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Abstract 

An investigation of the creep rupture of Kevlar@ 29, Twaron@ 1000, and Technora T2000 

aramid fibre yams was carried out in the temperature range 25-120T in air and three other 

environments (Saudi/Iranian crude oil, pure water, and low pH water) at 65T with the 

objective of characterising the long term failure behaviour of these fibres and determine if 

they can be used to replace the stress rupture test conducted on RTP for qualification 

purposes. 

The standard loglo-loglo ISO 9080 extrapolation procedure, the modified lin-logio 

ISO 9080 extrapolation procedure and the time temperature superposition method were 

used to model and interpret the results. 

When tested in air, the different yams showed similar but not identical regression 

parameters. The results of the standard logio-logio ISO 9080 and the modified lin-logio 

methods correlated well. The standard logio-logio form, however, gave slightly higher 

values for the 20 year mean stress and LPL. Its use is recommended because it is consistent 

with the model assumed in the regression of RTP. There was no evidence of any 'knee' in 

the relationships after long periods or at high temperatures. This suggests that there is no 

change in failure mechanism, and lends confidence to both the long term use of aramid 
fibre in air and the recommended qualification procedures. RTP regression curve constants 

and those of tested aramid fibre were similar indicating the validity of aramid fibre stress 

rupture tests as a replacement for RTP tests. 

Crude oil immersion produced a small but significant reduction in behaviour. At 

650C a suitable crude oil reduction factor applied to the long ten-n LPL would be 0.9. Pure 

water produces a marked reduction in strength after short periods, at 65C. Finally, water 

of low pH resulted in a large reduction in performance and considerable scatter with one 
fibre type. With the other, the effect appeared to be similar to that of pure water. 

Based on the understanding of the failure mechanism and the creep process in 

aramid fibres, a creep strain model is proposed for estimating the strain to failure based on 

the material's properties. 
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Chapter I Introduction and Obiectives 

1.1 Introduction 
The use of aramid fibres is becoming more acceptable in many different applications and 
in the manufacturing of Reinforced Thermoplastic Pipe (RTP) in particular. Indeed, RTP 

currently represents one of the most highly loaded applications of aramid fibres. Therefore 

an understanding of the mechanical behaviour of these fibres when they are subjected to 
loading for long periods of time becomes crucial. Moreover, it is important to gain a 
detailed understanding of the physical structure of the fibre and how this is related to 
deformation and failure processes. This understanding is necessary in order to be able to 

predict the fibre's durability with some degree of confidence. 

A Joint Industry Project (JIP) was set up with the aim of promoting RTP applications in the 

transport of onshore oilfield fluids, crude oil, natural gas and in subsea flowlines. The 

project, titled "Implementation ofReinforced Thermoplastic Pipes in the Oil and Gas 

Industi)P, was funded by the principal RTP manufacturers, the suppliers of its key raw 

materials and end users. The JIP was managed jointly by the Centre of Composite 

Materials Engineering of Newcastle University and the Advance Research Partnership of 
Manchester University. The aim of the JIP was to remove barriers restricting the use of 
RTP in different application areas. 

One of the main hurdles facing the promotion of RTP is the financial burden of the long 

term stress rupture testing needed for the qualification of all non-metallic piping products. 
These tests require the application of constant pressure and measuring failure times up to 

and exceeding 10,000 hours. The JIP investigated a number of ways in which this testing 

burden might be reduced in the future. One of these was to characterise the long term 

failure behaviour of aramid fibre yam, representative of the reinforcement used in RTP. 

Surprisingly, such work had not been carried out before. 
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More specifically, the industry has identified the need for data on the long term stress 

rupture or regression behaviour of aramid fibre yams. Data on the long term effects of 

temperature, water, low pH water and crude oil were deemed desirable for periods between 

100 hours and 10,000 hours. Having such data available at the most useful design 

temperature for RTP, which is 65T, will assist with the prediction of RTP behaviour and 

will reduce the need for expensive long term tests on pipe samples. Additional information 

at high temperatures is also required to confirm whether or not there are any changes in 

behaviour over long periods of time or in high temperature conditions. Such information 

can also be used to confirm the behaviour of predictive models. 

Questions have also been raised concerning the precise effects of certain environmental 
factors on the regression behaviour and failure mechanisms of aramid fibres, and 

particularly the effects of humidity and crude oil. 

Answering the above questions will assist considerably in the deployment of aramid fibres 

in RTP and other highly loaded applications. This will eventually help in overcoming the 

financial burden of the long-term RTP stress rupture testing needed for its qualification, 
hence leading to a wider utilization of RTP in the industry. 

Based on the understanding of the failure mechanism of aramid fibre, it is deemed 

necessary to model the creep behaviour of these fibres. This model can be utilized for 

estimating the strain to failure based on the material's properties. 

1.2 Objectives 

The objectives of this thesis are as follows: 

o To provide general technical information about aramid fibres and their most highly 

loaded application, the RTP, through a concise literature survey on their long term 

behaviour and factors that influence it. 

o To evaluate the long term behaviour of aramid fibres when subjected to constant 
rupture stress under different temperatures and in various environments. 

13 
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o To model the long term stress response of aramid fibres under a range temperatures and 

environments using different modelling techniques. 

o To investigate the failure mechanism of aramid fibres physically and microscopically 

when subjected to constant load. 

o To model the failure mechanism of aramid fibres when subjected to constant load and 

to estimate the failure strain based on the material's properties and the stress applied. 

1.3 Thesis Structure 

This thesis consists of eight chapters. The first chapter provides an introduction to the 

project and lists its main objectives. 

The second chapter is devoted to the literature review conducted on the subject area. 

The third chapter provides an explanation of the experimental procedures utilized in the 

experiments related to this project. 

Chapters four and five contain the analysis and discussion of the experimental results. In 

chapter four the results of the tests in air are discussed, while chapter five discusses the 

results of the tests conducted in water, low pH water and crude oil environments. 

Chapter six provides a theoretical explanation of the creep behaviour of aramid fibres and 

the constituent laws that governs their behaviour. 

In chapter seven, a fractography analysis is presented to support the theoretical explanation 

of the failure behaviour of the fibres. 

Finally, chapter eight summarizes the research, draws the final conclusions and makes 

recommendations for future work. 
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Chapter 2 Literature Review 

2.1 Reinforced Thermoplastic Pipe 

Reinforced Thermoplastic Pipe is a fluid-tight liner composite construction that consists of 
the following essential components (ISO/TS 18226,2004) and Kruijer (2004): 

"A thermoplastic liner, usually polyethylene, the main function of which is to contain 
the fluid being transmitted. 

" An even number of balanced helical windings of continuous reinforcement, which will 

entirely take the pressure and other loads. 

" An outer protective thermoplastic cover which will protect the reinforcement and the 

pipe in general from external effects. 

Figure 2.1 gives a schematic illustration of RTP construction (Fallatah et al, 2006). 

RTP is manufactured by a continuous helical winding process, using non-impregnated 

aramid (currently du Pont Kevlar 29, or the similar product, Teij in/Twaron 1000) fibre 

yarn as reinforcement, which will take the entire pressure load. 

Glass and Carbon fibres are regarded as unsuitable for RTP as they need to be impregnated 

in a polymeric resin to prevent them from being damaged by abrasion when the RTP is 

flexed or coiled. Furthermore, impregnating these fibres (i. e. glass and carbon) will add 

extra cost and complications to the manufacturing process and reduce the pipe's flexibility. 

The fibre may be helically wound directly onto the liner or encapsulated in a thermoplastic 

to form a tape which can be more easily handled. The tape is subsequently wrapped and 

welded to the liner and cover. Again, the encapsulation of non-impregnated carbon or glass 

fibres into a tape is undesirable because of excessive damage caused by abrasion between 

fibres; therefore aramid fibres are generally used. Recently, metallic wires have been used 

as the load bearing component. Figure 2.2 shows the construction of the reinforcement 

tape. The reinforcement is wrapped at an angle of ±55, the optimum angle to resist 

15 
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internal hydrostatic pressure. Helical tape wrapping is the preferred manufacturing process 
because it offers a continuous manufacturing process. 

RTP can be manufactured with liner materials to suit particular fluid and temperature 

requirements. Currently, RTP is manufactured with polyethylene liners and covers for use 

at temperatures up to 65'C. For higher temperatures and more aggressive corrosion 

environments, polyamide II and polyvinylidene fluoride (PVDF) liners are 

recommended. It is important to note that these liners have not yet been used in any RTP 

application. The outer cover, on the other hand, needs to be resistant to external 

environmental effects such as moisture, abrasion and Ultraviolet (UV) degradation. 

The reinforcement fibre in RTP is completely insulated from the fluids transported and 
the outer environment by the inner and outer liners as illustrated in Figures 2.1 and 2.2. 

However, when joining RTP pipes to fittings or other pipes, the possibility of damaging 

the fibre insulation exists especially if the joining process is not conducted with care. 
Figure 2.3 shows the commonly used RTP joining techniques. 
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Pressure retaining aramid fibre 
reinforcement 25 times strength of 
steel per unit weight and corrosion 
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specially engineered UV and 
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Figure 2.1 

Fluid retaining HDPE liner 
resistant to 1-12S, C02, H20, 

hydrocarbons and aromatics 

illustration of RTP constituents (courtesy of T 
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Figure 2.2 Construction of the reinforcement tape for helical RTP winding (Cantrill, 2002) 
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The use of RTP pipes has many potential advantages for industry in general, and for the oil 

and gas industry in particular. These include (Olabisi, 2000 and Chapman et al, 1997): 

" Ease of installation and speedy completion of projects. 

" Cost effectiveness. Preliminary cost analysis indicates that although the initial cost of 
RTP is higher compared to conventional carbon-steel piping, overall installation costs 
(including material cost) will be slightly less than for carbon steel. 

e Corrosion-free properties, both internally and externally. This eliminates the use of 

resources normally spent on corrosion control and monitoring the status of 

conventional carbon steel pipelines. 
Enhanced flow characteristics. In general, with low-friction gradients the fluid flow 

rate could be increased by 50 per cent with RTP compared to the same size of regular 

carbon-steel piping. 

9 The re-usability and potential recyclability of RTP systems. 

The development of RTP and its technology have been discussed by Frost (1999). 

The first RTP applications were in onshore transport of oilfield fluids such as oil, 
injection water and production fluids (Figures 2.4 and 2.5) and in gas transmission. More 

recently, sub-sea applications (e. g. flowlines, jumpers and flexible risers) have arisen, as 

shown in Figure 2.6. These figures illustrate some of the above mentioned advantages. 

The principal manufacturers of RTP are Piplife bv and Technip, and it is available in 

diameters up to 152.4mm, with working pressure, depending on the application, of up to 

12 MPa. 

20 
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Figure 2.4 RTP in use for the transport of oilfield fluids (courtesy of Pipefife Bv) 
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Figure 2.6 Piggyback depioyment of an underwater RTP (courtesy of Technip) 
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2.2 Aramid Fibres 
2.2.1 Background History and Applications 

High performance fibres are driven by special technical functions that require specific 

physical properties unique to these fibres. They usually have high levels of at least one of 

the following properties: tensile strength, operating temperature, heat resistance, flame 

retardancy and chemical resistance. Aromatic polyamides or aramid fibres are one type of 

the important high-strength high-modulus fibres that have been known since the end of the 

1960s, and they appeared almost simultaneously in the USA (Kevlar) and USSR (SVM). 

The word 'Ararnid' is a generic term for "a manufactured fibre in which the fibre-forming 

substance is a long chain synthetic polyamide in which at least 85% of the amide linkages 

are attached directly to two aromatic rings" (Yang, 1992), as defined by the US Federal 

Trade Commission. 

In Europe, ararnid fibre was among those fibres that experienced high growth rates in 

production in the period between 1990 and 2000, as can be seen in Table 2.1 (Bourbigot 

and Flambard, 2002). Although it was marginal in tonnage compared with many other 
fibre types, it has shown the highest increase in manufacturing during the same period. 

Table 2.1 Types and quantities of technical fibres used in Europe 

Fibre Type 1990 2000 Change 

X1000 tonnes 
Polypropylene 325 1145 +252% 
Polyethylene 10.5 55 +424% 
Polyamide 97 142 +46% 
Polyester 235 415 +77% 

Polyacrylonitrile 2 26 +1200% 
Glass 67 115 +72% 

Carbon 0.5 3 +500% 
Meta-aramid 1 3.5 +250% 
Para-aramid 1 15 +1400% 
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Kevlar (a registered trademark of du Pont, USA), Twaron (a registered trademark of Teijin 

Ltd, Japan, formerly developed by Akzo BV, the Netherlands), and Technora (a registered 
trademark of Teijin Ltd, Japan) are the main aramid fibres in commercial production at the 

present. 

Table 2.2 lists some of the applications of aramid fibres, while Table 2.3 gives estimates of 
the annual production levels of the three commercially available ararnid fibre types 
(Buschow, 2001). Figure 2.7 includes photographs of some of these applications. 

Table 2.2 Some aramid fibre applications 
Application Property Used 
Brake linings 

Ballistics protection 
Protective clothing (heat etc) 

Mechanical rubber goods 
(e. g. conveyor belts) 

Tires, pipes, and hoses 
Concrete reinforcement 

Optical cables, fibre reinforced composites 

Modulus, temperature resistance 
Tenacity, modulus 

Temperature resistance 
Tenacity, modulus 

Tenacity, modulus 
Modulus 

Tenacity, modulus, temperature 

resistance 

Table 2.3 Approximate annual production 
Brand Polymer Producer Production tons/year 
Twaron 

Kevlar 

Technora 

PPTA 

PPTA 

p-ararnid 

Teij in Twaron 12000 

du Pont 18000 

Teijin 2000 

As will be shown, the preference for using aramid fibre as a reinforcement material is due 

to its resistance to attack from many fluids. Moreover, it can be used without excessive 
damage in its non-impregnated state. Aramid fibre also shows very well defined, 

reproducible long term behaviour under load, which is important for establishing a long- 

term design basis. 
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Although aramid fibres are known for their high chemical resistance, they are still 

relatively weak in resistance to strong acids and bases. However, with the introduction of 

the copolymer aramid fibre Technora by Teij in in 1985 into the high performance fibre 

market, it became possible to use these fibres in much harsher chemical environments. 

Twaron) 
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2.2.2 Chemical Structure 

Aramid fibres are made from the condensation reaction of para-phenylene diamine and 

terephthaloyl chloride shown in Figure 2.8 (Pigliacampi, 1995). They are based on poly (p- 

phenylene terephthalamide) (PPTA) macromolecules that are essentially aromatic 
(benzene) nuclei linked by amide bonds, and the linear rod-like molecules are cross-linked 
by hydrogen bonds and arranged along the axis with a high degree of regularity (see Figure 

2.9). Dobb et al (1977) suggested that these fibres consist of a system of H-bonded sheets 

regularly pleated along their axes and arranged radially. The angle between adjacent 

components of the pleat is approximately 1701. Many studies have claimed that this 

supermolecular structure leads to a periodic banding along the fibre axis, some of which 

may be associated with defect layers (Morgan et al, 1983). 

Another more chemically resistant para-aramid fibre, introduced by Teijin in 1985, is 

Technora fibre. Technora is a copolymer para-aramid fibre with a fine surface structure 

making it much more chemically resistant than PPTA (Bourbigot and Flambard, 2002). 

Figure 2.10 shows the chemical structure of the Technora, fibre. 

Aramid polymer, in solution, possesses a liquid crystallite structure of the nematic type 

(Wang et al, 1992). Liquid crystals are substances that exhibit a phase of matter that has 

properties between those of a conventional liquid and those of a solid crystal. For instance, 

a liquid crystal may flow like a liquid, but have the molecules in the liquid arranged and/or 

oriented in a crystal-like way. Liquid crystals can be divided into thermotropic and 
Iyotropic LCs. Thermotropic LCs exhibit a phase transition into the LC phase as 

temperature is changed, whereas Iyotropic LCs exhibit phase transitions as a function of 

concentration of the mesogen in a solvent (typically water) as well as temperature. 

In both PPTA and the copolymer-PPTA, the carbon backbone bond is of the very strong 

covalent type, while the hydrogen bonding is of the relatively weak van der Waal type 

(Greenwood and Rose, 1974). So, the high strength and stiffness in the chain direction can 

be attributed to the aromatic groups and the covalent bonds, whereas the hydrogen bonds 

link the planar array formed by the chains in the transverse direction. 
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More in-depth investigations on the structure and properties of ararnid fibre have been 

conducted by Dobb, et al (1977), Wilfong and Zimmerman (1977), Northolt (1980), Lafitte 

and Bunsell (1982), Rogozinsky and Bazhenov (1992), Yang (1992)., Young et al (1992), 

and Kostikov (1995). 
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Figure 2.8 Constituents of aramid fibre: (a) Para-phenylene diamine, (b) Terephthaloyl 

chloride 

nj 

(a) 

0 

b 
\o 

(b) 

Figure 2.9 (a) Chemical structure of the PPTA polymer, (b) Planar representation of a unit 

crystal cell 
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Figure 2.10 Technora (Copolymer-PPTA) chemical structure 

2.2.3 Physical Properties 

In addition to their favourable high strength-to-weight and modulus-to-weight ratios, 

aramid fibres have many outstanding properties that make them the best choice for many 
industrial and civilian applications. They possess a unique combination of physical, 

mechanical, damping, electrical and thermal properties. These remarkable properties are 
due to their molecular structure, which consists of highly ordered rigid chains aligned 

parallel to the axis leading to a high degree of crystallinity and high longitudinal modulus 

of elasticity (Dobb, 1979) and (Penn, 1979). Additional strength is also provided by the 

presence of the conjugated benzene rings that prevent bond rotation in the main chain in 

addition to giving the material chemical stability and mechanical stiffness. Heat treatment 

while under tension increases the crystalline orientation of aramid fibre and hence 

increases it modulus (Pigliacampi, 1995). 

The hydrogen bonds in the transverse direction lend stability to the amide groups; 
however, they are much weaker than the covalent bonds in the fibre direction. The 

different kind of bonding in each direction leads to a high longitudinal strength and a low 

transverse strength. 

ISO 2060 defines the linear density 'tex' as the mass [g] of a yam with a length of I 000m 

and dtex as the mass [g] of a yam with a length of 10,000m; hence for aramid fibres tex = 

g/l 000m and dtex = g/l 0,000m alternatively, denier, which is the mass in grams of 9000m 

of fibre is Den = denier = g/9,000m. 
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In order to calculate the cross sectional area A of a yam, the following equation can be 

used: 

A= 
LD 

X 10-4, 

p 

where, A is in mm 2; 

p is density in g/cm3; 
LD is linear density in dtex. 

The breaking force of aramid fibre is commonly expressed as tenacity, which is obtained 
by dividing the breaking force [N] by the linear density [dtex]. Aramid fibres' tensile 

modulus is expressed by means of a chord or secant modulus according to either an ASTM 

or DIN standard. The ASTM takes the tensile modulus between tenacity values of 300 and 
400mN/tex, compared to 400 and 800mN/tex for the DIN standard (Figure 2.11). 

A-B DIN modulus 
B-C ASTM modulus 

Force (N) 

A 

B 800mNI/tex 
-------- -- c t 

t 400mNItex - 

/30LN/tex 

I 

Elongation (%) 

Figure 2.11 Methods used for determining the chord modulus from the force elongation 

curve, according to ASTM D885 and DIN 65356 Pt2 
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Aramid fibres have high breaking tenacity, high tensile modulus, low elongation at break, 

and low density. Also they are inherently stable with very small shrinkage at relatively 
high temperatures, and have low creep and a rather high glass transition temperature. In 

addition, they are corrosion resistant, non-conductive, and resistant to most chemicals 

except strong acids and bases. Table 2.4 and Figure 2.12 show some physical properties of 
different types of aramid fibres compared to those of other types of fibres (Lafitte and 
Bunsell, 1982; Yeh and Young, 1999). 

Table 2.4 Comparison of the properties of different filaments 

Sample Strength 

(GN/M2) 

Modulus 
(GN/M2) 

Breaking 

Strain (%) 

Density 

(g/CM3) 

Kevlar 29 2.60 62.0 4.2 1.44 
Kevlar 49 2.70 130.0 2.0 1.45 
Technora 3.4 73 4.6 1.39 
Nomex 0.65 20.0 23.0 1.38 

Nylon T728 1.00 5.6 18.5 1.14 
Steel 2.80 200.0 2.0 7.83 

Boron 3.00 370.0 1.0 2.70 
Glass 3.50 70.0 4.8 2.54 

Carbon HS 2.70 270.0 0.8 1.80 
Carbon HM 2.00 400.0 0.5 1.95 

As shown in Table 2.4, aramid fibres have a tensile strength and modulus comparable to 

that of glass fibre, yet their density is almost half that of glass. In the case of these 

properties of aramid fibres, the table also shows that different preferred properties can be 

attained, at the expense of others, to meet specific application requirements. For example, 
Kevlar 49, although exhibiting similar strength to that of Kevlar 29, has double the tensile 

modulus but with reduced breaking extension (Dobb and Robson, 1990). 

Dobb and Robson (1990) illustrated the effect of high molecular orientation on the tensile 

properties of different types of aramid fibres. According to their study, high orientation 
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promotes efficient load-sharing between molecular chains, and hence increases the tensile 

modulus of the fibre. 

The commercially available yams consist of many fibres usually twisted together. Yam 

twisting usually results in more consistency in measurements of the breaking strength and 

elongation at break because of the distribution of tensile forces between the yarn's 
filaments. It has been noted that the level of twist in an aramid fibre yam or cord will affect 
its physical properties such as tenacity, modulus, and elongation as well as its fatigue 

performance. Figure 2.13 shows the influence of twist on the yam tensile properties of 
Kevlar aramid fibre. As can be noticed from the figure, yam tenacity is maximized at a 
twist multiplier of about 1.1. Modulus declines with increasing twist level; slowly at low 

twist levels, and more rapidly at higher twist levels. Elongation increases slightly with 
increasing twist. The twist multiplier is related to the added twist (in turns per unit of yam 
length) and yam denier (or dtex), as defined below: 

Twist Multiplier = 
Turns per meter x fd-tex 

[2.2], or 3000 

Twist Multiplier = 
Turns per meter x \fD---enier [2.3] 

2874 

When impregnated, aramid strand with zero twist produced similar positive effects on 

strength to those of twisted filaments without the adverse consequences of twisting, 

although this effect is dependant on the fibre volume content and the impregnation resin 

type (Wilfong and Zimmerman, 1977). 

The compressive properties of aramid fibres are significantly different from the tensile 

properties, mainly because of the highly crystalline structure and high modulus. Table 2.5 

presents a comparison of tensile, compressive and shear properties of Kevlar 49 fibre 

(Deteresa et al, 1984). 
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Table 2.5 Typical properties of KevIar aramid 49 yam 
Tensile Compressive Shear Tensile / Tensile 

Compressive Shear 

Strength [GPa] 3.4 0.7 0.18 5 17 

Modulus [GPa] 130 130 1.8 1 70 

Strain to break or yield % 2.5 0.5 10 5 0.25 

It has been noted that aramid fibres have very poor abrasion resistance and tend to fibrillate 

easily when rubbed against another fibre or metal surface, indicating weak cohesion 
between fibrils (Konopasek and Hearle, 1977). This could be because of its weak lateral 

bond forces or the anisotropic nature of its structure. 

Dobb et al (1979) indicated that considerable loss in aramid fibre mechanical performance 

could be encountered due the presence of a system of voids on the fibres. Voids, within the 
fibre's structure as it will be explained in Section 2.2.4, will tend to reduce both the 

potential lateral and tensile strengths of the fibre. Moreover, if these voids have length to 

width ratios greater than unity then the effect will be greater on lateral than on tensile 

properties, hence contributing to low compression strength. These voids are formed during 

the solidification of the polymer in the coagulation of the extrusion process. More voids 

could also be produced during subsequent heat treatment, particularly as a result of some 
localized shrinkage associated with the improvement in molecular packing. 
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Figure 2.12 Stress-strain curve comparison of different fibre materials (Technora, 

Brochure) 
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Figure 2.13 Effect of twisting on the properties of Kevlar aramid fibre (du Pont, 2001) 
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2.2.4 Manufacturing Process of Aramid Fibre 

Many man-made fibres are produced by a process of extrusion through fine holes that is 

known as spinning, a term applied to the formation of yams from fibres of any kind. 

However, aromatic polyamide polymers can not be "melt spun" because they start 
degrading before they melt. Additionally, if they are melted at very high temperatures, 

aromatic polyamide polymers will produce an isotopic solution of very high viscosity that 

will make the spinning process difficult (Magat, 1980). This is why another approach was 

needed to spin the aromatic polyamide fibres by the formation of liquid crystallite spinning 

solutions which inherently contain highly ordered domains consisting of extended polymer 

chains. 

PPTA polymer is insoluble in conventional solvents. It is soluble in strong acids such as 

concentrated sulphuric acid, nitric acid, and hydrogen chloride. This is why one of these 

acids is used to dissolve the polymer so that it can be extruded through the spinnerette 
holes to form a fibre. In the 1960s Kwolek discovered that a 10% solution of PPTA in at 
least 98 wt. % sulphuric acid was anisotropic (Bunsell, 1988). 

The spinning operation from the liquid crystal solution is usually carried out by extruding 

the LC solution through a gold/platinum spinnerette containing approximately 1000 

capillaries with a diameter of 50 - 200pm (Buschow, 2001). Figure 2.14 gives a schematic 

view of the dry-jet wet-spinning process. The dissolved polymer is forced through the 

spinnerette hole to the coagulation bath. The filament is collected at the end of the 

coagulation bath by a set of rollers, continues into a washing bath and a second set of 

rollers and, after about I metre in air, is finally wound up by a bobbin. Fibres on the 

bobbin are washed in water and dried, and at this stage they are called "as-spun" fibres. 

The tension along the spinning line is characterised by the pull-off ratio, which is the take- 

up rate by the fastest roller divided by the linear outflow rate at the spinnerette (Ciferri and 

Ward, 1979). Further heat treatment or thermal drawing at a temperature above the glass 

transition temperature can result in more self-ordering and crystallisation. In the work 

conducted by Picken et al (1992), the optimum processing conditions with respect to 
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coagulation bath temperature, polymer concentration and draw ratio were all determined. 

The semi-empirical model developed gives values for the degree of molecular orientation 

and the resultant fibre modulus as a function of the above parameters. 

The PPTA molecule contains rigid covalent bonds in its main polymer chain and its chain 

conformation is almost rod-like. However, when in a dilute solution, the rod-like PPTA 

molecules are randomly oriented as in Figure 2.15. This solution is isotropic, but when the 

polymer concentration is increased, PPTA molecules are packed closer together, and when 
the concentration is increased beyond a certain critical limit, the molecules will begin to 

adopt an ordered arrangement in small domains that are randomly oriented with respect to 

each other. When the liquid crystalline polymer solution is extruded through a small 

spinneret hole, the extensional flow causes rotation and alignment of the domains, 

ultimately leading to an excellent orientation of the polymer chains with very little shear. 
When cooled to below the transition temperature, the molecules start forming a two- 
dimensional solution with a highly ordered anisotropic layered structure which by further 

cooling will solidify. These phase transformations are characteristic of liquid crystalline 

polymer solutions (Yang, 1992). The structure of the anisotropic fibres confirms their high 

degree of crystallinity of up to 75.5%, with an apparent size of crystallites of 5 .0 to 10.0 

nm stretched along the axis (Dobb, 1977). 

When arranged in a certain orientation distribution with respect to the fibre axis, the 

solidified crystallites form what is called a fibril. Filaments, the next building unit up, 

consist of many identical fibrils. Finally, yams contain hundreds of filaments. Figure 2.16 

illustrates the structural sequence of a single aramid yam. This structural description is 

supported by Panar et al's (19 83) study in which the authors were trying to answer the 

question of whether the intact fibres are bundles of fibrils, or whether fibrils are simply the 

result of cleavage along the axis of the crystalline polymer on fracture. 
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Figure 2.15 Liquid crystalline structures of PPD-T/H2SO4 solution 
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Twaron 1000 yarn contains 1000 filaments 

Filament composed of identical fibrils. 

Schematic serial arrangqment of crystalline domains. 

Figure 2.16 Illustration of the structural sequence of a single aramid yam 
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2.3 Environmental Effects on Aramid Fibres 
Due to the wide range of applications for aramid fibres, it is important to study their 
interaction with different environments. This is because, with chemical ageing for instance, 

polymers in general experience a loss in performance due to the gradual breakdown of 
their molecules into smaller units. On the other hand, polymeric materials are generally 
known not to be susceptible to corrosion problems caused by electrochemical effects, 
because they are non-conductors. The sub-sections below explain the effects of various 

environments relevant to this project on aramid fibres. 

2.3.1 Temperature Effects 

Many applications involve operation at elevated temperatures; therefore, the effect of 
temperature on the material's properties is of interest. 

Aramid fibres do not have an exactly defined glass transition temperature as would 

normally be the case with other synthetic polymers. The continuous operating temperature 

of these fibres in air is up to 190'C, and they will degrade in air above 400'C but do not 

melt below this temperature. They glow during ignition, and no after-burning is observed 

after removal from the flame, but char is produced above 450'C. The Limiting Oxygen 

Index (LOI) for PPTA fibres lies between 28 and 30 vol. % (Bourbigot and Flambard, 

2002). 

Figure 2.17 shows the effect of temperature on the breaking tenacity of Kevlar aramid 
fibre. Figure 2.18 shows the effect of temperature on the initial modulus of Kevlar fibre 

compared to other reinforcement materials. Figure 2.19 shows the time-dependent tenacity 

of Kevlar aramid fibres at different temperatures. 

It is clear from these properties that, for the maximum operating temperature currently 

specified for RTP (65"C), the temperature dependence of aramid should not be a concern 
because of the very limited effect of temperature on its strength properties in the 65'C 

temperature range. However, tests are required at higher temperatures to accelerate 

undesirable failure modes, if any, into the qualification test period. 
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Figure 2.17 Temperature effect on breaking tenacity of Kevlar compared to other 

industrial filament yams (du Pont, 2001) 
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Figure 2.18 Temperature effect on initial modulus of Kevlar compared to other industrial 
filament yarns (du Pont, 2001) 
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Figure 2.19 Reduction in Kevlar tenacity after prolonged heating in air (du Pont, 2001) 
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2.3.2 Hydrolysis and Plasticization Effects 

It is believed that aramid fibres are susceptible to hydrolysis effects under certain 

conditions. Bernstein et al (2003) compared between Kevlar and Nylon in terms of 
hydrolysis effect, and concluded that both polymers are susceptible to hydrolysis. Actually, 
because water molecules are small and polar, they can approach the hydrogen bonding 

sites and disrupt the original hydrogen bonds of the fibre (Wang et al, 1992). Morgan et al 
(1984) suggested that the amide group in the PPD-T molecule may be hydrolyzed and 
undergo chain scission according to the following reaction: 

NH-CO-o\ "+H20 
COOK NH2 

Of course, such hydrolytic degradation will lead to loss of strength. However, and as 
indicated by Morgan et al, the strength loss in typical environmental conditions is not a 

serious problem. Cook et al (1982) reported Gourdin's study on Kevlar 49 which 

concluded that the fibre's tensile strength was only slightly influenced by water immersion. 

On the other hand, Cantrill (2002) reported that Kevlar lost 16% of its original strength 

when exposed to saturated steam at 138T for 80 hours, as a result of hydrolysis. Figure 

2.20 shows the effect of 100 hrs exposure to saturated steam on different types of fibres, 

including aramid fibres. 

Three different kinds of water were detected in aramid fibres by Chatzi et al (198 6): free 

unbounded water, weakly hydrogen-bonded water, and strongly hydrogen-bonded water. It 

is believed that the free unbounded water exists in microvoids and interstices, while both 

types of hydrogen-bonded water molecules reside between the crystallites of the aramid 
fibres. It is believed that sites for water sorption and diffusion paths are created where 

residual amounts of Sodium sulphate (Na2S04) impurities (introduced through the 

manufacturing process of the fibre) remain trapped in the fibre (Morgan et al, 1983). 

Na2S04 is a known desiccant and when present in the fibre will definitely contribute to 
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water absorption. Penn and Larsen (1979) conducted a series of Thermogravimetric 

Analysis (TGA), Differential Scanning Calorimetry (DSC) and Thermornechanical 

Analysis (TMA) experiments in which they confirmed the presence of water in different 

Kevlar fibres. Water accumulation at these sites distorts the molecular packing in the 

transverse fibre direction and enhances the ease of fibrillation. It is also reported that water 

content of aramid fibres increases with a decrease in the degree of crystallinity of the fibre 

(Minsoshima, 2000). Hence, water could also reside in the amorphous regions of the fibre. 

Another possible form of water (or moisture) effect is plasticization. This is a reversible 

reaction, particularly in high temperature environments, that causes reduction in strength 

and stiffness. Piigliacampi (1995) reported that, at room temperature, the effect of moisture 

on tensile properties is <5%, while at elevated temperatures the effect of moisture appeared 

to be reversible. 

2.3.3 Chemical Solutions Effects 

Aramid has excellent chemical resistance when exposed to most aqueous salt solutions and 

organic solvents. However, strong acids and alkalis at elevated temperatures and strong 

concentrations attack aramid. Figure 2.21 shows the effect of pH on the residual strength of 

Twaron fibres after 3 months exposure at room temperature. 

In addition to their observations on the effect of water, Morgan et al (1983) also reported 

that Na2S04 impurities significantly affect the packing of the PPTA macromolecules in the 

transverse fibre direction and further enhance fibrillation. The presence of these impurities 

in the fibre's ash was proven by Penn and Larsen (1979) in their elemental analysis for 

different Kevlar fibres. Additionally, incomplete neutralization of H2SO4 will result in the 

presence of residual acid in the fibre and subsequently cause fibre degradation as a result 

of acid-induced chain hydrolysis. Fibres containing residual H2S04 darken and lose their 

strength. 

Extensive data are available from the manufacturers of aramid fibres on the performance of 

their fibres in different chemicals, but it should be noted that these data relate to exposure 
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in the unstressed state. There is almost nothing available in the public domain on the 

performance of aramid fibres in different environmental conditions while under stressed 

conditions. 
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Figure 2.20 Effect of exposure to saturated steam on the strength of different fibres 

(Technora Brochure) 
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Figure 2.21 Effect of pH on the residual strength of Twaron fibre after 3 months exposure 
at room temperature (Twaron Technical Report QET 99023,2001) 
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2.3.4 Ultraviolet Radiation Effects 

It is known that LTV light with wavelengths between 300 and 400nm is not absorbed by the 

atmosphere, and may be responsible for the degradation of polymers. Kevlar 49 has a 

strong absorption in the ultraviolet region around 250nm to 330m-n (Penn, 1979). 

Like other polymers, aramid fibres are sensitive to radiation from ultraviolet light and 

could photodegrade. Yams exposed to ultraviolet light will lose some of their mechanical 

strength and darken in colour. Figure 2.22 shows the effect of outdoor exposure on Twaron 

aramid fibre, where strength is greatly reduced after only one year of exposure. However, 

two conditions must be fulfilled before this radiation can cause fibre degradation: firstly 

the absorption of the radiation by the polymer; and secondly the accumulation of sufficient 

energy to break the fibre's chemical bonds. These conditions are far from being fulfilled in 

artificial light sources or sunlight filtered by window glass. In addition, the deterioration of 

aramid fibres requires the presence of oxygen and is not enhanced by the presence of 

moisture or by atmospheric pollutants such as sulphur dioxide (Gibson, 2002). 

Morgan et al (1983) reported that, in a study conducted by Harper and McAlister, the 

strength of bare Kevlar 49 yam can decrease by more than 25% after one week of exposure 
to UV radiation. 

Due to the self-screening property of these fibres, it is important to mention that UV 

degradation, when it occurs, it is usually limited to those filaments on the yam's surface 
(du Pont, 2001). For example, when a very thin Kevlar 49 fabric was exposed directly to 

Florida sunlight for an extended period, it lost about half of its tensile strength. While in 

items like the 12.5 mm diameter rope, the majority of the yams were protected by the outer 

layer and hence their strength loss was minimized (Bunsell, 1988). 
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Figure 2.22 Influence of outdoor exposure (both UV and weather conditions) on the 

residual strength of Twaron aramid fibre (Twaron Technical Report QET 99023,2001) 

2.4 Aramid Fibre Stress Rupture Regression Behaviour 

Stress rupture is the sudden failure of material while sustaining loads for long periods. It 

occurs as a result of the degradation of mechanical properties with time while under load. 

Wilfong and Zimmerman (1977) compared the lifetime behaviour of Kevlar, Nylon 66 and 

Polyethylene in terms of time vs. load, where load was expressed as a fraction of normal 
breaking strength. They concluded that Kevlar fibre supports a larger fraction of its 

breaking load for a longer period of time than Nylon 66 or Polyethylene fibres. 
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In the literature, there are several studies and hypotheses of the factors that affect the long 

term load carrying performance of aramid fibres. For instant, Wilfong and Zimmerman 

(1977) and Gibson (2005) related yam strength to yam twisting, while Lafitte and Bunsell 

(1982) proved that the fibres contain serious defects along their length. It is believed that 

these defects could act as failure initiation sites that affect the long term load carrying 

capacity of these fibres. 

In addition to their observations pertaining to fibre strength dependence on the yam's twist 

level and the defects along its length, Wilfong and Zimmerman (1977) and Lafitte and 

Bunsell (1982) recorded some decline in fibre strength and Young's modulus when tested 

in high temperatures. The same observations were recorded in short-term tests conducted 

on Kevlar 29, where the slopes of the regression lines were found to increase with 
increases in test temperature (Gibson, 2002). 

2.5 Stress Rupture Data Interpretation Methods 

In the literature there are many regression-based interpretation procedures that can be used 

to process stress rupture test results. The outcome of these procedures is a value of pressure 

or stress for the system which should not be exceeded. The methods of interpretation used 
in this thesis are similar to those used previously for the processing of RTP pipe test 

results. This enables the comparison of tests results from both RTP pipes and aramid 
fibres; because for RTP, fibre failure is the key failure mechanism and hence when testing 

the fibres only, it is safe to assume that they will behave in the same way. Therefore, the 

relationship between the applied stress, a and the time to failure, t. that is applicable for 

RTP tests are also valid for aramid fibre tests. 

One of the regression-based interpretation procedures used to process stress rupture test 

results is based on an empirical power law relationship between time to failure and 

pressure, with no particular assumptions made about the physical mechanisms involved in 

the creep and failure of the fibres. This is supported by the conclusions of Phoenix and 

Tierney (1983) and Wagner et al (1986), where they showed that the time to failure for 

constant stress conditions is most likely to follow a power law relation. Actually, this form 
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of relationship is assumed in almost all types of non-metallic pipe qualification procedures 

such as those used in this research work, ISO 9080, and others such as; ASTM-D 2837, 

ASTM-D 2992, and ISO 14692. 

On the other hand, other workers have often employed models based on the theory of 
Eyring, which assumes creep deformation to consist of a series of thermally activated 

events. The Eyring model predicts a linear relationship between stress and loglo time to 
failure, instead of the relationship of empirical power law described earlier. 

There is no especially strong argument in favour of either approach. Indeed both could be 

considered to fit the present results well. The Eyring model has the virtue of a sound 
theoretical origin but the activation volume has often been found to vary with both 

temperature and loading conditions. The power law model, on the other hand, has no 
theoretical basis, but fits the results equally well in the stress range of interest. It is worth 

noting that, when extrapolating a particular set of results to find a long-term value of 
'design' strength, the power law (logio stress vs loglo failure time) model will always give 

a more optimistic prediction than the Eyring approach (linear stress vs. Iogio failure time). 

Other statistical procedures used are described in ASTM-D 2837-98a, ASTM-D2992-96el, 

ISO/DIS 14692-2. However, it should be noted that the procedure recommended in the 

present study is more conservative in its predictions, typically of the order of 3% in the 

LPL, compared to predictions from other standards (Gibson 2002). 

2.5.1 The Multi-Regression Extrapolation Procedure ISO 9080 logio-Iogio 

The standard multi-regression procedure recommended in ISO 9080 is an extrapolation 

procedure developed initially for thermoplastic pipes concerned with the long-term 

structural integrity of these pipes under operational stresses. This method was the result of 

numerous studies in the mid- I 970s in the form of a technical report ISO/TR 9080: 1992(E). 

Later, a new version was issued and designated as ISO/DIS 9080: 1999(E) (Andersson, 

2001). However, the report ISO/TR 9080: 1992 was technically revised and replaced by 

ISO/TR 9080: 2003, according to which this study was conducted. Based on 33 years of 
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experience with the long-term behaviour of plastic pipes in Bodycote (formerly Studsvik 

Polymer AB) in Sweden, Andersson (2001) believes that ISO/TR 9080: 1992 is the most 

promising extrapolation method to describe the creep rupture performance of most 

materials. 

The ISO 9080 procedure assumes that there is a linear relationship between the loglo of the 

time to failure and the logio applied stress at each temperature. It also assumes that stress 

rupture curves are proportionally spaced depending on the reciprocal of the absolute 

temperature (YT), which is consistent with the creep and failure process being dominated 

by an Arrhenius-type process. Because the failure time exhibits power law dependence on 

stress, results are plotted on a loglo-logio scale. The method includes an extensive number 

of constant stress tests at several temperatures for the generation of creep rupture curves, 
followed by a multiple linear regression analysis in order to fit the data. From the 

regression data acquired (having a proper fit) a mean regression line is constructed and a 

statistical 97.5% lower confidence limit (two-sided 0.05 level of significance) curve is 

calculated and extrapolated to obtain the Lower Prediction Limit (LPL) at the design life. 

The 97.5% lower prediction limit is equivalent to the lower confidence limit of the 95% 

confidence interval of the predicted value, as shown in Figure 2.23. In other words, it is the 

line above which 97.5% of all new experimental points can be expected to lie. 

In addition to the prediction of long term behaviour, ISO 9080 provides a method of testing 

for linearity which is used to confirm whether or not there is any change in behaviour (e. g. 
ductile-brittle or ductile-chemical degradation) or undesirable failure modes such as 

thermal oxidation over long periods or at high temperatures through what is called the 

'Knee' detection method (Figure 2.24). The knee detection method will indicate any 

undesirable long term performance of the tested material. It worth noticing that including 

test data at temperatures higher than the intended design temperature is very important 

during the knee detection process. This is because undesirable failure mechanisms tend to 

occur after shorter times as test temperature is increased. 
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Since, for RTP, fibre failure is the key failure mechanism, the aramid fibres are also 

assumed to behave in the same way, so the following power law relationship applies 

between the applied stress, a, and the time to failure, tf , 

Ftf [2.4] 

where, F is the curve's intercept; 

G is the slope of the regression line. 

Or, altematively, 

log a =log F-G log tf 1. 
[2.51 

where, F and G are power law constants, -G being the regression line slope. 

The plastic pipes industry has considerable experience of modelling the stress rupture 

behaviour of pipe materials after long periods and over a range of temperatures, and has 

developed a very useful modelling and extrapolation protocol for failure data, in ISO 9080. 

This procedure has been recommended for use in modelling other types of failure data in 

addition to pipes, so it was adopted here. ISO 9080 assumes that the time to failure is given 

by an expression of the form 

log(t, )=C, + 
Cl 

+C, log(a)+ C4 log(a) 
TT 

where, tf is time to failure in hours; 

T is the test temperature in Kelvins, 

a is the stress level in megapascals, and 
C19 C29 C31 C4 are the model fitting parameters. 

At a particular temperature, this is equivalent to equation [2.4]: 

a=Fl f-G 

with the regression constants being related to the ISO 9080 constants by 

[2.6] 
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C2 

and logF T 
C3 + 

C4 
C3 + 

C4 

TT 

The regression procedure obtains the best least squares fit of the constants based on the 

scatter in iogtf I i. e. on the scatter in the horizontal direction. This has been shown to be 

more conservative than using the vertical scatter (i. e. the scatter in log a). Two versions of 

the protocol are available: the three parameter model (c, =o) where all the regression lines 

have the same slope, and the four parameter model, where the slope varies with I IT. As 

will be shown in the result section, there is a small increase in this slope with increasing 

temperature; hence the '4-parameter' model only was used. 

The calculations for the 4-parameters model and the computer code used to perform these 

calculations are given in Appendices A and B respectively. 
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Figure 2.23 Schematic of pressure rupture relationship for Reinforced Tbermoplastic Pipe, 

showing experimental results, mean line and extrapolation of the Lower Prediction Limit 

to design life. 
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Figure 2.24 Schematic showing a possible undesirable failure mode 
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2.5.2 The Modified Multi-Regression Extrapolation Procedure ISO 9080 lin- 

loglo 

Based on the theory of Eyring, which assumes creep deformation to consist of a series of 
thermally activated events, test results were modelled in a linear relationship between 

stress and log I o-time rather than the previously explained log I 0-log 10 relationship. In fact, 
in their published results for the study conducted on Twaron 1000 fibre, Akzo/Teijin 

presented a theoretical model for fibre behaviour that resulted in a linear relationship 
between applied stress and loglo failure time, based on an Arrhenius model relationship. To 

an extent, this appears to conflict with the power law relationship that has often been 

assumed to govern the regression behaviour of polymeric materials in general and both the 

reinforcement and the RTP pipes specifically. However, it should be borne in mind that the 
stress range of real interest for the design of RTP covers less than a decade and, when 
plotted over such a narrow range, the Twaron 1000 results published by Akzo/Teij in could 
probably be equally well-described by a log 1 o-log 1o as by a log I 0-linear relationship. 

As the statistical procedure established in ISO 9080 is very reliable, as indicated earlier, it 
has been thought that it could be modified to accommodate other views and to enable the 
modelling of other forms of failure time to applied stress relationships. In the present case, 
the relationship is linear; hence, a modified ISO 9080 that relates linear stress and logio 

time was applied. 

2.5.3 Time-Temperature Superposition Procedure 

The Time-Temperature Superposition (TTS) method provides a simple technique for 

relating different behaviour or properties at two or more different temperatures. It is based 

on the assumption that when data for a particular property at various temperatures are 

plotted on a logarithmic scale, then the property's curves versus time at each temperature 

should be the same if the underlying degradation mechanism that governs the property's 

relation with time and temperature is the same (Bernstein et al, 2004). Based on this 

assumption, there should be a shift factor by which the time for each set of data (at each 

temperature) can be multiplied to get all the data to overlap at one specified reference 
temperature. By definition, the shift factor at the reference temperature is unity. 
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The TTS method is often employed in the prediction of the long term behaviour of 

polymeric materials where a factor of logio(aT) provides the necessary horizontal shift to 

obtain the equivalent stress at temperature T2 from temperature Tj as shown in Figure 2.25, 

where J(t) is a time dependent variable such as stress. 

The TTS principle can be applied to creep, stress relaxation, complex dynamic compliance 

and modulus data, as explained by Gol'dman (1994). The method used in the present 

research relies on the assumptions that the mechanism of deformation is the same 
throughout the time and temperature ranges and that a shift in logarithmic time is 

equivalent to a change in temperature (Gibson, 2005). 

So, the increase in the temperature at which the ISO 9080 regression tests were carried out 

will help in revealing any change in the long term behaviour of aramid fibre material. 

000 0------------- 
T2,71 '/log 

ar 

Log time 

Figure 2.25 Schematics showing TTS principle applied to rupture stress 
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2.6 Aramid Fibre Creep Behaviour and Failure Model 

2.6.1 Creep Behaviour of Polymeric Materials 

Creep is the deformation that occurs over a period of time when a material is subjected to 

constant stress at constant temperature. In metals, creep usually occurs only at elevated 
temperatures; however, in plastics it is more common to occur at room temperature and is 

called cold flow or deformation under load. This effect is an indication of a general 
property of polymeric solids termed viscoelasticity. The solid is elastic, so it can recover; 
but it is viscous, so it can creep. 

Creep is measured either by the increase in material sample length under tension over a 

period of time or by the stress reduction of material when held in a constant gauge length. 

Polymers are viscoelastic at all temperatures, so that in considering the strains induced on 
them, it is important to take into account the applied stress level, application time and 
temperature. 

Creep experiments are usually conducted under uniaxial constant loading conditions for a 

particular chosen test temperature. Measurements of extension are made at frequent time 

intervals until test sample fracture. Figure 2.26 shows a typical creep strain against time 

curve. Generally, there are four different regions in the curve: 
> The initial creep region which is elastic in nature. 
> The primary region, which indicates the early stage of creep and during which the 

creep rate decreases rapidly with time. 

> The secondary region, in which the creep rate is almost constant when the system is in 

a steady state condition. 
> The tertiary region, which denotes a rapid increase in strain and ends with fracture. 

The overall increase in strain is believed to be due to microstructural instability from 

prolonged high temperature exposure and to a gradual increase in stress level which leads 

to complete fracture (Benham et al, 1996). It is also important to note that elongation to 
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fracture in creep is only a fraction of that usually obtained for continuous loading to 

fracture at high temperature. 

It is argued that due to the very small gradient of the secondary stage of the creep process, 
that there might be a limiting creep level below which the strain rate will be almost equal 
to zero. This is one of the issues to be addressed in Chapter 6 of this thesis. 
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2.6.2 Aramid Fibre Creep Behaviour 

Aramid fibre has very little creep, which is a phenomenon of stress relaxation when a fibre 

is held under stress because of its highly crystalline and anisotropic nature. However, its 

creep increases with increasing stress and temperature or when in contact with water as a 

result of the plasticization mechanism. 

Cook's (1982) study of the creep behaviour of Kevlar 49 fibres under different loads, 

temperatures and environments supports the above observations with the conclusion that 

the overall creep in 10,000 hours was less than 0.5% in all cases. However, when 

compared with other reinforcements such as glass, boron, or graphite, Kevlar 49 fibre 

exhibited more creep, as was reported by Bunsell (Erickson, 1985). 

It is noted (Kostikov, 1995) that the rate of creep rises as the applied stress increase. In 

contrary, Twaron Products bv reported (Twaron, 2000) that the creep rate of two different 

types Twaron yams when measured has proven rather insensitive to stress level, 

temperature and moisture. An increase in rate from .01 6%decade to . 020%decade was 

observed when the load was increased from the range of 10% to 40% of the breaking 

strength to a range of 50% to 60% for Twaron type 1055, while the increase was only from 

.0 16 to . 022%decade in the case of Twaron 2200 when the loading was increased from 10 

to 40% range. Also, the modulus of elasticity increases as the stress level increases, which 
is believed to be a consequence of crystallite rotation in the process of creep. 

Maksimov and Plume's (200 1) experimental data showed that the main part of the creep 
deformation of aramid SVM fibres was realized within the first five to seven months of the 

creep test. Then the creep rate of the fibres decreased considerably, but never stopped. 

Maksimov and Plume's observations disagree with those of Bunsell (1975) when testing 

the creep behaviour of Kevlar 49. Bunsell loaded the fibre to 85% of its expected breaking 

load, and his observations recorded little creep at the beginning of the test. After about 5 

minutes of loading, the fibre stabilized, and no further measurable extension was observed. 
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In a study conducted by du Pont (on Kevlar 29) over a rather short time-scale at a range of 

temperatures, the results showed that the initial elastic strain that occurs on loading is 

followed by a slow rate of creep. It did appear that the creep rate at a particular stress 

declines with time, but it was not possible to conclude whether the creep slows down to a 

negligible rate over the observed timescale or whether it continues. Additionally, the 

results show that failure occurs when the overall strain reaches a value in the region of 

0.032-0.035 (Gibson, 2002). 

2.6.3 Aramid Fibre Failure Model 

As described earlier, aramid fibre is a rigid rod polymer comprising stiff polymeric units 

arranged in a near-unidirectional crystalline phase. Figure 2.27 is a view of the structure 

which shows a unidirectional crystal containing imperfections corresponding to the ends of 

the individual crystal sequences. It is believed that the rod-like sequences shown here may 

correspond either to individual chains or to crystallites comprising a number of chains 
(Gibson 2005). 

Figure 2.27 Schematic of the morphology of aramid fibre 

It is generally accepted that the creep of aramid fibres under load involves plastic flow or 

movement parallel to the chain direction within the crystallites, and previous physical 

models for creep behaviour have been based on this approach. 

Northolt (1980) summarized the fibre structure as being built-up of parallel aligned fibrils 

in which crystallites having a narrow orientation distribution relative to the fibre axis are 

linked end to end. Northolt models the strain as originating from the elastic extension of 
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the polymer chain and from the rotation of the chain or crystallite axis toward the fibre 

axis. The rotation is described as consisting of reversible (elastic) and irreversible (plastic) 

contributions, which accounts for the residual strain observed in the unloaded and 

unbroken fibre. The second tensile loading of a fibre is assumed to comprise elastic 

extension and rotation of the crystallites (Erickson, 1985). Clearly the deformation 

mechanism must also involve some imperfections in the crystal structure. Indeed it has 

been proposed that deformation could involve the relative movement of imperfectly 

aligned crystalline regions. 

In their study of the relationship between the deformation of PPTA fibres and the 

molecular structure of their morphology, Northolt and van Aartsen (1977) concluded that, 

for a large part of the stress-strain curve, the macroscopic strain is brought about by 

elongation of the crystal lattice through valence angle deformation and the bond stretching 

of the polymer chain. 

Wang et al (1992) also refer the elastic and viscoelastic deformations of aramid fibres to 

the crystallite rotation which is caused by the rod-like structure of the PPTA molecular 

chains and crystallites. So, during tensile loading, disoriented crystallites will rotate toward 

the direction of the fibre axis, originating both elastic and viscoelastic deformations. 

However, because the changes in crystallite angles are very small, it proved to be very 
difficult to measure such changes using techniques like x-ray scattering. Nevertheless, 

crystallite rotations can be measured using fibre elastic compliance which is related to the 

crystallite angle. The relationship between the rotation angles, or in other words the fibre 

elastic compliance, and the creep strain is directly proportional. 

Erickson (1985) summarised other possible creep mechanisms, including: 

* Fibre's internal stresses relaxation resulting from fibre fabrication. 

Molecular rearrangement due to changes in bond angles and bond lengths. 

Supramolecular or pleat structure associated with the hydrogen bonded sheets that 

introduce different crystalline structure by displacing the sheets relative to each 

other as they bend to form the pleats. 
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e Creep due to voids and cracks formation or growth that could influence the 

crystallite rotation mechanism mentioned above. 

Based on the understanding that the strain observed under tension is a combined effect of 

the molecular elongation and the rotation of the chains, Chailleux and Davies (2003) 

proposed a model that describes the strain consisting of these two components. 

A further possibility which will be examined here is deformation associated with the defect 

regions constituted by the ends of chains, or alternatively the ends of crystalline sequences 
involving several chains. 

2.7 Aramid Fibre Microscopic Failure Analysis 

As was the case with the physical structure failure studies, there have been few studies on 

the microscopic failure process of aramid fibres. 

Morgan et al (19 8 3) reported that, when in the form of unimpregnated yams, aramid fibres 

fail in tension by axially splitting. This is because when an anisotropic solution such as that 

of aramid fibres is subject to shear or elongation flow, its domains deform and orient along 

the direction of flow/shear in ordered arrangements. But at high shear or elongation rates, 

the boundaries of these domains may be partly destroyed and may link up to form the 

fibrillar structure (Yang, 1992). The splitting phenomenon could also be attributed to 

internal cracks and defects in the fibre during the manufacturing process (Dobb et al, 
1979). 

In their views of the structural fibre splitting and failure process, Morgan et al (1983) 

proposed that crack propagation can readily occur parallel to the fibre's longitudinal axis 

because this only requires rupture of the H-bonds. However, failure transverse to the fibre 

direction could occur by two possible mechanisms. The crack transverses a path that 

follows the original macromolecular chain ends inherent in the fibre, or additional chain 

ends are produced under stress by chain scission, thus producing additional paths for 

transverse crack propagation. 
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In his study of Kevlar-49 and Kevalr-29, Bunsell (1975) suggested that it is the high drawn 

ratio employed in the manufacturing of these fibres that probably results in a low radial 

strength. This weak radial bonding may then account for some of the surface layers 

becoming detached and resulting in a large amount of surface swarf which can be seen on 
the fibre. In addition, Bunsell suggested that fracture of the fibre under stress is initiated by 

these splits or possibly some internal flaw. Separation of these fibrils leads to the formation 

of nodular surface flaws that contribute to subsequent axial splitting (Kerr, 2005). 

Lafitte and Bunsell (1982) noticed no difference in the fracture morphology in fibre breaks 

from simple tensile, fatigue, and creep conditions. 
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Chapter 3 Experimental Procedure 

The tests were conducted on ten specially-designed rigs, as shown in Figures 3.1 and 3.2. 

Air tests were conducted on the horizontal test rigs shown in Figures 3.1 a and 3.2 a while 

environmental tests were conducted on the vertical rigs (Figures 3.1 b and 3.2 b). 

Each rig was composed of three major systems: the load application system, the 

environment control system, and the data acquisition system. 

The load application system has a dead weight lever arm loading mechanism. This was 

made from aluminium. rectangular tube measuring 50.8 x 76.2 mm. The lever sat on an 

angled steel block, allowing it to move as the fibre elongated. Yam samples at both ends 

were gripped using 'capstan' type grips made of 19.05 min aluminium bar around which 

they were wrapped several times. In this way, all elements of the yam were tensioned 

equally and the minimum possible local stress concentration was put across the roller grips. 

No evidence of grip slippage or local damage at the grips was noted, and fibre failures 

were within the gauge length as shown in Figure 3.3. Failure results were ignored if it 

occurred at the grip. The weights on the lever were added manually with great care taken 

not to cause instantaneous failure. Samples were held under constant tension until failure 

occurred. In order to maintain a consistent and constant load throughout the test, the lever 

arm was adjusted to maintain a horizontal level as the fibre elongated. 

A load cell was used to check the calculated lever arni loading ratio, which is used to 

determine the exact load experienced by the fibre after loads were applied on the lever arm. 

Both calculated and measured lever arm loading ratios were found to be identical. So it can 

be claimed that using the load cell has provided an accurate calibration for the dead-weight 

experimental setup used. The linearity error in the used load cell was +_3%. 
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Figure 3.1 Photograph of (A) the Horizontal rigs for testing in air 
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Figure 3.1 Photograph of. (B) the Vertical rigs for environmental testing 
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(A) 
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Figure 3.2 Stress rupture testing machines: (A) Horizontal machines for testing in air (B) 

Vertical machine for environmental testing 
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Figure 3.3 Photograph of a failed fibre indicating failure within the gauge length 

67 
Gasem M. Fallatah 
PhD Thesis 



Long-Term Behaviour of Aramid Fibre 

In the environment control system, the tested gauge length of the yam was subjected to 

various combinations of test temperatures and environments (air, water, low pH water, and 

crude oil). 

High temperature tests were conducted using an air oven made of a bored 150.24mm. 

diameter aluminium. block which was heated using either cartridge heaters or heater mats. 
The centre bore was 76.2 mm in diameter and it was capped at both ends to maintain a 

consistent air temperature along the sample's gauge length throughout the test period, 
hence minimizing the effect of fibres gauge length sensitivity. Temperature along the 

gauge length was controlled within ± 2'C utilizing a control system described below. A 

similar environmental control system was used for the vertical test rigs, the main difference 

being that vertical PTFE-lined cylinders were used to hold the heated test environments. 
The pH level in the low pH water environment was measured daily using a pH meter. 

For the environmental tests, liquid levels were topped up as necessary to ensure continuous 

exposure to the test environment across the gauge length of the tested samples. 

Finally, the control and data acquisition system was responsible for controlling the test 

temperatures to within ± 2*C using specially-designed heater controllers. This system also 

monitored the test temperatures online, and detected the time to failure of each sample 

using the mounted linear variable differential transformer (LVDT). Yam samples were 

connected to the LVDT using a 26 x 0.53mm pin glued with a drop of super-glue. A 

personal data acquisition system (10tech Personal Daq/55) linked to a personal computer 

was used for the online recording of the test events. 

Tests at each stress level were repeated at least twice to reduce the influence of fibre 

variability and experimental scatter. In both horizontal and vertical arrangements, test 

samples were set in the test position and left for a sufficient length of time to precondition 
in the environment and so that the temperature stabilized before load application. 
Stabilization periods varied depending on the test temperature and environment, but never 
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exceeded 30 minutes. All tests were conducted in an area protected from direct sunlight, 

and yam spools were always kept covered to protect them from light degradation. 

Samples that did not fail for extended periods (> 1000 hrs or > 10,000 hrs) were broken 

using a computer controlled hydraulic Instron mechanical testing machine model 8511 

(Figure 3.4) using a 20KN load cell and different loading rates. The same Instron machine 

was used to conduct a number of the short term tests lasting up to 100 hours. The load was 
held constant during the tests, and samples were gripped using capstan grips similar to 

those used in the dead weight lever setup. High temperature environments for tests 

conducted on the Instron machine were achieved using a temperature controlled oven as 

shown in Figure 3.5, which also shows the arrangement used for creep testing. For creep 
tests, sample gauge length was around 145mm, and the strain was measured with an LVDT 

arrangement as shown. Strain rate data from the LVDT was obtained during the load 

application and during the initial part of the creep test at much faster rates compared to the 

rest of the test. 

Fractographic analysis was conducted on failed fibres using an environmental scanning 

electron microscope (ESEM) XL30 ESEM-FEG as shown in Figure 3.6. 
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Figure 3.4 Computer controlled hydraulic Instron mechanical testing machine used to 
break the samples in tests of very long duration 
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Figure 3.5 Close-up of the temperature controlled oven used for high temperature tests on 

the hvdraulic Instron mechanical testinp marbine. 

Figure 3.6 Photograph of the fel XL30 ESEM-FEG used in the fractographic analysis of 

the filed aramid fibre yarns 
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The experimental programme in this study involved performing long term stress rupture 

tests on the following aramid fibre yams: Kevlar 29 1670 dtex z80 twist (manufactured by 

du Pont), Twaron 1000 1680 dtex z80 twist and Technora T200 1670 dtex z80 
(manufactured by Teij in). Kevlar and Twaron are acknowledged to be very similar in 

performance and effectively interchangeable. Table 3.1 summarizes the dimensional and 

physical parameters of the three fibres involved in the test programme. 

Table 3.1 Dimensional and physical parameters of the fibre yams tested 
Fibre Type Density 

Ig/cm 31 
Tensile 

Strength [GPaj 

Young's 

Modulus [GPaj 

% Elongation 

at Break 

Kevlar 29 1.44 2.9 75 3.5 

Twaron 1000 1.44 3 71 3.5 

Technora, T200 1.39 3.4 71 4.4 

Table 3.2 Stress rupture test matrix 
Temp 

(0c) 

Time (hr) 

up to 

Air 

Environment 

Water 

Environment 

Low pH 
Environment 

Oil 

Environment 

25 1$000 x x x 

65 
1,000 V/ 
10,000 V/ 

95 1,000 V/ x x x 
120 1$000 %/ x x x 

140* MOO< V/ x x x 

Table 3.2 summarizes the test matrix. As indicated, tests were conducted in four different 

environments, namely: 

1. Air envirorunent. 
2. Regular tap water. 

3. Low pH water prepared by dissolving 1-878g of potassium hydrogen tartrate in 1000ml 

of pure tap water. The solution had a pH of around 4. 
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4. Saudi Arabian and Iranian crude oil of API 38.5 and H2S content of less than 0.1% 

supplied by Saudi Aramco and Shell oil companies respectively. 

Due to safety regulations, the low pH water environment was used to replace the crude oil 

enviromnent with high H2S concentration originally proposed for testing. 

Test temperatures ranged from 25'C to 140T. The highest temperature (140'C) was 

included in the test programme to improve the predictions generated by the Time 

Temperature Superposition Model used for the interpretation of the results, as explained in 

Chapter 4. Test duration ranged from one hour to 10,000 hours. 

Applied loads generally ranged between 40 to 85% of the fibre's tensile strength. One of 

the difficulties encountered while performing the rupture tests was predicting the stress 

level (load) corresponding to an expected time to failure. This could be due to the 

statistical variation in strength due to the distribution of flaws or weak points in the fibre's 

morphology. As a consequence, a scatter in the time to failure was imposed, as explained 

in the results and discussion below. 

The fibre's cross sectional area (diameter) as determined using the following equation 

[2.1]: 

A= 
LD 

X 10-4 

p 

where, A is the cross sectional area in mm2; 

p is density in g/cm 3; 

LD is linear density in dtex. 
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Chapter 4 Lonz-Term Behaviour ofAramid Fibres in Air under 
Different Temperatures 

4.1 Introduction 

Sudden material failure while sustaining large loads for long periods is known as creep- 

rupture, stress-rupture, or static fatigue. This phenomenon, which happens in various 

materials, may occur at any significant stress given enough time because the mechanical 

properties of the material are thought to degrade with time while under loading. So, when 
the material's residual strength becomes equal to the applied load, stress rupture occurs. In 

metals, stress rupture is noticed at high temperatures, while in most polymeric materials it 

occurs at room temperature. 

The design life usually required from materials is tens of years, but it is not feasible to 

conduct qualification tests for such periods. Neither it is possible to simply extrapolate 

short-term test results to predict long-term behaviour since there could be changes in 

failure modes after long periods. Hence, the long term suitability of a particular material is 

best determined by tests and interpretation methods that simulate, accelerate, and 

extrapolate long-term behaviour. Among these methods are those which characterise the 

material's performance under stress, taking into account the service conditions (e. g. 

temperature, environment, etc). Generally, the lifetime of a material is controlled by the 

material itself, the surrounding environment, and the loading conditions it is under. 

In this part of the thesis the results of tests are presented on the regression behaviour of 

three different fibre yams for times between 100 and 10,000 hours. These data were 

collected at different temperatures for the three commercially available ararnid fibres. Test 

temperatures were 250C, 651C, 95T, and 120*C, and the test environment was air. It is 

clear from the discussion in section 2.3.1 that, for the maximum operating temperature 

specified currently for RTP (65T), the temperature dependence of ararnid should not be a 
huge concern because of the limited effect of temperature on its strength properties in the 
650C temperature range, especially during the short-term tests conducted by the 
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manufacturers. However, tests are required for longer periods and particularly at higher 

temperatures to accelerate undesirable failure modes, if any, into the qualification test 

period. 

The following are the specific aims of this section: 

o To establish values of regression line gradients and 20 year design parameters for the 
fibre yams and to compare them to those of RTP. 

o To determine whether there is any evidence of long term changes in the failure mode 
that could affect the reliability of the material or the generated data. 

o To verify and cross-check the results obtained using different modelling methods. 

4.2 Stress Rupture Experimental Results and Discussions: 

Three methods, as outlined in Chapter 2, were used to process and interpret the results 
obtained from the stress rupture tests. 

The first was the multi-regression extrapolation procedure of the standard ISO 9080. As 

indicated in Chapter 2, the ISO 9080 procedure assumes that there is a linear relationship 
between the logio of the time to failure and the logio applied stress at each temperature. It 

also assumes that stress rupture curves are proportionally spaced depending on the 

reciprocal of the absolute temperature. Results are plotted on a logio-logio scale because it 

is thought that the failure time exhibits power law dependence on stress. The method 
includes an extensive number of constant stress tests at several temperatures for the 

generation of creep rupture curves, followed by a multiple linear regression analysis in 

order to fit the data. From the regression data acquired a mean regression line is 

constructed and a statistical 97.5% lower confidence limit curve is calculated and 

extrapolated to obtain the Lower Prediction Limit (LPL) at the design life. 

The second method used to process and interpret the results of the stress rupture tests was 
the modified standard ISO 9080. In this method a linear relationship between applied stress 
and loglo failure time, based on the theory of Eyring and an Arrhenius relationship, is used 
to enable the modelling of their relationship. Similar to the previous (loglo-logio) method, 
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this method includes an extensive number of constant stress tests at several temperatures 
for the generation of creep rupture curves, followed by a multiple linear regression analysis 
in order to fit the data. From the regression data acquired a mean regression line is 

constructed and a statistical 97.5% lower confidence limit curve is calculated and 

extrapolated to obtain the Lower Prediction Limit (LPL) at the design life. 

The third method used was the time-temperature superposition technique, which is based 

on the assumption that when data for a particular property in various temperatures are 

plotted on a logarithmic scale, then the property's curves versus time at each temperature 

should be the same if the underlying degradation mechanism that governs the property 
relation with time and temperature is the same. Based on this assumption, there should be a 
shift factor by which the time for each set of data (at each temperature) can be multiplied 
to get all the data to overlap at one specified reference temperature. 

4.2.1 Behaviour in Air as Modelled by ISO 9080 (loglo-loglo) 
Figures 4.1,4.2, and 4.3 show the stress rupture results of the different yams in air at 251C, 
650C, 95C and 1200C as modelled by the standard logio-loglo ISO 9080 procedure. The 

regression constants and the 20 year LPL values were calculated according to the ISO 9080 

procedure and are given in Table 4.1. 

For Kevlar and Twaron, the values of the regression line slope, G, are near to the values 

measured by the manufacturers of RTP pipe (Gibson et al, 2004), and they are very similar 
to each other although there have been marginal more scatter in Kevlar compare to 
Twaron. This is interesting, as it had been anticipated that the regression line slopes for the 

yams by themselves might be a little flatter. Indeed, had the slopes been shallower, then 

any small statistical variation in the material's properties can result in large variations in 

the time to failure. Hence, it will be very difficult to know when a sample under particular 

stress will fail when tested especially with long-term tests like the +10,000 hours failure 

time required by the qualification procedures. There is no such data available in literature 

for the third fibre (Technora) to compare with. 
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The fact that aramid fibre regression line slopes are quite similar to those of RTP pipe 

supports the idea of utilizing stress rupture tests conducted on the fibre yams in the 

prediction of RTP behaviour, and hence reduces the need for expensive long term tests on 

pipe samples needed for qualification. Additionally, this proves that these products (i. e. 
RTP) are well-manufactured from the viewpoint of strain balance and distribution among 

all loaded yams, as it is believed that such an effect has been the result of an effective 

manufacturing process in converting the yams into reinforcing tapes as well as in 

incorporating the tapes into the RTP. Additionally, it was concluded in the RTP JIP that 

one of the consequences of strain imbalances between yams would be an increase in the 

regression line slope. Hence, the pressure regression test is therefore a good test of RTP 

quality. 

The results show only small differences between Kevlar and Twaron yam types when 
tested in air, confirming that the products are, for most purposes, effectively 
interchangeable. It is clear that the ISO 9080 procedure has been effective in correlating 

the behaviour at different times and temperatures. 

Increasing the test temperature caused an evident decline in strength with time, as was 

anticipated, where the slopes of the regression lines were found to increase with increases 

in test temperature. This is very clear in the case of Kevlar and Twaron fibres. The 

temperature effect is not very much evident in the case of Technora fibre, however, it 

should be noted that this conclusion is based on very limited number of data points. 

it can be seen from figures 4.1 to 4.3 that the scatter of failure points for the individual 

yams is significant, and much greater than that observed when testing RTP spool samples 

under pressure. This is probably due to the fact that along the length of a fibre there is a 

variation in statistical strength due to the distribution of flaws or weak points in its 

morphology. Additionally, when a pipe is tested, the behaviour of several hundred yams is 

effectively averaged, which greatly reduces the scatter. 
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The mechanical behaviour of yams is strongly influenced by the level of twist, and as 
indicated earlier, along the length of a fibre there is a variation in statistical strength due to 

the distribution of flaws or weak points in its morphology. With untwisted fibres, therefore, 

test results depend on the gauge length. Hence, it is required to maintain the gauge length 

at a minimum so that its sensitivity effect is kept to minimum as well. Twisted yams 

eliminate this problem by allowing stress to be shared, through friction, between adjacent 
filaments when a particular filament fails. This is why yam twisting usually results in more 

consistency in measurements of the breaking strength and elongation at break, because of 

the distribution of tensile forces between the yam's filaments. This is similar in some 

respects to the 'composite' effect achieved when fibres are impregnated by a rigid resin 

matrix. 

Finally, there is no evidence of any 'knee' in the curves either after long periods or when 
the higher temperatures test data were added to help in accelerating the undesirable failure 

mechanisms (if any) to a shorter time period. This was checked both visually and using the 

mathematical procedure recommended in ISO 9080. This suggests that there will be no 

change of failure mechanism after long periods at the RTP pipe maximum design 

temperature of 65'C, which gives confidence in the qualification procedure proposed by 

the JIP for RTP products containing aramid fibre. This also supports the idea of utilizing 
the fibre stress rupture tests as an alternative to the expensive long term tests on pipe 

samples needed for qualification. 
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Table 4.1 Regression test results, stresses in GPa 

251C 
G F 20 yr 

Mean 
Stress 

20 yr 
LCL 

Kevlar -0.03682 2.2085 1.4159 1.283 
Twaron -0.04237 2.2278 1.3656 1.226 

Technora -0.05044 1 2.4890 1 1.35371 1.226 

651C 
G F 20 yr 

Mean 
Stress 

20 yr 
LCL 

Kevlar -0.04919 2.0958 1.1572 1.018 
Twaron -0.05402 2.1961 1.1440 1.001 

Technora -0.05514 2.4976 1.2835 1.137 

950C 
G F 20 yr 

Mean 
Stress 

20 yr 
LCL 

Kevla -0.06179 1.9867 0.9422 0.774 
Twaron -0.06485 2.1228 0.9703 0.801 

Technora -0.05845". l 2.5037 1 1.23629 1.027 

1200C 
G F 20 yr 

Mean 
Stress 

20 yr 
LCL 

Kevla -0.07569 1.8730 0.7511 0.521 
Twaron -0.07573 2.0518 0.8223 0.600 

Technora -0-06107 1 2.5086 1 1.20006 0.901 
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Figure 4.1 Results of Kevlar 29 yarn in air. 
Continuous lines are the predictions of the ISO 9080 4-parameter model 
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Figure 4.2 Results of Twaron 1000 yam in air. 
Continuous lines are the predictions of the ISO 9080 4-parameter model 
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Figure 4.3 Results of Technora T200 yarn in air. 
Continuous lines are the predictions of the ISO 9080 4-parameter model 
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4.2.2 Behaviour in Air as Modelled by the Modified ISO 9080 (lin-loglo) 

Figures 4.4 and 4.5 show the stress rupture results on the different yams in air at 25'C, 
651C, 95"C and 120'C as modelled by the modified lin-loglo ISO 9080 procedure. This 

was conducted by replacing the loglo stress fimetion with linear stress, to determine which 
model is most suitable, as discussed earlier. The regression constants and the 20 year LPL 

values were calculated and compared with those of the standard logio-logio ISO 9080 

procedure in Table 4.2. 

The curves obtained were quite similar in appearance to those obtained using the log, 0- 
loglo procedure. However, the extrapolated values of both the mean stress and the 20 years 
LPL were a little lower than those from the logio-logio relationship. This could be related 
to the better data fit observed in the case of the logio-logio procedure. It can be seen that 

although the lower temperature results differ only a little from the log 1 o-log 1o model, both 

20 year mean stress and especially the LPL are much lower at higher temperatures in the 
lin-loglo case. 

Also, increasing the test temperature has produced similar effect of decline in strength as in 

the logio-logio model. Similarly, the scatter of failure points is clear, and this is thought to 
be due to the same reasons mentioned for the logio-logio model above. 

As was the case with the standard log 1 o-log 10 model, this method can be used with 

confidence in the prediction of RTP behaviour, and hence reduces the need for expensive 
long term tests on pipe samples, especially at low temperatures. 
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Table 4.2 Comparisons of the 20 year mean and LPL from the loglo-loglo and lin-loglo 

models 

Loglo-Loglo Linear-Loglo 
Kevlar Kevlar 

Temperature 
(0c) 

Mean 
(GPa) 

LPL 
(GPa) 

Temperature 
(0c) 

Mean 
(GPa) 

LPL 
(GPa) 

25 1.416 1.283 25 1.328 1.135 
65 1.157 1.018 65 1.016 0.790 
95 0.942 0.774 95 0.762 0.453 
120 0.751 0.521 120 0.534 0.073 

T waron Twaron 
Temperature 

(0c) 
Mean 
(GPa) 

LPL 
(GPa) 

Temperature 
CC) 

Mean 
(GPa) 

LPL 
(GPa) 

25 1.365 1.226 25 1.277 1.068 
65 1.144 1.001 65 0.995 0.757 
95 0.970 0.801 95 0.773 0.456 
120 1 0.822 1 0.600 120 0.580 0.125 
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Figure 4.4 Regression test results for Kevlar yarns at 25,65,90 and 120'C (ISO 9080, 

modified to fit the lin-logio relationship) 
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Figure 4.5 Regression test results for Twaron yams at 25,65,90 and 1201C (ISO 9080, 

modified to fit the lin-loglo relationship) 
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4.2.3 Behaviour in Air as Modelled by Time-Temperature Superposition 

From the standard ISO 9080, it has been shown that there is no change in the underlying 

degradation or failure mechanism that governs strength in relation to time and temperature. 

Hence, the basic assumption for using the TTS analysis method has been met, and it can be 

applied in the case of air tests. 

Figures 4.6 and 4.7 show the Kevlar and Twaron failure data, expressed in the form of 

master curves of loglo stress vs. loglo time, with the reference curve being at 65T. The 
data at the other temperatures have been shifted horizontally by a factor, logio(at) to 

provide master curves with minimum least squares vertical scatter, assuming a quadratic 

relationship between logio stress and logio failure time. It can be seen that the shifted 

curves form a reasonability good master curve with some scatter. 

The main difference between TTS and ISO 9080 is that the TTS procedure used here 

allows the slope of the regression relationship to increase after long periods, as well as at 
higher temperatures. 

Table 4.3 shows values of the 20 year failure stress for the three yam types. The 97.5% 

lower confidence limit was calculated by determining the standard deviation of the points 
in Figures 4.4 and 4.5 about the master curves, then reducing the 20 year failure loglo 

stress by 1.96 standard deviations. 

It can be seen that the Twaron values are comparable with the data generated from the 

standard ISO 9080 procedure, but the predicted Kevlar data are rather more favourable as 
they are higher than those predicted using the standard ISO 9080. 

Table 43 20 year mean failure stress and 20 year LPL at 650C, determined from time- 

temperature superposition 
20 year mean failure 

stress (GPa) 
20 year LPL 
stress (GPa) 

Kevlar 1.643 1.505 
Tivaron 1.184 1.098 
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Figure 4.6 Time temperature superposition master curve of stress vs. logio time to failure 

for Kevlar yarns at 65C. 
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Figure 4.7 Time temperature superposition master curve of stress vs. logio time to failure 

for Twaron yams at 650C. 
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4.2.4 Range of Time to Failure at Different Stresses 

Figures 4.8 and 4.9 are plots of the range of times to failure (TTF) observed at the different 

stress levels applied during the tests. This gives a clear indication of the magnitude of the 

scatter in data encountered during the stress rupture tests as explained earlier. This data can 
be used to make a preliminary judgment on the strength of aramid fibre in long term 
loading conditions. 
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Figure 4.8 Time to failure distribution across the range of applied stresses for both fibres 
in air at 25*C 
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Figure 4.9 Time to failure distribution across the range of applied stresses for both fibres 

in air at 65*C 
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4.3 Conclusions 
The most notable feature in the results curves presented is the scatter of data points, which 
is significantly greater than that for the RTP pipe tests reported by Gibson et al (2005) and 

others. This is probably due to the fact that when a pipe is tested; the behaviour of several 
hundred yams is effectively averaged, which greatly reduces the scatter. In addition, it is 

believed that the fibres contain serious defects along their length; as a result there should 
be some statistical variation in strength along each fibre, due to a distribution of these 

flaws or weak points. Additionally, the tensile properties of the yam samples are not 
identical in all cases, due to the dependence of a yam's strength on twisting level which 

will usually result in more consistency in measurements of the breaking strength and 

elongation at break because of the distribution of tensile forces between the yam's 
filaments. 

Despite this scatter, the actual failure parameters for the two main fibres studied were 

similar, conf inning that they are effectively interchangeable. 

Generally, all synthetic fibres lose their load bearing capacity when under load and high 

temperature over a long period of time, and as has been shown in the present results, 

aramid fibres are no exception to this general rule. This is demonstrated by the increase in 

regression lines slope with increasing test temperature and duration. 

There is no evidence of a knee in any of the yam regression curves, suggesting that there is 

no change in failure mode after long periods when tested in air, probably because there is 

no environmental interaction apart from the limited effect of temperature on the fibre's 

strength rather than on the failure mechanism. This gives more confidence in the method 

used and its predictions, particularly at low temperatures such as 25"C. 

it can be concluded that the creep rupture measurements have successfully characterised 

the long-term failure behaviour of the aramid fibre yams, and have provided data that can 

be used as the basis for future design in tensile applications, including for RTP. The 

different yam types showed similar regression parameters. 
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The following conclusions were drawn from the work: 

" All three prediction methods gave similar predictions for the 20 year mean stress and 

the 20 year LPL stress. 

" Due to the scatter in properties among individual fibre samples it was necessary to 

conduct a large number of tests in order to reduce the scatter effect under each test 

condition. This scatter is thought to be due to the fact that along the length of a fibre 

there is statistical variation in strength due to the distribution of flaws or weak points in 

its morphology. 
The logio-logio plots, by their shape, give a more optimistic prediction of the long term 

behaviour of aramid fibres than the lin-logio plots. 

The values of the regression line slope, G, for both fibres were near to the values 

measured by the manufacturers of RTP pipe. This is interesting, as it had been 

anticipated that the regression line slopes for the yams by themselves might be a little 

flatter. This supports the idea of utilizing stress rupture tests conducted on the fibre 

yams in the prediction of RTP behaviour, and hence reduces the need for expensive 
long term tests on pipe samples needed for qualification. 

" Considerable tensile strength reductions were observed over long testing periods at 
different temperatures. 

" Tests results showed only small differences between the yam types when tested in air, 

confirming that the products are, for most purposes, effectively interchangeable. 

" The results suggest that there is unlikely to be a change in failure mechanism after long 

periods, which lends confidence to the use of aramid fibre in highly loaded long term 

tensile applications. 

" Regardless the loss of strength encountered as a result of long-term loading, aramid 
fibres performance is sufficiently high and they can be used in many applications 

where high strength is required. 
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Chapter 5 Long-Terin Behaviour ofAramid Fibres under 
Different Temperature & Environmental Conditions 

5.1 Introduction 
Although it is generally believed that aramid fibres are resistant to most chemicals, 

experimental results from this study have shown some reduction in strength as a result of 

exposure to different envirorunents. 

The aim of this chapter is to determine the effect of various environments on yam 
behaviour during the test period, and to determine whether or not there was any evidence 

of long term changes in the failure mode that could affect the reliability of the data 

generated. 

An explanation of the mechanism of degradation as well as the results of the long-terin 

stress rupture regression analysis is presented below for Kevlar and Twaron aramid fibres. 

The data presented were collected at combinations of a temperature of 65*C and different 

environments; namely pure tap water, low pH water, and crude oil. 

When polymers are exposed to different fluid environments, the absorption of species from 

these fluids results in plasticization which reduces strength and stiffness as a result of 

changes in free volume. Another form of change could be caused by chemical reactions 
between the absorbed species and the polymer resulting in loss of molecular weight 

through chain scission in the form of hydrolysis. As indicated in Chapter 2, because water 

molecules are small and polar, they can approach the hydrogen bonding sites and disrupt 

the original hydrogen bonds. Chain scission could also occur as a result of the prolonged 

periods of load application in the form of stress-induccd chain scission, or as a result of 

exposure to UV radiation. 
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However, although such form of degradation will lead to loss of strength; this was not very 
drastic as will be demonstrated in the sections below. This confirms the findings of Cook et 

al (1982), Morgan et al (1984) and Cantrill. (2002). 

It should be stressed that the noticeable reductions in the load-bearing capability of the 

yams when tested in crude oil and water (both pure and low pH) environments is not only 
time dependent. Rather it is also a function of the test environment and possibly also of 
temperature, which leads to certain forms of degradation in the material tested. 

Exposure to both crude oil and %%rater (pure and low pH) resulted in more rapid decays in 

stress compared to exposure to air. As a result, the horizontal shift factor cannot be applied 

and the results for air and other environmental conditions cannot be superimposed. This 

suggests the existence of different failure mechanisms as a result of changing the test 

environment, which therefore means that the principles of superposition no longer apply. 

5.2 Stress Rupture Experimental Results and Discussions 

5.2.1 Behaviour in Crude Oil at 6511C as Modelled by ISO 9080 (logio-loglo) 
The results of the regression tests in crude oil at 65"C are shown in Figures 5.1 and 5.2. It 

can be seen that crude oil immersion has a small but significant effect. With both Kevlar 

and Twaron the slope of the crude oil measurements is a little shallower than that of the 
regression data in air. This implies that there may be some initial plasticization effect, 
which has less influence as time goes on. 

on this basis it is relevant to calculate a factor relating to crude oil immersion. This was 

conducted for each crude oil experimental point. This factor is the failure stress in crude oil 

divided by the failure stress in air at the same time to failure as predicted by the ISO 9080 

model. The average values taken for all the experimental points at 65*C were 0.93 and 0.91 

for Kevlar and Twaron respectively. A reasonable factor to allow for the effect of crude oil 

on reinforcement, therefore, would be 0.90. This is probably conservative, given the fact 

that the regression lines appear to converge after long periods. 
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Figure 5.1 Kevlar yam: effect of testing in crude oil at 650C. Key: Upper curve and pink 

points represent the ISO 9080 fit and 65'C points for testing in air. Lower curve and black 

points represent tests in crude oil. Average ratio for all crude oil points = 0.93. 
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Figure 5.2 Twaron yarn: effect of testing in crude oil at 651C. Key: Upper curve and pink 

points represent the ISO 9080 fit and 651C points for testing in air. Lower curve and black 

points represent tests in crude oil. Average ratio for all crude oil points = 0.91. 
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5.2.2 Behaviour in Water at 6511C as Modelled by ISO 9080 (loglo-loglo) 

Tests were carried out in both pure water and low pH (acidic) water at 65'C. For the low 

pH water tests a buffer solution was prepared by dissolving 1.878g of potassium hydrogen 

tartrate in I 000ml of pure tap water. The solution had a pH of around 4 at the test 

temperature. The results for the Kevlar and Twaron yarns are shown in Figures 5.3 and 5.4. 

The pure water results are similar for the two fibre types. There appears to be an initial 

effect, possibly due to plasticization or hydrolysis, that results in an immediate fall in 

strength to around 1.8 GPa. Following that, however, the curves have a very shallow slope 

up to about 1,000 hours failure time, after which they presumably follow the regression 
line for testing in air. It appears, therefore, that the effects of pure water are transient, and 

confined only to the short failure time region. On the basis of the present results it may 

well be the case that water has no cffect over long periods. 

The response to low pH water is the only area where there appears to be a significant 

difference between the two fibre types. The effect on the Kevlar yams produces a notable 

deterioration in behaviour and a considerable increase in data scatter. It appears that there 

may be local regions of acid attack at points of sensitivity on the fibre, resulting in the 

scatter. These local acid attack regions could have been created where residual amounts of 

Sodium sulphate (Na2SO4) impurities (introduced during the manufacturing process of the 

fibre) remain trapped in the fibre as a result of incomplete neutralization of H2SO4. Also, 

this difference in the acidic water effect on the performance of the two different fibres 

could be attributed to the differences in their chain end (or termination) chemical group. 

Aramid fibres chain may end either with (-COOH) or (-NH2). which will have different 

interactions -with the test environment in the form of acid-induced chain hydrolysis 

(Morgan ct al, 1983). 

By contrast, the effect of the acidic water on the Twaron yam appears no different from 

that of pure water. 
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Figure 5.3 Kevlar yam: effect of testing in pure water and low pH water at 650C. 

Key- Upper curve and pink points represent the ISO 9080 fit and 650C points for testing in 

air. Middle curve, and blue points represent tests in pure water. Lower curve and yellow 

points represent tests in low pH water. 
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Figure 5.4 Twaron yarn: effect of testing in pure water and low pH water at 650C. 

Key- Upper curve and pink points represent the ISO 9080 fit and 650C points for testing in 

air. Black curve and points represent tests in pure water. Orange curve and points represent 

tests in low pH water. 
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5.3 Conclusions 
The programme of environmental experiments carried out on the Kevlar and Twaron types 

of aramid fibres gave useful data relevant to their long-terin regression. 

It has been demonstrated that exposure to the three tested environments has produced 
different adverse effects on the yams behaviour with an observed change in the failure 

mode. Plasticization, chain scission in the fonn of hydrolysis are the forms of adverse 

environmental effect that been produced as a result of immersion in water, both the pure 

and low pH. 

Crude oil immersion produced curves with slops a little shallower than that of the 

regression data in air. This implies that there may be some initial plasticization effect. 

The response to low pH water is the only area where there appears to be a difference 

between the two fibre types. This is attributed to differences in amount or intensity of the 
local regions of acid attack between the two fibres. Another reason is the differences in 

their chain end (or termination) chemical group. 

The following conclusions were dmwn from the work: 

* It is evident that exposure to crude oil and water resulted in a form of failure 

mechanism different from that of exposure to air. 

op A crude oil immersion factorwas calculated for each crude oil experimental point by 

dividing the failure stress in crude oil by the failure stress in air at the same time to 

failure, as predicted by the ISO 9080 model. The average values taken for all the 

experimental points were 0.93 and 0.91 for Kevlar and Twaron respectively. 

9 Due to the decay in stress as a result of exposure to crude oil and water compared to 

air, it is believed that different failure mechanisms are taking place as a result of 

changing the test environment, which therefore means that the principles of 

superposition no longer applies in the case of these environmental tests. 
Water immersion resulted in plasticization and chain scission in the form of hydrolysis. 
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e No significant difference between the effect of pure water and low pH water was 

noticed in the case of the fibres. It is believed that deterioration in strength when 

exposed to these environments is dominated by hydrolysis, and that the low pH has 

very little influence. 

e Difference in low pH water effect between the two fibres is attributed to either 
differences in intensity of the local regions of acid attack or differences in the chain 

end (or termination) chemical group. 

9 Plasticization, chain scission in the form of hydrolysis are the forms of adverse 

environmental effect that been produced as a result of immersion in water, both the 

pure and the low pH. 
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Chapter 6 Aramid Fibre Creep Behaviour and Failure Model 

6.1 Introduction 

As indicated in chapter one, in order to accurately predict fibre durability it is necessary to 
have a detailed understanding of the physical structure of the fibre, and how its structure is 

related to the deformation and failure process. To facilitate such understanding, a model 
has been proposed for the fibre failure mechanism and relating the stress to time to failure 

and estimating the strain to failure based on the material's properties. 

6.2 Aramid Fibre Failure Model 

Aramid fibre is a rigid rod polymer comprising stiff polymeric units arranged in a near- 

unidirectional crystalline phase. One view of the structure, as in Figure 2.26 (page 48), 

shows a unidirectional crystal containing imperfections corresponding to the ends of 
individual crystal sequences. The rod-like sequences shown in Figure 2.26 may correspond 

either to individual chains or to crystallites comprising a number of chains. 'Figure 6.1 

gives a clearer view of the structure, showing the fibre consisting of cylindrical crystallites 

with some degree of structural continuity in fibre direction. Also the non-random 
distribution of the macromolecular ends within the crystallites is illustrated. 

It is generally accepted that the creep of aramid fibres under load involves plastic flow or 

movement parallel to the chain direction within the crystallites. One problem is the 

identification of the actual deformation mechanism, which is difficult to envisage in a 

system where the chains are almost perfectly aligned within the crystalline phase. 

One of the proposed possibilities for explaining the actual deformation mechanism 

associated with the creep of aramid fibres under load is deformation associated With the 

defect regions constituted by the ends of chains or alternatively the ends of crystalline 

sequences involving several chains. Such regions of chain end concentration align laterally 

between crystallites to form planes that contain a greater concentration of chain ends than 

would be the case in a random chain-end distribution. These regions of chain-end 
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concentration within the fibre, as anticipated by Morgan et al (1983), are the primary 

critical physical structural parameters that control deformation and failure. 

Individual crystallite 

Individual macromolecule 

Figure 6.1 Schematic model of chain-end distribution in aramid fibre (Morgan et A 19831) 
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6.3 Aramid Fibre Creep Behaviour 

Figures 6.2 to 6.5 are the outcomes of the experimental tests at 25T and 651C in both 

linear and logarithmic scales. The curves were displaced because it was difficult to record 
the initial strain readings due to non-ideal loading conditions and instrument limitations. 

As noticed from the figures, the aramid yams showed a short 'primary' creep period of 
deformation following the application of the load. This lasted for less than 0.1 hours, after 

which the creep rate fell to a slow steady value during the 'secondary' creep period that 

lasted throughout most of the test until the rupture of the yam's fibres. The figures also 

show that in some samples there was a slight increase in creep rate prior to failure. In 

others there was little or no indication of any increase in creep rate prior to failure. 

It was argued by Lafitte and Bunsell (1985), Cook et al (1982), and Erickson (1985) that 

creep is generally linear with loglo time. However, from a comparison between the linear 

and logarithmic curves it can also be claimed that this relationship is also linear with time 

on a linear scale, as demonstrated in the figures mentioned above and as will be explained 
in the following discussions. 

With the present limited result it is rather very difficult to reach a definite conclusion on 

which form (the logarithmic or the linear) is best for describing the relation between strain 

and time. More data collected over longer periods and a wider range of stresses should 

assist in reaching such conclusion. 

It should also be noted that the total creep failure strain observed in these creep tests is less 

than that reported in the literature and by the fibre manufacturers under simple tensile tests 

for some stress levels. This is true for both the 25*C and 65T tests. 
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Figure 6.2 Total stain vs. loglo time at different stress levels and 25'C 
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Figure 6.4 Total stain vs. loglo time at different stress levels and 65C 
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Considering the linear trend of strain with both time and loglo time which continues until 

failure occurs, and because the total deformation comprises only an elastic component and 

a steady long term visco-plastic component (which ignores the primary creep process), the 

following empirical equation can be used to describe the overall strain of the fibre at any 

time t: 

e(t) = ej +at, or c(t) = e, +a log(t) [6.1] 

where, e is the creep strain 

t is the time 

c, is the initial elastic component of the creep process 

a is a parameter that relates the strain rate with both stress and 

temperature. 

It should be emphasised that a more mathematically and theoretically rigorous equation 

could be developed. However, considering the very limited and short durations of the tests 

conducted here, it is believed that the accuracy of the empirical equation [6.1 ] is sufficient, 

and that it is particularly convenient to use since the creep rate is the slope of the steady- 

state part of the strain versus time (either liner or logarithmic) plot for the constant load 

creep. 

The initial elastic component of the total strain can be expressed in terms of Hooke's law, 

hence: 

Sr, =a 
[6.2] 

E 

where, a is the applied stress in megapascals 
is the fibre's Young's modulus in megapascals. 

The stress dependence of a for fibre creep is best represented by the power law function, 

hence, 

a=Aa' [6.31 
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The values of the parameters A and n are listed in Table 6.1 for the 25'C and 65'C tests 

from both the logarithmic and the linear representations. These numerical values 

correspond to stresses expressed in GPa and times in hours. 

Table 6.1 Numerical values of the fibre's strain rate parameters 

Linear Scale Values Logarithmic Scale Values 
Temperature (*C) A 

- - - 
n Temperature (*C) A n 

25 TO : 7*75 17.1 25 0: 2.21 
65 7gT 10" 22.4 65 10-: 7, 4.99 

Figures 6.6 and 6.7 are comparison of the logarithmic and linear strain predictions as per 

equation [6.1 ] extrapolated to hundred thousand hours at different stress levels. Values of 

the constants A and n, in equation [6.3], are from Table 6.1 and the Material's Young's 

Modulus equals 73 GPa and 68 GPa for the 250C and 65T tests respectively. 

The figures confirm the observation that the creep behaviour can be described using either 

the logarithmic or linear relationship especially for the tests conducted at 65T. The only 
difference between the two descriptions is towards the end of the sample's life where there 

has been some uncertainty. 

The very small and limited gradual increase in the strain rate suggests that some internal 

molecular movement or readjustment is taking place similar to the annealing process in 

metals. After this read ustment, the molecular structure becomes locked and further i 

movement under the applied load is almost inhibited, and the progressive failure from the 

local weakness in the individual fibres reaches its limit and fracture occurs. 

The exact time to failure does not correspond to the applied stress levels, which reflects the 

scatter of strength data for these fibres found earlier. Nevertheless, there has been a clear 

correlation between the applied stress, time to failure and the failure strain as demonstrated 

in Figure 6.8. Also, notice that the failure strain increases with the increase in the applied 

stress level. 
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Figure 6.6 Total stain predictions vs. logio time at different stress levels and 25'C 
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6.4 Conclusion 
Aramid fibres are unidirectional crystals containing imperfections corresponding to the 

ends of individual crystal sequences. When loaded, deformation involves sliding or 

plasticity around defect regions. A model was proposed for relating stress to time to failure 

and estimating the strain to failure based on the material's properties based on this 

understanding, and using the knowledge about the constituent laws that govem the failure 

behaviour. 

The following conclusions were drawn from the work: 
Aramid yams showed a short 'primary creep' period of deformation, lasting less than 
0.1 hours, after which the creep rate fell to a slow steady value during the 'secondary' 

creep period that lasted throughout most of the test until the rupture of the yarn's fibres. 

There was a slight increase in creep rate prior to failure in some samples, while in 

others there was little or no indication of any increase in creep rate prior to failure. 

The small and limited gradual increase in the strain rate suggests that some internal 

molecular movement or readjustment is taking place similar to the annealing process in 

metals after which the molecular structure becomes locked and progressive failure 

from local weaknesses in the individual fibres reaches its limit and fracture occurs. 
Both the logarithmic and linear representation of the relationship between creep strain 
and time well described the behaviour within the sample life. 
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Chapter 7A ramid Fibre Failure Mechanism (Structural 

Behaviour) 

7.1 Introduction 

Following the explanation of physical structure in Chapter 6; it was also thought that a 

microstructural. analysis of fibre failure was necessary for a better understanding of its 

behaviour and durability. A Scanning Electron Microscope (SEM) analysis was utilized to 

assist with the microstructural investigation. 

7.2 SEM Characterization to Assess the Failure Modes 
The appearance of aramid fibre under SEM was generally a uniform smooth cylindrical 

profile (Figure 7.1), with minor surface roughness and variations in diameter along the 

same fibre. 

Figure 7.2 shows different degrees of magnification at the fractured end of a tested aramid 
fibre. In the first two SEM photographs, the splitting and fibrillating morphology are clear. 
The other three high magnification SEM photographs show some striation marks in a 

parallel direction to the fibre's axis. These striation marks are believed to be the result of 

the suggested plastic flow or movement within the crystallites in a direction parallel to the 

chain directioii, as was suggested in the physical failure model. 

The fibres tend to split and fibrillate upon failure under tensile loading, making the 

splitting and fibrillating the major characteristics of fracture morphology observed in the 

SEM analysis of the failed samples. The fibrillar bundle projects from the surface of the 

fractured fibre into several directions; hence it can not be related to the direction of 

extrusion or winding on the package. It is believed that tensile failure initiates at fibril ends 

and propagate via shear failure between the fibrils (Pigliacampi, 1995). It is worth re- 

emphasising that the fibres, in fact, consist of hundreds of filaments that are made of many 

identical fibrils as described in the aramid fibre manufacturing process in chapter 2. 
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Figures 7.3 and 7.4 compare failed samples that indicate splitting and fibrillating with 

some cut fibres that demonstrate sharp edge ends. 

The splitting and fibrillating phenomenon could be attributed to one or a combination of 

the following causes: 

* The high drawn ratio employed in the manufacturing of these fibres probably caused 
low radial strength. T'his weak radial bonding may then account for some of the surface 
layers becoming detached, resulting in a large amount of surface swarf which can be 

seen on the fibre. Fracture of the fibre under stress could be initiated by these splits. 
After the initiation a split would easily develop in a longitudinal direction because of 
the low radial strength, and failure would occur when the load bearing cross-sectional 

area is sufficiently reduced so as to cause failure under the maximum applied load. 

e Internal cracks and defects in the fibre during the manufacturing process. It is assumed 
that cracks initiate at these defects or as a result of the breakage of hydrogen bonds in 

the transverse direction. Cracks propagate along the fibre's axis leading to 

delarnination and ftu-ther crack propagation until failure. 

e The highly anisotropic structure of the fibre with a low transverse strength. 

Figure 7.5 is a two dimensional schematic illustration of the crack initiation and 

propagation process. Assuming crack initiation is due to one of the reasons mentioned 

above, the crack progresses parallel to the fibre direction (longitudinal) as more H-bonds 

are ruptured, while it propagates in a traversal direction following the chain end 

concentration regions. 

It is worth mentioning that the presence of moisture worsens the situation because it 

disrupts the hydrogen bonding between the fibrils, making it easer to initiate and propagate 

longitudinal splitting. Also, the distribution and aggregation of impurities such as Na2S04 

throughout the fibre will affect the packing of the macromolecules in the transverse fibre 

direction and hence enhance the fibrillation process. 
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Figure 7.1 SFAI photopi-aphs of aramid fibres under different magnifications z: l 
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Figure 7.2 SEM photographs of the fractured end of a fibre under different magnitications 
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Figure 7.3 Splitting and fibrIllating of failed fibres under SEM 

116 

6asern M. Fallatall 
PhD Thesis 



Long-Term Behaviour of Aramid Fibre 

tit) Soox 

150ox 

Figure 7.4 SEM photographs of cut fibre ends 

Figure 7.5 Schematic of the crack propagation path 
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7.3 Conclusions from SEM characterization 
The splitting and tibrillating was the major characteristics of fracture morphology observed 

in the SEM analysis of the failed samples. This attributed to the low radial strength caused 
by the high dra, ýving ratio employed in the manufacturing and/or internal cracks and deflects 

in the fibre during the manufacturing process. 

The following conclusions can be drawn from the SEM characterization conducted on the 

aramid fibres tested: 

" Splitting and fibrillating are the major observed characteristics of the fractured ararnid 
fibres. 

" High manufacturing drawing ratios. internal cracks and defects in fibres, and/or the 

high anisotropic fibre structure are the main likely root causes for the splitting and 
fibrillating observed on the tailed fibres. 

The physical failure model, which suggests that crystallites plastic flow in a direction 

parallel to the fibre*s axis. IS Supported by the observed striation marks in the high 

SEM magnification photographs. 
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Chapter 8 Final Discussion and Conclusions 

8.1 Final Discussion and Further Work 

8.1.1 Stress Rupture Tests 

An investigation of the creep rupture of Kevlar(D 29 and Twaron(D 1000 aramid fibre yams 

was carried out in four different temperatures, namely 25"C, 651C, 951C, and 120"C in air 

and three other environments at 65"C (Saudi/Iranian crude oil, pure water, and low pH 

water) with the objective of characterising the long term failure behaviour of these fibres. 

Three different predictive methods were used to model and interpret the results of the tests. 

These methods are: the standard loglo-loglo ISO 9080 extrapolation procedure, the 

modified lin-logio ISO 9080 extrapolation procedure, and the time temperature 

superposition method. 

When tested in air, the different yams produced values of the regression line slope, G, near 

to those values measured by the manufacturers of RTP pipes. This supports the idea of 

utilizing stress rupture tests conducted on the fibre yams in the prediction of RTP 

behaviour, and hence reducing the need for the expensive long term tests on pipe samples. 

Additionally, the different yams showed only small differences in results, confirming that 

they are effectively interchangeable. 

There was some scatter in data compared to that noticed when testing RTP pipes. This is 

believed to be caused by statistical variations in strength along the fibres, and the fact that 

when a pipe is tested the behaviour of several hundred yams is effectively averaged, which 

greatly reduces the scatter. 

The results of the standard loglo-loglo ISO 9080 and the modified lin-loglo methods 

correlated well. The standard loglo-loglo form, however, gave slightly higher values for the 
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20 year mean stress and LPL. Its use is recommended because it is consistent with the 

model assumed in the regression of RTP. 

There was no evidence of any 'knee' in the relationships after long periods or at high 

temperatures. This suggests that there is no change in failure mechanism, and lends 

confidence to both the long term use of aramid fibre in air and the recommended 

qualification procedures. 

Crude oil immersion produced a small but significant reduction in performance as a result 

of plasticization effects. At 65"C a suitable crude oil reduction factor applied to the long 

term LPL would be 0.9. Pure water produced a marked reduction in strength after short 

periods at 65*C. Finally, water of low pH resulted in a large reduction in performance and 

considerable scatter with one fibre type. With the other, the effect appeared to be similar to 

that of pure water. Difference between the two fibres in the low pH water effect is 

attributed to either differences in the intensity of local regions of acid attack or differences 

in the chain end (or termination) chemical groups. 

Further Work 

Further work on the regression behaviour of aramid fibre both in air and other 

environments could address the following areas: 
> The use of different interpretation methods such as Miner's Law and comparison of the 

results with those obtained using the methods in this thesis. 

> An investigation into the mechanism of enviromnental degradation occurring in the 

fibres in the crude oil and water enviromnents; in particular, studying the reversible 

hydrolysis effect 
> Statistical study, using Weibull analysis, of the data scatter with the aim of developing 

a relationship between such scatter and the fibre's structural variability. 

); ý- Careful stress rupture analysis on single fibres rather than yams in similar 

environments to those used in this study. This will provide an insight into the fibre's 

performance in the absence of twisting effect. 

> Using the data generated in the verification of some of the predictive models. 
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8.1.2 Aramid Fibre Creep Behaviour and Failure Model 

One of the structural views of aramid fibres is that they are unidirectional crystals 

containing imperfections corresponding to the ends of individual crystal sequences. While 

loaded, deformation involves sliding or plasticity around the defect region. Based on this 

understanding, and using the knowledge about the constituent laws that govern the failure 

behaviour, a model is proposed for relating stress to time to failure and estimating the 

strain to failure based on the material's properties. 

Further Work 

Further work on aramid fibre creep behaviour could include: 

> Improving the failure model by taking into account the effects of molecular weight 
distribution, yam twist and the length dependence of the strength of individual yams. 

> Comparing the different failure mode models with recommendations based on 

matching experimental results with the predictive models. 
> Conducting creep tests for longer periods at different temperatures, and especially at 

the most useful design temperature of 650C. 

> Conducting creep tests in different environments similar to those where the fibres are 

expected to used. 

> Developing a method that will eliminate the equipment limitations encountered here in 

capturing the exact profile of the initial creep curves. 

8.1.3 SEM Failure Analysis 

Splitting and fibrillating were the major characteristics of fracture morphology observed in 

the SEM analysis of the failed samples. The cause of such morphology is thought to be due 

to the low radial strength caused by the high drawing ratio employed in the manufacturing 

process and/or internal cracks and defects in the fibre. 

Further Work 

Further work on the SEM characterization of aramid fibres could include: 

> Conducting SEM analysis to investigate the fractography of field samples from 

different environmental tests. 
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> Investigating the differences, if any, in the fractography of samples with different times 

to failure. 

8.2 Final Conclusions 

The objective of this work was to answer questions on the usability of long term stress 

rupture tests on aramid fibres as an alternative for the expensive tests usually conducted on 
RTP for qualification purposes. From the work presented in this thesis, it can be concluded 

that future qualification procedures could avoid the 10,000 hour regression test, replacing it 

with tests on the reinforcement fibres or a test for conformity of the regression line slope. 
The following are the main conclusions drawn from this study: 

8.2.1 Air Stress Rupture Tests 

> All three prediction methods gave similar predictions for the 20 year mean stress and 
the 20 year LPL stress. 

> Due to the scatter in properties among individual fibre samples it was necessary to 

conduct a large number of tests in order to reduce the scatter effect under each test 

condition. This scatter is thought to be due to the fact that along the length of a fibre 

there is statistical variation in strength due to the distribution of flaws or weak points in 

its morphology. 
> The logio-logio plots, by their shape, give a more optimistic prediction of the long term 

behaviour of ararnid fibres than the lin-logio plots. 
> The values of the regression line slope, G, for both fibres were near to the values 

measured by the manufacturers of RTP pipe. This is interesting, as it had been 

anticipated that the regression line slopes for the yams by themselves might be a little 

flatter. This supports the idea of utilizing stress rupture tests conducted on the fibre 

yams in the prediction of RTP behaviour, and hence reduces the need for expensive 
long term tests on pipe samples needed for qualification 

> Considerable tensile strength reductions were observed over long testing periods at 

different temperatures. 

> The tests results showed only small differences between the yam types when tested in 

air, confirming that the products are, for most purposes, effectively interchangeable. 
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> The results suggest that there is unlikely to be a change in failure mechanism after long 

periods, which lends confidence to the use of aramid fibre in highly loaded long term 

tensile applications. 
> Regardless of the loss of strength encountered as a result of long-term loading, aramid 

fibre performance is sufficiently high so that they can be used in many applications 

where high strength is required. 

8.2.2 Environmental Stress Rupture Tests 

> It is evident that exposure to crude oil and water resulted in a form of failure 

mechanism different from that in exposure to air. 
>A crude oil immersion factor was calculated for each crude oil experimental point by 

dividing the failure stress in crude oil by the failure stress in air at the same time to 

failure, as predicted by the ISO 9080 model. The average values taken for all the 

experimental points were 0.93 and 0.91 for Kevlar and Twaron respectively. 
> Due to the decay in stress as a result of exposure to crude oil and water compared to 

air, it is believed that different failure mechanisms are taking place as a result of 

changing the test enviromnent, which therefore means that the principles of 

superposition no longer applies in the case of these enviromnental tests. 

> Water immersion resulted in plasticization and chain scission in the form of hydrolysis. 

> No significant difference between the effect of pure water and low pH water was 

noticed in the case of the fibres. It is believed that deterioration in strength when 

exposed to these environments is dominated by hydrolysis, and that the low pH has 

very little influence. 

> The difference between the two fibres in the effect of low pH water is attributed to 

either differences in intensity of the local regions of acid attack or differences in the 

chain end (or termination) chemical group. 

> plasticization and chain scission in the form of hydrolysis are the forms of adverse 

environmental effect that have been produced as a result of immersion in both pure and 
low pH water. 
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8.2.3 Aramid Fibre Creep Behaviour and Failure Model 

> Aramid yams showed a short 'primary creep' period of deformation, lasting less than 

0.1 hours, after which the creep rate fell to a slow steady value during the 'secondary' 

creep period that lasted throughout most of the test until the rupture of the yam's fibres. 

> There was a slight increase in creep rate prior to failure in some samples, while in 

others there was little or no indication of any increase in creep rate prior to failure. 

> The small and limited gradual increase in the strain rate suggests that some internal 

molecular movement or readjustment is taking place similar to the annealing process in 

metals after which the molecular structure becomes locked and progressive failure 

from local weaknesses in the individual fibres reaches its limit and fracture occurs. 
> Creep is generally linear with loglo time as well as with time on a linear scale. 

> It has been thought that creep rate is independent of stress, but, as it has been 
demonstrated here, it seems that creep rate is in fact sensitive to applied stresses. 

8.2.4 SEM Failure Analysis 

Splitting and fibrillating are the major observed characteristics of the fractured aramid 
fibres. 

> High manufacturing drawing ratios, internal cracks and defects in fibres, and/or the 

high anisotropic fibre structure are the main likely root causes for the splitting and 
fibrillating observed in the failed fibres. 

> The physical failure model which suggests that crystallites plastic flow in a direction 

parallel to the fibre's axis is supported by the striation marks observed in the high SEM 

magnification photographs. 
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Appendix A- ISO 9080 4-Parameters Model Calculations 

11 logul logaý 
- logt, --e, - 

T, T, 

x ; y= ; e= 

i log U, 
log 'WN LlogtvJ Lex J 

ff T TNj 

where, N is the total number of data point. 

WithC = 
(cl 

9 C2 9 C3 I C4 
Y; 

where T is the transposition operator. Hence, the 4-parameter model can be written as: 
y=Xc+e 

The least-squares estimates of the parameters are given by: 

ý=(XrXY, Xry, 

and the residual variance estimate is given by: 

2 (y 
_ X-)T 

(Y 
- X6) 

- 3, -FN 
- q) ' 

where, q is the number of parameters in the model. 

The predicted stress value corresponding to a given time to failure t and temperature T is 

given by: 

loga = 
(109 t- Cl - C2 IT) 

(C3 
+ C41T) 

To calculate corresponding to a given time to failure t and temperature T, the 

inversion operation in the following relation is carried out: 

T 
11 

+X(XTXY'Xrr, logt=C, +C, IT+c, loga+c, 
Llog. 

-a)-tvs 

where, t., is Student's t-value corresponding to a probability level of 0.975 with the 

number of degrees of freedom of N-4; x represents the vector [1,11T, logo-, (log o-)IT]. The 

result is: 
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Og aLPL 
4ay 

2a 

where a= (c,. c, IT)' - ts, 
2s2 (K 

33 +2K,, 31T+K4, 
IT2) 

, 6=2(c, +C2 IT -logtXc3+C4 IT) -2ts, 's'[K3, +(K,, +K32)IT+K42 IV] 

,V= 
(Cl + C2 IT _Iogt)2 _tS, 

2S2(Kil +2K211T+K22IT' +1) 

K, is the element with subscripts ij in the matrix (X rx)-I 

The value of the o-LPL can then be calculated from the following cquation: 

aLpL = 10 exp (log ap, ) 
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Appendix B- IS09080 4-Parameters VBA Model 

Dim Counter, datapoints As Integer 

Dim tbl, fillrange, sourcerange As Range 

Dim Xarray, yarray 

Dim N, param. As Integer 

Dim temperature, period, pressure 

%VorksheetsC'muld regression"). Activate 

RangeC'm6: q200'). C1earContents 'clear the output cells 
RangeC't: t'). ClearContents 

Columns('T: T'). Select format the output cells 
Selection. NumbcrFormat "0.0001, 

RangeC74M"). Select 

Selection. NumberFortnat "General" 

RangeC'tl4'). Select 

Selection. NumberFormat '10.011 

Rang<0'). Select 'make active cell in data table then select the range 
Set tbl = ActiveCell. CurrentRegion 

tbLResize(tbLRows. Count - 1, 

tbLColurnns. Count). Select 

N= tbLRows-Count -1 

param. = Rang<ff). Value 

If Cells (3,6) <>3# Or 4# Then param. =4 

RangeCWWalue =N 

Rang<6"). Value = param. 

'setup the transformed data for the arrays Xarray and Yarray 4 parameter model 

RangeC'm6"). Select 

ActivcCeU. Value = 'T' 

Rang<nC) Select 

ActivcCelLFormulaRlCl = "=1/RC[-10j" 

Rang<06'ý. Select 

140 
Gasem M. Fallatah 
PhD Thesis 



Long-Term Bebaviour of Aramid Fibre 

ActiveCeU. FormulaRlCl = "=LOG(RC[-10j)" 

Ringe('P6'). Sclcct 

ActiveCeILFortnulaRIC1 = "=LOG(RC[-11])/RC[-12j" 

RangcC'Q6'). Select 

ActivcCeILFormulaRlCl = "=LOG(RC[-11])" 

Sctsourccrange=Range('m6: q6") 'Setup the autofiU 

Set Orange = tbLOffsct(l, 10). Resize(tbl. Rows. Count - 1, tbl. Colurnns. Count + 1) 

sourccrangc. AutoFiU Dcstinadon: =fillrangc, Type: =xlFiUCopy 

name the arrays 
AcdveWorkbook. NamesAdd name: ="Xarray", 

RefcrsTo: =fiUrange-Resize(fiUrange. Rows. Count, fiUrange. Columns. Count - 1) 

ActivcWorkbook. NamcsAdd name: = "yarray", RefersTo: =fillrange. Offset(O, 

4). Resizc(fiRrangc. Rows. Count, fiUrange-Columns. Count - 4) 

ActivcWorkbook. NamcsAdd namc: ="N", RcfersTo: =Range("t4") 

ActivcWork-book. NamesAdd name: = "patam", RcfersTo: =RangcC't5") 

calculate cocfficients 

RangcC't6: t9'). Select 

Sclcction. FormulaArray 

"=IýMIULT(NIINVERSE(NINIULT(I*RANSPOSE(Xarray), Xarray)), MMULT(IRANSPOSE( 

Xarray), yarray))" 
ActivcWorkbook. Names. Add name: = "coeffs", RcfersTo: =Range("t6: t9") 

Residual variance 

RangeC'tl l'). Select 

Selection. FormulaArray = "=I%INfULT(IRANSPOSE((yarray- 

lýiNfULT(, N'mray, cocffs))), (yarray-NINIULT(Xarray, cocffs)))/(N-param)" 
ActivcWorkbook. Names. Add name: = "variance", RcfcrsTo: =RangcC'tl 1 

LPL routine 

RangeC'tl3"). Sclcct 'setup input vector 

ActiveCcILValue = 'T' 

RangeC'n3'). Selcct 

ActiveCeILValue = "I" 

Range('o3'). Sclect 
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ActiveCeILFormula = "=l/(273+vl)" 

RangeC'p3"). Select 

ActiveCell. Fortnula = "=LOG(t13)" 

RangcC'q3"). Select 

Ac6veCeILFormula = "=LOG(tl3)/(273+vl)" 

ActiveWorkbook. Names. Add namc: ="xlpl", RcfersTo: =Range('n3: q3") 

Range('tl4'). Selcct 

Selection-FormuliArray = "=10^(MMULT(transpose(coeffs), TRANSPOSE(Xlpl))- 

TINV(1-0.95, N- 

4)*ull*(l+NINIULT(NINIULT(xlpl, minverse(NIMULT(I'RANSPOSE(Xattay), Xa, tray))), TRA 

NSPOSE(xlpl)))^0.5)" 

solve with goal seek 
Rang<714"). Select 
Rang<714"). goalseek Goal: = Range("v2") 

-Value, Changingcell: =Range("T13") 
RangeC'T15"). Select 

End Sub 
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