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Abstract 

The chromosomal rearrangement t(4;11)(q21;q23) marks an aggressive acute 

lymphoblastic leukaemia (ALL) subtype particularly prevalent in infants and 

associated with poor outcome. This cytogenetic abnormality encodes the fusion 

oncogene MLL/AF4, which plays a pivotal role in cell death resistance; however, 

the underlying molecular processes are not fully understood. 

Therefore, to gain further insight, RNAi-mediated ablation of MLL/AF4 in the 

t(4;11)-positive ALL cell line SEM was combined with global gene expression 

profiling and concomitant apoptosis inhibitor studies. 

Phenotypically, MLL/AF4 depletion impaired proliferation, cell cycle 

progression, clonogenicity and caused a strong apoptosis induction. Global 

transcriptome analysis found up-regulation of proapoptotic and anti-

proliferative genes, while mitogenic signalling mediators and stemness-related 

markers were down-regulated.  

Supplementing MLL/AF4-depleted cells with the pan-caspase inhibitor zVAD 

suppressed apoptosis, but failed to abrogate cell death. Subsequent gene 

expression profiling showed induction of genes implicated in the necroptotic 

cell death pathway. Interestingly, addressing this using established necroptosis 

inhibitors did not rescue the phenotype. 

Finally, the cytokine ANGIOPOIETIN-1 (ANGPT1) was identified as a novel 

MLL/AF4-modulated gene; MLL/AF4 knock-down correlated with a substantial 

decrease of ANGPT1 levels. Concordantly, screening an B-precursor ALL patient 

cohort found ANGPT1 to be highly overexpressed in t(4;11)-positive ALL. 

Although no correlation with clinical prognostic factors could be established, 

ANGPT1 was found to contribute to the leukaemic phenotype, as RNAi-mediated 

ANGPT1 depletion impaired proliferation and viability in vitro and impinged on 

disease development in vivo. 
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Concluding, it was found that t(4;11)-positive ALL cells display a high degree of 

oncogene addiction towards MLL/AF4, since depletion strongly perturbed the 

leukaemic phenotype, compromising survival and self-renewal. Furthermore, 

ANGPT1 was identified as a novel proleukaemic factor cooperating with 

MLL/AF4 in maintaining the disease.  
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1.1 ACUTE LYMPHOBLASTIC LEUKAEMIA – A SHORT INTRODUCTION 

Acute lymphoblastic leukaemia (ALL) refers to a malignancy of the 

haematologic tissue, involving cells of lymphopoietic lineage. It is a clinically 

and biologically heterogeneous disease with a common cellular aetiology; 

haematopoietic progenitors acquire single or multiple genetic lesions, which 

subsequently confer archetypical oncogenic properties onto them, resulting in 

their transformation into malignant cancer cells. Common features of leukaemic 

cells are an increased resistance to cell death and growth inhibitory signals, 

augmented proliferative capacity and self-renewal capability1-2. Normal 

lymphopoietic differentiation is disrupted in these cells, resulting in the 

generation of immature and non-functional lymphocytes, referred to as 

leukaemic blasts. Uncontrolled clonal expansion of these transformed cells in 

the bone marrow (BM) perturbs normal haematopoiesis, hindering production 

of functional blood cells and resulting in BM failure. Furthermore, this is 

accompanied by egress of the leukaemic blasts from the BM into the peripheral 

blood (PB), frequently resulting in a potentially life-threatening high white 

blood cell count (WBC). Concomitantly, these blasts can also infiltrate 

extramedullary tissues such as, e.g., liver, spleen, lymph nodes and the central 

nervous system (CNS). In ALL, this disease pattern emerges quickly; at first, 

patients suffering from ALL display diffuse symptoms of general unwellness, 

decreased fitness, bruising, anaemia, fever and high susceptibility to infections, 

which all can be directly linked to the disrupted blood cell generation in the BM. 

In addition, infiltration and accumulation of the blasts in extramedullary organs 

results in painful enlargement which may compromise normal organ function; 

hepato- and splenomegaly are often present at diagnosis1. 
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1.1.1 ALL - one disease with diverse classifications 

ALL is an umbrella term that encompasses a disease of highly heterogeneous 

presentation; as a result, ALL is subdivided according to several criteria, and 

these subgroups describe distinct clinical and biological entities: 

 

Age at diagnosis: The first and foremost category is age at presentation, 

which defines the disease as infant (<12 months), paediatric (1- 18 years) and 

adult ALL (>18 years). There is an ambiguous stage concerning late adolescent 

and young adult ALL patients (15-25 years), where classification and treatment 

often occurs according to the patient referral to either a paediatric or an adult 

oncologist; indeed some clinical studies define childhood ALL and concomitant 

eligibility for a trial until the age of 252-4. 

 

Immunophenotype: The main biologic categorisation occurs in relation to the 

haematopoietic cell lineage of the blasts, identified by expression analysis of the 

cluster of differentiation (CD) immunophenotype. The two main categories are 

T-cell-precursor (TCP) and B-cell precursor (BCP) ALL; characterised by T-

lineage (CD3) and B-lineage CD markers (CD19, CyCD79), respectively5. Much 

rarer is a biphenotypic acute leukaemia (BAL), where lymphoid and myeloid or 

B- and T- cell markers are coexpressed.  

Further immunophenotyping allows subclassification of the ALL subtypes 

according to the combinatorial expression of specific CD markers, referred to as 

leukaemia-associated immunophenotype (LAIP). The LAIP reflects the 

differentiation status of the blasts, i.e., at which stage the of normal 

haematopoiesis the maturation arrest occurred (see fig. 1-1)5. 
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Fig. 1-1: Cluster of Differentiation (CD) marker expression in normal and 

malignant B-lymphopoiesis5-7 

Normal haematopoiesis in the BM is a hierarchical and linear event; uncommitted, lineage 

marker-negative (lin-), multipotent haematopoietic stem cells (HSCs) give rise to 

haematopoietic progenitors (HPC). In normal lymphopoiesis, HSCs differentiate into committed 

lymphoid progenitors (CLP), losing their self-renewal ability. This CLP then mature into 

functional B-cells in a sequential differentiation process, which comprises 5 main steps: pro-B, 

pre-B-I, pre-B-II, immature B- and, eventually, mature B-cells. Each differentiation stage is 

characterised by the differential expression of specific CD markers, Terminal Deoxynucleotidyl 

Transferase (TdT), as well as cytoplasmic (Cy) or surface membrane (Sm) immunoglobulins (Ig) 

(A). In malignant B-lymphopoiesis, the genetic lesion occurs in the HSC/HPC compartment, and 

results in differentiation arrest at different stages. In addition, the leukaemic cells retain an 

aberrant self-renewal capability, also referred to as “stemness”. According to the expression of 

LAIPs by the blasts, BCP-ALL is classified as pro-B, common or pre-B ALL. 
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Karyotype/cytogenetic subtype:  A hallmark of leukaemia in general is the 

recurrent incidence of specific cytogenetic lesions, which can be numerical or 

structural in nature. In ALL, numerical aberrancies of a normal karyotype can be 

focal copy number alterations (CNA), such as intrachromosomal amplification, 

internal tandem duplications (ITD), as well as mono- or biallelic deletions of 

specific gene loci. Other CNA affect cellular ploidy, resulting in gain or loss of 

one or more chromosomes. 

Structural abnormalities are recurring inter- and intra chromosomal 

rearrangements between specific loci, resulting in derivative (der) 

chromosomes, frequently coding for fusion oncogenes. Other structural lesions 

apart from rearrangements can be partial loss of specific chromosomes, for 

instance deletion of the p or q arm [del(p)/del(q)]. 

Both numerical and structural genetic lesions represent the cytogenetic subtype 

of the disease and define clinical entities with specific underlying 

pathobiologies; some are predictors of outcome, and as such, the cytogenetic 

phenotype is used for therapy stratification of ALL patients8-10. 

 

Morphology: Historically, ALL blasts have been categorised according to 

morphologic parameters using the French-American-British (FAB) - 

classification system. Cell size, nucleus to cytoplasm (N/C) ratio, appearance of 

nucleoli and the shape of the nuclear membrane are assessed and assigned a 

specific value; the final sum determining the cytomorphological classification of 

the blasts1. 

 L1-ALL:  small, uniform blasts with high N/C ratio, undefined 

nucleolus and smooth nuclear membrane 

 L2-ALL:  large varied blasts with varying N/C ratio, distinct multiple 

nucleoli and irregular nuclear shape 

 L3-ALL: large varied blasts with low N/C ratio, vacuolated 

cytoplasm as well as distinct nucleoli. 



Introduction 

6 
 

However, morphological classification has been superseded in favour of the 

other categories11. 

 

1.2 CHILDHOOD BCP-ALL – CYTOGENETICS AND CLINICAL ASPECTS 

Acute lymphoblastic leukaemia is the most common childhood cancer, 

accounting for approximately one quarter of the malignant diagnoses between 

the ages of 1 and 18 years , with a median age at diagnosis of 4-5 years4. Nearly 

nine tenths of these ALL cases involve the B-cell lineage9 (fig. 1-2). Like all 

leukaemia subtypes, childhood BCP-ALL is characterised by recurring 

cytogenetic aberrations inherent of the malignant cell. These acquired somatic 

mutations define a distinct pathobiology which can vastly differ between the 

different genotypes. As such, the cytogenetic phenotypes carry important 

prognostic power and contribute to the stratification of patients in regards to 

risk of treatment failure, facilitating identification of both patients requiring 

more intensive chemotherapy and those who might be eligible for a reduced 

treatment.  

From this section on, if not stated differently, ALL refers exclusively to BCP-ALL. 

 

1.2.1 Cytogenetic subgroups, incidence and clinical outcome 

There are several dozen recurring cytogenetic abnormalities in childhood ALL12, 

but only a few have a sufficiently high incidence – or particularly unfavourable 

outcome- to be of clinical relevance. The most common cytogenetic subgroups 

in ALL are patients patients with high hyperdiploidy (HeH), with an leukaemic 

karyotype of >50 chromosomes, occuring in nearly 40% of the cases, and 

patients carrying the translocation t(12;21)(p12;q22), coding for the TEL/AML1 

fusion gene, with an incidence of 25%. Both of these subgroups is associated 

with a highly favourable prognosis of >92% survival13. Another major 

cytogenetic subgroup is marked by rearrangements involving the gene locus 

11q23, which encodes the MLL (Mixed Lineage Leukaemia) gene14, occurring in 
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approximately 2-8% of the cases8-9,13. MLL-rearranged (MLLr) ALL is 

characterised by its promiscuity of translocation partners; to date, over 60 

different gene loci have been described in literature15. However, by far the most 

common one involves the AF4 (ALL-1 fused to chromosome 4) gene on locus 

4q21. This results in t(4;11)(q21;23), which codes for the MLL/AF4 fusion 

oncogene, and represents about 30-50% of the MLLr BCP-ALL cases15. MLLr 

BCP-ALL per se is associated with a poor outcome and is considered a 

cytogenetic subgroup at high risk of treatment failure3,13. A more detailed 

review of the associated pathobiology, particularly of t(4;11)-positive ALL, will 

be discussed in section 1.3.5. 

Another important chromosomal aberration in BCP-ALL is the translocation 

event t(1;17)(q23;p13), which generates the E2A/PBX1 fusion gene16. The 

incidence is approximately 4%, it is considered intermediate risk associated 

with an average prognosis13. 

One of the most difficult to treat ALL subgroups is Ph+ ALL, carrying the 

translocation t(9;22)(q34;q11). The resulting derived chromosome is 

historically referred to as Philadelphia (Ph) chromosome, and encodes the 

chimaerical oncogene BCR/ABL117. Although very rare, with an incidence of 

approximately 2%, it is of high clinical relevance, describing a patient cohort at 

very high-risk of relapse13.  

In the last five years, new major cytogenetic ALL subcategories associated with 

outcome have been discovered, ALL with intrachromosomal amplification of 

chromosome 21 (iAMP21)18-19, and ALL with up-regulation of the gene CRLF2 

(CRLF2-d)20-21.  

In iAMP21-positive ALL, the amplified region on chromosome 21 involves 

RUNX1, as well as gene loci within the Down-Syndrome associated region22. 

Prior to classification, the iAMP21 subgroup was previously linked to poor 

prognosis. Identification of this abnormality and its inherent prognostic value 

resulted in administration of an intensive chemotherapy regimen to this patient 

cohort, as well as consideration of haematopoietic stem cell transplantation3,23; 
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current data analysis is still outstanding, the new treatment regimen appears to 

have improved outcome (personal communication with Prof. C. Harrison).  

In the cytogenetic subgroup characterised by CRLF2 overexpression, this 

deregulation has two distinct cytogenetic lesions as underlying mechanisms, a 

translocation of the CRLF2 gene with the IGH@ locus, or a focal deletion 

upstream of CRLF2. Both mechanisms result in juxtaposition of the CRLF2 gene 

to powerful promoters or transcriptional enhancers, which subsequently drive 

the gene overexpression20-21. CRLF2 deregulation occurs in approximately 6% of 

childhood ALL; in regards to its prognostic significance, there is still 

controversy, as it is associated with increased risk of relapse, but intermediate- 

to high-risk according to overall survival24-25.  

Another novel subgroup, termed BCR/ABL-like ALL, was determined according 

to gene expression profile (GEP) classifiers. The GEP of this subgroup showed 

great similarity to the ones from Ph+ ALL patients, and BCR/ABL-like ALL 

patients had a comparably poor response to treatment. Analysis of this 

previously unclassified patient group revealed that in contrast to most other 

ALL cases, BCR/ABL-like ALL is not characterised by a single major 

chromosomal abnormality, but by the acquisition of one or more focal deletions 

in a particular subset of genes associated with haematopoiesis, such as PAX5, 

IKZF1, VPREB1, E2A and EBF1, amongst others. These genetic lesions were also 

present to a certain extent in BCR/ABL-positive ALL patients, which might 

indicate an inherent driver mutation-like quality causative and supportive of 

malignant transformation26-27. 

One of the rarest cytogenetic subgroup but nevertheless with a major clinical 

implication is t(17;19)(q22;p13), which codes for the E2A/HLF fusion gene. It 

occurs at a frequency of 0.1%; however, overall survival is 0%. Consequently, 

presence of E2A/HLF is one of the high-risk cytogenetic features employed for 

treatment stratification3. 

The scheme in fig. 1-2 illustrates the frequency of the differing BCP-ALL 

subtypes in children. 
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Fig. 1-2: Incidence of different ALL subtypes in childhood ALL9,13,24 

The vast majority of ALL cases in children is BCP-ALL, comprising nearly 90%. These subgroup 

can be further subdivided according to the cytogenetic phenotype; the most frequent ones are 

high hyperdiploidy (HeH), TEL/AML1-positive ALL, ALL with CRLF2 overexpression (CRLF2-d); 

MLL-rearranged ALL (MLLr), Ph+ ALL (BCR/ABL), as well as ALL with the t(1;19) 

rearrangement (E2A/PBX1) and intrachromosomal amplification of chromosome 21 (iAMP21). 
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1.2.2 Disease aetiology 

ALL disease aetiology is unknown, bar rare cases where there is genetic 

predisposition, i.e., children with Down-syndrome28-30, the acquisition of the 

genetic mutations and development of the disease is idiopathic. Studies in 

monozygotic twins with leukaemia as well as analyses of Guthrie cards 

(neonatal blood spots) revealed evidence of a pre-natal origin of childhood ALL, 

with the leukaemia-specific genetic lesions arising in utero during foetal 

haematopoiesis31-36. Interestingly, most of these initial cytogenetic 

abnormalities are not sufficient to cause overt leukaemia, and require 

secondary genetic hits for full transformation34,37,38. These primary lesions 

result in non-malignant preleukaemic clones, which predispose the cell to the 

acquisition of further mutations. A current hypothesis indicates that de-

regulated response of these preleukaemic cells to immunity-mediated 

modulation of haematopoiesis in the BM, i.e. due to infections, results in 

transformation and overt leukaemia in a small subset of the population. The 

vast majority of the populace with pre-leukaemic clones however never 

develops the disease, and the prevalence of pre-leukaemic clones is lost with 

age. 

 

Over the years, a few pre-natal and peri-natal exogenous factors have been 

correlated with leukaemogenesis in children, such as a high birth weight30 and 

maternal alcohol and elevated coffee consumption during pregnancy39. 

Interestingly, a maternal diet rich in isoflavonoids, which are natural 

topoisomerase-II inhibitors and induce DNA cleavage as well as MLL 

rearrangements in vitro40-41, were found to be positively associated with infant 

AML, but not ALL42.  
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1.2.3 Childhood ALL - Clinical Aspects and Treatment 

Once a “certain death” diagnosis, the overall survival in children with ALL has 

improved in leaps and bounds over the last decades, reaching now a cure rate of 

over 85%43-46. Apart from the use of aggressive chemotherapy, this progress can 

be largely attributed to improved risk stratification; clinical features at 

diagnosis such as age, WBC as well as the karyotype/cytogenetic phenotype are 

strong prognostic factors and used to adjust treatment intensity. However, 

although survival is very high, this varies vastly within to the cytogenetic 

subgroups; patients with HeH ALL or carrying the t(12;21) rearrangement have 

a favourable prognosis of over 90% overall survival, in contrast, children with 

either Ph+ ALL, positive for MLL/AF4 or E2A/HLF have a poorer outcome, with 

survival ranging from 0-60%13.  

Currently, three major risk categories are established in ALL: low-/ standard-

risk ALL (SR), intermediate risk (IR) and high-risk (HR) ALL. Factors associated 

with favourable outcome are age at presentation between 1 and 10 years and a 

low WBC (<50x109 cell/L). In contrast, adverse clinical characteristics in 

paediatric ALL are considered anyone of the following: age at presentation over 

10 years, a WBC >50x109 cells/L, CNS involvement, slow early response to 

induction therapy, as well as presence of an unfavourable karyotype. For 

instance, the Ph+ chromosome, rearrangements of the MLL gene locus, 

t(17;19)(q22;p13), iAMP21 or hypodiploidy (n<44 chromosomes) are 

considered unfavourable cytogenetic subgroups linked to increased risk of 

treatment failure, and thus defined as HR-ALL. IR-ALL patients are 

characterised by being either older than 10 years at diagnosis, or having a high 

WBC. Other essential stratification parameters are determined during early 

treatment, such as delayed or refractory response to chemotherapy and the 

presence of minimal residual disease (MRD)3. MRD refers to the persistence of 

very low numbers of leukaemic cells in the BM after induction treatment. 

Analysis for leukaemia cell-specific genetic markers such as fusion genes, 

characteristic rearrangements of the Ig (immunoglobulin) or the TCR (T-cell 

receptor) locus occur on a molecular level using PCR-based methods47. In 

addition, patient BM cells are immunophenotyped and characterised for a LAIP 
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by multi-colour flow cytometry. These techniques allow detection of as little as 

1 leukaemic blast in 10,000 -100,000 cells. A blast frequency of >10-4 at specific 

time points during treatment denotes presence of therapy-resistant blasts, 

enabling identification of patients at high risk of relapse; even if at diagnosis 

there were no other apparent risk factors present. MRD is a measure of in vivo 

response a strong outcome predictor, thus initial risk stratification and 

treatment regimen is corrected appropriately in concordance with the MRD 

scores. Moreover, MRD negativity strongly predicts event-free survival. 

Interestingly, patients with HR-ALL cytogenetics and/or poor response to 

induction therapy sometimes present with low MRD scores, and this is 

associated with increased survival; in these cases, the MRD diagnosis 

supersedes the initial risk stratification, and has proven to be a more powerful 

predictive measurement for outcome48. However, whether the HR-ALL 

subgroups with favourable MRD would be permissive for a reduction of 

treatment intensity remains as of yet unclear.  

 

 

1.2.3.1 Brief outline of course of chemotherapy 

Current treatment strategy for ALL remains intensive cytotoxic chemotherapy 

spanning several years. The course of treatment is subdivided into different 

stages, each involving intense multi-drug regimens with different combinations 

of chemotherapeutic agents. The treatment protocol of the ongoing paediatric 

ALL trial UKALL-2003 is briefly outlined as follows3, this treatment is highly 

comparable to other international treatment strategies49. 

The first chemotherapy phase is induction of complete remission (CR), defined 

by a blast burden of less that 5% in the BM. Treatment in this phase aims at 

clearing blasts from the blood circulation, the BM, and other affected tissue. This 

is achieved by the combinatorial use of glucocorticoids such a prednisolone 

and/or dexamethasone, along with the anti-metabolite drugs methotrexate, L-

asparaginase, 6-mercaptopurine and the mitotic inhibitor vincristine. For IR- 
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and HR-ALL, current protocols include the use of genotoxic anthracylines such 

as daunorubicine.  

Induction is immediately followed by the consolidation phase, which targets the 

remaining leukaemic cells within the body. This course of treatment is risk-

adapted according to both clinical prognostic factors at presentation and initial 

response, in particular the MRD scores. The consolidation of remission phase 

consists of several rounds of intensification and CNS-directed therapy, which 

comprise the chemotherapeutic drugs received during induction, as well as 

treatment with genotoxic agents such as the DNA alkylating drug 

cyclophosphamide, the anthracycline doxorubicine and the nucleoside analogue 

cytarabine. Dosages and administration frequencies vary in respect to the risk 

stratification of the patient.  

Although infiltration of the CNS does not frequently occur in childhood ALL, the 

CNS remains a potential reservoir of leukaemic cells as well as a site of relapse, 

due to the difficulty of chemotherapeutic agent to cross the blood-brain barrier. 

In order to deplete leukaemic blasts present in the CNS and to prevent relapse 

in this site, CNS prophylaxis therapy is given during the consolidation phase, 

consisting of intrathecal administration of high-dose methotrexate. In cases of 

persistent CNS disease, patients also undergo cranial irradiation.  

At the end of the consolidation phase, MRD scores are assessed; disease-free 

patients go on to the maintenance phase, lasting up to two years for girls and 

three years for boys. This phase consists of low dose drug treatment with the 

antimetabolite 6-mercaptopurine and methotrexate, combined with monthly 

pulses cycles of low dose of glucocorticoids and vincristine, as well as ongoing 

CNS prophylaxis with intrathecal methotrexate every three months. In contrast, 

patients with refractory disease at the end of the consolidation phase, 

experiencing relapse or with unfavourable cytogenetics at very high-risk of 

relapse, may be eligible for a haematopoietic stem cell transplant50. 

 

In addition to conventional chemotherapy, contemporary treatment strategies 

include novel targeted approaches based on subtype-specific pathobiology, i.e., 
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the use of the tyrosine kinase inhibitors imatinib or its close homologue 

desatinib in BCR/ABL-positive ALL51, or FLT3 inhibitors for MLL-rearranged 

ALL52. In adult ALL, the use of immunotherapy is being investigated in clinical 

trials; antibodies targeting leukaemia-specific epitopes are employed, such as 

Rituximab, which recognises CD20, a cell surface marker expressed on over half 

of the adult ALL patients53. This rationale can be potentially extended to 

paediatric ALL. 

 

1.2.4 Infant ALL –a distinct ALL category 

Infant acute lymphoblastic leukaemia (ALL) is a disease biologically and 

clinically distinct from childhood ALL and can be cytogenetically categorised 

into two relevant subgroups: infant ALL carrying chromosomal rearrangements 

in the MLL gene on locus 11q23, and infant ALL with a germline MLL 

configuration. While MLLr ALL also occurs in children and adults, the incidence 

is very low, ranging from 2-8%9,13. This is stark contrast with the recurrence of 

MLL rearrangement in infants, where they represent up to 80% of the overall 

cases54-56. Comparable to MLLr childhood BCP-ALL, by far the most frequent 

MLL abnormality in infants is the reciprocal translocation between MLL and the 

gene AF4 on locus 4q21, resulting in t(4;11)(q21;q23). This aberrancy 

represents about 50% of the MLLr ALL cases. Other recurring MLL 

translocations involve the genes ENL on 19p13.3, and AF9 on 9p22, generating 

t(11;19)(q23;p13.3) and t(9;11)(p22;q23) with an incidence of approximately 

20% and 10%, respectively. Rearrangements involving MLL and other gene loci 

occur at a much lower frequency. Another discerning feature of infant ALL is the 

overrepresentation of ALL blasts with a very immature pro-B 

immunophenotype, corresponding to approximately 60% of the cases54. 

Despite many groundbreaking advances in the treatment of paediatric ALL, 

where an overall cure rate of over >85% has been achieved, MLL-rearranged 

infant ALL remains associated with poor treatment response and dismal 

prognosis, with an event-free survival (EFS) of 34-37%54-56. MLL 

rearrangements are an independent adverse prognostic factor, and characterise 
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an infant ALL with an aggressive clinical presentation, linked to extreme 

hyperleukocytosis, CNS involvement and slow response to therapy. Although at 

the end of the induction therapy complete morphological remission (CR) is 

achieved in 95% of the cases, initial morphological clearance is slow, and 

complete molecular response to treatment is not achieved in the majority of the 

cases. Consequently, infant ALL patients with MLL-rearrangements present with 

MRD scores in the BM. Relapse on treatment, mainly localised in the BM, 

remains the primary cause of treatment failure.54,57 

In contrast, infant ALL with germline MLL has an outcome comparable to 

paediatric ALL cases without MLL rearrangement, with an EFS ranging from 60-

92%54-56.  

 

Tab. 1-1: Outcome of infant ALL patients in regards to the MLL-status – historical 

study groups 

Clinical trial Trial period Patients (n) 
MLL status 4-year-EFS 

MLLr germline MLLr germline 

MLL9656 1995- 1998 55 76% 24% 34% 92% 

CCG 195355 1996- 2000 115 69% 31% 34% 60% 

Interfant-9954 1999- 2004 482 79% 21% 37% 74% 

  

 

Although appraising the same clinical features, the parameters applied for risk 

stratification in infants differ from childhood ALL. Apart from the MLL status, 

age and WBC have been shown to be the most powerful predictors of outcome; 

children presenting at an age younger than 6 months or with a WBC of 

>300x109/L are considered high-risk patients. Furthermore, CNS involvement 

and an immature pro-B-like LAIP of the blasts represent adverse prognostic 

factors54. As with paediatric ALL, in vivo response during treatment plays an 

important role in therapy stratification; and infant ALL patients are categorised 

as high-risk or standard-risk57 according to response to induction and blast 

burden at the end of the induction phase.  
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Infant ALL chemotherapy is a hybrid protocol based on the childhood ALL 

treatment regimen, with the addition of reinduction phases after consolidation, 

derived from AML treatment protocols. Moreover, the nucleoside analogue 

cytarabine is administered at high doses during all treatment phases together 

with the conventional multi-drug therapy. CNS prophylactic treatment excludes 

cranial irradiation. The benefit of allogeneic haematopoietic stem cell 

transplantation is currently being investigated in the Interfant-06 trial, previous 

studies showed improvement in outcome of a defined subset of patients58. 

 

1.2.5 Intensive chemotherapy can cause late adverse effects 

Risk-stratification and the concomitant intensification of treatment protocols 

has resulted in an substantially improved outcome in paediatric and infant ALL 

patients. However, this comes at a cost, as the toxicity of the therapies not only 

results in an increased overall survival, but is also associated with treatment-

derived morbidities and other adverse sequelae in long-term survivors. High-

dose cytotoxic drug treatment, especially combined with irradiation therapies, 

cannot only cause secondary neoplasms, but are also linked to 

endocrinopathies, cardiac damage, obesity and compromised fertility59-60. 

Particularly in infants and young children, the use of cranial irradiation has 

shown to be correlated with decreased growth, and more importantly, impaired 

neurocognitive functions61; as such, contemporary multi-centre trial protocols 

in infant ALL do not include irradiation in their treatment strategies anymore54. 

Thus, the remaining challenges in paediatric and infant ALL therapy are not only 

increasing overall survival of high-risk subgroups, but the development of 

improved stratification strategies, aiming towards a more tailored and 

personalised treatment. This includes, amongst others, recognition of subgroup-

specific therapeutic targets as well as single nuclear polymorphism (SNP)-

linked pharmacodynamic and -kinetic criteria. Alternative therapies in order to 

diminish toxicity, as, for instance, immunotherapy or cell-specific delivery of 

small molecular weight drugs, including therapeutic siRNAs62, are being 

intensively investigated.  
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1.3 T(4;11)-POSITIVE ALL – AN EPIGENETICALLY DRIVEN MALIGNANCY? 

The prevalence of MLL rearrangements in ALL displays a prominent age-related 

bias; while it is the hallmark of infant ALL, where this subgroup constitutes 70-

80% of all cases, the incidence declines sharply in childhood and adult ALL, with 

a frequency of 2-8% and 5-10%, respectively. MLL rearrangements also belong 

to the predominant cytogenetic subgroup in therapy-related acute leukaemia (t-

AL), particularly if the primary cancer had been treated with topoisomerase-II 

poisons, such as the epipodophyllotoxins etoposide, teniposide and similar63. 

Here, the overall frequency was 37% for therapy-related ALL64 and 3% (Chicago 

series) for therapy-related AML. Regardless of age and aetiology, MLLr ALL is 

associated with an unfavourable outcome, and is considered a high-risk 

cytogenetic subgroup.  

Rearrangements of the MLL locus on 11q23 are recurring cytogenetic lesions in 

both AML and ALL; a particular feature of MLLr acute leukaemia is the 

heterogeneity of the translocation partners. To date, reciprocal translocations of 

the MLL gene locus on 11q23 with over 60 different gene loci have been 

reported15. The majority of these rearrangements occurs at a low frequency or 

are single-case reports. However, in MLLr-ALL, three genes constitute up to 

80% of the translocations: AF4 on locus 4q21, resulting in t(4;11)(q21;q23)65, 

ENL on 19p13.3, and AF9 on 9p22, generating t(11;19)(q23;p13.3) and 

t(9;11)(p22;q23)66. By far the most frequent is t(4;11)-positive MLLr ALL, 

comprising approximately 50% of the MLL rearrangements. It results in two 

chromosomes derivatives, der11 and der4. The disruptions of the involved gene 

loci occur in intronic regions, fusing the 5’- and 3’- portions of the separate 

translocation partner genes in frame. Consequently, the rearrangement 

generates two proteinogenic fusion genes, MLL/AF4 on der11 and AF4/MLL on 

der4. While the penetrance of MLL/AF4 is 100%, in approximately 20% of the 

ALL cases the reciprocal fusion gene AF4/MLL is lost67; analyses on genomic 

level have here revealed further complex rearrangements of AF4/MLL with 

other gene loci, resulting in novel fusions68.  
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The fusion genes derived from the t(4;11) rearrangement have altered 

properties compared to their wild-type counterparts, representing chimaeric 

oncogenes capable of leukaemic transformation and maintenance of the disease. 

In the following sections, both wild-type genes will be discussed in detail, and 

how their disruption and the resulting fusions contribute to the pathobiology of 

t(4;11)-positive ALL.  

 

1.3.1 MLL – a histone methyltransferase disrupted in leukaemia: 

structure-function relationship 

MLL is encoded on 11q23, comprising a genomic region of approximately 90 kb; 

it consists of 36 exons, which generate a protein of 3969 amino acids length and 

a molecular weight of 430 kDa. A characteristic of the MLL gene locus is the 8.3 

kb long breakpoint cluster region spanning exon number 8 to 13, which is a 

preferred site for chromosomal disruption, referred to as breakpoint cluster 

region (BCR)69. This genomic region contains topoisomerase II consensus and 

DNase I hypersensitivity sites, both features that are implicated in 

recombination events70-72. Furthermore, a recent publication reported a 

transcriptionally active gene-internal promoter prior to exon 12, resulting in a 

N-terminally truncated MLL protein of unknown function73, indicating a less 

densely packed and more accessible chromatin structure.  

The MLL protein has a highly complex organisation, comprising several 

different domains that confer a unique multifunctionality. At the N-terminus, 

MLL contains three AT-hook motifs, enabling DNA binding71; this is followed by 

a SAG and an NTC (N-terminally conserved) domain, which are required for 

oncogenic transformation by MLL fusion genes. Further on, MLL has a two 

nuclear localisation signals, SNL-1 and SNL-2, which confer a distinct 

subnuclear localisation pattern74-75. Adjacent to this is a DNMT (DNA 

methlytransferase) homology domain, which contains a CXXC zinc finger motif 

consisting two repeats RG1 and RG2, and a third conserved cysteine-rich 

sequence. This motif recognises unmethylated CpG dinucleotides, and mediates 

target recognition of MLL. This domain is retained in MLL fusions and vital for 
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malignant transformation; moreover, it has been shown that binding of MLL or 

its oncogenic derivatives prevents epigenetic silencing of both MLL wild-type 

and fusion target genes76-79. In continuation lies the PHD (plant homology 

domain) cassette. This regulatory motif mediates divergent MLL functions; on 

the one hand, the PHD fingers recognises chromatin marked by the activating 

modification of lysine residue 4-trimethylation (K4me3) on histone H3, and 

binding to this histone mark is required for MLL transcriptional activation80. On 

the other hand, the PHD domain has been shown to recruit the corepressor 

Cyp33, resulting in down-regulation of MLL target genes. This PHD-Cyp33 

interaction functions as a molecular switch to modulate MLL transcriptional 

activity81-83. Interestingly, incorporation of the PHD domain in MLL fusions 

abrogates their oncogenic potential84-85. 

Adjoining to the PHD cassette are other structural motifs, such as a 

transactivation domain and the dimerisation motifs FYRN and FYRC. The 

carboxy-terminus contains a SET-domain which confers MLL histone 

methyltransferase (HMT) activity specific for histone H3 lysine(4)-methylation 

(H3K4)86. MLL is post-translationally cleaved by a specific threonine aspartase, 

taspase1, at two conserved cleavage sites, CS1 and CS2, yielding a N-terminal 

fragment of 300 kDa size, MLLN, and a 180 kDa MLLC fragment. Both subunits 

dimerise over association of the FYRN and FYRC domain, respectively87-89. Each 

subunit possesses opposed transcriptional activities, MLLN has repressor 

properties, associating with core repressors, such as HDACs and the MLL 

antagonist BMI-1, a member of the polycomb group of proteins (PcG) which 

antagonise the function of Trx group of genes, of which the MLL gene is 

considered the founder member (TrxG)90. In contrast, the C-terminal subunit 

MLLC possesses activating characteristics89; MLL interacts via its C-terminal SET 

domain with multiprotein supercomplexes associated with nucleosome 

remodelling (NuRD, Sin3a, SWI/SNF), but also comprising factors involved RNA 

processing and transcriptional activation. Moreover, core components of the 

SET1-like HMT complex (WDR5, RBBP5, ASH2L), also termed COMPASS, have 

been shown to be associated with MLL, as well as the histone acetyltransferase 

MOF, which possesses specificity for lysine residue 16 on histone H3. Other 

important MLL interaction partners are MENIN (MEN1, multiple endocrine 
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neoplasia type 1), and LEDGF (lens epithelium-derived growth factor), which both 

bind the immediate N-terminus of MLL within the first 150bp91, forming a 

ternary complex required for MLL-mediated target gene regulation. These 

factors and the other components of these multimeric complexes colocalise with 

MLL on HOX gene promoters in vivo promote transcription88,92-94,86,95.  

The protein domain structure of MLL is severely disrupted by the 

leukaemogenic rearrangement of the MLL gene locus, and normal function 

abrogated. However, despite its vast array of fusion partners, there is one 

striking common characteristic: the first 1400 aa upstream of the BCR are 

absolute conserved in all MLL fusion genes. Therefore, the MLL fusion proteins 

retain the AT hook motifs, the CxxC domain, the SAG domain, essential for target 

recognition and DNA binding, as well as the nuclear localisation signals, but 

loose the transactivation and the SET domain, and concomitantly, its HMT 

activity. Although MLL fusions conserve the interaction with MENIN and LEDGF, 

their corresponding binding sites located at the beginning of the MLL N-

terminus88, association with the other components of the SET-like multiprotein 

complexes is lost, as well as their transactivation capacity. Indeed, the 

translocation partner moiety contributes importantly towards the oncogenic 

function of the MLL fusion proteins96. 
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1.3.2 MLL – a Master Regulator of Haematopoiesis and HSC 

Homoestasis 

MLL is the mammalian orthologue of the Drosophila trithorax (trx) gene15, an 

important regulator of homoeotic gene expression during development14,97-98. 

This function is conserved in mammals, where MLL plays an essential role for 

the maintenance of the HOX gene clusters, the mammalian counterparts of the 

trx-regulated homoeotic genes. Consequently, MLL plays an important part in 

establishing correct segment identity, and is required for skeletal, neuronal and 

craniofacial development. Mll-deficiency results in embryonic lethality94,99-100. 

Furthermore, MLL has been implicated in endothelial cell sprouting101 and post-

natal neuronal differentiation102.  

However, MLL is best characterised as a master regulator of early and definitive 

haematopoiesis as well as HSC homoeostasis: yolk sac cells from Mll-/- and 

Mll+/- mice showed a block in haematopoietic differentiation, impaired 

proliferation and clonogenicity103. Furthermore, loss of Mll abrogated inherent 

HSC-activity in both early haematogenic and fetal liver cells, and Mll-null HSCs 

failed to reconstitute haematopoietic stem cell function in lethally irradiated 

recipient mice. In addition, loss of Mll also impaired normal lymphopoiesis in 

adult mice104-106. In post-natal haematopoiesis, conditional knock-out of Mll 

resulted in lethal BM failure due to abrogation of haematopoietic stem-cell 

quiescence as well as proliferation defects in committed progenitors107. Part of 

the effects of Mll ablation are due to concomitant reduction of specific Hox gene 

levels; ectopic reexpression of only one gene of the Hox family could rescue the 

Mll-/- phenotype in vitro108.  

  



Introduction 

22 
 

1.3.3 MLL regulates cell cycle progression and is implicated in DNA 

damage response 

In addition to its role as modulator of HSC quiescence, MLL exerts other 

important regulatory functions during cell cycle; it is an important modulator of 

S-phase entry and G2/M transition, and loss of MLL attenuates cycling. This is 

reflected in the MLL protein levels, which fluctuate during cell cycle, showing a 

biphasic expression pattern; with peaks at G1/ early S and G2/early M phase, 

and reduction during S- and late M-phase. This cell cycle –dependent expression 

is mediated through the cell cycle ubiquitin proteasome system (UPS), 

specifically the SCFSkp2 and APCCdc20 E3 ubiquitin ligase complexes. Aberrant 

stabilisation of MLL impinges on replication, resulting in a stalled DNA 

replication109. This effect is also observed as part of the cellular DNA damage 

response, where activated ATR kinase targets MLL, disrupting the interaction 

with the SCFSkp2 complex. As a result, MLL accumulates on chromatin and tri-

methylates H3K4 residues, impairing replication initiation110, thus exerting a 

key role during the S-phase checkpoint. Although the ubiquitination site is 

retained in the MLL fusions, interactions with both cell cycle E3 ligase 

complexes is diminished, both abrogating the cell cycle-dependent expression 

and stabilising the fusion oncogenes109. Moreover, the MLL fusions block 

interaction of wild-type MLL with ATR, consequently abolishing the S-phase 

checkpoint, deregulating an important DNA damage response mechanism110. In 

addition, low expression of MLL in T-ALL was associated with increased 

resistance to genotoxic agents111. During M-phase, MLL is retained on specific 

gene loci, promoting rapid transcriptional reactivation after cytokinesis and 

expression at high levels112.  

Interestingly, the MLL complex components have been shown to interact with 

the cell cycle regulator E2F1, recruiting MLL to E2F1 target genes promoters 

and implicating it in E2F-dependent transactivation113. Moreover, MLL itself has 

been reported to bind and regulate expression of cell cycle regulating genes 

such as the cyclin-dependent kinase (CDK) inhibitors p27KIP (CDKN1B), p16INK4 

(CDKN2A) and p18INK4 (CDKN2C)114-115.  
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To date, the HOX gene cluster and several cell cycle regulators are the best 

established MLL target genes, however MLL has been found to localise to >5000 

genomic loci116, indicating a global role in transcription regulation. Conceivably, 

disruption of this epigenetic master regulator by oncogenic rearrangement 

should result in a myriad of deregulated processes. 

 

1.3.4 AF4 – a Transcription Elongation Factor and Epigenetic 

Mediator 

The MLL translocation partner AF4 (ALL-1 fused on chromosome 4) is part of the 

ALF protein family, whose other members AF5q31, AF10 and LAF4 have been 

identified as MLL translocation partners in leukaemia117-118, with the exception 

of FMR2. AF4 plays a role in lymphocyte development119 and has been 

implicated in neurodegenerative diseases, where accumulation of mutant AF4 

results in post-natal loss of purkinje cells and ataxia in mice. This phenotype, 

referred to as “robotic mouse”, also shows growth retardation and a defect in T-

cell development 120-122.  

The nuclear protein AF4 directly interacts with AF9123 and ENL, both recurring 

MLL translocation partners. Incidentally, both AF9 and ENL form the part of the 

DOT1L histone methyltransferase complex, which mediates methylation of the 

lysine79 residue on histone H3 (H3K79), an epigenetic marker for 

transcriptional activity and essential for normal haematopoietic 

development124-128. A seminal paper by Bitoun et al. found AF4 to be part of this 

complex, moreover, it reported that AF4 directly stimulates the P-TEFb kinase 

(CDK9) to phosphorylate the C-terminal domain of RNA Polymerase II (Pol II), 

thus linking transcription elongation with chromatin remodelling129. Recently, 

Lin et al. reported AF4 to be part of another multimeric complex implicated in 

elongation, termed the super-elongation complex (SEC), which comprises 

several MLL fusion translocation partners, notably the AF4 family member 

AF5q31 (AFF4), and was exempt of DOT1L histone methyltransferases 

activity130. The interaction moieties of AF4 for both complexes are retained in 

the MLL fusion genes123,130, and fusion gene-dependent mistargeting of these 
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complexes has been widely proposed as fundamental oncogenic mechanism of 

the bulk of MLLr acute leukaemias129,131-134. 

Nothing is known about AF4 expression regulation, however, it has shown to be 

regulated on a post-translational level; AF4 has a short half-life; and 

degradation is mediated by SIAH E3 ubiquitin ligases121. Anomalous 

stabilisation against degradation has also been implicated in t(4;11)-ALL 

pathobiology, as the mature reciprocal fusion protein AF4/MLL interacts with 

SIAH proteins, but cannot be targeted for degradation135. 

 

1.3.5 T(4;11)-positive ALL: a Complex Pathobiology 

Acute lymphoblastic leukaemia with the t(4;11) rearrangement is a high-risk 

ALL subtype marked by poor outcome. It is characterised by a very immature 

pro-B immunophenotype136-139, and the blasts are highly resistant to 

chemotherapy. The disruption of the wild-type gene involved in this 

translocation has pronounced effect on biochemical level, and recent studies 

have tried to shed light onto the molecular mechanisms promoting this disease. 

 

1.3.5.1 MLL/AF4 vs. AF4/MLL vs. MLL/AF4 & AF4/MLL- who’s the bad guy? 

The contribution of the reciprocal t(4;11)-fusion proteins MLL/AF4 and 

AF4/MLL to the leukaemogenic process is being controversially discussed in the 

field. Most MLL rearrangements only require der11 for transformation and 

leukaemogenesis in in vitro and in vivo models140-144; however, ectopic 

expression of MLL/AF4 does not transform in vitro145-146. Conversely, 

introducing ectopic MLL/AF4 and AF4/MLL alone or in combination revealed 

the transforming potential of AF4/MLL; MLL/AF4 alone showed no effect, but 

was required to maintain viability of the der4-transformed cells146. In contrast, 

RNAi-mediated depletion of AF4/MLL in t(4;11)-positive cell lines was not 

associated with a marked phenotype, and RNAi studies in these cell lines 

performed by us and others revealed MLL/AF4 to be essential for maintaining 

the inherent leukaemogenic potential147-148. These divergent findings are also 
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reflected in the in vivo setting, as there is no bona fide animal model able to 

satisfactorily recapitulate the disease. Currently, there are four transgenic 

mouse models investigating the expression of MLL/AF4 in murine 

haematopoietic progenitors; two developed B-cell lymphomas and myeloid 

malignancies after a long latency149,150, while another model resulted in overt 

leukaemia after 5-6 months of latency. However, the resulting malignancy 

showed a mixed lineage or myeloid phenotype, and only a fraction of the mice 

developed pre-B ALL133. This differs vastly from the human setting, where 95% 

of the MLL/AF4-positive acute leukaemia cases are ALL, predominantly with a 

pro-B immunophenotype. Furthermore, since MLL/AF4-positive leukaemia is 

associated with a high incidence of RAS mutations151, a transgenic mouse model 

co-expressing MLL/AF4 and constitutively activated KRAS was developed, in 

order to explore whether this was a cooperating mutation that would confer 

MLL/AF4 the required and correct transforming capacity. However, also in this 

model the mice did not develop ALL, but lymphomas, albeit with as drastically 

reduced latency when compared to the previous knock-in models152. 

Concordantly, a xenograft mouse model with MLL/AF4-transduced human 

CD34-positive cord blood cells failed to generate a malignant phenotype153. In 

contrast to MLL/AF4, there is only one mouse model exploring the role of 

AF4/MLL in t(4;11)-positive ALL. Remarkably, transgenic mice expressing the 

AF4/MLL fusion oncogene developed overt pro-B, biphenotypic or mixed-

lineage ALL, albeit with a low penetrance of approximately 40%154.  

These observations challenge the current perception that all MLLr acute 

leukaemias arise from a single oncogenic mutation, referred to as “one-hit 

model”, where the der11 fusion gene product acts as the main transforming 

oncogene. Although no comprehensive model has been suggested yet, evidence 

indicates that, at least in t(4;11)-positive ALL, two mutations, as in both fusion 

genes, are required for initial transformation. This is then subsequently 

superseded by MLL/AF4, which is required for the survival of the transformed 

cells. In this model, AF4/MLL acts as a “hit-and-run” oncogene.  
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1.3.5.2 T(4;11)-ALL shows major deregulation of epigenetic pathways 

The t(4;11)-translocation results in disruption of two epigenetic modulators, 

MLL and AF4, generating two fusion oncogenes with acquired novel functions: 

MLL/AF4 retains the DNA binding and target recognition domains from MLL, 

however loses the corresponding HMT activity for H3K4. Instead, this is 

replaced by the truncated AF4 moiety, and the associated DOT1L HMT activity. 

Indeed, aberrant H3K79 methylation of specific gene loci is one of the hallmarks 

of MLL/AF4-positive ALL132-133, and DOT1L expression has been shown to be 

essential for MLL fusion gene-dependent leukaemogenesis and disease 

maintenance124,133,155-156. Interestingly, disruption of the interaction of AF4 and 

AF9, which is retained in MLL/AF4, and putatively links this fusion with the 

DOT1L complex, results in cell death in t(4;11)-positive leukaemia cells157-159. 

The aberrant H3K79 methylation pattern found in MLLr acute leukaemia cells is 

accompanied by abnormally extended H3K4 methylation marks133. There is an 

increasing body of evidence for MLL fusion protein interactions with wild-type 

MLL, which results in recruitment of aberrant H3K4 HMT activity to the DOT1L 

complex. This MLL fusion- MLL wild-type interaction is required for malignant 

transformation, and suppression of MLL results in diminished target gene 

transactivation, proliferation and viability of leukaemic cells in vitro, as well as 

inhibiting leukaemogenesis in vivo. Moreover, knock-down of MLL wild-type 

reduces both H3K4 and H3K79 methylation marks on MLL fusion target gene 

promoters. The interaction appears to be mediated by the MLL-binding protein 

MENIN, which interacts with the immediate N-terminus of both wild-type MLL 

and the oncogenic fusions160.  

In contrast, the reciprocal fusion protein AF4/MLL gains the SET domain from 

the MLL moiety, which confers putative H3K4-HMT activity and enables 

interaction with the multimeric COMPASS-like complex. Indeed, Benedikt et al. 

recently showed AF4/MLL to copurify with key components of the COMPASS 

complex, such as ASH2L, WDR5 and RBBP5. Other factors of this AF4/MLL 

complex comprise NFkB1 and NPM1, and, unexpectedly, RNA Pol II and the 

pTEFb-kinase. Moreover, AF4/MLL showed inherent HMT activity and 

associated with histone methyltransferases of different histone modification 
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specificities, amongst which also was the DOT1L complex161. AF4/MLL has also 

acquired the conserved TASPASE1 cleavage site and the dimerisation domains 

FYRN and FYRC of the MLL moiety. Indeed, AF4/MLL is cleaved by TASPASE1, 

and the MLLC domain associates with the remnant MLLN moiety found in 

AF4/MLL. This heterodimerisation results in aberrant protein stabilisation135, 

and disruption of this association with small peptides results in degradation of 

the fusion protein, suppressing formation of the AF4/MLL-COMPASS 

complex162. 

In addition to the aberrant histone modification signatures, there is also 

deregulation of another major epigenetic pathway in MLLr ALL cells: t(4;11)- 

and t(11;19)-ALL cells possess a specific DNA methylation pattern distinct from 

other ALL subtypes. This results in aberrant silencing of several hundreds of 

genes, including tumour suppressors, such as FHIT, and miRNA gene loci. 

Concomitantly, this signature also revealed hypomethylation and aberrant 

expression of protooncogenes. DNA methyltransferase inhibitor treatment 

could partially reverse this aberrant signature, and, notably, exerted a selective 

cytotoxic effect against MLLr ALL cells, a finding with major clinical 

implications, as DNA methyltransferases inhibitors are part of the 

chemotherapy regimen of other haematologic malignancies. Furthermore, 

reexpression of hypermethylated miRNAs resulted in reactivation of an 

important regulatory mechanism for the post-transcriptional modulation of 

DNMT1 (DNA methyl transferase 1), a key mediator of DNA methylation, as well 

as MLL, and, hypothetically, AF4/MLL. These observations have interesting 

implications in the context of the aforementioned functional cooperation of 

wild-type MLL with the MLL fusions, and highlight an intrinsic deregulation of 

the DNA methylation pathway163-165.  

Remarkably, the two major epigenetic pathways, histone modifications and DNA 

methylation, are deregulated in MLL/AF4-positive ALL, exerting a concerted 

malignant effect. 
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1.3.5.3 T(4;11)-positive ALL is associated with glucocorticoid-resistance 

In addition to the altered intrinsic epigenetic functions of MLL/AF4 and 

AF4/MLL, there are also other molecular changes which contribute to the 

pathobiology of t(4;11)-positive ALL. One of the major clinical aspects of MLLr 

ALL is the poor and delayed response to glucocorticoid treatment during 

induction. This has been recently attributed to the overexpression of the Bcl-2 

family members BCL-2166 and MCL-1167, which have been previously described 

as contributory factors of glucocorticoid resistance in ALL. Concordantly, a 

resensitation of MLL/AF4-positive ALL cells towards prednisolone was 

achieved by down-regulation of MCL-1167, and BCL-2 inhibition synergised with 

other chemotherapeutic drugs, suppressing t(4;11)-positive ALL cell survival166.  

 

1.3.5.4 Specific gene expression signatures contribute to the 

immortalisation of t(4;11)-positive ALL  

High-throughput profiling of MLL/AF4 binding sites in the t(4;11)-positive ALL 

cell line SEM showed MLL/AF4 occupancy on promoters of genes linked to self-

renewal, such as MEIS1, FLT3, PROM1 and the HOXA gene cluster, indicating that 

MLL/AF4 might regulate the transcription of a haematopoietic stem cell-like 

signature132. In concordance with the altered epigenetic functions of MLL/AF4, 

these promoter loci were associated with a distinct H3K79 methylation 

profile132-133. Gene expression profiling of t(4;11)-patient cohorts showed a 

concordant up-regulation of the aforementioned genes168-169, and further 

studies revealed also expression of embryonic stem cell markers such as 

NANOG and OCT-4146. Concordantly, our group observed that MLL/AF4 

depletion in the SEM cell line results in down-regulation of PROM1 and its 

encoded surface marker protein CD133 148, and we have now reported an 

important link between MLL/AF4 and the expression regulation of TERT, a 

critical component of the telomerase enzyme, which is a major mediator of self-

renewal170.  

In other BCP-ALL subtypes the self-renewal capability is supported by the 

acquisition of a variety of secondary mutations next to the main cytogenetic 
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abnormality, often negative copy number alterations (CNA) of transcription 

factors regulating B-cell development171. Notably, t(4;11)-positive ALL cells 

typically do not carry CNA172-173; however MLL/AF4-positive ALL has a high 

incidence of KRAS and NRAS mutations151, as well as loss of function of the 

transcription factor Ikaros, important for B-cell development, due to aberrant 

alternative splicing174. The high degree of genomic integrity in t(4;11), as 

indicated by the lack of secondary CNA, suggests that the bulk of the malignant 

changes occurs from the transcriptional level onwards. 

 

1.3.5.5 MLL/AF4 perturbs cell cycle regulation 

MLL is an important regulator of cell cycle progression and implicated in cell 

cycle checkpoint response. As mentioned before, these functions are mediated 

by the cell cycle E3 ligase complexes as well as the DNA damage-activated 

kinase ATR, and this regulatory mechanism is abolished in MLL/AF4-positive 

ALL, resulting in aberrant stabilisation of the fusion gene and compromising 

MLL wild-type functions109-110. Consequentially, t(4;11)-positive ALL cells have 

an inherent cell cycle regulation defect, and are resistant to chemical and 

mitogenic stimuli which would normally activate the different cell cycle 

checkpoints109. In good accordance, forced expression of MLL/AF4 in Drosophila 

resulted in a deranged cell cycle progression and pupal lethality175, and the CDK 

inhibitor p27Kip (CDKN1B) was found to be a direct target gene of MLL/AF4 in 

lymphoid progenitor cells as well as t(4;11)-positive cell lines176.  
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1.4 AIMS OF THE THESIS 

The chromosomal rearrangement t(4;11) and its resulting fusion genes disrupt 

the epigenetic machinery, generating aberrant histone modification marks and 

deregulating the DNA methylation pathway. Consequently, an abnormal gene 

expression programme is induced, immortalising the cell. Concomitantly, 

abolishment of cell cycle checkpoints, impaired DNA damage response and high 

expression of pro-survival factors contribute to therapy-resistance. 

Therefore, MLL/AF4 is pivotal for leukaemic propagation by 

 interfering with the cell cycle machinery 

 inhibiting apoptotic cell death, and by 

 supporting malignant self-renewal. 

 

The scope of this thesis was to gain insight into the transcriptional programmes 

underlying this phenotype, in order to identify processes and key mediators 

regulating the MLL/AF4-dependent survival machinery, novel MLL/AF4-

regulated genes, and to subsequently characterise them regarding their 

contribution to the leukaemic phenotype. 

In order to do so 

 I performed loss-of-function studies in the t(4;11)-ALL positive cell line 

model SEM, combining a RNAi-mediated MLL/AF4 ablation time course 

approach with subsequent high-throughput gene expression profiling. 

Genes differentially expressed in response to MLL/AF4 depletion were 

analysed for functional signatures using bioinformatic methods. 

 Concomitantly, the dependency of the leukaemic cell on MLL/AF4 for 

survival was investigated, combining MLL/AF4 ablation with apoptosis-

inhibitor studies and global gene expression profiling. The resulting 

differentially expressed gene set was analysed for functional signatures 

using bioinformatic methods, as well as compared for unique and 
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common signatures with the expression data set generated without 

inhibitors.  

 Identified candidate genes and pathways were validated, and interesting 

targets functionally characterised, exploring their role in leukaemic cell 

survival and proliferation in vitro, as well as their relevance for in vivo 

disease development. 
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2.1 GENERAL MATERIALS 

2.1.1 General Chemicals 

All chemicals, if not stated specifically, were purchased at analytical grade from 

Sigma-Aldrich Company Ltd, Fisher Scientific, Life Science Technologies or VWR 

International, LLC. 

 

2.1.2 Oligonucleotides 

Tab. 2-1: qRT-PCR primers (VHBio, Sigma-Aldrich Ltd) 

Name Sequence 5'3' 

ACTB_1 
fw:GGTCATCACCATTGGCAATG 
rev: CTCCATGCCCAGGAAGGAA 

ACTB_2 rev: AGGACTCCATGCCCAGGAA 

AF4 sense fw: CAGAAGCCCACGGCTTATGT 

ANGPT1_1 
fw: TCTCTTCCCAGAAACTTCAACATCT 

rev: TCATGTTTTCCACAATGTAATTCTCA 

ANGPT2_001 
fw: AGGGACAAACCTGTTGAACCA 

rev: TTAATACTTGGGCTTCCACATCAG 

ANGPT4 
fw: GCAAGTGTGCCCAAGTGATG 

rev: ACGCCGTTGAGGTTTGACA 

ANGPTL2 
fw: CGCCTGGATGGCTCTGTTAA 

rev: CCAGTATTCGCCGTCAATGTT 

ANGPTL4 
fw: GGACAAGAACTGCGCCAAGA 

rev: CGGAAGTACTGGCCGTTGA 

ANXA1_all 
fw: TCAAAGCAGCATATCTCCAGGAA 

rev: CCTCCTCAAGGTGACCTGTAAGG 

BMF2;3 
fw: CCCCAGCGACTCTTTTATGC 

rev: CAAAGCAAGGTTGTGCAGGAA 

BMF3;4 
fw: CCGGCCTAGGAGAGATGGA 

rev: CCCCATCCTCTGGTTGGAA 

CYLD_1;2 
fw: CGTCGGAGTTTCCCCCTTT 

rev: GGGCGCACCTTTCAACTAAG 

DNMT3B 
fw: GCCACCTCTGACTACTGCCC 

rev: CCTCGGTCTTTGCCGTTGT 

DUSP6 
fw: AGCTCAAGGACGAGGGCTG 

rev: GGAGAACTCGGCTTGGAACTT 

GABARAPL1_all 
fw: CGGAAAAAGGAAGGAGAAAAGAT 

rev: CTTTTGGAGCCTTCTCTACAATCAC 

GAPDH 
fw: TGG CAT GGC CTT CCG T 

rev: TCT CCA GGC GGC ACGT T 
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HMGA2 
fw: CCCAAAGGCAGCAAAAACAA 
rev: GCCTCTTGGCCGTTTTTCTC 

HOXA6 
fw: CGGTTTACCCTTGGATGCA 

rev: GCCCATGGCTCCCATACAC 

HOXA7 
fw: GAGGCCAATTTCCGCATCTA 

rev: GCGGTTGAAGTGGAACTCCTT 

HOXA9 
fw: CCACCATCCCCGCACA 

rev: TTTCCAAGGCAAACCCTGTT 

HOXA10.2 
fw: CAGGCCACCTCGTGCTCTT 

rev: TTTGTCCGCCGAGTCGTAG 

JUN 
fw: TGGGAGGACCGGAGACAAG 

rev: TCTTTACCGCCGTGGAGAAG 

LC3B 
fw: TGCCGTCGGAGAAGACCTT 

rev: TCGAATAAGTCGGACATCTTCTACTC 

MLL antisense rev: GCAAACCACCCTGGGTGTTA 

MLL/AF4 
fw: ACAGAAAAAAGTGGCTCCCCG 

rev: TATTGCTGTCAAAGGAGGCGG 

PARP2 
fw: GCCCCCTTGACCATGAAAGT 

rev: TCGCTGTGTGTGGGAGCAT 

PYGO2_all 
fw: TCTGCAAATGAAGAGTCCAGAAAA 

rev: GTGCAAACTCCGTCAGATGTGA 

RIPK1 
fw: CAACTGCATTGAGCACAACGA 

rev: CACCACCCGGCTGTGTCT 

TBP 
fw: CCTAAAGACCATTGCACTTCGT 

rev: GTTCGTGGCTCTCTTATCCTCA 

TERT 
fw: GGA GAA CAA GCT GTT TGC GG 

rev: AGG TTT TCG CGT GGG TGA G 

TIE1 
fw: ACCTGTGCCGAGCTCTATGAA 

rev: TGACGCATCAGCTCGTACACT 

TNF 
fw: ATCTTCTCGAACCCCGAGTGA 

rev: AGCTGCCCCTCAGCTTGAG 

TNF_2 
fw: TGGCCCAGGCAGTCAGA 

rev: GGTTTGCTACAACATGGGCTACA 
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Tab. 2-2: RT-PCR primers (Fermentas, Sigma-Aldrich Ltd) 

Name Sequence 5'3' TM [°C] 

GAPDH (Fermentas) 
fw: CAAGGTCATCCATGACAACTTTG 

56° 
rev: GTCCACCACCCTGTTGCTGTAG 

ITGA4 
fw: GCAATGGAAACAAACCTCGT 

56° 
rev: TCTTGGTGGAGACTCTGCCT 

ITGA5 
fw: CAGATCCTGTCTGCCACTCA 

56° 
rev: CAGAGCCAAAGAAGTCTGGG 

ITGAV 
fw: GTTCCAAGAGCAGCAAGGAC 

56° 
rev: TGCTCCCTTTTGCTTGAGTT 

ITGB1-a 
fw: AATGAAGGGCGTGTTGGTAG 

56° 
rev: CTGCCAGTGTAGTTGGGGTT 

ITGB3 
fw: GCAATGGGACCTTTGAGTGT 

56° 
rev: AACGGTTGCAGGTATTTTCG 

ITGB5 
fw: GTGCTCCAAAGAGGACTTCG 

56° 
rev: GAAGTTGCTGGTGAGCTTCC 

TEKa 
fw: GCATGGACTCTTTAGCCAGC 

56° 
rev: CTGAGCATGAGGCAGGTGTA 

 

 

Tab. 2-3: siRNA oligonucleotides 

Name (Target) Sequence 5'3' Company 

siMLL/AF4 
s     5'- AAGAAAAGCAGACCUACUCCA -3' 

Purimex 
as   5'- UGGAGUAGGUCUGCUUUUCUUUU -3' 

siAML1/MTG8 
s     5'-CCUCGAAAUCGUACUGAGAAG-3' 

Purimex 
as   5'-UCUCAGUACGAUUUCGAGGUU-3' 

siANGPT1_1 
(siGENOME D-007802-01) CCAGAAAGCUGACAGAUGU Dharmacon 

siANGPT1_2 
(siGENOME D-007802-02) not available Dharmacon 

siANGPT1_3 
(siGENOME D-007802-03) GAACCAGCCUCCUCUCUCA Dharmacon 

siANGPT1_5 
(siGENOME D-007802-05) not available Dharmacon 

Hs_HOXA7_6 FlexiTube siRNA not available QIAGEN 

Hs_HOXA7_8 FlexiTube siRNA GCCCUGAUGUUUCCUAUAATT- QIAGEN 

siRNA-Cy5 not available QIAGEN 
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Lentiviral shRNA Expression plasmids 

Name clone Target sequence Company 

pTRIPZ-shANGTP1 V2THS_94475 CCTTGTCAATCTTTGCACTAA Open Biosystems 

pTRIPZ-shNTC RHS4743 Not available Open Biosystems 

 

 

 

2.1.3 Antibodies 

Tab. 2-4: Immunoblot antibodies 

epitope dilution Company 

rabbit α-cleaved CASPASE-3 1:1000 Cell Signalling Technology, Inc 

rabbit α-cleaved CASPASE-7 1:1000 Cell Signalling Technology, Inc 

rabbit α-DUSP6 1:800 kind gift from DR. P.  

mouse α-GAPDH,  1:50000 HyTest, Turku, Finland 

rabbit α-LC3B 1:1000 Cell Signalling Technology, Inc 

rabbit α-PARP1 1:1000 Cell Signalling Technology, Inc 

α-RIPK1 1:1000 
Kind gift from  

Dr. Krippner-Heidenreich 

mouse-α-TUBULIN (Ab-2 DMIA) 1:3000 Neomarker (Labvision) 

α-mouse IgG-HRP  
1:5000-
1:10000 

Amersham 

α-rabbit IgG-HRP 1:1000 Cell Signalling Technology, Inc 

α-rabbit IgG-HRP 1:1000 DAKO UK Ltd 
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Tab. 2-5:FACS antibodies 

epitope clone Company 

α-hCD19-APC SJ25C1 BD Biosciences 

α-hCD34-PerCP-Cy5.5 8G12 BD Biosciences 

α-murine Cd45-PE-Cy7 30-F11 BD Biosciences 

α-murine Ter119-PE-Cy7 Ter119 BD Biosciences 

α-hTNFR1 H398 kind gift from Dr. Krippner-Heidenreich 

α-hTNFR2 

 

MR2-1 Hbt HyCult (Netherlands) 

α-hTNF T1 kind gift from Dr. Krippner-Heidenreich 

α-mouse IgG-FITC not applicable Jackson ImmunoResearch Laboratories Inc. (USA)  

 
 

  



Material and Methods 

38 
 

2.1.4 General equipment 

2.1.4.1 Centrifuges 

Allegra X-12R centrifuge (Beckman Coulter, Buckinghamshire, UK) 

Allegra X-22R centrifuge (Beckman Coulter, Buckinghamshire, UK) 

5415 R microfuge (Eppendorf, Cambridgeshire, UK) 

L870M Ultracentrifuge (Beckman, High Wycombe, UK) 

 

2.1.4.2 Thermocycler 

GeneAmp PCR System 2700 (applied Biosystems) 

 

2.1.4.3 Flow cytometer 

FACSCalibur (Beckton Dickinson, Oxford, UK) 

FACScan (Beckton Dickinson, Oxford, UK) 

FACS Canto II (Beckton Dickinson, Oxford, UK) 

 

2.1.4.4 Spectrophotometer 

Spectramax 250 Multiwell plate reader (Molecular Devices, Crawley, UK) 

ND-1000 spectrophotometer (Nanodrop Technologies Ltd., USA) 

 

2.1.4.5 Electroporator 

Elektroporations-Impulsgenerator EPI 2500, Dr. L Fischer, Heidelberg 
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2.2 TISSUE CULTURE TECHNIQUES 

2.2.1 Freezing and thawing of viable cell lines 

Cells were harvested by centrifugation at 335 g for 5 min at room temperature, 

and the pellet resuspended in pre-chilled freeze-mix medium (90% FCS, 10% 

DMSO, v/v %) to a concentration of 5x106-1x107 cells/ml. The cell suspension 

was immediately transferred into cryovials and frozen down at -80C. 

Subsequently, the vials were transferred to liquid nitrogen (-192C) for long-

term storage. 

Frozen viable cells were thawed quickly at 37C, diluted 1:10 in pre-warmed 

corresponding growth medium and the DMSO contained in the medium 

removed by centrifugation at approximately 335 g for 5 min at room 

temperature. The cells were resuspended in growth medium and seeded put at 

a concentration of 1x106 cells/ml. 

 

2.2.2 Freezing and thawing of viable patient material 

Pre-purified patient lymphoblasts obtained by Ficoll-density centrifugation 

were harvested by centrifugation at approximately 335 g for 10-15 min at room 

temperature, and the pellet resuspended in pre-chilled freeze-mix medium 

(90% FCS, 10% DMSO, v/v %) to a concentration of 5x106-1x107 cells/ml. The 

cell suspension was immediately transferred into cryovials and frozen down at -

80C. Subsequently, the vials were transferred to liquid nitrogen (-192C) for 

long-term storage. 

Frozen cells were thawed quickly at 37C, diluted 1:10 in pre-warmed 

appropiate growth medium and the DMSO contained in the medium removed by 

centrifugation at approximately 300 g for 10-15 min at room temperature. The 

cells were resuspended in growth medium and seeded out at a concentration of 

1-2x106 cells/ml. 
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2.2.3 Culture of cell lines 

2.2.3.1  SEM (DSMZ No. ACC 546) 

Human B-cell precursor acute lymphoblastic leukaemia cell line derived from 

the peripheral blood of a 5-year-old female patient in relapse, positive for 

t(4;11)(q21;q23) rearrangement, expresses MLL/AF4 and AF4/MLL fusion 

genes. Cells growing in suspension were maintained in culture in RPM1-1640 

growth medium, HEPES-modified, supplemented with 2 mM L-Gln and 10% 

FCS. Cell concentrations were kept between 0.5x106 - 3x106 cells/ml by splitting 

the cultures 1:5 to 1:10 every 2-3 days by removing and adding medium. 

 

2.2.3.2  RS4;11 (DSMZ No. ACC 508) 

Human B-cell precursor acute lymphoblastic leukaemia cell line derived from 

the bone marrow of a 32-year-old female patient in relapse, positive for 

t(4;11)(q21;q23) rearrangement, expresses MLL/AF4 and AF4/MLL fusion 

genes. Cells growing in suspension were maintained in culture in RPM1-1640 

growth medium, HEPES-modified, supplemented with 2 mM L-Gln and 10% 

FCS. Cell concentrations were kept between 0.5x106 - 2x106 cells/ml by splitting 

the cultures 1:4 every 2-3 days by removing and adding medium. 

 

2.2.3.3  MV4;11 (DSMZ No. ACC 102) 

Human acute monocytic leukaemia cell line (AML FAB M5) derived from a 10-

year-old male patient at diagnosis, positive for t(4;11)(q21;q23) rearrangement, 

expresses MLL/AF4 and AF4/MLL fusion genes. Cells growing in suspension 

were maintained in culture in RPM1-1640 growth medium, HEPES-modified, 

supplemented with 2 mM L-Gln and 10% FCS. Cell concentrations were kept 

between 0.5x106 - 2x106 cells/ml by splitting the cultures 1:5 every 2-3 days by 

removing and adding medium. 
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2.2.3.4  NALM6 (DSMZ No. ACC 128) 

Human B-cell precursor acute lymphoblastic leukaemia cell line derived from 

the peripheral blood of a 19-year-old male patient in relapse, positive for 

t(5;21) rearrangement, expresses TEL/PDGFRB fusion gene. Cells growing in 

suspension were maintained in culture in RPM1-1640 growth medium, HEPES-

modified, supplemented with 2 mM L-Gln and 10% FCS. Cell concentrations 

were kept between 0.5x106 - 2x106 cells/ml by splitting the cultures 1:5 every 

2-3 days by removing and adding medium. 

 

2.2.3.5  PreB-697 (DSMZ No. ACC 42) 

Human B-cell precursor acute lymphoblastic leukaemia cell line derived from 

the bone amrrow of a 12-year-old male patient in relapse, positive for 

t(1;19)(q23;p13), rearrangement, expresses E2A/PBX1 fusion gene. Cells 

growing in suspension were maintained in culture in RPM1-1640 growth 

medium, HEPES-modified, supplemented with 2 mM L-Gln and 10% FCS. Cell 

concentrations were kept between 0.5x106 - 2x106 cells/ml by splitting the 

cultures 1:5 every 2-3 days by removing and adding medium. 

 

2.2.3.6  REH (DSMZ No. ACC 22) 

Human B-cell precursor acute lymphoblastic leukaemia cell line derived from 

the peripheral blood of a 15-year-old female patient in relapse, positive for 

t(12;21) rearrangement, expresses TEL/AML1 fusion gene. Cells growing in 

suspension were maintained in culture in RPM1-1640 growth medium, HEPES-

modified, supplemented with 2 mM L-Gln and 10% FCS. Cell concentrations 

were kept between 0.5x106 - 2x106 cells/ml by splitting the cultures 1:5 every 

2-3 days by removing and adding medium. 
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2.2.3.7  Kasumi-1 (DSMZ No. ACC 220)  

Human acute myeloid leukaemia cell line (AML FAB M2) derived from the 

peripheral blood of a 7-year-old male patient in 2nd relapse after bone marrow 

transplantation, positive for t(8;21)(q22;q22) rearrangement, expresses 

AML1/MTG8. Cells growing in suspension were maintained in culture in RPM1-

1640 growth medium, HEPES-modified, supplemented with 2 mM L-Gln and 

10% FCS. Cell concentrations were kept between 0.5x106 - 2x106 cells/ml by 

splitting the cultures 1:3 every 2-3 days by removing and adding medium. 

 

2.2.3.8  K562 (DSMZ No. ACC 10) 

Human chronic myeloid leukaemia cell line derived from pleural effusions of a 

53-year-old female patient in blast crisis, positive for t(9;22) rearrangement, 

expresses BCR-ABL b3-a2 fusion gene. Cells growing in suspension were 

maintained in culture in RPM1-1640 growth medium, HEPES-modified, 

supplemented with 2 mM L-Gln and 10% FCS. Cell concentrations were kept 

between 0.5x106 - 3x106 cells/ml by splitting the cultures 1:5 to 1:10 every 2-3 

days by removing and adding medium. 

 

2.2.3.9  TK-6 (ATCC No. CRL-8015) 

Human lymphoblastic cell line derived from the spleen of a 5-year-old male non-

leukaemic patient. Cells growing in suspension were maintained in culture in 

RPM1-1640 growth medium, HEPES-modified, supplemented with 2 mM L-Gln 

and 10% FCS. Cell concentrations were kept between 0.5x106 – 1.5x106 cells/ml 

by splitting the cultures 1:10 every 2-3 days by removing and adding medium. 

 

2.2.3.10  MUTZ5 (DSMZ No. ACC 490) 

Human B-cell precursor acute lymphoblastic leukaemia cell line derived from 

the peripheral blood of a 26-year-old male patient in relapse. Cells growing in 

suspension were maintained in culture in RPM1-1640 growth medium, HEPES-
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modified, supplemented with 2 mM L-Gln and 20% FCS. Cell concentrations 

were kept between 1x106 - 2x106 cells/ml by splitting the cultures 1:2 every 7 

days by removing and adding medium. 

 

2.2.3.11  MHH-CALL4 (DSMZ No. ACC 337) 

Human B-cell precursor acute lymphoblastic leukaemia cell line derived from 

the peripheral blood of a 10-year-old male patient at diagnosis. Cells growing in 

suspension were maintained in culture in RPM1-1640 growth medium, HEPES-

modified, supplemented with 2 mM L-Gln and 20% FCS. Cell concentrations 

were kept between 1x106 - 2x106 cells/ml by splitting the cultures 1:2 every 7 

days by removing and adding medium. 

 

2.2.3.12  SK-HEP (ACC 141) 

Human liver adenocarcinoma cell line derived from ascites of a 52-year-old 

male patient. Adherent cells growing in a monolayer were maintained in culture 

in RPM1-1640 growth medium, HEPES-modified, supplemented with 2 mM L-

Gln and 20% FCS.  In order to maintain the cells in a logarithmic growth phase, 

cells were passaged after achieving a confluence of approximately 90%. The cell 

monolayer was washed once with warmed PBS and subsequently detached via 

enzymatic digestion from the tissue culture flask by adding 0.5-1 ml of 1x 

trypsin/EDTA-solution (0.05% trypsin, 0.02% EDTA, Sigma-Aldrich Company 

Ltd) onto the monolayer and incubating it shortly at 37C. Detachment was 

stopped by adding 9 volumes growth medium; 1/4th of this single cell 

suspension was transferred into a new flask containing 14 ml of pre-warmed 

growth medium. 

 

2.2.3.13 293T (ACC 635) 

Human embryonic kidney cell line transduced to carry a plasmid containing a 

mutant of SV-40 large T-antigen. Adherent cells growing in a monolayer were 
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maintained in culture in DMEM (Sigma-Aldrich Company Ltd) growth medium, 

HEPES-modified, supplemented with 2 mM L-Glutamine and 10% FCS.  In order 

to maintain the cells in a logarithmic growth phase, cells were passaged after 

achieving a confluence of approximately 90%. The cell monolayer was washed 

once with warmed PBS and subsequently detached from the tissue culture flask 

via enzymatic digestion with 0.5-1 ml 1x trypsin/EDTA-solution (0.05% trypsin, 

0.02% EDTA, Sigma-Aldrich Company Ltd) onto the monolayer and incubating it 

shortly at 37C. Detachment was stopped by adding 9 volumes growth medium; 

1/4th to 1/5th of this single cell suspension was transferred into a new flask 

containing pre-warmed growth medium. 

 

2.2.4 Cell number determination using the Trypan Blue exclusion 

assay 

In order to determine the number and concentration of cells in culture, a single 

cell suspension is required; obtained either by careful mixing, in case of 

suspension cell lines, or by tryptic digest of adherent cell monolayers, stopped 

by subsequent addition of 9 volumes growth medium, as described in section 

2.2.3. Approximately 10-20 µl of the cell suspension were mixed with 1x volume 

of trypan blue solution (0.4%, w/v, Sigma-Aldrich Company Ltd), a vital dye 

taken up by non-viable cells, staining them blue, while being excluded from 

viable cells. Approximately 10 µl of this mixture are applied onto an assembled 

haemocytometer and counted under a light microscope, using 20x 

magnification.  

A haemocytometer, also called Neubauer counting chamber, consists of four 

counting square units composed of 16 smaller squares aligned 4x4  (see 

figurexxxx). Only shining, unstained cells in all four counting square units were 

counted; the sum of cells averaged and the cell concentration determined using 

following equation: 
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The dilution factor D corresponds to the fold dilution of the applied cell 

suspension with the trypan blue dye solution, in this case 2. 
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2.2.5 Preparation of duplexed siRNA solutions 

Lyophilised siRNA oligonucleotides were present as either separate 

oligonucleotide sense or antisense strands, or in already duplexed form. In the 

case of separate sense and antisense strands, each strand was reconstituted 

with siRNA hybridisation buffer (25mM Tris, 100 mM NaCl, pH 7.51) to a final 

concentration of 100 µM. Equimolar amounts of both oligonucleotides strand 

stock solutions were mixed and diluted in siRNA hybridisation buffer to a final 

working concentration of 20 µM. Hybridisation occurred by heat-denaturing the 

solution at 95C for 30s, in order to remove secondary structures which might 

possible impinge on the process, and subsequent annealing of both 

complimentary strands by slowly cooling down the solution to room 

temperature..  In the case of lyophilised siRNA oligonucleotides in duplexed 

form, the siRNA was reconstituted with siRNA hybridisation buffer to a final 

concentration of 100 µM, using a thermo shaker at maximal shaking speed 

(1200 rpm) for 15 min. A 20 µM siRNA working solution was prepared by 

dilution with siRNA hybridisation buffer. SiRNA working solutions were stored 

at -20C, and siRNA stock solutions at -80C. 

 

2.2.6 Electroporation of leukaemic cell lines with siRNA 

Cell concentration was determined as described in section 2.2.4, and cells 

harvested by centrifugation at 335g for 5min at room temperature. 

Subsequently, the cells were adjusted to a density of 107 cells/ml, and between 

100 µl and 800 µl of this suspension were pipetted into the electroporation 

cuvette. A 20µM siRNA stock solution was diluted into this reaction mixture 

yielding a final cuvette concentration of 500 nM, if not stated differently. 

Immediately after the cell suspension was electroporated using a single pulse of 

10ms at 350V (SEM cell line), 330V (Kasumi-1 cell line) or 370V (RS4;11 cell 

line). The cells were incubated for 15-30 min at room temperature before being 

diluted 20-fold in pre-warmed growth medium, resulting in a density of 5x105 

cells/ml. Cells were cultured under standard conditions. If required, serial 

electroporations were performed every other day in the case of the SEM cell 
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line, or at three-day intervals for the Kasumi-1 cell line following the same 

procedure. 

 

2.2.7 Drug and Inhibitor Treatment 

2.2.7.1 zVAD-FMK 

The pancaspase inhibitor carboxybenzoxy-valyl-alanyl-aspartyl-[O-methyl]-

fluoromethylketone (zVAD-FMK, Enzo Life Sciences, Inc.) is a cell permeable 

drug that acts as an irreversible caspase inhibitor. For treatment, the substance 

was reconstituted with DMSO following manufacturer’s protocol, resulting in a 

20 mM stock solution. Since high DMSO concentrations have a cytotoxic effect 

on cells, the zVAD stock solution was prediluted 10-fold in medium, yielding a 2 

mM working solution. Immediately before seeding out electroporated cells, 

zVAD was added to growth culture medium to the desired final concentration; 

cells were then co-cultured in the zVAD-supplemented medium for two days. 

This procedure was repeated for subsequent electroporations. 

 

Fig. 2-1: Chemical structure of the pan-caspase inhibitor zVAD  

 

2.2.7.2 Necrostatin-1 (NEC-1) 

Necrostatin-1 (5-(1H-Indol-3-ylmethyl)-3-methyl-2-thioxo-4-imidazolidinone), 

also referred to as NEC-1, is a kinase inhibitor specific for RIPK1, a key regulator 

of the necroptotic cell death pathway. Consequently, NEC-1 blocks necroptosis.  
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For treatment, Necrostatin-1 (Sigma-Aldrich Company Ltd) was reconstituted 

with DMSO to a 100 mM stock solution. SEM cells serially electroporated with 

siRNA and treated with or without zVAD were supplemented immediately after 

the second electroporation with NEC-1 to a final concentration of 100 µM, and 

cultured for two days at standard conditions. 

 

 

Fig. 2-2: Chemical structure of the RIPK1 inhibitor NEC-1  

 

2.2.7.3 α-TNF (Infliximab) 

The monoclonal antibody Infliximab is specific for the cytokine TNF (Tumour 

Necrosis Factor); binding blocks the interaction of TNF with its cognate 

receptors.  

Briefly, SEM cells serially electroporated with siRNA and treated with or 

without zVAD were supplemented immediately after the second electroporation 

with Infliximab to a final concentration of 100 µM, and cultured for two-days at 

standard conditions. 

 

2.2.7.4 Dexamethasone 

The glucocorticoid dexamethasone (Sigma-Aldrich Company Ltd) is a cytotoxic 

drug administered in ALL chemotherapy. For treatment, the substance was 
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reconstituted in 100% ethanol to a 20 mM stock solution. Singly electroporated 

SEM cells were seeded out into 96-well plates at a concentration of 0.5 mio 

cells/ml, and equilibrated for 6h in a standard cell culture incubator. 

Subsequently, the cells were supplemented with dexamethasone at a dose range 

(0.001-100µM) and cultured for four days under standard conditions. Viability 

was determined using an MTT assay as described in 2.2.8. 

 

2.2.7.5 recombinant human ANGPT1 

SEM cells were electroporated as described in 2.2.6, growth medium was 

supplemented with 2 µg/ml recombinant human ANGPT1 (ENZO Life Sciences 

Inc.) and cells cultured for 96h. 

 

2.2.8 Determination of cell viability by the MTT assay 

This assay functions on the principle that only viable cells possess intact 

mitochondria with active mitochondrial dehydrogenases. Addition of the 

membrane permeable MTT dye (Thiazolyl Blue Tetrazolium Bromide, Sigma-

Aldrich Company Ltd) to the cell culture results in its metabolisation to 

insoluble violet formazan crystals by the aforementioned dehydrogenases. 

Solubilisation of the crystal precipitates results in a violet solution, whose 

optical absorbance (OD) correlates directly to the number of viable cells. Briefly, 

100 µl of a cell suspension are seeded out in a flat-bottomed 96-well plate and 

treated according to the specific experimental set-up. In parallel, culture 

medium alone or containing the drug vehicle is also added to separate wells for 

blanking. At the experimental endpoint, the amount of viable cells is determined 

by adding 1/10 volume of MTT solution (5 mg/ml in PBS) and incubation of the 

plate for 4h-5h at standard cell culture conditions (37C, 5% CO2, 100% 

humidity). The formed crystals are dissolved by addition of 100 µl MTT 

solubilisation solution (0.1 N HCl, 10% Triton-X in isopropanol) and repeated 

pipet-mixing. The OD of the solution is measured with a plate reader at 570 nm 

wavelength with reference wavelength of 650 nm. For viability calculation, the 
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OD values of each blank control was averaged and subtracted from the mean of 

the corresponding treated sample wells. Afterwards, the OD values of the 

treated cells were normalised against the control sample. 

 

2.2.9 Determination of cell viability by the CellTiter-Glo® assay  

The principle of the CellTiter-Glo® assay (Promega) is based on the 

measurement of cellular ATP as a surrogate marker for viability. In brief, the 

CellTiter-Glo® reagent contains both luciferase and its substrate luciferin; after 

cell lysis, luciferin is metabolised into oxyluciferin by the luciferase enzyme, 

hydrolising the released cellular ATP into AMP and pyrophosphate; this 

reaction generates a light signal detected and recorded by a luminometer, and 

converted into arbitrary light units (ALU). There is a linear correlation between 

light intensity and the amount of ATP, which corresponds to the number of 

viable cells. 

The experimental set-up was as follows: CellTiter-Glo® reagent was generated 

by reconstituting lyophilized CellTiter-Glo® substrate with CellTiter-Glo® 

buffer according to manufacturer’s instructions. 5  µl of treated cell culture 

suspension was transferred to white-walled 96-well plates, and lysed with an 

equal volume of CellTiter-Glo® reagent for 2 min on an orbital shaker at 600-

800 rpm, followed by incubation for 10 minutes at room temperature. Each 

sample was performed in duplicates; additionally, blank controls with either 

zVAD-, NEC-1 or DMSO-supplemented growth medium were pipetted in 

duplicates as well and treated accordingly. Luminescence was recorded within 

1h of lysis. For the calculation of the activity fold-change between the different 

treatments, the ALU of the blank controls were averaged and subtracted from 

the mean of the corresponding treated sample wells. Afterwards, the ALU of the 

siRNA-treated SEM cells were normalised against the controls sample (MOCK). 
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2.2.10 Caspase-Glo® Caspase-3/-7 Activity Assay 

The Caspase-Glo® Caspase-3/-7 Activity Assay (Promega) is a luciferase-based 

assay that  measures the proteolytic activity of the effector caspases caspase-3 

(CASP3) and caspase-7 (CASP7). The Caspase-Glo® reagent contains both the 

tetrapeptide DEVD conjugated to a luciferin-derivate (aminoluciferin) as well as 

the luciferase enzyme. Activated caspases-3/-7 recognise DEVD as a proteolytic 

substrate, cleaving off the aminoluciferin, which is subsequently metabolised by 

luciferase into oxyluciferin, generating a light signal. This signal is detected and 

recorded by a luminometer, and converted into arbitrary light units (ALU). 

The experimental set-up was as follows: Caspase-3/-7-Glo® reagent was 

generated by reconstituting lyophilized Caspase-Glo® substrate with Caspase-

Glo® buffer according to manufacturer’s instructions. The density of treated 

cells was determined using a trypan blue exclusion assay, as indicated in 2.2.4. 

For each sample, 105 viable cells were harvested and washed once with PBS and 

subsequently resuspended in normal growth medium to a concentration of 105 

cells/ml. 50-75µl of this suspension were transferred into white-walled 96-well 

flat bottom plates and supplemented with equal volume of Caspase-3/-7-Glo® 

reagent, resulting in a cell number of 5-7.5x104 cells per well. Each sample was 

performed in duplicates. In addition, two blank controls with either zVAD- or 

DMSO-supplemented growth medium were pipetted in duplicates as well and 

treated accordingly. After cell lysis and incubation for 1-2h, the resulting 

luminescence was recorded by a luminometer, and converted into arbitrary 

light units (ALU). For the calculation of the activity fold-change between the 

different treatments, the ALU of the blank controls were averaged and 

subtracted from the mean of the corresponding treated sample wells. 

Afterwards, the ALU of the siRNA-treated SEM cells were normalised against the 

controls sample (siAML1/MTG8). 
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2.2.11 Lentivirus particle production in the packaging cell line 

293T using the CaPO4 transfection method 

Virus particles containing shRNA expression cassettes were produced in the 

packaging cell line 293T by transient cotransfection of lentiviral envelop, 

packaging and expression plasmids using the CaPO4 transfection method. In 

order to prepare the 293T cells for the transfection the cells were harvested by 

tryptic digestion of the adherent monolayer as described in 2.2.3; digestion was 

stopped by addition of 9 volumes growth medium. After cell concentration 

determination by trypan blue exclusion assay, 2-2.5x106 cells were seeded out 

in a 90mm2 tissue culture disk containing 10 ml of growth medium. The cells 

were cultured overnight under standard conditions. The following day, if the 

cells had reached 30-50% confluency, cotransfection was carried out under 

sterile conditions. All required solutions were warmed to room temperature. At 

first, 5 µg pMD2.G envelope plasmid, 15 µg pCMVdR8.91 packaging plasmid and 

20 µg lentiviral transfer vector containing the expression cassette (pTRIPZ-

shRNA), were mixed in a reaction tube, and the volume of the mixture adjusted 

to 250 µl using special water solution (2.5 mM HEPES, pH 7.3). Addition of 250 

µl 0.5 M CaCl2 solution resulted in complexation of the plasmid DNA with Ca2+. 

This mixture was added drop-wise to 500 µl of 2x HeBS solution (0.28M NaCl, 

0.05M HEPES, 1.5 mM Na2HPO4, pH 7.00), under continuous air-bubbling, 

followed by incubation for 30 min at room temperature, in order to facilitate 

DNA-CaPO4 complex precipitate formation in the solution. Subsequently, the 

mixture was added drop-wise onto the 293T cells prepared the day before, and 

the cells cultured overnight under standard conditions. The following day, the 

growth medium was removed and the precipitates washed off the cells with 

pre-warmed PBS, fresh growth medium added and the cells cultured under 

standard conditions for 3 days before harvesting the produced viral particles as 

described in section (2.2.12), plasmid cards are listed in the appendix. 
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2.2.12 Harvest and concentration of lentiviral particles 

On day 4 post co-transfection of the 293T cells with the lentiviral plasmids, 

produced lentiviral particles were harvested. The supernatant of the transfected 

293T cells was collected and cell debris removed by centrifugation at 3000 rpm 

for 15 min at room temperature. The cells and the cell debris pellet were 

discarded, and the supernatant filtered using a sterile PVDF membrane filter 

with 0.45 µM pore size. The supernatant was adjusted to a volume of 25-30 ml 

with filtered growth medium, and the particles harvested by ultracentrifugation 

at 120,000 g in a swinging bucket rotor (Beckman Instruments Inc.) for 2h at 4C. 

Subsequently, the supernatant was discarded by careful decantation and the 

virus pellet resuspended in 3 ml of target cell line growth medium. 

Concentrated lentiviral particles were aliquoted and kept at 4C if used the same 

day, or transferred to -80C for long-term storage. 

 

2.2.13 Lentiviral transduction of acute leukaemia cell lines by 

spinoculation 

Infection and transduction of leukaemia cell lines with lentiviral particles 

occurred by spinoculation. Approximately 2x106 leukaemic cells were harvested 

by centrifugation at 335g, for 5 min at room temperature; the pellet 

resuspended in 2 ml of pre-warmed growth medium, and seeded out per well of 

a six-well tissue culture plate. Approximately 700 µl - 1ml of concentrated 

lentiviral particles were added to the cells, and the suspension supplemented 

with polybrene solution (8 mg/ml) to a final concentration of 8µg/ml. 

Subsequently, the cells were spinoculated by centrifugation at 1500g for 2h at 

32C, followed by incubation overnight under standard conditions. On the 

following day, the polybrene-containing medium was removed from the cells by 

centrifugation at 335g for 5 min at room temperature. Subsequently, the cell 

pellet was resuspended of with 4 ml of pre-warmed growth medium. The 

transduced cells were cultured under standard conditions for at least 3 days 

before applying selection procedures. 
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2.2.14 Selection of stably transduced cells using puromycin 

In order to enrich lentivirally transduced cells to a desired purity of >80%, cells 

were treated with puromycin. Selection was started not earlier than 72h post-

infection by supplementing normal cell growth medium with puromycin 

(Sigma-Aldrich Company Ltd) to a final concentration of 0.5 µg/ml. In 

subsequent culturing steps, this concentration was incremented until reaching a 

2 µg/ml puromycin dose in the culture medium. Selection pressure was 

maintained by culturing the cells at this or higher doxycycline concentrations up 

to 4 µg/ml. For experiments, cells were taken off selection medium by brief 

centrifugation at 335g for 5 min at room temperature and resuspended in 

standard growth medium. 

 

2.2.15 Induction of shRNA expression with Doxycycline 

SEM and SEM-SLIEW cells transduced with an doxycycline-inducible expression 

vector were grown in normal growth medium supplemented with 1 µg/ml 

Doxycycline (Sigma-Aldrich Company Ltd), unless otherwise stated. Full 

induction was attained after at least 72h doxycycline exposure, but induction 

could be observed already after 24h. 

 

2.3 FLOW CYTOMETRY TECHNIQUES 

2.3.1 Cell cycle analysis  

Analysis of the cell cycle distribution of a cell population by flow cytometry is 

based on measurements of the cellular DNA content. Cells undergoing different 

cell cycle stages have varying DNA content, from a normal diploid (=2n) DNA 

content during G1/G0-phase, up to a tetraploid (=4n) chromosome set during 

the late S-, G2- and early M-Phase. Cellular DNA content can be quantitated with 

fluorescent DNA-intercalating dyes. The corresponding fluorescent signal shows 
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a characteristic histogramm (fig. 2-3); the fluorescence intensity correlating 

with the cellular DNA content and concomitantly the cell cycle distribution of a 

cell population. 

In order to stain cells of interest, 100-300 µl of cell suspension (approximately 

0.5 to 5x105 cells) were pipetted into a polystyrene round bottom FACS tube, 

the volume adjusted to 4 ml with PBS, and the cells harvested by centrifugation 

at 335g for 5 min at room temperature. After carefully discarding the 

supernatant, the cells were stained using hypotonic lysis: the cell pellet was 

resuspended in 100 µl citrate buffer before adding 400 µl of DNA staining and 

lysis buffer and 1-3 µl of DNase-free RNase A (100 mg/ml, Qiagen). The samples 

were kept at 4C in the dark before carrying out cell cycle analysis on the flow 

cytometer. Analysis of the results was performed with ModFit LT software 

(Verity Software House).  

 

Fig. 2-3: Cell cycle histogramme schematic 

 

2.3.2 Measurement of cells with endogenous fluorescence 

Approximately 0.5 to 1 ml of cells of interest were harvested by centrifugation 

at 335g for 5 min at RT. The cell pellet was washed once with PBS and 
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resuspended with 0.5 ml of PBS. Fluorescent cells were measured by flow 

cytometry using the appropriate fluorescence channels.  

 

2.3.3 Expression analysis of membrane-bound TNF and its cognate 

receptors TNFR1 and TNFR2 by flow cytometry 

Approximately 2x106 cells per sample were harvested by centrifugation for 5 

minutes at 400g and 4C. All the subsequent incubation and centrifugation steps 

were performed on ice or at 4C, respectively. The pellet was resuspended in 600 

µl PBAF buffer (0.02% NaN3; 0.025% BSA, 1% FCS) and the suspension 

pipetted in 100 µl aliquots into a FACS tube or the well of a v-shaped 96-well 

plate. Subsequently, the cells were washed by centrifugation for 5 min at 400g, 

followed by resuspension of the cell pellets in 100 µl of the appropriate primary 

antibody-PBAF solution, according to tab. 2-6 . The cells were the stained in the 

dark for 1h, followed by to wash steps with PBAF buffer for 5 min at 400g. Each 

cell pellet was subsequently resuspended with 100 µl of the corresponding 

secondary antibody-PBAF solution (tab. 2-6) and stained for approximately 1h 

in the dark. After two-wash steps, the cells resuspended in 400 µl PBAF buffer 

and analysed on the flow cytometer.  

 

Tab. 2-6: TNF/TNFR antibody –PBAF solution pipetting scheme 

Sample 
1o antibody dilution 2o antibody dilution 

unstained control PBAF PBAF anti-mouse IgG-FITC 0.75 µg/ml 

TNFR1 TNFR1(H398) 2 µg/ml anti-mouse IgG-FITC 0.75 µg/ml 

TNFR2 TNFR2(MR2-1) 5 µg/ml anti-mouse IgG-FITC 0.75 µg/ml 

membraneTNF TNF-T1 3 µg/ml anti-mouse IgG-FITC 0.75 µg/ml 
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2.3.4 Multi-colour flow cytometry  

Multi-colour flow cytometry is performed if more than one fluorophor is 

analysed in parallel. This is possible because different fluorescent dyes possess 

specific excitation and emission spectra, which allow excitation and subsequent 

recording of emitted signals in separate channels. However, in case where the 

emission spectra of two or more fluorophors overlap, “spill-over” of one 

fluorophor signal into the signal channel from another one occurs, falsifying the 

measurement. This has to be corrected for by a process termed compensation. 

In order to apply compensation, a single stain control tube has to be acquired 

individually for each fluorophor, including an unstained control. Using software-

specific compensation controls (automated compensation controls for 

FACSDiva, manual compensation controls for CellQuestPro) and the underlying 

algorithms, a compensation matrix is generated which deconvolutes the 

overlapping emission spectra, allocating each signal assigned to the correct 

channel. This compensation matrix is the applied on the actual acquisition of the 

samples of interest. 

 

2.3.4.1 Cell death determination via ANNEXINV-FITC/PI-staining 

Under normal conditions, the phopholipid phophatidylserine is usually located 

on the inner membrane leaflet; however, at the onset of apoptosis, this 

phospholipid becomes exposed on the cell surface. ANNEXINV specifically 

recognises and binds phosphatidylserine. Consequently, staining of the cells 

with ANNEXINV conjugates allows detection of cells undergoing apoptosis. 

Approximately 2.5x105 cells per sample were harvested by centrifugation at 

335g for 5 min, and washed twice with 2-3 ml PBS. The pellets were 

resuspended in 250 µl 1x binding buffer (2.5 mM HEPES, 35 mM NaCl, 62.5 µM 

CaCl2, pH 7.5), supplemented with recombinant hANNEXINV-FITC (Sigma-

Aldrich Company Ltd), as indicated in the tab. 2-7, resulting in a cell 

concentration of approximately 106 cells/ml. Subsequently, 5 µl of propidium 

iodide solution (20 µg/ml) was added to all samples bar the unstained and 
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FITC-single stain control, and incubated for 15 min in the dark at room 

temperature before measuring the fluorescence on the flow cytometer. 

 

Tab. 2-7: ANNEXINV-FITC/PI staining pipetting scheme 

sample ANNEXINV-FITC Propidium iodide 

unstained control 1x binding buffer only 0 

PI single stain control 1x binding buffer only 5 µl 

FITC single stain control 1:750 in 1x binding buffer 0 

sample of interest 1:750 in 1x binding buffer 5 µl 

 

 

2.3.4.2 Five-colour flow cytometry analysis  

Five-colour flow cytometry was employed in order to determine the extent of 

human chimerism of mouse xenografts. Tissue was derived and processes as 

described in 2.6.3. Single cell suspensions were centrifuged at 3355 g for 5 min, 

room temperature, and cell number determined using trypan blue exclusion 

counting. If possible, at least 500,000 cells were harvested and resuspended in 

100 µl PBS. Cells were stained with antibodies against human or mouse-specific 

CD markers all added together at one, as seen in (tab. 2-8); the cells analysed 

were endogenously positive for GFP (green fluorescent protein) and RFP (red 

fluorescent protein). Cells were stained for approximately half an hour in the 

dark and subsequently acquired on the FACS Canto II flow cytometer (Becton 

Dickinson, UK) and analysed using FACSDiva v6.1.2 software (BD Biosciences). 

Gating strategy was on PE-Cy7dim/ APChigh, in order to differentiate between 

human and mouse tissue. 
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Tab. 2-8: CD marker pipetting scheme 

 

clone 

 α-hCD19-APC SJ25C1 2.5 µl 

α-hCD34-PerCP-Cy5.5 8G12 10 µl 

α-murine Cd45-PE-Cy7 30-F11 2.5 µl 

α-murine Ter119-PE-Cy7 Ter119 2.5 µl 
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2.4 MOLECULAR BIOLOGY TECHNIQUES 

2.4.1 RNA purification and Concomitant Protein Isolation Using the 

QIAGEN RNeasy Mini Kit  

RNA was isolated from patient material and cell lines using the RNeasy Mini Kit 

(Qiagen, Crawley, UK), according to manufacturer’s protocol. All steps were 

carried out at room temperature unless otherwise indicated. Briefly, 1x106 to 

5x106 cells were centrifuged at 335g for 5 min, the medium removed and the 

pellet washed once with PBS. Lysis of the cells was performed by pipetting 350 

µl RLT buffer containing  .1% β-mercaptoethanol (v/v) and thorough mixing. If 

not immediately used afterwards, the lysate was stored at -80°C, otherwise it 

was applied onto a QIAShredder column (Qiagen, Crawley, UK) and 

homogenised by centrifuging it at full speed for 2 min. The flow-through was 

mixed with 350 µl 70% ethanol and transferred to a RNeasy spin column. The 

RNA was bound to the column membrane by a quick centrifugation step of 30s 

at full speed. The resulting flow-through was stored on ice in order to isolate 

proteins.  

The RNeasy spin column was transferred into a new 2 ml collection tube 

provided by the manufacturer, and washed once with 750 µl RW1 buffer and 

twice with 500 µl RPE buffer. In each instance, the flow-through was discarded. 

In the last washing step with RPE buffer the column was centrifuged 2 min at 

full speed, to remove any residual liquid. As an additional step, the column was 

transferred to a new collection tube and the membrane by an additional 

centrifugation step at full speed for 1 min, before eluting the RNA with 30-50 µl 

of RNase-free water and centrifugation for 1 min at full speed into RNase-free 

1.5 ml reaction tubes provided by the manufacturer. In the case that the RNA 

was utilised for subsequent reactions on the same day, the samples were stored 

on ice or at 4°C, otherwise the storage conditions were -80°C/-20°C, to minimise 

degradation. 

In order to isolate proteins for subsequent immunoblotting analyses, the flow-

through of the first washing step of the RNEasy column was kept on ice. 

Proteins were precipitated by adding 2-3 volumes of acetone and incubation on 
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ice for 2h or overnight at -20°C. The proteins were harvested by centrifugation 

at full speed for 15min and at 4C. The supernatant was completely removed and 

the pellet air-dried on ice. Finally, the proteins were resuspended in 30-50 µl 

urea buffer (9M urea, 4% DTT, 1% CHAPS) and stored at -20C. 

 

2.4.2 RNA Concentration Determination 

The concentration of an RNA preparation was determined by measuring the 

absorbance at 260 nm using a ND1000 spectrophotometer (Nanodrop, USA). 

 

2.4.3 RNA Integrity Measurement 

The quality of a RNA preparation was analysed by lab-on-chip technology. 

Samples were prepared using an RNA 6000 Nano Kit (Agilent Technologies UK 

Ltd.) according to manufacturer’s instruction; the analysis was performed on a 

2100 BioAnalyzer (Agilent Technologies UK Ltd.), and the RNA integrity number 

(RIN) determined using the Agilent 2100 Expert Software (Agilent Technologies 

UK Ltd.), using the default analysis settings. 

 

2.4.4 cDNA Synthesis 

RNA was reversed transcribed into copyDNA (cDNA) using RevertAid H Minus 

First-Strand cDNA synthesis kit (Fermentas). The manufaturer’s protocol was 

slightly adapted: 200ng-1 µg of RNA was mixed with random hexamer (dN6) 

primers (0.2 µg/µl) and deionised water (ddH2O) to a volume of 12µl (see 

pipetting scheme A). Secondary structures present in the template RNA were 

heat-denatured at 70C for 5 min, followed by cooling the reaction to 4C, 

allowing free annealing of the dN6 primers. A reaction mastermix was prepared 

(see pipetting scheme B) and added to the sample mix (A). After incubation for 

10 min at 25C, reverse transcription was carried out for 60 min at 42C and the 

reaction stopped by inactivation of the reverse transcriptase at 70C for 10 min. 
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The cDNA sample was diluted 1.5-fold by addition of 30µl of deionised water 

and stored at -20C until further use. 

 

Pipetting scheme A 

Sample mix (A)     recipe 1x    

RNA (200ng-1µg)     x µl 

dN6 primers (0.2 µg/µl)    1 µl 

ddH2O        ad     12 µl    

            ∑ 12  µl 

 

 

 

Pipetting scheme (B) 

Reaction mastermix (B)    recipe 1x    

MMLV RT H- reaction buffer (5x)   4 µl 

dNTPs (10 mM)     2 µl 

RNaseLock Inhibitor (20U/µl)   1 µl 

Mu-MLV RT H- (200U/ µl)    1 µl    

               ∑ 8 µl    

 

 

2.4.5 Real-time RT-PCR (qRT-PCR) using SyBr-Green 

Real-time RT-PCR (qRT-PCR) is a semi-quantitative PCR-based method to 

determine the amounts of specific transcript in RNA preparations, cDNA is used 

as template. In this variant, the qRT-PCR reaction buffer (Platinum® SYBR® 

Green qPCR SuperMix-UDG with ROX, 2x, Invitrogen) contains SyBr-Green as 

reporter dye, which intercalates double-stranded DNA, emitting a fluorescent 

signal of a specific wavelength, thus allowing to monitor the accumulation of 

amplification product. The intensity of this emitted SyBR Green signal can be 

assumed as being proportional to the amount of amplified DNA.  

Briefly, a reaction mastermix for each individual primer was prepared as 

indicated by the pipetting scheme (see below), 8 µl were added per well of a 
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384-well plate (MicroAmp® Optical 384-Well Reaction Plate, Applied 

Biosystems), followed by 2 µl cDNA solution. Each sample was pipetted at least 

in duplicates, typically in triplicates. Eventually, the plate was sealed 

(MicroAmp® Optical Adhesive Film, Applied Biosystems), briefly centrifuged, 

and placed in a 7900 HT Real Time PCR System thermal cycler (Applied 

Biosystems). Cycling conditions are indicated in fig. 2―4; the data was acquired 

with the ABI SDS 2.2 System software (Applied Biosystems) and subsequently 

analysed by applying manual baseline and threshold adjustments. The resulting 

Ct-values were utilised for quantification analyses as specified in 2.4.5.1 and 

2.4.5.2.  

 

Pipetting scheme-general primers 

Reaction mix:      recipe 1x  final con 

Primer (10 uM fw+rev mix)    0.3  µ l  300 nM 

SyBr-Green master mix (2x)    5 µ l  1x 

H20       2.7  µ l    

cDNA       2 µ l  20%  

            = 10 µ l 

 

Pipetting scheme-MLL/AF4 primers 

Reaction mix:      recipe 1x  final con 

Primer (5 uM fw+rev mix)    0.1  ul  50 nM 

SyBr-Green master mix (2x)    5 ul  1x 

H20       2.9  ul    

cDNA       2 ul  20%  

            = 10 ul 

 

 



Material and Methods 

64 
 

50C, 2min

95C, 10min 95C, 15s

60C, 1 min

95C, 15s

60C, 1 min

1x 40x 1x

dissociation
UDG inactivation 

TAQ activation

two-step amplification
signal recorded at 60C 

hybridisation/extension 
step

amplicon-dissociation 
step 

melting/dissociation 
curve recorded

Q-RTPCR: Temperature profile

 

 

Fig. 2-4: QRT-PCR cycling conditions  

 

2.4.5.1 ΔΔCt Method 

This analysis method compares the expression of a gene of interest (GOI) 

against the expression of a housekeeping gene (HKG) of a sample, yielding -Ct -

values, and subsequently normalises this -Ct-value against the -Ct-value of a 

reference sample, resulting in normalised relative expression values. Following 

mathematical equation is used: 

(1)                GOI    HKG  

(2)                   GOI    HKG  

(3)                                      

Since each Ct value corresponds to a log2-fold change the ΔΔCt-values have to 

be linearised by using antilog to the base of 2: 

(4) 2-  C  r  .               
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2.4.5.2 ΔCt-Method 

This analysis method compares the expression of a gene of interest (GOI) 

against the expression of a housekeeping gene (HKG), without normalising it 

against a control sample, reflecting absolute expression levels of the gene of 

interest for each individual sample. Expression is stated as %HGK. Following 

equation is used: 

(1)                    

Since each Ct value corresponds to a log2-fold change, the ΔCt-values have to be 

linearised by using antilog to the base of 2: 

 

(2) % HKG             

 

2.4.6 RT-PCR 

RT-PCR allows qualitative detection of transcripts. RNA is first reverse 

transcribed into cDNA, which is the subsequently used for the PCR reaction. 

cDNA was mixed with 50% (v/v), which already contains the appropriate 

amounts of MgCl2, dNTPs and Taq-polymerase, and supplemented with 300 nM 

forward and reverse primer (see sceme below). PCR was performed in the 

GeneAmp PCR System 2700 (Applied Biosystems), using following standard 

conditions: after an initial heat-denaturation step at 95C for 5 min, the cycling 

reaction was started; the reaction was cooled down for 30s to 56C, in order to 

allow annealing of the primers to the template, followed by increasing the 

temperature to 72C, which is the optimum temperature for Taq polymerase-

mediated extension. After 30s, the temperature was increased again to 95C for 

30s, resulting in denaturation of the newly synthesised DNA. This process was 

repeated for 35 cycles, after the final one, the temperature was held for 10 min 

at 72C in order to allow full extension of the synthesised DNA.  

The PCR products were subsequently detected by agarose gel electrophoresis. 

 



Material and Methods 

66 
 

Pipetting scheme-general 

Reaction mix:      recipe 1x  final conc 

Primer (10 µM fw+rev mix)    0.625  µl  300 nM 

PCR 2x      5 µl  1x 

H20       2.7  µl    

cDNA       1 µl  20% 

            = 25 µl 

 

 

 

2.4.7 DNA-Polyacrylamid gel electrophoresis (DNA-PAGE) 

DNA-polyacrylamide gel electrophoresis was performed to analyse PCR 

products smaller than 300 bp. In brief, a vertical immunoblotting casting 

chamber was assembled, consisting of two glass plates separated by spacers 

and fastened on a casting stand by holders (Mini-Protean II, BIORAD). An 8% 

polyacrylamide gel was poured using 1x TBE buffer (0.09 M Tris, pH 8, 0.09 M 

H3BO4, 2 mM EDTA) as denoted in the recipe below). Immediately afterwards, a 

comb was set into the liquid gel in order to generate wells via the comb teeth. 

After polymerisation, the cassette was transferred to the electrophoresis tank 

for vertical gel electrophoresis. The DNA samples of interest were mixed with 

the appropriate amount of 6x DNA-loading buffer (25% glycerine; 0.05% 

bromphenol blue) and loaded into the wells. Electrophoresis buffer was 1x TBE 

(0.09 M Tris, pH 8, 0.09 M H3BO4, 2 mM EDTA); the gel was run at 50-70V. 

Subsequently, the DNA was visualised by counterstaining the gel in an EtBr 

solution (3-5 µg/ml) and detected using Quantity One software. 

 

DNA-polyacrylamide gel recipe    1x    

5x TBE       2 ml   

Acrylamide/bisacrylamide (19:10), 40%   2 ml   

APS (10%)       0.5%    

TEMED       0.1%    

H20        6 ml    

              =  10 ml 
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2.4.8 Agarose gel electrophoresis 

Agarose gel electrophoresis was performed to visualise DNA fragments. A gel 

was prepared by mixing agarose with 1x TAE buffer (0.04 M Tris, pH 8, 0.114% 

acetic acid, 1 mM EDTA) or 1x TBE buffer (0.09 M Tris, pH 8, 0.09 M H3BO4, 2 

mM EDTA) to a final concentration that ranged from 0.8 to 2.5% according to 

the size of the DNA to detect. This suspension was heated until the agarose was 

fully melted, and this gel was poured into a horizontal gel tray. In order to 

generate wells, a comb was introduced before the gel had an opportunity to set. 

After polymerisation, the gel was transferred into a horizontal electrophoresis 

tank and this unit filled up with electrophoresis buffer (1x TAE or 1X TBE). DNA 

premixed with 6x DNA loading dye (Fermentas) was applied into the wells, as 

well as a DNA size marker, in order to determine fragment size, and the 

electrophoresis was performed at 80-120V.  

Subsequently, the DNA was visualised by counterstaining the gel in an EtBr 

solution (3-5 µg/ml) and detected using Quantity One software. 

 

2.4.9 Isolation of endotoxin-free plasmids for mammalian 

transfection 

Plasmids employed for transfection into a mammalian cell line were purified 

using the EndoFree Plasmid MAXI Kit (Qiagen, Crawley, UK) according to 

manufacturer’s protocol. 
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2.5 PROTEOMIC METHODS 

2.5.1 Protein Isolation 

Protein isolation was performed as described in section 2.4.1. 

 

2.5.2 SDS-PAGE 

This electrophoresis method separates proteins in a polyacrylamide gel based 

upon their size, as migration through the gel is proportional to log10 of the 

molecular weight. The discontinuous Laemmli-buffer system was utilised to 

generate a SDS-polyacrylamide gel: First, a casting chamber was assembled, 

consisting of two glass plates separated by spacers and fastened on a casting 

stand by holders (Mini-Protean II, BIORAD). A resolving gel of a specific 

acrylamide-concentration (0.35 M Tris, pH 8.8; 5% - 15% 

acrylamide/bisacylamide solution, 19:1; 0.1% SDS, 0.05% APS, 0.1% TEMED) 

was poured into three quarters (approximately 3ml) of the chamber, and 

overlaid with 1 ml isopropanol, in order to protect the gel border from setting 

unevenly due to air currents. After polymerisation, the isopropanol was poured 

off and a stacking gel (0.125M Tris, pH 6.8; 3.9% acrylamide/bisacylamide 

solution, 19:1; 0.1% SDS, 0.05% APS, 0.1% TEMED) was cast on top of the 

resolving gel. Immediately afterwards, a comb was set into the liquid stacking 

gel in order to generate wells in the stacking gel via the comb teeth. After 

polymerisation, the cassette was transferred to the electrophoresis tank for 

vertical gel electrophoresis. The protein samples of interest were mixed with 

the appropriate amount of 2x SDS-loading buffer (100 mM Tris, pH 6.8; 2.5 mM 

EDTA, pH 8.0; 25% glycerine; 0.05% bromphenol blue; 100 mM DTT) and 

loaded into the wells. Electrophoresis buffer (25 mM Tris; 190 mM glycine; 

0.1% SDS) was added the electrophoresis tank, and the run started by applying 

current: 80V for the migration of the proteins through the stacking gel, 130V for 

the remainder of the run. 
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2.5.3 Immunoblotting 

This technique encompasses transfer of proteins from a SDS-PAGE gel onto a 

membrane and subsequent detection with specific antibodies against the 

protein of interest.  

After the SDS-PAGE run, the holder cassette for the protein transfer was 

assembled as follows: first a sponge pad and a sheet of absorbent filter paper, 

then the gel, the membrane (Immobilon-P PVDF, Millipore), a sheet of absorbent 

filter paper and finally another sponge pad. All components were pre-soaked in 

transfer buffer (25 mM Tris; 190 mM glycine; 10% methanol) and the cassette 

assembled submerged in transfer buffer in order to prevent trapping air 

bubbles between gel and membrane. The PVDF membrane was first pre-wet for 

30s-1 min in 100% methanol, before soaking it in transfer buffer. The cassette 

was placed into the electrode assembly membrane facing the anode and the 

transfer tank filled with transfer buffer. Transfer conditions were 1h to 1h 30 

min at 100V. After the transfer and disassembling of the cassette, the membrane 

was briefly rinsed in water and the transfer verified by staining for 5 min in 

Ponceau S-solution. Eventually, the membrane was rinsed in TST buffer (10 mM 

Tris, pH 7.5; 100 mM NaCl; 1 mM EDTA, pH 8.0; 0.1% Tween-20) and blocked 

for 30 min with 5% milk/TST solution (w/v) before transferring it into a 

universal containing 3 ml of antibody-milk/TST-solution (see tab. 2-4) and 

incubated overnight at 4°C on a rotating platform. The next day, the membrane 

was washed with TST buffer 3x for 5 min on a rotating platform, in order to 

remove unbound antibody. The membrane was probed with a secondary 

antibody against the primary antibody in 3 ml of antibody-milk/TST-solution 

for 1h-2h at room temperature on a rotating platform. Excess unbound antibody 

was washed off 3x in TST buffer for 5 min. Detection was carried out using a 

luminol-based detection system. 
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2.5.3.1 Luminol-based detection using Immobilon™ Western 

Chemiluminiscent HRP Substrate 

The secondary antibodies used were conjugated to the enzyme horseradish 

peroxidase (HRP). This enzyme is able to metabolise the luminol contained in 

the detection reagent into a luminescent compound which can be visualized by 

exposing an X-ray film (KODAK); the region of the protein-antibody complex 

appears on the X-ray film as a band. First, the membrane was incubated with the 

detection solution made up with 1 volume HRP substrate peroxide solution and 

1 volume HRP luminol reagent (Immobilon™ Western Chemiluminiscent HRP 

Substrate, Millipore) was applied on the PVDF membrane and incubated for 5 

min (1 min if GAPDH or Tubulin were detected) at room temperature. Next, 

excess detection reagent was drained off, the membrane wrapped in cling film 

and placed into a film cassette. Then, under exclusion of light, an X-ray film 

(KODAK) was laid on top of the membrane and exposed for varying time 

periods (1 sec to 10 min), and subsequently developed. 

 

2.5.3.2 Luminol-based detection using SuperSignal West Dura 

Chemiluminiscent Substrate 

The secondary antibodies used were conjugated to the enzyme horseradish 

peroxidase (HRP). This enzyme is able to metabolise the luminol contained in 

the detection reagent into a luminescent compound which can be visualized by 

exposing an X-ray film (KODAK); the region of the protein-antibody complex 

appears on the X-ray film as a band. First, the membrane was incubated with the 

detection solution made up with 1 volume Stable Peroxide Buffer and 1 volume 

Luminol/Enhancer reagent (SuperSignal West Dura Chemiluminescent 

Substrate, Pierce, Thermo Scientific Inc.) was applied on the PVDF membrane 

and incubated for 5 min at room temperature. Next, excess detection reagent 

was drained off, the membrane wrapped in cling film and placed into a film 

cassette. Then, under exclusion of light, an X-ray film (KODAK) was laid on top 

of the membrane and exposed for varying time periods (1 sec to 10 min), and 

subsequently developed. 
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2.5.4 Enzyme-linked immunosorbent assay (ELISA) for ANGPT1 

detection in cell culture supernatant 

Cells growing in culture were pelleted by centrifugation for 5 min at 335g, room 

temperature, and the supernatant harvested for ANGPT1 protein level 

determination, and stored at -20C until the time of analysis. ANGPT1 

concentration in the cell culture supernatant of cells was determined using the 

Quantikine® ANGPT1 ELISA Kit (Quantikine® Colorometric Sandwich ELISA, 

R&D Sustems, Inc.) exactly according to manufaturer’s instructions.  

 

2.6 IN VIVO TECHNIQUES  

2.6.1 Xenotransplantation of leukaemic cell lines by intrafemural 

injection (performed by Mr. M. Batey) 

6-month-old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were anaesthetised using 

isoflurane (IsoFlo, Abbott laboratories, Maidenhead, UK) as an 

oxygen/isoflurane gas mix (4-5%) in an induction chamber, at approximately 

1500cc/min oxygen until the animal lost consciousness. To test whether the 

required depth of anaesthesia had been attained, unconsciousness was verified 

by testing righting and pinching reflex. Subsequently, the mice were transferred 

to a face mask supplying an oxygen/isoflurane gas mix of 3-4% in order to 

maintain unconsciousness throughout the surgical procedure. An analgesic, 

Carprofen (Rimadyl, Pfizer, Kent, UK), was injected subcutaneously, using a dose 

of 5 mg/kg body weight. Subsequently, mice were laid in a supine position, the 

fur from the right hind limb shaved off, and the skin disinfected with a 

Chlorhexidine spray (Hydrex Pink, Ecolab, Yorkshire, UK). The right leg of the 

mouse was flexed and this position tightly maintained throughout the 

procedure. The bottom of the femur was punctured from the direction of the 

knee using an insulin syringe. The needle was subsequently withdrawn, while 

keeping the leg tightly in position, and a new insulin needle, containing the cells 

to be transplanted, was introduced into the pre-drilled hole. Approximately 10 
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µl of the cell suspension were injected, which corresponded to a cell number of 

~50,000 cells. After the surgery, the mice were returned to their cage and 

monitored for satisfactory recovery from anaesthesia. 

 

2.6.2 In vivo bioluminescence imaging (performed by Mr. M. Batey) 

Anaesthesia was induced as described in 2.6.1.; mice were injected 

intraperitoneally with approximately 150mg/kg body weight D-luciferin 

(Xenolight RediJect D-luciferin, Caliper Life Science), and placed into the 

imaging chamber of the IVIS® Spectrum Imaging System (Xenogen 

Corporation), anaesthesia was maintained with an oxygen/isoflurane mixture 

supplied via a coupled XGI-8 Gas Anaesthesia System (Xenogen Corporation). 

Pictures were acquired under a firefly luciferase filter and analysed using the 

IVIS Spectrum Living Image® 4.0 software (Caliper Life Science).  

 

2.6.3 Necropsy and harvest of material 

Mice presenting clinically unwell were sacrificed using cervical dislocation. 

Typically, the femora and tibiae from the hind limbs were harvested, and the 

bone marrow flushed from these bones using a syringe with PBS. The spleen, 

and, when present, tumour tissue, were harvested, weighed and measured, and 

then processed using a BD™ Medimachine System (BD BioSciences), to obtain 

single cell suspension. Briefly, the tissue was cut into small pieces with a scalpel 

and placed into the Medicon shredder cartridges (BD BioSciences), which were 

filled with approximately 1 ml of PBS. The cartridges were introduced into the 

BD™ Medimachine System and the tissues processed until completely shredded; 

the cartridge was refilled with PBS repeatedly. 
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2.7 BIOINFORMATIC METHODS 

2.7.1 Array Analysis 

RNA samples were processed for Illumina HT12-v3 BeadChip (Illumina Inc.) 

and Illumina HT12-v4 BeadChip (Illumina Inc.) arrays according to 

manufacturer’s protocol at a service provider facility (Gen-Probe Inc., formerly 

Tepnel Life Sciences). 

 

2.7.2 Pre-processing of raw data using BeadStudio/GenomeStudio 

Software packages (Illumina Inc.) 

Raw data files were pre-processed using BeadStudio V3 or GenomeStudio V1 

software packages (Illumina Inc.) in separate experimental groupings, each 

comprising control-treated and siMLL/AF4-treated samples for one time point 

and one inhibitor condition. Background subtraction was applied, and the data 

of each experimental group exported as SampleProbeProfile format specific for 

the GeneSpring GX 11 software package (Agilent Technologies UK Ltd). 

 

2.7.3 Normalisation and differential gene expression analysis using 

GeneSpring GX 11 software (Agilent Technologies UK Ltd)  

SampleProbeProfile files generated by BeadStudio or the Genomestudio 

software suites were imported and analysed using the advanced settings option 

as follows: 

Samples were assigned the parameter “siRNA”, and grouped according to 

conditions: 

 siMLL/AF4 = siMLL/AF4-treated samples 

 Ctrl = corresponds to MOCK and siAML1/MTG8 

This was followed by normalization of the samples using a quantile 

normalisation algorithm. Furthermore, each sample was baseline-transformed 
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over the median intensity values of the control samples (MOCK, siAML1/MTG8). 

Next, samples were filtered according to flag “calls”, three out of three samples 

had to call P(resent) for each probe. Flags were assigned using GeneSpring GX 

11 default settings as follows: 

 P(resent):  Illumina Flag-values of 1.0-0.8 

 M(arginal): Illumina Flag-values of 0.79-0.6 

 A(bsent): Illumina Flag-values <0.59 

Differential expression of siMLL/AF4 vs. Ctrl was performed by applying a 2.0-

fold change; signal intensities of multiple samples in one condition (i.e., MOCK 

and siAML1/MTG8 are both designated “Ctrl”) were averaged. 

Thus derived entity lists were subsequently exported as text files for further 

analyses. 

 

2.7.4 Comparison analysis using R 

The overlap of entities between two datasets was analysed using the Limma 

package (Bioconductor) in the R x64 2.12.2 software, using script *Venn*; 

subsets of expression data were extracted from the paternal expression data 

sets using script *Extraction* (see appendix). Both scripts were kind gifts from 

Mr. R. Ernst and Mr. E. van Roon.  

 

2.7.5 Ingenuity Pathway Analysis 

A text file comprising Probe IDs and the corresponding fold-changes was 

generated from the GeneSpring output text-file. This signature was loaded into 

the Ingenuity Pathway Analysis Software (Ingenuity Inc.). A core analysis was 

performed according to the software documentation, which resulted in an 

output of networks, pathways and biological and molecular functions, which 

were enriched for the loaded signature. 
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2.7.6 Gene Set Enrichment Analysis (GSEA)  

Core signatures were generated by intersecting data sets according to 2.7.4. 

Consequently, text files in the appropriate format were generated, as well as 

phenotype label files, as specified, and loaded into GSEA (Gene Set Enrichment 

Analysis) software (http://www.broadinstitute.org/gsea/index.jsp). The 

ranking metrics applied were Diff_of_Classes, gene sets of a size between 10 and 

1000 were included. The analysis algorithm performed 1000 permutations. A 

gene set was assumed to be significantly enriched if the adjusted p-Value was 

<0.25. Leading edge analysis was performed with significantly positive enriched 

datasets that fit these criteria. 

 

2.7.7 Heat map generation using GenePattern 

Core signatures were generated by intersecting data sets according to 2.7.4. 

Consequently, text files were generated in the appropriate format for the 

HeatMapImage module of the GenePattern genomic analysis software 

(http://www.broadinstitute.org/cancer/software/genepattern/). 

 

2.8 STATISTICAL ANALYSIS 

Statistical differences between parametric samples were assessed by Student’s 

t-test using GraphPad Prism 5 software (GraphPad Software, Inc.; La Jolla, USA) 

or Excel 2007 (Microsoft Inc.). Non-parametric cohorts were tested using Mann-

Whitney U test. When testing larger sample cohorts, normal distribution was 

confirmed using a Shapiro-Wilk test; if non-normally distributed, the values 

were log-transformed, allowing subsequent analysis for statistical significance 

using parametric Student’s t-tests (if two groups were compared), or one-way 

ANOVA analyses (if several cohorts were analysed at once). Multiple testing 

correction was applied when required. Here, the GraphPad Prism 5 software 

was used in all instances. Significance levels were indicated as * = p<0.05; ** 

<p0.01 and *** = p<0.001. 
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3.1 RNAI-MEDIATED DEPLETION OF MLL/AF4 AFFECTS CELL 

PROLIFERATION AND VIABILITY 

 

3.1.1 siRNA-mediated ablation of MLL/AF4 in t(4;11)-positive ALL 

cells 

Acute lymphoblastic leukaemia harbouring an MLL aberration carries in >50% 

of the cases the t(4;11)(q21;23) rearrangement, regardless of age at 

presentation. This balanced translocation results in two reciprocal 

proteinogenic fusion genes, MLL/AF4 (der11) and AF4/MLL (der4). While der11 

is present in 100% of the cases, der4 is lost in at least 20% due to further 

genetic lesions. The breakpoint region in the t(4;11) rearrangement spans exon 

8-13 in the MLL, and exon 2-7 in the AF4 locus, and therefore offers multiple 

fusion combinations with unique breakpoints. In current study the t(4;11)-

positive cell line SEM was employed as model cell line for investigating how loss 

of endogenous MLL/AF4 affected cells on a molecular level. The SEM cell line 

harbours the MLL/AF4 (e9-e4) gene, where the breakpoint in the wild-type 

genes occurred in the intronic region between exon 9 (e9) and exon 10 (e10) of 

MLL/AF4, and in intron 4 of AF4. The resulting fusion transcript results in a 

chimaera constituting of a truncated MLL including e9, and the AF4 gene from 

exon 4 (e4) downstream.  

Previously, our group designed a siRNA directed against this fusion sequence 

(siMLL/AF4), and suitable qRT-PCR primers for detection. Fig. 3-1 depicts 

schematically the target sequence of the siMLL/AF4 siRNA and the position of 

suitable qRT-PCR primers for detection within the fusion transcript. For 

analysis of the MLL or AF4, the reverse or the forward primers were exchanged 

for ones binding in the wild-type gene sequence, respectively (not shown). The 

MLL/AF4 qRT-PCR primers were also capable to detect the fusion transcript of 

other two t(4;11)-positive cell lines acute leukaemia cell line, RS4;11 (e10-e4) 

and MV4;11 (e9-e5) (not shown). 
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Fig. 3-1: e9-e4 MLL/AF4 fusion gene breakpoint cDNA sequence  

The MLL/AF4 fusion gene inherent of the SEM cell line results from the in-frame fusion of the N-

terminal MLL until exon 9 (red, ENSEMBL_ID ENSE00001799616) to the AF4 moiety from exon 

4 onwards (bold black font, ENSEMBL_ID ENSE00001196741). The siRNA against MLL/AF4 

(siMLL/AF4) spans the fusion sequence, the corresponding qRT-PCR primers lie in the MLL 

exon 9 and AF4 exon 5 (black font, ENSEMBL_ID ENSE00001196741).  

 

 

In order to study the role of MLL/AF4 in t(4;11)-positive leukaemic 

maintenance, the following experimental set-up was chosen: the t(4;11)-

positive ALL cell line SEM was serially electroporated at two day intervals with 

either siRNA against MLL/AF4 (siMLL/AF4) or an active control siRNA 

(siAML1/MTG8), which targets the AML1/MTG8 fusion gene harboured by 

t(8;21)-positive AML cells and absent in this cell line. In addition, a pulse-

control was performed as well, where cells were electroporated without siRNA 

oligonucleotides (MOCK). This transfection was carried out up to three times, 

and cells were harvested prior to the subsequent electroporations at day 2 
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(TP1) and 4 (TP2), and at the final time point TP3, corresponding to day 6 (fig. 

3-2).  

 

 

 

 

 

Fig. 3-2: Experimental set-up: siRNA electroporation time course for MLL/AF4 
knock-down 

The SEM cell line was sequentially transfected with either siRNAs against MLL/AF4 

(siMLL/AF4), control siRNA (siAML1/MTG8), or mock-electroporated (MOCK) at two day 

intervals for up to 3 times, representing a sustained depletion period of 6 days (6d). Material 

was harvested for analyses immediately prior to the subsequent electroporation (TP1, TP2), and 

at the final time point, two days after the 3rd electroporation (TP3/6d). 

 

 

In order to ascertain that the employed electroporation settings did indeed 

result in uptake of siRNA, SEM cells were electroporated with a fluorochrome-

conjugated siRNA and subsequently analysed by flow cytometry at 2h, 4h and 

25h post-transfection. Electroporation of SEM cells at 350V for a 10 ms pulse 

resulted in siRNA uptake in 80% of the cells; this dropped to 67% 4h post-

transfection. On the following day, fluorescent siRNA could still be detected in 

20% of the cells (fig. 3-3). 
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Fig. 3-3: siRNA transfection efficiency 

SEM cells were electroporated once with a fluorescently-labelled siRNA (siRNA-Cy5) using a 

rectangular electronic pulse of 350V and 10ms. The corresponding pulse controls was 

electroporated with the same settings, but without siRNA (MOCK). Transfection efficiency was 

determined at different time points post-electroporation (2h, 4h and 25h) using flow cytometry 

(A), quantifying the percentage of the Cy5-positive SEM subpopulation (B). 
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Depletion mediated by siMLL/AF4 was confirmed by qRT-PCR; MLL/AF4 levels 

showed a sustained decrease by 70-80% over all three time points compared to 

controls (fig. 3-4).  

 

 

 

 

Fig. 3-4: MLL/AF4 expression analysis by qRT-PCR 

SEM cells were serially electroporated three times at two-day intervals with either siMLL/AF4, 

control siRNA (siAML1/MTG8) or no siRNA (MOCK). Treatment with siMLL/AF4 resulted in 

MLL/AF4 down-regulation by 65-72%, which was sustained for up to 6 days. The graph 

represents the mean of n=5 independent experiments, error bars indicate standard error of the 

mean (S.E.M.). Statistic analysis was carried out using an unpaired Student’s t-test (*** = 

p<0.001). 
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The siRNA against MLL/AF4 did not only work efficiently in the SEM cell line, 

but also in primary patient cells. Viable leukaemic blasts from a patient with 

t(4;11)-positive ALL, carrying the same MLL/AF4 breakpoint fusion site as the 

cell line SEM (courtesy of Dr. Ronald Stam), were singly electroporated with 

either siMLL/AF4, control siRNA (siAML1/MTG8), or without siRNA (MOCK). 

RNA was harvested at 24h, 48h and 72h post electroporation, and MLL/AF4 

expression assessed by qRT-PCR. A knockdown of MLL/AF4 transcript levels 

comparable to the one in the SEM cells was achieved, with a sustained reduction 

by 54-64% over the course of three days. 

 

 

Fig. 3-5: Expression analysis of MLL/AF4 by qRT-PCR after siRNA treatment of 

primary patient blasts. 

Primary patient blasts were electroporated once with siMLL/AF4, control siRNA 

(siAML1/MTG8) or without oligonucleotides (MOCK). MLL/AF4 depletion was verified by qRT-

PCR for the time points 24h, 48h and 72h post siRNA treatment. The graph represents the mean 

of one single experiments; each reaction was performed in triplicate.  
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3.1.2 Effects of siMLL/AF4 on the MLL and AF4 wild-type genes 

The siRNA against MLL/AF4 targeted the breakpoint (e9-e4) of the fusion 

transcript inherent of the SEM cell line and did not directly affect the expression 

of the wild-type genes MLL and AF4. This was confirmed when analysing the 

MLL/AF4, MLL and AF4 transcript levels 2h after the siRNA electroporation; 

while MLL/AF4 was already depleted by ~50%, no changes could be observed 

in MLL and AF4 expression (fig. 3-6).  

However, when MLL and AF4 were monitored over a sustained siRNA treatment 

period of up to 6 days; AF4 showed a time-dependent decrease (fig. 3-7), while 

MLL levels remained unchanged (fig. 3-8). Although the delayed response of 

AF4 already indicated towards a mechanism downstream of MLL/AF4 knock-

down, it was essential to rule out possible off-target effects. One efficient way to 

do so was to transfect another cell line with siMLL/AF4 which either expressed 

a MLL/AF4 fusion transcript with a differing breakpoint, or did not carry the 

translocation. Electroporation of RS4;11, a t(4;11)-positive BCP-ALL cell line 

harbouring the MLL/AF4 translocation with e10-e4 breakpoint showed no 

down-regulation of MLL/AF4, MLL and AF4 (fig. 3-9).  
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Fig. 3-6: Expression analysis of the MLL/AF4 fusion and the wild-type 

genes AF4 and MLL in SEM cells 2h post-electroporation 

SEM cells were once electroporated with either siMLL/AF4, control siRNA (siAML1/MTG8) or 

no siRNA (MOCK). RNA was harvested 2h after transfection; SEM cells treated with siMLL/AF4 

resulted in a 50% reduction in MLL/AF4, while expression of the wild-type gene MLL and AF4 

were not affected. The graph represents one single experiment; each sample was performed in 

triplicates. 
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Fig. 3-7: AF4 expression analysis in response to MLL/AF4 depletion 

SEM cells were serially electroporated three times at two-day intervals with either siMLL/AF4, 

control siRNA (siAML1/MTG8) or no siRNA (MOCK). RNA was harvested prior to the 

subsequent electroporation and expression analysed by qRT-PCR. SEM cells transfected with 

siMLL/AF4 showed a time-dependent reduction on AF4 transcript levels when compared to 

controls. The graph represents the mean of at least n=3 independent experiments, error bars 

indicate standard error of the mean (S.E.M.). Statistic analysis was carried out using an unpaired 

Student’s t-test (* = p<0.05; *** = p<0.001). 
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Fig. 3-8: MLL expression analysis in response to MLL/AF4 depletion 

SEM cells were serially electroporated three times at two-day intervals with either siMLL/AF4, 

control siRNA (siAML1/MTG8) or no siRNA (MOCK). Treatment with siMLL/AF4 had no effect 

MLL transcript levels when compared to controls as determined by qRT-PCR. The graph 

represents the mean of n=3 independent experiments, error bars indicate standard error of the 

mean (S.E.M.). Statistic analysis was carried out using an unpaired Student’s t-test (*** = 

p<0.001). 
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Fig. 3-9: MLL/AF4, AF4 and MLL expression analysis in siRNA-treated RS4;11 cells 

The t(4;11)-positive cell line RS4;11 was electroporated once with either siMLL/AF4, control 

siRNA (siAML1/MTG8) or no siRNA (MOCK) and RNA was harvested 2h and 4h after 

transfection and gene expression determined by qRT-PCR. Treatment with siMLL/AF4 did not 

result in down-regulation of either the e10-e4 MLL/AF4 fusion transcript, wild-type MLL and 

AF4. The graph represents one single experiment; each sample was performed in triplicates. 
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Concomitantly, long-term siMLL/AF4 treatment of the t(8;21)-positive AML cell 

line Kasumi-1, which lacks MLL/AF4 but codes for the fusion gene AML1/MTG8, 

did not result in a AF4 expression level reduction. Of note was that 

electroporation of the Kasumi-1 cells with siAML1/MTG8, which targets the 

AML1/MTG8 transcript inherent of this cell line, subtly induced AF4 expression. 

This effect was not observed in the context of the SEM cell line, where 

siAML1/MTG8 was employed as an active control siRNA. 

 

 

Fig. 3-10: AF4 expression analysis in siRNA-treated Kasumi-1 cells 

The t(4;11)-negative AML cell line Kasumi-1 was serially electroporated twice with either 

siMLL/AF4, siAML1/MTG8 or no siRNA (MOCK). RNA was harvested after 3, 4 and 6 days. 

Treatment with siMLL/AF4 did not result in changes AF4 expression. The graph represents the 

combination of two independent experiments of which each time point was performed once; 

every sample was performed in triplicates. 
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Since transfection of siMLL/AF4 did not down-regulate AF4 expression per se, 

this observation was suggestive of an effect mediated down-stream of MLL/AF4. 

Recently, it has been reported that wild-type MLL is required in MLLr leukaemia 

for transformation and disease maintenance; thus it might also be possible that 

the fusion genes regulate their wild-type counterparts. In silico analysis of the 

AF4 promoter revealed several HOXA gene and TALE - protein binding sites; 

further studies are required to elucidate a potential MLL/AF4-HOXA-AF4 axis 

(fig. 3-11:). 

 

 

 

 

 

Fig. 3-11: Scheme HOXA gene binding sites within the AF4 promoter  

Bioinformatic analysis of transcription factor binding sites within the AF4 promoter region 

encompassing 3000bp upstream and 1000bp downstream of the transcription site (TSS) using 

MatInspector module of the Genomatix software suite (Genomatix Software GmbH).  
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3.1.3 MLL/AF4 depletion is associated with a phenotype 

Cells carrying the MLL/AF4 fusion gene are reportedly highly resistant against 

genotoxic stress and mitogen-deprivation mediated cell death. Remarkably, 

RNAi-mediated ablation of MLL/AF4 severely impaired viability and 

proliferation, as illustrated by the negative growth curve in fig. 3-12.  

. 

 

 

Fig. 3-12: Growth curve of siMLL/AF4-treated SEM cells 

Sustained knock-down of MLL/AF4 over a period of 6 days was achieved by serial transfection 

of the SEM cell line with siMLL/AF4 at two day-intervals; controls were electroporated with 

either a control siRNA (siAML1/MTG8) or no siRNA (MOCK). SEM cells depleted of MLL/AF4 

showed substantially reduced proliferation and viability compared to controls. Cell numbers 

were determined immediately prior to the siRNA-transfection time points using a 

haematocytometer; viability was assessed by trypan blue exclusion. The graph represents the 

mean of at least n=3 (n=4 for d2 & d4; n=3 for d6) independent experiments, the error bars 

indicate standard error (S.E.M.).  
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This was accompanied by changes in cell cycle distribution; prolonged MLL/AF4 

knock-down resulted in an increase in SEM cells accumulating both in the 

G1/G0- and the G2/M-phase as well as a concomitant depletion in the S-phase 

(fig. 3-13).  

Furthermore, prolonged reduction of MLL/AF4 levels resulted in a marked 

induction of apoptosis as indicated by the increase of the sub-G1/G0 population 

in fig. 3-14; siMLL/AF4 treated cells show a 6.5-fold increase in cell death when 

compared to controls (MOCK = 5.9%; siAML1/MTG8 = 6.4%; siMLL/AF4 = 

38.4).  
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Fig. 3-13: Changes in cell cycle distribution in SEM cells depleted of MLL/AF4 

Cell cycle analysis by flow cytometry showed that, compared to controls (MOCK, 

siAML1/MTG8), siMLL/AF4-treatment for 4 days led to an increased  proportion of SEM cells in 

G1/G0- and G2/M-phase, while the subpopulation in the S-phase was reduced. Cell cycle 

distribution was determined using the ModFit LT analysis programme (Verity Software House), 

and the changes in siRNA-treated cells calculated by normalising on the cell cycle distribution of 

MOCK-transfected cells. The mean of n=5 independent experiments are shown; error bars 

represent S.E.M. Statistical analysis was performed using an unpaired Student’s t-test (* = 

p<0.05; *** = p<0.001) 
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Fig. 3-14: Analysis of the sub-G1/G0 population of siRNA-treated SEM cells  

SEM cells were serially electroporated with siMLL/AF4 or control-transfected (siAML1/MTG8, 

MOCK). At TP2, corresponding to four days of sustained MLL/AF4 depletion, the cell cycle 

distribution of the electroporated cells was analysed by flow cytometry. Apoptosis was 

determined by measuring the proportion of SEM cells in the sub-G0/G1 population using the 

ModFit LT analysis software (Verity Software House). The graph represents the mean of n=5 

independent experiments, statistical significance was determined by Student’s t-test (*** = p< 

0.001) 

 

 

 

I  



The Role of MLL/AF4 in Leukaemic Maintenance 

94 
 

In addition to the effects on proliferation and viability, clonogenicity was 

reduced in MLL/AF4-depleted SEM cells by 4.4 fold when compared to control 

siRNA (fig. 3-15). 

 

 

 

Fig. 3-15: Clonogenicity assay of MLL/AF4-depleted SEM cells 

SEM cells were seeded out in triplicates for colony formation in sloppy agar 24h after a single 

electroporation with either siMLL/AF4 or controls (MOCK, siAML1/MTG8). Colony number was 

determined approximately after one-week incubation and normalised against the starting 

number of cells. 
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3.2 GENE EXPRESSION PROFILING OF SEM CELLS DEPLETED OF MLL/AF4 

Prolonged depletion of MLL/AF4 in the context of the t(4;11)-positive cell line 

SEM displayed a remarkable phenotype, with a clear adverse effect on cell 

proliferation, clonogenicity and overall viability. Since in clinics t(4;11)-positive 

ALL is commonly refractory to treatment, resulting in a high relapse rate and 

poor overall survival, it was of outstanding interest to investigate the 

underlying molecular mechanisms exerted by MLL/AF4, and particularly which 

pathways or factors were affected by knock-down of the fusion transcript. Thus, 

a siRNA time course experiment was carried out and whole genome expression 

profiling (GEP) performed on the Illumina HT-12 Bead Array platform. 

Additionally, in order to investigate the aspect of apoptosis induction, the siRNA 

time course was subdivided into two experimental subgroups: one group was 

supplemented with the caspase-inhibitor zVAD-FMK in order to block 

apoptosis, while the other was the vehicle control group, which was cultured in 

presence of 0.25% DMSO. The analysis of the zVAD-treatment group and the 

surrounding investigations are reported in the following section 4, in current 

section only the results from the control groups are shown. The experimental 

set up scheme is illustrated in fig. 3-16 

 

 

 

 

Fig. 3-16: Experimental set-up scheme for GEP samples 

SEM cells were serially electroporated at two-day intervals with siRNA against MLL/AF4 

(siMLL/AF4), control siRNA (siAML1/MTG8) or without oligonucleotides (MOCK) and 

subsequently subdivided into two treatment groups; one group was supplemented with the 

pancaspase inhibitor zVAD, the other with the equal amount of vehicle solvent (DMSO). Cells 

were harvested for analyses at TP1 (2 days post the 1st electroporation), corresponding to a 2-

day MLL/AF4 knockdown, and at TP2 (2 days post the 2nd electroporation), which represents a 

sustained down-regulation of MLL/AF4 for 4 days. Gene expression profiling (GEP) was 

performed on RNA derived from DMSO-treated cells at TP1 and TP2, and the following results 

were termed MLL/AF4 signature at TP1 or TP2. The results from the GEP from the 

electroporated cells treated with zVAD will be discussed in the following chapter. 
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3.2.1 Biological QC analysis of array samples 

SEM cells were electroporated twice according to the scheme in (fig. 3-16), and 

TP1 and TP2 harvested for RNA. Before the RNA was labelled, hybridised and 

scanned off-site at a service provider core facility, the siRNA-treated samples 

underwent quality control (QC) measures: successful MLL/AF4 knockdown was 

confirmed by qRT-PCR (fig. 3-17), and RNA integrity determined using lab-on-

chip technology with a Bioanalyzer 2100 assay. A RNA integrity number (RIN) 

above 7 characterises RNA of good enough quality for GEP (tab. 3-1). 

 

 

Tab. 3-1: RIN values of samples submitted to GEP as determined by Bioanalyzer 
2100 RNA 6000 Nano Assay 

sample RIN 

TP1  

 MOCK 8.9 

 siMLL/AF4 8.4 

 siAML1/MTG8 8.4 

TP2  

 MOCK 7.1 

 siMLL/AF4 8.2 

 siAML1/MTG8 8.9 
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Fig. 3-17: MLL/AF4 expression analysis of samples allotted for GEP  

SEM cells were serially electroporated twice at two-day intervals with either siMLL/AF4, 

control siRNA (siAML1/MTG8) or no siRNA (MOCK). MLL/AF4 expression was determined by 

qRT-PCR day one (d1), two (d2) and day 4 (d4) of siRNA treatment. Compared to controls, 

siMLL/AF4-transfected cells showed a MLL/AF4 down-regulation by 55-80%. The graph 

represents one single experiment; each sample was performed in triplicates.  
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3.2.2 Array analysis 

The samples were processed off-site at a service provider facility according to 

manufacturer’s protocols, and assayed using an Illumina HT-12 V.3 Bead Array 

(Illumina Inc.). The obtained raw data was then preprocessed by me using 

BeadStudio 3 software (Illumina Inc), applying background subtraction. Missing 

probe values were not imputed (for arrays statistics see tab. 3-2).  

 

Tab. 3-2: Array Statistics of pre-processed raw data using BeadStudio 3 

 
No. Detected probes  

(P-value <0.05) 
No. Detected probes  

(P-value <0.01) 

MOCK (TP1) 11135 8835 

siMLL/AF4 (TP1) 12162 9737 

siAML1/MTG8 (TP1) 11707 9077 

MOCK (TP2) 11166 9194 

siMLL/AF4 (TP2) 11968 9130 

siAML1/MTG8 (TP2) 11894 9137 

 

 

Subsequently, the differential gene expression analysis of the arrays was 

performed using GeneSpring GX11 software (Agilent Technologies, Inc). Each 

time point was analysed as an individual treatment group consisting of 

siMLL/AF4, MOCK and siAML1/MTG8-transfected cells. The arrays were 

normalised using a quantile normalisation algorithm, and for each array the 

baseline was transformed over the median baseline of the control samples (fig. 

3-18). Probe signal values associated with siAML1/MTG8 & MOCK were 

averaged, resulting in a control group termed Ctrl, against which the differential 

expression analysis for siMLL/AF4 was performed (siMLL/AF4 vs. Ctrl). 
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Fig. 3-18: Normalised array intensity values each treatment group at TP1 & TP2 

The siRNA treatment time course were grouped according to time point, each treatment group 

consisting of control- (MOCK, siAML1/MTG8) and siMLL/AF4-transfected samples. Each of 

these treatment groups was normalised independently using the quantile normalisation 

algorithm and transforming the baseline of each sample over the median baseline of the control 

samples. The box and whisker plots indicate the spread of the probe signal values of the 

treatment group at TP1 (A) and TP2 (B). 

 

 

 

The results were filtered according to the array signal calls or “flags” according 

to the GeneSpring GX software default settings: Present calls (P) were attributed 

to flags with an Illumina p-value of p >0.8-1, marginal calls (M) had flag p-values 

of p >0.6-0.8; a flag with p<0.6 was tagged as absent (A). Array probes were 

filtered on “present” calls only for all samples; differentially expressed probes 

were determined by calculating the signal intensity in the siMLL/AF4 array vs. 

the signal intensity values in the Ctrl samples. A linear fold-change expression 

value cut-off of 2.0 applied; this generated dataset was termed MLL/AF4 gene 

signature A.: at TP1, there were 599 up- and 1060 down-regulated probe sets, 

which could be collapsed into 577 and 945 genes which were induced or down-

regulated, respectively. At TP2, 1373 probes were differentially expressed, of 
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which 689 were up- and 684 down-regulated, representing 654 and 663 genes, 

respectively (tab. 3-3). The top50 up- and down-regulated probes for each time 

point of MLL/AF4 signature are listed in tab. 3-4 to tab. 3-7. 

 

Tab. 3-3: Number of differentially expressed probe sets and genes for the 
MLL/AF4 signature A at TP1 and TP2 

siMLL/AF4 vs. Ctrl TP1-A TP2-A 

No. of differentially expressed probes 1615 1373 

up-regulated probes 599 688 

down-regulated probes 1016 684 

No. of differentially expressed genes 1523 1271 

up-regulated genes 577 654 

down-regulated genes 945 663 
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Tab. 3-4: Top 50 up-regulated probes in signature A at TP1 

ILMN_Gene 
Fold-change 

[siMLL/AF4] vs [Ctrl] 
Accession Probe_Id 

IFI44 9.61 NM_006417.3 ILMN_1760062 

FCRLA 8.69 NM_032738.3 ILMN_1691071 

COL8A1 7.33 NM_020351.2 ILMN_1685433 

ARRDC4 6.25 NM_183376.1 ILMN_1660544 

GABARAPL1 5.90 NM_031412.2 ILMN_2151281 

NLGN4X 5.18 NM_020742.2 ILMN_2341067 

REEP3 5.12 NM_001001330.1 ILMN_1722642 

IFRD1 4.64 NM_001007245.1 ILMN_1687390 

ZNF572 4.58 NM_152412.1 ILMN_1802974 

ENPP2 4.54 NM_001040092.1 ILMN_2373791 

TLR10 4.50 NM_001017388.1 ILMN_1719905 

LOC653125 4.47 XM_931236.1 ILMN_1732291 

EEPD1 4.34 NM_030636.2 ILMN_1811616 

ARRDC2 4.30 NM_015683.1 ILMN_1655612 

PLEKHH3 4.26 NM_024927.3 ILMN_1804652 

ELMO1 4.24 NM_014800.9 ILMN_1784320 

TARSL2 4.16 NM_152334.2 ILMN_1720267 

ANXA1 4.12 NM_000700.1 ILMN_2184184 

PIR 4.07 NM_001018109.1 ILMN_2383383 

DLX1 4.02 NM_001038493.1 ILMN_2388445 

HS.581580 4.00 AA383422 ILMN_1880761 

SORBS2 4.00 NM_003603.4 ILMN_2407879 

GNPDA1 3.94 NM_005471.3 ILMN_1784709 

TLR10 3.93 NM_030956.2 ILMN_2414762 

ZNF397 3.90 NM_032347.1 ILMN_1685467 

RGS1 3.85 NM_002922.3 ILMN_1656011 

PROS1 3.84 NM_000313.1 ILMN_1671928 

PER3 3.83 NM_016831.1 ILMN_1660986 

LRSAM1 3.80 NM_138361.3 ILMN_1811102 

ZNF228 3.79 NM_001083335.1 ILMN_1815885 

ASB7 3.78 NM_024708.2 ILMN_1680419 

HS.581234 3.70 BU928253 ILMN_1880340 

PGBD4 3.68 NM_152595.3 ILMN_1651690 

RGMA 3.67 NM_020211.1 ILMN_1717636 

CYP2E1 3.66 NM_000773.3 ILMN_1665437 

KIAA1804 3.66 NM_032435.1 ILMN_1719876 

LOC728014 3.64 XM_001127981.1 ILMN_1812721 

ABLIM1 3.63 NM_001003407.1 ILMN_2396672 

SLC43A2 3.62 NM_152346.1 ILMN_1787127 

ELL2 3.59 NM_012081.4 ILMN_1655930 

C17ORF87 3.55 NM_207103.1 ILMN_1682761 

KPNA5 3.54 NM_002269.2 ILMN_1669700 

RPL32P3 3.49 NR_003111.1 ILMN_2175020 

NAV2 3.47 NM_145117.3 ILMN_2399300 

NLGN4X 3.47 NM_020742.2 ILMN_1728011 

UNKL 3.42 NM_023076.3 ILMN_1692826 

HS.556255 3.42 AY726563 ILMN_1886515 

TOP1P1 3.39 NR_002719.1 ILMN_2086952 

CRIM1 3.38 NM_016441.1 ILMN_2146418 

GBP2 3.37 NM_004120.3 ILMN_1774077 
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Tab. 3-5: Top50 down-regulated probes in signature A at TP1 

ILMN_Gene 
Fold-change 

[siMLL/AF4] vs [Ctrl] 
Accession Probe_ID 

HIST1H4H -31.36 NM_003543.3 ILMN_1751120 

HIST2H3C -16.63 NM_021059.2 ILMN_1666179 

HIST1H3C -14.84 NM_003531.2 ILMN_1712184 

KIAA1666 -11.82 XM_942124.2 ILMN_1732988 

HIST1H4E -11.44 NM_003545.3 ILMN_1681542 

LOC644739 -10.31 XM_933679.1 ILMN_1660320 

LOC653604 -10.25 XM_497711.2 ILMN_1664706 

RN7SK -9.40 NR_001445.1 ILMN_1739423 

HIST1H1B -8.64 NM_005322.2 ILMN_1653251 

SNORD13 -8.05 NR_003041.1 ILMN_1892403 

PCDHGA5 -7.66 NM_018918.2 ILMN_2251961 

RN7SK -7.00 NR_001445.1 ILMN_2074860 

CD74 -6.66 NM_001025159.1 ILMN_1761464 

CD1A -6.47 NM_001763.2 ILMN_1723520 

C20ORF149 -6.30 NM_024299.2 ILMN_1720430 

RNF41 -6.24 NM_194358.1 ILMN_1700345 

POLR2J4 -6.14 NR_003655.1 ILMN_1699383 

GNG5 -5.88 NM_005274.1 ILMN_1701854 

C19ORF47 -5.82 NM_178830.2 ILMN_1735608 

FUT6 -5.79 NM_000150.2 ILMN_2312228 

DGKD -5.71 NM_152879.2 ILMN_1735301 

LOC641972 -5.68 XM_935742.1 ILMN_1803968 

HIST1H4K -5.36 NM_003541.2 ILMN_1662359 

LOC440731 -5.33 XM_933693.2 ILMN_1683250 

LOC654085 -5.29 XM_942123.1 ILMN_1741105 

HOXA10 -5.23 NM_018951.3 ILMN_1682110 

LOC644338 -5.23 XM_938091.2 ILMN_1721895 

TNFAIP8L1 -5.21 NM_152362.1 ILMN_1684346 

ATP8B2 -5.20 NM_001005855.1 ILMN_2301193 

EFNB1 -5.08 NM_004429.3 ILMN_1654563 

C21ORF58 -4.93 NM_199071.2 ILMN_1769471 

LOC347376 -4.93 XM_937928.1 ILMN_1704385 

HS.573102 -4.91 AA725539 ILMN_1887973 

SNORD36A -4.67 NR_002448.1 ILMN_2135175 

HIST1H2BD -4.66 NM_138720.1 ILMN_1758623 

AIF1 -4.64 NM_032955.1 ILMN_1792473 

HIST2H2AA3 -4.59 NM_003516.2 ILMN_1659047 

MTL5 -4.57 NM_001039656.1 ILMN_2389528 

ARSD -4.54 NM_001669.2 ILMN_1684956 

CHI3L2 -4.54 NM_001025199.1 ILMN_1685045 

HMHB1 -4.50 NM_021182.1 ILMN_1709173 

IFITM3 -4.49 NM_021034.2 ILMN_1805750 

LOC654069 -4.44 XM_942086.1 ILMN_1805726 

LOC440917 -4.43 XM_937554.2 ILMN_1657421 

OR6M1 -4.34 NM_001005325.1 ILMN_1815093 

PYCARD -4.28 NM_145182.1 ILMN_2398274 

HS.562219 -4.24 BP873537 ILMN_1901419 

MTRF1 -4.23 NM_004294.2 ILMN_2181992 

MGC33556 -4.22 NM_001004307.1 ILMN_1663068 

STRN4 -4.21 NM_013403.2 ILMN_2394102 
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Tab. 3-6: Top50 up-regulated probes in signature A at TP2 

ILMN_Gene 
Fold-change 

[siMLL/AF4] vs [Ctrl] 
Accession Probe_ID 

RN7SK 104.09 NR_001445.1 ILMN_1739423 

SSX4 14.69 XM_942793.1 ILMN_1791645 

JMJD1C 13.65 NM_032776.1 ILMN_1677589 

FCRLA 11.49 NM_032738.3 ILMN_1691071 

RN7SK 11.34 NR_001445.1 ILMN_2074860 

REEP3 10.49 NM_001001330.1 ILMN_1722642 

SNORD46 9.02 NR_000024.2 ILMN_1682402 

SLC12A8 8.95 NM_024628.4 ILMN_1762529 

IFI44 8.63 NM_006417.3 ILMN_1760062 

HS.545589 8.24 U62823 ILMN_1908824 

NLGN4X 7.45 NM_020742.2 ILMN_1728011 

LOC100008589 7.41 NR_003287.1 ILMN_1733559 

KLF2 7.35 NM_016270.2 ILMN_1735930 

ANXA1 6.46 NM_000700.1 ILMN_2184184 

LOC541471 6.20 XR_001013.1 ILMN_1696846 

NLGN4X 6.16 NM_020742.2 ILMN_2341067 

FGFBP2 6.05 NM_031950.2 ILMN_1761945 

KIAA1666 6.04 XM_942124.2 ILMN_1732988 

ST6GAL1 5.73 NM_003032.2 ILMN_1653120 

AGPAT9 5.56 NM_032717.3 ILMN_1794875 

GABARAPL1 5.45 NM_031412.2 ILMN_2151281 

TMEM158 5.42 NM_015444.2 ILMN_1792455 

LOC646358 5.42 XM_929287.1 ILMN_1693404 

NR4A2 5.25 NM_006186.2 ILMN_1782305 

LOC285033 5.19 NM_001037228.1 ILMN_2115453 

LOC400120 5.15 NM_203451.1 ILMN_1797526 

TLR10 5.15 NM_001017388.1 ILMN_1719905 

IGLL3 4.95 NM_001013618.1 ILMN_2083066 

NQO2 4.93 NM_000904.2 ILMN_1712918 

CMTM8 4.75 NM_178868.3 ILMN_1710124 

PIR 4.68 NM_001018109.1 ILMN_2383383 

SEPT1 4.63 XM_944593.1 ILMN_1671854 

TLR10 4.59 NM_030956.2 ILMN_2414762 

CALCOCO1 4.55 NM_020898.1 ILMN_1774427 

VNN2 4.52 NM_004665.2 ILMN_1758864 

IL9R 4.51 NM_176786.1 ILMN_1794686 

ZNF322B 4.45 NM_199005.1 ILMN_2224290 

SORBS2 4.36 NM_003603.4 ILMN_2407879 

ALDOA 4.34 NM_184043.1 ILMN_2251253 

SORBS1 4.30 NM_001034954.1 ILMN_1663446 

PRPF39 4.25 NM_017922.2 ILMN_1692779 

PIR 4.24 NM_001018109.1 ILMN_1761247 

SNORD15B 4.18 NR_000025.1 ILMN_1713832 

DYNLRB2 4.13 NM_130897.1 ILMN_1697317 

COL7A1 4.12 NM_000094.2 ILMN_1751161 

LSP1 4.11 NM_001013255.1 ILMN_2355225 

CYFIP1 4.09 NM_014608.2 ILMN_1715815 

SMPDL3A 4.06 NM_006714.2 ILMN_1796349 

ASB7 3.99 NM_198243.1 ILMN_1753040 

IDS 3.99 NM_006123.2 ILMN_1798448 
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Tab. 3-7: Top50 down-regulated probes in signature A at TP2 

ILMN_Gene 
Fold-change 

[siMLL/AF4] vs [Ctrl] 
Accession Probe_ID 

HOXA10 -12.55 NM_018951.3 ILMN_1682110 

ARHGEF10 -12.04 NM_014629.2 ILMN_2132809 

PMP22 -8.26 NM_153321.1 ILMN_1785646 

LOC401093 -7.58 XM_379228.2 ILMN_1813055 

ZNF717 -7.15 XM_936239.1 ILMN_1717644 

PPARD -6.89 NM_006238.2 ILMN_1674282 

PAIP1 -6.53 NM_182789.2 ILMN_2312386 

SIRPA -6.47 NM_080792.2 ILMN_2372974 

PI16 -6.23 NM_153370.2 ILMN_1766264 

IGFBP4 -6.12 NM_001552.2 ILMN_1665865 

FLJ39653 -6.00 NM_152684.1 ILMN_1666633 

MAP2K3 -5.86 NM_145109.2 ILMN_1680777 

H6PD -5.83 NM_004285.3 ILMN_1721136 

MVK -5.74 NM_000431.1 ILMN_1786310 

STARD13 -5.59 NM_178006.1 ILMN_2341254 

CD1A -5.49 NM_001763.2 ILMN_1723520 

HIST1H2AG -5.47 NM_021064.3 ILMN_1686478 

PCBP4 -5.27 NM_020418.2 ILMN_1728498 

OAZ3 -5.26 NM_016178.1 ILMN_1681892 

LOC650037 -5.12 XM_939126.1 ILMN_1696999 

ADAM15 -5.06 NM_207195.1 ILMN_1751500 

HLA-DPA1 -4.79 NM_033554.2 ILMN_1772218 

GPR84 -4.78 NM_020370.1 ILMN_1785345 

PPP1R3E -4.72 XM_927029.2 ILMN_1735064 

PCDHGA5 -4.61 NM_018918.2 ILMN_2251961 

LOC401002 -4.54 XR_018284.1 ILMN_1686852 

PHF11 -4.53 NM_001040443.1 ILMN_2284706 

DOK4 -4.49 NM_018110.2 ILMN_1774261 

MAZ -4.49 NM_001042539.1 ILMN_2295620 

EFNB1 -4.45 NM_004429.3 ILMN_1654563 

RALGPS1 -4.43 NM_014636.1 ILMN_1674135 

LOC649754 -4.41 XM_941963.1 ILMN_1729421 

TMEM120B -4.38 NM_001080825.1 ILMN_2108493 

LOC91461 -4.29 NM_138370.1 ILMN_1734445 

RAP1A -4.28 NM_001010935.1 ILMN_1766176 

LOC645128 -4.26 XM_928159.1 ILMN_1751814 

FMNL3 -4.22 NM_198900.2 ILMN_2395214 

LOC642236 -4.17 XM_943005.1 ILMN_1685125 

ZNF493 -4.17 NM_001076678.1 ILMN_2278653 

PCTK3 -4.10 NM_212503.1 ILMN_1784110 

SPRY4 -4.09 NM_030964.2 ILMN_2086105 

SCAF1 -4.02 NM_021228.1 ILMN_1694194 

KRTAP10-11 -3.99 NM_198692.2 ILMN_1776412 

SYTL1 -3.97 NM_032872.1 ILMN_1750785 

LOC646561 -3.92 XM_937933.2 ILMN_1739570 

PARP3 -3.87 NM_001003931.1 ILMN_1796682 

PLAGL1 -3.85 NM_001080951.1 ILMN_1815121 

ENAH -3.84 NM_018212.4 ILMN_1716552 

XPA -3.79 NM_000380.2 ILMN_1787591 

DUSP6 -3.78 NM_022652.2 ILMN_2396020 
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3.2.3 Functional analysis of the MLL/AF4 gene signature 

The Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems Inc.) is a 

powerful tool for the identification of pathways, biological networks and 

physiological processes overrepresented in gene expression signatures, 

enabling a functional characterisation of the GEP dataset. The MLL/AF4 

signature at TP1 and TP2 were both analysed independently.  

 

3.2.3.1 IPA analysis of the MLL/AF4 signature at TP1 

The MLL/AF4 signature at TP1 contained differentially expressed genes that 

belonged to networks regulating cell death, gene expression, cell cycle, growth 

and proliferation, as well as molecular transport (tab. 3-8). Moreover, these 

network categories were also the top molecular functions attributed to the 

MLL/AF4 signature. In concordance with the t(4;11)-pathobiology, the 

MLL/AF4 signature contained probes involved in haematopoiesis and 

haematological system development and function, as well as probes associated 

with tumourigenesis and haematological disease (tab. 3-9).  

 

 

Tab. 3-8: Top5 networks affected by the MLL/AF4 gene signature at TP1 

Name Score 

Gene Expression, Cancer, Reproductive System Disease 30 

Cell Death, Cellular Growth and Proliferation, Cell Cycle 26 

Cancer, Cell Death, Molecular Transport 25 

Gene Expression, Cancer, Renal and Urological Disease 20 

Cell Death, Cell Morphology, Psychological Disorders 16 

 

Several of the top5 networks represented by the MLL/AF4 signature at TP1 

were involved in the gene expression machinery (tab. 3-8). A closer look at the 

composition of one of these networks (fig. 3-19) showed down-regulation of 
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several epigenetic modulators, such as the histone deacetylase HDAC5 and the 

polycomb group genes (PcG) CBX3 and CBX5, also known as HP-1 proteins, 

important mediators of cross-talk between the DNA methylation and histone 

modification pathways. Additionally, several core histone subunits were also 

down-regulated (HIST1H2AB, HIST1H4C, HIST2H3C, H3). Conversely, the histone 

methyltransferases MLL3 and G9a (EHMT2), as well as the transcription 

elongation factor ELL2, were up-regulated. Interestingly, several 

metallothionein genes showed reduced expression (MT1H, MT1X, MT2H), while 

other enzymes involved in metal metabolism, such as ferredoxin (FDX1) and 

ferredoxin redutase (FDXR) were induced. The latter two have been recently 

implicated in promoting cell death, and are thus in good concordance with the 

phenotype associated with MLL/AF4 depletion177-178. Lastly, the small GTPases 

RAB27A, shown to promote tumour cell proliferation and metastasis179, and 

RAB33A, involved in autophagy180-181, were down- and up-regulated, 

respectively, also agreeing with the phenotype. 

Apart from gene expression, three out of the top5 networks associated with the 

MLL/AF4 signature at TP1 were involved in regulating cell death (tab. 3-8). As 

illustrated in the representative network in (fig. 3-20), there was down-

regulation of the pro-survival BH3-family member BCL-XL (BCL2L1). Counter 

intuitively, the pro-apoptotic BH3-family member BAX also showed reduced 

expression. Nevertheless, genes associated with cell survival, such as TNFSF14 

and TERT182-183, were down-regulated, as well as the superoxide dismutase 

SOD2 and the glutathione peroxidase GPX4, two key regulators for maintaining 

low cellular reactive oxygen species (ROS) levels, thus protecting the cell from 

ROS-induced cell death184-186.   
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Tab. 3-9: Top 5 significantly enriched functional categories in the MLL/AF4 gene 
signature at TP1 

Top Biofunctions  P-value 

Diseases and Disorders  

 Cancer 8.50E-05 - 3.90E-02 

 Reproductive System Disease 8.50E-05 - 3.32E-02 

 Gastrointestinal Disease 1.94E-04 - 2.41E-02 

 Haematological Disease 5.72E-04 - 5.72E-02 

 Immunological Disease 5.72E-04 - 3.45E-02 

   

Molecular and Cellular Functions  

 Cell Death 4.16E-04 - 4.95E-02 

 DNA Replication, Recombination and Repair 4.21E-04 - 3.84E-02 

 Cellular Development 7.14E-04 - 4.19E-02 

 Cellular Growth and Proliferation 7.14E-04 - 4.95E-02 

 Molecular Transport 1.04E-03 - 3.99E-02 

   

Physiological System Development and Function  

 Connective Tissue Development & Function 1.08E-03 - 2.41E-02 

 Nervous System Development & Function 4.40E-03 - 1.26E-02 

 Reproductive System Development & Function 1.26E-02 - 3.84E-02 

 Haematological System Development & Function 2.41E-02 - 4.95E-02  

 Haematopoiesis 2.41E-02 - 3.84E-02 

P-Value range describes the p-values of associated subcategories as determined by 

Fisher’s exact test. 
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Fig. 3-19: MLL/AF4 depletion affects regulatory networks associated with gene 
expression 
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Fig. 3-20: MLL/AF4 depletion for 2 days (TP1) affects regulatory networks linked 
to cell death 
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Pathway analyses revealed 32 significantly enriched canonical pathways in the 

MLL/AF4 signature at TP1. The top20 pathways are depicted in (fig. 3-21)and 

could be attributed to 7 functional categories: mitogenic signalling, immune 

response, apoptosis-related signalling, metabolism, cytoskeleton-associated and 

GPCR-mediated signalling, as well as signalling linked to cancer.  

One of the top5 significantly enriched pathways (tab. 3-9) is the ephrin 

pathway, which is involved in cytoskeleton-associated signalling, and linked to 

oncogenesis. Of particular interest is that ephrins and their receptors have 

shown to be regulated in a MLL/AF4-dependent manner187. The ephrin pathway 

has strong crosstalk between the P13K/AKT cascade and also GPCR-mediated 

signalling. Several key factors of these genes, such as AKT and the ephrin ligand 

EFNB1 (as well as EFNA4, see appendix) are down-regulated in the MLL/AF4 

signature at both TP1 and TP2; this indicates a disturbance of these important 

mitogenic pathways in response of MLL/AF4 depletion (fig. 3-22).  

Overall, several key mediators of mitogenic signalling which promotes 

proliferation and survival, are compromised in the MLL/AF4 signature at TP1, 

suggesting a challenge of the cellular survival machinery in response to 

MLL/AF4 depletion, very much in accordance with the consequences of 

sustained MLL/AF4 depletion in SEM cells. 
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Fig. 3-21: Pathway analysis of the MLL/AF4 gene signature A at TP1 

Pathway analysis was performed using IPA Software (Ingenuity Inc.). At TP1, the top20 

significantly enriched canonical pathways (A) could be attributed to 8 functional categories (B). 

Statistical significance was determined by Fisher’s Exact test. 
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Fig. 3-22: MLL/AF4 depletion for 2 days results in down-regulation of 
several factors of the ephrin and other mitogenic signalling pathways 
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3.2.3.2 IPA analysis of the MLL/AF4 signature A at TP2  

Characterisation of the MLL/AF4 signature at TP2 using the IPA software 

yielded very similar results as the signature at TP1; the probes contained in this 

signature were ascribed to networks involved in cell death, cell cycle, cellular 

proliferation, movement and development. In addition, this signature also had 

an enrichment of genes associated with lipid metabolism and inflammatory 

responses. These networks were to some extent mirrored in the molecular 

function categories found to be overrepresented in this signature, such as gene 

expression, cellular development and morphology, as well as lipid metabolism, 

small molecule biochemistry and, most significantly, processes associated with 

cancer. Unsurprisingly, the physiological and pathological functions linked to 

the signature were cancer and tumour morphology, haematopoiesis and 

haematological function and development as well as disease (tab. 3-10, tab. 

3―11). 

 

 

 

Tab. 3-10: Top5 networks affected by the MLL/AF4 gene signature at TP2 

Name Score 

Cell Death, Cardiac Necrosis/Cell Death, Developmental Disorder 33 

Cellular Development, Dermatological Diseases and Conditions, Cell Cycle 29 

Inflammatory Response, Cellular Development, Haematological System 
Development and Function 

22 

Cell-To-Cell Signalling and Interaction, Cellular Growth and Proliferation, 
Lipid Metabolism 

13 

Cellular Development, Cellular Movement, Connective Tissue Disorders 11 
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Tab. 3-11: Top 5 significantly enriched functional categories in the MLL/AF4 gene 

signature A at TP2 

Top Biofunctions  P-value 

Diseases and Disorders  

 Cancer 1.04E-03 - 4.78E-02 

 Reproductive System Disease 2.94E-03 - 4.43E-02  

 Genetic Disorder 3.76E-03 - 4.91E-02 

 Haematological Disease 3.76E-03 - 4.78E-02 

 Neurological Disease 3.76E-03 - 4.91E-02 

   

Molecular and Cellular Functions  

 Cell Morphology 5.97E-05 - 4.56E-02 

 Cellular Development 1.28E-04 - 4.91E-02 

 Gene Expression 2.57E-04 - 3.32E-02 

 Lipid Metabolism 3.20E-04 - 4.78E-02 

 Small Molecule Biochemistry 3.20E-04 - 4.78E-02 

   

Physiological System Development and Function  

 Haematological System Development and Function 1.28E-04 - 4.91E-02 

 Haematopoiesis 2.29E-03 - 4.91E-02 

 Tumour Morphology 3.76E-03 - 2.22E-02 

 Connective Tissue Development and Function 1.08E-02 - 2.60E-02  

 Nervous System Development and Function 1.08E-02 - 4.78E-02 

P-Value range describes the p-values of associated subcategories as determined by 

Fisher’s exact test. 
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Indeed, as illustrated in (fig. 3-23), several genes associated with both a 

haematopoietic stem cell (HSC)-like signature and leukaemogenesis are down-

regulated in response to MLL/AF4 depletion, such as the HOXA genes HOXA5 

and HOXA9, the transcription factor RUNX1 (AML1) and the catalytic telomerase 

subunit TERT. This correlates well with reported data by us170 and others168. 

Furthermore, ID1, a negative transcription regulator expressed in 

haematopoietic progenitors and shown to promote tumourigenesis, is down-

regulated as well188-189. Of note is the disregulation of several factors associated 

with post-transcriptional RNA processing, such as the RNA helicases DDX20 and 

the small nuclear ribonucleoprotein SNRPD2, both involved in splicing, as well 

as the helicase DHX9 and the RNA binding protein CUGBP1 (CELF1), linked to 

mRNA decay regulation and post-transcriptional expression inhibition. 

Furthermore, factors associated with DNA damage response (XPA, H2AFX, 

MGMT) and cell cycle progression (CDKN2B, CDKN1A, TSPYL2) show MLL/AF4-

dependent expression as well.  
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Fig. 3-23: Sustained MLL/AF4 depletion for 4d (TP2) affects factors associated 
with cellular development and cell cycle regulation 
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Pathway analysis reveals >80 significantly enriched canonical pathways. The 

top20 of the signalling networks fit into five functional categories; interestingly, 

the vast majority belong to the mitogenic/cytokine signalling cascades, followed 

by pathways involved in immunity, particularly mediating inflammatory 

response. The remaining categories are, like at TP1, metabolism, cell death and 

GPCR signalling (fig. 3-24). As illustrated in the pathway schemes depicting B-

cell receptor and CD40 signalling (fig. 3-25), which have extensive cross-talk 

between different mitogenic signalling pathways, there was down-regulation of 

their major mediators, ERK1 and ERK2 as well as factors of the PI3K-pathway. 

Confusingly, the cell death-promoting MAPK p38 (MAPK14) is indicated to be 

down-regulated, while its upstream mediator is up-regulated. This, however, is 

erroneous, and occurred due to an IPA software-inherent misannotation, in 

which MAPK1 (ERK2) is also annotated as p38 (see appendix).  

Furthermore, there was down-regulation of STAT3 signalling (Fig. 3-26), 

another important pathway associated in leukaemic cell survival. 

Concomitantly, there was up-regulation of stress-related MAPK pathways, such 

as the JNK pathway; both JNK and several down-stream factors, as JUN (c-

JUN/AP-1) and ATF-2 where up-regulated (fig. 3-26). MLL/AF4 depletion also 

affects NFkB-signalling, ostensibly shutting it down (fig. 3-25, fig. 3-26). Several 

reports have associated IGF1R signalling and aberrant RAS activation with 

MLL/AF4-mediated oncogenesis152,190. Notably, MLL/AF4 depletion results in 

decrease expression levels of both the receptor kinase IGF1R and RAS (fig. 3-27). 

These results are in good concordance with the observations both for the TP1 

signature and the phenotype associated with MLL/AF4 knock-down.   
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Fig. 3-24: Pathway analysis of the MLL/AF4 gene signature A at TP2 

Pathway analysis was performed using IPA Software (Ingenuity Inc.). At TP2, the top20 

significantly enriched canonical pathways (A) could be attributed to 5 functional categories (B). 

Statistical significance was determined by Fisher’s Exact test. 
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Fig. 3-25: Sustained MLL/AF4 depletion for 4 d (TP2) results in down-regulation 
of the BCR signalling machinery involving Ras-ERK1/2- and NFkB-mediated 
signalling cascades 

Entities crossed out in red are due to erroneous annotation by the Ingenuity Pathway Analysis 

software (Ingenuity Inc.). 
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Fig. 3-26: Sustained MLL/AF4 depletion for 4 d (TP2) results in down-regulation 
of the CD40 signalling machinery involving ERK1/2-, STAT3- and NFkB-mediated 
signalling cascades 

Entities crossed out in red are due to erroneous annotation by the Ingenuity Pathway Analysis 

software (Ingenuity Inc.). 
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Fig. 3-27: Sustained MLL/AF4 depletion for 4 d (TP2) results in down-regulation 
of IGF1R-mediated signalling 
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3.2.4 Gene Set Enrichment Analysis of a MLL/AF4 Core Signature 

In order to define a signature of common differentially regulated genes between 

the two time points, comparison analysis of the MLL/AF4 signatures was 

performed. An overlap 246 probes between TP1 and TP2 represented 18% of 

dataset with the lowest probe numbers (TP2). Filtering the probes according to 

their regulation, TP and TP2 shared 98 up-regulated probes, an overlap of 16%, 

while having down-regulated 90 probe sets in common, corresponding to 13% 

of identifiers at TP2 (fig. 3-28).  

 

 

Fig. 3-28: Venn diagram of overlapping probes in MLL/AF4 signature A at both 
time points 

Comparison analysis of the zVAD signatures at TP1 and TP2 share 246 probes, which represents 

an overlap of 18% of the probe set at TP1. Correcting for an equal regulation, the MLL/AF4 

signatures share 98 up- and 90 down-regulated probe sets, which corresponds to 16% and 13% 

of entities at TP1, respectively. Numbers in parentheses correspond to total numbers. 
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The discrepancy of 58 probes is due to the fact of differing regulation: a probe 

with induction at TP1 being down-regulated at TP2, and vice versa, e.g., probe 

ILMN_1739423 for RNS7K, one of the top 50 down-regulated at TP1, while at 

the same time being one of the top 50 up-regulated probes at TP2 (tab. 3-5 and 

tab. 3-6, respectively). 

A curated core signature data set was derived from the 188 overlapping probes; 

these entities are illustrated in the heat map in (fig. 3-29). For subsequent 

analysis, the normalised expression values of siMLL/AF4 and Ctrl at TP1 and 

TP2 were used. 

GSEA analysis was performed on this curated data set, as described in section 

2.7.6; three data sets were found to be significantly enriched when adjusting to 

a false-discovery rate (FDR) cut-off of 25%. These three sets were motif gene 

sets, consisting of genes containing conserved cis-regulatory motifs such as 

transcription factor binding sites or miRNA seed sequences. Out of these three 

data sets, only one corresponded to a known transcription factor, namely SP1. 

In this analysis, the MLL/AF4 signature was negatively enriched for SP1 target 

genes at both time points (fig. 3-30A). A closer study of the MLL/AF4 signature 

genes present in the SP1 motif data set revealed overrepresentation of factors 

linked with cytoskeleton-associated functions and signalling; particularly the 

RHO and RAC pathways; e.g., the RHOA-GTPase activating protein (Rho-GAP) 

SH3BP191, the RAC and ARF binding protein ARFIP1192, as well as the receptors 

UNC5B and CD74, both important mediators in cellular migration, adhesion and, 

interestingly, angiogenesis193-197. 

 

 

 

Fig. 3-29: Heat map of the MLL/AF4 core signature A 

Overlap analyses of the MLL/AF4 expression arrays at TP1 and TP2 revealed a core signature 

consisting of 188 shared probes with the same regulation and a linear fold change (FC) of ≥2.0. 

The FC scale represented in this heat map is log2-transformed; a FC of 1 represents a linear FC of 

2. The graph was generated using the HeatmapImage module of the Genepattern software. 
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Fig. 3-30: The MLL/AF4 signature was negatively enriched for SP-1 target genes 

The combined MLL/AF4 signature showed as statistically significant negative correlation with a 

gene set corresponding to SP-1 target genes.  
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3.2.5 Comparison Analysis with Published MLL/AF4 Target Gene 

Data Sets 

When comparing the differentially expressed genes between the two time-

points, there were 107 up-regulated and 106 down-regulated entities shared 

(fig. 3-31). This numerical discrepancy can be attributed to the fact that some 

genes are covered by multiple probes, and different probes for the same genes 

are differentially expressed at both time points. This indicates towards a trend 

in regards to the regulation of these genes in response to MLL/AF4 depletion. 

The relevant entities are listed in (tab. 3-12).  

 

 

 

 

Fig. 3-31: Venn diagrammes of the MLL/AF4 signature at both time points 

Comparison of differentially expressed genes at both time points TP1 and TP2 revealed an 

overlap of 20% and 16 % of the up-regulated and down-regulated genes, respectively. Numbers 

in parenthesis indicate the total number of differentially expressed genes in each data set.  
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Among those genes covered by different probes at the TP1 and TP2 is TERT, 

coding for the catalytic telomerase subunit, as well as the PcG protein SCMHI, 

both linked to self-renewal in normal and malignant stem cells198. Other genes 

of interest are GRP177 (EVI/WLS), a GCPR involved in WNT signalling during 

development199-202, the cell cycle regulator CDKN2D (p19INK4), the calpain 

inhibitor calpastatin (CAST) as well as MSH5, a major DNA repair factor, all of 

which are down-regulated in response to MLL/AF4 depletion. In contrast, IL7R, 

a receptor involved in lymphopoiesis and cellular proliferation203, and the 

apoptosis inducer RIPK5204 are up-regulated, as well as the gene coding for the 

glycoprotein GP-180 (VNN2), linked to myeloid differentiation205. Of note is 

DICER1, one of the major regulators of miRNA biosynthesis. Lately, there is an 

increasing body of evidence associating monoallelic loss and/or reduced 

expression of functional DICER-1 with solid and haematologic malignancies206-

209. The deregulation of these genes is in keeping with the results of the 

functional characterisation of the MLL/AF4 signature at both TP1 and TP2 

(3.2.3). 

Recently, Guenther and colleagues identified potential MLL/AF4 target genes 

using the ChIP-Seq technology in the SEM cell line132. Clearly, these genes were 

likely candidates to be differentially regulated in response to MLL/AF4 knock-

down. Therefore, the MLL/AF4 gene signature at both time points was analysed 

for presence of these genes. Since the platform employed differed from the one 

used in current study, the entity lists provided by Guenther et al. was 

transformed to a gene symbol list using the DAVID Gene ID Converstion tool210-

212. Comparison analysis revealed very little overlap between the MLL/AF4 

signature at both time points and the putative MLL/AF4 target genes; at TP1 

there were 7 common up- and 22 common down-regulated genes; a number 

that falls below a 5% FDR. A similar observation was made for TP2, where there 

were 9 shared up-regulated genes and 16 that showed decreased expression in 

response to MLL/AF4 depletion. Indeed, only 2 of the up-regulated and 7 of the 

down-regulated genes are shared between both time points (fig. 3-32). The 

shared genes are listed in tab. 3-13. 
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Tab. 3-12: Differentially regulated genes in the MLL/AF4 signature covered by 
distinct probe sets at both time points  

Gene_Symbol 
TP1 TP2 

linear FC Probe_ID linear FC Probe_ID 

AGXT2L2 -2.85 ILMN_1686370 -2.32 ILMN_1673529 

ALAS1 2.16 ILMN_1700047 2.67 ILMN_2385647 

ALDH4A1 -3.31 ILMN_2244841 -2.09 ILMN_1656368 

ASB7 3.78 ILMN_1680419 3.99 ILMN_1753040 

ATE1 2.06 ILMN_1791400 2.12 ILMN_1812479 

C14ORF37 2.14 ILMN_2138745 3.17 ILMN_1796377 

CAST 2.58 
ILMN_1672947 

3.20 ILMN_2322806 

CAV1 2.31 ILMN_2149226 2.12 ILMN_1687583 

CDKN2D -2.08 ILMN_1748883 -2.02 ILMN_1740597 

CLIC4 -2.60 ILMN_1671250 -2.67 ILMN_2063584 

CMTM1 -2.55 ILMN_2287911   

   -2.07 ILMN_1693494 

   -2.17 ILMN_2328363 

DICER1 2.07 ILMN_1772692 2.94 ILMN_2349831 

GPR177 -2.48 ILMN_1660549 -3.15 ILMN_2399769 

HDLBP -3.06 ILMN_1678252 -2.22 ILMN_1756426 

IL7R 2.12 ILMN_1691341 2.73 ILMN_2342579 

LOC650339 -2.53 ILMN_1735832 -2.61 ILMN_1729791 

LOC653604 2.38 ILMN_1793461 2.08 ILMN_1664706 

LOC728417 3.11 ILMN_1776483 2.05 ILMN_1665540 

LPGAT1 2.73 ILMN_2151277 2.05 ILMN_1687998 

MSH5 -2.17 ILMN_1675708 -2.83 ILMN_1651787 

OPA3 -2.37 ILMN_2284591 -2.16 ILMN_1652819 

PCDHGC3 -2.61 ILMN_1656955 -3.12 ILMN_1675428 

PDLIM7 -2.69 ILMN_2396639 -2.67 ILMN_1814985 

RIPK5 3.02 ILMN_1779600 2.06 ILMN_2352023 

SCMH1 -2.28 ILMN_2276504 -2.07 ILMN_2375557 

SLA 2.17 ILMN_1667371 2.84 ILMN_2345898 

STRN4 -4.21 ILMN_2394102 -2.13 ILMN_1696190 

SYNGR1 -2.64 ILMN_1810875 -2.02 ILMN_1721712 

TERT -2.18 ILMN_1796005 -2.27 ILMN_2373119 

TNRC6A -2.04 ILMN_1714622 -2.49 ILMN_1739573 

VNN2 2.44 ILMN_1678939 4.52 ILMN_1758864 

ZFP1 2.42 ILMN_1695902 3.13 ILMN_2133936 
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Fig. 3-32: Venn diagrammes of MLL/AF4 target genes132 with MLL/AF4 signature 
A at both time points 

Comparison analysis of the induced (A) and down-regulated (B) genes of the MLL/AF4 

signature with published MLL/AF4 target genes shows very little overlap.  
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Tab. 3-13: MLL/AF4 target genes132 present in the MLL/AF4 signature-A at both 
TP1 and TP2 

Bold font represents up-regulated genes, italics indicate that the fold-change (FC) falls below the 

cut-off-value of FC ≥2.00 but is above 1.3. 

P->M denotes such a strong down-regulation, that the probe flags in these siMLL/AF4-treated 

cells go from present (P) to marginal (M). 
  

Gene_Symbol Probe_ID 
Fold-change 

Accession 
TP1-A TP2-A 

REEP3 ILMN_1722642 5.12 10.49 NM_001001330 

CD96 ILMN_1711573 1.47 2.32 NM_198196.2 

 ILMN_2415786 2.05 2.85 NM_005816.4 

PCDHGC3 ILMN_1656955 -2.61 -1.73 NM_032403.1 

 ILMN_1675428 1.38 -3.12 NM_032403.1 

CLEC9A ILMN_1673238 -3.46 -2.64 NM_207345.2 

FMNL2 ILMN_1730491 -2.16 -2.20 NM_052905.3 

SPN ILMN_1801040 -2.81  NM_001030288.1 

 ILMN_1658017 -2.11  NM_001030288.1 

 ILMN_1660315 -2.62 -2.62 NM_003123.3 

HOXA10 ILMN_1689336 -2.99 -2.08 NM_018951.3 

 ILMN_1682110 -5.23 -12.55 NM_018951.3 

HIVEP2 ILMN_1745447 -2.31 -2.16 NM_006734.3 

DUSP6 ILMN_1677466 -2.70 P->M NM_001946.2 

 ILMN_2396020 -3.98 -3.78 NM_022652.2 
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3.3 GEP OF MLL/AF4-DEPLETED SEM CELLS AT TIME POINT TP3 

In the previous sections, gene expression profiles of SEM cells depleted of 

MLL/AF4 at TP1 and TP2 were analysed, corresponding to an early and 

intermediate molecular response of the cells towards the ablation of MLL/AF4. 

Conversely, TP3 represents a late time point of six days sustained MLL/AF4 

depletion. In order to analyse these late molecular events, gene expression 

profiling of SEM cells electroporated for three times with siRNA was performed. 

Due to technical reasons, a MOCK control was excluded. For more accurate 

comparison of the gene signature at TP3 with the previously analysed MLL/AF4 

signature at TP1 and TP2, the expression sets at these two earlier time points 

were reanalysed, excluding the MOCK control.  

The scheme in fig. 3-33 depicts the experimental set-up for the analysis; in brief, 

SEM cells were serially electroporated every other day for three times, at day 0, 

day 2 and day 4. For confirmation of sustained MLL/AF4 depletion, RNA was 

harvested at TP1, TP2 and TP3, which corresponds to a knock-down period of 2, 

4 and 6 days, analysed for MLL/AF4 expression by qRT-PCR. SEM cells 

electroporated with siMLL/AF4 showed a reduction of MLL/AF4 transcript 

levels of 63-72% over all three time points when compared so control-treated 

cells (fig. 3-34). Prior to GEP, TP3 RNA was assessed for integrity using lab-on-

chip technology (tab. 3-14); a RIN>7 was determined for both samples, 

indicating acceptable RNA quality for GEP experiments. 
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Fig. 3-33: Experimental and analysis set-up for MLL/AF4 signature B 

Samples for TP1 and TP2 were derived from signature A, excluding the MOCK control. For a 

better understanding, the original experimental set-up is depicted in panel (A). TP3 is derived 

from SEM cells serially electroporated with siMLL/AF4 and control siRNA (siAML1/MTG8) at 

two-day intervals; RNA for GEP was harvested at TP3, corresponding to six days sustained 

MLL/AF4 knock-down (B). 
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Fig. 3-34: MLL/AF4 expression analysis for TP3-GEP 

SEM were serially electroporated with siMLL/AF4 or control siRNA (siAML1/MTG8) at two-day 

intervals for three times. RNA was harvested at TP1, TP2 and TP3, representing a sustained 

knockdown period of two, four and six days, respectively. MLL/AF4 expression was assessed by 

qRT-PCR. The graph represents one single continuous experiment, each sample was assayed in 

triplicates. 

 

 

 

Tab. 3-14: RIN values of samples submitted to GEP as determined by 
Bioanalyzer2100 RNA 6000 Nano Assay 

sample RIN 

TP3  

 siAML1/MTG8 9.3 

 siMLL/AF4 7.0 
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The raw data files were preprocessed in the Genome Studio gene expression 

module (Illumina Inc.), subtracting background, and further analysed using 

GeneSpring GX 11 software as described earlier. The number of differentially 

probes and genes associated with MLL/AF4 signature B is listed in tab. 3-15: 

there were 2708 differentially expressed probes at TP1, which corresponded to 

2616 genes, of which 1483 were up- and 1133 down-regulated. At TP2 there 

were 2150 differentially regulated probes, which could be collapsed into 1973 

genes, of which 992 were induced, and 981 genes showed reduced expression. 

2505 probes showed differential expression at TP3, consisting of 1449 up-

regulated and 1056 down-regulated probes. 

The top50 up- and down-regulated probes for TP3 are listed in tab. 3-16 and 

tab. 3-17, respectively. Of note is the overrepresentation of probes covering 

provisional RefSeq, EST and unannotated loci, representing 20 out of the top50 

probes. 

 

 

 

Tab. 3-15: Number of differentially expressed probe sets and genes for the 
MLL/AF4 signature B at all three time points 

siMLL/AF4 vs. siCtrl TP1(B)  TP2(B) TP3 

No. of differentially expressed probes 2708 2150 2505 

up-regulated probes 1177 1034 1449 

down-regulated probes 1516 1016 1056 

No. of differentially expressed genes 2616 1973 2386 

up-regulated genes 1483 992 1388 

down-regulated genes 1133 981 1007 

  



The Role of MLL/AF4 in Leukaemic Maintenance 
 

136 
 

Tab. 3-16: Top 50 up-regulated genes at TP3 

ILMN_Gene 
Fold-change 

[siMLL/AF4] vs [Ctrl] 
Accession Probe_ID 

LOC100008589 92.87 NR_003287.1 ILMN_3251587 

LOC100008589 42.61 NR_003287.1 ILMN_1733559 

LOC100132394 21.27 XM_001713809.1 ILMN_3249578 

FCRLA 20.53 NM_032738.3 ILMN_1691071 

RN5S9 18.13 NR_023371.1 ILMN_3234762 

IFIT1 17.83 NM_001548.3 ILMN_1707695 

OAS2 16.74 NM_016817.2 ILMN_1674063 

RN7SK 16.17 NR_001445.1 ILMN_1739423 

IFI44 14.22 NM_006417.3 ILMN_1760062 

IFIT2 13.64 NM_001547.4 ILMN_1739428 

LOC100128274 13.24 XM_001725558.1 ILMN_3253787 

ZNF626 12.71 NM_001076675.1 ILMN_2290732 

SAMD9L 11.66 NM_152703.2 ILMN_1799467 

GABARAPL1 11.22 NM_031412.2 ILMN_2151281 

IFIT3 10.75 NM_001031683.1 ILMN_1701789 

LOC728678 10.72 XR_039547.1 ILMN_3305628 

RNU4-2 10.29 NR_003137.2 ILMN_3308138 

LOC100133950 9.49 XM_001721634.1 ILMN_3239388 

SLC25A20 9.48 XM_001133926.1 ILMN_1783060 

LOC440157 9.41 NM_001013701.1 ILMN_2082893 

RN7SK 9.10 NR_001445.1 ILMN_2074860 

LOC728755 9.07 XM_001128377.2 ILMN_3226214 

PATE2 9.05 NM_212555.1 ILMN_2133784 

ANKRD44 8.49 NM_153697.1 ILMN_2059844 

KIAA1666 7.88 XM_942124.2 ILMN_1732988 

LOC100130764 7.63 XM_001723713.1 ILMN_3256926 

C14ORF82 7.26 XM_944991.1 ILMN_1690443 

ZNF93 7.20 NM_001004126.1 ILMN_1679083 

LOC727962 7.14 XM_001718648.1 ILMN_3275275 

MX2 7.06 NM_002463.1 ILMN_2231928 

GSDMB 7.05 NM_018530.2 ILMN_2260756 

LOC644852 6.93 XM_934218.1 ILMN_1727165 

ENPP2 6.92 NM_001040092.1 ILMN_1780799 

LOC649456 6.84 XM_938534.1 ILMN_1705759 

LOC644591 6.81 XM_927706.2 ILMN_1710362 

LOC646897 6.75 XM_929859.1 ILMN_1693225 

LOC654350 6.69 XM_940587.3 ILMN_3281651 

GCLM 6.68 NM_002061.2 ILMN_2225974 

RNF213 6.53 NM_020954.2 ILMN_1731203 

TFIP11 6.52 NM_001008697.1 ILMN_1695000 

ISG15 6.40 NM_005101.1 ILMN_2054019 

RAB3IP 6.31 NM_001024647.2 ILMN_2291619 

HS.579631 6.30 BU536065 ILMN_1881909 

KCNK6 6.25 NM_004823.1 ILMN_2074773 

IRF9 6.24 NM_006084.4 ILMN_1745471 

LOC728779 6.23 XM_001128458.2 ILMN_3305508 

LOC647295 6.20 XM_930360.1 ILMN_1800055 

HS.125087 6.20 BQ437417 ILMN_1835092 

PRO1853 6.14 NM_144736.3 ILMN_2394132 

HS.580797 6.13 BF996074 ILMN_1900734 
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Tab. 3-17: Top 50 down-regulated genes at TP3 

ILMN_Gene 
Fold-change 

[siMLL/AF4] vs [siCtrl] 
Accession Probe_ID 

VPS24 -9.58 NM_001005753.1 ILMN_2406043 

LOC442597 -7.95 XM_944534.1 ILMN_1655842 

HCST -7.67 NM_001007469.1 ILMN_1699931 

SCAND1 -7.07 NM_016558.2 ILMN_1795317 

MTP18 -7.01 NM_001003704.1 ILMN_2372040 

KLHL23 -6.42 NM_144711.3 ILMN_1732550 

MACROD1 -6.40 NM_014067.2 ILMN_1740960 

ALG1 -6.29 NM_019109.3 ILMN_1718093 

RAB43 -5.99 NM_198490.1 ILMN_2155480 

PI16 -5.66 NM_153370.2 ILMN_1766264 

KCNMB1 -5.61 NM_004137.2 ILMN_1652065 

PRPF40A -5.51 NM_017892.3 ILMN_1666648 

FAM43A -5.50 NM_153690.4 ILMN_1706015 

ELMO1 -5.40 NM_130442.2 ILMN_1740231 

A2M -5.34 NM_000014.4 ILMN_1745607 

ANGPT1 -5.33 NM_001146.3 ILMN_1677723 

ANGPT1 -5.30 NM_001146.3 ILMN_2086890 

MYBBP1A -5.26 NM_014520.2 ILMN_1806757 

LOC641518 -5.04 XR_017788.1 ILMN_1707904 

CLEC14A -5.02 NM_175060.1 ILMN_2142185 

SPAST -5.01 NM_199436.1 ILMN_2373556 

HLA-DPA1 -4.94 NM_033554.2 ILMN_1772218 

POLR3H -4.92 NM_001018052.1 ILMN_1786024 

CD93 -4.89 NM_012072.3 ILMN_1704730 

FAM108A3 -4.88 NM_001080422.1 ILMN_2307978 

PPP1R12B -4.86 NM_032103.1 ILMN_1756289 

LOC732360 -4.86 XR_016089.2 ILMN_3305871 

MDK -4.85 NM_001012334.1 ILMN_2261876 

OS9 -4.76 NM_006812.2 ILMN_2361807 

SERPINB8 -4.73 NM_002640.3 ILMN_2397028 

EFNA4 -4.65 NM_182689.1 ILMN_1755710 

LOC100132060 -4.62 XM_001720144.1 ILMN_3244611 

HCP5 -4.58 NM_006674.2 ILMN_1803945 

SLC22A18AS -4.58 NM_007105.1 ILMN_1691048 

HIVEP2 -4.57 NM_006734.3 ILMN_1745447 

MGC3196 -4.57 XM_938324.1 ILMN_1722674 

ASGR2 -4.54 NM_080914.1 ILMN_2342638 

TMEM185A -4.44 NM_032508.1 ILMN_2140389 

FAM129B -4.42 NM_022833.2 ILMN_1661755 

CHST14 -4.41 NM_130468.2 ILMN_1743340 

HOXA10 -4.41 NM_018951.3 ILMN_1689336 

PRKAR2A -4.41 NM_004157.2 ILMN_1681888 

PRR7 -4.39 NM_030567.3 ILMN_1677509 

LIN7C -4.35 NM_018362.2 ILMN_2184708 

LAIR1 -4.35 NM_021706.2 ILMN_1768598 

XKR8 -4.34 NM_018053.2 ILMN_2087303 

IL1RN -4.32 NM_173843.1 ILMN_1774874 

LST1 -4.29 NM_205839.1 ILMN_1688373 

MAZ -4.29 NM_001042539.1 ILMN_2295620 

RYK -4.27 NM_001005861.1 ILMN_1769671 



The Role of MLL/AF4 in Leukaemic Maintenance 
 

138 
 

3.3.1.1 Analysis of MLL/AF4 signature at TP3 using Ingenuity Pathway 

Analysis 

 

Analysing the MLL/AF4 signature at TP3 using the IPA software showed 

enrichment of genes in networks involved in cytoskeleton-associated processes 

such as cellular movement, assembly and organisation, morphology and cell-to-

cell signalling. Furthermore, networks linked to cellular growth and 

proliferation, cellular development, cell cycle as well as DNA repair were 

affected (tab. 3-18). These networks are mirrored also in the molecular 

functions attributed to the signature, with the addition of cell death. As with 

previous TPs, amongst the top5 physiological functions and associated 

disorders are haematologic development, cancer and haematologic disease. 

There is also an bias towards immunological functions, such as infection 

mechanism and immune cell trafficking (tab. 3-19), which indicates, as observed 

at TP1 and TP2 in the MLL/AF4 signature, an enrichment of proinflammatory 

pathways and genes.  

 

  

Tab. 3-18: Top 5 networks affected by MLL/AF4 gene signature A at TP3 

Name Score 

Nervous System Development and Function, Tissue Morphology, Cellular 
Movement 

26 

Cell-To-Cell Signalling and Interaction, Tissue Development, Haematological 
System Development and Function 

24 

DNA Replication, Recombination, and Repair, Cell Cycle, Cellular Assembly 
and Organization 

24 

Cellular Development, Cellular Growth and Proliferation, Haematological 
System Development and Function 

23 

Organismal Injury and Abnormalities, Reproductive System Disease, Genetic 
Disorder 

18 
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Tab. 3-19: Significantly enriched functional categories in MLL/AF4 gene 
signature B at TP3 

Top Biofunctions  P-value 

Diseases and Disorders  

 Organismal Injury and Abnormalities 9.20E-08 - 4.45E-02 

 Cancer 4.56E-05 - 4.95E-02 

 Neurological Disease 4.56E-05 - 4.03E-02 

 Infection Mechanism 5.88E-04 - 4.45E-02 

 Haematological Disease 2.11E-03 - 4.95E-02 

   

Molecular and Cellular Functions  

 Cellular Growth and Proliferation 5.37E-06 - 4.59E-02 

 Cell Death 5.23E-05 - 4.69E-02 

 Cell Cycle 8.94E-05 - 4.95E-02 

 DNA Replication, Recombination, and Repair 8.94E-05 - 4.07E-02 

 Cellular Development 3.07E-04 - 4.95E-02 

   

Physiological System Development and Function  

 Haematological System Development and Function 3.92E-03 - 4.31E-02 

 Endocrine System Development and Function 5.74E-03 - 4.03E-02 

 Nervous System Development and Function 5.74E-03 - 2.64E-02 

 Reproductive System Development and Function 5.74E-03 - 4.03E-02 

 Immune Cell Trafficking 7.56E-03 - 4.80E-02 

P-Value range describes the p-values of associated subcategories as determined by 

Fisher’s exact test. 
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Fig. 3-35: Sustained MLL/AF4 depletion for 6 days affects regulatory networks 
associated with development and cellular movement 
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A closer look into the regulatory networks affected by prolonged MLL/AF4 

depletion revealed down-regulation of several genes linked to cytoskeleton-

mediated processes and signalling, such as PLAUR, CDC42SE and TAGLN. 

Furthermore, genes associated with early cellular development, e.g., the PcG 

genes EED and EZH2, as well as the DNA methyltransferases DNMT3B, also 

showed decreased expression. Several protoconcogenes were affected by 

sustained MLL/AF4 depletion, the transcription factor MYBL2, the Src family 

kinase FYN and the oncogenic tyrosine kinases ABL and HER2, linked to breast 

cancer213, however, are induced. Conversely, the WNT signalling modulator 

DAAM1 is up-regulated (fig. 3-35).  

 

Characterisation of the top20 canonical pathways significantly enriched 

MLL/AF4 signature at TP3 showed that they could be assigned to six major 

functional categories; as already seen at the other time points of the MLL/AF4 

signature, there is a high incidence of pathways involved in immune response 

and inflammatory processes. The other pathway categories are mitogenic as 

well as GPCR-/cytokine signalling. Interestingly, the second major groups 

relates to metabolism, particularly mediating amino acid catabolism, beta-

oxidation and respiration (fig. 3-36).  

As seen in the MLL/AF4 signature at TP1 and TP2, there is down-regulation of 

several mitogenic mediators, such as the protein kinase AKT and the 

phospholipase PLC, tyrosine kinases (ABL, FYN, and SYK) and the small GTPases 

RAC and RAS. Similarly, both transcription factors of the NFkB family as well as 

NFkB activators such as PKCβ and BCL10 are negatively regulated on 

transcriptional level, indicating a MLL/AF4-dependent shut-down of NFkB 

signalling (fig. 3-37).  
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Fig. 3-36: Pathway analysis of the MLL/AF4 gene signature at TP3 

Pathway analysis was performed using IPA Software (Ingenuity Inc.). At TP3, the top20 

significantly enriched canonical pathways (A) could be attributed to 6 functional categories 

mainly involving a proinflammatory response and metabolism (B). Statistical significance was 

determined by Fisher’s Exact test. 
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Fig. 3-37: MLL/AF4 signature-B at TP3 shows down-regulation of PI3K/AKT-, 
NFkB- as well as Ras- and Rac signalling effectors 
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3.3.2 Comparison Analyses 

In order to identify a core signature and underlying functional motifs, all three 

time points of the MLL/AF4 signature B where compared with each other. Very 

little overlap was identified; all three TP of gene signature B shared only 43 up-

regulated and 20 down-regulated probes, which represents less than 1% 

overlap (fig. 3-38). This core signature B is listed in the heatmap (fig. 3-39). 

Interestingly, ANGPT1, a gene not present in the core signature A is contained in 

the core signature B, covered by two probes at all time points. 

This core signature consisting 63 probes was used to create a curated data set 

for GSEA analysis, in order to identify further biological and functional motifs. 

Only two gene sets were statistically significantly enriched, with a FDR of ≤ .25. 

This signature was positively enriched for genes annotated with GO-terms 

corresponding to stress, immune response and signalling (fig. 3-40A). 

Conversely, the signature was negatively correlated with TCF3 (E2A) target 

genes (fig. 3-40B), potentially indicating an influence in beta-catenin signalling. 
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Fig. 3-38: Venn diagrammes of the MLL/AF4 signature B at all three time points 

Comparison analysis of induced (A) and down-regulated (B) genes of the MLL/AF4 B signature 

at all three time points. Numbers in parentheses denote total numbers of differentially 

expressed genes in that data set.  



The Role of MLL/AF4 in Leukaemic Maintenance 
 

146 
 

 

 

Fig. 3-39: Heat map of a core signature of probes differentially expressed in 
siMLL/AF4-electroporated SEM cells at all three time points TP1, TP2 and TP3 

Overlap analyses of the MLL/AF4 signature B at all three time points revealed a core signature 

consisting of 63 shared probes showing the same regulation at all time points queried. The core 

probe set consisted of 43 up- and 20 down-regulated probes with a linear fold change (FC) cut-

off of 2.0. The FC scale represented in this heat map is log2-transformed; a FC of 1 represents a 

linear FC of 2. The graph was generated using the HeatmapImage module of the Genepattern 

software. 
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Fig. 3-40: The core signature was significantly enriched for gene sets associated 
with cellular compromise, immune response and TCF3-target genes 

The MLL/AF4 core signature showed positive correlation with one gene set enriched for GO 

terms associated with stress, immune response and cell signalling (A); there was negative 

correlation with genes containing TCF3 binding sites (B). 
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3.4 VALIDATION OF BIOLOGICALLY INTERESTING MLL/AF4 SIGNATURE 

GENES IN VITRO 

Gene expression profiling revealed that MLL/AF4 depletion results in 

deregulation of mitogenic signalling, down-regulation of stem-cell associated 

factors and induction of inflammatory mediators as well as genes linked with 

cell death. In order to confirm these observations, the results were validated on 

RNA and protein level. The rationale for the selection of genes to be validated 

was based on a potential functional relevance as well as novelty.  

 

3.4.1 MLL/AF4 depletion and mitogenic signalling 

A well-established mechanism in oncogenesis is constitutive activation of 

mitogenic signalling, such as, e.g., the PI3K/AKT pathway or the RAS cascade. 

Several distinct mechanisms underlie this process, including gain-of function 

mutations of activators and/or genetic lesions or aberrant epigenetic silencing 

of negative regulators of these pathways. One important negative regulator is 

the dual-specificity phosphatase DUSP6 which targets the MAPKs ERK1 and 

ERK2; loss of this gene has been implicated in carcinogenesis, and until recently, 

DUSP6 was thought to act as a tumour suppressor. Interestingly, DUSP6 has now 

been identified as a direct target gene of MLL/AF4132; moreover, DUSP6 

overexpression has been linked to increased chemotherapy-resistance in 

glioblastomas214. In this study, probes covering the DUSP6 transcripts were part 

of the MLL/AF4 core signature at all three time points, showing consistent 

down-regulation in response to MLL/AF4 depletion (fig. 3-41). 
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Fig. 3-41: Normalised DUSP6 probe signal values in MLL/AF4 signature B  

SEM cells had been depleted of MLL/AF4 for 2, 4, 6 days (TP1, TP2, TP3) using siMLL/AF4, or 

cells were transfected with control siRNA (siAML1/MTG8, here termed siCtrl). Signal intensity 

values of the Illumina HT12 bead array probe for DUSP6 of the siMLL/AF4 samples at each time 

point were normalised against the corresponding controls, and the signal value fold-change 

log2-transformed. 

 

 

This observation could be confirmed on both RNA and protein level; qRT-PCR 

analysis showed a substantial decrease of DUSP6 expression in SEM cells 

depleted of MLL/AF4 at TP1, TP2 and TP3, ranging from 51% to 72% knock-

down (fig. 3-42A). In concordance, immunoblotting of SEM cells treated with 

siMLL/AF4 for four days confirmed a marked reduction of the two DUSP6 

isoforms when compared to controls (fig. 3-42B). However, knock-down of 

MLL/AF4 in primary patient material carrying the same MLL/AF4 fusion 

transcript as the SEM cells did not result in a substantial reduction of DUSP6 

levels (fig. 3-42C). DUSP6 is a phophatase specific for ERK1/2; unfortunately it 

had not been possible to successfully probe for alterations of the phophosignal 

of these kinases.  



The Role of MLL/AF4 in Leukaemic Maintenance 
 

150 
 

 

 

 

 



The Role of MLL/AF4 in Leukaemic Maintenance 
 

151 
 

Fig. 3-42: DUSP6 expression analysis in t(4;11)-positive ALL cell lines after 
MLL/AF4 depletion 

The SEM cell line was serially electroporated three times with siMLL/AF4, control siRNA 

(siAML1/MTG8) or without siRNA (MOCK); RNA was harvested at each time point prior to the 

subsequent transfection, corresponding to material derived from cells treated with siRNA for 2, 

4 and 6d. SEM cells depleted of MLL/AF4 show a substantial reduction of DUSP6 at all three 

time points (A). This was confirmed by immunoblotting on protein level; SEM cells treated with 

siMLL/AF4 for 4 days expressed markedly less of both DUSP6 isoforms (B). Interestingly, a 

single electroporation of primary t(4;11)-positive patient material with either siMLL/AF4 or 

corresponding controls did not show a substantial effect on DUSP6 expression as determined by 

qRT-PCR expression analysis at day one, two and three post-transfection. Figure (A) represents 

the mean of n=3 independent experiments at d2 & d4, and n=2 experiments at d6. Error bars 

indicate S.E.M. DUSP6 expression analysis by immunoblotting was performed once (B); the qRT-

PCR of the primary patient material (C) represents one single experiment, each sample 

performed in triplicates.  

  



The Role of MLL/AF4 in Leukaemic Maintenance 
 

152 
 

3.4.2 MLL/AF4 depletion down-regulates factors associated with 

stemness and self-renewal 

Acute lymphoblastic leukaemia is associated with a differentiation block, and 

the blasts are arrested at an early stage in haematopoiesis, retaining self-

renewal capability. MLLr-ALL in general, and MLL/AF4-positive ALL in 

particular is characterised with a very immature pro-B immunophenotype; 

furthermore, recent studies have described the aberrant expression of a gene 

signature associated with stemness and self-renewal132. In this study, GEP 

showed down-regulation of several of these genes in response to MLL/AF4 

depletion, a selection of these genes were investigated on transcript level (tab. 

3-20). 

 

 

Tab. 3-20: MLL/AF4 GEP signature genes associated with stemness and self-
renewal 

Gene_Symbol Probe_Id 
Fold-change 

Accession 
TP1-A TP2-A 

HMGA1 ILMN_2311537 -2.06 -1.87 NM_207345.2 

HMGA2 ILMN_2344662 -1.29 -37.3 (P->A) NM_003483.4 

TERT ILMN_1796005 -2.18 1.46 NM_003219.1 

 ILMN_2373119 1.18 -2.27 NM_198253.2 

DNMT3B ILMN_2328972 -1.68 -1.44 NM_006892.3 

 ILMN_1794692 -1.56 -2.20 NM_006892.3 

PYGO2 ILMN_1695334 -2.75 -2.31 NM_138300.3 

HOXA4 ILMN_1677018 -50.86 -3.73 NM_002141.4 

HOXA5 ILMN_1753613 -1.132 -2.58 NM_019102.2 

HOXA6 ILMN_1815570 -1.22 -50.06 NM_024014.2 

HOXA7 ILMN_1706478 -1.54 -26.04 NM_006896.3 

HOXA9 ILMN_1702479 -1.13 -2.15 NM_152739.3 

HOXA10 ILMN_1689336 -2.99 -2.08 NM_018951.3 

 ILMN_1682110 -5.23 -12.55 NM_018951.3 
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3.4.2.1  MLL/AF4 depletion results in HOXA gene down-regulation 

One of the hallmarks of MLLr acute leukaemia is HOXA gene up-regulation. 

Indeed, several probes covering the HOXA genes showed persistent down-

regulation in the MLL/AF4 signature. For some of these probes the down-

regualtion was so strong that the signal in the MLL/AF4 depleted cells did not 

pass the the P-call threshold, but were flagged as “absent” and “marginal” (Tab. 

3-20). 

These results were validated by qRT-PCR; expression of HOXA7, HOXA9 and 

particularly HOXA10, one of the MLL/AF4 core signature genes, was strongly 

reduced in MLL/AF4 depleted cells (fig. 3-43A, C; fig. 3-44A). Although the 

complete 5’-cluster is known to up-regulated by MLL-fusion genes, the study 

performed by Guenther et al. only described HOXA7, HOXA9 and HOXA10 as 

immediate MLL/AF4 target genes132. However, on the grounds of the genomic 

organisation of this gene cluster, it seems unlikely that only these three genes 

are regulated by MLL/AF4, and not also the immediate neighbours HOXA6 and 

HOXA5. Interestingly, when assessing MLL/AF4-dependent expression of 

HOXA7, HOXA9 and HOXA10 in primary t(4;11)-positive patient material, only 

HOXA10 showed a marked down-regulation in response to siMLL/AF4 

treatment, with 20% reduction 24h post electroporation, up to 52% at day 3 

(fig. 3-43D). The decrease in HOXA7 was less substantial, 30-40% reduced 

transcript levels in siMLL/AF4 blasts (fig. 3-43B). However, there was no effect 

on HOXA9 expression in blasts at any time point queried (fig. 3-44B). 
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Fig. 3-43: Dependence of HOXA7 and HOXA10 expression in t(4;11)-positive cells 
on MLL/AF4 

SEM cells were serially electroporated three times with siMLL/AF4, control siRNA 

(siAML1/MTG8) or without siRNA (MOCK). RNA was harvested at TP1, TP2 and TP3, 

corresponding to material derived from cells treated with siRNA for two, four and six days. 

Expression levels of HOXA7 and HOXA10 were assessed by qRT-PCR. SEM cells depleted of 

MLL/AF4 show a substantial reduction of HOXA7 and HOXA10 at all three time points (A, C). 

These results were confirmed in primary t(4;11)-positive patient blasts; a single electroporation 

with either siMLL/AF4 resulted in a decrease of HOXA7 and HOXA10 levels when compared to 

controls, as determined by qRT-PCR at day one, two and three post-transfection (B, D). The 

graphs represents the mean of n=3 independent experiments at TP1 for both genes, n=5 for TP2 

and n=2 for HOXA7. TP2 and TP3 for HOXA10 were performed once. The graphs (B) and (D) 

represent one single experiment; a technical replicate was performed for HOXA10 (D). Error 

bars indicate S.E.M. Statistical analysis was performed using an unpaired Student’s t-test (** = 

p<0.01, ***= p<0.001). 
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Fig. 3-44: Dependence of HOXA9 expression in t(4;11)-positive cells on MLL/AF4 

SEM cells were serially electroporated twice with siMLL/AF4, control siRNA or without siRNA. 

RNA was harvested at TP2, corresponding to material derived from cells treated with siRNA for 

four days and HOXA9 expression assessed by qRT-PCR. SEM cells depleted of MLL/AF4 show a 

substantial reduction of HOXA9 (A). Conversely, electroporation of primary t(4;11)-positive 

patient blasts with siRNA did not affect HOXA9 levels. Graph (A) represents the mean of n=3 

independent experiments; (B) represents one single experiment. Error bars indicate S.E.M. 

Statistical analysis was performed using an unpaired Student’s t-test (**= p<0.01).  
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3.4.2.2 MLL/AF4 depletion results in decreased TERT expression 

Another stemness-associated gene differentially expressed in response to 

MLL/AF4 depletion was TERT. This gene codes for the catalytic subunit of the 

ribozyme telomerase, one of the key regulators of self-renewal and heavily 

implicated in malignant transformation. As listed in tab. 3-12, TERT expression 

showed down-regulation at TP1 and TP2. This result was confirmed by qRT-

PCR, showing a depletion of 33-40% (fig. 3-45). 

 

 

 

Fig. 3-45: TERT expression analysis in MLL/AF4 depleted SEM cells 

SEM cells were serially electroporated with siMLL/AF4, control siRNA (siAML1/MTG8) or no 

siRNA; expression was assessed by qRT-PCR at TP2 and TP3, corresponding to four and six days 

MLL/AF4 depletion. The graph shows the mean of n=5 and n=2 experiments for d4 and d6, 

respectively. Error bars indicate S.E.M., statistical significance determined using an unpaired 

Student’s t-test (* = p<0.05). 
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3.4.2.3 MLL/AF4 depletion results in down-regulation of the chromatin 

remodelling factor HMGA2, but not PYGO2 and DNMT3B 

 

The high-mobility group A proteins are a family of chromatin modifying 

transcription regulators which play an important role in development and 

maintenance of adult stem cells, and are strongly implicated in tumourigenesis 

and therapy-resistance. One of these proteins, HMGA2, has been identified as a 

direct MLL/AF4 target gene132. In this array, HMGA1, a close homologue, was 

found to be down-regulated. On further analysis, HMGA2 also showed decreased 

expression levels, however, the signal level in the siMLL/AF4 treated sample fell 

so low that it called “absent” (tab. 3-20). Expression analysis of HMGA2 showed 

a marked decrease in transcript levels by in both siMLL/AF4-treated SEM cells 

and primary patient blasts by ~45% and 25-50%, respectively (fig. 3-46 A, B) 

 

 

 

 

 

Fig. 3-46: MLL/AF4-dependent HMGA2 expression in t(4;11)-positive cells 

The SEM cell line was serially electroporated three times with siMLL/AF4, control siRNA 

(siAML1/MTG8) or without siRNA (MOCK); RNA was harvested at each time point prior to the 

subsequent transfection, corresponding to material derived from cells treated with siRNA for 

two and four days, and assessed for HMGA2 expression by qRT-PCR. SEM cells depleted of 

MLL/AF4 show a substantial reduction of HMGA2 at all three time points. Graph represents the 

mean of n=3 independent experiments, error bars indicate S.E.M. Statistical analysis was 

performed using an unpaired Student’s t-test (* = p<0.05) (A). This results was further validated 

in primary t(4;11)-positive patient blasts; a single electroporation with either siMLL/AF4 

resulted in a time-dependent decrease of HMGA2 when compared to controls, as determined by 

qRT-PCR expression analysis at day one, two and three post-transfection(B). The graph shows 

the results of one single experiment, each sample was performed in triplicates.  
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Another chromatin remodelling factor implicated in both normal and malignant 

development is PYGO2, which forms part of the β-catenin/TCF/LEF 

transcription factor complex. PYGO2 recognises and binds lysine residue-4 

histone H3 (H3K4) di- and trimethylation marks on euchromatin and 

subsequently recruits β-catenin via its adaptor protein BCL9, mediating 

transactivation of WNT target genes. Additionally, in a WNT-independent role, 

PYGO2 also recruits other H3K4 histone methyltransferases to dimethylated 

H3K4, promoting chromatin-activating trimethylation215-218. PYGO2 expression 

is important for development of different tissue, regulating progenitor 

expansion and self-renewal capability215,219-220. Concomitantly, PYGO2 activity 

has been implicated in diverse solid tumours221-222. 

 

 

 

Fig. 3-47: PYGO2 expression in SEM cells depleted of MLL/AF4 

SEM cell were serially electroporated three times, and RNA harvested at TP1, TP2 and TP3, 

corresponding to a sustained MLL/AF4 depletion of two, four and six days. PYGO2 expression 

was determined by qRT-PCR; no changes in response to MLL/AF4 knock-down were detected. 

Graph represents the mean of n=2 experiments, error bars represent data range.  
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In this study, PYGO2 was part of the down-regulated MLL/AF4 signature 

at all time points (tab. 3-19), however, this could not be validated in vitro, as 

sustained depletion of MLL/AF4 in SEM cells did not results in altered PYGO2 

expression levels (fig. 3-47). 

DNMT3B belongs to the family of DNA methyl transferases, and mediates in 

concert with its homologue DNMT3A de novo cytidine methylation of CpG 

dinucleotides. These de novo DNA methyltransferases are highly expressed in 

embryonic stem cells and down-regulated in differentiation. Concomitantly, 

aberrant DNMT3B activity promotes tumourigenesis in a variety of cancers. 

DNMT3B showed down-regulation over at TP2 and TP3, which was less 

pronounced at TP1 (tab. 3-20). Assaying DNMT3B expression in siMLL/AF4 

treated SEM cells could not completely validate these results, as although the 

regulatory trend was confirmed, there was only a subtle decrease in transcript 

levels (fig. 3-48). 

Two other genes associated with stem-cell functions, ANGPT1 and ANGPTL2, 

were also present in the MLL/AF4 signature; they were validated in section 5. 
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Fig. 3-48: DNMT3B expression in MLL/AF4-depleted SEM cells  

The SEM cell line was serially electroporated for three times with siMLL/AF4, control siRNA 

(siAML1/MTG8) or without siRNA (MOCK); RNA was harvested at each time point prior to the 

subsequent transfection, corresponding to material derived from cells treated with siRNA for 2, 

4 and 6 days (TP1, TP2, TP3). DNMT3B expression was assessed qRT-PCR. SEM cells depleted of 

MLL/AF4 show only a subtle decrease in DNMT3B levels. The graph represents the mean of n=2 

independent experiments for TP2 and TP3, n=1 at TP1. Error bars indicate data range.  
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3.4.3 MLL/AF4 depletion induces genes associated with autophagy 

and cell death 

ANNEXINA1 (ANXA1) belongs to the annexin family of phospholipid binding 

proteins. It acts as a negative regulator of inflammation, but has been shown to 

promote cell death and suppress tumour cell proliferation in a context-

dependent manner. In this GEP study, the probes for ANXA1 were up-regulated 

in SEM cells depleted of MLL/AF4 at all three time points (fig. 3-49). This was 

validated in vitro by qRT-PCR, MLL/AF4 knock-down resulted in a marked and 

significant induction of ANXA1 levels (fig. 3-50A). However, MLL/AF4 depletion 

in primary patient material did not show a substantial increase in expression 

(fig. 3-50B). 

 

 

Fig. 3-49: Normalised ANXA1 probe signal values in samples depleted of MLL/AF4 

SEM cells had been treated for 2, 4 and 6 days (TP1, TP2, TP3) with either siMLL/AF4 or control 

siRNA (siAML1/MTG8, here termed siCtrl). Signal intensity values of the Illumina HT12 bead 

array probes for ANXA1 of the siMLL/AF4 samples at each time point were normalised against 

corresponding controls, and the signal value fold-change log2-transformed. 
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Fig. 3-50: ANXA1 expression in t(4;11)-positive cells in response to MLL/AF4 
depletions 

The SEM cell line was serially electroporated for three times with siMLL/AF4, control siRNA 

(siAML1/MTG8) or without siRNA (MOCK); RNA was harvested at each time point prior to the 

subsequent transfection, corresponding to material derived from cells treated with siRNA for 2, 

4 and 6 days (TP1, TP2 & TP3), and assessed for ANXA1 expression by qRT-PCR. SEM cells 

depleted of MLL/AF4 show a substantial induction of ANXA1 at all three time points. Graph 

represents the mean of n=3 independent experiments, error bars indicate S.E.M. Statistical 

analysis was performed using an unpaired Student’s t-test (*** = p<0.001) (A). A single 

electroporation of primary t(4;11)-positive patient ALL blasts with either siMLL/AF4 or 

controls did not affect ANXA1 levels, as determined by qRT-PCR (B). The graph shows the 

results of one single experiment, each sample was performed in triplicates. 
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Like ANXA1, the autophagy-associated gene GABARAPL1 is one of the genes 

constituting the MLL/AF4 core signature, showing induction at all three time 

points (fig. 3-51). This was confirmed in vitro by qRT-PCR, siMLL/AF4 treated 

SEM cells showed up-regulation in a time-dependent manner, expressing 3-, 8- 

and- 13-fold more GABARAPL1 than corresponding controls. (fig. 3-52). 

 

 

 

 

Fig. 3-51: Normalised GABARAPL1 probe signal values in samples depleted of 
MLL/AF4 

SEM cells had been treated for 2, 4 and 6 days (TP1, TP2, TP3) with either siMLL/AF4 or control 

siRNA (siAML1/MTG8, here termed siCtrl). Signal intensity values of the Illumina HT12 bead 

array probes for GABARAPL1 of the siMLL/AF4 samples at each time point were normalised 

against corresponding controls, and the signal value fold-change log2-transformed. 
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Fig. 3-52: GABARAPL1 expression in MLL/AF4-depleted SEM cells  

The SEM cell line was serially electroporated for three times with siMLL/AF4, control siRNA 

(siAML1/MTG8) or without siRNA (MOCK); RNA was harvested at each time point prior to the 

subsequent transfection, corresponding to material derived from cells treated with siRNA for 2, 

4 and 6 days (TP1, TP2, TP3). GABARAPL1 expression was assessed qRT-PCR. SEM cells depleted 

of MLL/AF4 show a substantial induction of GABARAPL1 at all three time points. The Graph 

represents the mean of n=3 independent experiments, error bars indicate S.E.M. Statistical 

analysis was performed using an unpaired Student’s t-test (* = p<0.05; ** = p<0.01). 
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3.4.4 Correlation of Array and Q-RT-PCR Results 

A selection of biologically interesting genes of the MLL/AF4 signatures A and B 

were validated both on RNA and protein level. 14 genes were analysed in vitro, 

DUSP6, HOXA7, HOXA9, HOXA10, HMGA2, PYGO2, TERT, ANXA1, GABARAPL1, 

DNMT3B, as well as ANGPT1 & ANGPTL2 (s. Section 5); out of these 14 genes 12 

could be confirmed; one showed no effect (PYGO2) and the remaining one 

(DNMT3B) was only subtly regulated in response to MLL/AF4 depletion.  

Correlation analysis of the linear fold-changes determined by qRT-PCR with the 

linear fold-changes of the normalised signal values of the corresponding GEP 

probes, showed good concordance at all three time points (fig. 3-53) as well as a 

statistically significant correlation, as determined by Pearson statistics. 

 

 

 

 

 

 

 

 

 

Fig. 3-53: Correlation analysis of the fold-changes of the MLL/AF4 GEP signature 
and qRT-PCR 

Pearson correlation analysis shows a good concordance between the fold-changes of genes in 

MLL/AF4 depleted genes obtained by GEP and qRT-PCR at TP1 (A) and TP3 (B). The correlation 

at TP2 (B) was less high, but still statistically significant. The GEP fold-changes are derived from 

the differentially regulated probes of the MLL/AF4 signature A at TP1 and TP2, while TP3 

corresponded to MLL/AF4 signature B. If several probes had a linear fold-change of above 2.0, 

the mean was applied. These values were correlated to the fold changes determined by qRT-PCR 

analysis of siMLL/AF4-treated SEM cells at the corresponding time points. Values highlighted 

green correspond to the genes ANGPT1 and ANGPTL2, validated in section 5. 
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3.5 CONCLUSIONS 

 

MLL/AF4 depletion impinges on the leukaemic phenotype: 

 Loss of MLL/AF4 induces cell death, and this accompanied by induction 

of pro-apoptotic and anti-proliferative genes, as well as a concerted 

down-regulation of mitogenic signalling cascades. 

 Loss of MLL/AF4 impinges on self-renewal, as illustrated by the 

compromised clonogenicity. Concomitantly, MLL/AF4 ablation correlates 

with decreased expression of self-renewal-associated genes. 

 Loss of MLL/AF4 blocks proliferation and cell cycle progression. 
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3.6 DISCUSSION 

In order to elucidate the pathobiology of t(4;11)-positive ALL on a molecular 

level, RNAi-mediated knock-down of the MLL/AF4 fusion gene was combined 

with a gene expression profiling time course, analysing the changes in gene 

expression levels corresponding to a MLL/AF4 depletion period of two, four and 

six days. The siRNA used, siMLL/AF4, was specific for the break-point of the 

MLL/AF4 fusion transcript found in the SEM cell line, and did not affect wild-

type MLL and AF4 expression levels at an early time point (2h), while it already 

resulted in substantial decrease of MLL/AF4 levels (fig. 3-6). This remained true 

for MLL (fig. 3-8), however, siMLL/AF4 treatment led to a delayed down-

regulation of AF4, which was potentiated in a time-dependent manner (fig. 3-7). 

An off-target effect could be ruled out, as transfection of siMLL/AF4 in other cell 

lines that did not express the same MLL/AF4 fusion gene (RS4;11, fig. 3-9), or 

only MLL in its wild-type configuration (Kasumi-1, fig. 3-10), did not decrease 

AF4 expression levels, even after being treated for up to six days with 

siMLL/AF4 (fig. 3-10). This observation suggests a possible fusion gene-

dependent regulation of AF4, indeed, in silico screening of the AF4 promoter 

found several putative binding sites for HOXA genes and members of the TALE 

(Three Amino acid Loop Extension) homeodomain transcription factor family 

(fig. 3-xxx), which comprises the established HOX gene cofactors PBX1-PBX3 

and MEIS1-MEIS3223-224. Since MLL/AF4 depletion resulted in a down-regulation 

of several HOXA family members (fig. 3-43, fig. 3-44,tab. 3-20), there might be a 

potential modulation of AF4 expression via an MLL/AF4-HOXA-TALE axis. 

Further work is required in order to test this hypothesis, as this observation 

might have important implications in MLLr acute leukaemias in general and 

MLL/AF4-positive ALL in particular, AF4 and AF4/MLL possessing the same 

genomic promoter sequence. 
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3.6.1 MLL/AF4 signature shows differential regulation of factors 

linked to apoptosis and proliferation 

Phenotypically, sustained siRNA-mediated ablation of the MLL/AF4 fusion 

transcript inherent of the t(4;11)-positive ALL cell line SEM resulted in a 

striking phenotype: MLL/AF4 down-regulation impaired proliferation, cell cycle 

progression, clonogenicity and viability (fig. 3-12 to fig. 3-15). These findings 

show that MLL/AF4 depletion reverts the pathobiology previously described for 

t(4;11)-ALL, particularly the aspect of cell death evasion; MLL/AF4-positive 

cells have been shown to be highly resistant to stress- and death ligand-induced 

apoptosis225-226, and gain-of-function studies found that ectopic expression of 

MLL/AF4 conferred an increased apoptosis-resistance146. Furthermore, the 

phenotype observed due to sustained MLL/AF4 down-regulation is in 

agreement with previous loss-of-function studies, which reported a comparable 

growth inhibition and apoptosis induction147-148.  

Concordantly, on a molecular level, gene expression profiling and subsequent 

functional analysis of the MLL/AF4 gene signature for the different depletion 

time periods showed an enrichment for networks and cellular functions linked 

to cell death (tab. 3-8 to tab. 3-10) as well as apoptosis signalling (fig. 3-24, fig. 

3-36). A closer investigation highlighted a few interesting candidate genes that 

might be key for apoptosis mediation, for instance PMAIP1 (NOXA) and ANXA1 

for which the corresponding probes show a consistent up-regulation in both 

core signatures A and B (fig. 3-29, fig. 3-39).  

 

3.6.1.1 A putative role of NOXA and oxidative stress in MLL/AF4-depletion 

mediated apoptosis 

PMAIP1 encodes the proapoptotic BH3-only protein NOXA, which mediates 

apoptosis in response to oxidative and metabolic stress signals, as well as part 

of the DNA damage response in a p53-dependent and independent manner. 

Moreover, NOXA targets the anti-apoptotic Bcl2-family member MCL-1 for 

proteasomal degradation227-228, which is a particularly point of interest in this 

cellular context, as aberrant MCL-1 overexpression has recently been implicated 
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in glucocorticoid resistance in MLLr infant ALL167. Consequently, NOXA-

induction in response to MLL/AF4 depletion might be able to revert or mitigate 

the prednisolone-resistance. Concordantly, NOXA induction has been implicated 

in mediating cell death in response to chemotherapeutic drug treatment in both 

haematologic and solid cancers229-231. 

NOXA can be induced by various factors, for instance, in response to elevated 

cellular reactive oxygen species (ROS); this is mediated by the stress-related 

MAP kinases such as JNK and p38228. In good concordance, both JNK and its 

down-stream mediators, particularly JUN and ATF-2, are up-regulated on 

transcriptional level in the MLL/AF4 signature at TP2 (fig. 3-25). Concomitantly, 

there are several indicators within the MLL/AF4 signature suggesting that 

MLL/AF4 depletion results in a disturbance of the cellular ROS level balance in 

favour of oxidative stress: the key antioxidant enzymes manganese superoxid 

dismutase (SOD2) and glutathione peroxidase (GPX4) were down-regulated at 

TP1 (fig. 3-19). Moreover, there is also reduced expression of several 

metallothioneins (fig. 3-19), which can act as ROS scavengers, protecting DNA 

from oxidative damage232. One of these genes, metallothionein-1F (MTF1), 

forms part of the core MLL/AF4 signature A, showing consistent down-

regulation at both time points (fig. 3-29). Interstingly, both markers of a redox 

metabolism disruption and the induction of NOXA occur at TP1, preceding the 

onset of apoptosis. 

 

3.6.1.2 The proapoptotic gene ANXA1 is induced in response to MLL/AF4 

Another major proapoptotic gene of interest in the MLL/AF4 signature is 

ANNEXIN-1 (ANXA1), which represents a core gene of the MLL/AF4 signature A 

and B, the corresponding probe set indicating increased expression levels in 

response to MLL/AF4 depletion at all three time points (fig. 3-49). ANXA1 is of 

particular interest, as has been to shown to act as a potent tumour suppressor in 

a context-dependent manner. ANXA1 expression is lost in a variety of solid 

tumours, such as cervix233, lymphoma234 and breast carcinomas, and this 

correlated adversely with prognosis235-237. Consequently, ectopic expression of 
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ANXA1 in breast cancer cells suppressed proliferation238, and ablated 

metastases235. In haematologic malignancies, low ANXA1 expression was 

implicated in drug resistance in a chronic myeloid leukaemia model239, 

furthermore, a recent report found ANXA1 to be crucial for mediating apoptosis 

in response to therapeutic histone acetylase inhibitors in t(8;21)-positive AML 

cells240.  

The exact mechanism by which ANXA1 regulates apoptosis induction are not 

fully understood. Physiologically, ANXA1 is a Ca2+- and lipid binding protein, and 

acts as a potent anti-inflammatory mediator, i.e., by binding to NFkB, and 

suppressing its activity; this NFkB modulation has been linked to ANXA1-

mediated cell death in response to drug treatment241. Interestingly, pathway 

analysis of the MLL/AF4 signature did indeed show a reduced expression of 

NFkB signalling mediators (fig. 3-25, fig. 3-26, fig. 3-37). Thus, ANXA1 could 

potentially contribute to the down-regulation of NFkB-signalling; however, to 

date, the status and the role of NFkB in MLL-rearranged leukaemia has not been 

investigated. 

The ANXA1 induction observed in the array could be validated in vitro by qRT-

PCR analysis in the SEM cell line, showing an time-dependent induction by 2.6- 

to 3.8-fold in siMLL/AF4-treated cells compared to controls (fig. 3-50A). 

However, this could not be confirmed in t(4;11)-positive patient blasts treated 

with siMLL/AF4 (fig. 3-50B). In recent years, there is an increasing perception 

about an inherent pathophysiological heterogeneity of t(4;11)-positive ALL, 

based on whether the leukaemic cells express high or low HOXA gene levels, 

whether they express the reciprocal fusion AF4/MLL transcript, as well as 

whether the disease occurs in infants or children146,168-169. The SEM cell line is 

derived from a paediatric ALL patient, and expresses AF4/MLL (data not 

shown), while the patient cells originated from an infant ALL patient of 

unknown AF4/MLL status. Therefore, a possible explanation for the differential 

response of ANXA1 to MLL/AF4 could be based on these particular 

subcategorisations. Also, it cannot be excluded that the observed ANXA1 up-

regulation might represent a cell-line specific response; RNAi-mediated 
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depletion of MLL/AF4 in different cell line models as well as patients could 

clarify this.  

 

3.6.1.3 The autophagy-related gene GABARAPL1 is induced in response to 

MLL/AF4-depletion 

An interesting candidate gene present in the MLL/AF4 core signatures is 

GABARAPL1; the corresponding probe indicates up-regulation in response to 

MLL/AF4 depletion at all three time points (fig. 3-51). Electroporation of the 

SEM cell line with siMLL/AF4 resulted in a strong induction of GABARAPL1 (fig. 

3-52), validating the array result, however, as with ANXA1, this effect could not 

be observed in t(4;11)-positive patients (data not shown). Possible explanations 

could be found in the aforementioned intrinsic differences between the SEM cell 

line and the leukaemic material derived from an infant ALL patient.  

GABARAPL1, also termed GEC-1 or ATG8L, is an orthologue of the yeast Atg8 

protein family, which also includes GABARAP, GABARAPL2, LC-3A, LC3-B and 

LC3-C242. To date, the function of this gene remains poorly understood. 

GABARAPL1 is involved in protein trafficking of specific receptors to the cell 

surface, such as GAB(A) and the kappa opioid receptors, both involved in 

neurosignalling, and is implicated in microtubule-reorganisation243-245. 

Furthermore, GABARAPL1 plays a role in autophagy246-248. Recently, low 

expression of GABARAPL1 has been reported in high-grade breast cancer; and 

reexpression impinged on tumour cell proliferation249. Therefore, MLL/AF4-

dependent GABARAPL1 induction could indicate a disturbance of the autophagy 

pathway, but also impact on leukaemic cell proliferation and cycling. 

 

3.6.2 MLL/AF4 depletion perturbs mitogenic signalling 

Aberrant mitogenic signalling activity plays a predominant role in malignancies, 

uncoupling the cells from exogenous growth signals250-251. This aspect has been 

previously reported for MLL/AF4-positive cells, where growth and viability was 

not grossly affected by starvation225, a finding corroborated by observations 
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made in present study (data not shown). Screening the MLL/AF4 signatures for 

enrichment of canonical pathways revealed concerted down-regulation of key 

mediators of canonical mitogenic signalling, such a as the MAP kinases ERK1 

and ERK2 and STAT3 (Fig. 3-25, Fig. 3-26), which are important regulators of 

proliferation and survival. Both ERK1/2-mediated MAPK signalling187,252 and 

the JAK/STAT3 pathway253 have recently been shown to be constitutively 

activated in MLLr ALL cells, and chemical inhibition of their key mediators 

compromised ALL cell viability; MLL/AF4-ablation dependent suppression of 

these signalling events might contribute to the lethal phenotype observed. 

Interestingly, DUSP6 (dual-specificity phosphatase 6), a negative regulator of 

ERK1/2 signalling, is part of the down-regulated MLL/AF4 core signatures A 

and B; the corresponding probes show decreased signal-intensity at all three 

time points (fig. 3-41). At first sight, this appears contradictory, as DUSP6 has 

been widely perceived as a tumour suppressor lost in cancer. However, DUSP6 

overexpression has been linked to increased chemotherapy-resistance in 

glioblastomas214, and might be a biomarker for constitutive ERK activity. 

Additionally, MLL/AF4 has been found to directly bind the DUSP6 promoter132. 

In accordance with the array results, a decrease in DUSP6 expression on both 

RNA and protein levels were confirmed in siMLL/AF4-treated SEM cells (fig. 

3-42). Interestingly, this effect could not be observed in siMLL/AF4-transfected 

primary patient material, a counterintuitive observation in the context of DUSP6 

being a direct MLL/AF4 target. A possible explanation could be that DUSP6 

down-regulation might require a certain level of MLL/AF4 depletion not 

attained in the primary material, as the extent of siRNA-mediated knock-down 

in the SEM cell line was higher than in the patient cells. Furthermore, the 

MLL/AF4 promoter binding studies were performed in the SEM cell line, 

therefore this could indicate a cell-specific effect, possibly also based on the 

aforementioned intrinsic differences between the t(4;11)-ALL cell line and the 

t(4;11)-positive infant ALL patient cells. 

In addition to the ERK and STAT3 signalling, the MLL/AF4 signature also 

indicated perturbation of the ephrinB pathway, which links cytoskeleton-

associated and mitogenic signalling. Here, the Ephrin receptor ligands EFNB1 

and EFNA4 show a decreased expression in the MLL/AF4 signature (fig. 3-22). 
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This is in good concordance with previously published data, reporting a 

MLL/AF4-dependent expression of the ephrinA family members as well as their 

cognate receptors187. Similarly, MLL/AF4 ablation also impaired the IGFR1 

signalling pathway, which has been previously implicated in t(4;11)-positive 

ALL190. Pathway analysis showed a decreased IGFR1 expression (fig. 3-27). 

Previously, IGFR1 expression in the t(4;11)-ALL cell line RS4;11 was found to be 

dependent on HOXA9190; this regulatory axis was corroborated by present 

results, as both IGFR1 and HOXA9 expression regulation correlated in 

siMLL/AF4 depleted SEM cells, suggesting a MLL/AF4-HOXA9-IGFR1 axis. Since 

inhibition of IGFR1 signalling repressed malignant growth and survival of the 

leukaemic cells190, loss of IGFR1 might contribute together with the MLL/AF4-

dependent down-regulation of the ERK, ephrinB and JAK/STAT pathways to a 

switch-off of prosurvival signalling in t(4;11)-positive ALL cells, therefore 

mediating the loss in viability in response to MLL/AF4 knock-down.  

Concordantly, GSEA analysis found a negative correlation in the MLL/AF4 

signature A with putative target genes of the SP-1 transcription factor (fig. 

3-30), which has been reported to be one of the down-stream effectors of 

IGFR1254, and ERK1/2255 signalling. Interestingly, amongst these genes were 

several genes involved in cytoskeleton-mediated signalling, such as the RHOA-

GTPase activating protein (Rho-GAP) SH3BP191, the RAC and ARF binding 

protein ARFIP1192, as well as the receptors UNC5B and CD74, both important 

mediators in cellular migration, adhesion and, interestingly, angiogenesis193-197. 

 

3.6.3 MLL/AF4 depletion results in decreased expression of 

stemness-associated genes 

Recently, MLL/AF4-positive ALL has been associated with a HSC-like gene 

expression signature132. Concordantly, our group has previously shown that 

MLL/AF4 knock-down compromised in vivo engraftment of the t(4;11)-positive 

cell line SEM in NOD/SCID mice148, which represents an important read-out for 

leukaemic self-renewal7,256-257. Here, in this current study, a single 

electroporation with siMLL/AF4 compromised clonogenicity of the SEM cell line 
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in soft agar cultures (fig. 3-15), which serves as an in vitro model for self-

renewal ability. In addition, gene expression profiling revealed several genes 

associated with haematopoietic stem and progenitor cells to be dependent on 

MLL/AF4 expression, i.e., SPN, the HOXA gene cluster and TERT amongst others.  

SPN, also termed Leukosialin (CD43), showed reduced expression levels at TP1 

and TP2 in the MLL/AF4 signature A. CD43 is one of the earliest haematopoietic 

markers, expressed in HSCs and immature progenitors, and down-regulated 

during B-cell differentiation258-260; incidentally, SPN is a direct MLL/AF4 target 

gene132. The same applies for HOXA10, which is down-regulated in response to 

MLL/AF4 depletion at all time points. HOXA10 constitutes together with HOXA7 

and HOXA9 the most consistently up-regulated genes in MLLr acute leukaemias, 

and is a direct MLL/AF4 target132. In a MLLr leukaemia-independent context, 

HOXA10 overexpression also marks MLL germline AML and T-ALL with poor 

prognosis261-265. Furthermore, similar to the other HOXA genes, HOXA10 is a 

haematopoietic master regulator, implicated in HSC self-renewal, proliferation 

and involved in differentiation of the myeloid lineage265-266.  

The gene expression profiling results for the HOXA members were validated in 

vitro in both SEM cells and viable blast cells from a t(4;11)-positive infant ALL 

patient, which were transfected with siMLL/AF4; expression analysis by qRT-

PCR showed a substantial reduction in transcript levels. Although not part of the 

MLL/AF4 core signature, other HOXA family members, (HOXA4, HOXA5, HOXA6, 

HOXA7, HOXA9) were also differentially expressed in the GEP analyses. 

However, their response was delayed, as the corresponding probe sets did not 

show a two-fold change in expression compared to Ctrl at TP1 (HOXA4-HOXA9), 

or the expression down-regulation at TP2 was so strong (HOXA6, HOXA7) that 

the corresponding probe sets flagged up as absent or marginal (tab. 3-20). This 

indicates a comprehensive regulation of the HOXA gene cluster by MLL/AF4, 

which is in keeping with current literature. HOXA7 and HOXA9 down-regulation 

in response to MLL/AF4 depletion was also validated in the SEM cell line; 

however, remarkably, MLL/AF4 ablation in t(4;11)-positive patient blasts did 

not substantially decrease HOXA7 levels, and HOXA9 was not affected at all, a 

result which is highly counterintuitive. A plausible cause could be a threshold 
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effect; not all HOXA genes are expressed at the same level within the same cells 

(fig. 5-16), although there is wide-spread MLL and MLL/AF4 occupancy across 

the 5’-end of the cluster116,132. HOXA10 is expressed at lower levels than HOXA7 

and HOXA9, which might suggest a higher dependency on MLL/AF4 for the 

expression. Consequentially, HOXA9, which has the highest transcript levels, 

might require a more pronounced MLL/AF4 depletion than the 50% achieved in 

the patient cells. Concordantly, HOXA9 down-regulation in response to MLL/AF4 

depletion in the SEM cell line (fig. 3-44) occurred to a lesser extent than the 

effects observed for HOXA7 and HOXA10 (fig. 3-43). MLL/AF4-mediated HOXA 

gene expression and its subsequent loss in siMLL/AF4-treated cells do not only 

reflect a possible loss of stemness, but also have implications for the MLL/AF4-

dependent survival, as HOXA9 expression has been shown to be required for 

survival of MLLr ALL cells in vitro and in vivo267. 

Another stemness-related gene present in the functional networks associated 

with the MLL/AF4 signature A was TERT, which encodes the catalytic subunit of 

the Telomerase ribozyme, a key regulator of self-renewal in normal and 

malignant cells268. TERT expression was decreased in response to MLL/AF4 

depletion for both time points (fig. 3-45), which was corroborated by qRT-PCR 

in siMLL/AF4-treated SEM cells. Recently, we have shown that this is regulated 

in a HOXA7-dependent manner170, linking MLL/AF4 with the expression of one 

of the most prominent regulators of stem cell self-renewal. 

Another factor shown to play a role in early development is for instance the 

chromatin modifying factor HMGA2 (high mobility group protein A2). HMGA2 is 

a direct MLL/AF4 target132, and showed such a strong down-regulation in 

response to MLL/AF4 that the probe flagged as absent in the array (tab. 3-20). 

In good concordance, MLL/AF4-dependent down-regulation could be validated 

in vitro by qRT-PCR in both SEM cells and t(4;11)-patient blasts transfected with 

siMLL/AF4 (fig. 3-46).  

This body of data suggests that MLL/AF4 is required to maintain a stem cell- 

like character of the leukaemic cell, as it mediates the expression of genes linked 

to self-renewal. 
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3.6.4 MLL/AF4 signature has only a limited overlap across the time 

point and with published data  

The MLL/AF4 signatures were compared across the experimental time points, 

which correspond to different periods of depletion. The overlap between each 

time point was surprisingly small, below 20%. Some of it could be potentially 

attributed to the stringent filtering settings applied for the analysis, as the 

probes had to both have assigned a present flag and to show at least a two-fold 

change in signal intensity. This could result in loss of genes which respond very 

strongly to MLL/AF4, as the sustained down-regulation might result in a very 

low expression of the particular gene, causing the probe flag to change from 

present to marginal or even absent (tab. 3-13). Additionally, genes having 

delayed response to MLL/AF4, perhaps requiring a more sustained depletion, 

will pass the fold-change threshold at TP2 and TP3, but not TP1, i.e. PROM1. 

Thus, applying such stringent analysis settings might filter out potentially 

interesting genes that actually do show a differential regulation in response to 

MLL/AF4 depletion. However, one of the overall weaknesses of this GEP study is 

the lack of replicate analyses; each time point corresponds to a single array for 

siMLL/AF4-treated SEM cells, and two arrays for the corresponding controls. 

This lacks statistical power, and opens the door for potential artefacts, which 

cannot be reproduced from one experimental time point to the other. 

Interestingly, removing the MOCK control from the analyses for MLL/AF4 

signature B strongly increased the numbers of differentially regulated probes 

between siMLL/AF4 and siCtrl-treated samples; however, the overlap between 

the different time points remained as small, or even decreased. To date, the 

extent of these artefacts in the MLL/AF4 signatures cannot be estimated, but 

seems to be substantial.  

In addition, there is a special caveat for the analysis of TP3, as the PM/MM2 

ratio (perfect match probe to mismatch probe ratio) is approximately 2.5, while 

for TP1 and TP2 it is 8. A lower PM/MM2 ratio could indicate problems with 

specificity (see appendix). Moreover, the array format was slightly changed, as it 

was a HT-12 V4 BeadChip for TP3, and a HT-12 V3 BeadChip for TP1 and TP2; 

this BeadChip arrays differ in probe coverage as well as in probe numbers.  
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In order to address these and the aforementioned issues, a different analysis 

strategy should be applied, which could not be done anymore within the period 

of this PhD degree: 

 COMBAT analysis to remove potential batch effects due to differences in 

array chip version269  

 Significance testing for differential gene expression analyses across the 

three time points, i.e., using Student’s t-test-based methods and multiple 

testing correction algorithms. 

Nevertheless, 12 out of 14 genes identified in the GEP study could be validated 

in vitro using qRT-PCR, and, for DUSP6 and ANGPT1 (section 5), the differential 

expression was also verified on protein level, and the fold-changes derived from 

the array analysis and the qRT-PCR experiments showed a good correlation. 

The MLL/AF4 signatures were also compared with a published data set 

comprising MLL/AF4 target genes. Again, the overlap was exceedingly low, 

corresponding to approximately 10% or less. However, a similar observation 

was just published recently; using ChIP-on-chip technology, Wang et al. 

identified approximately 223 genomic binding sites of the MLL/ENL fusion 

protein, corresponding to putative target genes. However, subsequent 

overexpression studies showed only changes in transcript expression in 12 of 

these genes in response to MLL/ENL expression270. This extent of overlap 

corresponds to the changes in expression levels of putative MLL/AF4 target 

genes observed in this study. This interesting finding highlights that occupancy 

of a transcription factor does not necessarily translate in transactivation or 

transcription regulation. Indeed, some of the MLL/AF4 target genes are up-

regulated in this study, such as REEP3 and CD96 (tab. 3-13), although these 

genes showed high expression and correlation with transcriptional active 

chromatin132.
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4.  t(4;11)-positive Cells Display 

Oncogenic Addiction to MLL/AF4 
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4.1 COMBINED TREATMENT OF SEM CELLS WITH SIMLL/AF4 AND THE 

PAN-CASPASE INHIBITOR ZVAD-FMK 

MLL/AF4 confers increased viability and resistance to apoptosis both when 

expressed as an endogenous factor or when ectopically introduced into 

different cellular contexts. Concurrently, siRNA-mediated MLL/AF4 down-

regulation results in induction of cell death in the t(4;11)-positive cell line SEM. 

In order to understand this on a molecular level, we performed whole genome 

expression profiling of MLL/AF4-depleted SEM cells at time points where cell 

death was not yet elevated (TP1) and when cells were already undergoing 

apoptosis TP2 (section 3). Additionally, in an attempt to gain further insight into 

the molecular hierarchy involved in MLL/AF4-dependent apoptosis, siRNA-

electroporated SEM cells were treated simultaneously with the pancaspase 

inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketon 

(zVAD-FMK, in future referred to as zVAD) and subsequently analysed by 

whole-genome gene expression profiling (GEP). For the experimental set-up 

please refer to the scheme in (fig. 4-1) 

 

 

 

 

 

Fig. 4-1: Experimental set-up  

SEM cells were serially electroporated at two-day intervals with siRNA against MLL/AF4 

(siMLL/AF4), control siRNA (siAML1/MTG8) or without oligonucleotides (MOCK). 

Subsequently, cells were subdivided into two treatment groups; one group was supplemented 

with the pancaspase inhibitor zVAD, the other with the equal amount of solvent (DMSO). Cells 

were harvested for analyses at TP1 (2 days post 1st electroporation), corresponding to a 2-day 

MLL/AF4 knockdown, and at TP2 (2 days post 2nd electroporation), which represents a 

sustained down-regulation of MLL/AF4 for 4 days. Gene expression profiling (GEP) was 

performed on the RNA derived from zVAD-treated cells at TP1 and TP2, and the following 

results were termed zVAD signature at TP1 or TP2. The GEP results from the electroporated 

cells treated with DMSO have already been described in the previous chapter. 
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4.1.1 zVAD dosage titration 

Prior to the actual GEP experiment, it was necessary to optimise the zVAD 

treatment. In parallel to the siRNA electroporations with siMLL/AF4 or 

siAML1/MTG8, three different inhibitor treatment conditions were applied:  

(a) a daily dose of 50 µM zVAD  

(b) a dose of 50 µM zVAD at the time point of the electroporation, 

corresponding to a 2-day interval of inhibitor treatment, or  

(c) a daily dose of 25 µM zVAD. 

For each treatment group controls were supplemented with the corresponding 

vehicle control (DMSO) concentration.  

 

All three zVAD treatment conditions proved to be equally effective in blocking 

apoptosis, as illustrated by flow cytometry analyses: the proportion of cells 

present in sub-G1/G0 population, which corresponds to the apoptotic cell 

fraction, was reduced to near basal levels in siMLL/AF4-transfected cells 

cocultured with zVAD (fig. 4-2). 

Furthermore, cleavage of PARP1 (PARP), an indicator of caspase activity and a 

well-established apoptosis characteristic, was markedly decreased in the 

siMLL/AF4-zVAD samples (fig. 4-3). In contrast, siMLL/AF4-mediated fusion 

gene depletion resulted in both apoptosis (fig. 4-2) and PARP cleavage (fig. 4-3) 

induction in the DMSO control groups. 
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Fig. 4-2: Analysis of the sub-G1/G0 population of siRNA-treated SEM cells 
supplemented with different zVAD concentrations 

SEM cells serially electroporated with siMLL/AF4 or control siRNA were subjected to three 

different zVAD culture conditions. Cell cycle was analysed by flow cytometry after a four day 

depletion period. Apoptosis was determined by measuring the proportion of SEM cells in the 

sub-G0/G1 population using the ModFit LT software (Verity Software House). The dotted line 

across the graph represents approximate basal apoptosis levels as indicated by the control 

samples of each treatment group. 
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Fig. 4-3: PARP Western blot in zVAD –treated SEM cells 

SEM cells serially electroporated with siMLL/AF4 or siAML1/MTG8 were subjected to three 

different zVAD culture conditions and analysed 2 days after the 2nd electroporation for PARP 

cleavage, a surrogate marker for caspase activation (TP2, d4). 

 

 

While the efficiency of the different zVAD concentration was dose-independent, 

there was evidence that zVAD treatment per se affected SEM cell cycle 

progression. When comparing control-siRNA-transfected cells (siAML1/MTG8) 

with and without zVAD, cell cycle analysis showed an increased accumulation of 

cells in the G1-phase, accompanied by depletion in the S- and G2/M-phase. This 

effect was subtle in the instance of treatments (b) and (c), but condition (a) 

showed a marked effect, increasing the G1/G0 fraction by 22%, while cells in 

the replicative S-phase were reduced by 19% (fig. 4-4). Thus, this condition was 

discarded for further studies, and out of the two remaining options treatment 

regimen (b) – 50 µM zVAD at two-day intervals, subsequent to the 

electroporation – was eventually chosen, as it was deemed compatible with the 

siRNA treatment set-up.  
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Fig. 4-4 : Cell cycle analysis of different zVAD treatment groups  

SEM cells serially electroporated with siAML1/MTG8 were subjected to three different zVAD 

culture conditions and analysed at TP2 (2 days after the 2nd electroporation), for changes in cell 

cycle distribution attributable to the effect of zVAD.  
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4.1.2 zVAD inhibits caspase-dependent apoptosis activation, but 

does not abrogate cell-death 

SEM cells were electroporated according to the conventional experimental set-

up (fig. 4-1); transfection of siMLL/AF4 in SEM cells treated with zVAD resulted 

in a slightly less pronounced MLL/AF4 depletion at TP1 and TP2 as the 

corresponding vehicle control group (fig. 4-5). This effect was due to a quicker 

recovery of MLL/AF4 transcript levels, as analysis 24h after the initial 

electroporation showed no significant difference in MLL/AF4 expression (fig. 

4-10).  

As observed in the titration experiments, treatment of zVAD resulted in a 

decrease of the apoptotic sub-G1/G0 population to basal levels; furthermore, it 

nearly completely suppressed the sub-G1/G0 fraction in the controls samples of 

the zVAD group (fig. 4-6). MLL/AF4 depletion in the DMSO control group 

resulted in proteolytic activation of the effector caspases CASP3 and CASP7, as 

well as subsequent PARP processing, as indicated by the presence of the 

resulting cleavage products by immunoblotting. In contrast, the active form of 

both effector caspases was absent in SEM cells electroporated with siMLL/AF4 

and cultured with zVAD, and PARP cleavage was severely diminished (fig. 4-7A). 

Inhibition of caspase activity by zVAD was further confirmed through a 

luciferase-based CASPASE-3/-7 activity assay, in which the activity was more 

than 90% reduced in cells cultured with zVAD regardless of siRNA treatment, 

and up to 10-fold induced in SEM cells in the siMLL/AF4-DMSO sample (fig. 

4-7B). 

 

Fig. 4-5: MLL/AF4 expression analysis in siRNA treated SEM cells cultured with or 
without zVAD 

SEM cells electroporated with siMLL/AF4 and treated with or without zVAD show reduced 

MLL/AF4 levels at TP1 (A) and TP2 (B) when compared to controls. The figure shows the mean 

of n=3 (d2)/ n=4 (d4) individual experiments, error bars indicate standard error of the mean 

(S.E.M.). Statistic analysis was carried out using an unpaired Student’s t-test (** = p<0.01; *** = 

p<0.001). 
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Fig. 4-6: Analysis of the sub-G1/G0 population of siRNA-treated SEM cells 
supplemented with or without zVAD  

SEM cells serially electroporated with siMLL/AF4 or control-transfected (siAML1/MTG8, 

MOCK) and supplemented with zVAD or corresponding vehicle (DMSO). After four days of 

sustained MLL/AF4 depletion, the cell cycle distribution was analysed by flow cytometry. 

Apoptosis was determined by measuring the proportion of SEM cells in the sub-G0/G1 

population using the ModFit LT software (Verity Software House). The graph represents the 

mean of n=5 independent experiments, statistical significance was determined by Student’s t-

test (** = p<0.01; *** = p<0.001). 
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Although these results clearly showed that zVAD was able to abrogate apoptosis 

induction in response to MLL/AF4-depletion in the SEM cell line, a very striking 

observation was made by another highly discriminatory flow cytometric cell 

death assay: binding of fluorescently-tagged ANNEXINV in conjunction with 

uptake of the DNA-intercalating dye propidium iodide (PI), an approach which 

allows to differentiate between caspase-dependent and –independent 

programmed cell death (PCD) pathways (fig. 4-8). As expected, SEM cells 

electroporated with siMLL/AF4 in the DMSO group showed a distinctly 

apoptotic pattern, defined by binding of rhANNEXINV on the cell surface while 

excluding PI, and a late apoptotic/secondary necrotic stage, where the cell 

membrane integrity had been compromised and PI taken up, resulting in a 

double positive population. Remarkably, while the apoptotic ANNEXINV-single 

positive stage was at basal levels in siMLL/AF4-zVAD co-cultured cells, massive 

induction of cell death could be still be observed, as indicated by the presence of 

double-positive population. These results suggested that a caspase-independent 

programmed cell death pathway had been activated in the siMLL/AF4-zVAD-

treated cells. This loss of viability was further confirmed by an MTT assay, 

where the loss of number of uncompromised SEM cells was comparable 

between the siMLL/AF4-DMSO and siMLL/AF4-zVAD electroporated samples 

(fig. 4-9). 

 

 

Fig. 4-7: Effector caspase activation and action is suppressed in siMLL/AF4-
transfected SEM cells by zVAD 

SEM cells serially electroporated with siMLL/AF4 or controls (MOCK, siAML1/MTG8) were 
assayed for effector caspase activity at TP2. Immunoblotting showed a lack of activation of the 
procaspases CASP3 and CASP7 in zVAD treated cells, as denoted by the absence of the cleavage 
products. In contrast, active CASP3 and CASP7 forms could be detected in the siMLL/AF4-DMSO 
cells (A). Moreover, suppression of the proteolytic activity could be confirmed by 
immunoblotting for PARP cleavage, a surrogate marker for caspase activity; the characteristic 
PARP fragments were only present in siMLL/AF4-DMSO cells, but not in siMLL/AF4-zVAD 
treated cells or controls. The full-length (FL) form could also be detected in samples (A). 
Concordantly, the caspase activity assay showed complete suppression of proteolytic activity in 
zVAD treated cells regardless of the siRNA treatment, while siMLL/AF4-DMSO cells had a 10-
fold increase when compared to the corresponding control (siAML1/MTG8-DMSO) (B). The 
immunoblot panel (A) is representative of n=3 comparable experiments, graph (B) show the 
mean of n=3 experiments. Statistical significance was determined using one-way ANOVA. 
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Fig. 4-8: Apoptosis inhibition in siMLL/AF4-depleted SEM cells causes switch 
from apoptosis to a necrotic-like PCD. 

SEM cells were serially electroporated with siMLL/AF4 or controls (siAML1/MTG8, MOCK) and 

treated with and without zVAD, followed by assessment of cell death by flow cytometry at TP2. 

SEM cells treated with siMLL/AF4-DMSO show the characteristic apoptotic pattern, with an 

increased ANNEXINV-single positive population, but also the presence of a secondary necrotic 

population which was ANNEXINV/PI-double positive. In concordance with previous results, 

zVAD treatment suppresses the apoptotic single positive population to near basal levels, 

however induction of a double positive necrotic population is still present (A, B). The reduction 

of the apoptotic single positive population was highly significant, as determined by Student’s t-

test (*** = p<0.001). Graph (A) shows one representative flow cytometry dot plot panel, graph 

(B) represents the mean of n=5 independent experiments; error bars indicate S.E.M 
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Fig. 4-9: Viability of siMLL/AF4-electroporated SEM cells is compromised despite 
apoptosis inhibition 

SEM cells were serially electroporated with siMLL/AF4 or controls (siAML1/MTG8, MOCK) and 

treated with and without zVAD. Viability was measured by MTT at TP2. Both siMLL/AF4-treated 

cells showed a strong reduction in viable cells, regardless of the inhibitor treatment. The graph 

represents the mean of n=4 independent experiments, error bars indicate S.E.M. Statistical 

significance was determined by Student’s t-test (*** = p<0.001). 
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4.2 GENE EXPRESSION PROFILING OF SEM CELLS DEPLETED OF MLL/AF4 

AND CULTURED WITH ZVAD 

Apoptosis inhibition in MLL/AF4-depleted SEM cells revealed an interesting 

aspect of oncogene addiction, as presence of the caspase inhibitor zVAD could 

not block the induction of cell death, but seemingly altered the cell death type. 

This finding was investigated further on a molecular level; SEM cells 

electroporated with siMLL/AF4, control siRNA (siAML1/MTG8) or no siRNA 

(MOCK) and cultured with zVAD were harvested at TP1 and TP2, and 

subsequently analysed gene expression profiling (GEP), using the Illumina HT-

12 Bead Array platform.  

 

4.2.1 Biological QC analysis of array samples 

SEM cells were serially electroporated twice according to the scheme in  

fig. 4-1 , and TP1 and TP2 harvested for RNA. Before the RNA was processed as 

described by the manufacturer at a service provider core facility, the siRNA-

treated samples underwent quality control measures.  

Efficient MLL/AF4 knock-down was confirmed by qRT-PCR (fig. 4-10); in both 

the zVAD treated and the DMSO control group more than 70% MLL/AF4 

depletion was attained. RNA quality was assessed by lab-on-chip technology 

using a Bioanalyzer 2100 RNA Nano assay (tab. 4-1). A RNA integrity number 

(RIN) above 7 characterises RNA of good enough quality for GEP; the RIN of two 

samples was not calculable due to a migration shift of the gel, however, the 

corresponding histograms and gel pictures showed the RNA to be of good 

quality, allowing the samples to be processed for array analysis (see appendix). 
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Fig. 4-10: Confirmation of MLL/AF4 depletion by qRT-PCR in cells treated with or 
without zVAD prior to GEP analysis  

SEM cells were serially electroporated twice at two-day intervals with either siMLL/AF4, 

control siRNA (siAML1/MTG8) or no siRNA (MOCK). MLL/AF4 expression was determined by 

qRT-PCR day one (d1) of siRNA treatment. Compared to controls, siMLL/AF4-transfected cells 

showed a MLL/AF4 down-regulation of >70% in both the zVAD and DMSO treatment group. The 

graph represents one single experiment; each sample was examined in triplicates.  
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Tab. 4-1: RIN values of samples submitted to GEP as determined by 
Bioanalyzer2100 RNA 6000 Nano Assay 

Sample RIN 

TP1 (+zVAD)  

 MOCK 7.5 

 siMLL/AF4 7.7 

 siAML1/MTG8 9.2 

TP2 (+zVAD)  

 MOCK N/A 

 siMLL/AF4 N/A 

 siAML1/MTG8 8.9 

 

 

The samples were processed off-site at a service provider facility according to 

manufacturer’s protocols, and assayed using an Illumina HT-12 V.3 Bead Array 

(Illumina Inc.). The obtained raw data was preprocessed by me using 

BeadStudio 3 software (Illumina Inc.). Missing probe values were not imputed. 

Differentially expressed genes were determined using GeneSpring GX11 

software (Agilent Technologies, Inc); each time point was analysed as an 

individual treatment group consisting of siMLL/AF4, MOCK and siAML1/MTG8-

transfected cells; a quantile normalisation algorithm was applied, and the 

baseline of each array transformed over the median baseline of the control 

samples siAML1/MTG8 & MOCK. Probe signal values associated with the 

controls were averaged, resulting in a control group termed Ctrl, against which 

the differential expression analysis for siMLL/AF4 was performed (siMLL/AF4 

vs. Ctrl). 
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Fig. 4-11: Normalised array intensity values of each zVAD treatment group at TP1 
& TP2 

The siRNA treatment time course were grouped according to time point, each treatment group 

consisting of control- (MOCK, siAML1/MTG8) and siMLL/AF4-transfected samples. Each of 

these treatment groups was normalised independently using the quantile normalisation 

algorithm and transforming the baseline of each sample over the median baseline of the control 

samples. The box and whisker plots indicate the spread of the probe signal values of the 

treatment group at TP1 (A) and TP2 (B). 

 

The results were filtered according to the array signal calls or “flags” as 

described in section 3, only performing a stringent analysis, were all flags in all 

samples had to have a present call. Differentially expressed probes were 

determined by calculating the signal intensity in the siMLL/AF4 array vs. the 

signal intensity values in the Ctrl samples. A linear fold-change expression value 

cut-off of 2.0 was applied; this generated dataset was termed gene signature 

zVAD. 

As summarised in tab. 4-2, at TP1 there were 3239 differentially expressed 

probes, which could be collapsed into 2939 genes, of which 1484 were up- and 

1475 down-regulated. At TP2 there were 6479 differentially regulated probes, 

corresponding to 5541 genes, of which 2635 were induced and 2965 genes 

showed reduced expression. 
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The mathematical discrepancy between up-and down-regulated genes and the 

overall differentially expressed genes resulted from different probes covering 

the same gene but associated with opposing regulation. 

 

 

Tab. 4-2: Number of differentially expressed probe sets and genes for the zVAD 
signatures at TP1 and TP2 

siMLL/AF4 vs. siCtrl TP1 (+zVAD) TP2 (+zVAD) 

No. of differentially expressed probes 3239 6479 

up-regulated probes 1616 3007 

down-regulated probes 1623 3472 

No. of differentially expressed genes 2939 5541 

up-regulated genes 1484 2635 

down-regulated genes 1475 2965 

 

 

The top 50 up- and down-regulated probes for each time point of signature 

zVAD are listed in tab. 4-3 to tab. 4-6, respectively. There is a notable 

overrepresentation of chemo- and cytokines and their receptors in the up-

regulated probe sets at both time points, which include MIP1-α (CCL3), IL8, 

CXCL10, RANTES (CCL5), CCR7, as well as members of the tumour necrosis factor 

super family (TNFSF) and their receptors (TNFRSF), such as TNF, LTA and 

LIGHTR (TNFRSF14). Conversely, amongst the down-regulated probes there 

were genes associated with early haematopoietic differentiation (IGFBP2, 

HOXA10, VPREB1, IGLL1, IGLL3,). Of particular interest in this group is the gene 

OPRS1, also termed sigma non-opioid intracellular receptor-1 (SIGMAR1), a 

neuroprotective receptor implicated in Alzheimer, frontal lobe dementia and 

motor neuron disease 271-273, but to date not reported in haematopoietic cells.   
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Tab. 4-3: Top 50 up-regulated probes in the zVAD signature at TP1 

ILMN_Gene 
Fold-change 

[siMLL/AF4] vs. [siCtrl] 
Accession Probe_ID 

CCL3 77.22 NM_002983.1 ILMN_1671509 

CCR7 58.31 NM_001838.2 ILMN_1715131 

CCL3L1 54.97 NM_021006.4 ILMN_1747355 

CXCL10 53.32 NM_001565.2 ILMN_1791759 

CCL3L3 49.35 NM_001001437.3 ILMN_2105573 

CCL3L1 47.49 NM_021006.4 ILMN_2218856 

CCL4L2 38.94 NM_207007.2 ILMN_1716276 

KLF4 37.02 NM_004235.3 ILMN_2137789 

IL8 36.63 NM_000584.2 ILMN_2184373 

IL8 33.07 NM_000584.2 ILMN_1666733 

CCL5 29.97 NM_002985.2 ILMN_2098126 

CXCL11 28.24 NM_005409.3 ILMN_2067890 

LINCR 27.58 NM_001080535.1 ILMN_2235851 

CEACAM1 24.23 NM_001024912.1 ILMN_1716815 

ANXA1 21.81 NM_000700.1 ILMN_2184184 

CCL5 20.91 NM_002985.2 ILMN_1773352 

BHLHB2 20.80 NM_003670.1 ILMN_1768534 

JUN 19.57 NM_002228.3 ILMN_1806023 

TRAF1 18.93 NM_005658.3 ILMN_1698218 

TNFRSF14 18.52 NM_003820.2 ILMN_1697409 

BIRC3 18.34 NM_001165.3 ILMN_1776181 

ZMIZ2 17.59 NM_031449.3 ILMN_1760718 

IFIT2 17.37 NM_001547.4 ILMN_1739428 

IFIT1 16.74 NM_001548.2 ILMN_1699331 

EBI2 16.05 NM_004951.3 ILMN_1798706 

FOSB 15.78 NM_006732.1 ILMN_1751607 

MX1 15.00 NM_002462.2 ILMN_1662358 

PLA2G4C 14.96 NM_003706.1 ILMN_1810191 

LTA 14.72 NM_000595.2 ILMN_1795464 

TNF 14.72 NM_000594.2 ILMN_1728106 

PTGS2 13.94 NM_000963.1 ILMN_2054297 

RANBP3L 13.43 NM_145000.2 ILMN_2094856 

PMAIP1 13.30 NM_021127.1 ILMN_2098446 

IFI27 12.82 NM_005532.3 ILMN_2058782 

OASL 12.73 NM_003733.2 ILMN_1681721 

OASL 12.70 NM_198213.1 ILMN_1674811 

RSAD2 12.63 NM_080657.4 ILMN_1657871 

NR4A2 12.59 NM_006186.2 ILMN_1782305 

IL4I1 12.52 NM_172374.1 ILMN_1659960 

ATF3 11.23 NM_001040619.1 ILMN_2374865 

TNFSF10 11.23 NM_003810.2 ILMN_1801307 

PPP1R15A 10.48 NM_014330.2 ILMN_1659936 

PLA2G2D 10.38 NM_012400.2 ILMN_2233050 

PRRG4 10.07 NM_024081.4 ILMN_1661809 

FZD4 9.94 NM_012193.2 ILMN_1743367 

GEM 9.77 NM_181702.1 ILMN_2367883 

GEM 9.61 NM_181702.1 ILMN_1677092 

TNFRSF9 9.33 NM_001561.4 ILMN_1813379 

RAGE 9.28 NM_014226.1 ILMN_1745282 

FOS 9.25 NM_005252.2 ILMN_1669523 
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Tab. 4-4: Top 50 down-regulated probes in the zVAD signature at TP1 

ILMN_Gene 
Fold-change 

[siMLL/AF4] vs. [siCtrl] 
Accession Probe_ID 

NRGN -16.84 NM_006176.1 ILMN_1705686 

VPREB1 -13.26 NM_007128.2 ILMN_1738549 

MACROD1 -10.52 NM_014067.2 ILMN_1740960 

HS.538303 -10.28 BX091728 ILMN_1891244 

IGLL1 -10.15 NM_020070.2 ILMN_2393765 

RPL37A -10.12 NM_000998.3 ILMN_1808757 

FLJ12355 -9.44 XR_000645.1 ILMN_1697115 

UNC5B -8.18 NM_170744.2 ILMN_2176502 

DDN -7.64 NM_015086.1 ILMN_1673450 

CHN2 -7.58 NM_004067.2 ILMN_2292187 

HS.572064 -7.36 BM930393 ILMN_1880256 

FADS2 -7.30 NM_004265.2 ILMN_2075065 

IGLL3 -7.26 NM_001013618.1 ILMN_2083066 

MAP2K6 -7.20 NM_002758.3 ILMN_1697729 

ZDHHC9 -7.16 NM_016032.2 ILMN_1748803 

METTL9 -6.78 NM_016025.3 ILMN_1726421 

IGFBP2 -6.72 NM_000597.2 ILMN_1725193 

LOC91461 -6.65 NM_138370.1 ILMN_1734445 

PCDHGB6 -6.65 NM_018926.2 ILMN_2274355 

NTN1 -6.60 NM_004822.2 ILMN_1873621 

LOC127099 -6.57 XM_060328.1 ILMN_1784634 

OPRS1 -6.47 NM_147157.1 ILMN_1717925 

PRSSL1 -6.47 NM_214710.2 ILMN_1673605 

KIF18B -6.38 NM_001080443.1 ILMN_2327655 

CD3EAP -6.36 NM_012099.1 ILMN_1747870 

ENAH -6.17 NM_018212.4 ILMN_1716552 

ERP27 -6.15 NM_152321.1 ILMN_1655261 

SEPT6 -6.10 NM_145799.2 ILMN_1661342 

RBM15B -6.09 NM_013286.3 ILMN_1673024 

LAT2 -6.09 NM_022040.2 ILMN_1803560 

LPHN3 -6.08 NM_015236.3 ILMN_1692623 

LOC645128 -6.06 XM_928159.1 ILMN_1751814 

CUX1 -5.98 NM_001913.2 ILMN_2330213 

ARRB2 -5.83 NM_199004.1 ILMN_2395711 

LOC642773 -5.82 XM_926195.1 ILMN_1765640 

OCA2 -5.80 NM_000275.1 ILMN_1746116 

MLC1 -5.78 NM_015166.3 ILMN_1751471 

SS18 -5.75 NM_005637.2 ILMN_2359096 

SYNGR1 -5.74 NM_004711.3 ILMN_1810875 

ABCB8 -5.74 NM_007188.2 ILMN_2102422 

ABLIM1 -5.66 NM_001003407.1 ILMN_2396672 

ATPBD4 -5.63 NM_080650.2 ILMN_2140207 

ANGPT1 -5.62 NM_001146.3 ILMN_2086890 

ZHX3 -5.61 NM_015035.3 ILMN_1774387 

CEBPA -5.52 NM_004364.2 ILMN_1715715 

NUDT6 -5.42 NM_007083.3 ILMN_1780659 

HS.512096 -5.41 BF375676 ILMN_1871233 

DUSP7 -5.40 NM_001947.2 ILMN_1782581 

KIAA1545 -5.37 XM_495939.3 ILMN_1760305 

LOC401002 -5.36 XR_018284.1 ILMN_1686852 
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Tab. 4-5: Top 50 up-regulated probes in the zVAD signature at TP2 

ILMN_Gene 
Fold-change 

[siMLL/AF4] vs. [siCtrl] 
Accession Probe_ID 

KLF4 83.55 NM_004235.3 ILMN_2137789 

CCR7 72.55 NM_001838.2 ILMN_1715131 

SPINK1 66.01 NM_003122.2 ILMN_1787266 

CCL3L1 58.69 NM_021006.4 ILMN_1773245 

TNFRSF14 55.66 NM_003820.2 ILMN_1697409 

RANBP3L 51.15 NM_145000.2 ILMN_2094856 

ATF3 49.22 NM_001030287.2 ILMN_1661109 

PLA2G4C 41.83 NM_003706.1 ILMN_1810191 

NR4A2 41.37 NM_006186.2 ILMN_1782305 

BHLHB2 41.04 NM_003670.1 ILMN_1768534 

ABCB1 40.76 NM_000927.3 ILMN_1812070 

PTGS2 38.31 NM_000963.1 ILMN_2054297 

HSPA6 31.96 NM_002155.3 ILMN_1806165 

CCL3L1 31.48 NM_021006.4 ILMN_2218856 

FAM46C 31.00 NM_017709.3 ILMN_1713266 

CCL3L3 28.86 NM_001001437.3 ILMN_2105573 

CEACAM1 28.11 NM_001024912.1 ILMN_1716815 

RND3 26.81 NM_005168.3 ILMN_1759513 

PTPRO 24.59 NM_030671.1 ILMN_2316878 

TRAF1 24.30 NM_005658.3 ILMN_1698218 

LTA 24.29 NM_000595.2 ILMN_1795464 

CSAG3A 24.28 NM_203311.1 ILMN_2043126 

FZD4 23.58 NM_012193.2 ILMN_1743367 

RGS1 23.54 NM_002922.3 ILMN_1656011 

CCL3L1 23.16 NM_021006.4 ILMN_1747355 

EBI2 22.70 NM_004951.3 ILMN_2168217 

ATF3 22.68 NM_001040619.1 ILMN_2374865 

BAMBI 21.95 NM_012342.2 ILMN_1691410 

ZMIZ2 21.70 NM_031449.3 ILMN_1760718 

IL8 21.48 NM_000584.2 ILMN_1666733 

GEM 21.37 NM_181702.1 ILMN_1677092 

GEM 21.37 NM_181702.1 ILMN_2367883 

CCL3 21.04 NM_002983.1 ILMN_1671509 

ARRDC3 20.34 NM_020801.1 ILMN_2198515 

CPEB4 20.27 NM_030627.1 ILMN_1722025 

PSD2 20.24 NM_032289.2 ILMN_1662963 

ADM 20.17 NM_001124.1 ILMN_1708934 

KIAA0423 19.67 NM_015091.2 ILMN_1778876 

CXCL11 19.62 NM_005409.3 ILMN_2067890 

DUSP10 19.41 NM_144729.1 ILMN_2401878 

BIRC3 19.37 NM_001165.3 ILMN_1776181 

JUN 19.26 NM_002228.3 ILMN_1806023 

GADD45A 18.16 NM_001924.2 ILMN_2052208 

PMAIP1 17.65 NM_021127.1 ILMN_2098446 

IFNB1 17.45 NM_002176.2 ILMN_1682245 

KIAA1370 16.92 NM_019600.1 ILMN_2102960 

CDKN2B 16.79 NM_078487.2 ILMN_2376723 

IL8 16.79 NM_000584.2 ILMN_2184373 

EBI2 16.48 NM_004951.3 ILMN_1798706 

PPP1R15A 15.63 NM_014330.2 ILMN_1659936 
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Tab. 4-6: Top 50 down-regulated probes in the zVAD signature at TP2 

ILMN_Gene 
Fold-change 

[siMLL/AF4] vs. [siCtrl] 
Accession Probe_ID 

VPREB1 -87.60 NM_007128.2 ILMN_1738549 

HOXA10 -54.26 NM_018951.3 ILMN_1682110 

SLC29A1 -52.22 NM_001078174.1 ILMN_1723971 

HS.508682 -43.15 AV762101 ILMN_1821517 

FAM64A -37.05 NM_019013.1 ILMN_1728972 

BRI3BP -33.68 XM_941876.1 ILMN_1693410 

RPS15 -32.33 NM_001018.3 ILMN_2219131 

LOC57228 -30.87 NM_001031628.1 ILMN_2380243 

AIF1 -28.28 NM_032955.1 ILMN_1792473 

CENPM -27.67 NM_001002876.1 ILMN_2368721 

UGT3A2 -27.21 NM_174914.2 ILMN_1655565 

SLC29A1 -26.94 NM_001078174.1 ILMN_2338963 

BDH1 -26.67 NM_203314.2 ILMN_1799280 

PI16 -26.11 NM_153370.2 ILMN_1766264 

ACY1 -25.57 NM_000666.1 ILMN_1683883 

KIAA0101 -25.50 NM_001029989.1 ILMN_1732150 

OPRS1 -25.36 NM_147157.1 ILMN_1717925 

PTPRCAP -25.25 NM_005608.2 ILMN_1672417 

HOPX -22.98 NM_139212.2 ILMN_2316236 

ZNF423 -22.19 NM_015069.2 ILMN_2154950 

FADS2 -22.06 NM_004265.2 ILMN_2075065 

PXMP2 -21.51 NM_018663.1 ILMN_1799015 

UCP2 -21.05 NM_003355.2 ILMN_1685625 

CTDSP1 -20.81 NM_021198.1 ILMN_1681678 

CHST14 -20.41 NM_130468.2 ILMN_1743340 

ELF3 -20.35 NM_004433.3 ILMN_1769201 

BRI3BP -19.28 NM_080626.5 ILMN_1797693 

TSPO -19.01 NM_000714.4 ILMN_2260991 

FAM101B -18.89 NM_182705.2 ILMN_1714418 

CENPM -18.74 NM_024053.3 ILMN_1668814 

NFIB -18.45 NM_005596.2 ILMN_1778991 

LOC255620 -18.37 XM_173132.4 ILMN_1807114 

FAM81A -18.24 NM_152450.2 ILMN_1699623 

SPC25 -18.10 NM_020675.3 ILMN_1814281 

IGFBP2 -17.96 NM_000597.2 ILMN_1725193 

NME2 -17.54 NM_001018138.1 ILMN_2234873 

GCDH -17.17 NM_013976.2 ILMN_1797482 

PRSSL1 -17.04 NM_214710.2 ILMN_1673605 

LOC643997 -17.04 XM_292963.6 ILMN_1679280 

C21ORF58 -16.59 NM_199071.2 ILMN_2310296 

HSPB7 -16.59 NM_014424.3 ILMN_2200836 

PKMYT1 -16.30 NM_182687.1 ILMN_2401436 

ADA -16.28 NM_000022.2 ILMN_1803686 

CDK5 -16.24 NM_004935.2 ILMN_1781987 

CLEC11A -16.22 NM_002975.2 ILMN_1807359 

NT5DC2 -16.11 NM_022908.1 ILMN_1708743 

MLC1 -15.74 NM_015166.3 ILMN_1751471 

C14ORF149 -15.58 NM_144581.1 ILMN_2053281 

LOC647074 -15.45 XM_930080.1 ILMN_1709891 

EEF1B2 -15.31 NM_021121.3 ILMN_1675541 
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4.2.2 Functional analysis of the zVAD gene signature 

The gene signature derived from MLL/AF4 depletion in combination with zVAD 

was investigated for functional aspects using the Ingenuity Pathway Analysis 

(IPA) software (Ingenuity Systems Inc.) as well as the GSEA software 

(http://www.broadinstitute.org/gsea/index.jsp); these analyses facilitated 

identification of potential pathways and biological networks disturbed in 

response to MLL/AF4 down-regulation in the presence of apoptosis inhibition.  

 

 

4.2.2.1 Analysis of the zVAD signature using Ingenuity Pathway Analysis 

 

For each time point the complete data set of differentially expressed probes was 

analysed independently. 

At time point TP1, constituting of 1616 up- regulated and 1623 down-regulated 

probe sets, the affected networks involved cellular structure, gene expression, 

cell cycle, DNA repair and metabolic dysfunctions (tab. 4-7). In keeping with 

this, the most significantly associated molecular functions encompassed cell 

death, proliferation and development, as well as gene expression and lipid 

metabolism. Physiological functions linked with the signature were 

haematologic system development and haematopoiesis, as well as embryonic 

development and endocrine system function. Furthermore, disease-associated 

categories that correlated with the dataset included haematological diseases 

and cancer (tab. 4-8). 
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Tab. 4-7: Top 5 networks affected by the zVAD gene signature at TP1 

Name Score 

Cellular Assembly and Organization, Cancer, Genetic Disorder 28 

Gene Expression, RNA Trafficking, Cellular Assembly and Organization 25 

Genetic Disorder, Metabolic Disease, Cardiovascular System Development 
and Function 

22 

DNA Replication, Recombination, and Repair, Gene Expression, Infection 
Mechanism 

22 

Cancer, Cell Cycle, Cellular Development 20 

 

 

 

Due to data set size of over 3000 genes, pathway analysis revealed significant 

enrichment of >100 canonical pathways. Hence, only the top 20 signalling 

pathways were probed. These pathways could be summed up in 7 functional 

categories (fig. 4-12); the majority were associated with immunity/and or 

inflammatory response, particularly involving the tumour necrosis factor 

receptor superfamily (TNFRSF), and showed a net up-regulation. Conversely, 

mitogenic signalling, particularly involving the PI3K/AKT pathway, was down-

regulated.  
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Tab. 4-8: Significantly enriched functional categories in the zVAD gene signature 
at TP1 

Top 5 Biofunctions P-value 

Diseases and Disorders  

 Cancer 4.06E-09 - 1.92E-02 

 Haematological Disease 5.26E-06 - 1.87E-02 

 Gastrointestinal Disease 7.02E-06 - 7.18E-03 

 Genetic Disorder 7.02E-06 - 1.92E-02 

 Connective Tissue Disorders 2.39E-05 - 1.10E-02 

   

Molecular and Cellular Functions  

 Cell Death 5.19E-11 - 1.99E-02 

 Gene Expression 1.25E-09 - 1.85E-02 

 Cellular Growth and Proliferation 7.07E-07 - 2.04E-02 

 Cellular Development 2.44E-06 - 2.03E-02 

 Lipid Metabolism 1.53E-05 - 1.45E-02 

   

Physiological System Development and Function   

 Endocrine System Development and Function 5.28E-05 - 5.28E-05 

 Embryonic Development 1.57E-04 - 1.10E-02 

 Cardiovascular System Development and Function 2.40E-04 - 1.99E-02 

 Haematological System Development and Function 2.55E-04 - 1.92E-02 

 Haematopoiesis 2.88E-04 - 1.92E-02 

P-Value range describes the p-values of associated subcategories as determined by 

Fisher’s exact test. 
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Fig. 4-12: Pathway analysis of the zVAD gene signature at TP1 

Pathway analysis was performed using IPA Software (Ingenuity Inc.). At TP1, the top 20 

significantly enriched canonical pathways (A) could be attributed to 7 functional categories 

mainly involving a proinflammatory response and related signalling cascades (B). Statistical 

significance was determined by Fisher’s Exact test. 
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Fig. 4-13: The zVAD signature at TP1 reveals that MLL/AF4 depletion in presence 
of caspase inhibition results in up-regulation of part of the TNFR2 signalling 
machinery 
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Fig. 4-14: The zVAD signature at TP1 reveals that MLL/AF4 depletion in presence 
of caspase inhibition negatively affects PI3K/AKT signalling.  
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Performing the same analysis for the zVAD signature at TP2 showed similar 

results as TP1; the most affected networks were associated with cell death, gene 

expression, cell cycle and DNA repair. In addition, differentially expressed genes 

at TP2 were part of the post-translational modification machinery (tab. 4-9). 

Concordantly, the zVAD signature was linked to the corresponding molecular 

functions, including cellular proliferation. Moreover, as seen at TP1, the main 

physiological functions connected with the zVAD signature at TP2 were 

haematologic system development and haematopoiesis, as well as embryonic 

development and endocrine system function, and the disease-associated 

categories included haematological diseases and cancer (tab. 4-10). 

 

Tab. 4-9: Top 5 significantly enriched networks in the zVAD signature at TP2 

Name Score 

Cell Death, Embryonic Development, Gene Expression 18 

Gene Expression, Infection Mechanism, Tumour Morphology 18 

Post-Translational Modification, Protein Folding, Lipid Metabolism 18 

Cell Cycle, Cellular Compromise, Cancer 18 

Cancer, DNA Replication, Recombination, and Repair, Cell Cycle 16 
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Fig. 4-15: Sustained MLL/AF4 depletion for 4 days (TP2) in presence of caspase 

inhibition affects functions associated with cellular death and gene expression  
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Fig. 4-16: Sustained MLL/AF4 depletion for 4 days (TP2) in presence of caspase 
inhibition affects functions associated with infectious processes, gene expression 
and tumour morphology. 
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Tab. 4-10: Significantly enriched functional categories in the zVAD gene signature 
at TP2 

Top 5 Biofunctions P-value 

Diseases and Disorders  

 Cancer 4.18E-11 - 1.81E-02 

 Gastrointestinal Disease 4.18E-11 - 1.54E-02 

 Genetic Disorder 4.18E-11 - 1.33E-02 

 Haematological Disease 1.01E-08 - 1.62E-02 

 Immunological Disease 1.01E-08 - 1.23E-02 

   

Molecular and Cellular Functions  

 Cell Cycle 2.42E-15 - 1.87E-02 

 Cell Death 4.26E-15 - 1.87E-02 

 Gene Expression 3.56E-13 - 1.87E-02 

 Cellular Growth and Proliferation 2.72E-08 - 1.63E-02 

 DNA Replication, Recombination, and Repair 2.12E-07 - 1.85E-02 

   

Physiological System Development and Function   

 Haematological System Development and 
Function 
 
 

6.31E-04 - 1.66E-02 

 Endocrine System Development and Function 1.19E-03 - 1.19E-03 

 Embryonic Development 1.50E-03 - 1.33E-02 

 Haematopoiesis 2.10E-03 - 1.66E-02 

 Tissue Morphology 2.16E-03 - 3.23E-03 

 

Similarly to TP1, pathway analysis for the differentially expressed probes at TP2 

found >100 significantly affected pathways, which could be classified into 

comparable functional categories as for the earlier time point. Most of the 

pathways belonged to TNFRSF signalling cascades or mediated pro-

inflammatory responses; in addition, the zVAD signature was associated with 

immunity-related pathways. All these three aspects showed considerable 

overlap in the molecules affected and cross-talk between the signalling 

pathways. The net effect indicated up-regulation of these pathways. Mitogenic 
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signalling involving the MAPK and PI3K/AKT pathway was perturbed as well, 

indicating a down-regulation. 

 

 

Fig. 4-17: Pathway analysis of the zVAD gene signature at TP2 

Pathway analysis was performed using IPA Software (Ingenuity Inc.). At TP2, the top20 

significantly enriched canonical pathways (A) could be attributed to 6 functional categories. As 

observed at TP1, there was an over-representation of pathways involved in inflammation and 

related signalling cascades (B). Statistical significance was determined by Fisher’s Exact test. 
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Fig. 4-18: The zVAD signature at TP2 reveals that MLL/AF4 depletion in presence 
of caspase inhibition perturbs ERK/MAPK pathways, down-regulating part of the 
mitogenic signalling machinery. 
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Fig. 4-19: Sustained MLL/AF4 depletion for 4d (TP2) in presence of zVAD up-
regulates TNFR1 signalling mediators. 
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4.2.2.2 Gene Set Enrichment Analysis 

The common motif of the zVAD signature at both time points indicated an 

activation of the TNFRSF signalling cascades, which are involved in mediating 

caspase-dependent and –independent cell death, a finding very much in line 

with the observed phenotype. In order to investigate this further, GSEA analysis 

on a curated expression data set, constituting of combined common up- and 

down-regulated genes at TP1 and TP2, was performed.  

In order to identify the shared probe sets, comparison analysis of the zVAD 

signature at both time points was performed. There was an overlap of 2191 

common differentially expressed probes at TP1 and TP2, however, when 

subdividing the probe set according to regulation, the overlap was smaller: 

1111 induced and 1032 down-regulated probes were found to be present at 

both TP1 and TP2 (fig. 4-20). This difference of 79 probes resulted from ones 

with opposing regulation at both time points, i.e. up-regulated at TP1 while 

down-regulated at TP2, and vice versa. Using these 2143 overlapping probes, a 

curated data set was created, consisting of the normalised expression values of 

siMLL/AF4 and siCtrl at TP1 and TP2. GSEA analysis was performed according 

to section 2.7.6; 93 data sets were found to be significantly enriched when 

applying a false-discovery rate (FDR) cut-off of 25%, as proposed. The 

corresponding heat map of the top 50 differentially expressed genes at both 

time points (fig. 4-21) showed a high prevalence of pro-inflammatory genes, 

similar to the results described for tab. 4-3 to 4-5. Furthermore, in good 

concordance with the results obtained using IPA analysis, the zVAD signature 

showed positive correlation with gene sets linked to inflammation (fig. 4-22B) 

and immunity (fig. 4-22C), particularly involving TNFRSF signalling (fig. 4-22A, 

D), as well as cell death (fig. 4-23D), cellular stress response (fig. 4-23A), 

migration (fig. 4-23B) and cytokine signalling (fig. 4-23C). Moreover, the zVAD 

signature was enriched for target genes of the STAT5, CEBP/β, CREB (fig. 4-24A-

D), as well as the FOXO2, NFkB and IRF transcription factors (fig. 4.-25) 
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Fig. 4-20: Venn diagram of overlapping probes in the zVAD signature at both time 
points 

Comparison analysis of the zVAD signatures at TP1 and TP2 share 2191 probes, which 

represents an overlap of 68% of the probe set at TP1. Correcting for an equal 

regulation, the zVAD signatures share 1111 up- and 1032 down-regulated probe sets, 

which corresponds to 69% and 64% of entities at TP1, respectively. Parentheses 

denote total numbers. 
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Fig. 4-21: Heat map of the top25 up- and down-regulated genes present at both 
queried time points of the zVAD signature 

Heat map of a manually curated expression dataset consisting of common differentially-

regulated genes at TP1 and TP2 was generated by the GSEA software. 
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Fig. 4-22: The zVAD signature was significantly enriched for gene sets associated 
with TLR, IFN and TNFRSF signalling 

The combined zVAD signature showed positive correlation with gene sets describing cellular 

response to stimulation with TNF (A), IFNG (B) and CD40 (D). It also showed overlap with genes 

associated with the canonical Toll-like receptor pathway (C). All data sets had a nominal p-value 

of p<0.05, and an adjusted p-value of p<0.25. 
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Fig. 4-23: The zVAD signature was significantly enriched for gene sets associated 
with cell death, cellular compromise, migration and cytokine signalling. 

The combined zVAD signature showed positive correlation with data sets describing genes 

enriched for the GO terms describing cellular stress (A) and cell migration (B), as well as 

showing overlap with genes associated with the canonical apoptosis pathway (D). In addition, 

the zVAD signature was enriched for cytokines and their receptors (C) All data sets had a 

nominal p-value of p<0.05, and an adjusted p-value of p<0.25. 
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Fig. 4-24: The zVAD signature was significantly enriched for specific transcription 
factor target genes. 

The zVAD signature comprised several with the promoter regions containing motifs annotated 

for C/EBPβ (A), CREB-2 (C) and the STAT5α/β transcription factors (B, D). All data sets had a 

nominal p-value of p<0.05, and an adjusted p-value of p<0.25. 
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Fig. 4-25: Data sets significantly enriched for transcription factor target genes 
within the zVAD signature. 

The zVAD signature comprised several with the promoter regions containing motifs annotated 

for RELA (A), the forkhead transcription factor FOXOA2 (B), and IRF-1 (D). In concordance with 

its enrichment of genes linked to cellular stress, several genes are putative targets of the heat-

shock transcription factor HSF-2 (C). All data sets had a nominal p-value of p<0.05, and an 

adjusted p-value of p<0.25.  
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Leading edge analysis of the significantly enriched gene sets showed a distinct 

biological correlation amongst each other (fig. 4-26). Clustering of the core 

factors of each gene set allowed identification of five distinct biological subsets 

(fig. 4-27 I.-V.), two major ones involving pro-inflammatory response included 

TNFRSF-, NFkB- and TLR signalling (I.) and  associated with cell death, cellular 

compromise and DNA damage response (II.). In addition, there was a separate 

interferon-related signature (III.). Furthermore, one group included genes 

associated with cell adhesion and extracellular matrix components, as well as 

the CREB pathway (IV.). Last but not least, another subset corresponded to gene 

sets linked to nuclear transport (V.).  

 

Fig. 4-26: Similarity matrix heat map 

Leading edge analysis performed by GSEA on 93 significantly enriched gene sets revealed a high 

degree of correlation, as determined by the substantial overlap between the entities of the 

leading edge subsets. 
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Fig. 4-27: Hierarchical clustering of the leading edge gene subsets 

Hierarchical clustering of the leading edge genes with the gene sets showed formation of five 

signatures where particular entities had an increased incidence. These clusters represented 

gene sets associated with inflammatory mechanisms, such as TNFRSF-, NFkB- and TLR 

signalling (I.), cell death, cellular stress and DNA damage response (II.) and interferon response 

(III.). Furthermore, one cluster included genes associated with cell adhesion and extracellular 

matrix components, as well as the CREB pathway (IV.), and another cluster was linked to 

nuclear transport (V.) 

 

 

Since most of the enriched gene sets were in one way or the other associated 

with inflammatory response, it was unsurprising that examination of the 

incidence of individual factors across all gene sets revealed inflammatory 

mediators to be over-represented in the top 10 most frequent genes (fig. 4-28), 

with TNF being the most frequent one, being part of 17% of the analysed 

datasets.  

 

 

Fig. 4-28: Incidence of the top 10 most frequent leading edge genes 

Leading edge analysis of the core subset of the 93 significantly enriched gene sets showed an 

over-representation of pro-inflammatory cytokines. 
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4.2.3 Comparison of the zVAD signature with the MLL/AF4 signature 

The zVAD signature showed a high incidence of genes involved in immune 

response and inflammation, as well as genes implicated in haematopoietic 

development. In order to remove bystander effects resulting from zVAD 

treatment, the zVAD dataset was compared to the MLL/AF4 signature, which 

represents the corresponding vehicle control. At TP1, there was a 23% overlap 

of up-regulated probes between both expression sets; similarly, 24% of the 

down-regulated probes coincided (A). At TP2, the intersection of both 

signatures showed 37% up- and 33% down-regulated probes shared in 

common (B). This could be further distilled into a core signature of 64 probes 

representing 61 genes, which were differentially expressed in all signatures and 

time points (fig. 4-29).  

Interestingly, this core signature showed a similar enrichment for pro-

inflammatory and haematopoietic development mediators. Amongst the 

induced probes, there were several factors associated with inflammation, such 

as the interferon-induced genes IFIT2, IFIT3 and IFI44, as well as the nucleotide 

pyrophosphatase ENPP2 and the MAP kinase kinase TPL2 (MAP3K8) which 

plays an important role in TNF-, TLR- and NFkB-mediated ERK signalling274-278. 

Of note is the induction of ANXA1, which, as previously described in section 3., 

acts both pro-apoptotic and as a potent modulator of inflammation and the 

NFkB pathways. Furthermore, both the pro-apoptotic BH3-family member 

NOXA (PMAIP1) which is up-regulated in response to intracellular reactive 

oxygen species (ROS), and the glutamate-cysteine ligase GCLM, a key enzyme in 

glutathione synthesis279, were induced, suggesting the activation of the cellular 

oxidative stress response. The up-regulation of the transcription factors KLF2 

and NURR1 (NR4A2), which regulate pleiotropic functions in differentiation280-

281, inflammation282-283, cell death 284-285and tumourigenesis286-288 in a cell-type-

dependent manner is in good concordance with the phenotype observed and 

might indicate a potential regulatory network. 

Additionally, the signature also included the autophagy marker GABARAPL1 and 

several factors of the ubiquitin-proteasome system, such as the E3 ligases 
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FBXO32 and FBXO15, and showed induction of several haematopoietic 

maturation markers (CD68, FCRLA). In contrast, the down-regulated core 

signature comprised several haematopoietic stem/progenitor cell markers 

(HSPCs), such as HOXA10 and SPN1 (CD43). Other genes showing reduced 

expression were the epigenetic cofactors SMARCC2, a component of the 

SWI/SNF complex86, and PYGO2, which has also been implicated as part of the 

WNT transcription factor machinery220. One transcription factor was part of this 

signature, MAZ, which has recently been linked to tumour progression and 

metastases in breast cancer, as well as modulator of K-RAS expression289. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-29: Venn diagram depicting shared probe sets between the zVAD and the 
MLL/AF4 signature at both time points queried. 

Comparison analysis showed that the zVAD and MLL/AF4 signatures had 134 up-

regulated probe sets in common at TP1, and 245 at TP2. At all time points and 

conditions, there were 35 probes that showed induction in siMLL/AF4 treated SEM 

cells compared to Ctrl, corresponding to an overlap of 23, 36 and 6 % (A). When 

comparing the down-regulated probes, it was found that both signatures share 241 

probes at TP1 and 237 probes at TP2, which represents an overlap of 35%. Comparing 

all time points and conditions, 29 down-regulated entities were shared, representing 

an overlap of 4% (B). Parentheses denote total numbers. 
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Fig. 4-30: Heat map of a core signature of probes differentially expressed in 
siMLL/AF4-electroporated SEM cells with or without zVAD at both time points 
TP1 and TP2 

Overlap analyses of the MLL/AF4 and zVAD expression arrays at TP1 and TP2 revealed a core 

signature consisting of 63 shared probes showing the same regulation at all time points queried. 

The core probe set consisted of 35 up- and 29 down-regulated probes with a linear fold change 

(FC) cut-off of 2.0. The FC scale represented in this heat map is log2-transformed; a FC of 1 

represents a linear FC of 2. The graph was generated using the HeatmapImage module of the 

Genepattern software. 
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Interestingly, only 3 of these 61 genes were found to be direct MLL/AF4 target 

genes when compared to the Guenther data set (HOXA10, SPN, REEP3), 

corresponding to an overlap of 5%. Analysing the probe sets shared at TP1 by 

both the MLL/AF4 and the zVAD signature showed the presence of 7 MLL/AF4 

target genes mapped by 9 probes, which falls below a potential FDR of 5%, as 

well. At TP2, there are 11 probes overlapping. Combining these two data sets of 

overlapping probes resulted in a shared signature of 14 genes. Analysis of the 

expression arrays showed that in all conditions and at both time points these 

genes showed the same regulation, albeit often at TP1 to a reduced extent, so 

that it did not pass the differential expression fold-change cut-off of 2.0. 

Conversely, in some cases, at TP2 the down-regulation of these genes was so 

potent that the associated probes flagged up as marginally expressed or had 

absent calls (tab. 4-11). 

Most of the MLL/AF4 target genes are down-regulated in response to 

siMLL/AF4 treatment, with the exception of REEP3 (receptor accessory protein 

3), PTGER4 (prostaglandin receptor E 4) and JMJ1DC, which are consistently up-

regulated in MLL/AF4 depleted SEM cells (tab. 4-11). REEP3 represents 

together with five other REEP proteins (REEP1-6) the human orthologues of the 

yeast gene Yop1p, a putative regulator of vesicle trafficking also implicated in 

cell growth and viability, as it has been shown to induce cell death upon 

overexpression290, a function very much in agreement with the accompanying 

cellular phenotype. PTGER4 action seems to be cell context dependent, as it has 

been linked to tumour cell proliferation and metastases in a variety of solid 

cancers, but reportedly acts as a tumour suppressor in B-cell lymphoma. The 

induction of the histone demethylase JMJD1C is counterintuitive, as it is 

expressed in HSCs, embryonic stem cells and in a variety of tumours, as well as 

being up-regulated in t(4;11)-positive patient cells. 
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Tab. 4-11: MLL/AF4 target genes differentially regulated in both the MLL/AF4 and zVAD signature at all time points 

Bold font represents up-regulated genes, italics indicate that the fold-change (FC) falls below the cut-off of 2.00 but is above 1.3 

P->M and P->A denote such a strong down-regulation, that the probes in these siMLL/AF4-treated cells go from present (P) to marginal (M) or absent (A) 

MLL/AF4 
target genes 

Probe_ID 
Fold-change 

Accession 
TP1 TP2 TP1(+zVAD) TP2(+zVAD) 

CLEC9A ILMN_1673238 -3.46 -2.64  -2.04 NM_207345.2 

FMNL2 ILMN_1730491 -2.16 -2.20  -2.71 NM_052905.3 

HOXA10 ILMN_1682110 -5.23 -12.55 -4.16 -54.26 NM_018951.3 

 ILMN_1689336 -2.99 -2.08 -1.77 -3.50 NM_018951.3 

IGF1R ILMN_1675048 -1.36 -2.77 -1.41 -2.98 NM_000875.2 

JMJD1C ILMN_1677589  13.65  6.74 NM_032776.1 

PROM1 ILMN_1786720  -2.88 -1.99 -2.07 NM_006017.1 

PRSS12 ILMN_1672720  -2.07 -1.87 -2.47 NM_003619.2 

PTGER4 ILMN_1795930 1.38 2.04 3.25 6.42 NM_000958.2 

REEP3 ILMN_1722642 5.12 10.49 3.17 4.18 NM_001001330.1 

SPN ILMN_1801040 -2.81  -2.05 -4.47 NM_001030288.1 

 ILMN_1658017 -2.11  -2.30 -2.66 NM_001030288.1 

 ILMN_1660315 -2.62 -2.62 -2.02 -5.19 NM_003123.3 

DUSP6 ILMN_1677466 -2.70 P->M -2.34  NM_001946.2 

 ILMN_2396020 -3.98 -3.78   NM_022652.2 

CLECL1 ILMN_1782729 -2.18  -2.17 -2.35 NM_172004.2 

CACNB4 ILMN_2257652 -2.48 P->A -3.60 -4.00 NM_001005746.1 

BCL7A ILMN_1706886 -2.23  -2.26 -2.36 NM_001024808.1 

 ILMN_2378081 -2.92 -1.64 -3.31 -9.96 NM_001024808.1 
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4.3 THE ZVAD SIGNATURE COMPRISES KEY FACTORS OF THE NOVEL 

PROGRAMMED CELL PATHWAY NECROPTOSIS 

The results from the pathway analyses performed with the IPA and GSEA 

software suggest a major role for TNFRSF and TLR signalling in mediating the 

observed phenotype in siMLL/AF4-zVAD treated SEM cells. Indeed, TNF has 

long been firmly established as a regulator of both apoptotic and 

necrotic/caspase-independent cell death. Recently, an increasing body of 

evidence have uncovered a novel programmed cell death pathway, termed 

necroptosis, which integrates aspects of TNF and TLR signalling, autophagy and 

a unique downstream mediator machinery involving CYLD, BMF, PARP2 and 

JUN, amongst others291.  

Analysing the siMLL/AF4 arrays at TP1 and TP2 with and without zVAD showed 

that specifically within the zVAD signature key genes implicated with the 

necroptotic machinery were affected, while on the other hand these genes 

showed no or less differential expression in the corresponding DMSO groups 

(tab. 4-12). 

Taking these finding into account, it seemed probable that the underlying 

mechanism for the caspase-independent cell death induction in siMLL/AF4-

zVAD SEM cells was linked to the necroptotic signalling pathway. In order to 

test this hypothesis, the array results were validated both on expression level, 

as well as investigated functionally.  
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Tab. 4-12: Differential expression of necroptosis-associated genes is majorly 
restricted to the zVAD signature 

Gene 
Symbol 

Probe_ID 
Fold-change 

TP1 TP2 TP1(+zVAD) TP2(+zVAD) 

ATP6V1G2 ILMN_1654541 - - - 2.23 

CD40 ILMN_1779257 - -2.74 3.32 - 

COMMD4 ILMN_33223 - - - -3.17 

CYLD ILMN_1775508 - 3.03 2.96 2.91 

GRB2 ILMN_1742521 - - -2.44 -3.72 

JPH3 ILMN_26563 - - 2.38 - 

JUN ILMN_1806023 - 2.29 19.57 19.26 

LC3B ILMN_1703244 - - 2.00 4.32 

PARP2 ILMN_1757995 - - - 3.25 

RIPK1 ILMN_2119535 - - 2.00 3.62 

RIPK3 ILMN_1763763 - - -4.09 -4.13 

RIPK5 ILMN_2352023 - 2.06 2.15 2.77 

RIPK5 ILMN_1779600 3.02 - - 2.12 

SPATA2 ILMN_1681135 - - - 2.90 

TMEM57 ILMN_1718831   2.09  

TNF ILMN_1728106 - - 14.72 14.04 

TNFAIPL8L1 ILMN_1684346 -5.20 - 3.73 - 

 

 

First, it was ascertained whether the t(4;11)-positive ALL cell lines SEM and 

RS4;11 possessed the intrinsic machinery to mediate necroptotic signalling. 

With TNFR1 being one the key receptors implicated, the expression of both 

TNFR1 and its close homologue TNFR2, another important mediator of TNF 

signalling, was confirmed by flow cytometry on the cell surface of both cell lines 

analysed. Interestingly, TNFR2 was expressed at a higher level than TNFR1 in 

the SEM cell line, while both receptors showed a comparable copy number on 

the surface of the RS4;11 cell line (fig. 4-31).  
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Fig. 4-31: Cell surface expression of TNFR1 and TNFR2 in t(4;11)-positive ALL cell 
lines 

The two t(4;11)-positive ALL cell lines SEM and RS4;11 expressed both TNFR1 and TNFR2 on 

the cell surface, as determined by flow cytometry. The graph shows one representative overlay 

of n=3 comparable experiments. 
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Having confirmed the presence of TNF receptors on the SEM cell line, the array 

results were validated by qRT-PCR. Six genes were analysed, RIPK1, TNF, JUN, 

PARP2, CYLD and LC3B, and 6/6 showed the same results as observed in the 

array: TNF was 7.7- to 9.8-fold up-regulated in the siMLL/AF4-zVAD cells at 

both TP1 (fig. 4-32A) and TP2 (fig. 4-32E), respectively, when compared to 

MOCK-zVAD, but showed no differential expression in the corresponding DMSO 

group. The same trend could be observed for the autophagy marker LC3B, with 

an 1.8-fold induction at TP1 (fig. 4-32C) and a 5.7-fold up-regulation at TP2 (fig. 

4-32G), as well as the kinase RIPK1, which induced 2- and 2.9-fold respectively, 

when compared to the corresponding MOCK control (fig. 4-32B, F). The 

transcript levels of those genes were not affected in siMLL/AF4-DMSO treated 

SEM cells. The notable exception was JUN; this gene showed a marked up-

regulation in both siMLL/AF4-DMSO and siMLL/AF4-zVAD cells at TP2 (fig. 

4-32F). However, at TP1, JUN gene expression was only increased in 

siMLL/AF4-zVAD cells when normalised on MOCK-zVAD (fig. 4-32B). Both the 

DNA damage response gene PARP2 (fig. 4-33B) and the deubiquitinase CYLD 

(fig. 4-33A) were analysed only at TP2, transcript levels were elevated 4.7- and 

3.2-fold, respectively. In addition, another key player involved in necroptosis, 

but which did not show up as differentially regulated in the arrays, was the pro-

apoptotic BH3-family member BMF. Expression analysis by qRT-PCR found this 

gene to be induced in siMLL/AF4-treated SEM cells in both the zVAD and the 

DMSO group, albeit the up-regulation was slightly higher in the siMLL/AF4-

zVAD cells (fig. 4-33C, D). 

 

 

Fig. 4-32: Expression analysis of necroptotic genes by qRT-PCR 

SEM cells were serially electroporated with either siMLL/AF4, control siRNA (siAML1/MTG8) or 

without siRNA (MOCK) and cultured with zVAD or the corresponding vehicle control DMSO. 

SEM cells treated with siMLL/AF4 and zVAD showed up-regulation of the necroptosis key 

regulators TNF, RIPK1, LC3B and JUN at both TP1 (2d post 1st electroporation) and TP2 (2d post 

2nd electroporation) when compared to both corresponding controls and siMLL/AF4-treate-

DMSO cells. Graphs represent the mean of at least n=2 (A-D) or n=3 (E-H) independent 

experiments; error bars indicate S.E.M. Statistical significance was determined using Student’s t-

test (** = p<0.01; *** = p<0.001). 



T(4;11)-positive Cells Display Oncogenic Addiction to MLL/AF4 
 

239 
 

 

 

 



T(4;11)-positive Cells Display Oncogenic Addiction to MLL/AF4 
 

240 
 

 

 

 

 

 

Fig. 4-33: Expression analysis of the necroptotic genes BMF,CYLD and PARP2 by 
qRT-PCR 

SEM cells were serially electroporated with either siMLL/AF4, control siRNA (siAML1/MTG8) or 

without siRNA (MOCK) and cultured with zVAD or the corresponding vehicle control DMSO. 

SEM cells treated with siMLL/AF4 and zVAD showed up-regulation of the necroptotic key 

players CYLD (A) and PARP2 (B) at TP2 when compared to both corresponding controls and 

siMLL/AF4-DMSO cells. The BH3-family member BMF was induced in both siMLL/AF4-DMSO 

and siMLL/AF4-zVD cells at TP2 (C, D). Graphs represent the mean of n=2 independent 

experiments (n=1 for C); error bars indicate data range.  
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Although, the inductions observed were specific for siMLL/AF4-transfected cells 

treated with zVAD, assessment of the basal expression of these genes showed 

that zVAD treatment alone elevated TNF and JUN levels in the controls. Thus, the 

actual induction of the gene expression in siMLL/AF4-zVAD SEM cells was even 

stronger, as the actual fold-changed were reduced by 5- to 8-fold due the ΔΔCt 

normalisation process (fig. 4-34). 

 

 

 

 

Fig. 4-34: Basal expression levels of necroptotic genes 

RNA transcription of key genes of the necroptotic machinery in siAML1/MTG8-transfected SEM 

cells treated with or without zVAD was analysed by qRT-PCR at TP2 (d4) by the ΔΔCt-method, 

normalising against the MOCK-DMSO control sample. Culturing siRNA-electroporated SEM cells 

with zVAD did not affect the basal levels of PARP2, RIPK1, CYLD and LC3B, but there was a 

substantial induction of TNF and JUN expression. The graph shows the mean of at least n=2 

independent experiment, error bars indicate S.E.M. (standard error of the mean). 
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Comparison of gene expression fold-changes derived from the different analysis 

methods for TNF, PARP2, CYLD, LC3B, RIPK1 and JUN at TP2 showed a highly 

significant correlation between both the array and the qRT-PCR results (fig. 

4-35). 

 

 

 

Fig. 4-35: Correlation analysis between array and qRT-PCR results 

The linear fold-changes of the genes derived from the array probes in the zVAD signature at TP2 

and the corresponding qRT-PCR expression analysis results show a highly significant 

correlation, as determined by Pearson’s correlation analysis.  
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The PCD pathway necroptosis implicates both TNF receptor signalling and the 

autophagy machinery. Some of those markers require post-translational 

processing to be active, therefore in addition to the RNA expression analyses, 

some genes were also investigated at the protein level.  

TNF and TNFR signalling playing such a prominent role in caspase-independent 

cell death. Expression of TNF receptors on the surface of siRNA-electroporated 

SEM cell treated with or without zVAD revealed down-regulation of TNFR2 (fig. 

4-36B), while TNFR1 levels remained largely unaffected, only subtly increased 

in MLL/AF4-zVAD-treated cells (fig. 4-36A). Since TNFR2 is internalised upon 

ligand binding292, this observation could indicate active TNF signalling. In 

contrast to TNFR1, TNFR2 has increased specificity of membrane bound TNF; 

and indeed, siMLL/AF4-zVAD treated SEM cells expressed at least three-fold 

more TNF on the cell surface than the corresponding controls (fig. 4-36C). This 

induction was not to the same extent as the up-regulation observed by qRT-

PCR; but it has to be taken into account that membrane-bound TNF is only a 

fraction of the TNF produced, with the bulk being shed and secreted. 

 

 

 

 

 

 

 

Fig. 4-36: Cell surface expression of TNF receptors TNFR1, TNFR2 and 
membrane-bound TNF in siRNA-treated SEM cells 

SEM cells were serially electroporated with siRNA and treated with or without zVAD. TNF and 

TNFR surface expression was determined at TP2 by flow cytometry. Graph represents one 

single experiment. 
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A central player in necroptosis is the kinase RIPK1; incidentally, RIPK1 is a cellular 

target of the effector caspase CASP8, and failure to process RIPK1 has been 

associated with a switch from apoptosis to caspase-independent cell death 

pathways293. When assessing protein expression of RIPK1, the characteristic 

cleavage product could be detected in siMLL/AF4-DMSO cells, suggesting a role of 

CASP8 in mediating MLL/AF4 depletion-dependent apoptosis. In contrast, only the 

full-length form of RIPK1 was visible in siMLL/AF4-zVAD-treated cells. However, 

although RIPK1 levels were increased compared to the MOCK-zVAD sample, when 

compared to both the siAML1/MTG8-zVAD and the DMSO treatment group, no 

induction was observed (fig. 4-37).  

 

 

 

Fig. 4-37: RIPK1 Immunoblot in siRNA-treated SEM cells with or without zVAD 

SEM cells were serially electroporated with siRNA and treated with or without zVAD. RIPK1 

expression was determined at TP2. The graph represents one single experiment. 
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The autophagy marker LC3B is cleaved posttranslationally into the LC3B-I form, 

and lipidated into the LC3B-II form when it is incorporated into mature 

autophagosomes 294. Immunoblotting (fig. 4-38) showed increase of LC3B-II to be 

present in siMLL/AF4-zVAD SEM cells, but not in the corresponding DMSO cells. 

Also, in good concordance with the qRT-PCR, more LC3B-I could be detected in 

siMLL/AF4-zVAD cells when compared to the zVAD controls (MOCK-zVAD, 

siAML1/MTG8 zVAD). Incidentally, the zVAD control samples also show an 

increase in the LC3B-I form compared to DMSO controls, indicating increased 

background levels of the autophagy marker resulting from zVAD treatment alone, 

corroborating the qRT-PCR results illustrated in fig. 4-34.  

 

 

 

Fig. 4-38: LC3B Immunoblot in siRNA-treated SEM cells with or without zVAD 

SEM cells were serially electroporated with siRNA and treated with or without zVAD. LC3B 

expression was determined at TP2. The graph represents one single experiment. 
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4.4 NECROPTOSIS INHIBITOR STUDIES  

Several research groups have identified RIPK1 as one of the master regulators of 

necroptosis, and have shown that supplementing cells with the RIPK1 inhibitor 

Necrostatin-1 (NEC-1) completely blocked this cell death pathway, restoring 

viability. Also, suppression of TNF signalling using inhibitory TNF antibodies has 

been associated with inhibition of death.  

Therefore, to elucidate the mechanisms of the caspase-independent cell death 

observed in siMLL/AF4-zVAD SEM cells, inhibitor studies were performed co-

culturing siRNA-transfected SEM cell with either NEC-1 or the TNF-antibody 

Infliximab (α-TNF). The experimental set-up was similar to the standard 

procedure, and is depicted in scheme 4—39 . 

 

 

 

Fig. 4-39: Experimental set-up of necroptosis inhibitor study 

SEM cells were serially electroporated with siRNA and treated with or without zVAD according to 

the standard set-up. In addition, after the 2nd electroporation the samples were further subdivided 

and supplemented with or without the RIPK1-inhibitor NEC-1 or a neutralising TNF-antibody. 
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Remarkably, neither of the inhibitors were able to suppress the cell death 

induction in either siMLL/AF4-zVAD or siMLL/AF4-DMSO cells. Analysing the cell 

death by flow cytometry, using the ANNEXINV/PI assay showed that there was no 

difference in neither the ANNEXINV single positive nor the ANNEXINV/PI double 

positive subpopulations in siMLL/AF4 depleted cells treated with either inhibitor. 

Rather, NEC-1 increased the double-positive fractions in the siMLL/AF4-DMSO 

cells and also elevated it in the the zVAD control samples (fig. 4-40). 
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Fig. 4-40: Necroptosis inhibitors fail to suppress cell death in response to MLL/AF4 
depletion 

SEM cells were serially electroporated with siRNA and cultured with or without zVAD. In addition, 

at TP1, the siRNA-treated SEM cells were further supplemented with either 100 µM of the RIPK1-

inhibitor NEC-1, or 10 µM of TNF-neutralising antibody (-TNF). Flow cytometric analysis at TP2 

showed that neither apoptotic nor necroptotic cell death could be prevented by addition of these 

inhibitors, as determined by ANNEXINV/PI staining. Graph represents the mean of n= 2 

independent experiments, error bars indicate data range.  

 

 

 

The flow cytometry results were corroborated by viability analyses by both MTT 

and a luciferase-based viability assay. NEC-1 treatment strongly reduced viability 

of zVAD treated cells, regardless of siRNA-treatment, and increased cell death of 

siMLL/AF4-DMSO cells (fig. 4-41B). Viability measured by the MTT assay indicated 

that there was a slightly lower cell number in zVAD-treated control cells cultured 

with or without inhibitors (fig. 4-41A). However, this could be explained by a 

slower proliferation as both the ANNEXINV/PI flow cytometry analysis and the 

luminescent cell viability assay showed that there was not an increase in cell death 

due to zVAD treatment alone (fig. 4-40, fig. 4-41B). Moreover, cycle progression 

was affected by zVAD, with a slight increase in G1/G0- and G2/M-phase 

accompanied by S-phase reduction (fig. 4-4). 
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Fig. 4-41: Necroptosis inhibitors fail to restore viability in SEMs cells depleted of 
MLL/AF4  

SEM cells were serially electroporated with siRNA and cultured with or without zVAD. In addition, 

at TP1, the siRNA-treated SEM cells were further supplemented with either 100 µM of the RIPK1-

inhibitor NEC-1, or 10 µM of TNF-neutralising antibody (-TNF). Viability was assessed by MTT (A) 

or a luciferase-based ATP assay (B) at TP2. Neither apoptotic nor necroptotic cell death could be 

prevented by addition of these inhibitors. Graph (A) represents the mean of n= 2 independent 

experiments, graph (B) shows one single experiment; each sample was performed in duplicates. 

Error bars indicate data range.  
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4.5 CONCLUSION 

The results from this chapter suggest that there is an oncogenic addiction of 

t(4;11)-positive ALL cells towards MLL/AF4.  

 Ablation of the fusion oncogene results in caspase-dependent apoptosis; 

suppression of this process with the pancaspase inhibitor zVAD switches 

the cells towards a more necroptotic-like cell death pathway  

 Concomitantly, MLL/AF4-depletion in a caspase-deficient environment 

results in specific induction of several key mediators of the necroptotic 

machinery.  

 Yet, inhibition of the main players of this alternative death pathway could 

not block cell death and restore viability.  

 

Further studies are required to elucidate this phenotype, e. g., by blocking 

authophagy, as well as to identify the molecular mechanism by which cell survival 

is irretrievablly compromised. 
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4.6 DISCUSSION 

The results from the previous chapter established MLL/AF4 as a key mediator of 

leukaemic cell survival; MLL/AF4 knock-down resulted in apoptosis induction, 

accompanied by a concerted down-regulation of pro-survival signalling cascades. 

In an attempt to elucidate the hierarchy and the key steps of this process, RNAi-

mediated MLL/AF4 depletion was combined with apoptosis inhibitor treatment, 

followed by global transcriptome analysis.  

Caspase inhibition in MLL/AF4-depleted cells causes a switch from apoptosis to a 

necroptosis-like cell death type; co-culture of siRNA-transfected SEM cells with the 

pan-caspase inhibitor zVAD-FMK suppressed apoptotic markers, blocking effector 

caspase processing, consequently abrogating their proteolytic activity (fig. 4-7A, 

B). This was also corroborated by the absence of cleavage of the caspase target 

protein PARP1 (fig. 4-7) and diminished nuclear fragmentation (fig. 4-6), which 

represents an important morphologic marker of apoptosis295. However, 

intriguingly, apoptosis inhibition did not restore viability (fig. 4-9), and flow 

cytometry analysis indicated a phenotypic switch to a more necrotic-like cell 

death: siMLL/AF4-zVAD treated cells showed early loss of plasma membrane 

integrity, evidenced by PI uptake, while the corresponding siMLL/AF4-DMSO cells 

predominantly displayed loss of membrane lipid asymmetry, but not integrity (fig. 

4-8). Gene expression profiling of SEM cells treated in combination with 

siMLL/AF4 and zVAD showed an over-representation of proinflammatory 

cytokines and chemokines in the top50-upregulated genes, such as MIP-1α (CCL3, 

chemokine C-C motif ligand 3), IL8 (interleukin 8), RANTES (CCL5), CXCL10 

(chemokine C-X-C motif ligand 10), TNF (tumour necrosis factor) and LTA 

(lymphotoxin alpha). In addition, there was up-regulation of immediate 

early/adaptive response genes, such as the transcription factors JUN (jun proto-

oncogene), FOS (FBJ murine osteosarcoma viral oncogene homolog) and ATF3 

(activated transcription factor 3), implicated in stress-response and immunity296 

(tab. 4-3, tab. 4-5). These results are in concordance with previous observations 

that death stimuli in combination with chemical caspase inhibition induce 

proinflammatory cytokines, such as TNF, interferon-gamma (IFNG) and IL8297-298. 

Interestingly, pathway analysis of the zVAD signature at each time point using the 
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IPA software showed a high enrichment for signalling mediated by the Tumour 

necrosis factor receptor superfamily (TNFRSF) as well as immune response 

pathways mediated by pattern recognition receptors, including Toll-like receptor 

(TLR) signalling (fig. 4-12). A similar observation was made for the zVAD core 

signature, which was derived from comparing analyses between both time points, 

comprising common differentially expressed genes. Functional analysis using 

GSEA yielded 93 gene sets with a significant enrichment for the zVAD core 

signature; in concordance with the IPA results, there was overrepresentation of 

gene sets associated with inflammatory processes resulting from cytokine 

stimulation, such as TNF, IFNG, but also gene sets linked to activation of TNFRSF 

signalling, i.e., CD40 (TNFRSF5) (fig. 4-22). Genes involved in immune response, 

including canonical TLR signalling, were also enriched (fig. 4-22). Moreover, the 

zVAD core signature contained target genes of immediate early/adaptive response 

transcription factors, i.e., ATF4, modulator of cellular stress response mechanisms 

and involved in cell death signalling299-301, and CEBPB (CCAAT/enhancer binding 

protein, beta), a pleiotropic transcription factor which has been shown to regulate 

the expression of interferons, TNF and other cytokines302. These results correlate 

well with the top50 induced gene lists of the zVAD signatures, as well as with the 

other enriched GSEA gene sets (fig. 4-26). Concordantly, other gene sets linked to 

the zVAD core signature comprise apoptosis signalling (fig. 4-23), cytokines and 

their cognate receptors (fig. 4-23), stress response (fig. 4-23), and the 

transcription factor IRF-1 (interferon regulatory factor-1), involved in cytokine-, 

toll-like receptor303 and apoptosis signalling304 (fig. 4-24). Furthermore, leading 

edge analysis of the 93 GSEA sets showed clustering of the core genes into distinct 

motifs describing TNFRSF and TLR signalling, IFN signalling, cell death and stress 

response (fig. 4-27); and TNF was the most prevalent gene in all 93 significantly 

enriched gene set (fig. 4-28), Particularly TNF has been well-characterised in its 

dual ability to promote inflammation, but also cell death in a caspase-dependent 

and –independent manner.  

These observations suggested that the switch in the type of cell death observed 

could be towards necroptosis, a novel programmed cell death pathway mediated 

by the TNF receptor - and Toll-like receptor (TLR)-signalling machinery, and 
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involving autophagy291. Therefore, the zVAD signature was screened for published 

mediators. Interestingly, the expression of a subset of these genes was induced, 

including the key factors RIPK1, CYLD, TNF, and JUN, as well as the autophagy 

marker LC3B and the poly-(ADP-ribose) polymerase family member PARP2291. 

Comparison with the MLL/AF4 signature showed that this induction was 

restricted to siMLL/AF4-zVAD treated cells (tab. 4-12), supporting the necroptosis 

hypothesis. This observation was validated by qRT-PCR expression analysis; only 

SEM cells electroporated with siMLL/AF4 in combination with zVAD showed up-

regulation of RIPK1, CYLD, LC3B, PARP2 and TNF, while the expression levels in the 

corresponding vehicle-treated cells remained unaltered (fig. 4-34). JUN was highly 

up-regulated as well, but this induction was not restricted to siMLL/AF4-zVAD 

treated cells (fig. 4-32). Surprisingly, the basal levels of TNF and JUN were already 

elevated in zVAD-treated controls when compared to vehicle-treated controls (fig. 

4-34); a recent report indicated that this might occur in a PKC (protein kinase C)-

dependent manner, due to an as of yet unknown effect mediated by zVAD305. 

Necroptosis is characterised by presence of hyperautophagic signalling; in good 

concordance, LC3B is up-regulated in siMLL/AF4-zVAD cells, and LC3B is present 

in its lipidated form (LC3B-II, fig. 4-38), indicating increased presence of mature 

autophagosomes. However, the role of autophagy induction in necroptosis is not 

fully understood, as inhibition of autophagy has shown to increase cell death306; 

conversely, knock-down of key regulators of autophagy, such as ATG7 and Beclin-1 

rescued cells undergoing autophagic cell death 307. 

 

Since TNFR1 signalling seems to be the predominant pathway involved in 

necroptosis, expression of TNFR1 and TNFR2, which has been shown to promote 

TNFR1-mediated cell death signalling was confirmed by flow cytometry on the 

t(4;11)-positive cell lines SEM and RS4;11 (fig. 4-31). Interestingly, while TNFR1 

levels on the cell surface of MLL/AF4-depleted SEM cells remained largely 

unaltered (fig. 4-36A), there was an approximately 1.6-fold decrease of TNFR2 in 

MLL/AF4-ablated SEM cells, which was even more exacerbated in the 

corresponding MLL/AF4-zVAD samples, where there was 3.2-fold less TNFR2 on 
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the surface (fig. 4-36B). This correlated with a 1.7-fold induction and a 3.2-fold 

induction of membrane-bound TNF, respectively. Since TNFR2 has a high affinity 

for membrane-bound TNF, and is internalised upon ligand binding292, this 

observation could indicate active TNF signalling. In contrast to its high induction 

on RNA level, the increase in membrane-bound TNF protein is more modest (fig. 

4-36C); but it has to be taken into account that the TNF can be present in both 

membrane-bound and soluble form. 

The interplay of TNF, the deubiquitinase CYLD and the kinase RIPK1 have been 

shown to be essential in necroptosis signalling: under non-cytotoxic conditions, 

TNF engages TNFR1 and promotes the assembly of a multimeric complex 

containing RIPK1 and E3 ligases such as cIAP (cellular inhibitors of apoptosis) and 

TRAF2 (TNF receptor associated factor 2), which catalyse lysine63-linked 

polyubiquitinylation of RIPK1308. This modification is recognised and bound by 

NEMO, a moiety of the IKK (inhibitor of NFkB kinase kinase) kinase complex, 

resulting in its activation, subsequently promoting NFkB signalling309. Under 

cytotoxic conditions, deubiquitinases such as CYLD are recruited to the TNFR1-

RIPK1 complex; removal of the polyubiquitin chain results in disassociation of 

RIPK1 and its phosphorylation, promoting its kinase activity310. In a caspase-

proficient context, RIPK1 is targeted by caspase-8 and inactivated, resulting in 

apoptosis induction311. Conversely, in a caspase-deficient context, RIPK1 remains 

active and mediates necroptotic signalling, i.e., by promoting the production of ROS 

and perturbing of metabolic processes310.  

Concordantly, immunoblotting of RIPK1 showed the characteristic caspase-

mediated cleavage pattern in siMLL/AF4-vehicle treated cells, but only full-length 

RIPK1 in the siMLL/AF4-zVAD sample, with a slightly higher migration size than 

the other bands, a possible indication for phosphorylation (fig. 4-37). Whether 

there was a concomitant increase of RIPK1 protein levels remained unclear, 

however, the induction of RIPK1 on RNA was subtle, 2- to 3-fold (fig. 4-32), and 

Western blotting might not have had the sufficient sensitivity to detect these 

changes. Intriguingly, the characteristic proteolysis of RIPK1 implicates that 

MLL/AF4 ablation not only initiated the intrinsic caspase cascade as previously 
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reported by us148, but that apoptosis induction also occurs via the extrinsic 

pathway, involving caspase-8.  

In agreement with the differential regulation of NFkB pathway by RIPK1, there was 

up-regulation of NFkB signalling at TP1 of the zVAD signature, indicating an 

inflammatory response. Conversely, at TP2, at the time point where the cell death 

programme was already underway, the NFkB transcription factors, and 

consequently, NFkB signalling was down-regulated (fig. 4―19). Recently, Wu et al. 

showed that RNAi-mediated depletion of the NFkB transcription factors RELA and 

RELB, as well as components of the IKK complex greatly sensitised cells towards 

zVAD-mediated necroptosis305; in this context, the observed down-regulation of 

NFkB at TP2 might contribute towards the cell death signalling process. 

 

4.6.1 Suppression of necroptosis key processes fails to rescue the cell 

death phenotype 

Both TNF signalling and RIPK1 activity have been heavily implicated in promoting 

necroptosis. In order to further mechanistic insight into the underlying processes 

of siMLL/AF4-mediated cell death in a caspase-deficient context, both aspects 

where functionally addressed. Interestingly, co-culturing of SEM treated siRNA-

zVAD in the presence of the TNF-neutralising antibody Infliximab did not suppress 

cell death (fig. 4-40). Possibly, treatment with Infliximab missed the therapeutic 

window, as it was only supplemented after the second electroporation, and as the 

zVAD signature at TP1 indicates up-regulation of the necroptotic machinery 

already at this time point (fig. 4-32, fig. 4-33, tab. 4-12), which might have primed 

the cells to the point of no return, uncoupling it from TNF signalling. 

Similarly, since RIPK1 activity has been reported to be indispensable for 

necroptotic cell death, SEM cells treated with siMLL/AF4 and zVAD were 

supplemented with the RIPK1-inhibitor NEC-1. Surprisingly, viability of the cells 

could not be restored; moreover, NEC-1 seemed to have a cytotoxic effect on zVAD-

treated SEM cells per se (fig. 4-40, fig. 4-41). Lower concentrations of NEC-1 were 

also not able to rescue the necroptotic phenotype (data not shown). This 
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surprising finding is in disagreement with current literature, where RIPK1 

inhibition by NEC-1 has been reported to completely block or at least attenuate cell 

death in a variety of cell types291,312. While a technical issue, such as a non-working 

inhibitor, cannot be ruled out due to lack of a positive control, the 

unresponsiveness of the cells towards NEC-1 could also be due to a biological 

reason inherent of the SEM cell line, i.e., a mutation in RIPK1, which would 

interfere with binding of the inhibitor to the enzyme. Structure analysis of RIPK1 

found the activating region to be homologous to the T-loop domain of the B-RAF 

kinase, which is often targeted by oncogenic mutations. Concomitant mutation 

studies identified the S161E mutation in RIPK1 to be structurally equivalent to 

described activating mutations in B-RAF; this particular mutation conferred full 

activity to RIPK1, but abrogated inhibitor actions313. Although there are no reports 

of naturally occurring RIPK1 mutations in literature, this does not exclude the 

possibility, and either mutation screening of this region or the use of alternative 

RIPK1 inhibitors which are unaffected by this mutation, i.e. NEC-5, might be able to 

elucidate this aspect.  

Another possible explanation for the failed cell death suppression by NEC-1 might 

be that the cell death programme occurs in a RIPK1-independent manner. This 

could be due to a degree of redundancy within the RIP kinase family; although both 

RIPK1 and RIPK3 have been shown to be essential for necroptosis314, and even to 

act in concert in promoting cell death315, not much is known about RIPK5. This 

family member is induced in MLL/AF4-depleted cells regardless of zVAD 

treatment (tab. 4-12), and it had been reported to mediate cell death in a caspase-

dependent and –independent manner204. Consequently, RIPK5 might play a role in 

the caspase-independent cell death observed.  

In addition, there are reports in regards to a TNF-dependent, RIP kinase- and 

caspase-independent cell death pathway316 (also alluded to in Wu et al., as data not 

shown305). Moreover, NEC-7, a necrostatin derivative, has been able to inhibit TNF-

induced necrotic cell death in a RIPK1-independent manner, suggesting a differing 

molecular mechanism, which has not been elucidated to date317. Concordantly, a 

caspase-independent autophagy-like cell death pathway has just been recently 

described, which was shown to be mediated by the death-associated protein 
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kinase (DAPK)318. Since the presence of the mature autophagy marker LC3B-II is 

shared between necroptosis, autophagy-like cell death and this novel DAPK-

mediated programme, further studies are required to elucidate the mechanism by 

which t(4;11)-cells die in response to MLL/AF4 ablation in a caspase-deficient 

environment. Ultimately, these results illustrate the high degree of oncogene 

addiction of the SEM cells towards MLL/AF4, as fusion gene ablation invariably 

dooms the cell to die. A similar observation has been made for BCR/ABL, where 

imatinib treatment in combination with zVAD resulted in a switch from caspase-

dependent to a more necrotic-like cell death319, and these results highlight the 

importance of these single oncogenic mutations for the maintenance of the disease 

phenotype. 

 

4.6.2 Intersection analysis of the zVAD and MLL/AF4 signature reveals 

a core gene set comprising cell death and stemness-associated 

factors 

Despite the technical limitations of this gene expression profiling study discussed 

in chapter 3, there was a high degree of overlap between time point TP1 and TP2 

in the zVAD signature (fig. 4-20), indicating that the combined treatment of 

MLL/AF4 depletion and caspase inhibition exerted a concerted regulatory 

pressure. Comparing the zVAD signature with the MLL/AF4 target genes described 

by Guenther et al.132 showed, as observed with the MLL/AF4 signature (tab. 3―13), 

that only a small subset responded to MLL/AF4 ablation (tab. 4-11). Probing both 

the MLL/AF4 and the zVAD signature beyond the fold-change threshold revealed a 

trend towards to a differential expression of these genes, suggesting that the 

observed differential expression is indeed a MLL/AF4-regulated effect.  

Intersection analysis of the MLL/AF4 signature A with the zVAD signature showed 

a core set of 61 genes with the same differential regulation in response to 

MLL/AF4 depletion (fig. 4-30); performing the analysis in this manner, the time 

points, regardless of inhibitor treatment, served as replicates, revealing genes that 

are highly dependent on MLL/AF4. In good concordance with the results from the 

previous chapter, this core signature contains several genes associated with cell 
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death, such as ANXA1 and PMAIP1, autophagy (GABARAPL1), as well as revealing 

down-regulation of haematopoietic stem/progenitor cell markers, (HOXA10, 

SPN1/CD43) and the ERK-specific phosphatase DUSP6, which were already 

discussed in section 3.6.2. In addition, this core signature showed induction of 

genes associated with inflammatory and stress-related processes, such as Toll-like 

receptor 10 (TLR10), recently shown to be induced in response to immunity-

independent cellular stress320, IFIT2 (interferon-induced protein with 

tetratricopeptide repeats 2), which promotes interferon-independent cell death321, 

IFIT3(interferon-induced protein with tetratricopeptide repeats 3) and IFI44 

(interferon-induced protein 44), an inhibitor of proliferation in interferon-

resistant cancer cells322. Moreover, there is induction of the nucleotide 

pyrophosphatase ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase 2/ 

autaxin), which plays a dual role as tumour promoter and tumour suppressor in a 

cell-type dependent manner323, and the MAP kinase kinase TPL2 (MAP3K8) which 

plays an important role in TNF-, TLR- and NFkB-mediated ERK signalling 274-278.  

Another member of this core signature, REEP3, is of particular interest, as it is one 

of the few MLL/AF4 targets which are up-regulated in response to fusion gene 

ablation (tab. 3-13, tab. 4-11). REEP3 represents together with five other REEP 

proteins (REEP1-6) the human orthologues of the yeast gene Yop1p, a putative 

regulator of vesicle trafficking, but also implicated in proliferation and viability, as 

it has been shown to induce cell death upon overexpression324. Furthermore 

MLL/AF4-depletion also affects members of the ubiquitin-proteasome system, 

showing up-regulation of the putative tumour suppressor FBXO32, an E3 ligase 

lost in a variety of cancers and implicated in p21 degradation325-326.  

The core signature also shows down-regulation of the epigenetic cofactor 

SMARCC2 (SWI/SNF related, matrix associated, actin dependent regulator of 

chromatin, subfamily c, member 2), a component of the SWI/SNF chromatin-

remodelling complex and part of the multimeric protein complex associated with 

MLL86. Loss of SMARCC2 might perturb MLL (and putatively AF4/MLL via its SET 

domain)-linked chromatin modifying functions. Interestingly, SMARCC2 has 

recently been reported to be significantly up-regulated in infant ALL253. 

Furthermore, the core signature contained one transcription factor, MAZ (c-MYB 
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associated zinc finger), which was down-regulated in response to MLL/AF4 

depletion. MAZ has been implicated in transactivation of the proto-oncogene K-

RAS289 and might thus promote high K-RAS expression in t(4;11)-positive ALL, 

consequently contributing to the MLL/AF4 pathobiology, since aberrant K-RAS 

activity has shown to be prevalent in infant MLLr ALL patients151, and K-RAS 

mutations accelerate MLL/AF4-mediated transformation in a mouse model152. 

Taking these results together, MLL/AF4 ablation results in the differential 

induction of cell death-associated and anti-proliferative genes, while suppressing 

factors promoting stemness and proliferation. These findings are in good 

concordance with the phenotype observed in response to MLL/AF4 depletion.  
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5. ANGIOPOIETIN-1, a novel factor 

implicated in t(4;11)-positive ALL 
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5.1 ANGPT1 EXPRESSION IS DEPENDENT ON THE MLL/AF4 STATUS OF THE 

T(4;11)-POSITIVE ALL CELL 

 

5.1.1 Analysis of MLL/AF4-dependent ANGPT1 expression regulation 

in the t(4;11)-positive ALL cell line SEM 

Whole-genome expression profiling of the t(4;11)-positive cell line SEM depleted 

of MLL/AF4 for a period of 2, 4 and 6 days (d2, d4 & d6, respectively) revealed a 

core signature of 63 genes whose expression was shown to be regulated in a 

MLL/AF4-dependent manner (fig. 3-39). Interestingly, one of the most 

prominently affected transcripts of this MLL/AF4-regulated gene signature was 

the angiogenic growth factor ANGPT1. The Illumina HT-12 bead array contained 

two specific oligonucleotides probes for ANGPT1 (ILMN_2086890; 

ILMN_1677723), and both displayed consistently, at all three interrogated time 

points, normalised signal intensities which were at least twofold lower in 

MLL/AF4 depleted samples (siMLL/AF4) compared to the corresponding control 

samples (siCtrl) (fig.5-1). The decrease of the ANGPT1 transcript was time-

dependent, as the extent of the probe signal intensity reductions increased with 

the time of the MLL/AF4 depletion. At the time point d2, representing 2 days of 

MLL/AF4 knockdown, the ANGPT1 probe signal intensities showed a decrease by 

2.9-fold (ILMN_2086890) and 2.0-fold (ILMN_1677723) when compared to the 

corresponding probe intensities of the control cells (siCtrl). In cells depleted of 

MLL/AF4 for 4 days, the probe intensities were reduced by 4-fold 

(ILMN_2086890) and 4.8-fold(ILMN_1677723), and at the final time point queried, 

6 days of MLL/AF4 depletion, the intensities of both probes showed a decrease by 

5.3-fold when normalized against siCtrl-treated cells ( tab. 5-1). 
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Fig.5-1: Normalised ANGPT1 probe signal values in samples depleted of MLL/AF4 

SEM cells were treated for 2, 4, 6 days (d2, d4, d6) with either siMLL/AF4 or with control siRNA 

(siCtrl). Signal intensity values of the Illumina HT12 BeadChip array probes for ANGPT1 of the 

siMLL/AF4 samples at each time point were normalised against corresponding controls samples, 

and the signal value fold-change log2-transformed. 

 

 

Tab. 5-1: List of signal intensity log2-ratios and corresponding fold-changes of 

ANGPT1 probes in siMLL/AF4-treated samples normalised against siCtrl samples 

 
ILMN_2086890 ILMN_1677723 

 
signal intensity 

(norm. against siCtrl) 
fold-change 

signal intensity 
(norm. against siCtrl) 

fold-change 

TP1 -1.55 -2.93 -1.04 -2.06 

TP2 -2.04 -4.10 -2.28 -4.86 

TP2 -2.41 -5.30 -2.41 -5.33 
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These observations implied a dependency of ANGPT1 on MLL/AF4; in order to 

elucidate the role of MLL/AF4 in ANGPT1 expression regulation, these results were 

validated in vitro. The t(4;11)-positive SEM cells were serially electroporated at 

two day intervals with either siRNA against MLL/AF4 (siMLL/AF4), an active 

control siRNA (siAML1/MTG8) or without siRNA oligonucleotides (MOCK). Cells 

and cell culture supernatant were harvested at day 2 (d2) and 4 (d4), prior to the 

subsequent electroporation, and at the final time point, corresponding to day 6 

(d6). MLL/AF4 depletion was confirmed by qRT-PCR; MLL/AF4 levels in 

siMLL/AF4 treated cells showed a sustained decrease by 70-80% over all three 

time points compared to controls (fig. 3-4).  

ANGPT1 expression was analysed on RNA level by qRT-PCR (fig. 5-2), and the 

amount of secreted ANGPT1 protein in the cell culture supernatant measured 

using enzyme-linked immunosorbent assays (ELISAs) (fig. 5-3 ). As observed in the 

array, siRNA-mediated depletion of MLL/AF4 correlated with reduced expression 

of ANGPT1 levels when compared to siAML1/MTG8-transfected and MOCK-treated 

cells. Moreover, the reduction showed the same time-dependent trend; MLL/AF4 

depletion for 2 days revealed 45% decrease of ANGPT1; SEM cells in which 

MLL/AF4 had been knocked-down for 4 and 6 days showed a decline of ANGPT1 

transcript levels by 74% and 83%, respectively. These results were statistically 

significant, as determined by an unpaired Student’s t-test (fig. 5-2).  
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Fig. 5-2: ANGPT1 levels in MLL/AF4-depleted cells determined by qRT-PCR 

SEM cells electroporated with siMLL/AF4 show ANGPT1 down-regulation in a time-dependent 

manner when compared to controls. The figure shows the mean of n=8 (d2), n=10 (d4) and n=5 

(d6) individual experiments, error bars indicate standard error of the mean (S.E.M.). Statistic 

analysis was carried out using an unpaired Student’s t-test (*** = p<0.0001). 
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Fig. 5-3: ANGPT1 protein secretion in MLL/AF4-depleted SEM cells as determined by 

ELISA 

Cell culture supernatant of SEM cells electroporated with either siRNA against MLL/AF4, control 

siRNA (siAML1/MTG8) or pulsed without siRNAs (MOCK) was harvested over a time course of 2, 4 

and 6 days and soluble ANGPT1 protein levels quantified using an enzyme-linked immunosorbent 

assay (ELISA). SEM cells depleted of MLL/AF4 showed a significantly decreased ANGPT1 secretion 

in a time-dependent manner. Error bars indicate standard error of the mean (S.E.M.) of at least n=3 

independent experiments. Statistical analysis was performed using an unpaired parametric 

Student’s t-test (*= p< 0.05; ** = p< 0.01; *** = p< 0.001)   
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The reduction of ANGPT1 expression was also reflected on protein levels: 

normalised on the controls, the relative secretion of ANGPT1 in the cell culture 

supernatant of MLL/AF4-depleted cells was decreased by 30%, 74% and 90% at 

day 2, 4 and 6, displaying the same time-dependency already observed for the RNA 

expression (fig. 5-3).   

 

 

 

Fig. 5-4 Scheme comparing fold-change of ANGPT1 RNA and protein expression in 

MLL/AF4-depleted SEM cells as determined by different analysis methods. 

ANGPT1 expression in SEM was analysed over a time course of 2, 4 and 6 days of sustained 

MLL/AF4 knock-down using gene expression profiling, qRT-PCR and ELISA, showing a concordant 

time-dependent decrease of ANGPT1 levels compared to controls. 
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The differential expression of ANGPT1 in response to MLL/AF4 knock-down 

observed in the arrays could be validated in vitro in SEM cell on both RNA and 

protein levels, showing a good concordance, as seen in the fig. 5-4, where the fold-

changes in ANGPT1 expression determined by all three analysis methods are 

summarised. Linear regression analysis showed a good correlation between the 

ANGPT1 array probes, the qRT-PCR and the ELISA results. The corresponding 

correlation coefficients are listed in tab. 5-2.  

 

 

Tab. 5-2: Correlation of ANGPT1 expression fold-changes between the different 

analysis methods 

 
ILMN_2086890 qRT-PCR ELISA 

ILMN_1677723 r2 = 0.8461 r2 = 0.8489 r2 = 0.6999 

ELISA r2 = 0.9692 r2 = 0.9678 
 

qRT-PCR r2 = 1.0000 
 

r2 = 0.9678 
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5.1.2 Analysis of MLL/AF4-dependent ANGPT1 expression regulation 

in t(4;11)-positive ALL patient blasts 

ANGPT1 expression is differentially regulated by MLL/AF4 in the model cell line 

SEM; in order to rule out an cell line artefact  and to prove that this dependency  is 

also present in t(4;11)-positive leukaemia, this correlation between MLL/AF4 and 

ANGPT1 expression levels was investigated in patient blasts. Viable leukaemic 

blasts from a patient with t(4;11)-positive ALL, carrying the same MLL/AF4 

breakpoint fusion site as the cell line SEM (courtesy of Dr. Ronald Stam), were 

singly electroporated with either siMLL/AF4, control siRNA (siAML1/MTG8), or 

mock-electroporated (MOCK). Cells were harvested at 24h, 48h and 72h post 

electroporation, and MLL/AF4 and ANGPT1 expression determined by qRT-PCR. A 

knockdown of MLL/AF4 transcript levels comparable to the one in the SEM cells 

was achieved, with a sustained reduction by 54-64% over the course of three days 

(fig. 3-5). This MLL/AF4 decrease was accompanied with a time-dependent 

reduction of ANGPT1 expression, 22% at 24h, 47% at 48h and 60% at the final 

time point (fig. 5-5B); thus confirming the link between MLL/AF4 and ANGPT1 

expression in t(4;11)-positive ALL. 
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Fig. 5-5: Expression analysis of ANGPT1 by qRT-PCR after siRNA treatment of 

primary patient blasts. 

Primary patient blasts were electroporated once with siMLL/AF4, control siRNA (siAML1/MTG8) 

or without oligonucleotides (MOCK). ANGPT1 expression analysis shows a time-dependent down-

regulation of transcript levels in response to MLL/AF4 knockdown from 22% at 24h to 60% at 72h . 

The graph represents the mean of one single experiments; each reaction was performed in 

triplicate. 
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5.2 ANGPT1 IS OVEREXPRESSED IN MLL-REARRANGED ALL 

5.2.1 ANGPT1 expression levels in normal blood cells from healthy 

donors 

Having shown that ANGPT1 levels in t(4;11)-positive cells correlate with their 

MLL/AF4 status, the next question to investigate was the overall ANGPT1 

expression in both normal blood cells and B-cell precursor ALLs (BCP-ALLs) in 

order to elucidate how the ANGPT1 levels in t(4;11)-positive ALLs compare to 

other MLL-rearranged and MLL wild type (non-MLL) BCP-ALL and how the levels 

in the leukaemic cells related to the expression in healthy controls.  

First, ANGPT1 expression in healthy controls was assessed in order to gain insight 

in the normal status quo. Fractionated and purified peripheral blood (PB) 

subpopulations and umbilical cord blood (CB) cells derived from healthy donors 

were assayed for ANGPT1 by qRT-PCR. The PB fractions consisted of purified T- 

(CD3+) and B-lymphocytes (CD19+), monocytes (CD14+) and neutrophils (CD15+), 

while hematopoietic stem and progenitors cells (HSPC) were enriched from the 

bulk CB population using the surface protein CD34 as selection marker. 

Fractionation of the cell subpopulations was carried out by Dr. Simon Bomken, 

who kindly gifted the corresponding RNA utilised for the qRT-PCR analyses.  

Consistent with current findings implicating ANGPT1 with HSC quiescence327, 

CD34+ CB cells showed a strong ANGPT1 up-regulation when related to the bulk 

CB population (fig. 5-6). The mean ANGPT1 expression in CD34-positive CB cells 

was 26.4-fold higher than in the bulk population.  
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Fig. 5-6: ANGPT1 expression analysis in purified and fractioned CB cell populations  

Mononuclear CB cells were fractionated using MACS on the cell surface marker CD34. The bulk 

population was simultaneously purified by negative selection. ANGPT1 levels were determined by 

qRT-PCR. The graph represents n=3 individual CB. Statistical analysis was performed using an 

unpaired Student’s t-test. 

 

In contrast, analysis of the PB cells showed ANGPT1 to be expressed the lowest in 

the lymphoid lineage, both B- & T-cells having comparable quantities. Myeloid cells 

displayed higher ANGPT1 levels with monocytes expressing ANGPT1 

approximately 15 times more than in the lymphocytes, and the 

neutrophils/granulocytes showing the highest expression with approximately 300 

times the ANGPT1 amount found in B-cells (fig. 5-7). This last result is in good 

concordance with published observations, in which ANGPT1 secretion by 

neutrophils was shown to play a role in mediation of inflammatory processes. 
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Fig. 5-7: ANGPT1 expression analysis in peripheral blood (PB) cell subpopulations  

Peripheral blood (PB) from 3 healthy donors was fractioned using magnetic activated cell sorting 

(MACS) on subtype-specific cell-surface markers: T-cells where isolated using CD3-antibodies, 

monocytes via CD14-, neutrophils purified on CD15- and B-cells were separated with CD19-

antibody-conjugated beads. ANGPT1 expression in the PB subpopulations was assessed by qRT-PCR 

and quantified using the Ct-method, with TBP expression as endogenous control. Statistical 

analysis was performed using a parametric one-way ANOVA test. 
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5.2.2 ANGPT1 expression in acute leukaemia cell lines 

Subsequent to establishing the ANGPT1 expression patterns in healthy blood cells, 

ANGPT1 levels were determined in leukaemic cell lines and patient blasts. An 

analysis cohort comprising 8 BCP-ALL cell lines was screened for ANGPT1 

expression by qRT-PCR. Strikingly, ANGPT1 was restricted to the t(4;11)-positive 

cell lines, and no transcripts could be detected in the other cell lines (Fig. 5-8, 

upper panel). Comparing the two t(4;11)-positive ALL cell lines SEM and RS4;11, 

they showed a difference of approximately 10-fold in ANGPT1 expression, SEM 

being the high expressing cell line. Additionally of note was the finding that the 

t(4;11)-positive ALL cell lines had approximately 1,000-fold to 10,000-fold higher 

ANGPT1 levels than the t(4;11)-positive AML cell line MV4;11 (fig. 5-8, lower 

panel).  
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Fig. 5-8: ANGPT1 expression analysis in an acute leukaemia cell line cohort 

ANGPT1 levels in a leukaemia cell line panel were determined by qRT-PCR using the ΔCT-method 

wit GAPDH expression as endogenous reference (lower panel). PCR products were visualised by 

DNA-polyacrylamide gel electrophoresis (upper panel). ANGPT1 expression is restricted to the 

t(4;11)-positive leukaemic subtype, and showed massive up-regulation in the t(4;11)-positive ALL 

cell lines SEM and RS4;11 when compared to the t(4;11)+ AML cell line MV4;11. Graph represents 

mean of two individual experiments, error bars show data range. 
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Analysing ANGPT1 expression in a small MLL-rearranged acute leukaemia cell line 

cohort which included the t(9;11)-positive AML cell line THP-1, this observation 

was corroborated, as the t(4;11)-positive ALL cell lines SEM and RS4;11 had a 

10,000-1,000 fold higher expression than either of the MLL-rearranged AML cell 

lines (fig. 5-9).  

 

 

 

 

Fig. 5-9: ANGPT1 expression analysis in MLLr acute leukaemia cell lines 

ANGPT1 levels in a MLLr - acute leukaemia cell line panel were determined by qRT-PCR using the 

ΔCT-method with GAPDH expression as endogenous control. The t(4;11)+ ALL cell lines SEM and 

RS4;11 showed a 1,000-10,000-fold higher ANGPT1 levels when compared to the MLLr AML cell 

lines MV4;11 and THP-1. The graph shows the mean of two individual experiments, error bars 

indicate the value range.  



ANGIOPOIETIN-1, a novel factor implicated in t(4;11)-positive ALL 
 

277 
 

5.2.3 ANGPT1 expression in ALL patients 

The results from the leukaemia cell line screen implied ANGPT1 expression to be 

exquisitely restricted to the t(4;11)-positive ALL compartment. In order to validate 

this finding, ANGPT1 levels were analysed in a BCP-ALL cohort of 43 patients, 

containing both MLL-rearranged (MLLr, n=31) and MLL wild type BCP-ALL (non-

MLLr, n=12) cases. The cohort composition approximated incidence rates 

regarding cytogenetics, median age and gender ratio as observed in the clinical 

setting. 

For instance, the MLLr panel comprised the three most common 11q23 

abnormalities in ALL, t(4;11)-, t(9;11)- and t(11;19)-positive ALL. Moreover, the 

cytogenetic subgroups showed a similar distribution frequency to the one 

observed at clinical presentation: the cohort was composed of 55% t(4;11)-

positive patients (n=17), 29% t(11;19)-positive ALL (n=9) and 16% BCP-ALL 

patients (n=5) with the t(9;11) abnormality. Additionally, 30 out of the 31 MLL-

rearranged patients screened were infants (97%), the median age of presentation 

within the group being 5.18 months. The one exception was a paediatric BCP-ALL 

patient aged 14.7 years.  

Concomitantly, the non-MLL rearranged group consisted of 4 infant and 8 

paediatric BCP-ALLs, containing patients with both standard-risk cytogenetics 

such as hyperdiploidy (HeH, n=2) and t(12;21)-positive ALL (n=2), and 

intermediate to high risk cytogenetics such t(17;19) (n=1), t(1;17) (n=1) or 

dic(9;20) (n=1). No BCR/ABL-positive patients were included, but one of the infant 

patients was a down-syndrome-ALL (DS-ALL) patient (+21c). The median age at 

presentation of paediatric non-MLL cohort was 4.3 years, ranging from 1.4 to 14.2 

years. Further patient details, such as white blood cell count (WBC) at 

presentation, immunophenotype and gender, were listed in table 5-3 for MLLr-ALL 

and table 5-4 for non-MLLr patients 
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Tab. 5-3: MLLr patient cohort characteristics 

Patient 
ID 

Cytogenetic 
phenotype 

Immunophenotype 
WBC 

[109cells/L]
] 

age at 
presentatio

n 

gender 

L826 MLLr t(4;11) no data 346 7.5 months male 

L876 MLLr t(4;11) no data 334 4.5 months female 

636 MLLr t(4;11) pro-B 571.2 2.83 months male 

929 MLLr t(4;11) pro-B 230 3.58 months male 

1587 MLLr t(4;11) pro-B 234 0.62 months female 

3230 MLLr t(4;11) pro-B 556.7 5.91 months female 

LR6073 MLLr t(4;11) pro-B 28.1 4.00 months female 

LR1103
7 

MLLr t(4;11) no data 263.5 14.7 yrs male 

v9815 MLLr t(4;11) pro-B 740 3.22 months male 

178 MLLr t(4;11) pro-B 677 5.59 months male 

788 MLLr t(4;11) pro-B 757 9.43 months female 

1174 MLLr t(4;11) no data 25 no data no data 

1227 MLLr t(4;11) pro-B 555 10.28 months female 

1488 MLLr t(4;11) pro-B 326 4.21 months female 

1966 MLLr t(4;11) pro-B 263 1.91 months female 

1977 MLLr t(4;11) pro-B 291 6.41 months female 

1990 MLLr t(4;11) pro-B 204 6.44 months male 

L880 MLLr t(9;11) no data 171 2.3 months female 

119 MLLr t(9;11) no data 132 7.28 months male 

148 MLLr t(9;11) B-lineage not specified 88.2 0.36 months female 

620 MLLr t(9;11) pre-B 57.5 9.82 months female 

656 MLLr t(9;11) pre-B 55.8 4.21 months male 

39 MLLr t(11;19) pro-B 574 7.72 months male 

474 MLLr t(11;19) B-lineage not specified no data 0.00 months male 

743 MLLr t(11;19) pre-B 410.5 7.79 months male 

888 MLLr t(11;19) pro-B 226.8 5.32 months female 

1037 MLLr t(11;19) Common 226 8.77 months female 

1060 MLLr t(11;19) pre-B 194 5.72 months female 

1191 MLLr t(11;19) pre-B 741.3 9.10 months male 

1225 MLLr t(11;19) Common 916 3.65 months female 

2009 MLLr t(11;19) pro-B 416 0.00 months female 
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Tab. 5-4 : non-MLLr patient characteristics 

Patient 
ID 

Age 
group 

Cytogenetics 
Immuno-

phenotype 
WBC 

[109cells/L] 
age at 

presentation 
gender 

v9932 infant +21c pro-B 167.2 0.0 months male 

382 infant t(1;19) no data no data no data no data 

824 infant 
complex 

karyotype 
pro-B 178 9.07 months male 

945 infant 
no known 

aberration 
no data 324.1 no data no data 

L554 paediatric t(3;17) no data 78.5 7.0 yrs male 

L578 paediatric HeH no data 4.1 3.7 yrs female 

L625 paediatric t(17;19) no data 3.5 14.0 yrs male 

L679 paediatric dic(9;20) no data 3.1 4.9 yrs male 

L682 paediatric G-Band. failed no data 279 1.4 yrs male 

L749 paediatric t(12;21) no data 37.7 6.1 yrs female 

L848 paediatric t(12;21) no data 13.7 2.5 yrs male 

L855 paediatric HeH no data 9.5 3.3 yrs female 

 

 

ANGPT1 levels in the patient cohort were determined by qRT-PCR using the ΔCT-

method as described. TBP served as endogenous reference gene, and the resulting 

ΔCT-values were given as percentage of TBP expression. The patient material 

source was either PB or BM, in cases were both sources had been assessed in the 

same patient, the resulting ANGPT1 expression was averaged. The patient screen 

was a collaborative effort between my person at the Northern Institute for Cancer 

Research, Newcastle University, UK, and the laboratory of Dr. R. W. Stam, at the 

Erasmus MC in Rotterdam, the Netherlands. The BCP-ALL patient and part of the 

MLLr patient cohort was screened here, and the non-MLL infant and part of the 

MLLr cohort had been analysed by my collaborators. The subsequent expression 

data shown in the following figures are the summarised results from both centres.  

First, in order to relate ANGPT1 levels to known biological and clinical parameters 

associated with disease progression and survival, the patient cohort was grouped 

according to its major cytogenetic subdivisions, MLLr and non-MLLr BCP-ALL, 

regardless of age at presentation, since clinically, MLLr ALL patients have an 

overall worse outcome. As illustrated in fig. 5-10, there is strong up-regulation of 
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ANGPT1 expression in MLLr patients, with a median of 33-fold higher ANGPT1 

levels when compared to MLL-wild type cells. This result was statistically 

significant, as determined by an unpaired Student’s t-test (p= 0.027).  

 

 

 

 

 

Fig. 5-10: ANGPT1 expression in BCP-ALL patients according to MLL-status 

Patients were grouped according to the cytogenetic MLL-status. ANGPT1 RNA levels in ALL blasts 

were determined by qRT-PCR using the ΔCt-method with TBP expression as endogenous control. 

Patients with MLL-rearranged (MLLr) ALL (n= 31) showed a significantly higher ANGPT1 

expression than patients with non-MLLr (n=12). Samples highlighted by # and ## are infant 

nonMLLr patients either pre-treated with Allopurinol (#) or a DS-ALL patient with congenital ALL 

(##). Statistical analysis was performed using an unpaired Student’s t-test on log-transformed 

values. 
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These cohorts were subdivided further according to cytogenetic and age-related 

categories; the MLLr group was separated into t(4;11)+, t(9;11)+ and t(11;19)+ 

ALL, and the non-MLL ALL cohort sorted into infant and non-infant non-MLL ALL. 

As a point of comparison with healthy levels, the ΔCT of values of CD19+ cells 

derived from the PB of healthy donors were also included (fig. 5-11). 

 

 

Fig. 5-11: ANGPT1 expression in BCP-ALL patients sorted according to cytogenetic 
subtype 

The patient panel was subdivided according to cytogenetic and biological subtype; ANGPT1 levels 

determined by qRT-PCR using the ΔCt-method with TBP expression as endogenous control. 

Statistical analysis was performed using ANOVA on log-transformed values. (## = DS-ALL, # = 

patient pre-treated with Allopurinol)  

# 
## 
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Tab. 5-5: Statistical analysis on ANGPT1 levels between the different BCP-ALL 
subtypes using unpaired Student’s t-test on log-transformed values 

Analyses P-Value 

t(4;11) vs. non-MLL paediatric BCP-ALL <0.0001 

t(11;19) vs. non-MLL paediatric BCP-ALL 0.0003 

t(9;11) vs. non-MLL paediatric BCP-ALL 0.0054 

non-MLL infant vs. non-MLL paediatric BCP-
ALL 

0.0074 

t(4;11) vs. t(11;19) 0.0190 

t(4;11) vs. t(9;11) 0.0287 

t(11;19) vs. t(9;11) 0.6271 

t(4;11) vs. non-MLLr infant BCP-ALL 0.9517 

t(11;19) vs. non-MLLr infant BCP-ALL 0.2311 

t(9;11) vs. non-MLLr infant BCP-ALL 0.2777 

 

 

The t(4;11) positive cohort significantly expressed the highest ANGPT1 levels, with 

a median up-regulation of 143-fold compared to normal B-cells, followed by the 

t(9;11) cohort, expressing 11-fold more ANGPT1, and the t(11;19)-positive groups, 

with 15.4-fold increased median ANGPT1 levels when comparing to healthy control 

cells. In contrast, the paediatric non-MLL patients did not show up-regulation of 

ANGPT1, but slightly reduced levels, with a median expression of 0.7-fold 

compared to healthy B-cells. Normalising the MLLr subcategories against the non-

MLLr cases showed that ANGPT1 was 208-times higher expressed in t(4;11)-

positive cases, while t(11;19)- and t(9;11)-positive patients had a 17- and 22-fold 

up-regulation. The notable exception was the non-MLL infant ALL group, with n=4 

patients also the smallest cohort. Here, the trend of the ANGPT1 expression was 

not as clearly defined as with the other subgroups, as two patients massively up-

regulated ANGPT1, while the remainder expressed ANGPT1 to much lower extent. 

Clearly, with this extent of inter-patient variance, the patient number was too 

small to draw definitive conclusions. Of interest was that the two high expressing 

patients deviated from the overall patient cohort, one being an infant DOWN-
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Syndrome ALL (DS-ALL) patient, and the other having been treated with 

Allopurinol prior to sampling, a drug administered to prevent tumour lysis and 

thus affecting leukemic blasts directly. Hence, both patients, although included in 

the analyses, have to be interpreted with caution.  

The median expression differences between the BCP-ALL subcategories are 

summarised in tab. 5-6. 

 

Tab. 5-6: Median fold-change ANGPT1 expression between ALL subgroups 

 
median Fold-change 

(vs. BCP-ALL) 
median Fold-change 

( vs. PB) 

t(4;11) 207.92 142.59 

t(11;19) 16.62 11.40 

t(9;11) 22.40 15.36 

MLL germline 856.76 587.55 

BCP-ALL / 0.69 

 

 

Summarising these results, the overall ANGPT1 expression levels were significantly 

different between the cytogenetic groups, as determined using one-way ANOVA 

test (p<0.0001, fig. 5-5). Patients with MLLr ALL, particularly carrying the t(4;11) 

abnormality, significantly overexpressed ANGPT1 compared to patients with other 

MLL wild-type BCP-ALL subtypes. Additionally, there seemed to be a clear 

tendency towards up-regulation of ANGPT1 in infant ALL compared to paediatric 

ALL. Hence, taking into account that ANGPT1 is expressed the highest in CD34+ 

cord blood cells in healthy controls, and that infant ALL patients have a higher 

incidence of more immature pro-B ALL, the infant MLLr ALL patients were sorted 

according to the blast maturity into pro-B and pre-B ALL patients. Indeed, infant 

patients with pro-B ALL significantly over-expressed ANGPT1 compared to pre-B-

ALL patients (p=0.0031, unpaired Student’s t-test), with a median expression of 

117-fold versus 5-fold, respectively (fig. 5-12). 
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Fig. 5-12: ANGPT1 expression in BCP-ALL patients according to age and 
immunophenotype 

Infant MLLr patients with known leukaemia-associated immunophenotype (LAIP) (n= 25 , age at 

diagnosis < 12 months) were sorted according to CD10-status (pro-B: CD10-ve, pre-B/common 

ALL: CD10+ve) at presentation, as this has a been linked to prognosis. ANGPT1 was determined by 

qRT-PCR using the ΔCt-method with TBP levels as endogenous control. Patient blasts with a pro-B 

LAIP (n=16 cases) expressed 10.85 times more ANGPT1 than blasts from patients with a more 

mature LAIP (n=9). Statistical analysis was performed using an unpaired Student’s t-test on of-

transformed values. 
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5.3 CORRELATING ANGPT1 EXPRESSION WITH PROGNOSTIC FACTORS 

5.3.1 ANGPT1 expression correlates with clinical parameters  

ANGPT1 is overexpressed in MLL-rearranged ALL, especially in the t(4;11)-positive 

subtype. These cytogenetic categories are both adverse prognostic factors, 

specifically t(4;11)-positive ALL is associated with poor outcome across infant, 

paediatric and adult ALL. In order to elucidate the role of ANGPT1 in MLLr-ALL in 

general and t(4;11)-positive ALL in particular, ANGPT1 expression levels in 

patients were correlated with clinical parameters employed to risk-stratify 

patients. The parameters available were age at presentation and white blood cell 

count (WBC); however, these parameters differ between infant and paediatric 

BCP-ALL. In infants, independent adverse prognostic factors are an age at 

presentation below 6 months and a WBC > 300x109/L. In contrast, patients 

presenting at an age above 10 years or a WBC > 50x109/L are associated with poor 

outcome in paediatric BCP-ALL .  

Surveying the patient cohort statistics listed in tab. 5-7, there seems to be a trend 

between high ANGPT1 levels and the association with adverse prognostic factors: 

the highest median ANGPT1 expression could be found associated with the highest 

median WBC, and vice versa. However, in order to be able to give definitive 

correlations and associations, statistical analyses were performed. 
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Tab. 5-7: Patient cohort statistics 

 
 
 
 

age range 
median age at 
presentation 

median 
WBC [109/L] 

geometric mean 
ANGPT1 [%TBP] 

MLLr 
 

0.00 months 
to 14.7 yrs 

5.18 months 277.25 33.83 

t(4;11) 
0.62 months 
to 14.7 yrs 

5.05 months 326.00 37.93 

t(9;11) 
0.38 - 9.82 

months 
3.26 months 88.20 6.92 

t(11;19) 
0.00 - 9.82 

months 
5.72 months 413.25 4.95 

non-MLL 
 

0.01 months-
14.0 yrs  

27.77 2.75 

infant 0.01months- 
9 months 

No data 178 35.21 

paediatric 1.4-14 yrs 4.3 yrs 11.6 0.26 

 

 

First, ANGPT1 expression was correlated with age at presentation. Since the 

paediatric BCP-ALL group only contained n=2 patients in the age-risk category, no 

analysis was performed, as the cohort was too small to yield statistically significant 

results. The infant MLLr-ALL panel however had an appropriate age distribution. 

Information on age at presentation of n=30 patients was available; the patients 

were grouped into the two risk categories of age at presentation <6 and >6 months 

at presentation. As depicted in fig. 5-13, there is no significant difference in 

ANGPT1 expression between the two groups (p=0.8566). 
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Fig. 5-13: ANGPT1 level in infant MLLr patients according age-risk stratification 

Infant MLLr patients were sorted according to age into presentation, and ANGPT1 was determined 

by qRT-PCR using the ΔCt-method with TBP levels as endogenous control. Blasts originating from 

patients younger than 6 months at diagnosis (n=18) expressed ANPGT1 to approximately the same 

levels as blasts from older infants (n=12). Statistical analysis was performed using an unpaired 

Student’s t-test on of-transformed values. 

 

 

A very important clinical parameter associated with disease progression and 

outcome is the blast burden at presentation, as measured by the WBC. This 

information was available from n=42 patients, and correlation analyses of the 

patient cohort pairing the respective ANGPT1 levels and the WBC was performed. 

There was no statistically significant correlation between ANGPT1 levels and WBC 

within the MLLr ALL patient cohort (P=0.1209, r2=0.06377), as shown in fig. 

5-14A. Breaking down the MLLr cohort into the respective cytogenetic subtypes, 

there was no statistically significant correlation between ANGPT1 levels and WBC 

within neither the t(9;11)-positive nor the t(11;19)-positive ALL cohort, (fig. 
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5-14C, D). Correlation analysis between ANGPT1 expression and WBC within the 

t(4;11)-positive patient group showed a trend towards high expression levels 

correlating with high WBC (fig. 5-14B). This observation was borderline 

statistically non-significant (P=0.097, r2=0.1728). There was no correlation of 

ANGPT1 expression and WBC within the infant ALL cohort as a whole, which 

contained both MLLr and non-MLL patients. Analysing the non-MLL cohort, there 

was no correlation, although again here a trend could be observed, as the statistical 

non-significance was borderline (p=0.0751, r2=0.321). Finally, analysing all the 

patient cohort without taking into account age and MLLr status, there was a very 

high statistical significance between ANGPT1 expression levels and high WBC 

(p<0.0001, r2=0.2977). This latter result has to be taken with caution, due to the 

skewedness of the patient cohort composition, with its strong MLLr-ALL bias. 

 

 

 

 

 

 

 

 

Fig. 5-14: Correlation between ANGPT1 expression levels and WBC in ALL 

The ALL patient cohort (n=43) was subdivided according to MLLr status and age at presentation, 

and the ANGPT1 expression levels correlated with WBC at diagnosis. MLLr patients showed no 

significant correlation between ANGPT1 and blast burden (A) nor within the MLLr cytogenetic 

subgroups (B-D), although t(4;11)-positive ALL patients showed a definitive trend with high 

expression correlating with increased WBC at presentation (B). A similar trend could be observed 

when analysing the correlation within non-MLLr patients (G). Grouping the patients according to 

age at presentation showed no significant correlation within infant patients regardless of MLLr 

status (E), or in nonMLLr paediatric ALL patients (F). Analysing the complete patient panel 

however revealed a very significant correlation between ANGPT1 expression and WBC at diagnosis 

(H), although this result has to be taken with caution due to the high bias of the cohort towards 

MLLr patients (n=31), which have per definitionem a high WBC and high ANGPT1 expression at 

diagnosis. Statistical analysis was performed using a Pearson Correlation test on log-transformed 

data. 
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5.3.2 Correlation analysis of ANGPT1 expression with biological 

prognostic factors  

 

In parallel to clinical parameters, there are a number of biological factors that have 

been associated with disease outcome in MLLr-ALL and especially with t(4;11)-

positive ALL, such as specific DNA methylation and gene expression signatures. 

Part of these specific signatures is the family of the HOXA transcription factors. In a 

healthy setting, wild-type MLL is important to maintain HOXA gene expression 

during early haematopoiesis, while HOXA genes are down-regulated in 

differentiating haematopoietic cells. Conversely, an aberrant HOXA gene 

expression has been implicated in acute leukaemia, and different leukaemia 

subtype-specific mechanisms have been suggested. In MLLr acute leukaemia, both 

MLL/AF4 and other MLL fusion oncogenes have been found to directly bind to 

promoters of the HOXA gene cluster and to regulate their aberrant expression, and 

until recently, up-regulation of members of the HOXA gene had been heralded as 

one of the hallmarks of MLLr leukaemia. However, latest reports indicate that 

MLLr infant ALL patients can be subdivided into a HOXA-high and a HOXA-low 

expressing group, with low HOXA levels having an adverse effect on survival168.  

Not much is known about target genes of HOXA transcription factors; recently, our 

research group identified the HOXA family member HOXA7 to bind and regulate 

TERT expression170. TERT is the catalytic subunit of the ribozyme telomerase, 

which has been associated with the self-renewal capability of stem cells and 

implicated in oncogenesis. The fact that ANGPT1, too, had been reported to play a 

role in haematopoietic stem cells, and now in this work has been shown to be up-

regulated in MLLr-ALL, led to the question whether ANGPT1 was a HOXA target 

gene. This was investigated in silico, using the Transcription Element Search 

System (TESS) software to analyse the ANGPT1 promoter. An area 5kb upstream 

and 1kb downstream of the ANGPT1 transcription start site (TSS) was screened for 

transcription factor binding motifs. The ANGPT1 promoter revealed several 

putative HOXA transcription factor binding sites as illustrated in fig. 5-15.  
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Fig. 5-15: Scheme HOXA gene binding sites within the ANGPT1 promoter  

Bioinformatic analysis of transcription factor binding sites within the ANGPT1 promoter 

region encompassing 5000bp upstream and 1000bp downstream of the transcription start 

site (TSS) using Transcription Element Search System (TESS) analysis software platform 

(http://www.cbil.upenn.edu/cgi-bin/tess/tess).  

 

 

Consequentially, a correlation study between ANGPT1 and HOXA gene expression 

levels was conducted in a panel of n=9 MLLr-ALL patients. The patients were 

subdivided into either ANGPT1-high or ANGPT1-low expressing cells, with the 

panel-specific median ANGPT1 expression level as cut-off, and sorted according to 

increasing levels. Subsequently, the expression of the HOXA gene cluster members 

HOXA6, HOXA7, HOXA9 and HOXA10 was analysed using qRT-PCR. As indicated in 

fig. 5-16, there was no obvious correlation between ANGPT1 levels and those of 

any of the HOXA gene cluster members assayed; this was confirmed further by 

statistical analyses using Pearson correlation tests (tab. 5-8).  

 

 

 

 

Fig. 5-16: Correlation between ANGPT1 and HOXA gene expression levels 

A MLLr patient cohort was analysed for HOXA6, HOXA7, HOXA9 and HOXA10.2 expression levels by 

qRT-PCR, and subsequently sorted according to ANGPT1 expression. No correlation between the 

respective expression levels could be detected. 
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Tab. 5-8  Statistical Correlation of ANGPT1 and HOXA gene expression 

Analyses P-Value Pearson r2 

MLLr and HOXA6  0.6769 0.0263 

MLLr and HOXA7 0.3267 0.1067 

MLLr and HOXA9 0.0825 0.3694 

MLLr and HOXA10.2 0.1554 0.3055 

 

 

 

In concordance with these results, siRNA-mediated depletion of HOXA7 in the 

t(4;11)-positive ALL cell line SEM showed no effects on ANGPT1 expression (fig. 

5-17).  

 

Although the overall rationale of this study indicated a possible connection 

between ANGPT1 and HOXA gene cluster expression, this could not be confirmed.  

The promoter analysis revealed other putative binding sites of haematopoietic or 

oncogenic transcription factors; further work is required to unravel the 

mechanism by which ANGPT1 expression is driven in MLLr-ALL. 

 

 

 

 

 

Fig. 5-17: HOXA7 and ANGPT1 expression in siHOXA7 treated SEM cells 

SEM cells electroporated were electroporated twice at 2-day intervals with siRNAs against HOXA7 

(siHOXA7_6, siHOXA_8), controls siRNA (siAML1/MTG8) or no siRNA (MOCK). HOXA7 down-

regulation had no effects on ANGPT1 expression levels when compared to controls. The figure 

shows one single experiment, each sample was performed in triplicates.  
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5.3.3 ANGPT1 secretion in t(4;11)-positive ALL patients 

The expression of ANGPT1 in patients was not only determined on RNA level, but 

where material available, also on protein level. Viable t(4;11)-positive patient PB 

cells were cultured in conditioned medium (CM) for 3 days, and the supernatant 

harvested and analysed for secreted ANGPT1 by ELISA. 

As shown in fig. 5-18, all three patients assessed expressed measurable ANGPT1 

levels above the high ANGPT1 background created by the conditioned medium.  

These secretion levels correlated well with the corresponding ANGPT1 RNA 

expression levels detected via qRT-PCR (r2=0.5522). 

 

 

 

 

Fig. 5-18: ANGPT1 secretion determined in the supernatant of cultured t(4;11)+ 
patient blasts 

Primary patient material was cultured in conditioned medium (CM) for 72h. ANGPT1 secretion by 

patient blast was determined in the culture supernatant using an ELISA. The graph represents one 

single experiment, each sample performed in duplicates.  
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5.4 FUNCTIONAL ANALYSIS OF ANGPT1 IN T(4;11)-POSITIVE ALL IN VITRO 

As shown in previous section ANGPT1 is significantly overexpressed in MLLr-ALL, 

especially in the t(4;11)-positive subtype; moreover, a functional correlation 

between MLL/AF4 and ANGPT1 expression levels in both cell line models and 

patient material could be demonstrated. Hence, I proceeded to assess the 

functional role of ANGPT1 in t(4;11)-positive ALL; since ANGPT1 is primarily a 

secreted growth factor, t(4;11)-positive cells were characterised for gene 

expression of known ANGPT1 receptors, and an autocrine role of ANGPT1 studied 

analysing the effects of RNAi-mediated ANGPT1 depletion in the model cell line 

SEM.  

 

5.4.1 Expression Analyses of ANGPT1 Receptors in t(4;11)-positive 

ALL 

The growth factor ANGPT1 is associated with multiple signalling pathways; 

canonical ANGPT1 signalling occurs by binding to the membrane receptor tyrosine 

kinase (RTK) TIE2, also known as TEK. This ligand-receptor interaction results in 

autophosphorylation and activation of TIE2, triggering in turn downstream 

signalling, most notably the PI3K/AKT pathway328-330. TIE1, an orphan RTK 

homologous to TIE2, has been implicated to bind ANGPT1, but the effects of this 

interaction on downstream pathways are not fully understood331. Conversely, non-

canonical ANGPT1 signalling does not require TIE2, but involves specific integrin 

heterodimers; the concomitant outside-in signalling activates downstream 

pathways such as the PI3K/AKT or MAPK signalling332-334. Additionally, heparin-

mediated, integrin- and TIE2-independent ANGPT1 signal-transduction has been 

reported335.  

In order to study a putative autocrine function of ANGPT1 on t(4;11)-positive ALL 

cells, the expression of reported ANGPT1 receptors were characterised in t(4,11)-

positive cell lines and patients.  

A leukaemia cell line panel was screened for expression of the canonical ANGPT1 

receptor TIE2. As seen in fig. 5-19A, no TIE2 could be detected in the BCP-ALL cell 
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lines, regardless of their MLLr status. Only the t(8;21)-positive AML cell line 

Kasumi-1 showed TIE2 expression. Interestingly, TIE2 RNA was also not present in 

the t(4;11)-positive AML cell line MV4;11, while the t(9;11)-positive cell line THP-

1, expressed TIE2 strongly. In patients, however, the findings were quite the 

opposite; the TIE2 transcript could be detected by RT-PCR in 7 out of 8 screened 

t(4;11)-positive ALL patients (fig. 5-19B), thus confirming the possibility of an 

autocrine action by ANGPT1 in t(4;11) cells.  

Another membrane receptor associated with ANGPT1 is TIE1, which shares 

homology with TIE2. Its exact function in ANGPT1 signalling, however, remains to 

be defined, although there seems to evidence suggesting it interacts with TIE2, 

modulating its response to the angiopoietins. Analysis by qRT-PCR of an ALL cell 

line panel revealed TIE1 to be ubiquitously expressed, however at different levels 

and in a MLLr-independent pattern (fig. 5-20).  

Apart from the TIE2-mediated signalling, there are also non-canonical pathways 

described, which involve specific integrins336. The best-characterised ANGPT1-

binding integrins are ITGB1, ITGB3, ITGB5, ITGA4, ITGA5 & ITGAV332-334. 

Expression of these integrins was examined in t(4;11)-positive acute leukaemia 

cell lines by RT-PCR; as shown in fig. 5-21, both the t(4;11)-positive ALL cell lines 

SEM and RS4;11, and the t(4;11) cell line MV4;11 express ITGB1, ITGB5, ITGA4, 

ITGA5 and ITGAV. In contrast, ITGB3 cannot be detected.  

 

In conclusion, an autocrine function of ANGPT1 on t(4;11)-positive cells might be 

possible via the canonical signalling pathway in patients, and the non-canonical 

ANGPT1 signalling axis involving integrins in t(4;11)-positive ALL cell lines.  
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Fig. 5-19 TIE2 expression analysis in leukaemic cell lines and patients 

TIE2 expression was analysed by RT-PCR in a panel of leukaemic cell lines, where it could only be 

detected in the t(8;21)-positive AML cell line Kasumi-1 (A). In contrast, TIE2 was present in 7 out of 

8 t(4;11)-positive ALL patients assayed (B). 
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Fig. 5-20:TIE1 expression analyses in an acute leukaemia cell line panel 

TIE1 levels in a leukaemia cell line panel were determined by qRT-PCR using the ΔCT-method with 

GAPDH expression as endogenous reference (lower panel). PCR products were visualised by DNA-

polyacrylamide gel electrophoresis (upper panel). TIE1 is ubiquitously expressed in acute 

lymphoblastic leukaemia, with the exception of MV4;11, a t(4;11)-positive AML cell line.  
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Fig. 5-21: Expression analysis of non-canonical ANGPT1 receptors  

Integrin family members associated with ANGPT1 signalling were investigated in MLL/AF4-

positive acute leukaemia cell lines by RT-PCR. One representative experiment of two independent 

ones is shown. 
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5.4.2 ANGPT1 Depletion in the t(4;11)-positive Cell Line SEM Impinges 

on Proliferation and Reduces Cell Viability 

T(4;11)-positive cells express receptors that bind ANGPT1 and can potentially 

transduce an autocrine signal. In order to investigate a functional role of ANGPT1 

in t(4;11)-positive ALL, RNAi was employed. The SEM cell line was transfected 

with a panel of four siRNAs directed against the ANGPT1 transcript (fig. 5-22), and 

knock-down efficiency was determined via qRT-PCR. The two most effective 

siRNAs were siANGPT1-1 and siANGPT1-3, resulting in an ANGPT1 reduction by 

81% and 89% at 12h post-transfection, respectively; which was maintained for up 

to 48h. The two remaining siRNAs, siANGPT1-2 and siANGPT1-5, only achieved a 

37% and 36%, and were ruled out for further experiments, while both siANGPT1-1 

and siANGPT1-3 were selected for further functional studies (fig. 5-23). 

   

 

 

 

Fig. 5-22: Scheme of the ANGPT1 exon structure including position of siRNAs and 
qRT-PCR primers  
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Fig. 5-23: Determination of silencing efficiency of ANGPT1 siRNAs 

The SEM cell line was electroporated with four different siRNAs directed against the ANGPT1 

transcript, control siRNA (siAML1/MTG8) or mock-transfected without siRNAs (MOCK). RNA was 

harvested after 12h and 48h and ANGPT1 expression by qRT-PCR using the ΔΔCt-method, 

normalising against MOCK. One single experiment was performed, each sample assayed in 

triplicates. 
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Since the siANGTP1-mediated knockdown lasted for up to 48h (fig. 5-23), a 

transfection protocol similar to the standard set-up for the MLL/AF4 depletion 

time course was performed: SEM cells were transfected with siRNA against 

ANGPT1, control siRNA (siAML1/MTG8), or mock-transfected (MOCK) at two-day 

intervals for up to 4 times, representing a time course of 8 days of sustained 

ANGPT1 depletion (fig. 5-24). 

 

 

 

 

 

 

Fig. 5-24: siRNA electroporation time course for ANGPT1 knock-down 

SEM cell line was sequentially transfected with either siRNAs against ANGPT1 (siANGPT1-1; 

siANGPT1-3), control siRNA (siAML1/MTG8), or mock-electroporated (MOCK) at two day intervals 

for up to 4 times, representing a sustained depletion period of 8 days (8d). Material was harvested 

for analyses immediately prior to the subsequent electroporation (TP1, TP2, TP3), and at the final 

timepoint, two days after the 4th electroporation (TP4/8d). 
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On transcript level, this approach achieved a sustained ANGPT1 depletion by 63-

72% with siANGPT1-1 and 60-77% with siANGPT1-3 compared to corresponding 

controls, as determined by qRT-PCR (fig. 5-25).  

 

 

 

Fig. 5-25: ANGPT1 levels in SEM cells treated with siANGPT1 

SEM cells electroporated with siANGPT1 show a sustained reduction of ANGPT1 over a time period 

of 8 days, as measured by qRT-PCR. The Graph represents the mean of n=4 (d2), n=3 (d4), n=3 (d6) 

and n=2 (d8) individual experiments, error bars indicate standard error of the mean (S.E.M.). 

Statistic analysis was carried out using an unpaired Student’s t-test (** = p< 0.01; *** = p<0.0001). 
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Concomitantly, ANGPT1 secretion was reduced by 72-91% and 86-97% in SEM 

cells transfected with siANGPT1-1 and siANGPT1-3, respectively, as measured by 

ELISA (fig. 5-26).  

 

 

 

Fig. 5-26 :ANGPT1 secretion levels in SEM cells treated with siANGPT1 

Cell culture supernatant of SEM cells electroporated with either siRNA against ANGPT1, control 

siRNA (siAML1/MTG8) or pulsed without siRNAs (MOCK) was harvested over a time course of 2, 4, 

6 and 8 days and soluble ANGPT1 protein levels were quantified using an ELISA. ANGPT1 secretion 

was significantly decreased in siANGPT1-treated cells, and could be sustained at these reduced 

levels over the course of the experiment. The graph represents the mean of n=4 (d2), n=3 (d4, d6) 

and n=2 (d8) individual experiments, error bars indicate S.E.M. Statistic analysis was carried out 

using an unpaired Student’s t-test (*= p< 0.05; ** = p< 0.01; *** = p< 0.001). 
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The phenotypic consequences of sustained ANGPT1 depletion in the SEM cells 

were analysed, assessing proliferation and viability. Reduced ANGPT1 levels over a 

prolonged period of time impinged markedly on cell proliferation of SEM cells (fig. 

5-27), increasing the doubling time by 23 % and 47% when normalised to MOCK-

treated cells (tab. 5-9).   

 

 

 

Fig. 5-27: Growth curve of ANGPT1-depleted SEM cells 

Sustained knock-down of ANGPT1 over a period of 8 days was achieved by serial transfection of the 

SEM cell line with siRNAs against ANGPT1 (siANGPT1-1, siANGPT1-3) at two day-intervals; 

controls were electroporated with either non-targeting siRNA (siAML1/MTG8) or no siRNA 

(MOCK). SEM cells depleted of ANGPT1 showed a substantially reduced proliferation compared to 

controls. Cell numbers were determined immediately prior to the siRNA-transfection time points 

using a haematocytometer; viability was assessed by trypan blue exclusion. The graph represents 

the mean of n=2 independent experiments, the error bars show the data range.  
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Tab. 5-9  Changes in proliferation rates of SEM cells depleted of ANGPT1 

 

doubling time [h] relative change [%] 

MOCK 37.6  (+/- 0.74) - 

siAML1/MTG8 39.1  (+/- 0.25) 4 

siANGPT1-1 46.2  (+/- 1.22) 23 

siANGPT1-3 55.2  (+/- 6.78) 47 

 

 

This anti-proliferative effect of ANGPT1 knockdown was also reflected in the cell 

cycle progression, as RNAi-mediated ANGPT1 depletion in SEM cells for a duration 

of 8 days resulted in changes of the cell cycle distribution when compared to 

controls: in concordance with the reduction of the proliferation rate in response to 

ANGPT1 knock-down, SEM cells treated with siRNA against ANGPT1 showed an 

increased accumulation of cells in the G1/G0-phase and concomitant depletion of 

cells cycling in S-phase (fig. 5-28).  
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Fig. 5-28: Changes in cell cycle distribution in SEM cells depleted of ANGPT1 

Flow cytometric cell cycle analysis of SEM cells treated for 8 days showed that prolonged ANGPT1 

knockdown resulted in differences of cell cycle distribution when compared to controls (MOCK, 

siAML1/MTG8). The fraction of cells in the different cell cycle stages G1/G0, S and G2/M was 

determined using ModFit LT (Verity Software House) software, and the changes in siRNA-treated 

cells calculated by normalising on the cell cycle distribution of MOCK-transfected cells. The mean of 

n=2 independent experiments are shown; error bars represent the data range. 
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In addition to impinging on proliferation and cell cycle progression, ANGPT1 

knock-down also had a negative effect on viability. RNAi-mediated reduction of 

ANGPT1 levels resulted in a subtle induction of apoptosis, as illustrated by the 

increased fraction of cells in sub-G1 at 6 and 8 days of siANGPT1 treatment (fig. 

5-29A). Indeed, already after 6 days of RNAi-mediated ANGPT1 depletion onset of 

cell death could be observed. SEM cells transfected with siANGPT1-1 and 

siANGPT1-3 showed increased phosphatidylserine exposure onto the cell surface 

and uptake of propidium iodide (PI), both markers associated with cell death, as 

determined flow cytometrically by AnnexinV-binding and PI-positivity (fig. 5-29C). 

Immunoblotting also revealed proteolytic cleavage of PARP in cells depleted of 

ANGPT1 but not in controls (fig. 5-29B). PARP cleavage is mediated by activated 

effector caspases, and serves as a surrogate marker for apoptosis cell death. These 

observations point out a dependency of t(4;11)-positive cells on ANGPT1 

signalling for survival. In order to understand this on a molecular level, whole-

genome profiling of cells depleted of ANGPT-1 was performed. 

 

 

 

Fig. 5-29: SEM cell viability and survival are compromised upon sustained ANGPT1 
depletion analysis 

 

Flow cytometric cell cycle analysis of SEM cells treated for 6 or 8 days showed that prolonged 

ANGPT1 knockdown resulted in an increase of the sub-G1/G0 subpopulation when compared to 

controls (MOCK, siAML1/MTG8). The fraction of cells was determined using ModFit LT software. 

This graph represent the mean of n=3 independent experiments for time point d6, and n=2 

independent experiments at time point d8. Error bars indicate standard error of the mean (A). 

Concomitantly, after 6 days of siANGPT1 treatment SEM cells showed evidence of caspase-mediated 

PARP cleavage, while controls (siAML1/MTG8, MOCK) only revealed unprocessed full-length PARP. 

One representative figure of two independent experiments is shown. (B). This was accompanied by 

an increased ANNEXINV-single and ANNEXINV/PI-double positivity when compared to controls, 

indicating activation of the cell death pathways. Graph represents one single experiment. (C) 
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5.5  WHOLE GENOME EXPRESSION PROFILING OF SEM CELLS DEPLETED OF 

ANGPT1  

In order to elucidate the contribution of ANGPT1 to t(4;11)-positive 

leukaemogenesis on a molecular level, gene expression profiling (GEP) of SEM cells 

depleted of ANGPT1 and corresponding controls was carried out. SEM cells were 

transfected with siANGPT1-3 or control siRNA (siAML1/MTG8). In addition, since 

the ANGPT1 content in serum-containing growth medium is substantial (fig. 5-30) 

and might contribute to the delayed effect of the ANGPT1 knockdown, the 

transfected cells were subsequently starved for 48h before harvesting the RNA. 

Successful knock-down was confirmed on RNA and protein level by qRT-PCR and 

ELISA, respectively (fig. 5-31). 

 

 

 

 

Fig. 5-30: ANGPT1 background level in standard and serum-free growth medium 

Standard growth medium supplemented with 10% FCS is an exogenous source of ANGPT1. One 

representative of several comparable experiments is shown. 
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Fig. 5-31: ANGPT1 expression analysis of siRNA-treated SEM cells in serum-free 
medium  

SEM cells were singly electroporated with either siANGPT1-3 or control siRNA (siAML1/MTG8) and 

cultured in serum-free growth medium in order to remove the exogenous ANGPT1 source that FCS 

represents. Cells and supernatant were harvested after 2 days, and ANGPT1 RNA and protein 

expression quantified by qRT-PCR and ELISA, respectively. Graph shows one single experiment, 

each sample was performed in triplicates (qRT-PCR) or duplicates (ELISA). 

 

 

Prior to submitting the samples to GEP, the RNA quality was measured by 

determining the RNA integrity number (RIN) via lab-ob chip technology, using a 

Bioanalyzer 2100 RNA 6000 Nano Assay (Tab. 5-10).   

 

 

Tab. 5-10: RIN values of samples submitted to GEP  

sample RIN 

siANGPT1-3 9.2 

siAML1/MTG8 9.4 
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The samples were processed at a service provider facility according to 

manufacturer’s protocols, and assayed using an Illumina HT-12 V.4 bead array 

(Illumina Inc.). The resulting expression files were processed using Genome Studio.  

 

 

Tab. 5-11: Array Statistics after processing using GenomeStudio 

array statistics siAML1/MTG8 siANGPT1-3 

No. Detected probes 
  

Detection P-value <0.05 11872 12058 

Detection P-value <0.01 9504 9904 

 

Differential expression was analysed using GeneSpring GX11 software (Agilent 

Technologies, Inc): arrays were processed using a quantile normalisation 

algorithm, and presence calls determined using the parameters described 

previously. Differentially expressed probes between siANGPT1-3 and control-

treated cells were calculated using two different stringency settings: on the high 

stringency setting, array probes were filtered on “present” calls only for all 

samples; a fold-change expression value cut-off of 2.0 applied. Thus determined 

probe sets were termed gene signature A.  

On the low stringency analysis settings, all array probes were retained, regardless 

of their call status, and a fold-change expression value cut-off of 2.0 was applied. 

Subsequently, the analysis results were manually curated, filtering out probes 

which flagged up “absent” and “marginal” in the control sample, putatively 

correlating to non-expressed or low-abundance genes. In contrast, probes with 

both “absent”, “marginal” and “present” calls in the siANGPT1 sample were 

retained. This analysis method allowed identifying genes strongly down-regulated 

or silenced in response to ANGPT1 depletion; the resulting genes were defined as 

gene signature B. 
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Using the high stringency analysis parameters, 918 differentially expressed probes 

were identified, corresponding to 909 genes, of which 389 were up- and 520 

down-regulated. The low-stringent (curated) analysis revealed 3985 differentially 

expressed probes, equating to 3858 genes, of which 389 were up- and 3469 down-

regulated (tab. 5-12).  

 

Tab. 5-12. Number of differentially expressed probe sets and genes for gene 
signatures A and B 

siANGPT1 vs. siCtrl Signature A  Signature B 

No. of differentially 
expressed probes 

918 3985 

up-regulated probes 393 393 

down-regulated probes 526 3592 

No. of differentially 
expressed genes 

909 3858 

up-regulated genes 389 389 

down-regulated genes 520 3469 

 

 

Since only changes in the stringency settings were applied for the siANGPT1-

treated sample, the list of up-regulated genes was identical in both analysis 

settings. The top-50 up-regulated genes in response to ANGPT1 are listed in tab. 

5-13. 

The list of down-regulated genes differed between the two stringency settings. 

Since gene signature B also contains gene so strongly down-regulated that they fall 

into the marginally expressed or the absent/unexpressed category, the fold-

changes were far greater than in signature A. In addition, signature B contained far 

more predicted and unannotated loci than signature A. (tab 5-14, tab. 5-15). 
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Tab. 5-13: Top-50 Up-regulated Genes in SEM cells depleted of ANGPT1 

Gene 
Fold change 

([siANGPT1-3] vs. [siCtrl]) 
Accession Probe_Id 

FLJ44054 4.80 NR_024609.1 ILMN_3236599 
ARID5A 4.64 NM_212481.1 ILMN_1689700 

SPRYD4 4.49 NM_207344.2 ILMN_1729868 

HS.581788 4.16 AI073406 ILMN_1859493 

HS.564216 3.99 BM678612 ILMN_1856751 

MAPKSP1 3.99 NR_024170.1 ILMN_3225432 

CLDN14 3.98 NM_012130.2 ILMN_2328575 

WBP11 3.98 NM_016312.2 ILMN_1661051 

FKBP1A 3.96 NM_054014.1 ILMN_1702237 

ARHGAP5 3.85 NM_001173.2 ILMN_2322747 

LOC652330 3.76 XM_001716137.1 ILMN_3205030 

HS.538554 3.76 AI699581 ILMN_1875887 

PPP2CB 3.74 NM_001009552.1 ILMN_1675693 

HS.542027 3.63 BQ448172 ILMN_1832529 

LOC54103 3.63 NM_017439.1 ILMN_1772064 

SLC22A1 3.62 NM_153187.1 ILMN_1715742 

RHOBTB2 3.56 NM_015178.1 ILMN_2195957 

LOC100132494 3.55 XM_001722666.1 ILMN_3236752 

MARS2 3.47 NM_138395.2 ILMN_2136423 

CYP4F3 3.45 NM_000896.1 ILMN_1736190 

ATPBD4 3.42 NM_080650.2 ILMN_2140207 

CDC2L2 3.39 NM_033531.1 ILMN_2330552 

DPH2 3.39 NM_001384.4 ILMN_2276431 

DUSP2 3.37 NM_004418.2 ILMN_1712959 

ETV5 3.35 NM_004454.1 ILMN_1723260 

CHRNA2 3.35 NM_000742.1 ILMN_1698849 

PRKAR2A 3.34 NM_004157.2 ILMN_1681888 

LOC644373 3.33 XM_932154.1 ILMN_1701857 

LOC202134 3.30 XM_932129.1 ILMN_1652689 

DDB1 3.27 NM_001923.2 ILMN_1774735 

TMTC4 3.22 NM_001079669.1 ILMN_1762095 

SDHALP1 3.22 NR_003264.1 ILMN_1734640 

SERTAD3 3.21 NM_203344.1 ILMN_1813955 

WASF1 3.20 NM_003931.2 ILMN_2342174 

PHF12 3.19 NM_001033561.1 ILMN_1808781 

HS.489952 3.17 CK905566 ILMN_1873967 

ZNF3 3.17 NM_017715.2 ILMN_2390739 

LOC654340 3.16 XM_946373.1 ILMN_1722730 

HIST1H2BJ 3.14 NM_021058.3 ILMN_1658702 

C22ORF33 3.14 NM_178552.2 ILMN_1663417 

CTGF 3.13 NM_001901.2 ILMN_2115125 

PILRB 3.10 NM_013440.3 ILMN_1807712 

LOC100133409 3.09 XM_001714245.1 ILMN_3239121 

L3MBTL4 3.07 NM_173464.3 ILMN_3307954 

MLL5 3.04 NM_182931.2 ILMN_2344988 

LOC648408 3.03 XM_937458.1 ILMN_1734427 

LOC644647 3.03 XM_927755.1 ILMN_1659432 

PTP4A3 3.01 NM_007079.2 ILMN_2359710 

ITGB5 3.00 NM_002213.3 ILMN_1796755 

NAT11 2.99 NM_024771.1 ILMN_2178244 
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Tab 5-14. Top-50 down-regulated genes in SEM cells depleted of ANGPT1 – 
Signature A 

ILMN_Gene 
Fold change 

([siANGPT1-3] vs. [Ctrl]) 
Accession Probe_Id 

MPO -18.69 NM_000250.1 ILMN_1705183 

ELANE -5.33 NM_001972.2 ILMN_1706635 

LOC727761 -4.37 XM_001126211.1 ILMN_1732006 

SNHG3-RCC1 -4.13 NM_001048198.1 ILMN_2311497 

TJP1 -4.00 NM_175610.2 ILMN_2403006 

CTSG -3.97 NM_001911.2 ILMN_1680424 

BRCA1 -3.86 NM_007295.2 ILMN_1771065 

TRIOBP -3.79 NM_007032.5 ILMN_2370588 

HS.332056 -3.73 BX647714 ILMN_1866460 

ERCC6 -3.73 NM_000124.1 ILMN_1786882 

OR2A20P -3.68 NR_002158.1 ILMN_1738976 

CD34 -3.66 NM_001773.1 ILMN_1694249 

MARCH8 -3.66 NM_001002265.1 ILMN_2341626 

C16ORF7 -3.61 NM_004913.2 ILMN_1693630 

HS.98960 -3.59 BE894306 ILMN_1858001 

LOC100130138 -3.58 XM_001726935.1 ILMN_3181439 

SNORA16A -3.57 NR_003035.1 ILMN_3246465 

MED12 -3.54 NM_005120.1 ILMN_1793386 

LOC728734 -3.50 XM_001132754.1 ILMN_1687571 

LOC550112 -3.41 XR_001037.1 ILMN_1798472 

HS.539123 -3.38 AA629336 ILMN_1872049 

DDX59 -3.37 NM_001031725.1 ILMN_2357193 

C6ORF184 -3.37 XM_168053.6 ILMN_1765438 

LOC643950 -3.35 XM_931938.2 ILMN_1677857 

LOC442232 -3.34 XR_018484.1 ILMN_3279987 

TNKS -3.33 NM_003747.2 ILMN_1657891 

FLJ40330 -3.29 XR_015919.1 ILMN_1746695 

RNASE2 -3.27 NM_002934.2 ILMN_1730628 

STAT1 -3.27 NM_007315.2 ILMN_1777325 

STXBP1 -3.27 NM_003165.1 ILMN_1728747 

CTHRC1 -3.23 NM_138455.2 ILMN_2117508 

SLC19A2 -3.21 NM_006996.1 ILMN_2201668 

C1ORF222 -3.21 NM_001003808.1 ILMN_1749317 

ISM1 -3.21 NM_080826.1 ILMN_3239288 

VPREB3 -3.19 NM_013378.1 ILMN_1700147 

PJCG6 -3.18 NM_001040066.1 ILMN_2081344 

MAG -3.16 NM_080600.1 ILMN_2380181 

DYNC1I1 -3.15 NM_004411.3 ILMN_1690397 

DHX58 -3.14 NM_024119.2 ILMN_1678422 

SBF2 -3.14 NM_030962.2 ILMN_2123665 

CSMD1 -3.13 NM_033225.3 ILMN_1746945 

LILRB2 -3.11 NM_001080978.1 ILMN_1695744 

HS.130260 -3.11 AI263926 ILMN_1888658 

KIAA1660 -3.11 XM_929784.1 ILMN_1796029 

LOC642993 -3.11 XM_926372.1 ILMN_1702586 

LOC642255 -3.09 XM_001127807.1 ILMN_1679371 

CCBL2 -3.08 NM_019610.3 ILMN_2130003 

LOC642216 -3.08 XM_942785.1 ILMN_1724508 

LOC441698 -3.08 XR_019206.1 ILMN_1725455 

ZNF574 -3.06 NM_022752.5 ILMN_1790460 
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Tab. 5-15 Top-50 down-regulated genes in SEM cells depleted of ANGPT1 – 

Signature B 

Gene 
Fold change 

([siANGPT1-3] vs. [siCtrl]) 
Accession Probe_Id 

PRTN3 -72.24 NM_002777.3 ILMN_1668460 

LOC648585 -50.35 XM_944740.1 ILMN_1763374 

C18ORF26 -47.06 NM_173629.1 ILMN_1746670 

LOC653127 -47.06 XM_927004.1 ILMN_1732830 

LOC644923 -45.35 XM_932518.1 ILMN_1791242 

DKFZP586I1420 -39.17 NR_002186.1 ILMN_2216838 

SLC6A19 -37.07 NM_001003841.1 ILMN_1724021 

LOC441268 -34.76 NM_001013725.1 ILMN_1675258 

TACSTD1 -33.14 NM_002354.1 ILMN_2160210 

HS.564211 -33.05 AA846343 ILMN_1857425 

MEF2A -30.95 NM_005587.2 ILMN_3251100 

ZNF578 -30.30 NM_152472.1 ILMN_1693996 

HS.541852 -30.30 BX115082 ILMN_1886969 

LOC647210 -29.71 XM_930248.1 ILMN_1727977 

ABCB1 -29.28 NM_000927.3 ILMN_1812070 

LOC440225 -28.91 XR_017179.1 ILMN_1667052 

PCDHA1 -28.81 NM_031411.1 ILMN_2393077 

LOC643242 -28.46 XM_927615.1 ILMN_1693966 

LOC652377 -28.35 XR_019346.1 ILMN_1808122 

LOC651790 -28.26 XM_941017.1 ILMN_1808307 

LOC642325 -28.16 XM_925864.2 ILMN_1712886 

HIST1H2AB -27.21 NM_003513.2 ILMN_1753524 

HS.43938 -27.12 CD370005 ILMN_1826420 

CHKB -26.93 NM_152253.1 ILMN_1689711 

C2ORF86 -26.47 NM_001042692.1 ILMN_1717010 

SERPINB7 -26.42 NM_003784.2 ILMN_2395139 

HS.577495 -26.42 DA880232 ILMN_1831363 

KIAA0427 -26.22 NM_014772.1 ILMN_1655563 

LOC100130220 -26.22 XM_001713697.1 ILMN_3244638 

MPZL2 -26.22 NM_005797.2 ILMN_1752932 

LOC100128096 -25.79 XR_038482.1 ILMN_3179148 

UQCRB -25.67 NM_006294.3 ILMN_3251491 

HS.543803 -25.41 BM986885 ILMN_1882543 

HS.44984 -25.30 BX101040 ILMN_1890263 

C12ORF27 -25.21 NR_024345.1 ILMN_3245684 

LOC652354 -25.02 XM_941784.1 ILMN_1808462 

CD34 -24.94 NM_001773.2 ILMN_2341229 

ANRIL -24.85 NR_003529.1 ILMN_1887731 

LOC644038 -24.76 XM_928871.2 ILMN_1769281 

LOC644756 -24.66 XM_927853.2 ILMN_1734679 

LOC643509 -24.59 XM_932666.2 ILMN_1665821 

LOC126520 -24.50 XR_015464.1 ILMN_1762151 

LOC645986 -24.50 XM_933324.1 ILMN_1799826 

LOC729786 -24.33 XR_015655.1 ILMN_1791605 

FREM2 -24.21 NM_207361.4 ILMN_1703174 

MAPK14 -24.10 NM_139013.1 ILMN_1720656 

LOC653543 -23.91 XM_928000.2 ILMN_1806813 

C4B -23.80 NM_000592.4 ILMN_1813695 

PCDHA11 -23.80 NM_031861.1 ILMN_1740494 

SMAD6 -23.78 NM_005585.3 ILMN_1767068 
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5.5.1 Functional categorisation of gene expression profiling data using 

Ingenuity Pathway Analysis 

 

In order to identify pathways and functional networks affected by ANGPT1 down-

regulation, the gene signatures were analysed using the Ingenuity Pathway 

Analysis (IPA) software (Ingenuity Systems Inc.).  

 

 

5.5.1.1 Functional analysis of gene signature A 

 

Gene signature A, consisting of 393 up- and 526 down-regulated probes, showed 

enrichment of biological functions associated with cancer, cell death, and 

particularly, haematopoiesis and related haematologic processes and disorders. 

Additional functions affected were molecular transport, nucleic acid and vitamin 

metabolism, as well as tumour morphology and tissue development associated 

physiological processes (tab. 5-16). 
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Tab. 5-16: Significantly enriched functional categories in gene signature A 

Top 5 Biofunctions P-value 

Diseases and Disorders 
 

 
Dermatological Diseases and Conditions 1.59E-04 - 3.74E-02 

 
Genetic Disorder 9.51E-04 - 4.46E-02 

 
Nutritional Disease 1.73E-03 - 4.94E-02 

 
Cancer 1.65E-04 - 4.55E-02 

 
Haematological Disease 1.73E-03 - 4.46E-02 

 
 

 
Molecular and Cellular Functions 

 

 
Cell Death 8.81E-04 - 4.35E-02 

 
Molecular Transport 9.51E-04 - 3.63E-02 

 
Nucleic Acid Metabolism 9.51E-04 - 4.35E-02 

 
Small Molecule Biochemistry 9.51E-04 - 4.35E-02 

 
Vitamin and Mineral Metabolism 9.51E-04 - 3.09E-02 

 
 

 
Physiological System Development and Function 

 

 
Tumour Morphology 2.80E-03 - 3.09E-02 

 
Tissue Development 3.53E-03 - 4.35E-02 

 
Haematological System Development & Function 1.30E-02 - 4.51E-02 

 
Haematopoiesis 1.31E-02 - 3.09E-02 

 
Lymphoid Tissue Structure and Development 1.31E-02 - 3.09E-02 

P-Value range describes the p-values of associated subcategories as determined by 
Fisher’s exact test. 

 

 

The top-5 biological networks affected fit in well with the functional categories 

described, as they comprise cellular growth and development, haematological 

disease and development, cell-to-to cell signalling, cell death and cellular 

movement, amongst others (tab. 5-17) 
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Tab. 5-17: Top 5 significantly enriched networks in gene signature A.  

Name Score 

Cellular Development, Cellular Growth and Proliferation, Embryonic 
Development 

31 

Cell-To-Cell Signalling and Interaction, Haematological Disease, Cellular 
Movement 

13 

Gene Expression, Digestive System Development and Function, Hepatic System 
Development and Function 

12 

Cancer, Reproductive System Disease, Cell Death 10 

Inflammatory Response, Cellular Movement, Haematological System 
Development and Function 

10 

 

 

ANGPT1 depletion resulted in a marked down-regulation of factors associated with 

cellular growth, proliferation and development (18 out of 34 network-associated 

genes) as well as up-regulation of cell death mediators, such as CASP7 (fig. 5-32). 

In addition, networks mediating cellular processes associated with cell-to-cell 

signalling & interaction, cellular movement and haematological disease showed 

also predominantly down-regulation in response to decreased ANGPT1 levels (fig. 

5-33). 
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Fig. 5-32. ANGPT1 depletion affects functions associated with cellular growth, 
proliferation and development 
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Fig. 5-33: ANGPT1 depletion results in down-regulation of the functions associated 
with cell-to-cell signalling and interactions, cellular motility and haematological 
disease. 
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Pathway analysis of gene signature A showed significant enrichment (p<0.05) of 9 

canonical pathways (fig. 5-34A), which could be subsumed into 4 pathway 

categories: G-protein coupled receptor (GPCR)/cAMP/PKA signalling axis, 

cytokine/mitogenic signalling, nuclear hormone receptor-associated and cancer-

associated signalling (fig. 5-34B). Functionally, these pathways are related to the 

networks and biological functions associated with gene signature A, as both the 

GPCR/cAMP/PKA signalling axis as well as cytokine signalling pathways are 

implicated in cell-to-cell signalling, proliferation, cell death and a range of 

disorders, including haematological cancer. 

The most prominently enriched pathway was the glucocorticoid-receptor (GR) 

signalling cascade, which showed differential expression of several effectors of this 

pathway; ANGPT1 depletion resulted in up-regulation of the gene coding for the 

GR (NR3C1) and its coactivator NCOA3, as well as molecular chaperones HSP90 

and HSP70 (HSPA6) required for GR signalling. Downstream effectors, such as 

MKK7 (MAP2K7), and target genes such as CREB1 are also affected (tab. 5-18). 
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Fig. 5-34: Pathway analysis of gene signature A 

Gene signature A was significantly enriched for 9 canonical pathways (A) which could be attributed 

to 5 functional categories (B). Statistical analysis was performed using a Fisher’s Exact test. 
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Tab. 5-18: Regulation of probes associated with GR signalling in ANGPT1-depleted 
SEM cells 

Gene Symbol Fold change Accession Probe_Id 

MAP2K7 2.94 NM_145185.2 ILMN_1781104 

NR3C1 2.63 NM_001018076.1 ILMN_1668525 

NFATC3 2.43 NM_173163.1 ILMN_1685810 

TAF11 2.20 NM_005643.2 ILMN_1690545 

HSP90AA1 2.16 NM_001017963.1 ILMN_1687546 

NCOA3 2.06 NM_181659.1 ILMN_2347693 

IL4 2.04 NM_172348.1 ILMN_1669174 

HSPA6 2.03 NM_002155.3 ILMN_1806165 

SOS2 -2.05 NM_006939.2 ILMN_1764414 

SUMO1 -2.11 NM_003352.4 ILMN_1790105 

CREB1 -2.18 NM_134442.2 ILMN_2382758 

TAF15 -2.40 NM_003487.2 ILMN_2402131 

BCL2 -2.66 NM_000657.2 ILMN_2363250 

GTF2H2 -2.71 NM_001515.3 ILMN_1691485 

STAT1 -3.27 NM_007315.2 ILMN_1777325 
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Fig. 5-35: GR signalling pathway machinery is up-regulated in response to ANGPT1 
depletion 
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5.5.1.2 Functional analysis of gene signature B 

Gene signature B, consisting of 393 up- and 3592 down-regulated probes, showed 

association with cell-to-cell interactions and signalling, development of 

haematopoiesis and related haematologic processes. Additional molecular and 

cellular functions affected were molecular transport, carbohydrate and lipid 

metabolism, as well as tissue and organ-related physiological processes (tab. 5-19).  

 

 

Tab. 5-19. Significantly enriched functional categories in gene signature B.  

Top 5 Biofunctions P-value 

Diseases and Disorders 
 

 
Connective Tissue Disorders 1.33E-04 - 1.14E-03 

 
Inflammatory Disease 1.33E-04 - 4.55E-02 

 
Skeletal and Muscular Disorders 1.33E-04 - 4.36E-02 

 
Endocrine System Disorders 1.65E-04 - 4.55E-02 

 
Genetic Disorder 1.65E-04 - 4.77E-02 

 
 

 
Molecular and Cellular Functions 

 

 
Gene Expression 3.87E-04 - 4.36E-02 

 
Cell-To-Cell Signalling and Interaction 4.93E-04 - 4.03E-02 

 
Cellular Development 9.25E-04 - 4.94E-02 

 
Carbohydrate Metabolism 1.55E-03 - 3.09E-02 

 
Lipid Metabolism 2.06E-03 - 3.40E-02 

 
 

 
Physiological System Development and Function  

 

 
Haematological System Development and Function 6.78E-04 - 4.55E-02 

 
Digestive System Development and Function 1.17E-03 - 1.17E-03 

 
Organ Development 1.17E-03 - 8.46E-03 

 
Haematopoiesis 2.06E-03 - 4.55E-02  

 
Tissue Morphology 5.41E-03 - 4.27E-02 

P-Value range describes the P-values of associated subcategories as determined by Fisher’s exact 

test. 
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While these differ from the biological functions associated with signature A, they 

correlated with its linked functional networks, emphasising the implications of 

ANGPT1 in cell-to-cell interactions. These functions are also reflected in the top 5 

molecular networks represented by signature B, which comprise cellular 

proliferation, cell-to-cell signalling and interactions, as well as haematological 

processes (tab. 5-20, fig. 5-36). The net effect appears to be a down-regulation of 

such functions, which is in concordance with the reported physiological functions 

of ANGPT1 in the BM niche. 

 

 

 

Tab. 5-20: Top 5 significantly enriched networks in gene signature B. 

Name Score 

Cellular Growth & Proliferation, Haematological Disease, Immunological 
Disease 

29 

DNA Replication, Recombination, and Repair, Cell Cycle, Cellular 
Development 

27 

Tissue Morphology, Cardiac Hypertrophy, Cardiovascular Disease 23 

Cellular Movement, Cancer, Cellular Development 22 

Antigen Presentation, Cell-To-Cell Signalling & Interaction, Haematological 
System Development and Function 

14 

 

 

 

Pathway analyses revealed significant enrichment of 18 canonical pathways which 

could be attributed to 7 subcategories. The most affected pathways were linked to 

GPCR/cAMP/PKA signalling, in which several effectors were down-regulated (fig. 

5-38). Other pathways down-regulated as well were those linked to maintenance 

of stemness, in particular the WNT/beta-CATENIN and the TGF-beta axis (fig. 

5-39), which fits with the role of ANGPT1 in maintaining HSC quiescence in the BM. 
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Fig. 5-36: ANGPT1 depletion results in down-regulation of the functions associated 
with proliferation and haematological processes. 
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Fig. 5-37: Pathway analysis of gene signature B 

Gene signature B was significantly enriched for 18 canonical pathways (A) which could be 

attributed to 7 functional categories (B). Statistical analysis was performed using a Fisher’s Exact 

test. 
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Fig. 5-38: GPCR/cAMP/PKA signalling is down-regulated in response to ANGPT1 depletion. 
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Fig. 5-39: Pathways associated with stemness signalling are down-regulated in response to 
ANGPT1 depletion. 
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5.5.2 ANGPT1 Depletion Does Not Sensitise the t(4;11)-positive Cell 

Line SEM Towards the Glucocorticoid Dexamethasone 

One of the most prominently up-regulated pathways in response to ANGPT1 

depletion is the glucocorticoid receptor (GR) signalling pathway. 

Pharmacological glucocorticoids (GC), such as dexamethasone and 

prednisolone, are used for the first-line treatment in ALL. GCs irreversibly bind 

the GR and induce leukaemic blast cell death, and poor response to GC is an 

adverse prognostic factor in ALL. Clinically, there is a high proportion of t(4;11)-

positive ALL patients belonging to the poor-responder category. Several 

different mechanisms for GC resistance have been described so far, including 

loss of the GR and deregulated GR signalling. In SEM cells, ANGPT1 depletion 

results in up-regulation of several positive mediators of the GR signalling 

pathway; thus, a potential role of ANGPT1 in mediating GC resistance was 

investigated by evaluating whether either RNAi-mediated ANGPT1 knockdown 

or MLL/AF4 depletion sensitised SEM cells to the glucocorticoid dexamethasone 

(DEX). SEM cells were electroporated with the corresponding siRNA species or 

mock-treated and split into two treatment groups, of which one was 

supplemented with recombinant human ANGPT1 (rhANGPT1, 2µg/ml) while 

the other was left untreated. This approach allowed assessing the reversibility 

of effects mediated by ANGPT1 depletion. After an 8h post-electroporation 

equilibration period, electroporated cells were exposed to a DEX-dose range 

from 0-100 µM for 96h. Viability was measured at the experimental endpoint 

using a MTT viability assay. No substantial sensitisation of SEM cells treated 

with siRNA could be observed in response to DEX exposure, although treatment 

with siANGPT1-1 and siANGPT1-3 seemed to very subtly decrease viability; this 

effect could be partially reversed by exogenous ANGPT1 (fig.5-40).  
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Fig.5-40: Dexamethasone response curve of siRNA-treated SEM cells. 

SEM cells electroporated with siMLL/AF4, siANGPT1-1 & siANGPT1-3 were exposed for 96h to a 

DEX dose range. In order to investigate the role of ANGPT1 in mediation of GC-resistance, an 

identically treated group was in parallel treated with rhANGPT1 (2µg/ml). Controls 

(siAML1/MTG8-treated and the pulse control sample MOCK) were incubated with DEX without 

rhANGPT1. Viability was determined by a MTT assay. Graphs represent the mean of two 

independent experiments. 
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5.6 ANGPT1 DEPLETION AFFECTS LEUKAEMOGENESIS IN VIVO 

5.6.1 Establishing an inducible shRNA expression system in SEM-

SLIEW cells 

Assessing the role of ANGPT1 in t(4;11)-positive ALL in vitro, it was revealed 

that sustained knock-down of ANGPT1 impinged on proliferation, cell cycle 

progression and viability. ANGPT1 has been postulated to be important for 

regulating HSCs and their interactions with the bone marrow 

microenvironment, thus implying a potential role of ANGPT1 in the leukaemic 

blast-niche interactions. This aspect was investigated in vivo, using the NOD.Cg-

Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mouse model. This mouse strain is derived from 

the NOD/SCID (non-obese diabetic/severe combined immune deficiency) 

background, lacking a functional Prkcd gene, which codes for the catalytic 

subunit of the DNA-PK holoenzyme. Consequently, this transgenic strain is 

deficient in functional haematopoietic cells of the lymphocytic lineage. The 

additional knock-out mutation in the Il2rg gene, which codes for the Il2 receptor 

gamma chain, results in loss of functional natural killer (NK) cells. This 

profoundly immunodeficient mouse model is currently the gold standard for 

studying leukaemogenesis and disease progression337-339.  

In order to study the effect of ANGPT1 knock-down in t(4;11)-positive ALL 

development and progression in NSG mice, a stably expressed knock-down 

system was developed using a commercially available lentiviral shRNA 

expression vector (pTRIPZ backbone) and the SEM-SLIEW (gfp+luc+) cell line as 

target cell line. The SEM-SLIEW cell line is a modified SEM cell line transduced 

to stably and constitutively express the reporter gene GFP (green fluorescent 

protein) and LUC gene, coding for fire fly luciferase. The use of the SEM-SLIEW 

cell line allows in vivo bioluminescence imaging, a non-invasive technique to 

track the location of luciferase-expressing cells in the body of living animals. 

The SEM-SLIEW cell line was generated in our research group by Ms Elda Latif. 

Lentivirus particles containing the expression cassette for either a shRNA 

against ANGPT1, shANGPT1, or a non-target control shRNA (shNTC) were 

produced by transient cotransfection of the packaging cell line 293T with the 
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pTRIPZ-shRNA expression vector constructs & the packaging vectors pMD.2g 

and pCMVdR8.91 using the CaPO4-method. The lentiviral particles for either 

construct were harvested, concentrated, and the SEM-SLIEW cells transduced 

via spinoculation (fig. 5-41). The employed shRNA expression plasmids were 

inducible vectors regulated by a Tet-On system; transcription of either the 

shRNA or the reporter gene RFP occurred only under the presence of a 

tetracycline-derivative. In this study, the cell culture medium was supplemented 

with the tetracycline family antibiotic doxycycline. 

 

 

 

 

Fig. 5-41: Scheme depicting the workflow for lentiviral particle production and 
subsequent infection of the target cell line SEM-SLIEW  
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Post-transduction, the cells were selected with puromycin for at least 4 weeks 

and then kept growing in growth medium supplemented with 2 µg/ml 

puromycin. Induction of shRNA-RFP expression with doxycycline revealed RFP-

fluorescence positivity of 80-93%. (fig. 5-42), which could not be increased by 

augmenting puromycin dose and exposure.  

 

 

 

 

Fig. 5-42: Flow cytometric analysis of shRNA induction 

SEM-SLIEW cells transduced with shRNA were cultured for 3 days in growth medium 

supplemented with doxycycline at different concentrations.  Induction of shRNA was measured 

by the surrogate marker of RFP expression, as determined by flow cytometry. SEM-SLIEW cells 

were heterogeneous for GFP-expression. Numbers indicate percentage of cells in the 

corresponding subfraction. One experiment representative of at least n=3 comparable 

experiments is shown. 
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Induction of shRNA expression by exposing shRNA-transduced SEM-SLIEW cells 

to 4 days of a dose range of doxycycline (0-5 µg/µl), resulted in a reduction of 

ANGPT1 transcript level by 70-75% in shANGPT1 expressing cells when 

compared to corresponding shNTC controls (fig. 5-43). The extent of knock-

down was not dose-dependent within the range assayed, as the lowest 

concentration of 1 µg/ml already achieved 70%, and this was not substantially 

altered at 3µg/ml or 5µg/ml.  

 

 

 

Fig. 5-43: qRT-PCR analysis of ANGPT1 in SEM-SLIEW cells expressing shRNA 

SEM-SLIEW-shRNA cells were cultured for 4d with doxycycline-supplemented growth medium 

at increasing concentrations. ANGPT1 expression was determined by qRT-PCR. The graph 

shows the mean of n=2 two independent experiments at dox=0 and dox = max concentration, 

error bars indicate data range. The intermediate dose range (dox=min, dox= intermediate) 

represent one single experiment. 



ANGIOPOIETIN-1, a novel factor implicated in t(4;11)-positive ALL 
 

340 
 

5.6.2 Effects of RNAi-mediated ANGPT1 knock-down in vivo 

 

The SEM-SLIEW cell line was heterogeneous for GFP expression. Therefore, 

prior to the inoculation of NSG mice, shRNA expressing SEM-SLIEW cells were 

sorted for luciferase expression purity using fluorescence-activated cell sorting 

on GFP fluorescence, achieving a post-sort enrichment of >89% (fig. 5-44).  

 

 

 

Fig. 5-44: Scheme - Purification of the GFP-expressing shRNA-SEM-SLIEW fraction 

by fluorescence-activated cell sorting (FACS) and subsequent IF injection into 

NSG mice 

SEM-SLIEW cells transduced with either shNTC or shANGPT1 were sorted on GFP-expression 

using FACS, enriching the population from 28% to > 89%. The sorted populations were 

transplanted directly into the BM of NSG mice. Per treatment group n=5 mice were treated with 

approximately 50,000 cells each. 
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Two experimental animal groups consisting of n=5 NSG mice each were used for 

the xenograft study. One group was transplanted intrafemorally (IF) with 

approximately 50,000 SEM-SLIEW-shANGPT1 cells per mouse, while the control 

group was inoculated IF with the same number of SEM-SLIEW-shNTC cells. 

Immediately post-transplantation each mouse was injected intraperitoneally 

(IP) with 100 µl 40 µg/ml doxycycline solution in order to start in vivo shRNA 

expression induction, and this expression was maintained using drinking water 

supplemented with 1 mg/ml doxycycline. 

In order to assess bioavailability of the supplemented or injected doxycycline, 

an ex vivo bioassay using plasma from the transplanted NSG mice was 

developed. PB was harvested from a mouse both injected IP with doxycycline 

and fed with supplemented drinking water, and from a mouse only treated with 

supplemented drinking water. Plasma was collected from PB and diluted 1:5 

with cell culture growth medium. This conditioned medium was used to culture 

SEM-SLIEW shANGPT1 cells for 48h. Both IP injection and the drinking water 

alone resulted in sufficiently elevated doxycycline plasma levels to induce RFP 

expression ex vivo and in vitro, as determined by flow cytometry (fig. 5-45B). In 

order to quantify the plasma doxycycline levels, a titration experiment was 

performed in parallel: SEM-SLIEW shANGPT1 cell were cultured for 48h in cell 

culture growth medium supplemented with a dose range from 0 - 1 µM 

doxycycline. The resulting RFP induction augmented linearly with increasing 

doxycycline expression (fig. 5-45A), and regression analysis provided the 

equation employed to calculate the plasma doxycycline levels from the 

measured RFP fluorescence, taking into account the dilution factor. Doxycycline-

containing drinking water alone elevated plasma levels to 0.2 µg/ml, an 

additional IP injection with doxycycline yielded a doxycycline plasma 

concentration of 0.53 µg/ml.  
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Fig. 5-45: Bioassay to determine doxycycline plasma levels 

PB was harvested from a mouse approximately 2-3h after receiving an IP bolus injection of 0.1 

ml doxycycline (40ug/ml), and from a control mouse which only had doxycycline administered 

via drinking water. The plasma was diluted five-fold with growth culture medium, and this 

conditioned medium was used to culture SEM-SLIEW shANGPT1 cells for 2 days. The resulting 

RFP induction was measured by flow cytometry (B). In order to correlate the fluorescence to a 

doxycycline concentration, SEM-SLIEW shANGPT1 cells were cultured with a doxycycline range 

from 0.1 to 3ug/ml (A). 

 

 

Disease development was monitored in vivo using bioluminescence imaging, 

and the mice sacrificed humanely when presenting clinically unwell or when 

disease burden exceeded animal welfare regulations. Disease penetrance was 

100% in the mice treated with SEM-SLIEW shNTC cells, while 80% of the mice 

transplanted with SEM-SLIEW shANGPT1 cells engrafted. The associated 

survival and disease statistics of both treatment groups are summarised in Tab. 

5-21. 

 

 

Tab. 5-21: Survival and disease burden statistics of both xenograft treatment 
groups 

 
SEM-SLIEW shNTC 

n=5 NSG mice 
SEM-SLIEW shANGPT1 

n=5 NSG mice 

penetrance  5/5 (100%) 4/5 (80%) 

median survival [d] 76 (47-76) 64 (56-76) 

median BM engraftment [%] 25.1 (4-55.14) 7.45 (0-7.9) 

median spleen infiltration [%] 28.15 (22.9-41.6) 16 (0-37.5) 
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Although the median survival between both experimental groups did not differ 

significantly (fig. 5-46), both disease phenotype and the disease burden were 

vastly different.  

 

 

 

 

Fig. 5-46: Kaplan-Meyer plot depicting survival of the two treatment groups 

There was no difference (P=0.9885) in survival between mice injected with SEM-SLIEW shNTC 

cells and the group inoculated with SEM-SLIEW-shANGPT1 expressing cells. Statistical survival 

analysis was performed using a log-rank test. 

 

 

The NSG mice injected with SEM-SLIEW shNTC cells developed overt leukaemia 

and were sacrificed within 47 to 76 days. They presented a median engraftment 

in the BM of 25.1%, ranging from 4-55.14% (averaged over all hind limb femurs 

and tibiae per mouse assayed, fig. 5-47). The mice displayed massive 

splenomegaly as indicated by organ size (fig. 5-48), weight (fig. 5-48) and 
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infiltration with human cells (median of 28.15%, ranging from 22.9-41.6%, fig. 

5-47). In contrast, the shANGPT1 xenograft group showed only slightly enlarged 

spleen organs and increased spleen weight fig. 5-48A, B), and a reduced 

engraftment in the BM and the spleen, with a median of 7.45%, ranging from 0-

7.9%., and 16% (0-37.50%), respectively (fig. 5-47). 

 

 

 

 

Fig. 5-47 : Engraftment of human ALL cells in the BM and splenic infiltration  

Mice transplanted with SEM-SLIEW-shANGPT1 cells show a lower extent of BM engraftment 

and extramedullary disease, as illustrated by the percentage of human ALL cells in the spleen, 

than the control group inoculated with SEM-SLIEW-shNTC cells. The BM engraftment was 

determined averaging the percentage of ALL cells in the femurs and tibiae of the hind limbs of 

each mouse (number of positive events/number of total events*100). The box and whisker plots 

represent the interquartile range and the minimal/maximal values, respectively; the horizontal 

line indicates the median. 
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Fig. 5-48: Spleen characteristics in transplanted NSG mice 

Mice transplanted with SEM-SLIEW-shANGPT1 cells show less infiltration of the spleen with 

human ALL cells when compared to the control group inoculated with SEM-SLIEW-shNTC cells, 

displaying reduced enlargement of the spleen in both size (A) and weight (B). The box and 

whisker plots represent the interquartile range and the minimal/maximal values, respectively; 

the horizontal line indicates the mean. 

 

 

Tracking the disease development in vivo via bioluminescence imaging showed 

a systemic spread of the disease in the shNTC xenograft group, while the disease 

spread in the group transplanted with SEM-SLIEW shANGPT1 was substantially 

lower (Fig. 5-49 , upper panel). However, they developed a solid tumour 

composed of human cells at the injection site, as indicated by their luciferase 

activity (fig. 5-49, lower panel) and subsequent histological analyses via flow 

cytometry (fig. 5-50A). The SEM-SLIEW shANGPT1 treated mouse group was 

eventually terminated due to tumour size according to animal welfare 

restrictions (fig. 5-50B, C), albeit not due to overt leukaemia or presenting 

clinically unwell. This was further supported by the significant difference in 

body weight loss, a surrogate parameter to monitor mouse welfare (fig. 5-51). 
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Fig. 5-49: Bioluminescence in vivo imaging of leukaemic disease spread in NSG 
mice 

In order to monitor disease progression both xenotransplanted mouse groups were subjected to 

in vivo bioimaging. The mice were injected IP with 0.1 ml luciferin which was metabolised by the 

luciferase enzyme expressed in the SEM-SLIEW cells, thereby releasing a luminescent signal. 

Mice transplanted with SEM-SLIEW shANGPT1 cells showed a marked reduction of systemic 

spread (lower panel) compared to the control group (SEM-SLIEW shNTC, upper panel). 

Interestingly, the SEM-SLIEW shANGPT1 mice showed a strong signal in the right hind limb, the 

area surrounding the injection site. This could be attributed to the development of a solid 

tumour composed of human SEM-SLIEW cells in the adjacent tissue. Three representative mice 

from each treatment group are shown. 
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Fig. 5-50: Tumour characteristics of SEM-SLIEW shANGPT1-transplanted mice. 

Mice injected with SEM-SLIEW shANGPT1 cells developed a solid tumour adjacent to the 

injection site composed of human cells (A), which grew to be of substantial size (B) and weight 

(C); eventually, this hind limb tumour exceeded animal welfare regulations, and the mice were 

humanely killed. 
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Fig. 5-51: Terminal body weight loss in xenograft treatment groups 

Mice were weighed at regular intervals to monitor for body weight loss indicative of overt 

leukaemia. The changes were calculated on the difference between the peak body weight (set as 

100%) of each mouse and respective body weight at the last weighing time point. The treatment 

group transplanted with SEM-SLIEW shNTC showed a drastic weight loss, while the SEM-SLIEW 

shANGPT1 injected mice displayed no substantial changes. This difference in body weight loss 

was statistically significant as determined by an unpaired Student’s t-test Welch-corrected for 

unequal variances.  

 

 

 

In conclusion, the results of this pilot study show that ANGPT1 knock-down 

impinges on leukaemic disease development and spread in vivo. Further studies 

with a constitutively expressing shRNA system as well as bigger treatment 

groups in order to provide the necessary statistical power are required for 

validation of these observations. 
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5.7 EXPRESSION ANALYSIS OF OTHER ANGIOPOIETIN GENE FAMILY 

MEMBERS AND ANGIOGENIC FACTORS IN T(4;11)-POSITIVE ALL AND 

THEIR REGULATION BY MLL/AF4 

 

ANGPT1 works in a finely tuned balance with other angiogenic factors, 

particularly with its endogenous antagonist Angiopoietin-2 (ANGPT2). Thus, 

this study was expanded to investigate the effect of MLL/AF4 depletion on this 

system and also on other members of the ANGIOPOIETIN family.  

Screening of a BCP-ALL cell line panel for expression of several members of the 

Angiopoietin family revealed ubiquitous expression of ANGPT2 and ANGPTL2, 

while ANGPT4 was restricted to the t(4;11)-positive cell lines. ANGPTL4 was 

widely expressed in BCP-ALL cell lines, albeit not in the model cell line SEM (fig. 

5-52). 

 

Fig. 5-52: Expression Analysis of ANGIOPOIETIN family members in ALL cell lines 

ANGIOPOIETIN family member expression was determined in a BCP-ALL leukaemia cell line 

panel by qRT-PCR, and amplicons were visualised by DNA-polyacrylamide gel electrophoresis. 

Results from one single experiment are shown, each sample was performed in triplicates. 



ANGIOPOIETIN-1, a novel factor implicated in t(4;11)-positive ALL 
 

351 
 

Apart from ANGPT1, also another angiopoietins family member, ANGPTL2, 

showed differential expression in the Illumina HT12 BeadChip array in 

response to siMLL/AF4 treatment.  

  

 

 

Fig. 5-53: Normalised ANGPTL2 probe signal values in samples depleted of 

MLL/AF4 

SEM cells had been depleted of MLL/AF4 for 4 & 6 days (d4, d6) using siMLL/AF4, or cells were 

transfected with control siRNA (siCtrl). Signal intensity values of the Illumina HT12 bead array 

probes for ANGPTL2 of the siMLL/AF4 samples at each time point were normalised against 

corresponding controls samples, and the signal value fold-change log2-transformed. 
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This result was validated in vitro using qRT-PCR (fig. 5-54). Knock-down of 

MLL/AF4 for 4d resulted in a 52% decrease of ANGPTL2 mRNA when compared 

to the corresponding controls (p< 0.001). 

 

 

 

 

Fig. 5-54: ANGPTL2 expression analysis by qRT-PCR in MLL/AF4 depleted SEM 
cells  

ANGPTL2 is down-regulated in response to a sustained siMLL/AF4 treatment for 4d in SEM cell, 

when compared to controls. The graph represents the mean of n=3 independent experiments, 

error bars show S.E.M. Statistical analysis was performed using an unpaired Student’s t-test (*** 

= p< 0.001). 
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The dependency of ANGPTL2 expression on the MLL/AF4 status of the cell 

however could not be validated in primary patient material; electroporation of 

patient cells carrying MLL/AF4 fusion gene (e9-e4 breakpoint) with siMLL/AF4, 

control siRNA (siAML1/MTG8) or without siRNA (MOCK) did not result in 

ANGPTL2 expression changes (fig. 5-55) at the time points queried. 

 

 

 

 

Fig. 5-55: ANGPTL2 expression analysis by qRT-PCR in MLL/AF4 depleted 
primary patient blasts.  

Primary patient blasts were electroporated with siMLL/AF4, control siRNA (siAML1/MTG8) or 

without oligonucleotides (MOCK). ANGPTL2 show no alteration in expression levels in response 

to a siMLL/AF4 treatment for 24h, 48h and 72h, when compared to controls. The graph 

represents the mean of one single experiments; each sample performed in triplicate. 
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Not much is known about the function of ANGPTL2, however it has been 

reported that it plays a role in HSC expansion ex vivo. Other ANGPTL proteins, 

such as ANGPTL3, ANGPTL7, have also been implicated in HSC proliferation and 

stemness. Since MLL/AF4-positive ALL has been associated with a stem cell-like 

signature in literature, which has been supported in this study, not least by the 

MLL/AF4-dependent expression of the HSC-factor ANGPT1, the ANGPLT2 

expression levels in CD34+ CB cells was investigated. In concordance to its 

reported function, the median ANGPTL2 expression was 3.3-fold higher in 

CD34+ CB cells compared to bulk CB cells. Due to the small sample size and the 

variable distribution, no statistical significance could be concluded (fig. 5-56). 

 

 

 

Fig. 5-56: ANGPTL2 expression analysis in purified and fractioned CB cell 
populations  

Mononuclear CB cells were fractionated using MACS on the cell surface marker CD34. The bulk 

population was simultaneously purified by negative selection. ANGPTL2 levels were determined 

by qRT-PCR. The graph represents n=3 individual CB, statistical analysis was performed using a 

Mann-Whitney test. 
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In contrast to ANGPTL2, no differential expression of the ANGPT1 antagonist 

ANGPT2 could be observed in the Illumina HT-12 BeadChip arrays. However, 

ANGPT2 showed a response to MLL/AF4 down-regulation. Interestingly, while 

ANGPT1 expression decreased, knock-down of MLL/AF4 had the reverse effect 

on ANGPT2 in SEM cells, and resulted in a 4.9-fold up-regulation compared to 

controls (fig. 5-57).  

 

 

 

Fig. 5-57: ANGPT2 expression analysis by qRT-PCR in MLL/AF4 depleted SEM cells  

ANGPT2 is up-regulated in response to a sustained siMLL/AF4 treatment for 4d in SEM cells, 

when compared to controls. The graph represents the mean of n=3 independent experiments, 

error bars show S.E.M. Statistical analysis was performed using an unpaired parametric 

Student’s t-test (*** = p< 0.001). 
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This result could not be validated in primary patient material; electroporation 

of patient cells carrying the MLL/AF4 fusion gene (e9-e4 breakpoint) with 

siMLL/AF4, control siRNA (siAML1/MTG8) or without siRNA (MOCK) did not 

result in ANGPT2 expression changes (fig. 5-58). 

 

 

 

 

Fig. 5-58: ANGPT2 expression analysis by qRT-PCR in MLL/AF4 depleted primary 
patient blasts.  

ANGPT2 show no alteration in expression levels in response to a siMLL/AF4 treatment for 72h 

in primary patient blasts, when compared to controls. The graph represents the mean of one 

single experiment; each sample was performed in triplicate. 
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There have been no reports about a potential role of ANGPT2 in either 

haematopoiesis or the microenvironment. Of note is that ANGPT2 was 

expressed to a high level in CB, but there was no enrichment in the CD34-

positive CB fraction when compared to the bulk CB cells (fig. 5-59). 

 

 

 

Fig. 5-59: ANGPT2 expression analysis in purified and fractioned CB cell 
populations  

Mononuclear CB cells were fractionated using MACS on the cell surface marker CD34. The bulk 

population was simultaneously purified by negative selection. ANGPT2 levels were determined 

by qRT-PCR. The graph represents n=3 individual CB, statistical analysis was performed using a 

parametric unpaired Student’s t-test. 
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5.8 CONCLUSIONS 

 

The body of evidence in this chapter showed that, 

 ANGPT1 expression is dependent on MLL/AF4, since fusion gene 

depletion in t(4;11)-positive ALL cells results in ANGPT1 down-

regulation on RNA and protein level. 

 ANGPT1 is required for proliferation and viability of the t(4;11)-positive 

cell line SEM in vitro, as well as leukaemic disease propagation in vivo. 

 ANGPT1 is substantially overexpressed in MLLr-ALL, particularly 

t(4;11)-positive ALL compared to controls. 

 ANGPT1 is highly expressed in haematopoietic stem cells. 

 Other Angiopoietins are also regulated in a MLL/AF4-dependent manner. 
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5.9 DISCUSSION – ANGPT1 IS OVEREXPRESSED IN MLLR-ALL AND 

REGULATED IN A FUSION GENE-DEPENDENT MANNER 

Tumour angiogenesis and the remodelling of the neoplastic microenvironment 

via tumour-derived angiogenic factors has been regarded as one of the 

established hallmarks of cancer, providing the rationale for antiangiogenic 

therapy strategies250-251. In recent years, the effect of BM neoangiogenesis in 

haematological malignancies and its importance in therapy-response and 

disease maintenance has been of increasing interest. Involvement of angiogens 

such as VEGF-family members, their receptors (VEGFR-1-3), the angiopoietins 

ANGPT1, ANGPT2 and their cognate receptor TIE2 have been associated with 

disease outcome in AML, myeloma, lymphoma and chronic lymphocytic 

leukaemia (CLL)340-346; as a consequence, therapies involving anti-angiogenic 

drugs have been developed and implemented in clinical trials347-351. In contrast, 

the role of BM angiogenesis and angiogenic factors in ALL remains as of yet 

poorly understood. Expression of VEGF family members and other 

proangiogenic cytokines, such as basic Fibroblast Growth Factor (bFGF), IL-8, 

and iNOS, as well as increased BM vascularity have been reported in ALL, 

however the role of these factors and their impact on disease progression and 

outcome has been discussed controversially340,342,352-356. 

One recent study showed that ALL blasts expressing VEGFR-1 had a 

proliferative advantage upon receptor stimulation in vitro, and VEGFR-1+ ALL 

blasts were associated with increased egress from the BM and onset of systemic 

organ infiltration in a NOD/SCID xenograft animal model, providing functional 

evidence for the role of angiogenic factors in ALL disease maintenance and 

progression.357 Interestingly, there are absolutely no reports on the role of the 

ANGIOPOIETIN family in ALL. Thus, in this current study, expression of 

ANGTP1, ANGPT2 and ANGPTL2 in BCP-ALL is reported for the first time, and in 

particular ANGPT1 is identified as a novel proleukaemic cytokine overexpressed 

in MLLr-ALL and regulated in a MLL fusion protein-dependent manner.  

T(4;11)-positive ALL cell lines and patient blasts express ANGPT1 to high levels, 

and RNAi-mediated down-regulation of the fusion protein MLL/AF4 results in a 
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decrease of ANGPT1 on RNA and protein level (fig. 5-2, fig. 5-3). This is a graded 

effect, and occurs in a time-dependent manner, with substantial ANGPT1 

reduction being first measured at 48h post MLL/AF4 knock-down; this 

reduction augments with prolonged siMLL/AF4 treatment. This delayed 

response argues against ANGPT1 being a direct target gene of MLL/AF4. Indeed, 

ChIP-Seq data mapping MLL/AF4 binding sites in the SEM cells corroborate this; 

while the ANGPT1 gene locus contains activating histone modification marks it 

is not occupied by the fusion protein132. Hence, ANGPT1 overexpression and the 

fusion gene-dependent down-regulation seem to occur downstream of 

MLL/AF4. 

The three investigated MLLr-ALL subtypes, t(4;11), t(11;19) and t(9;11) have a 

median 10-208 fold higher ANGPT1 levels when compared to non-MLLr BCP-

ALL, albeit each fusion gene to a different extent, arguing for a possible 

underlying common process (fig. 5-11). Indeed, gain-of-function studies using 

overexpression of different MLL fusion genes resulted in ANGPT1 up-regulation: 

transient transfection of MLL/AF4 in murine embryonic fibroblasts resulted in 

increased Angpt1 (personal communication with Prof. R. Marschalek). 

Concordantly, Chen et al. showed that transduction of murine lineage-negative 

(lin-) HSCs and common lymphoid progenitors (CLP) with MLL/AF9 resulted in 

ANGPT1 up-regulation358. Thus, what are the potential molecular mechanisms of 

ANGPT1 overexpression in MLLr-ALL?  

First, we investigated involvement of HOXA transcription factors in ANGPT1 

regulation. Yassin and colleagues showed that transformation of HSCs with the 

myeloid fusion oncogenes NUP98-DDX10 or NUP98-HOXA9 resulted in 

concomitant up-regulation of the HOXA gene cluster and ANGPT1359. Since one 

of the hallmarks associated with MLLr acute leukaemia is aberrant 5’-HOXA 

gene cluster expression360-361, and, most importantly, MLL/AF4 knockdown 

resulted in down-regulation of HOXA6, HOXA7, HOXA9 and HOXA10 (fig. 3-43, 

fig. 3-44,170), this provided a solid rationale for a potential MLL-

FP/HOXA/ANGPT1 axis. Indeed, in silico analysis of the ANGPT1 promoter, 

spanning 5kb upstream and 1 kb downstream of the TSS, revealed several 

putative HOXA gene binding sites (fig. 5-15). However, RNAi-mediated HOXA7 
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depletion had no effect on ANGPT1 levels, and there was no correlation between 

ANGPT1 RNA expression and the transcript levels of the HOXA family members, 

HOXA6-HOXA10, disproving a potential role of HOXA genes in mediating ANGPT1 

transcription (fig. 5-16 to fig. 5-17).  

Recently, EVI-1 has been identified as a target gene of the MLL-fusions MLL/AF9 

and MLL/ENL in transformed murine lin- HSCs, as well as being up-regulated in 

MLLr-AML362. Similarly, the study by Chen and colleagues showed that 

overexpression of MLL/AF9 in HSCs/CLPs resulted in higher levels of EVI-1 

when compared to the EVI-1 expression of transduced myeloid progenitors358. 

EVI-1 is an important transcription factor in haematopoietic development, and, 

what is more, it has been shown to mediate ANGPT1 expression in HSCs363, 

providing a tangible link between MLL-FP and ANGPT1. Interestingly, while 

well established in AML, EVI-1 has so far not been implicated in ALL in general, 

or MLLr-ALL in particular. Indeed, in the MLL/AF4-positive ALL gene 

expression profiling (GEP) study performed in this PhD thesis as well as GEPs of 

MLLr-ALL performed by others132,168, EVI-1 is associated with absent calls in the 

arrays, denoting lack of expression. These studies were performed by two 

different platforms, the Illumina HT-12 bead array in present thesis, in which 

EVI-1 is covered by one probe set, as well as the Affymetrix HU-133 plus 2.0 

platform, in which 5 probe sets cover a locus described as MECOM (MDS1 and 

EVI-1). However, a potential limitation in the probe designs cannot be ruled out, 

and validation of EVI-1 expression in laboratorio should provide an indication 

whether EVI-1 is both expressed in MLLr-ALL and involved in ANGPT1 

expression regulation. 

Another potential mechanism of ANGPT1 expression in MLLr-ALL could be 

explained from the so-called “cell-of-origin” hypothesis, which addresses the 

aetiology of the leukaemia, indicating at which stage in haematopoietic 

differentiation the oncogenic hit occurred or the transformed cell was arrested. 

MLL/AF4-positive ALL is associated with a very immature pro-B 

immunophenotype137, as well as a HSC-like gene signature132. In healthy BM, 

ANGPT1 is part of the “normal” (i.e. healthy) HSC gene signature, being 

expressed by lineage negative HSCs, as well as by BM endothelial cells, acting in 
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a paracrine and autocrine manner to promote HSC quiescence327,364-365. 

Concordantly, in present PhD thesis, significant overexpression of ANGPT1 in 

CD34-positive CB cells, a population enriched for HSCs, was shown when 

compared to the bulk CB cells (fig. 5-6). Thus, conceivably, ANGPT1 up-

regulation in MLLr-ALL might be an epiphenomenon, since it could be part of 

the normal genetic/transcriptional make-up of the cell of origin/ arrested cell. 

This is further supported by the fact that MLL germline infant ALL patient cells 

show strong up-regulation of ANGPT1, albeit in a very small patient panel (2/4 

cases), and these two cases are associated with a pro-B immunophenotype. 

Another corroborating fact to take into account is that, although they share the 

same primary oncogene, MLLr-AML cell lines showed more than a 1,000-fold 

lower ANGPT1 expression when compared to the MLLr-ALL cell lines (fig. 5-9). 

While the two MLL/AF4-positive ALL cell lines SEM and RS4;11 are pro-B-ALL, 

MV4;11 (MLL/AF4-positive) and THP-1 (MLL/AF9-positive) are classed as M5-

AML according to the FAB classification system, indicating a more mature 

differentiation stage. In keeping with this, a study in infant AML identified 

elevated ANGPT1 expression in M0-AML patients, which characterises a very 

immature AML subtype with dismal prognosis. In contrast, ANGPT1 expression 

was shown to be low in MLLr-infant AML patients, which belong to the more 

mature M4/M5-AML subtypes366. Consequently, a possible explanation for the 

dependency of ANGPT1 expression on the MLL/AF4 status of the cells might be 

that down-regulation of MLL/AF4 depletion results in increased differentiation 

of the cells, as shown in a reduction of the stem cell marker CD133 (PROM1) 

previously reported by our group148 and also observed in the GEP studies 

performed in this project, as well as the decrease of several other genes 

associated with stemness, such as TERT, the HOXA gene cluster, HMGA2, etc (tab. 

3-20).  

However, the differentiation status of the leukaemic cell, while most probably 

an important contributory factor, seems unlikely to explain the ANGPT1 

expression in MLLr-ALL and its dependency on MLL/AF4 on its own, since this 

concept is contradicted, as discussed before, by the fact that ectopic 

overexpression of MLL-FP in HPCs results in ANGPT1 up-regulation. Another 

argument supporting ANGPT1 expression to be a MLLr-inherent characteristic 
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is that t(4;11)-positive cells have been reported to possess an intrinsic 

angiogenic programme, as evidenced by their ability to recruit blood vessels in a 

NOD/SCID xenograft model, and the expression of  multiple angiogenic 

factors367. In order to unravel the link between MLL/AF4 and other MLL fusion 

genes in ALL and ANGPT1, further studies are required. 

 

ANGPT1 expression also plays functional role in t(4;11)-positive ALL, acting in a 

proleukaemic fashion. Here, we show that RNAi-mediated down-regulation of 

ANGPT1 impinges on proliferation and viability in vitro, and affects leukaemic 

disease progression in an in vivo NSG xenograft model. In previous studies in 

AML, ANGPT1 has been shown to promote proliferation and survival of blasts in 

vitro368. Furthermore, recently it has been reported that ANGPT1 can promote 

HSC proliferation in an autocrine manner364. Associated pathways were the 

PI3K/AKT- & the STAT- signalling cascades, mainly controlled by the TIE2 

receptor369-371. However, the SEM cell line does not express TIE2 (fig. 5-19), but 

TIE1 (fig. 5-20) and specific integrins (fig. 5-21), which are mediators of the 

non-canonical ANPGT1 signalling. Integrins have been shown to stimulate 

proliferation and survival in response to angiopoietins, as well as promoting 

metastasis. This occurs by outside-in signalling, involving FAK (focal adhesion 

kinase) and ILK (integrin-linked kinase) signalling and downstream PI3K/AKT- 

and ERK- pathways 332-335,372. ANGPT1 depletion in SEM cells resulted in an anti-

proliferative and anti-survival phenotype (fig. 5-27 to fig. 5-29), suggesting 

presence of an autocrine signalling axis, most likely mediated by integrins; 

however the downstream pathways are unknown to date and require further 

investigation.  

An indication about possible signalling cascades mediating the effects of 

ANGPT1 on the leukaemic cells is given by the results of the GEP performed on 

siANGPT1-treated SEM cells. Pathway analysis revealed differential expression 

of factors associated with GPCR/cAMP/PKA- and cytoskeleton-associated 

signalling, with a net inhibitory effect (fig. 5-34, fig. 5-38, fig. 5-37), pathways 

well characterised in their leukaemia promoting function. Notably, while these 

factors might well play a role in the SEM cell line, there might be other 
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mechanisms involved in ANGPT1-mediated proleukaemic functions in t(4;11)-

positive ALL patients, as these blasts, contrary to the SEM cell line, widely 

expressed TIE2 (fig. 5-19), allowing for a canonical autocrine pathway, 

reportedly involving PI3K and STAT signalling. 

Next to the aforementioned pathways, the most significantly affected signalling 

cascade entail the glucocorticoid receptor (GR) machinery, which is induced in 

ANGPT1-depleted SEM cells. Glucocorticoid resistance has long been 

established as an adverse prognostic factor in ALL, and several mechanisms 

underlying have been so far proposed, including reduced GR expression373, 

overexpression of antiapoptotic mediators like MCL1167,374 and XIAP375 as well 

as mutations in specific miRNA species376. Interestingly, down-regulation of 

ANGPT1 resulted in up-regulation of genes encoding the GR itself as well as 

cofactors and downstream mediators (fig. 5-35). Thus, a putative sensitisation 

in SEM cells towards the chemotherapeutic glucocorticoid dexamethasone 

(DEX) was assessed in SEM cells transfected with siANGPT1 or depleted of 

MLL/AF4. ANGPT1 down-regulation only subtly increased the response 

towards DEX, which could be partially rescued by exogenous rhANGPT1 (fig. 4-

40). MLL/AF4 depletion did not affect sensitivity, but although MLL/AF4 

regulates ANGPT1, this is a delayed effect, and one could hypothesise that the 

timepoint queried might have been too early, thus remaining above a putative 

ANGPT1 dosage threshold. Nevertheless, ANGPT1 seems to play only a very 

minor role, if at all, in GC-resistance in SEM cells, and is clearly superseded by 

other molecular mechanisms. 

Due to time constraints, no further investigation into the downstream 

ANGPT1 signalling pathways could be performed in this thesis, and further 

future studies need to be performed into this aspect. 

The observation that ANGPT1 down-regulation has an anti-leukaemic effect in 

the SEM cell line in vitro could also be translated into an in vivo setting. 

Transplantation experiments in the immunodeficient NSG mouse model with 

SEM cells modified to express shRNA against ANGPT1 revealed a striking 

phenotype associated with ANGPT1 depletion. In contrast to the control group, 

mice transplanted with shANGPT1-transduced cells did not develop overt 
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leukaemia, but grew tumours composed of SEM cells at the injection site (fig. 

5-50). In addition, the engraftment and systemic spread of the leukaemic was 

significantly reduced, as indicated by in vivo imaging studies (fig. 5-49) and the 

observation that both the blast burden in the BM and extramedullary leukaemic 

infiltration in the spleen was decreased (fig. 5-48). The fact that only one 

treatment group, the mice inoculated with the shANGPT1-transduced SEM cells, 

developed extrafemoral tumours argues against this being a technical artefact. 

On the contrary, it is suggestive that ANGPT1 depletion affects the interactions 

of the leukemic cells with the BM, impairing lodgement of the cells within the 

microenvironment. This would be consistent with the reported role of ANGPT1 

in the BM, as well as in accordance with the results, albeit not validated as of yet, 

from the GEP and associated pathway analyses of siANGPT1-treated SEM cells. 

However, contradictory to the in vitro findings on ANGPT1 depletion, where it 

impinged on proliferation and viability, in vivo, SEM cells depleted of ANGPT1 

can grow to form a tumoural mass. A possible explanation of this could be found 

in the shRNA expression system employed and associated pharmacodynamics. 

The expression vector is an inducible Tet-On system under regulation of 

doxycycline; while doxycycline was initially administered to the mice via an i.p. 

bolus and subsequently continuously dispensed in the drinking water, the 

bioavailability of doxycycline in situ might not have been equal in the different 

tissues where the SEM cells were located. Although plasma levels were 

sufficient to induce shRNA expression ex vivo (fig. 5-45), it is has been shown 

that spleen and skeletal muscle tissue have a lower dox penetration377 than 

other organ and cell compartments. Thus, one could hypothesise that SEM not 

lodged in the BM and exiting through the injection injury were then located in 

haven-like environment, where proliferation was not impaired due to absence 

of ANGPT1 depletion. The observed limited systemic spread of the leukaemic 

cells could then be attributed to dissemination from the tumour site, and 

subsequent extramedullary infiltration. In order to confirm the role of ANGPT1 

in leukaemogenesis in vivo, similar transplantation experiments using a 

constitutive expression system would be very informative. 
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Apart from ANGPT1, MLL/AF4 depletion also affected other ANGIOPOIETIN 

family members. For instance ANGPT2, the endogenous antagonist of ANGPT1. 

In contrast to ANGPT1, this gene showed a ubiquitous expression pattern, 

where the transcript could be detected in both MLLr- and MLL germline BCP-

ALL cell lines (fig. 5-52). ANGPT2 expression levels where, like ANGPT1, affected 

by MLL/AF4 depletion in SEM cells, but regulated opposingly, as ANGPT2 was 

significantly up-regulated in response to MLL/AF4 depletion (fig. 5-57). To date, 

no reciprocal expression regulation or feedback loops between the two 

ANGIOPOIETIN proteins have been observed. How can this observation be 

interpreted? In a normal haematological setting, ANGPT2 does not seem to play 

a major role: although inhibiting ANGPT1-mediated signalling in TIE2-

expressing BM-derived HSCs in vitro,378 it is not expressed in the in the BM at a 

high level379. Furthermore, ANGPT2-deficient mice did not show any 

haematopoietic defects.380 Concordantly, no significant differences could be 

detected between the ANGPT2 levels in cord blood-derived HSCs and the bulk 

cord blood population (fig. 5-59). Of note, however, is that ANGPT2 has been 

described as a mediator of inflammation381 as well as reportedly being up-

regulated by inflammatory factors382-383. Since MLL/AF4 depletion induces pro-

inflammatory cytokines and mediators such as IFI44, IFIT3 and IFIT2 (section 

3), this might be a possible explanation for MLL/AF4-mediated ANGPT2 up-

regulation. The question however remains about the effect of ANGPT2 induction 

in this leukaemic setting. In haematologic malignancies the role of ANGPT2 has 

been shown to be very much context-dependent: in AML, high levels of 

systemically circulating ANGPT2 are linked with an adverse prognosis384-386, 

and in CLL, elevated ANGPT2 expression in blasts has been linked to poor 

survival386. Moreover, ANGPT2 is a well-established factor promoting tumour 

angiogenesis in solid cancers387. Conversely, high secretion by PBMCs in AML 

patients correlates with increased survival388-389, particularly in conjunction 

with low VEGF-C levels368, and recently, in an in vivo RNAi screen for 

lymphomagenesis, ANGPT2 was identified as a key tumour suppressor gene390. 

Furthermore, locally produced angiopoietins might be antagonised - or its 

function influenced- by the interplay of systemic angiopoietins levels and/or the 

presence of other angiogens. This plethora of contradictory results only 
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highlights the complex biology surrounding angiopoietins, cancer and tumour 

angiogenesis. Ultimately, MLL/AF4 depletion disturbs the fine-tuning between 

ANGPT1 and ANGPT2, which might contribute to the observed phenotypes. 

Next to ANGPT2, there is another MLL/AF4 responsive Angiopoietin family 

member, namely ANGPTL2. It plays like ANGPT1 a role in HSC biology, as it has 

been shown to promote ex vivo proliferation of HSCs while retaining their self-

renewal capacity391-392. Also similar to ANGPT1, depletion of MLL/AF4 is 

accompanied by a reduction in ANGPTL2 levels (fig. 5-53), and although 

expressed at lower levels than ANGPT1, ANGPTL2 is up-regulated in CD34+ CB 

compared to the bulk CB cells (fig. 5-56). Possibly, a reduction of ANGPTL2 

levels in MLL/AF4 depleted cells could be a response to the down-regulation of 

the HSC-like signature, as described in chapter 3. The role of ANGPTL2 in 

malignancy has not been studied to date. 

 

What are the implications of Angiopoietins in infant MLLr-ALL? On the one 

hand, ANGPT1 is an important regulator of HSC quiescence and stemness, and 

suppression of ANGPT1 signalling induces HSC cycling and promotes 

differentiation393. Furthermore, ANGPT1 mediates tight interactions between 

the HSCs with the support cells in the BM microenvironment327. Translating this 

into a clinical setting, infant MLLr-ALL patients show a slow response to 

treatment, and although eventually the CR rate is 95%, MRD in the BM is high 

and a great proportion of the patients relapse on treatment, with BM as primary 

site of relapse54,57. The ANGPT1/TIE2 axis could contribute to this phenotype, as 

infant t(4;11)-positive ALL patients not only overexpress ANGPT1, but also its 

cognate receptor TIE2, providing the mechanism for an autocrine signalling 

loop which might promote both increased quiescence and interactions with the 

BM in a subset of the cells, important factors implicated in therapy-resistance 

and -evasion.  

On the other hand, ANGPT1 not only regulates the interactions between HSCs 

and the BM microenvironment, it has also been shown to act as a potent 

prosurvival factor in diverse cell types, including AML blasts. Consistent with his 
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notion, ANGPT1 depletion impinged on the survival of the t(4;11)-positive ALL 

cell line SEM, and reduced BM engraftment in the an in vivo xenograft model. 

Hence, ANGPT1 might not only contribute to the lodgement of the blasts into the 

BM and their quiescence, but provide a strong anti-apoptotic signal as well. Last 

but not least, the BM is a complex compartment, consisting of several different 

cell types, a range of soluble cytokines and a hypoxic environment. There is 

increasing evidence that secreted cytokines from leukaemic blasts might 

activate the BM endothelial cells to produce factors which in turn promote 

leukaemic survival. Thus ANGPT1 secreted by the MLLr-ALL patient blasts 

might contribute to the leukaemic remodelling of the BM microenvironment. 

Apart from ANGPT1, another factor involved in HSC maintenance and able to 

exert proangiogenic effects, ANGPTL2, was down-regulated in response to 

MLL/AF4 knock-down. To date, it has not been investigated in the context of a 

leukaemic setting, and not much is known about ANGPTL2 signalling; but there 

seems to be evidence involving integrins394, not unlike the non-canonical 

ANGPT1 signalling pathway. Further studies are required to elucidate it role in 

t(4;11)-positive ALL pathobiology. 

Currently, there are several drugs targeting angiopoietins and malignant 

angiogenesis in clinical trials, for instance AMG-386, an angiopoietin inhibitor, is 

being employed in breast cancer therapy395. Additionally, antiangiogenic drugs 

like bortezomib are well-established chemotherapeutics in myeloma396; a recent 

in vitro study in AML with bortezomib showed a strong down-regulation of 

ANGPT1370. The findings in current thesis provide evidence that Angiopoietin 

signalling might represent a potentially interesting therapeutic target in MLLr-

ALL, both via the ANGPT1/TIE2 axis and the non-canonical pathway involving 

of integrins; and infant MLLr patients might benefit from an antiangiogenic 

therapy.
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6. Concluding Remarks  

Acute lymphoblastic leukaemia, like all malignancies, is characterised by 

aberrant self-renewal capacity, apoptosis-evasion and limitless proliferation. 

Here, in this thesis, it was shown that MLL/AF4 represents a crucial gatekeeper 

of these oncogenic functions in t(4;11)-positive ALL; RNAi-mediated ablation of 

this fusion gene in the t(4;11)-positive ALL cell line SEM resulted in an 

invariable collapse of the cellular processes, impinging on cell cycle progression, 

proliferation, clonogenicity and eventually leading to cell death.  

6.1.1 MLL/AF4 depletion perturbs leukaemic cell survival 

This loss of viability was particularly striking, as t(4;11)-positive ALL marks a 

disease resistant to chemotherapy, and MLL/AF4-positive cells have been 

shown to be very impervious to metabolic and genotoxic stress signals. To date, 

the molecular processes mediating this resistance are not fully understood, 

however, several upstream factors have been implicated, such as up-regulation 

of the antiapoptotic Bcl2 family members MCL-1 and BCL-2, aberrant 

expression of the HOXA gene cluster as well as deregulation of specific miRNAs.  

In order to identify both down-stream effectors and the time flow of the 

molecular processes underlying the anti-leukaemic phenotype, the RNAi time 

course study was combined with global transcriptome analysis. MLL/AF4-

depleted cells revealed the induction of a programme comprising proapoptotic 

and anti-proliferative genes, prominently NOXA (PMAIP1), ANXA1, GABARAPL1, 

REEP3 but also the interferon-stimulated gene family members IFI44, IFIT2, 

IFIT3, which all formed part of the MLL/AF4 and zVAD core signatures. This 

indicated a high dependency of these genes on MLL/AF4, and, assuming a 

hierarchical molecular process, that these genes might potentially play an 

instrumental role in apoptosis induction. However, only REEP3 has been 

reported as a direct MLL/AF4 target, suggesting an indirect regulatory 

mechanism for the remainder. 



Concluding Remarks 
 

370 
 

Interestingly, NOXA397 and ANXA1398 both are p53 target genes, and p53 

has been recently implicated in the up-regulation of interferon-stimulated gene 

family399-400. Loss-of-function mutations of the tumour suppressor p53 occur in 

about 50% of cancer cells, but although this method of inactivation rarely 

occurs in childhood ALL401 , loss of p53 activity can also be mediated by other 

mechanisms. Particularly in MLLr leukaemias, the MLL fusion proteins 

MLL/ENL, MLL/ELL, MLL/AF9, MLL/AF10 and MLL/MEN have been shown to 

directly interact with p53, impairing its transactivation activity in response to 

genotoxic injury402-404. This inhibition is based on direct binding via the fusion 

partner moieties, and as MLL/AF4 has been found to interact with several of 

these genes as part of the SEC and DOT1L complexes, it is likely that MLL/AF4 

might impinge on p53 activity via this mechanism. Thus, loss of MLL/AF4 might 

derepress p53 transcriptional activity, subsequently promoting the cell cycle 

arrest and apoptosis observed via specific target genes such as the 

aforementioned. However, this hypothesis has to be tested, in order to see 

whether p53 inhibition plays any role in MLL/AF4-mediated apoptosis 

resistance. 

Strikingly, the cell death programme initiated by MLL/AF4 ablation could not be 

rescued; treatment of MLL/AF4-depleted cells with the broad-spectrum caspase 

inhibitor zVAD-FMK suppressed apoptosis induction, but subsequently caused a 

switch of programmed cell death type towards one with a more necroptotic 

phenotype. Concomitant global transcriptome profiling found in addition to the 

aforementioned proapoptotic genes also induction of factors recently described 

as key mediators of the necroptosis pathway291; in contrast, these genes were 

not part of the corresponding MLL/AF4 signature. This differential expression 

could be validated in vitro; where it was found that the key necroptosis 

mediators TNF, CYLD and RIPK1 were exclusively up-regulated in SEM cells 

treated with both siMLL/AF4 and zVAD.  

The anti-proliferative and proapoptotic programme initiated in response 

to MLL/AF4 depletion was supported by the concerted down-regulation of pro-

survival signalling cascades on a transcriptional level. Interestingly, those 

pathways had been previously reported to be constitutively active in MLLr ALL, 
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such as IGFR1, ERK1/2, JAK/STAT and ephrin signalling. These are also widely 

implicated in ALL and in other malignancies, and there are several different 

mechanisms underlying their aberrant activation. While an influence of 

MLL/AF4 on IGFR1 expression could be explained via the MLL/AF4-HOXA9-

IGFR1 axis and MLL fusion genes have been reported to directly regulate ephrin 

receptors and their ligands, the transcriptional link between MLL/AF4 and 

STAT3 and MLL/AF4 and ERK could not be derived. 

 

6.1.2 MLL/AF4 depletion results in down-regulation of stemness-

associated markers 

In addition to the loss of viability, MLL/AF4 depletion also resulted in impaired 

clonogenicity, which represents an in vitro assay for self-renewal. This coincides 

with previous in vivo studies from our group, where MLL/AF4 ablation 

impinged on leukaemia propagation148. Furthermore, in concordance with the 

literature, gene expression profiling showed that MLL/AF4 regulated a subset of 

stemness-associated genes, including the HOXA gene cluster (HOXA6-HOXA10), 

which represents to date the best-characterised target genes of MLL fusion 

proteins. In addition, MLL/AF4 modulates TERT expression, one of the key 

factors of transformation and aberrant self-renewal in malignancies; our group 

could now report that this occurs in a HOXA7-dependent manner170. 

Furthermore, in this study it was possible to identify novel MLL/AF4-regulated 

stem cell markers, such as HMGA2, ANGPTL2 and ANGPT1; MLL/AF4 depletion 

correlated with a substantial decrease in their respective expression levels.  

Particularly ANGPT1 was of interest, since it is vital cytokine implicated in HSC 

homeostasis327. ANGPT1 expression regulation was found to be strongly linked 

to MLL fusion genes; screening of a B-cell precursor ALL patient cohort showed 

a substantial and significant overexpression of ANGPT1 in MLLr ALL when 

compared to ALL with a MLL germline configuration or healthy controls. 

Moreover, MLL/AF4 ablation in both the SEM cell line and in primary patient 

blasts resulted in a strong down-regulation in ANGPT1 expression  
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Interestingly, although an important regulator in haematopoietic stem-cell 

quiescence, in present cellular context ANGPT1 plays an important role in 

proliferation and survival of MLL/AF4-positive ALL cells. Functional analyses 

revealed ANGPT1 to contribute to the leukaemic phenotype in vitro, and to be 

important for the disease propagation in vivo. The latter could indeed be an 

indication of a certain loss of stemness of the ANGPT1-depleted cells, however 

this has to be studied more in-depth before such a conclusion can be drawn.  

In conclusion, it was found that t(4;11)-positive ALL cells display a high degree 

of oncogene addiction towards MLL/AF4, since depletion strongly perturbed 

the leukaemic phenotype, compromising survival and self-renewal, and this 

process could not be rescued using inhibitors against the identified cell death 

programmes. Furthermore, ANGPT1 was identified as a novel MLL/AF4-

regulated gene, which cooperates with MLL/AF4 in maintaining the leukaemic 

disease. 
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7. Future work 

In this study, global transcriptome analysis of a MLL/AF4-RNAi time course in 

t(4;11)-positive ALL cells illustrated transcriptional processes which might 

contribute towards the fusion gene-driven disease. In addition, novel MLL/AF4-

regulated genes were identified and functionally characterised. However, the 

results, although very informative, raise further questions which will have to be 

addressed by future work, both to gain more in-depth insight into the MLL/AF4-

mediated programmes, but also in order to confirm the conclusions drawn in 

this thesis: 

 In order to explore the relevance of the pro-apoptotic factors identified, 

the observed induction has to be validated at the protein level. 

Subsequently, ectopic expression studies of these genes should be 

carried out to test the extent to which they are able to initiate cell death 

in t(4;11)-positive cells on its own, or whether they can sensitise these 

cells towards chemotherapeutic drugs. Concomitantly, rescue-

experiments using combined RNAi of both MLL/AF4 and specific pro-

apoptotic genes will help to identify any hierarchical processes in the 

observed cell death induction. Conversely, if cell death suppression 

addressing a single gene cannot be achieved, this would also illustrate 

that MLL/AF4 ablation perturbs multiple processes eventually 

compromise viability. 

 

 MLL/AF4 depletion in a caspase-deficient environment causes switch 

from apoptosis to a more necroptosis-like cell death. However, inhibitor 

studies were also not able to suppress this cell death programme. 

Further work should address this on a post-transcriptional level, using 

RNAi to deplete key regulators of the necroptotic pathway, such as 

TNFR1, TNF, CYLD and RIPK1, as well as key regulators of other caspase-

independent cell death pathways, such as ATG7, in order to elucidate the 

exact mechanism of the alternative cell death route. This approach might 
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result in identification of relevant down-stream mediators which might 

be therapeutically exploitable. 

 

 Signalling pathways are regulated post-translationally, therefore it 

would be important to confirm the identified down-regulation of the 

pathways at the protein level. Moreover, inhibitor studies are needed to 

validate their relevance for t(4;11)-positive ALL cell survival. 

 

 Although the phenotypical consequences of ANGPT1 ablation in t(4;11)-

positive ALL cells have been characterised, it was not possible to pin 

point the exact regulatory mechanism by which MLL/AF4 mediates 

ANGPT1 expression. RNAi-mediated HOXA7 depletion did not show an 

effect on ANGPT1, but regulation by other members of the HOXA gene 

family, for instance HOXA10, cannot be ruled out and requires further 

investigation. Moreover, as the signalling pathways modulated by 

ANGPT1 in t(4;11)-ALL are not known, it is of utmost importance to 

elucidate this aspect, in order to be able to fully understand the role of 

ANGPT1 in t(4;11)-positive ALL. 
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9.1 SUPPLEMENTARY DATA 

9.1.1 Vector maps 

 

 

 

 

Fig. 9-1: Vector map of the lentiviral pCMVdeltaR8.91 packaging plasmid 
(http://tronolab.epfl.ch/) 
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Fig. 9-2: Vector map of the lentiviral envelope plasmid pMD2.G 
(http://tronolab.epfl.ch/) 

 

 

 

 

 

 

 

http://tronolab.epfl.ch/


Appendix 
 

423 
 

 

 

 

 

 

 

 

Fig. 9-3: Vector map of the lentiviral expression vector pTRIPZ-shRNA 
(www.openbiosystems.com) 
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9.2 R-SCRIPTS 

9.2.1 *Venn*-Script for intersection analysis of data sets 

library(limma) 

setwd("/Users/directory of choice) 

table.1 = read.table("table of choice A_.txt", sep="\t", header=TRUE) 

table.2 = read.table("table of choice B_.txt", sep="\t", header=TRUE) 

 

probes.table.1 = levels(table.1$header of table A) 

probes.table.2 = levels(table.2$header of table B) 

 

probes.combined = c(probes.table.1,probes.table.2) 

 

probes.unique = unique(probes.combined) 

 

col.1 = probes.unique %in% probes.table.1 

col.2 = probes.unique %in% probes.table.2 

 

venn_list = as.data.frame(matrix(c(col.1,col.2), ncol=2)) 

row.names(venn_list) = probes.unique 

colnames(venn_list) = c("list A","list B") 

 

write.table(venn_list, file="output table.txt") 
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9.2.2 *Extraction* Script in order to extract expression data of a 

specific entity set from a parental file 

 

setwd("/Users/directory of choice) 

expr = read.table("parental file.txt", header=TRUE, sep="\t", row.names=1) 

 

#probe selection 

probes = read.table("probe of interest.txt", header=TRUE, sep="\t", row.names=1) 

expr.probes = expr[rownames(expr) %in% rownames(probes),] 

write.table(expr.probes, file="output expression data.txt", sep="\t") 

 

9.2.3  DVD with array metrics and IPA results 
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