal or quarterly factors. In this study 

household income was negative statistically significant, suggesting that households 

with lower incomes obtained more asthma prescriptions. 



Scientific Background     

34 
 

1.4 Primary Care and Chronic Diseases 

In 2007, the World Health Assembly set out actions to be implemented over the 

next six years, in order to prevent and control chronic non-communicable diseases, 

such as asthma and COPD (World Health Organization, 2008a). Part of the plan to 

achieve this was to strengthen the management of the diseases in primary health 

care and use accessibility of medication in primary care as an indicator to monitor 

progress (World Health Organization, 2008b). In order to use primary care based 

prescribing data as an indicator, baselines of medication use have to be available, 

which will have to be established by collecting relevant data (World Health 

Organization, 2008b). In the UK, a consistent priority for NHS reform is the shift 

from provision of hospital-based acute care to proactive care delivered in primary 

care (Department of Health, 2006, Department of Health, 2005, Department of 

Health, 2010). The importance of exploiting data at primary care level and 

especially data of respiratory diseases is discussed below.  

1.4.1 Primary Care and Chronic Respiratory Diseases 

Most epidemiological studies use data from secondary and tertiary care such as 

hospitals and emergency care, even though the vast majority of patients are fully 

dealt with at the primary care level. The important role of primary care for health 

services has been well recognised (World Health Organization, 1978, World Health 

Organization, 2003) and the UK is one of the countries that has developed it 

comprehensively (Starfield B et al., 2005, Starfield B., 1994).  The majority of 

primary care consultations in the UK are for patients with respiratory disease 

(Pinnock and Sheikh, 2009, British Thoracic Society, 2006), emphasizing the 

significant role of primary care in managing respiratory diseases.  

High quality research, focusing on primary care management, is fundamental to 

understanding and developing a comprehensive healthcare service for respiratory 

disease. Several studies have been conducted regarding management of respiratory 

diseases at a primary care level. However, I located only two studies that utilized 

GP level respiratory data from an environmental health perspective, in UK (Hajat S. 

et al., 1999, Dunn et al., 1995). Dunn et al. (1995) investigated airborne emissions 

from a factory (producing plastic coated wallpaper) and prevalence of asthma as 

identified from a computerised repeat prescribing system of three GP practices. 

Hajat et al. (1999) investigated the relationship between daily GP consultations for 

asthma and other lower respiratory diseases (LRD) and air pollution in London.  
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One of the main challenges in environmental epidemiology is linking health data to 

environmental and socioeconomic data that are available on spatially and 

temporally misaligned units.   

1.4.2 Spatial Analysis of Primary Care Population Data  

If patients want to access primary care services in UK, they register with a GP 

practice, and there are no geographic constraints on their choice. However, most 

people choose to register with a practice that is close to the place they live or work. 

Several factors such as area deprivation and transportation links or other factors 

may influence their choice. Consequently, there is no formal definition of 

boundaries of primary care service areas and the population of any given area can 

be affiliated to a number of practices. A traditional way to define GP practice 

catchment areas has been to align them to administrative boundaries (Congdon 

and Best, 2000). If we assume that 60% of a practice population A come from the 

administrative spatial unit of Lower Social Output Area (LSOA) 1 and 40% come 

from practice population B, then this LSOA would be part of practice A catchment 

area. 

The use of administrative boundaries is a common method for the regionalisation of 

health care and there are certain advantages of such approach. Main advantages 

are that these spatial units are readily available and represent to some extent the 

area the practice population live. Main disadvantages are that they provide no 

information on the overlap between catchment areas, as they form adjacent spatial 

units, and they are rough approximations of the distribution of registered patients, 

so few will probably relate directly to the GP health service utilisation areas. In 

addition, because they are not accurate, any measure on catchment areas or 

health, well-being and determinants of ill-health within them can result in 

compromising the reliability of those measurements. In particular, the spatial 

distribution of environmental data does not follow the spatial distribution of 

administrative boundaries. Therefore, when using the traditional GP catchment 

areas to derive measures of environmental exposure of a practice population 

increases error in exposure misclassification. 
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1.5 Spatial Analysis  

Spatial analysis is defined as the: “the quantitative study of phenomena that are 

located in space” (Bailey and Gatrell, 1995). Epidemiology has a geographical basis 

when it characterises disease occurrence by time and place. Consequently disease 

mapping has a long tradition (Timmreck, 2002), dating back to 1800s when maps 

of diseases were used to analyse causes and spread of disease outbreaks (Walter, 

2000).  

Over the last two decades, epidemiologists have applied statistical spatial analysis 

in geographical information systems (GIS). Studies have looked at cases of 

leukaemia, lymphoma, larynx and lung cancer in relation to industries (Gardner et 

al., 1990, Elliott et al., 1992, Elliott and Wartenberg, 2004). This type of spatial 

analysis has been previously used extensively in other scientific disciplines, such as 

ecology, economics and sociology (Diggle, 1983 , Bronars and Jansen, 1987, White 

et al., 1981, Rushton et al., 2006, Rushton et al., 1997, Lurz et al., 1997). 

Geographical Information Systems (GIS) and statistical spatial analyses are 

applications of what is known as spatial analysis. Spatial analysis is used to: 1) 

increase the basic understanding of spatial processes, 2) test hypothesis regarding 

the relationship of the variables under study and at best 3) predict the strength of 

the relationship of variables in the future.  

1.5.1 Geographical Information Systems  

GIS is a computer based technology that captures, stores, analyses and presents 

data which are referenced spatially on the earth’s surface. Spatial data used in a 

GIS environment can be generated by satellites, digital aerial photographs and 

Global Positioning Systems (GPS) as well as by scanning and digitising paper maps 

and aerial photographs (Schuurman, 2004). Conversion of postcodes to grid 

references is also a method for acquiring spatial data, called geo-coding (Crampton, 

2005). Core functionality of GIS is the creation and display of maps electronically. 

Two of the most useful GIS operations are overlay and proximity analysis (Heywood 

et al., 1998). With overlay analysis it is possible to integrate large amounts of data 

in map layers format (i.e. overlay asthma health outcomes on air pollution and 

socio-economic data). Proximity analysis is used to determine relationships 

between selected points or areas and their neighbours (i.e. identify the population 

present in a 2.5km radius around an industrial facility).  
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The true power of GIS, however, lies in its modelling and exploratory capability. 

Modelling is applied when we want to test a hypothesis or estimate the relationship 

between two or more variables with some precision. Exploratory analysis on the 

other hand may lead to insights into the data and formulation of a hypothesis 

(Fotheringham and Rogerson, 1994, Bailey and Gatrell, 1995). Modelling and 

exploratory analysis can not always be clearly distinguished. This is due to the level 

of complexity of various techniques. Examples of this are the widely used 

interpolation techniques. With such techniques it is possible to estimate values of 

variables in unsampled areas, based on data provided from sampled areas (i.e. 

estimate air pollution based on air pollution monitoring). Some interpolation 

techniques such as ordinary or universal kriging require statistical modelling and 

are described as models, while other simpler techniques such as Thiessen polygons 

fall into exploratory analysis (Bailey and Gatrell, 1995). Statistical analysis is not a 

primary operation in GIS software, therefore it is linked to statistical software when 

statistical modelling is involved.  

A range of GIS operations and functionalities have been used for research on 

asthma and air pollution. Wilkinson (1999) assessed the hospital admission of 

children with asthma in relation to road traffic in London, using proximity analysis 

(Wilkinson et al., 1999). Lu et al. (2003) analysed ozone and asthma in children in 

the South Coast of California, using a kriging interpolation technique to estimate air 

pollution and a Poisson spatial regression model (Lu et al., 2003). Maantay (2007) 

investigated asthma and air pollution in the Bronx, New York, using proximity 

analysis as well as applying air dispersion modelling for estimating exposure.  

GIS techniques have been widely used for public health research.  WHO, European 

Community (EC) and Centre of Disease Control and Prevention (CDC) recommend 

such techniques for environmental health studies (World Health Organization, 1994, 

National Center for Health Statistics, 2005, European Commission, 2004). A variety 

of GIS software is now available, both commercial and open source (software 

developed and distributed free), that allows storing and manipulating of all different 

types of digital spatial data. The commercial software ArcGIS and the open source 

GRASS GIS (Neteler and Mitasova, 2004) are two of the most software packages 

(Kennedy, 2006).  

1.5.2 Spatial Statistical Modelling  

Spatial statistical modelling is determined by the theories of spatial statistics that 

give explicit consideration to the possible importance of the spatial arrangement of 

spatial data. Spatial statistics was developed during the late 40s and early 50s by 
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statisticians such as Moran, Geary and Whittle (Florax and van der Vlist, 2003). The 

development of spatial statistics was slow until the early 1970s when Cliff and Ord 

presented their influential work on spatial autocorrelation (Cliff and Ord, 1973). In 

the 1980s, Cliff and Ord added models and applications of spatial processes with an 

example from epidemiology. They analysed the spatial pattern of cholera in London 

(Cliff and Ord, 1973, Cliff and Ord, 1981). Since then the literature on spatial 

statistical analysis has been expanded as well as their application (Diggle and 

Ribeiro Jr, 2007, Lawson, 2001, Lawson, 2009, Elliott et al., 2000, Waller and 

Gotway, 2004b, Cressie, 1993). 

Spatial statistics focus on two spatial effects: spatial heterogeneity and 

autocorrelation. Spatial heterogeneity refers to the variability between entities and 

processes in space (Fotheringham and Rogerson, 1994). Spatial autocorrelation 

refers to the level of interdependence between those processes as well as the 

nature and strength of their interdependence (Cliff and Ord, 1973). The idea of 

spatial interdependence can be to some extent expressed by Tobler’s Law of 

Geography: “everything is related to everything else, but near things are more 

related than distant things” (Tobler, 1970). Spatial autocorrelation tests should be 

carried out for the residuals of a model, as the presence of such correlation 

amongst the residuals indicates inadequacy of the regression model (Maguire et al., 

2005).  In my analysis, I used spatial autocorrelation tests to examine the residuals 

of the final statistical model for spatial interdependence. 

Accounting for spatial autocorrelation allows more realistic inferences to be made, 

although due to the wide range of spatial models the selection of an appropriate 

model is often not straightforward (Langford, 1994, Goldstein, 1995). Some spatial 

models assess the variation of spatial patterns over time and space. These are 

called spatio-temporal models and are considered an improvement of simple spatial 

models. Various techniques have been applied for spatio-temporal analysis of 

mortality rates, ranging from log-linear regression (Cogdon, 1994), to more 

complex techniques such as thin plate splines (van der Linde et al., 1995), and 

more recently to mixed effects or random effects models. Mixed effects models take 

into account fixed and random effects related to the phenomenon under study that 

in turn allows accounting for complex spatio-temporal structures (Gelman, 1995, 

Gelman et al., 2009, Pinheiro and Bates, 2000).  

Mixed-effects models can be implemented either in a frequentist or Bayesian 

context (Xia and Carlin, 1998, Richardson et al., 2006). Markov Chain Monte Carlo 

(MCMC) algorithms have revolutionized both approaches to frequentist and 

Bayesian statistical inference but primarily Bayesian (Maritz and Lwin, 1989, Carlin 
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and Louis, 1996). Bayesian models have been used for assessing paediatric asthma 

hospitalizations in relation to traffic density in San Diego (Zhu et al., 2000) as well 

as ambient O3 concentrations and paediatric asthma emergency room visits in 

Atlanta (Zhu et al., 2003). 

1.5.3 Spatial Analysis of Health Data and Policy Making  

In May 2007, a Directive establishing an Infrastructure for Spatial Information in 

Europe (INSPIRE) was published and came into effect on 31 December 2009. One 

of the themes of INSPIRE is Human Health. INSPIRE does not intend to initiate a 

programme of new spatial data collection but instead “it is designed to optimise the 

scope of exploiting the data that are already available” (Commission of the 

European Communities, 2004). One of the most important Directives that INSPIRE 

complements is the Directive on the Re-use of Public Sector Information. The 

Directive on Re-use of Public Sector Information applies amongst others to NHS and 

local authorities and was implemented in the UK on 1st July 2005 (Office of Public 

Sector Information, 2005).  

The INSPIRE directive complements other important policies, such as the Global 

Monitoring for Environment and Security (GMES) Directive as well as the European 

Environment and Health Strategy. GMES directive will bring an understanding of 

environmental factors potentially having adverse health effects and identifies air 

pollution as a major environmental health problem (Commission of the European 

Communities, 2004). In order to increase knowledge on those issues it is 

recognised that links should be established between environmental, geographical 

and health data (Commission of the European Communities, 2004).  

In addition, the European Environmental and Health Action Strategy proposes the 

development of tools that link spatial health and environmental data, picturing of 

the demography and exposure patterns contributing to adverse health effects. 

Moreover it identifies asthma as one of the six priority diseases for which further 

research is required. This policy, complemented by INSPIRE could, for example, 

improve the identification of those at risk of respiratory diseases and target 

measures to reduce those risks (INSIPRE Framework definition support working 

group, 2003).  

A preliminary estimation of the benefits of INSPIRE shows that one of the greater 

benefits will be the development of policies that reduce the impact of environmental 

pollution on health (INSIPRE Framework definition support working group, 2003). A 

pan-government initiative to improve the sharing and re-use of public sector 
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location information and implementation of INSPIRE, called UK Location, was 

established in UK (DEFRA, 2010). This study utilises existing spatial data as well as 

re-using information from the NHS and Local Authorities, to provide results on 

respiratory health outcome in primary care. 
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Chapter 2. Data Collection and Exploration 

This is a study of ecological design at primary health care level, accounting for both 

temporal and spatial variability. The study area comprised the area of Newcastle-

upon-Tyne and North Tyneside Primary Care Trusts (PCTs), in the Northeast of 

England, for the period of January 2002 until July 2006 (Figure 2-1). PCTs are local 

organisations and their role is to commission health services. The recent reform of 

the NHS has set GP consortia the leading role for commissioning health services 

(Department of Health, 2010). Every UK resident has access to GP practice services 

regardless of income or insurance cover. The total population under study was 

approximately 450,000 according to the 2001 Census (Newcastle: 260,000, North 

Tyneside: 90,000). 

All data had to be subject to exploratory analysis, in order to be converted to the 

appropriate temporal and spatial format that would allow them to be used as 

variables in a statistical model. In the first section, I present the respiratory 

prescribing data as well as the patients’ data and how they were used to define GP 

service areas. In the second section I present the air quality indicators, while the 

socioeconomic and demographic (age and sex) characteristic of patients registered 

per GP practice are presented in the third and forth section, respectively. 
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Figure 2-1. Study area 

 

2.1 Health Data 

I accessed respiratory prescribing data from the Regional Drugs and Therapeutics 

Centre (RDTC) and the patients’ data per GP practice from the Exeter database, via 

the North East Public Health Observatory (NEPHO). In order to access both 

datasets, ethical approval was required by the PCTs’ Caldicott Guardians. It took 

over a year to get approval for accessing the health data.  

2.1.1 Respiratory Prescribing Data 

The Newcastle RDTC holds prescribing data for England. They are based on 

prescriptions that are handed into pharmacies. These get forwarded to RDTC where 

they are added into a database. The data I accessed are not linked to individual 

patients but only to their prescribing GP practices. The prescribing data were 

available to me aggregated per month. Prescribing data were retained on the 

prescribing system for 60 months. The asthma prescribing data were acquired on 

22/12/2006 for the period: 01/11/2001–31/10/2006. In order to link the 

prescribing data to the other datasets of interest, I removed two months from the 
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beginning and three months from the end of the dataset, analysing a total of 55 

(01/01/2002 – 31/07/2006) months of salbutamol prescribing data. The prescribing 

data for this period covered approximately 67 billion Average Daily Quantities 

(ADQs) (Prescribing Support Unit, 2000). ADQ is a unit of measurement developed 

in order to calculate drug volume usage more accurately than the prescription item 

(Walley and Roberts, 2000). 

Consulting a respiratory physician and a GP as well as studies on asthma and COPD 

pharmacological interventions (British National Formulary, 2009), I decided to 

access data for short-acting β2-agonists as an indicator of asthma and COPD 

exacerbations (British Thoracic Society, 2006). Short-acting β2-agonist inhalers are 

quick-relief medication, available as salbutamol, salmeterol, turbetaline and 

formoterol (British National Formulary, 2009). Salbutamol was employed in this 

study, as it is the drug most frequently prescribed, accounting for 93% of all short-

acting β2 agonists prescriptions (Prescription Pricing Division, 2008). 

2.1.1.1 Exploring Prescribing Data 

The WHO produces the Defined Daily Dose (DDD) values for measuring prescribing 

volume, however DDD included data from many countries outside Europe, making 

these values less appropriate for measuring drug volume usage in a European 

country (Whiteside et al., 2001). The measurement unit ADQ was developed by an 

expert group in 1995 to be used for the analysis of English prescribing data 

(Prescribing Support Unit, 2005). ADQ is designed to be used as a numerator or 

denominator in studying variations in prescribing between general practices or 

primary care groups. All salbutamol data were standardised by total number of 

people registered with each GP before the analysis, therefore the unit of analysis 

was ADQs per 1,000 population.  

The inhaler containing salbutamol medication is prescribed in a standard size, in 

England. Each inhaler contains 200 inhalations, also called doses or puffs, which is 

equivalent to 100mcg. The maximum suggested daily dose for adults is 8 puffs. 

This is important as all patients have the same amount of medication to consume, 

therefore the period between replenishing an inhaler is affected only by the 

frequency of medication use. I created a conceptual model on three simple 

scenarios of inhaler usage. The scenarios I have created are a coarse 

representations of reality as inhaler consumption is determined by several factors 

that often vary daily. Nonetheless, these scenarios can provide a broad estimate of 

the period in which patients would consume most of their inhaler and then seek to 

replenish it. The first scenario assumes that 8 doses (the maximum suggested 
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doses) are consumed daily, while 5 and 2 doses are assumed on the second and 

third scenarios, respectively (Table 2-1). According to the first scenario, a patient 

can consume most of the inhaler in 21 days (three weeks). A less frequent use 

represented by the second scenario showed that 30 days (four weeks) is the time 

that most of the medication would be consumed, while the last scenario of 

infrequent use showed that the medication could last for almost two months.  

I wanted to check how frequently one can consume the daily maximum suggested 

8-doses of salbutamol.  After communication with a patient who suffered from 

severe chronic asthma, I found that salbutamol may also be prescribed “as 

needed”, allowing consumption of more than 8 doses per day (Appendix B). In 

addition, this patient consumed double the maximum suggested daily dose for a 

few months (Personal communication with Alison Copeland, May 2010), which led 

to a much shorter period (7-14 days) before need for inhaler replenishment.  
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Scenario A :  8 doses - maximum suggested dose  
Days of Inhaler 
Consumption Dose Total Dose 

Proportion of Inhalers 
Consumed 

58 8 464 2.3 
51 8 408 2.0 

44 8 352 1.8 

37 8 296 1.5 
30 8 240 1.2 
21 8 168 0.8 
14 8 112 0.6 

7 8 56 0.3 
    

Scenario B : 5 doses  
Days of Inhaler 
Consumption Dose Total Dose 

Proportion of Inhalers 
Consumed 

58 5 290 1.5 
51 5 255 1.3 
44 5 220 1.1 

37 5 185 0.9 
30 5 150 0.8 
21 5 105 0.5 
14 5 70 0.4 

7 5 35 0.2 
    

Scenario C : 2 doses - minimum usual dose   
Days of Inhaler 
Consumption Dose Total Dose 

Proportion of Inhalers 
Consumed 

58 3 174 0.9 
51 3 153 0.8 
44 3 132 0.7 
37 3 111 0.6 
30 3 90 0.5 
21 3 63 0.3 
14 3 42 0.2 

7 3 21 0.1 
Table 2-1. Scenarios on inhaler consumption 

2.1.1.2 Discussion/Conclusions 

Newcastle RDTC archives the prescribing data older than 5 years and it was not 

possible to easily access them after they had been archived. Accessing prescribing 

data for periods longer than 5 years where data exist, is important for 
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epidemiological studies which benefit from longer time trends. It is a great 

advantage to have prescribing data in electronic format for several years.  

Not all countries can use prescribing data in epidemiological public health research 

because the population the prescriptions refer to is not always known. The 

availability of population based prescribing data depends on the health system of 

each country. For example, in United Kingdom and France it is possible to know the 

population that the prescribing refers to, while in other countries such as Germany 

this is not known and therefore it is not possible to use this as health indicator of a 

population. 

The electronic prescribing data were well edited and organised, requiring little 

editing before analysing them. Finally, the RDTC database system did not allow a 

distinction between salbutamol prescribed to people suffering from asthma or 

COPD, however plans existed on how the database could also provide prescribing 

data per diagnosis, in the future. 

The three salbutamol consumption scenarios I created are very basic, however they 

show that a patient would look to replenish his/her inhaler after a period of three 

weeks (21 days) to two months and probably more. In addition, after my 

communication with a patient who was prescribed salbutamol medication, I found 

evidence that more than 8-doses can be used daily, causing shorter replenishment 

periods (7-14 days). 
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2.1.2 Practice Population Data 

Postcodes are an abbreviated form of address in the UK. On average there are 15 

delivery points per postcode (Cabinet Office, 2009). The patients’ postcodes per 

practice were provided for the 1st of April for each year of interest and assumed to 

remain the same for the rest of the year. The patients’ data were unlinked to 

individuals and to prescribing data. I obtained over 2 million postcodes of patients 

for the period 2002-2006. I used an Access database and GIS to clean the 

datasets, explore and link them to prescribing data. The main issues I faced when 

editing the population data are presented below. 

Outliers: I removed outliers from the patients’ postcodes dataset. There 

were a few postcodes (approximately 10) that were not based within the 

Northeast Region (e.g. Wales).  I considered it unlikely that those postcodes 

were correct patients’ residence addresses. They were probably caused by 

data entry mistakes. I considered these as outliers and removed them from 

the dataset. 

Datasets Linkage: I linked the GP population dataset to the prescribing 

dataset based on the matching GP practice codes. I was in contact with the 

North East Family Health Services Agency (2008), to check why some GP 

practices did not match between the two datasets.  I went through the 

unmatched GP codes, in order to check that no one, who should have been 

included was missing. Some practice codes that appeared in the population 

data were irrelevant to asthma prescribing, as some practices specialized in 

specific health outcomes, such as sexual diseases. In another case a GP 

practice had ceased operation during the study period.   

Missing Data: I discovered that some patients had no GP practice assigned 

to them. A cluster of missing data appeared in North Tyneside PCT. The 

North East Family Health Services Agency could not help me in tracing 

individuals’ records; therefore I contacted the North Tyneside PCT directly. 

After providing information on the missing data and relevant maps, I found 

that the GP practice those patients were registered with, was the A86029 

practice (Figure 2-2). This had been caused due to a database management 

error, during the data transfer between two government bodies.  
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Figure 2-2. Postcodes of patients with no GP practice assigned to them 

 

The annual numbers of patients per PCT are presented on Table 2-2, while a map of 

the GP practices is shown in Figure 2-2. A list of practices’ names that correspond 

to each practice code is presented in Appendix C. 

 

 

 

Year 

Newcastle PCT  

(35 GP practices) 

North Tyneside PCT   

(29 GP practices) 

2002 230,464 173,123 

2003 236,181 179,391 

2004 244,023 185,314 

2005 252,845 191,711 

2006 264,614 199,545 

Table 2-2. Number of patients per PCT per year.

 



 

 

 

 

Figure 2-3. GP practices in Newcastle and North Tyneside PCTs.
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2.1.2.1 Visual Exploration of Patients Data  

Figure 2-4 shows the distribution of patients’ postcodes that were mainly 

distributed within the study area. I plotted the same data also in grid format, in 

order to show the counts of postcodes in the study area. 

 

 

Figure 2-4. Postcodes of GP registered patients in the study area. 

 

 

 

Figure 2-5 shows the number of postcodes for sub-regions of the study area, in grid 

format. We noted that some grids had thousands of postcodes, others had 

hundreds or tens, while a few postcodes were distributed sparsely in the periphery. 

Comparing the output of the grid plot to local knowledge of the area, revealed that 

the high numbers of postcodes coincided with the two main residential areas; 

Newcastle upon Tyne city centre and the area of Tynemouth, located at the eastern 

border of North Tyneside. 
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Figure 2-5. Grid format: Counts of patients’ postcodes in sub-regions of the study 

area. 

 

2.1.2.2 Spatial Exploration of Patients’ Data 

I started the analysis by separating the patients’ postcodes by practice and drawing 

a Minimum Convex Polygon (MCP) for each one. Figure 2-6 depicts the service 

areas by GP practice for Newcastle and North Tyneside PCTs. It appeared that there 

was a tremendous amount of overlap between GP service areas within and between 

the two PCTs. Many GP practices appeared to serve very similar areas that covered 

the majority of the study area. Therefore, this method was not useful for capturing 

the GP service areas for the purpose of my further analysis. Some refinement was 

required to estimate service areas. As a next step, I used kernel analysis to define 

the area that each practice served.  

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-6. Service areas per GP practice, as defined by Minimum Convex Polygons. 

  

GP service areas 
North Tyneside PCT 2006 

GP service areas 
Newcastle PCT 2006 
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Kernel estimation was developed to obtain a smooth estimate of a probability 

density from an observed sample of observations. The density of points is 

calculated using a bandwidth specified to a circle of a given radius centred at each 

point of interest. I used kernel analysis to estimate the patients density per GP and 

define a spatial unit that could depict the area where the majority of patients were 

expected to reside. There are various types of kernels, but the quartic kernel is the 

most widely used (Bailey and Gatrell, 1995). The formula for this is given as:  

∑
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τ τ
π
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)( 22
                                                                               (1) 

where, λτ(s) is the intensity at the point of estimate s, hi is the distance between the 

point s and the observed event location si and τ is the bandwidth which is sampled 

around point s. The region of influence within which observed events contribute to 

λτ(s) is a circle of radius τ centred on s. The selection of the bandwidth is critical for 

kernel estimation, as it can cause over or under smoothing. Methods to estimate 

bandwidths are discussed in the relevant literature (Waller and Gotway, 2004a, 

Silverman, 1986, Scott, 1992). I used Equation 2 for calculating the bandwidth, as 

suggested by Bailey and Gatrell (1995): 

2.068,0 −= nτ                                                                                                (2) 

where n is the number of spatial observations (postcodes of registered patients) per 

GP. The output of this equation was scaled up to fit the particular dimensions of the 

areas that the total n per GP was distributed in. Those areas were estimated by 

calculating the surface of each minimum convex polygon. The output values of 

kernel analysis produced continuous maps in raster format with a cell size of 25m. 

I then used contour lines to define spatial units that represented GP service areas. 

Three contour lines were created per GP practice that contained 95%, 98% and 

99% of the practice population, respectively. I conducted the analysis for these 

three cut off points to check how sensitive the analysis was to this factor. The 

contour lines cut-off points are produced automatically by most software, according 

to the values of the raster map, and it is not possible for the user to define cut-off 

points. For this analysis, I required consistent cut-off points to define the contour 

lines, so that service areas would be comparable per year and per GP practice. By 

adding an algorithm in ArcGIS I managed to define the cut-off for the contours’ 

creation. The analysis of GP practice population data was conducted using ArcGIS 
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software (ESRI) with the Spatial Analyst and Hawth’s Tool extensions (Beyer, 

2004). 

2.1.2.3 Results – GP Practice Service Areas 

Kernel analysis took into account the density of patients’ postcodes. Service areas 

were estimated for each of the 64 GPs for five years, creating in total 320 service 

areas. Because of the large number of GP practices I used seven GP practices to 

demonstrate the results of kernel analysis.  

Figure 2-7 presents an example of a few raster maps produced by kernel analysis, 

showing the density of patients for seven GP practices in the area. In some cases a 

lot of patients were concentrated in a small area creating high values of intensity, 

while in other cases the intensity was less as the postcodes were distributed in a 

wider area. As a final step of the analysis, the borders of each GP practice area 

were calculated based on the values of kernel probability density distribution. 

Figure 2-8 shows the area that 98% of registered patients are expected to live in 

per GP practice.  In Figure 2-9, I also present the area that all registered patients 

live per practice, in order to allow comparison between the areas drawn using the 

minimum convex polygons and kernel analysis.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-7. Raster maps produced by kernel analysis showing the density of 

patients per GP practice. 

 

 

Study Area 

 Kernel values 

A86026 

A86008 

A87017 
A87612 

A87020 

A87030 

A86011 
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Figure 2-8 Contour lines representing the GP practice service areas. 

 

Figure 2-9 Minimum convex polygons showing the area that all registered patients 

live, per GP practice. 
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As mentioned earlier, I created three contour lines per GP practice that contained 

the 95%, 98% and 99% of the practice population, in order to check the sensitivity 

of the GP service area to different cut off points. Figure 2-10, Figure 2-11, Figure 

2-12 and Figure 2-13 show examples of the contour lines that were produced as GP 

service area, for the 95%, 98% and 99% of kernel probability density distribution, 

respectively. Little variation was observed between the three cut off points. I 

decided to use the middle contour line that is the area that 98% of the patients are 

expected to live in, to define the GP service areas. I chose such a high value as the 

cut off point, as I wanted to remove areas that did not represent the exposure 

conditions of the majority of patients but at the same time I wanted to include the 

area in which the vast majority of registered patients lived.  

 

 

 

Figure 2-10 Examples of GP practice service areas.  
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Figure 2-11 Examples of GP practice service areas 
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Figure 2-12 Examples of GP practice service areas 
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Figure 2-13 Examples of GP practice service areas 
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The service areas for all 64 GP practices, as summarised by kernel analysis, are 

presented in Appendix D. In Appendix E,  I present the service areas for each of the 

five years of the study to demonstrate that very little variation existed in service 

areas through the years of the study.  

 

2.1.2.4 Discussion/Conclusions 

Results 

Kernels have often been used in ecology to assess habitat selection and population 

dynamics and have been recently used in health research (Petersen J. et al., 2008, 

Lurz et al., 1997). Gatrell AC et al. (1996) have discussed the use of kernel density 

in geographical epidemiology and its application has been demonstrated in public 

health research recently (Shi X, 2009, Carlos et al., Petersen et al., 2009). Caution 

is required to define the bandwidth when applying kernel analysis. There is no 

unique equation to determine the selection of bandwidth, however there are a few 

proposed, like the one I employed. The responsibility lies on the researcher to 

examine whether the kernel output is a meaningful and representative summary of 

point observations. I considered the contour lines created based on kernel analysis 

to be representative summaries of the areas that registered patients were expected 

to live in. 

Potential for Future Applications 

Patients’ postcodes are considered as sensitive data by the NHS and confidentiality 

rules apply to their storage and analysis. Kernel analysis allowed me to completely 

anonymise them by converting point data to area data and therefore removing 

consideration of individuals’ identification. Ecologial studies that use aggregated 

rather than point data are useful in epidemiology, provided that their limitations are 

understood and their results are interpreted carefully.  

The fact that GP catchment areas formed overlapping rather than adjacent 

polygons limited their spatial analysis. Kernel analysis reduced the degree of 

overlap allowing them to be used meaningfully for my study and as tools for 

surveillance. A variety of data that do not conform with administrative boundaries 

can be visualised within the spatial boundaries produced by this analysis, giving 

great scope to their future applicability. In the case of GP practices, using kernel 

estimates to define their service areas can be a practical tool to assist their new 

role as health services commissioners that was assigned to them under the recent 

fundamental NHS reform (Department of Health, 2010). 
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2.2 Air Quality Indicators 

The association between salbutamol prescribing rate and air pollution was assessed 

in the regression model I developed. Ideally, individuals would be monitored on a 

regular basis using portable exposure equipment to derive estimates of their 

ambient or total exposure to environmental hazards, as those can provide greater 

and more significant effect estimates (Wilson, 2004, Ebelt et al., 2004). In reality, 

this is complex due to cost and practical difficulties, therefore proxies of human 

exposure to air pollution are often used in research (Jerrett and Finkelstein, 2005).  

2.2.1 Ambient Concentration of Air Pollutants 

In epidemiological studies, the ambient concentration of air pollutants is often 

utilized as a proxy for ambient or total exposure of populations. I used the ambient 

air pollution concentration as a surrogate to estimate the inhaled volume of air 

pollutants likely to occur.  

I firstly identified monitors recording ambient air quality in my study area. There 

are over 1500 sites across the UK which monitor air quality and these are classed 

into two major categories: automatic and non-automatic networks. Automatic 

networks produce hourly pollutant concentrations from individual sites. Non-

automatic Networks measure less frequently - either daily, weekly or monthly - and 

samples are collected by some physical means (such as diffusion tube or filter). 

These samples are then subjected to chemical analysis, and final pollutant 

concentrations are calculated from these results. The non-automatic monitors can 

be moved to more than one location. 

In my study area there was only one automatic monitor that measured the five 

major air pollutants - PM10, SO2, NO2, CO and O3. This monitor was located in 

Newcastle city centre (Figure 2-14). I accessed the data recorded by the automatic 

monitor via the UK National Air Quality Archive website (UK National Air Quality 

Archive, 2010). I examined the availability of air pollution data recorded by the 

non-automatic network in the area. I  also accessed these data from the Tyne and 

Wear Air Quality Information website (Tyne and Wear Air Quality Information, 

2010) maintained by Sunderland University, however this source had only recent 

data and did not cover the initial years of my study period.  Aiming to find previous 

records of these data I contacted the relevant Local Authorities but only few records 

were held for the early years of my study period. Unfortunately, the datasets from 

the non-automatic network were incomplete and I could not use them.  
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Figure 2-14. Air pollution monitor 

 

I focused on deciding which and how many of the pollutants recorded by the 

automatic monitor in Newcastle, I should use. Levels of pollutant concentrations on 

the same monitor correlate, therefore it may be sufficient to use only one pollutant 

in regression for assessing the relationship of interest. I was primarily interested in 

PM10 and O3 concentrations as indicators of ambient air pollution exposure. O3 is 

long-range transport pollutant that does not only capture local air pollution 

emissions and is more likely to have similar concentrations through out my small 

study area. Primary particulate matter of small size also remains in suspension for 

some hours or days and travel considerable distances from the source. PM10 

pollution episodes in UK have been attributed in UK sources but in other cases from 

sources outside the UK (Malcolm et al., 2000).  

PM10  concentration levels are attributed in both long-range transport and in local 

traffic sources (ApSimon et al., 2000).The highest concentrations of PM10 are likely 

to occur in urban and industrialised environment and attention has been drawn to 

formation of secondary PM10, particularly sulphate, and nitrate components 

resulting from oxidation of SO2 and NOx emissions (CORINAIR - Core Inventory of 

Air Emissions Methodology, 1996). Secondary PM10 exhibits greater spatial 

variability than primary PM10, as it is mainly attributable to traffic. Air pollution 

concentrations linked to vehicular traffic pollution, are reduced significantly with 

distance from the road network. There are detailed emission inventories for the 

secondary particulate matter (CORINAIR - Core Inventory of Air Emissions 

Methodology, 1996) and local authorities have been responsible for controlling 
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particulate matter episodes. In late 1990s a few studies provided evidence on the 

contrary to the belief that the elevated levels of particulate matter in urban areas 

were largely related to traffic emissions, showing that rural measurements of PM10 

become elevated at the same time as urban measurements during pollution 

episodes in the UK (King and Dorling, 1997, Stedman, 1997). This indicated that 

elevated levels of PM10 in urban centres were also attributable to long-range 

transport and originated from outside the local area.  

Overall, given that only one monitoring site was available in the study area, PM10 

and O3 concentrations would provide a better exposure indicator, due to their partly 

long-range transport characteristics described on the previous paragraphs. The 

PM10 data had very few missing records while in the case of O3 many months of data 

were missing. Based on data quality issues I used only the recordings of PM10. The 

main concern associated with particulates is their potential effect on human health, 

notably the respiratory system, as particles of small size can be inhaled into and 

deposited in the respiratory system and remain there for long periods of time. 

Epidemiological studies have shown an impact of particles below 10µm (PM10) on 

health. Future legislation in Europe and US is also focusing on monitoring of fine 

particles (i.e. PM2.5, PM1) in addition to PM10. However, colocated parallel 

measurements of PM10 and finer particles have revealed strong associations in their 

concentrations, and therefore the efficiency of their colocated monitoring is under 

question (Gehrig and Buchmann, 2003).  

The PM10 data were accessed as 24h mean daily data. Figure 2-15 shows the daily 

PM10 concentrations recorded by the monitor located in Newcastle. I averaged the 

daily means to monthly values in order to assess its relationship to monthly 

salbutamol prescribing. I evaluated possible time lags between salbutamol 

prescribing and PM10 concentrations, therefore monthly averages of PM10 recorded 

7, 14, 21 and 30 days preceding the month of prescribing were calculated. 
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Figure 2-15. 24h-mean daily PM10 ambient concentrations.  

 

 

Figure 2-16 Monthly averaged PM10 ambient concentrations. 
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2.2.1.1 Discussion/Conclusions 

The PM10 data were of good quality provided in fine temporal resolution but 

monitored only in one site. In an attempt to increase the spatial information on 

ambient PM10 concentrations, I also accessed PM10 data recorded by two non-

automatic monitors; however those covered only the last two years of my 5 year 

study period. Therefore, I only used ambient air pollution data from one monitoring 

station for my analysis and I had to assume homogenous PM10 concentrations 

across my study area, like many previous similar studies (Pitard et al., 2004, Vegni 

et al., 2005, Zeghnoun et al., 1999, Katsouyanni et al., 2001). However, I knew 

that in addition to background air pollution there were local sources of pollution, 

possibly creating within city-variation of air quality which I would have liked to 

capture. Given that no ambient concentration data were available on a local level, I 

looked for data on sources of pollution. The study area is predominantly an urban 

environment, with traffic the main mobile pollution source. I present below how I 

used traffic data to develop an air quality indicator with a temporal and spatial 

domain.  
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2.2.2 Traffic Data 

Road type has been used in several epidemiological studies as an indicator for 

exposure. “A” roads are usually related to higher levels of air pollution exposure 

while “B” roads and minor roads to lower levels. The road network was accessed via 

the Digimap website of the EDINA database. I downloaded A and B roads by 

Ordnance Survey Meridian 2 map, at 1:50,000 scale.  

Traffic flow monitors recording the numbers of vehicles passing by individual sites 

24 hours per day were also available for the study area. I accessed the traffic flow 

data from the Tyne and Wear Traffic and Accident Data Unit Transport Centre, 

based at Gateshead City Council. Monthly traffic flows were estimated, based on 7-

day or 5-day averages. The latter excluded weekends and therefore provided 

average traffic flows only during working days. This measuring unit can better 

differentiate sites with increased/congested traffic at peak hours. Sites with 

congested traffic lead to higher exposures to traffic related air pollution, therefore I 

used the monthly flows based on 5-day averages. 

2.2.2.1 Visual Exploration of Traffic Data 

I accessed monthly traffic flow data for 50 monitoring sites which had complete 

data for my study period, located on A-roads and on a few B-roads (Figure 2-17). 

Details of the traffic monitoring sites are presented in Appendix F. 

Figure 2-17 shows that the number of vehicles using some A and B roads could be 

similar and in some cases B roads had more traffic than A roads. In addition, great 

variability of traffic flows among A roads was observed. Due to the great variability 

of traffic flows, I considered that the traffic flow data could create a better proxy of 

traffic conditions than the length or type of road. 
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Figure 2-17. Traffic flows per monitoring site and type of road. 

 

2.2.2.2 Spatial Exploration of Traffic Data 

The traffic flow data were point data recorded in individual sites of the road network 

for each month of my study period (55 months). I interpolated them within the 

main road network, in order to estimate traffic flows in between the monitoring 

points. I employed a model called spline with barriers that produced a minimum 

curvature surface at the desired row and column space. The spline interpolation 

estimated values using “a series of simple functions, such as polynomials, which are 

fitted to successive groups of data points and constrained to give some degree of 

continuity at their joins” (Bailey and Gatrell, 1995). Splines are analogous to 

flexible rulers that pass through the points while minimising the total curvature of 

the surface, producing a smooth surface. The software ArcGIS with the Spatial 

Analyst extension was used to conduct the analysis of filling new grid nodes on a 

finer grid from a coarser grid. It is beyond the scope of this work to explain the 

algorithm but one can review the literature of the mathematical approach applied in 
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Refinement Griding (Terzopoulos, 1988, Zoraster, 2003, Smith W.H.F. and Wessel 

P., 1990). 

I carried out the spline interpolation for each set of monthly traffic flows. To 

evaluate the output of the interpolation, I re-ran the spline model after removing 

one of the 50 monitoring sites and then comparing the predicted value to the 

original data on that site. This validation process was conducted for 10 randomly 

selected monitoring sites, which was 20% of the total traffic monitors. The spline 

output was also assessed in time by repeating the validation process for those 10 

monitoring sites at 6 randomly selected months out of the 55 months, which was 

almost 10% of the total number of months. 

As a final step, I linked the traffic flow maps to GP service areas (2.1.2.3) and 

summed the estimated traffic flows per service area, in order to create an index of 

traffic conditions per GP practice. I built an automated process within ArcGIS for 

executing the linkage of traffic flow maps to the GP practice service areas for each 

year, producing 3,520 traffic indices. 

2.2.2.3 Results – Traffic Indices per GP Practice Service Area 

Continuous maps of traffic flows within the main road network were created, for 

each one of the 55 months of the study period. Figure 2-18 presents a map of the 

interpolated traffic flows within the road network as well as the raw traffic flows 

recorded on the monitoring sites. The darker colour in the road network symbolizes 

areas with more traffic flows, while the lower traffic flows are represented by lighter 

shades. The monitors located in the south west of the road network are located on 

England’s main motorway (A1) and recorded the highest number of traffic flows in 

the study area (around 100,000 vehicles monthly averages). I had concerns that 

the interpolation model may have over-predicted the traffic flows on the south-

western part of the network. The prediction on this part of the network was 

influenced by the two sites with the highest recorded traffic flows. I had no 

monitoring data for the roads on the south-west to check the degree of 

overprediction, and since the predicted values fell within the range of plausible 

traffic flows, I accepted the model’s output. 

 

.



 

  

 

Figure 2-18 Traffic monitoring sites and estimated traffic flows within the main road network. 
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I validated the interpolation results by removing a monitoring site and after re-

running the splines model, I compared the interpolated value to the observed. I 

used 10 randomly selected sites and repeated the process for six randomly selected 

months per site. The observed and predicted values on those ten sites at six 

randomly selected months correlated highly, with R2 values ranging from 0.77 to 

0.85 (Table 2-3).  

 

Month R2 

Mar-02 0.77 

Sep-02 0.85 

Oct-03 0.83 

Dec-04 0.79 

Jul-05 0.83 

May-06 0.81 

Table 2-3 R-squared values of observed traffic flows against estimated values. 

 

I then summed the estimated traffic flows per service area, in order to create an 

index of traffic related pollution per GP practice. A summary of descriptive statistics 

is presented in Table 2-4. The traffic index values were divided to 1,000,000 to 

enhance practicality during the analysis. I present histogram of the traffic indices 

per GP service area in Figure 2-19. In Appendix G present the traffic index per 

month during the five years for each GP practice. 

 

  Min. 

1st 

Quartile Median Mean 

3rd  

Quartile Max. 

Traffic 

Index 
191,903,920 495,411,112 781,850,528 903,878,380 1,267,545,088 3,235,041,024 

Table 2-4 Descriptive statistics for estimated traffic index 



 

  

 
Figure 2-19 Histogram of estimated traffic index per GP service area
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2.2.2.4 Discussion/Conclusions 

Traffic Flow Interpolation 

The splines with barriers technique has been previously applied in geology and 

geosciences (Zoraster, 2003) and I used it in a new context  by applying it to traffic 

data. The interpolation of flows was used in order to create continuous maps of 

traffic flows that would in turn allow assessment of traffic within a variety of spatial 

units. The spline interpolation with barriers may have over-predicted the traffic 

flows in the south-western part of the road network. I could have checked that and 

perhaps alleviated the potential over-prediction, if I had accessed traffic data for 

the wider area surrounding my study area. This problem is also related to the fact 

that information about the direction of the traffic flows could not be included in the 

interpolation model. For instance, heavy traffic observed in monitors that are 

located on the motorway (at the south-western part of the road network), would 

not influence the traffic flows on A-roads, should the model allowed to control the 

direction of traffic flow along the motorway. To the best of my knowledge there is 

limited availability of interpolation techniques within lines that allow accounting for 

flow direction (Cressie et al., 2006).  

Overall, I had no monitoring data for the roads on the south-west to check the 

degree of over-prediction, and since the predicted values fell within the range of 

plausible traffic flows, I accepted the model’s output. The model performed well in 

predicting traffic flows based on the results of the validation process. The validation 

process showed that the observed and predicted values on ten randomly selected 

sites, at six randomly selected months, correlated highly with R2 values ranging 

from 0.77 to 0.85.  

 Estimation of Traffic Index 

In the absence of a network of air pollution monitors in the study area I created a 

traffic index, by summing the interpolated traffic flow per GP service area. I added 

the traffic flows values depicted at each 25m cells of the raster maps, thus the 

index does not represent actual numbers of cars that pass through the road 

network within each GP cathment area. The traffic index values are analogous to 

the number of cars as well as the length of road network within each GP catchment 

area. The sum of the interpolated traffic flows can cause bias in the index 

calculation. This is because a large GP service area with long road network but low 

volume of traffic, situated probably in the periphery of the study area, may has an 

index value close to that of a small GP service area with high traffic flows, situated 
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probably in the urban centre. I have not been able to measure the number of 

catchment areas that may have been affected by this measurement bias. However, 

I understand that its effect on the analysis is to smooth the differences between 

traffic flow variability among catchment areas.  

In addition, the traffic index I constructed does not take into account the spatial 

distribution of patients within a GP service area.  The continuous raster traffic maps 

could have been linked to raster maps created by kernel analysis or actual 

postcodes of registered patients, to create exposure metrics of traffic related air 

pollution. Such approaches would have the advantage of accounting for the non-

homogenous distribution of patients within a GP service area or any other 

population under study. Continuous traffic flow maps allow assessment of traffic 

conditions in a variety of spatial units, such as Local Authorities and Lower Super 

Output Areas. 

Overall, given the absence of spatial air pollution data, I constructed an index of 

traffic conditions per GP practice, providing a proxy measure of traffic conditions’ 

spatial variability within the study area. However, analyses that use data such as 

number of cars or number of cigarettes smoked, to derive proxies of exposure, give 

rise to misclassification of exposure. I consider such measures of exposure to be 

further from the true exposure concentrations, when compared to indicators that 

use ambient air pollutant concentrations. Therefore, the main exposure metric in 

this study is the homogenous monthly ambient PM10 air pollution concentrations, 

while the traffic index was constructed in an attempt to account at some extent for 

the spatial variability of air pollution within the study area. Future research would 

be to use mobile PM10 monitors to investigate the association between monitored 

PM10 and traffic flows. 
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2.3 Socioeconomic Data 

The association between salbutamol prescribing rate and socio-economic conditions 

of the group of patients registered per GP practice was also assessed in the 

regression model. Socio-economic characteristics of an area expressed as indicators 

of deprivation are linked to susceptibility (Jerrett and Finkelstein, 2005, Yen and 

Syme, 1999, Pickett and Pearl, 2001). Using local areas’ contextual data is an 

ecological approach to account for population susceptibility. It is expected that sub-

populations living in areas characterised by high deprivation, will be more 

susceptible to respiratory disorders. 

2.3.1 Index of Multiple Deprivation 

I accessed socioeconomic data by the Index of Multiple Deprivation (IMD). IMD was 

published in 2000 for England and was provided by the Office for National 

Statistics. In 2004, an improved version was released, called IMD 2004 

(Communities and Neighbourhoods, 2004). IMD 2004 was mainly based on data 

collected between 2002 and 2004. One of the key features of the updated version 

was that census data (Department of the Environment Transport and the Regions, 

2000) were not used in the derivation of the index, which made it possible to 

update it more frequently than a decade. IMD 2007 was published in 2008 

(Communities and Neighbourhoods, 2008), while IMD 2010 is expected to be 

released soon.  

One key characteristic of IMD 2004 is that it is available for smaller spatial units, 

compared to IMD 2000. Those spatial units are called Super Output Areas (SOAs) 

and consist of similar numbers of residents. Parliamentary wards have been divided 

into Super Output Areas (SOA) by the Office for National Statistics, creating three 

layers, defined by spatial scale: lower, middle and upper.  

2.3.1.1 Exploration of Index of Multiple Deprivation 

I used IMD 2004 as it is relevant to the time period of my study. IMD 2004 consists 

of seven domains: 1) income, 2) employment, 3) education, skills & training, 4) 

health, 5) living environment, 6) crime, and 7) barriers to housing and service. I 

extracted data for the three main aspects of socio-economic deprivation; income, 

employment and educational deprivation. The index of income deprivation captures 

people living in families dependent on income benefits. The employment 

deprivation index measures the working age population characterized as 
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involuntarily excluded from work, while the index of educational deprivation 

captures the proportion of working age adults with no or low qualifications as well 

as pupils’ attainment. The indices are measured using different scores (Government 

Office for the North East, 2007) and each was weighted differently in the 

construction of the IMD 2004. Table 2-5 presents the scales used for depicting the 

deprivation scores of interest. 

 

 

Deprivation Indices 

(IMD 2004) 

Range of Deprivation Scores in England 

least deprived most deprived 

Income  0.00 0.96 

Employment  0.00 0.69 

Education, Skills & Training  0.03 99.22 

Table 2-5 : Scale of measurement of Deprivation Scores (2004) 

The deprivation data were accessed in the lower layer of SOA, with a mean 

population of 1,500. The borders of LSOAs are available in the Edina database. I 

created maps of income, employment and educational deprivation in the study area 

(Figure 2-20, Figure 2-21, Figure 2-22). The levels of deprivation have been 

categorised in quartiles (4-quantiles).  

 

Figure 2-20. Income Deprivation 
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Figure 2-21. Educational Deprivation 

 

 

Figure 2-22. Employment Deprivation 
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2.3.1.2 Results - Practice Level Deprivation 

 

I estimated a practice level deprivation score for each practice. This was derived by 

assigning each postcodes with the deprivation scores of the LSOA it fell within. 

Then, I averaged the deprivation scores over all postcodes affiliated to each 

practice. Three deprivation scores were estimated for each practice: 1) income, 2) 

employment and 3) education. Figure 2-23, Figure 2-24 and Figure 2-25 show 

histograms of the deprivation indices. 

 

 
 
Figure 2-23. Histogram of Income Deprivation 
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Figure 2-24. Histogram of Employment Deprivation 

 

 

Figure 2-25. Histogram of Educational Deprivation 
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2.3.1.3 Discussion/Conclusions 

An alternative way of estimating the practice deprivation would have been by 

assigning the deprivation scores to the postcode of practices’ premises. However, 

such practice deprivation scores would not be representative of the contextual 

conditions in the areas that each practice served. To be representative, the 

majority of registered patients would have to live within the same LSOA where the 

practice premises were based or in LSOAs with similar deprivation. This could be 

true for some practices with small service areas, but would not apply to practices 

with large service areas. Overall, I considered that the estimated practice level 

deprivation scores were representative of the social composition of the patients 

registered to each practice. 

 

 

.
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2.4 Demographic Data 

Demographic data are important for understanding disease prevalence and 

incidence in epidemiological studies. The two main demographic 

characteristics are age and sex of the subjects or population under study. 

The age and sex characteristics of practice populations were assessed in 

relation to salbutamol prescribing rate in the regression model I developed.  

2.4.1 Age and Gender of Patients Registered per Practice 

The age and sex data of registered patients were accessed from the Exeter 

database via NEPHO, after receiving ethical approval by the PCTs’ Caldicott 

Guardians. I received data for each of the five years of study, extracted for 

the 1st of April for each year. 

2.4.1.1 Exploration of Age and Gender Data 

Figure 2-26 shows the age profile of populations registered per practice. 

Most of the practices had a similar age profile, while two of the practices had 

very high number of young population registered with them. These practices 

were close to Newcastle University and had a high number of students 

registered with them.  

 

 

 



 

 
 

 

Figure 2-26 Age profiles of practice populations
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The proportions of males and females in the total population registered per practice 

were estimated. These proportions are presented in Figure 2-27 using violinplots, 

which are similar to boxplots but depict density as well. The violinplots for males 

and females are mirror images because if 55% of a practice population consists of 

males the remaining 45% will have to be females and vice versa.  

The most notable observation appeared in the violinplots of Newcastle PCT where a 

practice’s population consisted of 65% males and 35% females. In order to 

investigate it further, I created violinplots per GP practice in Newcastle and North 

Tyneside PCT.  In Figure 2-28, I present only the proportion of males per practice 

as the respective graphs for females were mirror images, as explained above. The 

practice with the high proportion of males was the A86027 practice, which is 

located within the campus of Newcastle University. I considered that the high 

proportion of registered males reflected the high number of males working for the 

university.  

Two practices in North Tyneside PCT appeared to have a higher proportion of male 

patients than the other practices. However, the proportion was approximately 54%, 

which was much lower that the 65% observed in practice A86027. The vast 

majority of GP practices in North Tyneside appeared to have more female 

registered patients than males. 



Data Collection and Exploration 

83 
 

 

 

 

Figure 2-27 Percentage of males and females registered to GP practices, per PCT. 
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Figure 2-28 Percentage of males registered to GP practices, per practice
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2.4.1.2 Results 

I averaged the age of population per practice in order to create an indicator of the 

practice population age. I calculated the ratio of males and females registered per 

practice, with higher values when a practice population consists of more males than 

females and with lower values in the other way around.  

Table 2-6 shows the descriptive statistics of the two variables to be included in my 

regression model. The histograms of the two variables are presented in Figure 2-29 

and Figure 2-30. 

 
 
 Min. 1st Qu. Median Mean 3rd Qu. Max. 

Average age 29.0 38.0 39.0 39.0 41.0 46.0 

Sex ratio 0.8 0.9 1.0 1.0 1.0 1.8 

 

Table 2-6. Descriptive statistics of covariates 

 

 

 
 
Figure 2-29 Histogram of average age of registered patients 
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Figure 2-30 Histogram of sex ratio of registered patients 

 

2.4.1.3 Discussion/Conclusions 

The average age of registered patients per practice and the ratio of males and 

females gave a profile of the population served by each practice. Older people tend 

to suffer more from COPD, whilst asthma is more common in children. Gender 

appears not to be related to asthma or COPD. COPD was once considered a disease 

of males, probably due to the historically high smoking prevalence among males 

but it is not anymore. If the prescribing data were available per diagnosis, it would 

be possible to test per diagnosis how the age and gender profile of patients relates 

to respiratory prescribing, in a primary health setting.   
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Chapter 3. Statistical Modelling 

3.1 Statistical Method 

The statistical method to be employed was considered in parallel with the 

exploratory analysis. It is useful to have some consideration on the type of 

statistical model that in principle would be appropriate for the data and questions of 

interest before the model building process. A linear regression model was the 

starting point of my model building strategy. Careful consideration was required as 

to whether the data under analysis could satisfy the assumptions of the model to be 

used. There are several approaches that can be adopted to address the linear 

regression assumptions, depending on which assumption is not met. The grouped 

nature of prescribing data, with repeated measurements per GP practice over time, 

violated the basic assumption of independence that underlies the statistical 

methods used in linear regression (2000). Mixed models or mixed-effects models 

are a form of generalized linear model that has been extended to dependent data 

(Breslow and Clayton, 1993, Diggle and Ribeiro Jr, 2007, J.C. Pinheiro and Bates, 

2000). I present below an overview of the theory behind mixed-effects model, in 

order to clarify the reason for considering this statistical method to be appropriate 

for my study. 

3.1.1 Mixed-effects Model 

Mixed-effects models provide a powerful tool for analysing grouped data. Data can 

be grouped in time and/or space so mixed models could be used to analyse 

repeated measurements over time (e.g. response of a patient to treatment as a 

series of observations over time) and/or data recorded at several centres (e.g. 

hospital, clinics, general practices). The term mixed-effects is used to describe the 
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fact that the models account for both fixed and random effects. Fixed effects refer 

to the parameters of the model that have a constant value and are estimated by 

traditional regression models. Random effects assume that some parameters take 

values that have arisen from a distribution. They are selected at random from the 

population of interest and are called effects because they represent a deviation 

from the overall mean (Pinheiro and Bates, 2000). Those effects assist in depicting 

more accurately the phenomenon under study by accounting for the random 

variation associated with given parameters.  

Fixed effects models in classical statistics only have random variation in the error 

term, while mixed effects models introduce additional random variation in the 

parameters of the model. Any number of random effects can be specified in a 

model. For example, when assessing the effect of two treatments that are provided 

to several individuals by several centres, it is possible for the model to capture the 

by-treatment random effect as well as to include the centre providing the treatment 

as a random effect. This type of design is called hierarchical or multilevel as 

individuals are grouped per treatment and centre.  Mixed-effects models are often 

called hierarchical (Raudenbush and Bryk, 2002, Lindley and Smith, 1972) or multi-

level models (Goldstein, 2003). However, not all mixed-effects model are 

hierarchical (Pinheiro and Bates, 2000). Careful consideration is required when 

assigning random effects to variables as they have to be representative of the real 

case. Cases where an identical treatment is given to the same individual, no 

random effect by treatment is necessary, and only centre would be included as 

random effect. 

More precise estimates of the treatments’ effects can be estimated by assigning 

random variation to both centre and centre/treatment effects. In such hierarchical 

designs, the treatment effects are allowed to vary randomly across centres and the 

treatment standard error increases to allow for this. The inference of this model can 

be applied to the whole population of centres unlike conventional models where 

centre and centre/treatment effects are fixed and inferences on treatment effects 

are specific to the centres observed (Brown and Prescott, 2006). This important 

aspect of mixed-effects models is that the question of interest is for the whole 

population and not only for the population being sampled (Pinheiro and Bates, 

2000). Especially when analysing health data that need ethical and confidentiality 

considerations to be assesed, using the fewest patients’ data as possible to make 

inferences with same level of accuracy is desirable.   
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3.1.1.1 Application of Mixed-effect Models 

Overall there are many reasons for using such model and its benefits can be applied 

to a range of data (Demidenko, 2004). Mixed effects models have started becoming 

established as the appropriate tool for modelling data with complex structure. 

Mixed effects models have been frequently applied in agriculture to analyse crop 

variety trials (Talbot 1984) and have been used extensively in animal breeding to 

predict heritability and predict genetic gain from breeding programmes (Smith et 

al., 2001, Johnson and Thompson, 1995). They are also applied in other fields such 

as engineering, ecology, medical science and in social sciences like education, 

linguistics, economics (Elmhagen and Rushton, 2007, Zhou et al., 2003, Revelt and 

Train, 1998, Clayton et al., 1996, Baayen et al., 2008).  

The adoption of mixed effects models has been increasingly accepted in medical 

research, especially after a review of clinical trials by Brown and Kempton (1994). 

Mixed-effects models have been used in different aspects of asthma and COPD 

research, such as the response of portable peak expiratory flow meters to changes 

in true peak expiratory flow in 12 children with asthma (Burton et al., 1998), as 

well as to evaluate the effect of inhaled budesonide in subjects with mild COPD who 

continued smoking (Pauwels et al., 1999). The last two decades have seen several 

examples of using mixed models in relation to health (Pitt et al., 2000, Drake et al., 

1999, Clark et al., 1996, Unutzer et al., 2002), however their use is still in the 

process of becoming regular practice. Mixed-effects models are also accepted by 

regulatory authorities. The US Food and Drug Administration website recommends 

such models for assessing the degree to which two drugs are the same in terms of 

efficacy and safety (Centre for Drug Evaluation and Research, 2001). 

The application of mixed effects models is very much linked to the development of 

computers. Mixed effects models are fitted using the method of maximum likelihood 

or the residual maximum likelihood (RELM) method, proposed by Patterson and 

Thompson (1971). Likelihood-based methods are computationally intensive and 

demanding in terms of computational power, which has been a factor in restricting 

the application of such models.  

A variety of commercial software, including SAS, SPSS, MLwin, HLM, Stata and S-

plus is available for fitting mixed-effects. They differ mainly in whether they include 

programmes that allow fitting mixed-effects to normal, non-normal or categorical 

data. The commercial software Egret specialises in the application of mixed-effects 

models for epidemiological and biomedical studies. Software like WinBUGS and 

BayesX apply a Bayesian approach to such models. To the best of my knowledge 

WinBUGS is the most widely applied software for Bayesian statistics and can be 
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used to fit models of all types of data. It is open source software (distributed freely 

in the public domain) developed by the Medical Research Council Biostatistics Unit 

in Cambridge. Both WinBUGS and BayesX are integrated within R and can be used 

via this software. 

R is open source statistical software that includes algorithms for fitting mixed-

effects models. R allows one to fit mixed models to larger datasets compared with 

other software and is one of the most versatile software packages for application of 

mixed-effects models, using “nlme” and “lme4” packages. The latter package has 

been launched in recent years and is currently under continuous development to 

improve computation of mixed models and include new functions that deal with 

more complex datasets. For instance, lme4 allows the use of an offset in a mixed-

effects model, which is not available in the nlme package. An offset specifies a 

priori known components to be included in the linear predictor during fitting. R also 

contains special functions to improve the modelling of the aforementioned types of 

data, like a function for fitting longitudinal models with missing data that is based 

on work in this field by Diggle and Kenward (1994) and  Diggle and Farewell 

(2007). A recent addition in R is the package called “geoR” and its extension 

“geoRglm” that allows the application of mixed-effects models to geostatistical data 

(Diggle and Ribeiro Jr, 2007).  

 

3.1.1.2 Mixed-effects model in perspective 

Mixed effects models have random variation in the error term but also introduce 

additional random variation for which assumptions have to be made about the type 

of distribution they follow. The two sources of random variation are the main 

characteristic of mixed effects model. This is a potential disadvantage of mixed 

models as they rely on more distributional assumptions. Often a class of mixed-

effects models is used that assume that both the random effects and errors follow 

Gaussian distributions. This assumption always has to be checked, by examining 

the linearity of residuals and random effects with normality plots. Non-linear mixed 

models are also applied (Pinheiro and Bates, 2000).  

As mentioned above, in contrast to classical statistics, the mixed-effects model 

assumes two sources of variation, within groups and between groups. The within 

groups variation has the same meaning as in traditional statistics and is depicted by 

the model’s error terms (residual variance). The between groups variation is also a 

random source of variation like the error terms, even though may behave like 

parameters in a model. As such we do not “estimate” them but form predictions of 
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the values of those random parameters, given the data observed (Pinheiro and 

Bates, 2000).  

The fact that a mixed-effects model assumes that the parameters are random 

makes it similar to Bayesian statistical models. In a Bayesian context where all 

unknown parameters are considered as “random”, the mixed-effect model is known 

as a random-effects model (Gelman, 1995). As in the Bayesian approach, in a 

mixed-effects model one has to make a decision in defining the prior distribution of 

random parameters. In the frequentist approach, the unknown parameters of the 

distribution are estimated from the data. In a mixed effects model, the fixed effects 

can also be estimated based on specified repeated-sampling properties that are 

equivalent to the Bayesian posterior inference under a non-informative (uniform) 

prior distribution (Gelman, 1995). In summary, a mixed model combines major 

features of the frequentist and Bayesian approaches. 

3.1.1.3 Example of Mixed-effects Model 

To illustrate the importance of accounting for the grouping factor of this study’s 

prescribing data by means of mixed-effects model, I used a basic fixed effects 

regression model initially. For simplification I considered the relationship of 

particulate matter as an explanatory variable xk with salbutamol prescribing in 

several GP practices as response yk, where K=1,…,k in our study K=55 months. The 

model took the form:   

kkk xy εαµ ++=                                                                                        3-1 

Where, yk is the salbutamol prescribing rate, µ is the mean salbutamol prescribing 

across the population of GP practices being sampled, and the εij are independent 

and identically distributed random variables with zero mean and constant variance, 

),0( 2σΝ . The parameter (coefficient) of the model is α with respect to the 

particulate matter covariate xκ. In this model it is assumed that the data were 

collected from similar, homogenous practices. However the practices are not 

homogenous and prescribing varied a lot between them. Figure 3-1 illustrates that 

some practices tended to have systematically higher or lower prescribing than 

others and it would be better to account for that.  

The grouping factor of prescribing is categorical data. There is no inherent ordering 

of GP practices so I reordered the data to make the plot of prescribing between 

groups more informative. Figure 3-2 shows a dotplot of salbutamol prescribing per 

GP practice that reinforced the impression of considerable variability between GP 
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practices. The line observed in Figure 3-2 joined the mean salbutamol prescribing 

of the 64 general practices, which had been reordered accounted to increasing 

mean salbutamol prescribing. 

 

 



 

  

 

Figure 3-1 Monthly average of salbutamol prescribing per GP Practice. 
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Figure 3-2 A dotplot of salbutamol prescribing per GP Practice.
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An improvement of this initial model was to assume that each practice has its own 

practice-specific prescribing (in statistical language, intercept). The model now has 

a double index because I have grouped data: i corresponds to the ith GP practice 

(i=1,…,N ) and j to the jth observation of the ith practice ( j=1,…ni), where ni= is 

the number of observations from the ith practice. The total number of observations 

is ∑
=

=Κ
N

i
in

1

. In this study, the number of GP practices was i=1,…,64 and the 

number of observations per practice was j=1,…55, so K= 3,520. 

 

ijijiij xy εαµ ++=                                                                                       3-2 

Where, yij is the salbutamol prescribing rate for observations j in group i, µi is the 

GP practice specific intercept. The εij is the error term for jth observation of the ith 

practice, again assumed independent and identically distributed, N (0, σ2).  This 

second model seemed more appropriate for the prescribing data as it included the 

GP practice effect. However, it assumed that the practice effect takes constant 

(fixed) values and the only assumption about variation is that the residuals εij are 

normally distributed. As the individual observations are modelled as the sum 

of iji xαµ + , which are all constants, plus the residual term, it follows that the 

variance of individual observations equals the residual variance. The covariance of 

any two separate observations yij  and yi’j’ is zero since all the residuals are assumed 

independent (i.e. uncorrelated).This means that data sharing the same grouping 

factor (e.g. prescribing per GP practice) are considered independent. However, 

prescribing per GP practice was not expected to be independent due to various 

random influences, such as the prescribing pattern individual doctors may have.   

 An improvement of this second model was to set the GP practice as a random 

parameter to allow the model to capture the by-practice random effects. The new 

model assumed that the practice effect also arises from independent samples from 

a normal distribution and is an example of mixed-effects model. The equation 3.2 

(fixed-effects model) modelled the specific sample of GP practices used in this 

study, while the random effects model treated the practices’ effect as random 

variations around a population mean. This central assumption of the mixed models, 

that intercepts µι, i=1,…,N are random and belong to a general population, can be 

expressed in the following equation as  
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ii b+= µµ                                                                                                3-3  

where µ is the population-average prescribing of salbutamol (intercept) and bi is a 

random variable, or the deviation of the practice-specific prescribing from the 

population-averaged prescribing for the ith GP practice. Taking into account the 

random part of the intercept expressed by equation 3-7, the model 3-2 could be 

written as:  

 

ijiijij bxy εαµ +++=                                                                                 3-4 

),0( 2σε Ν=ij  & ),0( 2
bib σΝ=  

Where the random variable εij is the error term for jth observation of the ith 

practice, again assumed independent and identically distributed, N (0, σ2).  The bi 

are referred to as random effects also assumed to have come from a normal 

distribution N(0,σ2). Joining the two random terms together, where iijij b+= εη  the 

model can be written as ijijij axy ηµ ++= . In general, the linear mixed effects 

model is written as (Laird and Ware, 1982)  

ijiiijij bZaxy εµ +++=                                                                               3-5 

where Z is a matrix giving the values of random effects bi. It is apparent this model 

is more complex than the previous model (3-2). Consequently, the mixed model 

assumed two sources of variation (variability), the εij or “within groups” and bi or 

“between groups” (Pinheiro and Bates, 2000). The former have the same meaning 

as in traditional statistics but the latter are random and are estimated as posteriori 

means, that links such model to Bayesian statistics (Demidenko, 2004, Gelman, 

1995), as discussed in section 3.1.1.2.   

Furthermore, the variance of individual observations in the mixed effects model is 

the sum of the variance components:  

22)var( σσ += bijy                                                                                      3-6 

σ2
b  is the variance for the between group variability (or inter variability) and σ

2 is 

for the εij for the within group variability (or intra variability). The covariance of 

pairs of observations can then be described as: 
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),cov(),cov( ''''''' jiijiijiijjiij bxbxyy εαµεαµ ++++++=                               3-7 

When observations of different GP practices are considered (i.e. i≠i’) then 

0),cov( '' =jiij yy  because of the independence of the observations. However, when 

two samples from the same practice are considered (i.e. i=i’) (Brown and Prescott, 

2006, Demidenko, 2004, Pinheiro and Bates, 2000), then  

),cov(),cov( ''''' jiiijijiij bbyy εε ++=  

                  
2

' ),cov( bii bb σ==                                                                   3-8 

Thus, observations on the same GP practice are correlated and have covariance 

equal to the practice variance component, while observations on different practices 

are uncorrelated. This contrasts with the fixed effects models where the covariance 

of any pair of observations is zero.  

 

3.1.1.4 Discussion/Conclusions 

In summary, grouping factors induce a correlation structure in the data but mixed 

effect models allow the modelling of such data (Faraway, 2006, Demidenko, 2004, 

Pinheiro and Bates, 2000). Allowing for the interdependence of observations by 

group was the reason for considering this type of statistical method appropriate to 

model the prescribing of salbutamol by GP practice. Each practice has 

characteristics (e.g. age distribution of patients) that I needed to take into account 

in my model as well. In the following section I developed the mixed-effects model 

by adding all the explanatory variables of salbutamol prescribing and carrying out 

tests to assess formally whether this model met the independence assumption 

required by linear regression. 
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3.2 Model Formulation 

In previous chapters, I described how the health, air quality, deprivation and 

demographics datasets were converted to suitable spatial and temporal formats to 

allow them to be used as explanatory variables. I have also discussed the statistical 

model that in principle is relevant for modelling prescribing data at the primary care 

level.  

My aim was to model the monthly prescribing rate of salbutamol (respiratory 

medication) in relation to air quality, at primary health care level. I hypothesized 

that exposure to air pollution increases the frequency and duration of asthma and 

COPD symptoms, generating a corresponding increase in the use of salbutamol 

medication and consequently an increase in prescriptions. I evaluated possible 

time-lags in the response of medication use to air quality. Contextual factors of 

local areas (income, employment and educational deprivation) and demographic 

factors (age and sex) were also included as covariates in the statistical models.  

The response variable was monthly prescribing of salbutamol per GP practice, 

standardized per 1,000 population. The primary health care level was the spatial 

unit of analysis for prescribing and monthly variation was the temporal unit. Not all 

covariates shared the same level of temporal and spatial resolution. The ambient 

air quality (PM10) covariate deriving from one monitoring site accounted for monthly 

temporal but not spatial variation. I attempted to account for within city air quality 

spatio-temporal variability by analysing traffic flows with both spatial (50 

monitoring sites) and temporal (monthly) resolution.  

The demographics and the derived deprivation covariate have one year temporal 

resolution, as the postcodes of patients were provided on the 1st of April for each 

year of study. No significant change in deprivation and demographics variables was 

expected on a monthly basis and I considered that these covariates accounted 

sufficiently for spatio-temporal variation. I summarise below the covariates 

constructed for use in my statistical model: 

x1a-1b:  monthly averaged PM10 with 0-, 7-, 14-, 21-days and 1-month lag time 

x2a-2e:  monthly averaged traffic flows per practice with 0- and 1-month lag time 

x3:      income deprivation per GP practice, annually 

x4:      employment deprivation per GP practice, annually 

x5:      education deprivation per GP practice, annually 
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x6:      average age of registered patients per GP practice, annually 

x7:      ratio of males and females registered patients per GP practice, annually 

x8:      time (months) 

My interest was to explore the potential relevance of covariates, as well as learn 

and understand better the structure of the data, in order to build a model that I 

believed to be both parsimonious and adequate. The inference to be made using 

the p-values, coefficient and confidence intervals of my final model would be 

relevant to the total population of GP practices that my sample was drawn from, as 

well as the sample of practices I analysed.  In the next section I focus on model 

formulation, the preliminary stage of model building strategy. 

3.2.1 Preliminary Statistical Model 

My model building started with the model formulation process that is developing 

and examining the main structure of the statistical model, which was followed by 

the refining process. Preparation and examination of the main aspects of  the 

statistical model reduced the risk of the final model not satisfying the main 

assumptions of regression. As discussed in section 3.1.1, a linear mixed-effects 

model was considered, in principle, appropriate for addressing the aims of this 

study. I fitted this model on my data and examined whether this was the case. 

Firstly, I assessed whether transformation of the data was required and then fitted 

the preliminary mixed-effects model. I present below the process for deciding on 

log transforming the data and then the application of a mixed-effects model.  

3.2.1.1 Linear Mixed Effects Model 

One of the main assumptions that linear regression models have to satisfy is 

homoscedasticity (constant variance). Logarithmic transformation is a common 

approach taken to address the problem of heteroscedasticity (Weisberg, 2005). In 

order to make a decision on whether log transformation of the data was required, I 

estimated the mean prescribing rate of salbutamol per month and its variance and 

plotted them against each other.  

Figure 3-3 shows that the monthly mean of salbutamol prescribing rate increased 

when variance was increased. Log transformation approximately stabilised the 

variance of salbutamol prescribing, as depicted in  
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Figure 3-4, therefore, I proceeded to use log transformed data to model the 

salbutamol prescribing rate using linear regression. I checked again that the 

assumption of homoscedasticity was met by my final fitted model by examining the 

residuals of my model.  

 

Figure 3-3 Mean of monthly salbutamol prescribing rate against monthly variance.  

 

 

Figure 3-4 Mean monthly log salbutamol prescribing rate against monthly variance.  
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Having log transformed the data, I denoted Y the log transformed rate of 

salbutamol prescribing. Figure 3-5 shows the area-wide average salbutamol 

prescribing, tΥ , in each of 55 months of the study period, where the original scale 

is shown on the left vertical axis and the logarithmic scale on the right vertical axis. 

Figure 3-6 depicts the monthly log transformed rate of salbutamol prescribing per 

GP practice.  

 

Figure 3-5 Area wide monthly average of salbutamol prescribing rate. 



 

 

 
Figure 3-6 Log monthly average of salbutamol prescribing per GP Practice. 
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I fitted both fixed and mixed effects models adding all the information that I had 

gathered about individual practices on particulate matter, traffic, deprivation and 

demographics. All covariates have been listed at the beginning of this chapter. I 

then examined and compared the spread of the residuals of the models. The 

examination of residuals is necessary for identifying whether a model’s results can 

be reliable.  

The fixed effects model with all the covariates of interest took the form: 

ijijijij xaxay εµ ++++= 91 ...                                                                     3-9 

as it fitted eight fixed effect parameters relating to x=1,…,8 covariates. The mixed 

effect model had additionally 64 random effects (q=1,…,64) parameters respective 

to 64 GP practices: 

ijijij xaxay 81 ...+++= µ  ijijij zbzb ε++++ 641 ...                                       3-10 

 

3.2.1.2 Model Criticism  

Figure 3-7 shows boxplots of the fixed effects linear regression model residuals by 

subject. The residuals corresponding to the same subject (GP practice) tend to have 

the same sign, which indicated the need to account for the group effect (Pinheiro 

and Bates, 2000). The anticipation that the mixed effects model would account 

successfully for the GP effects was better illustrated by the boxplots of residuals, 

shown in Figure 3-8. The residuals are centred around zero and have smaller 

magnitudes than those in Figure 3-7. This indicated that the mixed-effects model 

could provide more accurate estimates, which allowed for the by-GP practice 

differences. 



   

 

 

Figure 3-7 Boxplots of the fixed effects model residuals, by GP Practice. 
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Figure 3-8 Boxplots of the mixed effects model residuals, by GP Practice.
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3.2.1.3 Discussion/Conclusions 

The residuals of the mixed effects model were centred around zero and had smaller 

magnitudes than those of the fixed effects model, indicating that the mixed effects 

model had more accurate estimates, taking into account the by-GP practice 

differences. Overall, by examining the spread of residuals, I concluded that the 

reliability of the fixed effects model would be doubted when fitting the salbutamol 

prescribing data in relation to other covariates, while the mixed effects model 

appeared to better account for the grouped nature of for the prescribing data. 
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3.3 Model Refining (Stage A)  

Having fitted and examined the preliminary model, I needed to refine and finalise 

it. A major concern was the covariates that would be included as explanatory 

variables for salbutamol prescribing. Peaks in salbutamol prescribing occured each 

winter and spring, albeit with some variation from year to year (Figure 3-5). I have 

already mentioned that factors like pollen, cold air and respiratory infections can 

increase the frequency and duration of symptoms of patients with asthma and 

COPD. The salbutamol prescribing was consequently determined by such seasonal 

variations.  

In an attempt to account for this seasonal effect, my modelling strategy was 

separated into two stages. Firstly, I modelled the expectation of the area wide 

monthly average log-transformed salbutamol prescribing rate, [ ]tt YΕ=µ , in relation 

to monthly average temperature. Temperature was used to capture the seasonal 

variation of salbutamol prescribing, given the absence of any other covariates to 

account for seasonal trigger factors (e.g. respiratory infections, pollen).  

I then fitted the mixed effects model presented in the previous section, including 

the monthly average log-transformed salbutamol prescribing rate, [ ]tt YΕ=µ , as an 

offset. An offset specifies a priori known component to be included in the linear 

predictor during fitting. Including tµ̂  as an offset in my model would allow me to 

assess the relationship of the remaining prescribing rate in relation to particulate 

matter, traffic, deprivation and demographic characteristics of GP practices. A two 

stage modelling strategy has been previously implemented by Fanshawe et al., 

2008. Implementing a two stage-modelling approach using a mixed effects model 

proved challenging in terms of software requirements. In the next two sections I 

will present the two stages of statistical modelling followed by the results and their 

interpretation. 

 

3.3.1 Modelling seasonal variation of salbutamol prescribing  

I modelled the relationship between the log transformed salbutamol prescribing 

rate and temperature in order to account for the seasonal variation. I accessed the 

daily mean for temperature data, which I averaged monthly. There was only one 

monitoring station recording temperature in the study area, which was considered 
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representative, as no major differences in temperature were expected within the 

study area. Figure 3-9 graphically depicts the temperature data which followed a 

distinct seasonal pattern. Associations between salbutamol prescribing and 

temperature were tested for different time lags. I looked at the relationship of 

monthly average temperature recorded in the same month as salbutamol 

prescribing (lag0) as well as that preceding by 7 days (lag7), 14 days (lag 14), 21 

days (lag21) and a month (lag30).  

 

 

 

 

 

 

 

 

 

 

Figure 3-9 Monthly average temperature. 

3.3.1.1 Method 

Frequency domain models are one of the standard ways to model temporal 

autocorrelation (Gelman, 1995). Such models analyse data with respect to 

frequency rather than time, using a mixture of sinusoids at different frequencies. 

Frequency is the number of occurrences of a repeated observation by any given 

unit of time. There are alternative perspectives on capturing correlation and one of 

them, used by such models, is to transform data into vectors and assess the angle 

between them.  

Variables presented as vectors in a space are commonly used in the physical 

sciences and engineering for plotting forces and visualizing their relationships. 

Vectors pointing in the same direction have a positive relationship and those 

pointing in opposite directions have a negative relationship. Applying the angles of 
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vectors as a measure of correlation can be complicated. The angles take values 

from 0o to 360o degrees, while the correlation coefficient  take values between 1.00 

for perfect correlation, -1.00 for perfect negative correlation, and zero for no 

correlation. A transformation can be done by using basic functions of trigonometry, 

sine and cosine. For instance, the cosine of the angle between vectors will be +1.00 

for vectors with an angle of 0o, -1.00 for an angle of 180o (completely opposite 

directionality), and 0 for an angle of 90o or 270o.  

I have used a type of frequency domain models, called harmonic regression or fixed 

frequency effects models, to estimate area wide monthly salbutamol prescribing in 

relation to temperature. Harmonic regression can be applied to stationary or non-

stationary time series (Young et al., 1999). More details on frequency domain 

models  and harmonic regression models can be found in relevant literature (Artis 

M. et al., 2007, Gelman, 1995, Kay and Marple, 1981, Chiu, 1989, Hannan, 1971, 

Bujosa et al., 2007, Young et al., 1999).  

3.3.1.2 Analysis 

The co-variation of prescribing between months as captured by sine and cosine was 

added as a variable in the model. I defined twelve periods as ω=2π/12 to represent 

an annual cycle. The initial version of the model I used is:  

tttt EttdY +Β+Α+++= )sin()cos( ωωγβα                                                 3-11 

where tY  is the monthly average log-transformed salbutamol prescribing rate for 

month t.  The value dt is the average of the daily mean temperature readings in 

month t. α, β, γ, Α and B are parameters and Et are independent residuals ),0( 2
EσΝ  

for month t.  All the parameters of this model were static (fixed) taking constant 

values.  

An improvement of this model was to replace the A and B parameters by variables 

that were estimated randomly. This second model was called a dynamic model and 

differed from the static harmonic regression model in the estimation of parameters 

in the frequency domain. I used the package “sspir” in R software to fit the dynamic 

harmonic regression model (Dethlefsen and Lundbye-Christensen, 2006). This 

method has been previously implemented in an epidemiological context for 

estimating weekly area-wide black smoke averages (Fanshawe et al., 2008).  
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In the dynamic model the parameters α, β, γ and Et were as before, but the 

parameters A, and B were replaced by variables that were estimated by the random 

walks ),(~| 2
11 Α−− ΑΝΑΑ σttt and ),(~| 2

11 Β−− ΒΝΒΒ σttt  (Fanshawe et al., 2008): 

tttttt UttdY +Β+Α+++= )sin()cos( ωωγβα                                               3-12 

I evaluated possible time-lags of 1 month and 21, 14 and 7 days for responses of 

medication prescribing to temperature, as mentioned earlier. Consequently, I 

modelled the area wide monthly average log-transformed salbutamol prescribing 

rate, [ ]tt YΕ=µ , against temperature using five static and five dynamic frequency 

domain models. The results of the static models were compared to the results of 

dynamic harmonic regression models.  

 

3.3.1.3 Results 

The rates of prescribing as estimated from the static and dynamic modesl were 

plotted against the monthly log prescribing. Figure 3-10, Figure 3-11, Figure 3-12, 

Figure 3-13 and Figure 3-14 depict the results of fitted static and dynamic harmonic 

regression models for the area-wide average of prescribing in relation to 

temperature at the following time lags: a) 0 days (lag0), b) 7 days (lag7), c) 14 

days (lag14), d) 21 days (lag21) and e) 1 month (lag30). The observed monthly 

prescribing is illustrated as an orange solid line. The estimation of static models 

(dotted line) differed substantially from the observed prescribing, indicating that 

these models were not adequate. In contrast, the dynamic models (solid blue line) 

captured much better the month-to-month variation. Out of the five dynamic 

models the one that used the temperature at 7 days lag, provided the best fit to 

the data, as depicted in Figure 3-11. 
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Figure 3-10 Fit of static and dynamic regression models for the area-wide average 

of prescribing in relation to temperature at 0 days lag. 

 

 

Figure 3-11 Fit of static and dynamic regression models for the area-wide average 

of prescribing in relation to temperature at 7 days lag. 
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Figure 3-12 Fit of static and dynamic regression models for the area-wide average 

of prescribing in relation to temperature at 14 days lag. 

 

Figure 3-13 Fit of static and dynamic regression models for the area-wide average 

of prescribing in relation to temperature at 21 days lag. 
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Figure 3-14 Fit of static and dynamic regression models for the area-wide average 

of prescribing in relation to temperature at 1 month lag. 

 

I calculated the R squared (R2) coefficient of determination, a statistical measure of 

how well the regression line approximated the real data points. An R2 of 1.0 

indicates that the regression line perfectly fits the data. Figure 3-15 shows that the 

model with 7 days lag had the highest R squared value (74,5%). Therefore I 

considered it to be best out of the five in terms of how well it fitted the original 

data. 

 

Figure 3-15 R squared for dynamic models. 
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3.3.1.4 Model Criticism 

I examined the residuals of the dynamic model with lag7 (temperature data 

recorded 7 days preceding the first day of prescribing month), in order to assess 

the validity of the model.  

Normality, Linearity, Homoscedasticity Assumptions 

I created a normal Q-Q plot of the residuals, using the dynamic harmonic 

regression model (lag7). FiFigure 3-17 shows a pattern that is close to a straight 

line, demonstrating that the normality assumption was met by the model. 

 

Figure 3-16 Normality Plot of residuals of dynamic harmonic regression model. 

 

I assessed whether the assumption of linearity was met. By plotting observed 

versus fitted values of salbutamol prescribing (FiFigure 3-17), adequately it was 

met. The plot of residuals versus fitted values (FiFigure 3-18) was also examined to 

assess the linearity and homoscedasticity assumptions. Homoscedasticity was also 

examined by plotting the residuals versus time. The observed versus fitted values 

(FiFigure 3-17) were symmetrically distributed around a diagonal line showing the 

linearity assumption was adequately met. FiFigure 3-18 illustrates that the residuals 

remained constant in relation to fitted values and time (Figure 3- 21) indicating 

that the homoscedasticity (constant variance) assumption was also adequately met.  
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Fi

Figure 3-17 Plot of observed versus the fitted values of salbutamol prescribing of 

dynamic harmonic regression model. 

Fi

Figure 3-18 Plot of residuals versus fitted values. 
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Fi

gure 3-19 Plot of residuals versus time.  

 

Independence Assumption 

I examined whether the residuals of the dynamic harmonic regression model (lag7) 

met the independence assumption and compared that to the respective static 

model. I plotted the autocorrelation function to compare the temporal 

autocorrelation of residuals produced by the two models. The concept of 

autocorrelation functions was explained in Section 3.2.1.2, where I checked the 

reliability of the preliminary mixed-effects model.  

The dynamic model improved the temporal autocorrelation of residuals (Figure 

3-21), compared to the static model (Figure 3-20), as the residuals showed an 

even distribution around zero, within the 95% confidence limit (dotted lines) for 

most lags.  
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Figure 3-20 Temporal autocorrelation of residuals of the static model.  

 

Figure 3-21 Temporal autocorrelation of residuals of the dynamic model.  

 

Overall Figure 3-16, Figure 3-19, Figure 3-21 and Figure 3-23 illustrate that 

assumptions of linearity, normality, and homoscedasticity were met by the dynamic 

harmonic regression model. 
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3.3.1.5 Discussion/Conclusions 

Results 

I evaluated possible time-lags of 1 month and 21, 14 and 7 days, in response of 

medication prescribing to temperature.  This was due to the fact that a delay was 

expected between the event that triggered the increased consumption of 

salbutamol, causing a need for a new inhaler, and thus a visit to the GP for a new 

prescription.  The dynamic harmonic regression model captured the seasonal 

periodicity of salbutamol prescribing, in contrast to the static model which failed to 

capture it. Out of the five dynamic models, the one that used temperature at 7 

days lag captured best the temporal variation in salbutamol prescribing. The 

models that used temperature data measured 14 (lag14) and 21 (lag21) days 

before the prescribing month, also captured salbutamol variation as well as the lag7 

model. All of those three models performed well almost indicating that temperature 

recorded within a time window of 7-21 days preceding the prescribing month was a 

good explanatory variable of asthma and COPD exacerbations due to seasonal 

factors.  

The dynamic model with lag7 performed better than the other models and therefore 

was assessed further in order to examine the reliability of it results. The model’s 

residuals met the normality, linearity and homoscedasticity assumptions of linear 

regression. The residuals were also assessed for interdependence in time (temporal 

autocorrelation) but not in space (spatial autocorrelation). This is because 

temperature was considered spatially homogenous in the study and consequently 

this first stage of the model ignored any spatial variation of the covariate. The 

second stage of the model, which is presented in the next section, included 

covariates with both spatial and temporal variability and therefore the model’s 

residuals were checked for both temporal and spatial autocorrelation. Overall, the 

dynamic harmonic regression model with 7 days lag performed well and was 

considered suitable for estimating the area-wide average of salbutamol prescribing 

attributable to seasonality. The output of this model was used as input on the final 

model that included all covariates, described in the section 3.4. 

Potential Future Applications 

The output of this model could also be used in isolation from the rest of the 

analysis. The model captured 75% of the prescribing variation and after some 

additional robust validation could be used for predicting salbutamol prescribing in 

relation to seasonal factors. This predictive model could be used for management of 

resources at the primary care level. Given that the model validation proved reliable, 
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similar models could also be developed for other types of medication or health 

outcomes that follow a seasonal pattern. 

Other studies that assessed the impact of air pollution on prescribing of short-

acting b2-agonists used data on pollen and influenza epidemics in addition to 

weather conditions in order to account as best possible for the seasonal variation of 

prescribing. Using a dynamic harmonic regression model may appear complicated. 

However collecting, editing and manipulating data on pollen and respiratory 

infections is also a complicated and time consuming process. Overall, I consider 

that using temperature data with a dynamic harmonic regression model, provided 

an efficient and pragmatic approach to capturing the seasonal variation of 

salbutamol prescribing. It might also be useful when analysing other asthma or 

COPD health indicators, such as hospital admissions and emergency room visits, 

which are also subject to seasonal variation. 
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3.4 Model Refining (Stage B)  

In the last stage of statistical model development, I fitted linear mixed-effects 

models with an offset. The offset captured the seasonal variation of log salbutamol 

prescribing rate as described in previous chapter. 

3.4.1 Modelling Spatio-temporal Variation of Salbutamol Prescribing 

The final model included all covariates: 1) PM10, 2) Traffic index, 3) Income 

deprivation, 4) Employment deprivation, 5) Educational Deprivation, 6) Average 

age of patients registered with GP practices and 6) sex (males/females) ratio of 

patients registered with GP practices.  

I tested the influence of air quality indicators (mean 24-h concentrations for PM10 

and monthly traffic flows per GP service area) observed in the same month as the 

prescribing (lag0), and then with a variety of lag periods. I evaluated monthly 

average PM10 levels observed 7 days (lag 7), 14 days (lag 14), 21 days (lag 21) 

and 1 month (lag 30) before the first day of each prescribing month. The traffic 

flow data were provided with a monthly temporal resolution, therefore it was not 

possible to create weekly time lags as in the case of air pollutants. I created time-

lag of one month (lag30) based on data observed in the month before the 

prescribing month. The estimation of air quality covariates for different time points 

was important because a lag period was expected between exposure of individuals 

and prescribing. I was interested to examine whether my models would capture 

that. I was also interested to examine which if any lag period would have a 

statistically significant association with prescribing. 

A summary of the descriptive statistics is presented in Table 3-1 for all covariates 

at different lag times. The mean, minimum and maximum values were estimated. 

However the median, 1st and 3rd quintile were more informative about the data 

distribution. 
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  Min. 1st Qu. Median Mean 3rd Qu. Max. 

PM10_lag0days 13.2 16.1 18.0 18.9 20.9 29.0 

PM10_lag7days 11.7 16.0 18.8 18.9 20.8 33.9 

PM10_lag14days 12.1 16.0 17.7 18.6 20.1 35.5 

PM10_lag21days 12.5 16.0 18.0 18.7 20.8 31.0 

PM10_lag30days 13.2 16.1 17.7 18.7 20.8 29.0 

Traffic_lag0days  191.9 496.4 781.8 905.0 1268.5 3235.0 

Traffic_lag30days  191.9 495.4 781.8 903.9 1267.5 3235.0 

Income Deprivation 0.1 0.1 0.2 0.2 0.3 0.5 

Employment Deprivation 0.1 0.1 0.2 0.2 0.2 0.3 

Educational Deprivation 4.1 17.5 28.9 30.2 42.4 70.8 

Average age 29.0 38.0 39.0 39.0 41.0 46.0 

Sex ratio 0.8 0.9 1.0 1.0 1.0 1.8 

Table 3-1. Descriptive statistics of covariates. 

 

3.4.1.1 Method 

 I fitted the models with all covariates. The mixed effects model took the form: 

ijijij xaxay 81 ...+++= µ ijijij zbzb ε++++ 641 ...
 

bi=N(0,σ2
b) and 

),0( 2σε Ν=ij    

where yij is the log transformed salbutamol prescribing rate for observations j in 

group i, µ is the population-average prescribing of salbutamol (intercept),  α are 

eight fixed effect parameters respective to x=1,…,8 covariates. The random variable 

εij is the error term for jth observation of the ith practice, assumed independent and 

identically distributed, N (0, σ2).  The bi are the random effects also assumed to 

have come from a normal distribution N (0, σ2).  

In cases where both GP practices and PCTs were introduced as random effects the 

vector of random effects b consisted of the 64 practice parameters plus 128 PCT-

practice interaction parameters b65, b66, ..., b192. I fitted models with both types of 

random effects and compared them. 
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3.4.1.2 Analysis 

I fitted separate models for each combination of time lags for which the air quality 

indicators were estimated. These combinations produced 10 mixed-effects models 

which I denoted as:  

 

1) L30PM_30TR: 1 month lag for PM10 and 1 month for traffic flows 

2) L21PM_30TR: 21 days lag for PM10 and 1 month for traffic flows 

3) L14PM_30TR: 14 days lag for PM10 and 1 month for traffic flows 

4) L7PM_30TR:  7 days lag for PM10 and 1 month for traffic flows 

5) L0PM_30TR:  0 days lag for PM10 and 1 month for traffic flows 

 

6) L30PM_0TR:  1 month lag for PM10 and 0 days for traffic flows 

7) L21PM_0TR:  21 days lag for PM10 and 0 days for traffic flows 

8) L14PM_0TR:  14 days lag for PM10 and 0 days for traffic flows 

9) L7PM_0TR:    7 days lag for PM10 and 0 days for traffic flows 

10) L0PM_0TR:  0 days lag for PM10 and 0 days for traffic flows 

 

Random effects in the above models were specified for GP practices. I also 

considered grouping GP practices within PCTs, as PCTs are the administrative 

bodies of GPs and I wanted to examine whether there was an effect on prescribing 

due to such grouping. Consequently, I fitted 10 additional models by grouping the 

data both by GP practices and PCTs. I added the ending “pct” to the model 

descriptions (i.e. L30PM_30TR_pct) to denote that they had random effects 

assigned to both GP practice and PCT. 



  Statistical Modelling 

123 
 

 

3.4.1.3 Results 

The results of the final models with GP practice random effects are summarised in 

Table 3-2. A few models returned identical results in cases where PM10 was not 

significant in specific time-lags, the results of which are also presented in Table 3-2. 

For instance the models L30PM_30TR, L7PM_30TR and L0PM_30T produced 

identical results as PM10 was not statistically significant in 30-, 7- and 0- days lag, 

and consequently, the coefficients of the statistically significant predictors were 

identical. 
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TRAFFIC 30 DAYS LAG 
L21PM_30TR Estimate Std.Error t value Pr(>|t|) 
(Intercept) -2.01821 0.15007 -13.447986 <0.0001 
PM10_lag21days 0.00102 0.00047 2.185799 0.0288 
Traffic_lag30days 0.00007 0.00002 3.032136 0.0024 
Time (months) -0.00066 0.00012 -5.629881 <0.0001 
Income Deprivation 2.81133 0.30695 9.158998 <0.0001 
Average Age of Patients 0.03296 0.00316 10.439382 <0.0001 

 
L14PM_30TR Estimate Std.Error t value Pr(>|t|) 
(Intercept) -2.02196 0.15014 -13.46709 <0.0001 
PM10_lag14days 0.00109 0.00045 2.411585 0.0159 
Traffic_lag30days 0.00007 0.00002 3.138812 0.0017 
Time (months) -0.00067 0.00012 -5.660241 <0.0001 
Income Deprivation 2.80937 0.30721 9.144675 <0.0001 
Average Age of Patients 0.03297 0.00316 10.44511 <0.0001 

 
L30PM_30TR  -  L7PM_30TR  -  L0PM_30TR Estimate Std.Error t value Pr(>|t|) 
(Intercept) -1.99854 0.14987 -13.33504 <0.0001 
Traffic_lag30days 0.00007 0.00002 3.030806 0.0024 
Time (months) -0.00067 0.00012 -5.679115 <0.0001 
Income Deprivation 2.81650 0.30700 9.174114 <0.0001 
Average Age of Patients 0.03292 0.00316 10.42185 <0.0001 

 

TRAFFIC 0 DAYS LAG 
L21PM_0TR Estimate Std.Error t value Pr(>|t|) 
(Intercept) -2.02922 0.15001 -13.52753 <0.0001 
PM10_lag21days 0.00093 0.00047 1.975763 0.0482 
Traffic_lag0days 0.00009 0.00002 3.677388 0.0002 
Time (months) -0.00067 0.00012 -5.68998 <0.0001 
Income Deprivation 2.81647 0.30843 9.131577 <0.0001 
Average Age of Patients 0.03294 0.00316 10.43984 <0.0001 

 
L14PM_0TR Estimate Std.Error t value Pr(>|t|) 
(Intercept) -2.02735 0.14994 -13.52078 <0.0001 
PM10_lag14days 0.00090 0.00045 1.976244 0.0481 
Traffic_lag0days 0.00009 0.00002 3.623905 0.0003 
Time (months) -0.00067 0.00012 -5.700385 <0.0001 
Income Deprivation 2.81550 0.30830 9.13223 <0.0001 
Average Age of Patients 0.03294 0.00316 10.43937 <0.0001 

 
L30PM_0TR  &  L7PM_0TR  &  L0PM_0TR Estimate Std.Error t value Pr(>|t|) 
(Intercept) -2.01411 0.14991 -13.43565 <0.0001 
Traffic_lag0days 0.00009 0.00002 3.795247 0.0001 
Time (months) -0.00068 0.00012 -5.750147 <0.0001 
Income Deprivation 2.82119 0.30879 9.136207 <0.0001 
Average Age of Patients 0.03291 0.00316 10.42655 <0.0001 
Table 3-2. Results of p-values and coefficients’ values from models with GP practice 

grouping as random effect. 
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The results of the models with GP practice and PCT-GP practice random effects are 

presented in Table 3-3. Again models that produced identical results, due to 

identical statistically significant covariates are presented only once. 

 

TRAFFIC 30 DAYS LAG 
L21PM_30TR_pct Estimate Std.Error t value Pr(>|t|) 
(Intercept) -2.04707 0.16230 -12.61292 <0.0001 
PM10_lag21days 0.00102 0.00047 2.17111 0.0299 

Traffic_lag30days 0.00008 0.00002 3.26859 0.0011 
Time (months) -0.00067 0.00012 -5.71480 <0.0001 
Income Deprivation 2.95462 0.31390 9.41270 <0.0001 
Average Age of Patients 0.03290 0.00315 10.43121 <0.0001 

 
L14PM_30TR_pct Estimate Std.Error t value Pr(>|t|) 
(Intercept) -2.05158 0.16268 -12.61130 <0.0001 
PM10_lag14days 0.00110 0.00045 2.42894 0.0151 

Traffic_lag30days 0.00008 0.00002 3.37794 0.0007 
Time (months) -0.00068 0.00012 -5.74695 <0.0001 
Income Deprivation 2.95500 0.31411 9.40743 <0.0001 
Average Age of Patients 0.03291 0.00315 10.43707 <0.0001 

 
L30PM_30TR_pct & L7PM_30TR_pct & 
L0PM_30TR_pct 

Estimate Std.Error t value Pr(>|t|) 

(Intercept) -2.02768 0.16221 -12.50014 <0.0001 
Traffic_lag30days 0.00008 0.00002 3.26898 0.0011 
Time (months) -0.00068 0.00012 -5.76545 <0.0001 
Income Deprivation 2.96043 0.31396 9.42927 <0.0001 
Average Age of Patients 0.03286 0.00316 10.41354 <0.0001 

 
TRAFFIC 0 DAYS LAG 

L30PM_0TR_pct & L21PM_0TR_pct& 
L14PM_0TR_pct & L7PM_0TR_pct & 
L0PM_0TR_pct 

Estimate Std.Error t value Pr(>|t|) 

(Intercept) -2.04608 0.16450 -12.43783 <0.0001 
Traffic_lag0days 0.00010 0.00002 4.04616 0.0001 
Time (months) -0.00069 0.00012 -5.84281 <0.0001 
Income Deprivation 2.98172 0.31551 9.45056 <0.0001 
Average Age of Patients 0.03284 0.00315 10.41621 <0.0001 
Table 3-3. Results of log salbutamol prescribing rate from models with PCT and GP 

grouping as random effect. 

The small p-values associated with the output of the models (Table 3-2 & Table 

3-3) indicated that PM10 had a positive significant association with prescribing of 

salbutamol medication at primary care health level. PM10 levels on 14 and 21 days 

preceding the prescribing month were related significantly to respiratory 

prescribing. No influence of salbutamol prescribing rate was observed for PM10 

concentrations occurring in the same month (lag 0) as salbutamol prescribing, or 

one month (lag30) or 7 days (lag7) earlier than prescribing.  
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The results also indicated that GP practices with different traffic conditions in their 

service area (defined as the area where 98% of their patients are expected to live) 

had significantly different prescribing patterns. The traffic flow index based on data 

observed in the month of prescribing as well as a month earlier to prescribing were 

statistically significant. 

The small p-values also indicated that prescribing was negatively influenced by 

time, meaning that a decrease of salbutamol prescribing occurred during the study 

period. In addition, GP practices with different levels of income deprivation had 

significantly different prescribing. An increase in salbutamol prescribing was 

observed with increase in deprivation. Employment and educational deprivation had 

no significant relation to salbutamol prescribing.  

The average age of patients registered with each GP practice also appeared to be 

associated with different prescribing patterns by GPs. The older the population a GP 

served, the higher the rate of salbutamol prescribing appeared to be. The ratio of 

males to females that GP practices served had a negative relationship with 

salbutamol prescribing (more male patients - more salbutamol prescribing) but it 

was not statistically significant.  

The same covariates were identified as significant by the models that assigned GP 

practice or both PCT \ GP practice as random effects. The main difference was that 

only PM10 levels 21 days before prescribing (lag21), were significant for models with 

the PCT\GP grouping factor, while PM10 with both 21 and 14 days lag was 

significant in models with only GP grouping.  

I referred to the models without PM10, as reduced models because had fewer 

significant covariates (traffic, income, time, average age of patients) compared to 

those that included PM10 as a statistically significant covariate. In the next section, I 

compared the models presented in Table 3-2 and Table 3-3, in order to examine if 

they were statistically different from each other.  

3.4.1.4 Model Comparison – Parsimonious Model 

There is no absolute “correct” model. However, the best model is the simplest one 

out of those that most closely achieve the objectives of the study. Comparison of 

the statistical models I had developed was required, in order to identify the most 

parsimonious. Particulate matter appeared to be significant in some models but not 

in others. I compared only models that included particulate matter as an 

explanatory variable for estimating salbutamol prescribing, because that was the 

main measure of air pollution exposure in my analysis. 
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I carried out anova tests to compare mixed-effects models (Pinheiro and Bates, 

2000). I grouped my models into those that had one level of grouping (GP) and 

those that had two levels (PCT\GP). I firstly assessed whether the models that 

shared the same grouping factor were significantly different from each other. Then, 

I compared the best models from each category to assess whether the grouping by 

GP or PCT\GP made them statistically different. 

If the p-values on the anova output were high, the models were not statistically 

different. In such cases, it is suggested that the Akaike Information Criterion (AIC) 

(Akaike 1973, Skamoto et al, 1976) be used to identify the most parsimonious 

model (Pinheiro and Bates, 2000). The chosen model is the one for which the AIC=-

2lmax+2k reaches a minimum, where lmax is the log-likelihood maximum and k is the 

number of unknown parameters. The smaller the AIC, the better the model 

(Demidenko, 2004, Pinheiro J. et al., 2008). 

Table 3-4 presents the anova tests conducted for models that had been assigned 

random effects on GP level, while Table 3-5 shows the results of anova tests for 

models with PCT\GP random effects. The small p-values show that the first model 

should be rejected in favour of the others. I repeated the process after removing 

the rejected model until there were no further models to reject as significantly 

different. Table 3-4 shows that the most parsimonious model when grouping the 

data by GP was the one that included the following covariates: a) PM10 21 days 

before salbutamol prescribing, and b) traffic index based on traffic flows observed a 

month before prescribing. The same model emerged as the most parsimonious 

from the class of models that had two levels of random effects (PCT\GP), as shown 

in Table 3-5.  

The models with 21 days and 1 month latency period for PM10 and traffic index 

respectively proved more parsimonious under both types of groupings used: i) GP 

level (model L21PM_30TR) and ii) PCT\GP level (model L21PM_30TR_pct). I finally used 

the anova test again to assess if those two final models were significantly different. 

High p-values in anova output (Table 3-6) indicated that I could not reject the 

L21PM_30TR model in favour of the L21PM_30TR_pct, meaning there was no 

significant difference between them.  

A judgment on which was more parsimonious should be based on AIC criterion 

since the p-values were high. The AIC was slightly smaller for the latter model. 

However, the difference between those values was still marginal. In the next 

section (3.4.2), I examined those two models in detail and critically evaluated them 

in order to reach conclusions regarding the validity of their results (Table 3-2, Table 

3-3).  
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Models with 

GP grouping factor Df AIC BIC logLik 

Chisq 

Chi Df  Pr(>Chisq)  

L14PM_0TR 8 
-5374.1 -5324.8 2695.1 

     

L14PM_30TR 8 
-5370.9 -5321.6 2693.4 

0 0 < 2.20E-16 *** 

L21PM_0TR 8 
-5374.1 -5324.8 2695.1 3.2189 

0 < 2.20E-16 *** 

L21PM_30TR 8 -5369.9 -5320.5 2692.9 0 0 < 2.20E-16 *** 

 

L14PM_30TR 8 
-5370.9 -5321.6 2693.4 

     

L21PM_0TR 8 
-5374.1 -5324.8 2695.1 3.2189 

0 < 2.20E-16 *** 

L21PM_30TR 8 
-5369.9 -5320.5 2692.9 

0 0 < 2.20E-16 *** 

 

L21PM_0TR 8 
-5374.1 -5324.8 2695.1 

     

L21PM_30TR 8 
-5369.9 -5320.5 2692.9 

0 0 < 2.20E-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1      

Table 3-4. Comparison of models grouped per GP. 

 
 
Models with 

PCT\GP grouping factor Df AIC BIC logLik 

Chisq 

Chi Df  Pr(>Chisq)  

L14PM_30TR_pct 9 -5373,7 -5318,2 2695,8      

L21PM_30TR_pct 9 -5372,5 -5317 2695,2 0 0 < 2,20E-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1      

Table 3-5. Comparison of models grouped per PCT and GP. 

 

Models with GP vs 

PCT\GP grouping factor Df AIC BIC logLik 

Chisq 

Chi Df Pr(>Chisq) 

L21PM_30TR 8 
-5369.9 -5320.5 2692.9 

   

L21PM_30TR_pct 9 -5372.5 -5317 2695.2 0 1 1 

Table 3-6. Comparison of models grouped per GP versus model grouped per PCT & 

GP. 
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3.4.2 Model Criticism 

My analysis had produced two statistical models which I needed to examine 

critically, in order to be able to comment on the reliability of their results. Firstly, I 

inspected the structure of their random effects. I then examined the fixed effects 

by checking whether the residuals of the model met the four assumptions of linear 

regression: 1) normality, 2) linearity, 3) homoscedasticity and 4) independence. I 

examined both temporal and spatial independence. Model evaluation was a very 

important part of the statistical modelling process as it allowed assessment of the 

reliability of results produced by those models. 

3.4.2.1 Random Effects Structure 

The two final models included particulate matter with 21 days lag and the traffic 

index with 30 days lag. All fixed effects (covariates) were common to these two 

models but they had different random effects. The first model had GP level as a 

random effect (L21PM_30TR) while the second had two levels of random effect; 

PCT and GP (L21PM_30TR_pct). Based on anova results (Table 3-6) these two 

models were not statistically different and I could not reject the former in favour of 

the latter or vice versa.   

Model with PCT and GP random effects 

I then examined the structure of their random effects. I extracted the random 

effects for each grouping factor and summarised the random effects structure in 

graphical format. Figure 3-22 shows the value of random effects by PCT as well as 

the 95% prediction intervals associated with this value.  
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Figure 3-22 Plot of the random effects for Newcastle (NCL) and North Tyneside (NT) 

PCTs and their respective confidence intervals 

 

Each set of prediction intervals (Figure 3-22) had constant width because of the 

balance of the data used in this study. The prediction intervals for the PCTs’ random 

effects overlapped zero and each other, denoting that the effect of PCTs was not 

statistically significant. This meant that the effect of PCTs in salbutamol prescribing 

was likely to be zero. The fact that the intervals were wide also denoted great 

uncertainty in this prediction, showing that the model had not satisfactorily 

captured those effects. This was related to the very small number of PCTs used in 

this study.  

Based on examination of random effects of the “L21PM_30TR_pct” model (Figure 

3-22), I decided that the model failed to predict the random effects on PCT level 

reliably, and consequently, I could not accept this model’s output.  

 

Model with GP Random Effects 

The structure of random effects of the remaining final model (L21PM_30TR) was 

then examined further by plotting again the random effects in the form of 95% 

prediction intervals, arranged in increasing order of conditional mean.  

Figure 3-23 shows that the model satisfactorily captured the random effects of GP 

practices, with small prediction intervals associated with each one. Most of the 
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prediction intervals for the random effects did not overlap zero, meaning that the 

effect of GP practices was statistically significant. In other words, effect of GP 

practices was unlikely to be zero, or more accurately the effect found in this sample 

of 64 GP practices was not the sort of effect one would expect to see if there was 

no effect in the population from which this sample was drawn. 
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Figure 3-23. Plot of the random effects for 64 General practices and their respective confidence intervals.  
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For linear mixed models the conditional distribution of the random effects, given the 

data, written (B/Y=y), is a multivariate Gaussian distribution with zero mean. Since 

the random effects were assumed to follow a Gaussian distribution I created a QQ-

plot to assess the normality of random effects in the final “L21PM_30TR” model.  

 

 

 

 

 

 

 

 

 

 

Figure 3-24. Normality plot of random effects of final model. 

 

Figure 3-24 shows that the random effects satisfactorily approximated a straight 

line. An outlier was observed at the bottom of the graph that refers to the GP 

practice A86027, which is located within the campus of Newcastle University. This 

practice had the lowest prescribing rate of salbutamol and also a different 

demographic profile compared to other practices. A large number of its registered 

patients were young people and a significantly larger proportion of population of the 

registered patients were male. This was explained due to its proximity to the 

university, making it one of the two practices within Newcastle that have large 

numbers of students registered with them.  

The very low prescribing rate of salbutamol in this practice was not considered to 

be an outlier caused by error in data recording. According to the NHS Information 

Centre data, this practice scores lower than the regional and national average for 

all main chronic diseases, including asthma and COPD (NHS The Information Centre 

for Health and Social Care, 2008).  
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3.4.2.2 Fixed Effects Structure 

I checked the fixed effects as well, in order to ascertain whether the most 

parsimonious model “L21PM_30TR” I arrived at, provided a satisfactory fit to the 

data. I examined the model for normality, linearity, homoscedasticity and 

independence. 

Normality, Linearity, Homoscedasticity Assumption 

The best test for normally distributed errors is a normal probability plot of the 

residuals. 

 

Figure 3-25. Normal probability plot of the residuals of the final model. 

The normal probability plot of residuals was close to a straight line with slight 

curves at the edges. This indicated a longer tail for the lower and upper levels of 

salbutamol prescribing, suggesting the model was not adequate to capture variation 

at these levels. However because of the large number of observations (3,520 

records) this deviation from normality was considered to have mild impact on the 

fitted values.  

The standard plots for detecting linearity were plots of observed versus fitted 

values, or residuals versus fitted values. The latter plot was used to assess whether 

the homoscedasticity (constant variance) assumption was met, together with plots 

of residuals versus time. These three graphs are presented below. 

 

. 
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Figure 3-26. Plot of observed against fitted values of the final model. 

 

 
 

 

 

 

 

 

 

 

 

Figure 3-27. Residuals against time of the final model. 

 

 

 

 

 



Statistical Modelling 

136 
 

 

 

 

 

 

 

 

 

 

 

Figure 3-28 Residuals against fitted values of the final model. 

 

The observed and fitted values of salbutamol prescribing in Figure 3-26 were 

symmetrically distributed around a diagonal line. Exceptions formed a number of 

observations at the left bottom corner of the graph, indicating that the model made 

unusually small estimations. Figure 3-27 illustrates that residuals against time 

formed a horizontal line as they should. Figure 3-28 shows that residuals remained 

constant in relation to fitted values with the exception of a few residuals that 

increased in relation to very small fitted values. In order to further investigate the 

exceptions on those graphs I created the same plots by GP practice Figure 3-28, 

Figure 3-29 and Figure 3-30. Because of the big number of practices is difficult to 

look in detail the diagnostic per practice therefore the three graphs are also 

presented in detail in Appendix H. 

 



 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-29. Observed against fitted values of the final model by GP practice. 
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Figure 3-30. Residuals against time of the final model by GP practice. 

S
tatistical M

odelling 

138 



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-31. Residuals against fitted values of salbutamol prescribing by GP practice. 
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Figure 3-29, Figure 3-30 and Figure 3-31 demonstrate the symmetrical distribution 

of GP-specific residuals, with the exception of mainly two GP practices. One of them 

was practice A86027 which had the lowest prescribing rate and an unusual 

distribution of age and sex of patients registered within it, as discussed earlier. 

Unusual patterns also emerged from the residuals of practice A86029, for which an 

abrupt increase in salbutamol prescribing occurred approximately in the middle of 

the study period. Overall, the distribution of observed values versus fitted, as well 

as residuals versus time, and predicted values, were symmetrical for the vast 

majority of GP practices, thus implying that the assumptions of linearity and 

homoscedasticity were met. 

 

Interdependence in Time - Temporal Autocorrelation 

Interdependence (correlation) between observations was anticipated for the same 

GP practices, due to unknown influences, varying randomly over practices. For 

example, the prescribing patterns that individual General Practitioners may have, 

could cause the prescribing in a given month to correlate with prescribing in the 

next or previous month. When a variable correlates to itself the term 

autocorrelation is used to describe this interdependence. As a next step, I 

examined the temporal autocorrelation of the residuals.  

An important guide to correlation of temporal data was given by the autocorrelation 

function (acf) that measured the correlation between observations at different 

times (Chatfield, 2004). I estimated and plotted the set of autocorrelation 

coefficients, arranged as a function of separation in time that I defined to be 12 

monthly intervals or lags (Figure 3-32). By presenting the coefficients at increasing 

lags (e.g., l=1,2,…12) I could assess whether dependence was restricted to one or 

more lags.  

When the correlation coefficient at any given lag fell within the 95% confidence 

interval, there was no temporal autocorrelation on this lag. An approximation of the 

95% confidence limit was calculated with the equation: 

Nr /2095. ±≅                                                                                          3-13 

where N is the number of observations. This is based on the assumption that if a 

time series is completely random, and the sample size is large, the lagged-

correlation coefficient is approximately normally distributed with mean 0 and 

variance 1/N (Chatfield, 2004). For a sample of 55 months the confidence interval 
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is approximately 27.0± . The correlation coefficients for the mixed effects model 

were around 0.3 (Figure 3-32) at some lags, which was considered minor positive 

temporal autocorrelation. The persistent temporal autocorrelation indicated that 

some monthly variation was not accounted sufficiently over time. This could be 

possible related to the measurement of monthly air pollution exposure, however I 

consider that the reliability of the model output is sufficient as the observed 

temporal autocorrelation is minor.   

 

Figure 3-32 Interdependence of residuals in time (temporal autocorrelation) 

 

Interdependence in Space - Spatial Autocorrelation 
 
Spatial autocorrelation is a mode of spatial statistics that has been developed 

mainly over the past five decades. Models have to be checked as to whether the 

interdependence assumption of observations in space is satisfied. Not meeting this 

assumption again calls into question the reliability of a model’s output. I needed to 

examine whether the random effects were correlated spatially. I assessed the 

spatial interdependence of random effects, using geoR that is a package for 

geostatistical data analysis using the R software (Ribeiro JR. and Diggle, 2001). 

 
 
 

 

 



Statistical Modelling 

142 
 

If the random effects were not independent that would indicate that the model did 

not account sufficiently for some explanatory process or event that exhibits spatial 

correlation (e.g. air pollution, deprivation). Random effects can be a combination of 

factors that depend on facilities within the practice, as well as the training, 

experience and prescribing pattern of individual General Practitioners. Such random 

influences should not be spatially correlated.  

I used empirical variograms to assess the spatial interdependence of random 

effects. The empirical variogram (Figure 3-37) shows an increasing trend over distances 

up to 3000m, suggesting that there might be some positive spatial correlation over this 

range. I compared the variogram with the computed envelope of variograms. Figure 

3-34 indicates no spatial autocorrelation as the empirical variogram fall within the 

upper and lower simulation envelope.  

 

 

Figure 3-33 Empirical variogram for random effects 
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Figure 3-34 MonteCarlo envelop for the variogram of random effects 

3.4.3 Final Results 

So far I have screened covariates for significant p-values and have gradually 

developed a model (L21PM_30TR, section 3.4.1.3) that I believe to be both 

parsimonious and adequate. I needed to evaluate the p-values associated with 

various explanatory variables. The p-values of the final model were informative, but 

it was of equal importance to examine how exact they were. Therefore, I examined 

the confidence intervals associated with the coefficients of the model. The 

confidence intervals provided information of how precise the estimates of the model 

were and it can be argued that they are at least as important as p-values.  

In Table 3-7, I present the p-values, coefficients and their confidence intervals 

produced by the final model “L21PM_30TR”. The columns L_CL and U_CL, in Table 

3-7, show the 95% lower confidence limits and upper confidence limits respectively. 

The confidence intervals were not wide indicating a sufficiently precise estimate of 

the coefficients. 
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Model L21PM_30TR 

 Estimate Std.Error t value Pr(>|t|) L_CL U_CL 

(Intercept) -2.01821 0.15007 -13.447986 <0.0001 -2.31235 -1.72406 

PM10_lag21days 0.00102 0.00047 2.185799 0.0288 0.00011 0.00194 

Traffic_lag30days 0.00007 0.00002 3.032136 0.0024 0.00003 0.00012 

Time (months) -0.00066 0.00012 -5.629881 <0.0001 -0.00089 -0.00043 

Income Deprivation 2.81133 0.30695 9.158998 <0.0001 2.20972 3.41295 

Average Age of Patients 0.03296 0.00316 10.439382 <0.0001 0.02677 0.03915 

Table 3-7 Coefficients and confidence intervals for L21PM_30TR model 

 

I then examined the strength of association between salbutamol prescribing and 

covariates.  I assessed the impact of an increase on fixed effects (covariates) to 

salbutamol prescribing. I quantified the impact on salbutamol prescribing rate in 

the case of: 1) an increase of 10μg/m
3 in ambient PM10, 2) an increase of one 

standard deviation (s.d.) of the traffic index (513 on traffic index score), 3) one 

year elapsing 4) an increase of one standard deviation (s.d.) of income deprivation 

(equals 0.1 income deprivation score) and 5) an increase of 3 years in average age 

of patients registered per GP practice.  

The association of explanatory variables with salbutamol prescribing is presented in 

Table 3-8. I transformed the log salbutamol prescribing rate back to a normal scale, 

in order to be able to interpret the results meaningfully. 

Table 3-8 presents the percentage change in salbutamol prescribing with given 

increases in predictors’ units. An increase of 10 µg/m3 of PM10 was associated with 

a 1% (95% CI, 0.1 to 2.0%) increase in salbutamol prescribing. An increase of one 

standard deviation (513) in traffic index score was associated with an increase of 

3.8% (95% CI, 1.6 to 5.8%). One year in elapse of time was related to a 0.6% 

reduction (95% CI, 0.4% to 1.1%) indicating a marginal decrease in salbutamol 

prescribing over the study period. An increase of one standard deviation (0.1) in 

income deprivation was associated with a much larger increase in salbutamol 

prescribing rate of 32.5% (95% CI, 24.7 to 40.7%) to salbutamol prescribing rate. 

Finally, three years increase in the average age of patients registered with a GP 

practice was associated with a 10.4% (95% CI, 8.4 to 12.5%) increase in 

salbutamol prescribing rate. 
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Model L21PM_30TR 

 Covariates’ increase 
Change on salbutamol 

prescribing rate 
Lower CL Upper CL 

PM10 (lag 21 days) 10μg/m
3 1.0% 0.1% 2.0% 

Traffic (lag 1 month) 1 s.d. (513) 3.8% 1.6% 5.8% 

Time (months) 12 months -0.6% -1.1% -0.4% 

Income deprivation 1 s.d. (0.1) 32.5% 24.7% 40.7% 

Age 3 years 10.4% 8.4% 12.5% 

Table 3-8  Association of explanatory variables to salbutamol prescribing rate 

 

3.4.3.1 Parameter Evaluation using Markov Chain Monte Carlo simulations 

As a last step, I evaluated the parameters and p-values of the final statistical model 

(L21PM_30TR) using Markov chain Monte Carlo (MCMC) simulations. I evaluated p-

values for fixed effects from the MCMC sample using a function within the 

“languageR” extension in R software. This function for estimating the p-values 

based on MCMC sampling was not stable at the time I conducted the analysis (July 

2009). This analysis was to great extent motivated by my interest to test the most 

recent algorithms and techniques in the highly active field of mixed effects models, 

in an attempt to evaluate the results of my final model. Therefore, I did not intend 

to accept the results as absolutely correct, but rather to examine whether its output 

would be close to that of my final model, as would be expected in theory. 

 

Method 

I generated MCMC sampling from the posterior distribution of my final model’s 

parameters. I plotted the densities of the sample in Figure 3-35, which shows that 

the posterior density of the fixed-effect parameters was reasonably symmetric and 

close to a normal distribution. 

I fitted the final model using a Markov chain Monte Carlo (MCMC) technique and 

compared the p-values of the new model to my final model. I denoted the new 

model, created by MCMC analysis, as “L21PM_30TR_mcmc”. The fixed effects, as 
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well as respective prediction intervals were also estimated, based on repeated-

sampling properties.  

The MCMC model (L21PM_30TR_mcmc) would be expected to produce similar p-

values to the final model (L21PM_30TR), where the sample is not small (Baayen et 

al., 2008). The sample in this study (55 observations from 64 practices) could not 

be considered small; therefore I expected the MCMC technique to confirm the p-

values of my final model.  

 

 

 

 

 

 

 

 

 

Figure 3-35 Empirical density estimates for the MCMC sample for the posterior 

distribution of parameters in the final model 

Results 

The results of L21PM_30TR_mcmc are presented in Table 3-9. The last column 

(Pr(>|t|)) of the table shows the p-values of the final model “L21PM_30TR” (Table 

3-7). Comparing the p-values based on the posterior distribution (pMCMC) and on 

the t-distribution (Pr(>|t|)), a  difference appeared in the p-value associated with 

the covariate “Traffic_lag30days”. The high p-value of 0.294, estimated by the new 

model, meant that the traffic flow index had no statistically significant relationship 

to salbutamol prescribing. The p-values related to the other explanatory variables 

remained significant. 

 



 

 

 

Model L21PM_30TR_mcmc 

 Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|) 

(Intercept) -2.0182 -2.2035 -2.4446 -1.96 0.0001 <0.0001 

PM10_lag21days -0.0007 -0.0007 -0.0009 -0.0004 0.0001 0.0289 

Traffic_lag30days 0.001 0.001 0.0001 0.002 0.0324 0.0024 

Time (months) 0.0001 0 0 0.0001 0.2774 <0.0001 

Income deprivation 2.8113 2.8703 2.6102 3.1309 0.0001 <0.0001 

Average age of patients 0.033 0.0386 0.0328 0.0441 0.0001 <0.0001 

 
Table 3-9 Results of L21PM_30TR model based on Markov chain Monte Carlo analysis
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I then examined whether the magnitudes of the coefficients had changed. The 

columns L_CI and U_CI, in Table 3-7, show the 95% lower confidence limits and 

upper confidence limits, respectively. The confidence intervals were not wide and 

showed a sufficiently precise estimate of the coefficients. The same held for the 

equivalent MCMC intervals observed in Table 3-9, where the columns “HPD95lower” 

and “HPD95upper” show the lower and upper 95% Highest Posterior Density (HPD) 

intervals respectively, for the parameters in the MCMC sample. A 95% prediction 

interval is an estimate of an interval in which future observations will fall, with a 

95% probability, given what has already been observed. 

In order to investigate the mcmc model further, I plotted the MCMC estimates of 

covariates in association with salbutamol prescribing rate (Figure 3-36). In Figure 

3-36, the dotted lines depict the 95% prediction intervals associated with 

salbutamol prescribing. The estimates related to large values of traffic flow index 

(diagram “Traf_30lag” in Figure 3-36), fell outside the 95% prediction interval, 

making this relationship not statistically significant according the MCMC analysis as 

discussed earlier. However, I observed that the prediction interval was wider 

towards the large values of traffic index, showing increased uncertainty in this 

prediction. Overall, I accepted the result of the final model (L21PM_30TR). This was 

because the function for estimating the p-values based on MCMC sampling was not 

stable at the time I conducted the analysis. At the same time, I would re-visit the 

calculation of that index, taking into account the issues I discussed in Section 

2.2.2.4.  
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Figure 3-36  MCMC estimates of predictors in association to log average salbutamol prescribing  

                      Income                                                             Age 

                          PM10                                                             Traffic                                                          Months 
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3.4.3.2 Goodness-of-fit  

I created a graph (Figure 3-37) of the predicted values of log salbutamol 

prescribing based on the final model (L21PM_30TR) against the observed values by 

GP practice. Figure 3-37, Figure 3-38, Figure 3-39 and Figure 3-40 illustrate the 

goodness-of-fit of the final model. The predicted value captured the GP practice 

specific prescribing (intercept), while the within GP practice variation was not 

captured in an equally successful manner in some practices. The highest 

discrepancy occurred in practices with high within group variability, showing that 

the model was not adequate to capture the variation of salbutamol prescribing on 

the edges.  

The coefficient of determination (R-squared) shows the proportion of variability in a 

data set, which is accounted for by the statistical model and provides a measure of 

how well future outcomes are likely to be predicted by models. R-squared is 

appropriate for models that use the Ordinary Least Squares (OLS) approach to 

calculate the minimum variance. The estimates of a mixed-effects model are 

maximum likelihood estimates though, so the OLS approach as a measure of 

goodness-of-fit is not appropriate. To evaluate the goodness-of-fit of mixed-effects 

model, other approaches have been developed. These are called pseudo R-squares, 

the usefulness of which is debatable (Orelien and Edwards, 2008). I used a pseudo 

R-square which is meant to be appropriate for mixed-effects model with random 

intercepts. I extracted the total variance explained by a mixed-effects models and 

the total variance explained by the same mixed-effects model when fitted only with 

the random effects. More details on this estimation are presented in  Appendix I. 

The pseudo R-squared value for the final statistical model (L21PM_30TR) was 

48.3%.  

In the absence of a widely accepted statistic such as R2 of traditional linear 

regression for the linear mixed model, I used correlation as a last step to gain a 

quantitative estimate of how well the model fitted the data. The correlation 

coefficient was 0.96 between the observed and the fitted values. 

Overall, the final model captured the GP practice specific prescribing satisfactorily. 

The within GP practice variability was captured satisfactorily for the vast majority of 

GP practices but not for the few that exhibited very high prescribing variability. The 

model performed reasonably well but robust external validation of its outcome will 

be required if there is any interest to predict salbutamol prescribing in the future. 

 



 

 

  

 
Figure 3-37  Final model: Predicted values (pink line) of log salbutamol prescribing against the observed (blue line) per GP practice 

S
tatistical M

odelling 

151 



 

 

 

Figure 3-38 Final model: Predicted values (pink line) of log salbutamol prescribing against the observed (blue line) per GP practice 
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Figure 3-39 Final model: Predicted values (pink line) of log salbutamol prescribing against the observed (blue line) per GP practice 
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Figure 3-40 Final model: Predicted values (pink line) of log salbutamol prescribing against the observed (blue line) per GP practice 
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Chapter 4. Discussion  

This study demonstrated an association between patients’ exposure to ambient air 

pollution and the risk of increased quick-relief medication usage by asthma and 

COPD patients at primary care level. These findings, added to current 

understanding of the link between air quality, asthma & COPD exacerbation and 

prescribing, can ultimately increase the scope of primary care management. The 

study demonstrated that respiratory prescribing can be a useful indicator of 

respiratory health outcomes with great scope for use in epidemiological surveillance 

of air pollution health effects. The study found that an increase of 10µg/m3 in 

monthly ambient PM10 concentrations was associated with increases of 1% in 

salbutamol prescribing. This is the first study in the UK to quantify the relationship 

of respiratory prescribing and its predictors, in primary health care. 

 

4.1 Ecological Study  

This study had an ecological design. An ecological study is defined as “a study in 

which the units of analyses are populations or groups of people, rather than 

individuals” (Last, 1995). Often, the primary reason for an ecological design is not a 

specific interest in effects of contextual, ecological variables but rather the lack of 

individual data. This study had as its central interest the effects of contextual, 

ecological variables that occur at primary care level. In the UK, a consistent priority 

for NHS reform is the shift from provision of hospital-based acute care to proactive 

care delivered in primary care (Department of Health, 2005, Department of Health, 

2006, Department of Health, 2010). Appropriate tools and studies, on this level of 

care, are required to provide information to help make decisions to support 

effective and efficient management. Ecological studies are useful tools for 
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surveillance of disease as well as risk prediction. Surveillance analyses are often 

ecological, since they describe trends in groups of individuals (Teutsch and 

Churchill, 2000). 

The concept of ecological studies is covered by all major epidemiological textbooks, 

explaining at the same time the major concern linked to these studies, called 

ecological fallacy. The ecological fallacy (bias) stems from making inferences on 

individual risks based on group-level associations. In the context of environmental 

or air pollution epidemiology, making inference of exposure-outcome associations 

on individuals rather on the group level, would create an ecological fallacy. Brenner 

et al. (1992)  as well as Richardson et al. (1987) made the point that inference at 

the level of the individual, based on ecological studies, can only be judged as 

posterior,  meaning after the establishment of the individual-level cause-effect 

association. Their work compared relative risks for lung, bladder and oesophageal 

cancer derived from ecological and individual studies, with smoking as the risk 

factor. Their study demonstrated that ecological estimates of smoking-related lung 

cancer risk are similar to those derived from individual (cohort) studies, but the 

same did not hold for the cases of bladder and oesophageal cancer (Richardson et 

al., 1987).  

This ecological study aimed to capture the association of respiratory prescribing and 

air pollution in primary care. The study described correctly the direction of the 

relationship of air quality and asthma/COPD exacerbations that has been previously 

documented by individual level studies on asthma and COPD. The study’s results 

confirmed that respiratory prescribing can be a useful indicator of respiratory health 

outcomes with great scope for use in epidemiological surveillance of air pollution 

health effects. 

 

4.2 Latency Periods  

A delayed response of respiratory prescribing to ambient pollution was investigated 

and evidence was found on the statistical models with different PM10 lag times. 

Long-term exposure to air pollution makes patients more susceptible to 

asthma/COPD triggers leading to exacerbation of symptoms, which in turn causes 

an increase in medication use. The increase in respiratory medication use 

eventually leads to the issue of a new prescription. Because the urgency by which a 

prescription would be issued would vary by individuals, and with their initial stock of 

medication, short-term effects are more difficult to observe, using prescribing data.  
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I used long periods (months) of prescribing, and long air pollution latency periods 

(weeks). As the prescribed data were averaged monthly, examining their 

relationship to daily latency periods would not be appropriate. During those longer 

periods of time, increased air pollution would be expected to be related to increased 

prescriptions, over and above the short term fluctuations driven by individuals’ 

needs for medication replacement or opening hours of practices and pharmacies. 

The studies discussed in the literature review section (Section 1.3.2.2), used daily 

respiratory medication data looking at short term associations, the only exception 

being the study by Vegni et al. (2005) that used weekly data. Additional issues 

were revealed in studies examined the short-term associations, such as days that 

practices or pharmacies were closed (e.g. weekend, bank holidays), which added to 

the complexity of their statistical models. Vegni et al. (2005) used 7-days average 

of respiratory medication, in order to avoid over-complication of his statistical 

model. 

The PM10 concentrations recorded 21 and 14 days before the prescribing month 

were positively associated with the salbutamol prescribing rate. This meant that 

there was a time window between 14 and 21 days for this relationship. The final 

statistical model assessed this relationship, after I had firstly accounted for the 

prescribing variation attributable to seasonal factors, captured by temperature at 

various latency periods. This initial analysis, described as Stage A of the statistical 

model (section 3.3), showed a significant association of salbutamol prescribing and 

temperature on 7-, 14- and 21-days lag. The results indicated a time window 

between 7 and 21 days. Therefore, even though the relationship between PM10 and 

prescribing appeared to be significant at approximately 14-21 days, the time 

window increased to 7-21 days when taking into account all explanatory variables 

of monthly salbutamol prescribing. 

Previous similar studies have focused on latency periods that did not exceed 14 

days. The study by Zeghnoun et al. (1999) examined the longest latency periods 

(14 days) compared to other studies. Their study did not use PM10 but BS, for which 

associations were found for 1-day lag as well as for 8-days lag. The most recent 

study by Laurent et al. (2009) was the most comparable to mine, as they assessed 

the relationship between short-acting β2-agonists and PM10, among other 

pollutants. Their study observed statistically significant associations involving 

latency periods of 4-10 days.  

The latency period for respiratory prescribing in relation to trigger factors is 

complex process, being partly related to management of medicine supplies and 

partly to pathophysiological response. Based on the exploration of prescribing data,  
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the time windows observed were plausible, in terms of medication consumption. I 

examined further studies that reported latency periods on air pollution and 

prescribing, aiming to find evidence as to whether the longer latency periods I 

found as significant could be biologically plausible. To assess the pathophysiological 

responses I looked at studies based on individuals that assessed whether the 

impact of air pollution can induce respiratory disorders expressed by use of short-

acting β2-agonist consumption. I found that air pollution can induce respiratory 

disorders within a few hours (Rabinovitch et al., 2006), to a few days (Schildcrout, 

Sheppard et al. 2006) and a few weeks (von Klot et al., 2002).  

A latency of several hours was observed in the study by Rabinovitch et al. (2006), 

but their subjects had severe asthma and therefore the findings are not relevant for 

the majority of asthmatics and are of limited relevance to my study which included 

asthmatics at all levels of severity. The few weeks latency period was reported by 

von Klot’s et al. (2002) using 5-, 10- and 14-day running averages for the 

relationship between ultrafine particles and short-acting β2-agonist consumption. A 

key difference between von Klot’s et al. (2002) study and most previous 

investigations was that their study examined effects of air pollution with lags of up 

to 14 days, rather than just a few days. Von Klot et al. (2002) concluded that the 

full range of air pollution effects would not have been presented if their study had 

used exposure on the same or the previous few days only. This could be explained 

by a provocation of an inflammatory reaction in association with exposure to 

accumulated ultrafine particle concentration. This was in line with Neukirch et al. 

(1998) who had found effects of air pollution on symptoms that continued for 

several days after the exposure, and who had suggested that the inflammatory 

process in the airways was the reason for this. 

One of the findings of my ecological study is that longer latency periods (over 14 

days), in addition to the most frequently used (1 - 14 days) should be examined. 

The results of this ecological study are in line with those studies that have used 

individual data. My overall conclusion is that the model successfully captured the 

presence of delayed responses between salbutamol prescribing and asthma/COPD 

exacerbations trigger factors.  

  

4.3 Random Effects  

I analyzed data at the Primary Care level for Newcastle and North Tyneside. The 

differences between practices were modelled jointly by means of random effects 

and the effect of GP practices was found to be statistically significant. In other 
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words, the effect of GP practices was unlikely to be zero, or more accurately the 

effect found in this sample of 64 GP practices was not the sort of effect one would 

expect to see if there was no effect in the population from which this sample was 

drawn. An important aspect of mixed-effects models is that the question of interest 

is for the whole population and not only for the population being sampled (Pinheiro 

and Bates, 2000). Consequently, inferences can be made for the population of 

practices that the practices I used came from rather only for those specific 

practices. When analysing health data requiring ethical and confidentiality 

considerations, using as little patients’ data as possible to make inferences with 

same level of accuracy is desirable. 

A characteristic of mixed effects models is that they have two sources of variation, 

both within and between groups. The final model predicted the prescribing 

variability between GP practices (random effects) satisfactorily, while the within GP 

practice variability (fixed effects) was predicted satisfactorily for the majority of GP 

practices but not for all. I would expect that a variable that I have missed including 

in my model would improve the prediction value of the model on some practices 

with high within practice variability (e.g. A86027, A87615), as presented in Figure 

3-37. The fact that the variance between GP practices was better captured than the 

within group variance, illustrated the importance of random effects in this analysis. 

The findings showed that the variation of salbutamol prescribing was subject not 

only to health needs caused by deprivation and air quality, but also practice specific 

random effects. Random effects can be a combination of factors that depend on 

facilities within the practice, as well as the training, experience and prescribing 

pattern of individual General Practitioners. None of these are captured by any 

accessible data source.  
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Chapter 5. Concluding Chapter 

5.1 Overall Discussion and Conclusions 

Asthma and COPD are the two most common respiratory diseases (World Health 

Organization, 2009a). Asthma had been classed as epidemic during the 1970s and 

1980s world-wide, with Western countries having some of the highest prevalence 

rates (World Health Organization, 2000). Over the past 10-15 years the findings on 

time trends of asthma have been conflicting. Even though some ISAAC centres in 

Western countries have reported either no increase or even a decrease, an increase 

of asthma prevalence has been reported in Spanish and Portuguese speaking 

centres (Asher et al., 2006).  The ISAAC study also found an increase in the 

prevalence of reported symptoms in children in younger age groups, in Western 

countries with high prevalence (Asher et al., 2006). A few studies in England and 

Switzerland have reported that asthma prevalence has reduced, probably because 

allergic asthma has declined (Anderson et al., 2004, Bollag et al., 2009, Braun-

Fahrlander et al., 2004). It appears that prevalence of asthma is still rising in 

low and middle income countries, therefore on a worldwide scale asthma 

prevalence is still increasing (World Health Organization, 2009a).  At the 

same time, it is commonly accepted that COPD prevalence is increasing 

and it is predicted to be the third leading cause of death in coming decades 

(World Health Statistics, 2008). 

It is estimated that 90% of deaths from asthma are preventable and 75% of 

hospital admissions for asthma are avoidable (Asthma UK, 2010). No similar data 

are available for COPD.  In the UK, a consistent priority for NHS reform is the shift 

from provision of hospital-based acute care to proactive care delivered in primary 

care (Department of Health, 2006, Department of Health, 2005, Department of 

Health, 2010). This ecological study focused on data from a primary health care 
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setting, linking different datasets and developing a model that would be able to 

address the main methodological issues related to a statistical model at primary 

care level. The approach to summarising GP catchment areas allowed me to reduce 

the degree of overlap that proved almost prohibitive for spatial analysis. In 

addition,  the formation of GP service areas that did not conform to administrative 

boundaries increased the scope to link GP level data to determinants of ill health  

that are not provided within administrative boundaries, such as air pollution. 

Finally, I demonstrated that mixed-effects models can address, to a great extent, 

the temporal autocorrelation issues associated with data grouped by GP practice. 

The study’s model of the primary care setting contributes to the 

development of evidence based research in primary health care as well as 

strengthening of health information systems. 

The majority of primary care consultations in the UK are for patients with 

respiratory disease (Pinnock and Sheikh, 2009, British Thoracic Society, 2006). I 

am arguing that this emphasises the importance of exploiting respiratory data at 

this level and the need for evidence at this level. Most epidemiological studies use 

data from secondary and tertiary care such as hospitals and emergency care 

(Walters et al., 1994, Schwartz, 1994, Atkinson et al., 2001a, Tolbert et al., 2000, 

Arbex M A  et al., 2009, Sunyer et al., 1993, Sunyer et al., 1997, Medina-Ramon et 

al., 2006), even though the vast majority of patients are fully treated in primary 

care. Medication prescribing data in primary care has been suggested for 

monitoring and surveillance of chronic diseases (World Health Organization, 

2008a). I used prescribing for respiratory disease as an indicator of asthma and 

COPD exacerbations.  This outcome has the advantage that it can capture patients 

with any level of severity of the disease from mild to severe. In contrast, traditional 

indicators such as hospital admissions and emergency care tend to capture events 

in patients who suffer severe symptoms, representing only a minority of the 

population of asthma and COPD patients. A few studies in France, Italy and USA 

have reported respiratory prescribing as a useful indicator of respiratory mortality 

as well air pollution health effects (Laurent et al., 2009, Naureckas et al., 2005, 

Pitard et al., 2004, Vegni et al., 2005, Zeghnoun et al., 1999). This study was the 

first in the UK to use respiratory prescribing as a marker of health outcome 

for asthma and COPD, and demonstrates that salbutamol prescribing can 

be useful for epidemiological studies and surveillance of air pollution 

health effects, in a primary care setting.  

The relationship between prescribing rate of salbutamol and air pollution was 

quantified and latency effects on this relationship were assessed. I found that an 

increase of 10μg/m
3 in ambient PM10 was associated with a 1% increase (95% C.I. 
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0.1% to 2%) in salbutamol prescribing rate. The association of PM10 levels 14 and 

21 days before the prescribing month were both found to be statistically significant, 

but the stronger association was found for the 21 days latency period. This was the 

first ecological study to assess the relationship between a short-acting β2-agonist 

medication and air pollution with such long latency periods. A similar study of 

individuals had examined effects of air pollution on consumption of asthma 

medication using lags up to 14 days (von Klot et al., 2002) and suggested that long 

latency periods should also be examined. The latency periods for respiratory 

prescribing and air pollution are complex, being partly explained by the 

management of medicine supplies and partly by provocation of an inflammatory 

reaction in association with exposure to air pollution (Neukirch et al., 1998).  An 

increase of 10 µg/m3 of PM10 was associated with a 1% (95% CI, 0.1 to 

2.0%) increase in salbutamol prescribing. The effect size of exacerbation 

of respiratory symptoms triggered by daily variation of air pollution has 

been found to be between 1% (Atkinson et al., 2001; Donaldson, K.  

Medina-Ramon, M., et al., 2006; Pope C.A. et al., 1995) and 7% (Laurent et 

al., 2009) per 10µg/m3. One of the findings of this ecological study was 

that longer latency periods over 14 days should also be examined. Fitting 

the same model to new datasets would be required in order to confirm the 

results of this ecological study. 

The modelling process was separated into two stages. The first stage captured the 

area-wide seasonal variation in prescribing. Its results were then used as an offset 

input to the second stage of the model. The second stage comprised a mixed-

effects model, which assessed the remaining unexplained spatio-temporal variation 

of salbutamol prescribing in relation to air quality, deprivation and demographic 

variables. In the first stage, I modelled the seasonal variation of salbutamol 

prescribing using just temperature data. This was possible by employing a dynamic 

harmonic regression model. Previous studies on respiratory prescribing have used 

seasonal data such as pollen counts and respiratory infections as well as weather 

data to account for seasonal variation (Zeghnoun et al., 1999, Vegni et al., 2005, 

Pitard et al., 2004, Laurent et al., 2009). To my knowledge this is the first study of 

asthma or COPD epidemiology that has used such methods to account for seasonal 

variation. In the absence of pollen or respiratory infections data this 

method is a pragmatic way to capture seasonal variation. Even in cases 

where pollen and respiratory infections data exist, the use of temperature 

data with a dynamic harmonic regression model is an efficient way to 

model seasonal variation of prescribing or other health outcomes that 

follow a seasonal pattern. In addition, the two stage modelling strategy 

can be useful for studies that aim to disentangle the effect of seasonal 
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trigger factors from the effect of air pollution or other explanatory 

variables. 

 

 

5.2 Limitations and Strengths 

5.2.1 Exposure Misclassification 

One of the main limitations of this study was the unavailability of a dense air 

pollution monitoring network. I therefore had to assume spatially homogenous 

exposure to ambient PM10 concentrations. The lack of any variation on ambient air 

quality within the study area was partially addressed by the construction of a traffic 

flow index by GP practice.  

Exposure misclassification also arose from a lack of indoor air quality data. 

Exposure to indoor air pollution is associated with life style, such as smoking, 

housing conditions and occupation. Such data is difficult to include in an ecological 

study. However, such factors are correlated with income deprivation; therefore I 

consider that indoor air quality has been accounted for to some extent by the 

inclusion of the income deprivation index.  

5.2.2 Respiratory Prescribing as Indicator of Health Outcome 

In this study I used respiratory prescribing data as the health indicator of the 

outcome. This has been used by very few epidemiological studies as a proxy 

measure of respiratory health outcomes. Based on the results of studies from other 

countries, this indicator has appeared to be a useful proxy of respiratory morbidity 

when compared to traditional indicators such as hospital admissions and emergency 

room visits. Its main advantage is that it captures patients with any severity, while 

traditional indicators mainly capture patients who suffer from relatively severe 

symptoms. In the case of asthmatic patients, only 20% suffer from severe 

symptoms. In the case of COPD it is also estimated that the patients who suffer 

from severe symptoms are not the majority.  

Population based prescribing data are not available in every country, their 

availability depends on the organisation of the health system. For example, in the 

United Kingdom and France it is possible to know the population that the 
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prescribing refers to, while in other countries such as Germany this is not known, 

making it impossible to use this as a health indicator of a population.  

It was not possible to disentagle the prescribing data for asthmatic and COPD 

patients, due to limitations of the Prescribing Unit database. The RDTC had 

mentioned that the database would be developed further, so in the future it would 

be possible to access prescribing data by diagnosis.   

5.2.3 Model in Primary Health Care 

The majority of primary care consultations in the UK are for patients with 

respiratory disease (Pinnock and Sheikh, 2009, British Thoracic Society, 2006). This 

emphasizes the important role of primary care in managing respiratory diseases. 

The World Health Assembly set out an action plan in 2008, to prevent and control 

chronic non-communicable diseases, including asthma and COPD (World Health 

Organization, 2008a). Part of the action plan was to strengthen the management of 

the diseases at primary care level. They also suggest that accessibility to 

medication in primary care can be used as an indicator to monitor progress (World 

Health Organization, 2008a). This ecological study focused on data in primary care, 

linking them to environmental and lifestyle datasets and developing a model that 

would be able to address some of the methodological issues related to a statistical 

model in primary care. The approach to summarise the GP catchment areas allowed 

a reduction in the degree of overlap between practice areas. In addition, I 

demonstrated that the mixed effects model was an appropriate choice of statistical 

model that could address the autocorrelation issues linked to data grouped by GP 

practice.  

5.2.4 Methodological Application 

I used data that was collected routinely by different government bodies. This 

study’s methodology demonstrated that such existing data can be subject to new 

tools and techniques, allowing extraction of new information and evidence from 

them. Current policies such as INSPIRE, support the spatial analysis of existing data 

(Commission of the European Communities, 2004). This has been followed by a 

pan-government initiative to improve the sharing and re-use of public sector 

location information and the implementation of INSPIRE, called UK Location 

(DEFRA, 2010). 
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To my knowledge this is the first study in asthma and COPD epidemiology to 

employ a harmonic regression model to account for the seasonal variation of the 

health outcome indicator. The output of the harmonic regression was used as input 

to a mixed effects model. The application of mixed effects models has increased in 

public health and epidemiology over the last decade. This study contributed to this 

field by expanding their applicability, through using a mixed model with offset. 

Implementing a mixed effects model with offset was one of the most recent 

developments in R statistical software. I initially faced problems executing the 

mixed models with offset (library lme4 in R software). I achieved fitting the 

statistical models after communicating with the developer of the algorithm for 

mixed effects models in lme4 and an updated version was released on the R 

website. 
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Chapter 6. Appendices 

6.1 Appendix A 

 Asthma Insights and Reality in Europe  

The AIRE findings are based upon nearly 75,000 households selected by random 

digit dialling in seven Western European countries (UK, France, Germany, 

Netherlands, Sweden, Italy and Spain) forming the largest survey in Europe to 

assess control of asthma. The estimated asthma prevalence from the AIRE study 

showed the UK to have the highest asthma prevalence rate and it was at least two 

fold greater than that in any other European country (Vermeire et al., 2002). The 

sample of the AIRE study has been found to be representative of the asthmatic 

population in the countries surveyed, after comparing AIRE’s estimated asthma 

prevalence with prevalence rates found by the International Study of Asthma and 

Allergy in Childhood (ISAAC) and European Community Respiratory Health Survey 

(ECHRS) (Vermeire et al., 2002). More details on the results of the ISAAC and 

ECHRS are presented in section 1.1.1.1  and 1.1.1.2 respectively. 
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6.2 Appendix B  

Prescription of Salbutamol Prescribing 
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6.3 Appendix C 

GP Practices in the Study Area 

ID 

GP practice 

code GP practice name 

Primary Care 

Trust Easting Northing 

1 A86003 SAVILLE MEDICAL GROUP NEWCASTLE 425050 564650 

2 A86004 PROSPECT MEDICAL CENTRE NEWCASTLE 422750 564450 

3 A86006 ROSEWORTH SURGERY NEWCASTLE 424450 567450 

4 A86007 AVENUE MEDICAL PRACTICE NEWCASTLE 425450 566050 

5 A86008 PARK MEDICAL GROUP NEWCASTLE 422750 568850 

6 A86009 FALCON HOUSE NEWCASTLE 426950 564950 

7 A86010 BIDDLESTONE HEALTH GROUP NEWCASTLE 427150 566150 

8 A86011 WALKER MEDICAL GROUP NEWCASTLE 429250 564350 

9 A86012 WEST ROAD MEDICAL CENTRE NEWCASTLE 422050 564650 

10 A86013 DENTON PARK MEDICAL GROUP NEWCASTLE 419350 566550 

11 A86015 HOLLY MEDICAL GROUP NEWCASTLE 425350 566150 

12 A86017 CRUDDAS PARK SURGERY NEWCASTLE 423750 563750 

13 A86018 THE GROVE MEDICAL GROUP NEWCASTLE 424450 567550 

14 A86020 THE SURGERY-OSBORNE ROAD NEWCASTLE 425050 566950 

15 A86021 HOLMSIDE MEDICAL GROUP NEWCASTLE 421850 563850 

16 A86022 PARKWAY MEDICAL CENTRE NEWCASTLE 418150 566850 

17 A86023 37A MEDICAL CENTRE NEWCASTLE 426950 565050 

18 A86024 42 HEATON ROAD NEWCASTLE 426950 565050 

19 A86025 WESTERHOPE MEDICAL GROUP NEWCASTLE 420150 567050 

20 A86026 

THROCKLEY PRIMARY CARE 

CENTRE NEWCASTLE 415550 566550 

21 A86027 NEWCASTLE MEDICAL CENTRE NEWCASTLE 424650 565150 

22 A86028 ELMFIELD HEALTH GROUP NEWCASTLE 424250 567550 

23 A86029 THORNFIELD MEDICAL GROUP NEWCASTLE 427050 564950 

24 A86030 

BETTS AVENUE MEDICAL 

GROUP NEWCASTLE 420850 564350 

25 A86031 FENHAM HALL SURGERY NEWCASTLE 421850 565550 

26 A86032 ETHEL STREET SURGERY NEWCASTLE 421950 563950 

27 A86033 BRUNTON PARK NEWCASTLE 424150 570450 

28 A86034 

ARMSTRONG ROAD HEALTH 

CENTRE NEWCASTLE 420650 564050 

29 A86036 

GOSFORTH MEMORIAL 

MED.CTR NEWCASTLE 424450 568150 

30 A86037 ADELAIDE MEDICAL CENTRE NEWCASTLE 422150 564050 

31 A86038 NEWBURN SURGERY NEWCASTLE 416550 565750 

32 A86040 ST.ANTHONY'S HEALTH CENTRE NEWCASTLE 428550 563550 

33 A86601 

DENTON TURRET MEDICAL 

CENTRE NEWCASTLE 420150 565550 

34 A86607 ELSWICK HEALTH CENTRE NEWCASTLE 423150 563950 
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35 A86618 

WELBECK ROAD MEDICAL 

CENTRE NEWCASTLE 428550 564550 

36 A86005 WEST FARM SURGERY 

NORTH 

TYNESIDE 426650 568650 

37 A86016 LANE END SURGERY 

NORTH 

TYNESIDE 427150 568350 

38 A86041 SWARLAND AVENUE SURGERY 

NORTH 

TYNESIDE 427050 568050 

39 A87002 

SPRING TERRACE HEALTH 

CENTRE 

NORTH 

TYNESIDE 435250 568650 

40 A87003 PORTUGAL PLACE HEALTH CTR 

NORTH 

TYNESIDE 429650 566250 

41 A87004 COLLINGWOOD SURGERY 

NORTH 

TYNESIDE 434850 568650 

42 A87005 WHITLEY BAY HEALTH CENTRE 

NORTH 

TYNESIDE 435850 572050 

43 A87006 49 MARINE AVENUE 

NORTH 

TYNESIDE 435150 572550 

44 A87007 FOREST HALL HEALTH CENTRE 

NORTH 

TYNESIDE 427750 569650 

45 A87008 MARINE AVENUE MEDICAL CTR 

NORTH 

TYNESIDE 434850 572350 

46 A87009 PRIORY MEDICAL GROUP 

NORTH 

TYNESIDE 435250 568550 

47 A87011 BEAUMONT PARK SURGERY 

NORTH 

TYNESIDE 433750 572750 

48 A87012 WIDEOPEN MEDICAL CENTRE 

NORTH 

TYNESIDE 424050 572750 

49 A87013 BEWICKE MEDICAL CENTRE 

NORTH 

TYNESIDE 432150 567050 

50 A87014 

EARSDON PARK MEDICAL 

PRACTICE 

NORTH 

TYNESIDE 431650 571650 

51 A87015 APPLEBY SURGERY 

NORTH 

TYNESIDE 434850 568650 

52 A87016 THE VILLAGE GREEN SURGERY 

NORTH 

TYNESIDE 430250 566950 

53 A87017 WOODLANDS PARK HEALTH CTR 

NORTH 

TYNESIDE 423850 572450 

54 A87019 THE WESTGARTH PRACTICE 

NORTH 

TYNESIDE 435150 568450 

55 A87020 

MONKSEATON MEDICAL 

CENTRE 

NORTH 

TYNESIDE 433850 571550 

56 A87022 THE BOWMAN PRACTICE 

NORTH 

TYNESIDE 431650 571650 

57 A87023 THE SMITH PRACTICE 

NORTH 

TYNESIDE 431650 571650 

58 A87027 GARDEN PARK SURGERY 

NORTH 

TYNESIDE 432250 567550 

59 A87029 PARK ROAD MEDICAL PRACT 

NORTH 

TYNESIDE 430050 566550 

60 A87030 WALLSEND ROAD SURGERY 

NORTH 

TYNESIDE 434050 568050 
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61 A87600 PARK PARADE PRACTICE 

NORTH 

TYNESIDE 435250 572150 

62 A87608 FRIARSLEIGH HEALTH CENTRE 

NORTH 

TYNESIDE 426550 568650 

63 A87612 WELLSPRING MEDICAL PRACT. 

NORTH 

TYNESIDE 427950 571450 

64 A87615 PRESTON & AUSTIN PRACTICE 

NORTH 

TYNESIDE 427950 571450 
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6.4 Appendix D 

Service areas by GP practice 
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6.5 Appendix E 

Service areas per year (2002-2006), by GP practice 
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6.6 Appendix F 

Traffic Monitoring Sites 

ID 

Site 

code Location Easting Northing 

Road 

Type 

Road 

Name 

1 1 

B1318 GT NORTH ROAD N OF 

FORSYTH RD 424690 566610 Broads B1318 

2 2 

A189 REDHEUGH BRIDGE (ON NORTH 

SIDE) 424220 563500 Aroads A189 

3 5 A167 TYNE BRIDGE (ON NORTH SIDE) 425180 564040 Aroads A167 

4 7 

A1058 COAST ROAD W OF STATION 

RD. WALLSEND 429000 567240 Aroads A1058 

5 8 

B1318 Great North Road  South of 

Brunton Lane 424220 570400 Broads B1318 

6 14 A1 NORTH OF SEATON BURN INT. 423140 575000 Aroads A1 

7 16 

A1058 COAST ROAD W OF NORHAM 

ROAD 432990 568680 Aroads A1058 

8 29 

A167 NORTH WEST RADIAL S.E. 

GRANSTAND RD 423820 565750 Aroads A167 

9 35 

A193 BYKER BRIDGE 20M E OF 

STODDART STREET 425970 564570 Aroads A193 

10 59 A189 SPINE ROAD N OF SANDY LANE 426160 571900 Aroads A189 

11 69 

A19 NORTH OF TYNE TUNNEL 

APPROACH R/BOUT 433070 567020 Aroads A19 

12 70 

A19 SOUTH OF COAST ROAD 

INTERCHANGE 432440 568040 Aroads A19 

13 71 

A19 NORTH OF COAST ROAD 

INTERCHANGE 431710 568970 Aroads A19 

14 73 

A19 NORTH OF B1322/B1318 -

BACKWORTH LANE 428200 573440 Aroads A19 

15 80 

A1148 MONKSEATON DRIVE W OF 

REDHOUSE DRIVE 433300 572350 Aroads A1148 

16 88 

A1058 BEACH ROAD W OF PRESTON 

NORTH ROAD 434280 569520 Aroads A1058 

17 89 

A192 PRESTON NORTH ROAD S OF 

A191 RAKE LANE 434700 570533 Aroads A192 

18 205 A19 Tyne Tunnel (south portal) 433181 565125 Aroads A19 

19 206 

A1058 (CRADLEWELL) JESMOND RD. 

S.W. OSBORNE AVE. 426000 565850 Aroads A1058 

20 401 

A1056 SANDY LANE E OF M.O.T. 

STATION 425160 571830 Aroads A1056 

21 402 

A1056 OLD GT. NORTH RD. N OF 

GOSFORTH PK HOTEL 424180 571470 Aroads A1056 

22 403 

A191 HILLHEADS ROAD W OF 

MARDEN ROAD 435340 571840 Aroads A191 
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23 404 A189 SPINE ROAD S OF SANDY LANE 426170 571470 Aroads A189 

24 405 A1056 KILLINGWORTH RD 426690 571710 Aroads A1056 

25 407 

A186 EARSDON ROAD S.W. OF PARK 

LANE SHIREMOOR 431630 571740 Aroads A186 

26 408 

A186 STATION ROAD NORTH N OF 

HOTSPUR ROAD 429000 568370 Aroads A186 

27 409 

B1505 GREAT LIME ROAD E OF 

NORTHFIELD DRIVE 426920 570500 Broads B1505 

28 410 

A191 WHITLEY ROAD E OF STATION 

ROAD NORTH 429270 569350 Aroads A191 

29 415 

A193 WALLSEND ROAD E OF A1 

INTERCHANGE 433090 567410 Aroads A193 

30 423 

A1056 CAMPERDOWN E. OF 

NORTHGATE 427350 571850 Aroads A1056 

31 424 

A191 RAKE LANE 330M S.W. PRESTON 

NORTH ROAD 434300 570480 Aroads A191 

32 429 

A1058 COAST ROAD 270M W OF ST. 

PETER'S ROAD 430690 567850 Aroads A1058 

33 430 

A193 THE LINKS 200M S OF 

MONKSEATON DRIVE 435170 573140 Aroads A193 

34 458 A189 N. NORTH FARM AVENUE 425650 568900 Aroads A189 

35 461 A190 30M E. A189 (DUDLEY) R/BOUT 427270 573580 Aroads A190 

36 611 

A1 WESTERN BY-PASS N OF BLAYDON 

BRIDGE 419430 564730 Aroads A1 

37 612 

A1 WESTERN BY-PASS N OF A69 

INTERCHANGE 419870 565900 Aroads A1 

38 617 

A696 S.W. OF BLACK CALLERTON 

LANE 418900 570300 Aroads A696 

39 618 

A696 WOOLSINGTON BY-PASS S OF 

AIRPORT R/BOUT 418430 571050 Aroads A696 

40 619 

A696 WOOLSINGTON BY-PASS N OF 

AIRPORT R/BOUT 418230 571570 Aroads A696 

41 628 

A189 HADDRICKSMILL ROAD 50M N 

OF DENE CRESCENT 425440 567720 Aroads A189 

42 632 

B1307 SANDYFORD ROAD 40M N.E. 

OF GOLDSPINK LANE 425840 565550 Broads B1307 

43 650 

A695 SCOTSWOOD ROAD 350M E. OF 

SCOTSWOOD BRIDGE 420450 563650 Aroads A695 

44 660 

A695 SCOTSWOOD BRIDGE 

INTERCHANGE GATESHEAD SIDE 419970 563510 Aroads A695 

45 1071 

A189 WEST CENTRAL ROUTE N. OF 

SUNDERLAND ST 424227 563977 Aroads A189 

46 1072 

A189 WEST CENTRAL ROUTE N. 

WESTGATE ROAD 424280 564120 Aroads A189 

47 1073 

A189 WEST CENTRAL ROUTE S. 

GALLOWGATE 424287 564300 Aroads A189 
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48 1075 

A189 WEST CENTRAL ROUTE NORTH 

OF WALTER TER 423757 564909 Aroads A189 

49 1076 

A189 WEST CENTRAL ROUTE NORTH 

OF BRIGHTON GROVE 423273 565394 Aroads A189 

 



 

 

6.7 Appendix G 

Traffic index per month over the 5 years study period, by GP practice 
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6.8 Appendix H 

Diagnostics of the final model – 
Observed against fitted values of the final model by GP practice 

(a)  
 

191 

A
ppendices 



 

 
 

Observed against fitted values of the final model by GP practice (b) 
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Observed against fitted values of the final model by GP practice (c) 

 
 
 

193 

A
ppendices 



 

 
 

Observed against fitted values of the final model by GP practice (d) 
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Residuals against time of the final model by GP practice (a) 
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Residuals against time of the final model by GP practice (b) 
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Residuals against time of the final model by GP practice (c) 
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Residuals against time of the final model by GP practice (d) 
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Residuals against fitted values of the final model (a) 
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Residuals against fitted values of the final model (b) 
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Residuals against fitted values of the final model (c) 
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Residuals against fitted values of the final model (d) 
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6.9 Appendix I 

R squared for mixed models 

The coefficient of determination (R-squared) provides a measure of how well future 

outcomes are likely to be predicted by models. R-squared is appropriate for models 

that use the ordinary least squares (OLS) approach to calculate the minimum 

variance. The estimates of a mixed-effects model are maximum likelihood 

estimates though, so the OLS approach as a measure of goodness-to-fit is not 

appropriate. To evaluate the goodness-of-fit of mixed-effects model other 

approaches have been developed, called pseudo R-squares, the usefulness of which 

is debatable (Orelien and Edwards, 2008).  

I have used the following equation to estimate pseudo R-squared that is 

appropriate for mixed-effects model with random intercept like the final statistical 

model  (Snijders and Bosker, 1999). 

2
_

2
_2 1
Intercepttotal

FulltotalR
σ

σ
−=                                                                            

where 
2

_ Fulltotalσ  is the total variance explained by a mixed-effects model and 

2
_ Intercepttotalσ  is the total variance explained by an the same mixed-effects model 

when fitted only with the random effects. As a result, this pseudo R-squared 

measure can only capture the predictive power of fixed effects on a model and not 

the random effects. I fitted a model with only GP practice random effects and 

compared that to the final model (L21PM_30TR). The pseudo R-squared value for 

the final model was 48.3%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

6.10 Appendix J 

Conference Abstracts  

Sofianopoulou, E., Pless-Mulloli, T. and Rushton, S. (2009) 'Estimating Traffic 

Exposure in Primary Care Service Areas', Epidemiology, 20, (6), pp. S203-S203. 

Sofianopoulou, E., Rushton, S. and Pless-Mulloli, T. (2009) 'Analysis of Spatio-

Temporal Patterns of Short-Acting beta(2) Prescribing', Epidemiology, 20, (6), pp. 

S204-S204. 

Sofianopoulou, E., Pless-Mulloli, T. and Rushton, S. (2009) ‘Estimating  traffic 

conditions  within GP practice service areas’, GISRUK, 1 - 3 April 2009. 

Sofianopoulou, E., Rushton, S. and Pless-Mulloli, T. (2010) ‘Spatio-temporal 

Analysis in Environmental Health: Respiratory Medication in Relation to Air Pollution 

and Deprivation’, INSPIRE conference 2010, 22 -25 June 2010 

 

Other presentations 

I presented the final results of my work “Spatio-temporal analysis – respiratory 

prescribing in relation to air pollution and deprivation” at: 

• Imperial College, Department of Occupational and Environmental Medicine,  

London, 27th May 2010 

• Durham University, Wolfson Research Institute, Durham, 25th January 2010 

• NHS Regional Drug & Therapeutics Centre, Newcastle, 14th July 2009 

• Colt Foundation Day, King’s College London, London, December 2009 

 

I also had the chance to present interim results at: 

• Colt Foundation Day, King’s College London, London, December 2008  

• Lancaster University, School of Health and Medicine, Lancaster, 1st October 

2008 

• North Tyneside Primary Care Trust, Meeting of Public Health Directors, 05th 

February 2008 

• Colt Foundation Day, King’s College London, London,  December 2007    
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