PROTEIN MODELLING AND ASSOCIATED DRUG DESIGN

A Thesis presented by

Richard K. Scott

in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at the University of Newcastle upon Tyne

NEWCASTLE UNIVERSITY LIBRARY

Department of Chemistry
University of Newcastle upon Tyne
September 1993

ACKNOWLEDGEMENTS

I would like to extend my thanks to my supervisor Prof. W. Clegg for his advice and guidance during my course of research. I would especially like to thank Dr. Nick Tomkinson for his enthusiasm and helpful comments. I would also like to thank Prof. B.T. Golding and Dr. R. Griffin from the Chemistry Department and Prof. A.H. Calvert and Dr. D.R. Newell from the Cancer Research Unit. I would also like to thank Prof. Harry Gilbert for help in protein purification and extraction and Prof. Roger Pain for his technical advice in secondary structure determination. Finally, I would also like to thank Dr. R.M. Stroud for his kind gift of the crystal coordinates of Thymidylate Synthase, SERC for financial support throughout this work, Molecular Simulations for the use of their facilities and Nyree for the tremendous help and support she has given me in the preparation of this Thesis.

Abstract

This Thesis is presented in two parts -

Part one covers an investigation into the secondary and tertiary structure of the protein Xylanase found in Pseudomonas fluorescens subspecies cellulosa.

Part two documents the Computer Aided Design of Novel Quinazoline Antifolates for the enzyme Thymidylate Synthase .

\section*{Part one}

Mature Xylanase protein consists of two distinct regions - a cellulose binding domain and a catalytic region, A and B respectively. Computer modelling of tertiary structure from primary sequence and secondary turn information proved difficult in the absence of experimental X-ray crystal data. Consequently, a series of modified proteins based on the Xylanase were prepared by Recombinant DNA technology for extraction and purification. The modified proteins were to be used as a bench mark for quantitative and definitive calculation and determination of the secondary structure of the xylanase. This was to provide an excellent reference point for theoretical modelling of tertiary structure. Part one of the Thesis documents Computer Modelling work and protein purification and extraction of the xylanase.

Part two

Thymidylate Synthase (TS) exists as dimer with a single active site in each subunit. It has been crystallised in two forms; a "reduced" (major), and "oxidised" (minor) form. The major form of TS contains dUMP covalently bound to cysteine in both active sites and in the presence of CB3717. One active site of the minor form contains dUMP non-covalently bound and in the presence of CB3717 while the other active site contains only inorganic phosphate and CB3717. The active site of TS is a large cavity that binds CB3717 into two possible confirmations. One is seen in the major form and one in the minor form.
Part two of my research documents an investigation into enzyme/inhibitor interaction in TS and covers the Computer Aided Design of a series of inhibitors based on the knowledge of the TS active site. Several of these compounds have been put forward as target compounds for synthesis.

CONTENTS

Acknowledgements

Abstract

Contents

PART 1

1.1 INTRODUCTION

(i) Xylan
(ii) Cloning Methodology
(iii) Structure of Xylanase
(iv) Applications of Xylanase
(v) Advantages of Computer Modelling
(vi) Limitations of Computer Modelling

1.2 MATERIALS AND METHODS

(i) Computer Modelling
(ii) Xylanase harvesting and purification
(iii) Transformation and religation of JM83 containing pNM52 with B41 and pN23++
(iv) Determination of recombinants of $\mathrm{pN} 23++$ and B 41
(v) Extraction of periplasmic fraction
(vi) Xylanase assays
a) non-IPTG induced cultures
b) IPTG induced cultures
c) time course assays
(vii) Avicel binding to xylanase
(viii) SDS-page mini gel electrophoresis
(ix) Large scale harvesting of xylanase protein
(x) Guanidine extraction
(xi) SDS-page mini gel analysis of dialysed protein extract
(xii) Xylanase assays on dialysed protein extracts
(xiii) Transformation of B 41 and $\mathrm{pN} 23++$ into JM83 without the regulation of pNM 52
(xiv) Cellulose column extraction of xylanase
(xv) Protein assay of cellulose columns

1.3 RESULTS

(i) Computer modelling
(ii) Cloning
(iii) Periplasmic extraction
(iv) Xylanase assays
(v) Avicel binding
(vi) Guanidine extraction and protein dialysis
(vii) Cloning without pNM52 regulation
(viii) Further Xylanase assays
(ix) Cellulose column extraction
(x) Protein assays

1.4 DISCUSSION

(i) Cloning of Xylanase
(ii) Xylanase assays
(iii) Extraction Techniques
a) Avicel binding
b) Guanidine extraction
c) Cellulose column extraction
(iv) Xylanase protein recovery
(v) Modelling of protein structure
(vi) Importance of crystal data
(vii) Xylanase as a target for protein modelling
(viii) Future work
(ix) Summary

PART 2

2.1 INTRODUCTION

(i) Thymidylate Synthase
(ii) Thymidylate Synthase Crystal structure
(iii) Computer modelling using QUANTA/CHARMm
a) Overview
b) Architecture of Modelling
c) Atomic coordinate manipulation
(iv) Computational Algorithms
a) Overview
b) Energetics and force
c) Internal energy terms
d) External energy terms
e) Electrostatic Energy
f) van der Waals Energy
g) Constraint Energy
(v) Minimisation
a) Steepest Descents
b) Powell
c) Adopted basis-set Newton Raphson
(vii) Electrostatic Potential Surface

2.2 MATERIALS AND METHODS

(i) Software
(ii) Hardware
(iii) Data
(iv) Methods
a) Comparison of the two TS forms
b) Analysis of crystal structure
c) Active site comparison
d) Conformational preferences of CB3717
e) THF and DHF conformations
f) Application of patches
g) Minimisation of TS containing CB3717, THF and DHF
h) $\quad \mathrm{N}^{10}$ substitution $-\mathrm{N}^{9}$ ligand design and cbnew series
i) Minimisation of one subunit of TS
j) Bifurcated ligand design - the BIF series
k) External energy interactions for each atom in the BIF and CB3717 series at 4,8 and $12 \AA$ range
l) Comparison of internal and external energy contributions
m) van der Waals and electrostatic summation - bumps and gaps
n) Solvation energies - comparison of interaction
o) Most promising Ligands

2.3 RESULTS

(i) TS forms - major and minor conformations
(ii) Crystal Structure
(iii) Active site comparison
(iv) Conformational preferences of CB3717
(v) Conformational preferences of DHF and THF
(vi) Conformational preferences of DHF and THF in TS
(vii) The cbnew series of ligands
(viii) Monomer minimisation
(ix) The BIF series of ligands
(x) Interaction at 4, 8 and $12 \AA$
(xi) Solvation energies and minimisation
(xii) Connolly surface calculation

2.4 DISCUSSION

(i) Molecular mechanics and drug design
(ii) History of computer aided drug design
(iii) Use and limitations of Modelling
(iv) Assessment of methodology
(v) Physiology of TS
(vi) Active site of TS
(vii) Effect of new ligands
(viii) Applications of new ligands
(ix) Further development
(x) Future work
(xi) Summary

REFERENCES

APPENDICES

Appendix 1.1	Transformation of Religated Plasmids
Appendix 1.2	L-Broth preparation and Agar plate preparation
Appendix 1.3	Preparation of periplasmic fraction from cultures
Appendix 1.4	Xylanase assay stock preparation and standard

Appendix $2.1 \quad$ Custom parameter set
Appendix $2.2 \quad$ Residue Topology Files
Appendix $2.3 \quad$ PATCH data and awk files
Appendix $2.4 \quad$ Solvation energies and input files

PART ONE
 PROTEIN MODELLING AND XYLANASE

1.1 INTRODUCTION

(i) Xylan

Xylan is one of the major components of hemicellulose, the compound that cements together the cellulose fibres which form the structure of plant cell walls. Xylan is found predominantly in grasses where it forms chains made up of 1-4 linked anhydro-D-xylose units variously substituted by L-arabinose and 4-O-methyl D-glucuronic acid (see Figure 1.1).

Xylan can be hydrolysed by 3 classes of xylanase enzyme: the β-xylanases (endo-1, 4 β-D-xylanohydrolase) β-xylosidases and a third enzyme xylobiase. ${ }^{1}$ Endoxylanases hydrolyse the internal glycosidic links of xylan, while exoxylanases attack the external ends of xylan. These two enzymes break down xylan to xylobiose and xylose. The third enzyme xylobiase attacks the disaccharide xylobiose and breaks it down to the monosaccharide xylose.

Xylose can be metabolised to fructose-6-phosphate within the rumen and to lactic acid within the silage clamp. Xylanase enzymes have been identified from several organisms:
Ruminococcus flavefaciens has been found to contain a multifunctional enzyme which possesses xylanase and endocellulase activity. ${ }^{2}$ Similarly Cellulomonas uda has been found to exhibit xylanase activity as well as glucanase activity. The xylanase enzyme was found to be cell bound and it degraded B-xylobiose. ${ }^{1}$ Pseudomonas fluorescens subsp. cellulosa contains 3 xylanase genes and 3 cellulase genes. ${ }^{3}$ Bacillus circulans possesses 2 endo $ß-D$-xylanases and $1 B$-D-xylobiase. ${ }^{4}$
Such micro organisms are thought to utilise these multifunctional enzyme complexes to degrade both cellulose and hemicellulose and ultimately to break down plant cell walls into water soluble carbohydrate.

(ii) Cloning Methodology

Recombinant DNA technology has expanded as an industry in its own right over the last 20 years. Its applications are varied and widespread. Genes encoding for polypeptide sequences of interest i.e. proteins such as enzymes, are removed from the native chromosomal DNA and inserted into a suitable vehicle (Vector), so that the

Figure 1.1

Diagram of Gene Replication

gene can be replicated in a host cell - usually a bacterium. In this study, the gene of interest (XYLA) was taken from Pseudomonas fluorescens subsp. cellulosa and cloned into a strain of E.coli (see Figure 1.2).

The genes are manipulated using restriction endonucleases (RE's) which recognise specific nucleotide sequences in double-stranded DNA and cleave the double strand at this site.
For example, the RE BamH1* recognises the nucleotide sequence GATCC and cleaves the DNA to produce cohesive ends (see Figure 1.3)*.

The gene of interest can be inserted into double-stranded DNA vectors by digestion of both vector and gene with suitable RE's so that cohesive ends formed can interact to form hydrogen bonds. The hybrid molecule is joined up by another enzyme - DNA ligase.
DNA ligase seals the vector molecule and the gene together by replacing the phosphodiester bond between adjacent nucleotides (see Figure 1.3). Suitable DNA vectors include plasmids and bacteriophage which can be maintained autonomously in the host cell. The recombinant DNA molecule is introduced into the host cell by a process known as transformation whereby the living host cell takes up the foreign DNA molecule under suitable experimental conditions.
After multiple cell divisions a clone of identical host cells is produced, every cell in this clone containing one or more copies of the gene. Cells harbouring the recombinant DNA molecule can be selected for by growth, complementation or antibody screening.

(iii) Structure of Xylanase

The catalytic mechanisms of Xylanase have been thoroughly elucidated. ${ }^{5-8}$ Limited information on the domains of the Xylanase has also been obtained:
Xylanase protein consists of two distinct regions A and B.
Region A is serine-rich ($>16 \%$ SER) and contains a cellulose binding domain. Region B contains the active region of the protein- Region A can be excised without the protein losing its activity (see Figure 1.4 and 1.5).
The cellulose binding domain shares considerable homology with the P.fluorescens endoglucanase. A hypothetical model has been proposed for the mode of enzyme action and its possible tertiary structure (see Figure 1.6).
The most likely mode of enzyme action involves region A attaching to the substrate,

[^0]Figure 1.3

Figure 1.4

Figure 1.5

bringing region B into contact with the substrate, where the active sites cleaves the $B, 1$ 4 bonds of the Xylan chain.

(iv) Applications of Xylanase

This enzyme found in Pseudomonas and other micro organisms such as Cellumonas is often part of a multifunctional enzyme suite. ${ }^{9}$ These enzyme complexes degrade both cellulose and hemicellulose, ultimately breaking down plant cell walls to water soluble carbohydrate. Xylanase could, in theory, be used commercially as either a silage inoculant (by improving silage quality through lowering clamp pH quickly and liberating water soluble carbohydrates), or as a novel enzyme secreted by transgenic livestock which aids forage digestion and breakdown.

Recombinant DNA technology has advanced sufficiently so, that the gene encoding xylanase could be inserted into suitable plasmid DNA hosts. The gene could then be incorporated into animal cell lines and ultimately, the animal itself. With suitable expression sequences and a stable environment for the protein (e.g. liver tissue harbouring the Xylanase gene), the Xylanase could be expressed and have a positive in vivo effect on nutrient uptake in the duodenum. The host animal would be able to derive greater nutritional value from forage - as the plant cell walls were hydrolysed to carbohydrate by the novel enzyme.

(v) Advantages of Computer Modelling

Computer modelling of crystal structures gives a rapid indication of the effects of specific active site mutations. ${ }^{10-11}$ It can give an insight into the exact nature of the way the enzyme binds to the substrate. Modelling can calculate the energetics of interactions such as substrate binding - in the case of Xylanase, modelling can help determine how the enzyme attaches to the substrate polymer chain, either by sequential breakage of $B, 1-4$ bonds or random attach/reattachment along the chain.

(vi) Limitations of computer modelling

With the X-ray crystal data of the Xylanase catalytic region from Reading Institute not forthcoming, detailed docking studies using modelling packages could not be performed. Crystallisation of such a large protein proved difficult (see Chapter1.4(vi)).
Any tertiary structure predictions are limited by both the software and relatively small database size of elucidated structures ${ }^{12}$ - to date, there are homologous proteins
available from over 400 structures in the Brookhaven database. Consequently, efforts were moved towards production of purified xylanase protein. This would allow further biological experimentation (such as gel filtration and circular dichroism) in order to determine the tertiary protein structure of the xylanase. The number of chemical experiments that could be performed was dependent on the amount of pure Xylanase protein harvested. If the protein was difficult to obtain and purify (15 milligrammes of 90% pure protein needed to perform a 2D NMR run - this was considered a large amount in synthesis terms), then some experiments became unfeasible.

1.2 MATERIALS AND METHODS

(i) Computer Modelling

Using the molecular modelling package QUANTA $v(3.0)$ and CHARMm ${ }^{13}$ version (21.2) as supplied by Molecular Simulations on Silicon Graphics 4D20 personal Iris workstations, the raw amino acid sequences of both the A and B region of the Xylanase were written into the sequence builder module of QUANTA's Protein Package subprogram.

Using the standard amino acid residue topology file (AMINO.RTF), the sequence was read into QUANTA. The secondary conformation of Xylanase was then specified - residues taking up either the right-handed alpha helix or parallel β sheet conformation. The secondary structure assignment routine then was implemented to add any available turn information (algorithm used according to Garnier et al. 14-15, default of 180° turn). Hydrogen bonding was then calculated and the secondary structure of region A or B displayed on screen.

The CHARMm program was then used to minimise the two regions (see Chapter 2.1 for details).
A specified 500 steps of the "steepest descents" algorithm was employed to perform a first minimisation on each region, the coordinates for each step being updated every minimisation cycle. This process was repeated until the r.m.s (root mean square) force was less than $0.100 \mathrm{kcal} / \mathrm{mol}$ (r.m.s force gives an overall indication of energetic stability between residues).
No distance constraints were set out at this stage. The "Adopted-Basis Newton Raphson" algorithm ${ }^{16-17}$ was then applied to the minimised structures until the r.m.s. force was below $0.100 \mathrm{kcal} / \mathrm{mol}$. The resultant energy of each region was displayed in Kcals/mol.
(ii) Xylanase harvesting and purification

The table below indicates the plasmids and microbial strain used in this work:

E.coli strain	Genotype of Phenotype	Source
JM83	ara ${ }^{\Delta}$ (lac-pro)SmR	Norrander
	thi $\emptyset 89$ dlac ZMIS	et al (1983) ${ }^{18}$
Plasmids		
pNM52	lac $\mathrm{Iq} \mathrm{Tc}{ }^{\text {R }}$	Gilbert et al ${ }^{3}$
pN23++	lac Iq TcR $\mathrm{Amp}^{\text {R }}$	Gilbert et al ${ }^{3}$
B41	lac Iq Tc^{R} AmpR	Gilbert et al ${ }^{3}$

All these materials were stored in cryo tubes at $-70^{\circ} \mathrm{C}$. The E.Coli strain JM83 is a commerically available host bacterium and the plasmids have inherent antibiotic resistance to Tetracycline (Tc^{R}) and Ampicillin (AmpR).
Gilson pipettes were used throughout in all transformations and religations.
Sterilised pipette tips were used once, discarded to prevent reagent contamination and surgical gloves were worn when using enzyme to avoid contamination by exogenous DNA.

Thorough mixing was performed by vortex and cryo samples were spun by microcentrifuge.
All enzymes, enzyme buffers and cell-free extracts were stored at $-20^{\circ} \mathrm{C}$.
(iii) Transformation and religation of JM83 containing_pNM52 with the plasmids B41 and $\mathrm{pN} 23^{++}$

JM83 was grown up to competent status and transformed with either B41 or pN23++ plasmids (see Appendix 1.1).
Transformations were plated out, incubated and observed.
(iv) Determination of recombinants of $\mathrm{pN} 23++$ and B 41

Plating ensured only recombinants of $\mathrm{pN} 23++$ and B 41 grew on media containing ampicillin and tetracycline ($\mathrm{pN} 23++$ and B 41 are resistant to these two antibiotics). Four colonies from E.coli harbouring $\mathrm{pN} 23++$ and four from E.coli harbouring B 41 were picked and inoculated into sterile universal bottles containing 10 ml L-Broth, $100 \mu \mathrm{Amp}$ stock and 10 ml TET stock. and $10 \mu \mathrm{l} 0.1 \mathrm{M}$ IPTG.
These stock cultures were grown overnight at $37^{\circ} \mathrm{C}$ on an orbiting starter (100 revs).

(v) Extraction of periplasmic fraction

Cultures of JM83 harbouring pNM52 and transformed with recombinant pN23++ or B41 were grown to mid log phase (optical density of 0.4 at 550 nm) with final antibiotic concentrations of $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin and $15 \mu \mathrm{~g} / \mathrm{ml}$ tetracycline. These cultures were then prepared for Xylanase assay by extraction of the cell periplasmic fraction (see Appendix 1.3).
(vi) Xylanase assays
a) Non IPTG induced cultures
$50 \mu \mathrm{l}$ of each periplasmic fraction was incubated with $1 \mathrm{ml} 1.3 \% \mathrm{w} / \mathrm{w}$ xylan in PC buffer and $95 \mu \mathrm{PC}$ buffer for 20 minutes at $37^{\circ} \mathrm{C}$. Samples were removed and 2 ml of DNSA reagent (see Appendix 1.4) was added to terminate the reaction. Samples were then vortexed, placed on ice for 5 minutes and then incubated in a boiling water bath for 20 minutes.
Samples were then microfuged for 2 minutes and the extinction value of the supernatants were measured at 575 nm .

b) IPTG induced cultures

Periplasmic fractions were obtained from cultures incubated with an additional $1 \mu \mathrm{l}$ IPTG stock per ml of culture and assayed as described previously.
c) Time course assays

This was performed to determine the ideal time to harvest the Xylanase protein. Cultures were grown to mid \log phase and then induced with IPTG stock ($23 \mathrm{mg} / \mathrm{ml}$) $1 \mu \mathrm{l}$ per 1 ml of culture.
Samples were removed from the cultures at regular intervals and periplasmic fractions extracted and assayed for Xylanase content.
(vii) Avicel binding to Xylanase

To sterile universal bottles containing periplasmic fractions was added an equal volume of $5 \% \mathrm{w} / \mathrm{v}$ avicel pH 10.5 in 100 mM tris HCL pH 7.5 . The universal bottles were placed horizontally in ice on a shaker for 1 hour to let the avicel bind to the xylanase.

Samples were then shaken vigorously to resuspend the avicel and then washed with $\mathbf{3 x}$ 10 ml 100 mM tris HCL pH 7.5 over a micro glass vacuum filter. The washings were collected and assayed for xylanase activity to ensure that all the xylanase protein was bound to the avicel. The avicel cake was retained and resuspended in $1 \mathrm{ml} 10 \%$ SDS (Sodium dodecyl sulphate) and boiled for 10 minutes in sterile universal bottles. Samples were decanted into eppendorfs and microfuged for 5 minutes and the supernatant retained for SDS-page mini gel electrophoresis.
(viii) SDS-page mini gel electrophoresis

SDS-Polyacrylamide gels are used to analyse translational products of genes i.e. proteins. Running a gel on periplasmic fraction samples gave an indication of the amount of protein present (full form xylanase or truncated inactive form).
SDS denatures the tertiary and secondary structure of the xylanase protein, leaving a polypeptide chain with a negative charge due to the SDS molecule binding to the chain. Denatured proteins can be separated by running them on a polyacrylamide gel with a voltage applied across the gel. The protein chains will migrate to the positive terminal through the gel matrix.
The gel was poured between two glass plates held apart by 1.5 cm width spacers and sealed with a rubber tube gasket. The gel was run vertically with reservoir buffer tanks situated at both ends of plates.

Preparation of stock solutions

i)
Acrylamide
30 grammes
$\mathrm{N}, \mathrm{N}^{1}$-methylene bisacrylamide
0.6 grammes
$\mathrm{H}_{2} \mathrm{O}$ (double distilled) to
10 ml
ii)

Ammonium persulphate 10%
2.5 grammes
$\mathrm{H}_{2} \mathrm{O}$ (double distilled) to 25 ml
N.B. Due to the fact that Acrylamide is a powerful neurotoxin in monomer form, mask and gloves were used in preparation of stock solutions

Preparation of Running gel (for 2 gels)

Acrylamide stock $30 \% \quad 8.35 \mathrm{ml}$
0.75 m tris/SDS pH $8.8 \quad 12.50 \mathrm{ml}$

Ammonium persulphate $\quad 90 \mu l$
Double distilled water to 25 ml
tris/SDS preparation:

Trizma base	71 g
Tris/HCL	47.2 g
SDS	2 g

adjusted to pH 8.8 with 1 M NaOH .
This was made up to 1 litre with double distilled water.

Plate preparation for pouring

The glass plates were washed in warm detergent solution and rinsed with single then double distilled water. The plates were then rinsed with ethanol and allowed to air-dry (note - care was taken to avoid contamination of the working surfaces of the plates). The rubber tube gasket was gently placed at the base of one plate and the other plate laid flush on top to form a sandwich. The plate and gasket assembly was clamped with bulldog clips to form a tight seal around the gasket. $30 \mu \mathrm{l}$ of TEMED (1M) (N,N,N', N^{\prime} - tetramethylene diamine) was added to the running gel, mixed and poured into the space between the plates. The plates were filled up to three quarters depth and isobutanol was layered on the gel to prevent oxidation of the air-exposed surface as the gel set. TEMED catalyses the reaction between acrylamide and bis-acrylamide to form the gel polymer that sets in about 15 minutes.

Preparation of Stacking gel (per 2 gels)

30% acrylamide stock $\quad 4 \mathrm{mls}$
0.25 M Tris/SDS pH $6.8 \quad 7 \mathrm{mls}$

TEMED $18 \mu \mathrm{l}$
10% ammonium persulphate $\quad 54 \mu \mathrm{l}$
Double distilled water to 15 mls total volume (approximately 3.5 ml) was added.
N.B. The stacking gel had to be used within 5 minutes after preparation before it set. tris/SDS preparation

Tris/HCL $\quad 39.4 \mathrm{~g}$
SDS $\quad 2 \mathrm{~g}$
adjust to $\mathrm{pH} \quad 6.8$
Double distilled water was added to make the volume to 1 litre.

When the running gel set, the isobutanol was poured off and the gel rinsed with double distilled water repeatedly. The stacking gel was poured between the glass plates over the running gel and a spacer comb was inserted flush with the top of the assembly to
form wells in the gel (see Figure 1.7). Once set, the comb was carefully removed, the wells rinsed with double distilled water and the rubber gasket and clamps removed with care. The gel sandwiched between the glass plates was then slotted into an electrophoresis tank. Upper and lower reservoir tanks were filled with reservoir buffer. Reservoir electrode buffer

Tris	15.15 g
Glycine	72 g
SDS	5 g

adjust to pH 8.3
This was made up to 5 litres volume with double distilled water.

Sample preparation for the gel
Sample (Periplasmic fraction or SDS fraction) $20 \mu \mathrm{l}$
Loading buffer $\quad 10 \mu \mathrm{l}$
Bromophenol blue $2 \mu \mathrm{l}$
Samples were mixed and boiled for 2 minutes then loaded into the wells (approximately 20μ per well).

Protein Standard	Molecular weight(Dalton)
alpha-lactalbumin	14200
trypsin inhibitor	20100
trypsinogen	24000
carbonic anhydrase	29000
glyceraldehyde-3-phosphate	
dehydrogenase	36000
egg albumin	45000
bovine albumin	66000

Protein standards were mixed and boiled as before and loaded into wells at either end of the gel ($20 \mu \mathrm{l}$ total volume per well). The gel was run at 25 mA for 30 minutes until the samples ran through the stacking gel. The current was then increased to 40 mA for a further 120 minutes approximately. The gel was then removed from the plates and stained with Coomassie blue for 30 minutes. The gel was then de-stained with three washings of a 10% acetic $/ 40 \%$ methanol mixture. The gel was then fixed in cellophane and heat-dried under vacuum. The presence of the xylanase was

elucidated by comparison of banding patterns from pN 23 or B 41 cultures with standards of known molecular weight.

Periplasmic Fraction

The Periplasmic fraction (total protein fraction) was analysed by SDS-page mini gel.

SDS fraction

$20 \mu \mathrm{l}$ of each SDS fraction (see Chapter 1.2 (vii)) was prepared for the SDS -page mini gel. Running of a mini gel using SDS fractions from avicel samples indicated how much (if any) of the xylanase bound directly to the avicel from 1.2(vi).

(ix) Large scaleharvesting of xylanase protein.

4×0.5 litres of B 41 and pN 23 cultures were grown overnight for harvesting the following day. Periplasmic samples were prepared from these cultures for determination of the optimum amount of avicel necessary to bind B 41 or pN 23 xylanase forms. 5 ml samples of periplasm were mixed with varying amounts of avicel (see Chapter 1.2.(vi)).

avicel stock/ml	B41 periplasm/ml	DN23 periplasm/ml
1	5	5
3	5	5
5	5	5
7	5	5
10	5	5
15	5	5
20	5	5

SDS-page mini gel electrophoresis was performed on the SDS extracts. The intensity of the banding on the gel was directly proportional to the amount of protein that had bound to the avicel (see Figures 1.10 to 1.17).

Time course preparation of periplasmic fractions from cultures was also performed to determine the optimum time to harvest the cells.

(x) Guanidine extraction

Once the optimum amount of avicel necessary for xylanase binding had been determined, the periplasmic fractions could then be treated with guanidine hydrochloride. Guanidine does not denature protein - unlike SDS, so the xylanase enzyme retains its structure and activity. Periplasmic fractions from pN 23 and B 41 cultures were prepared as described previously and bound to the optimum amount of avicel.

Each avicel/periplasmic mixture was then resuspended in 1 ml 6 M guanidine hydrochloride after washing with three times 10 ml 100 mM tris pH 7.5 . After one hour the mixture was spun down by microcentrifuge and the supernatant retained. Guanidine had stripped the xylanase protein from the avicel over this time. 5 litres of 100 mM tris pH 7.5 (60.55 g of trizma base in 5 litres of double distilled water) was prepared, placed in a coldroom at $4^{\circ} \mathrm{C}$ and mixed continuously using a magnetic stirrer.

6 inch portions of narrow dialysis tubing were boiled in double distilled water for 5 minutes. The dialysis tubes were then clamped at one end and each 1 ml sample of guanidine hydrochloride (containing the xylanase protein) was placed in separate dialysis tubes by Gilson pipette. The open end of each dialysis tube was then clamped, ensuring that any air bubbles were expelled from the tube. Each clamped dialysis tube was placed in the 5 litres of tris buffer and left to dialyse overnight. The 6 M guanidine inside the dialysis tubing passed into the 5 litres of 100 mM tris by osmosis, leaving the protein behind inside the tubing.
(xi) SDS-page mini gel analysis of dialysed protein extract

Protein extracts from dialysis (see Chapter 1.2 (x)) were examined as before using SDS-page mini gels.
(xii) Xylanase assays on dialysed protein extracts

Xylanase assays were performed on the dialysed protein extracts as before (see Chapter 1.2 (vi)).

As the level of protein extraction was found to be quantitatively low, the plasmids were transformed into JM83 without the regulatory multicopy pNM52 plasmids (see Appendix 1.1).

Starter Culture

5 ml L-Broth
$50 \mu \mathrm{l}$ Ampicillin stock
a wire loop of JM83 E.coli
Starter cultures were grown up overnight at $37^{\circ} \mathrm{C}$ and 100 r.p.m. on an orbiting shaker.

Religation
$20 \mu \mathrm{l}$ competent JM83 cells
$10 \mu \mathrm{l}$ plasmid (either B 41 or pN 23)
(see Appendix 1.1)

Transformants were plated out onto blue xylan agar (blue xylan stock 60 mg per 100 ml L-Broth) and grown overnight at $37^{\circ} \mathrm{C}$. White colonies or "spots" indicated recombinants containing functional xylanase genes (the XYLA gene degrades xylan and the blue dye to a colourless product).
Putative colonies were picked and inoculated into 500 ml L-Broth under previous standard conditions. Cells were harvested as before and the periplasms were bound to avicel. The avicel was then resuspended in 10% SDS as before. Banding patterns and corresponding banding intensities were examined.

Religation

$200 \mu \mathrm{l}$ competent JM83 cells
10μ l plasmids (either B41 or pN23++) (see Appendix 1.1)

Transformants were plated out onto blue xylan agar (xylan stock $60 \mathrm{mg} / 100 \mathrm{ml} \mathrm{L}$ Broth/blue) guanidine hydrochloride 6 M . The avicel and guanidine mixtures were spun down, the supernatant retained (first wash) and the avicel resuspended in 1 ml guanidine. This was repeated a further 2 times to obtain 4 washes of guanidine hydrochloride.

Each avicel pellet was then washed in $3 \times 10 \mathrm{ml}$ tris pH 7.5100 mM and resuspended in $1 \mathrm{ml} 10 \%$ SDS - no protein should be left bound to the avicel. Samples were dialysed in 5 ml 100 mM tris pH 7.5 as before. The protein samples were recovered from the dialysis tubing and prepared for SDS- page mini gel analysis.

(xiv) Cellulose column extraction of xylanase

The Guanidine extraction of xylanase proved difficult. Cellulose columns were prepared to allow the xylanase contained in the periplasmic fractions to bind to the cellulose.
$5 \% \mathrm{w} / \mathrm{v}$ cellulose HL and $5 \% \mathrm{w} / \mathrm{v}$ cellulose HBS were prepared in 100 mM tris pH 7.5 and autoclaved.
Mini columns of cellulose were prepared.Each column consisted of a plastic cylinder 4 inches long with an open neck and glass filter at a tapered base.

5 mls of each periplasm was added slowly to each column. The cellulose binding domain of B 41 and pN 23 xylanase proteins bound to the granular cellulose in the column while the filtrate passed through unbound. The filtrate was assayed for xylanase activity - it should be negligible, if the xylanase bound successfully to the column.
Once the periplasm had run through each column, the cellulose was washed with 4×5 ml tris pH 7.5100 mM . The columns were then removed and resuspended in 1 ml 10% SDS.
Samples were boiled for 10 minutes, spun down and the supernatant retained for SDSpage mini gel analysis. Protein assays were performed on the tris washes of the cellulose columns.

(xv) Protein assay of cellulose columns

The reagent for the protein assay detects the presence of polypeptide. The reaction mixture turns blue if protein is present or brown if there is no protein in the sample. 1 ml of Coomassie G-250 reagent was added to 0.1 ml of each tris wash (Bradford Method 1976). Further cellulose columns were prepared and samples fully hydrated by $2 \times 500 \mathrm{k}$ centrifuge spins for 10 mins and resuspended in 100 mM tris pH 7.5 . Cellulose columns were finally washed and resuspended in 10 ml 100 mM NaCl rather than 10% SDS. The salt eluted protein samples from the cellulose columns were then dialysed in 41100 mM tris pH 7.8 and an SDS page mini gel performed on the
recovered protein from dialysis.

1.3 RESULTS

(i) Computer Modelling

Initial computer modelling of secondary structure proved limited. Application of turn information and extensive minimisation of A and B regions of xylanase resulted in very linear three dimensional structures (see Figures 1.8 and 1.9). Although no homologous structures were available for comparison the two regions had begun to adopt some form of linear and spherical gross structure.

(ii) Cloning

The plasmids B41 and pN 23 were successfully cloned into JM83 under the regulatory control of JM83. Bacteria that contained the B 41 or pN 23 plasmid were able to grow on media containing Ampicillin (Amp). Bacteria containing pNM52 as well as the xylanase containing plasmid were able to grow on media containing Tetracycline (TETr) and Ampicillin. Hence bacterial colonies that were present on agar containing Amp and TET ${ }^{\text {r }}$ were those colonies that were picked for use in all xylanase cloning work
(iii) Periplasmic extraction

Periplasmic fractions of E.coli (JM83) containing the B41 or pN23++ plasmid under pNM52 regulatory control were prepared and subjected to SDS gel electrophoresis. A strong banding pattern was observed at 42 kD molecular weight for both b41 and pN23 samples. Banding was observed at 60 kD for pN 23 only (see Figure 1.10).
(iv) Xylanase assays

In order to make representative measurements of the xylanase activity of $\mathrm{pN} 23++$ and B 41 , xylanase assays were performed on either the periplasmic fractions or "sucrose wash" of E.coli in the mid log or stationary phase of their growth over various incubation periods. The basis of the assay is as follows:

The periplasmic fraction when incubated with blue xylan substrate (soluble in water), will cleave the blue xylan, releasing a blue dye, remazol brilliant blue, at

Figure 1.8

Figure 1.9

a rate proportional to the activity of the xylanase enzyme present. The reaction is stopped by addition of 2 volumes of DNSA reagent which terminate the reaction. Samples are assayed colorimetrically; the more dye liberated, the greater is the activity of xylanase in the periplasmic fraction (see Appendix 1.4).

(v) Avicel binding

SDS fractions from avicel pellets were prepared and subjected to SDS-page mini gel electrophoresis. This gel indicated qualitatively the amount of xylanase protein bound to the avicel from 1.2(vii). Again, banding was observed at the 42 kD for the B 41 samples and 60 kD for the pN 23 samples. A fainter band was observed at 42 kD in pN 23 (see Figure 1.11).
Using varying amounts of avicel to bind to the xylanase (see 1(viii)), SDS fractions were prepared for SDS-page mini gel electrophoresis. From the banding patterns observed, the ideal amount of avicel needed to bind the maximal amount of xylanase was determined (see Figure 1.12 and 1.13). From the gels, 5 ml of avicel was the optimum amount to bind 5 ml B41 periplasm and 3 ml avicel to bind pN 23 periplasm.
(vi) Guanidine extraction and protein dialysis

SDS-page mini gels on dialysed guanidine extracts were prepared. From examination of the gels, almost negligible amounts of xylanase were successfully extracted (see Figure 1.14). Xylanase assays on these extracts did indicate some xylanase activity.

(vii) Cloning without pNM52 regulation

As levels of protein extraction were quantitatively low, the B 41 and $\mathrm{pN} 23++$ plasmids were transformed into E.coli (JM83) without pNM52 regulation. SDS-page mini gels were prepared as before. Much stronger banding patterns were observed at 60 kD and 42 kD , indicating quantitatively that more xylanase was present in this periplasmic fraction (see Figure 1.15).
(viii) Further Xylanase assays

Further assays were performed on the new periplasmic fractions of E. coli expressing the B 41 or $\mathrm{pN} 23++$ plasmids without pNM 52 regulation.

(ix) Cellulose column extraction

The SDS-page mini gels results gave very faint banding patterns for cellulose bound fractions (see Figure 1.16).
(x) Protein assays

Protein assays were performed on the cellulose washes to determine if all unbound protein had been flushed from the cellulose column.

cellulose HL				cellulose HBS		
plasmids	B41	pN23	control	B41	pN23	control
1st wash	blue	brown	brown	blue	brown	brown
2nd to 5th wash	all solutions were brown after subsequent washes					

Repeated SDS-page mini gels on cellulose extracts revealed no bands whatsoever (See figure 1.17).

Figure 1.10

Figure 1.11

Figure 1.12

Figure 1.13

Figure 1.14

Figure 1.15

Figure 1.16

1.4 DISCUSSION

(i) Cloning of Xylanase

Once the XYLA gene had been successfully cloned into the JM83 E.coli (see Chapter 1(viii)a) there are many factors which affect the level of transcription and translation of the gene (see Figure 1.20).

The rate limiting step of gene translation depends on the binding affinity of RNA polymerase to the promoter sequence. ${ }^{19}$ The DNA fragment encoding the XYLANASE protein is expressed in very low levels in native Pseudomonas. This is due to a weak promoter sequence in the native chromosomal DNA. To overcome low expression, XYLA was inserted into vectors under the control of an adapted Lac operon. The Lac operon has one of the strongest naturally occurring promoter sequences, the Lac p sequence. ${ }^{20}$ This strong promoter increased the level of expression of the XYLA gene and ultimately protein synthesis. ${ }^{3}$ However the lacP gene must be controlled in its function. Unregulated gene expression places too great an energy demand on host E.coli and cell death results. To overcome this lethal hyper-expression, the multicopy plasmid pNM52 was initially transformed into E.coli to regulate the XYLA expression. pNM52 has a plasmid copy number of about 30 in E. coli and contains the Lac I_{q} gene which synthesises repressor protein. ${ }^{21}$

Normal E.coli strains contain only 10 molecules of repressor protein per cell, but E.coli transformed with pNM52 have 10×30 molecules of repressor i.e. 300 . E.coli JM83 can harbour plasmid vectors up to a maximum copy number of 300. Therefore, in this work transformation of recombinant plasmids into JM83 E.coli with pNM52 gave 100% suppression of XYLA gene expression. To activate host cell production of Xylanase, IPTG was used to induce gene expression through inactivation of the repressor protein. This IPTG activation was used to allow host bacterial cell numbers to reach maximal level before protein expression was initiated.

(ii) Xylanase Assays

This assay method gave a qualitative indication of the amount of enzyme activity present in the samples analysed. In cases of raw periplasmic fraction, considerable activity was indicated by the deep blue colouration of samples. ${ }^{22}$.

Transcription and Translation of a gene

RNA polymerase binds to promoter sequence and begins to transcribe the gene
ii)

Assays on samples that had undergone various methods of protein extraction did not display such marked relative activity. Several methods of protein extraction involved temporary denaturation of protein (such as the guanidine method) and the subsequent refolding of the secondary structure to form an active protein. It was clearly the case that much of the original active enzyme was unable to reform into the correct tertiary structure and hence maintain activity.

(iii) Extraction Techniques

Periplasmic extraction breaks open E.coli cells in two stages. Initial resuspension of a bacterial pellet in sucrose and EDTA partially breaks down the bacterial cell wall - in effect, the cell "leaks" small fragments of protein through holes in the bacterial cell wall. Vigorous resuspension and centrifugation completely breaks down the bacterial cells, releasing cell proteins (the periplasmic fraction). The periplasmic fraction contains the raw protein contents of the bacterium. In this work, the periplasmic fraction contained the xylanase protein expressed by B 41 and pN 23 .
This extraction technique for obtaining "raw" protein was successful in that activity of samples were maintained. The xylanase enzyme was not subjected to any chemical attack in this technique and as such, maintained activity.
a) Avicel binding

Periplasmic fractions obtained from B 41 or pN 23 cultures bound successfully to avicel. However, to recover the protein bound to the avicel further treatment was necessary. Sodium dodecyl sulphate (SDS) used to strip the xylanase from the avicel completely denatured the protein, so the SDS procedure only indicated the amount of protein present in the periplasmic fraction. Binding studies using varying amounts of avicel to bind to periplasmic fraction indicated a $1: 1$ ratio of avicel to bind B41 periplasm and $3: 5$ ratio for pN 23 . This was a quantitative result taken from analysis of the intensity of the banding patterns present in the SDS-page mini gels. Once the ideal amounts of avicel required for periplasm binding had been elucidated, a separate method for extracting the xylanase without denaturation was employed.
As an extraction technique, this was unsatisfactory as little active xylanase was recovered from the avicel. SDS is an extremely powerful detergent and although it can strip avicel completely of bound protein, the protein structure is not maintained.
b) Guanidine extraction

It was reasoned that the high concentration of guanidine hydrochloride (6M) used in this method of extraction would strip the xylanase protein from avicel without significant denaturation of the protein. The enzyme would therefore retain its catalytic activity and tertiary structure. Analysis of the SDS-page mini gels showed only faint banding patterns corresponding to any xylanase protein washed from the avicel by guanidine. As very little xylanase was effectively removed from avicel by this method, the cellulose columns extraction technique was used.
c) Cellulose column extraction

From analysis of the SDS-page mini gels, this method of xylanase extraction from periplasm proved least successful. Again, only faint banding patterns were observed on the gels, indicating that negligible amounts of protein were binding to the cellulose column. Further repetition of cellulose columns using NaCl 100 mM to elute the protein also proved disappointing.

(iv) Xylanase protein recovery

It is clear from this work that the methods employed in the recovery of active xylanase protein were unable to provide sufficient quantities for further analysis.
Xylanase is a large and consequently a structurally complex enzyme. Most laboratory techniques for protein extraction involve some degree of tertiary structure degradation and subsequent protein refolding after recovery. It would therefore be logical to assume that xylanase protein is unstable under these extraction conditions and cannot be recovered by these methods. It should also be noted that the E. coli used to produce the full form protein were subjected to accelerated synthetic rates. This may have lead to incomplete or incorrect protein transcription/translation within the host cell.
The most likely avenue of further work in xylanase protein recovery is to concentrate on crystallisation of the protein and hence determine its crystal structure.

There are many methods available for evaluation of protein conformation. Solvent accessibility can be used to predict the probability of an amino acid being buried or exposed in a protein. ${ }^{23}$ The degree of ideal crystal packing indicates the arrangement of residues in a protein. ${ }^{24}$
Distance geometry methods allow constraints to be placed on atoms and residues thus defining relative positions within protein structure. Knowledge-based prediction of structure is most commonly used. These methods involve correlation of amino acid properties and amino acid sequence. There are three algorithms that are most widely used. The first two rely on parameters obtained from analysis of fully elucidated sequences and corresponding structures. ${ }^{14-15,25-26}$ The third method is based on stereochemical criteria. ${ }^{27}$ Minimum energy calculations (as in this work) allow the protein sequence to fold and adopt a minimum energy conformation. There are two problems with this approach. Firstly appropriate parameters defining energy contributions of individual atoms and residues must be unified. There are many software packages available, each with a separate forcefield and parameter set. The second problem involves negotiating multiple minima (by crossing saddle points) in energy minimisation. Several algorithms cannot push the energy minimisation through a local energy well and consequently the "global" minimum is never reached. What is needed is a unified forcefield and parameter set to define all possible atomic interactions. Energy calculations are being constantly refined, but minimisation schemes have so far failed to predict chain folding accurately. ${ }^{28-29}$ This has been seen in this work using the limited turn information.

Systematic searching of all possible conformations of sequential residues is another method of structure prediction. ${ }^{30}$ Sections of protein (up to 6 residues) are subjected to conformational search and analysis. Each conformation is screened using the electrostatic energy, the exposed hydrophobic area and a solvent screening term. This is a computationally intensive approach with hundreds of possible structures generated from only a few selected torsions.

Class prediction of protein structure is based on division of a known set of crystal structures into four categories, $\alpha, \beta, \alpha+\beta$ and α / β. These correspond to amino acid sequences of high α content, high β content, mixed α and β content and disordered structures. ${ }^{31}$

A more recent approach involves the use of neural networks which learn from existing structures how to predict the secondary structure of small sections of sequences. ${ }^{32}$ The neural network approach only achieves predictive success rates of around $65 \% .^{33}$ Introduction of tertiary structural information (such as NMR distance constraints) is necessary to improve prediction rate.
Other recent predictive methods have been developed to predict structure based on hydrophobicity of individual amino acids. ${ }^{34-35}$ These "antigenicity values" are currently amongst the most popular methods of prediction. ${ }^{36}$ Finally, there are expert systems. These are customised computer programs specific to individual molecular systems. Each structure is minimised to a global minimum as quickly as possible, then database searching is used to compare homologous structures. Computer modelling is then used in conjunction with external data for each molecular system to provide a model for the protein structure. ${ }^{35}$
Current methodologies for tertiary structure prediction from primary and secondary data do not enable us to predict a protein's conformation. ${ }^{36}$ The simple algorithms available for prediction of secondary structure from raw sequence data have degrees of accuracy varying from 40% to 70% successful prediction (note that 50% predictive success constitutes a random guess!). ${ }^{37}$ Prospects for tertiary prediction are encouraging. There are three approaches in use for prediction of tertiary protein structure.

The first involves the use of sequence homology where peptides of known three dimensional structure are compared with homologous sequences. The homologous sequence is then mapped onto the tertiary structure of the known structure and refined using minimisation. The second method uses secondary structure prediction of short sequences of amino acids. These short units are then assembled into a compact structure.
These first two methods rely heavily on the data base of known crystal structures. ${ }^{38-39}$ As the Brookhaven database contains relatively few wellresolved structures at present (around 200 solved to a resolution better than $2 \AA$) this method is dependant on the improvement of X-ray crystallography techniques and NMR spectroscopy and the increase in published structures. Once the database is sufficiently large and varied, predictive schemes will improve as a consequence.
The third method is not reliant on this data. Empirical ab initio energy functions can be used to derive the tertiary structure at minimum energy potential.

Trial structures are evaluated and either rejected or accepted for further refinement.

Research is continuing into the modelling of tertiary protein structure. Ultimately, the identification of any predictive motifs is limited by the protein structure database size. ${ }^{12}$ Many more data will be needed before protein structure can be precisely predicted. However, with novel X-ray crystal structures constantly being resolved, it may not be long before the database size will be large enough to perfect predictive schemes.

(vi) Impertance of crystal data

The methodology of X-ray crystallography of proteins is a complex one and is not covered in this work. The reader should refer to a specific review available on this subject. ${ }^{40-41}$ It should be stressed, however, that perhaps the greatest hurdle in protein crystallography is the growth of sufficiently large, high quality crystals.
This process can be the rate-limiting step for many research groups. Primarily, large amounts of pure protein are required for crystallisation - typically gram amounts. This is where recombinant DNA technology can provide the raw protein (both full-form and mutant enzymes).
Harvesting and purification of the raw protein is crucial to the success of such projects. Finally, even if all the previous criteria are fulfilled, the crystals must be grown. This can take anywhere from a month, one to two years and sometimes not at all. ${ }^{12}$ In difficult cases, it might be possible to grow protein crystals complexed with a substrate or suitable inhibitor (see Part 2). Once suitable crystals have been obtained, sophisticated hardware and computer software must be employed to collect and process the crystal data.

(vii) Xylanase as a target for protein modelling

In terms of both scientific interest and commercial application, this enzyme should still be actively considered for further work. Xylanase is thought to be in the structural class of proteins known as 8 -fold α / β-barrels. ${ }^{36}$ Many proteins with little sequence homology adopt this conformation, indicating that amino acid composition and sequence does not necessarily dictate tertiary structure. Suggestions have been made that many α / β-barrel proteins evolved from a common ancestor. ${ }^{42}$ Xylanase has no structurally-resolved related proteins, thus making it an ideal candidate for further study of the α / β class of proteins.

Xylanase is also unique amongst the endoxylanases in that is has a markedly high amount of SER residues in its sequence. Little is yet known about the function of these serine-rich areas of sequence which are highly conserved. ${ }^{5}$ Further work must be pursued to determine the role these SER residues play in xylanase biological function.
On a commercial level, xylanase may well have a future in transgenic livestock or as a silage innoculant. ${ }^{43}$ Elucidation of structure and modelling of specific active site mutations will lead to enhancement of specific activity and increased knowledge of reaction mechanism.
(viii) Future work

Perhaps the best approach is to combine all available data from as many sources of information as possible. Protein class (either globular or linear) can be established using circular dichroism. ${ }^{44}$ Flexible pattern matching and sequence motifs can be used to predict secondary loops and turns. Since this work was completed, the alpha carbon backbone of region B of xylanase has been reportedly elucidated by X-ray crystallography at the Reading Institute (unpublished). QUANTA/CHARMm has automatic sidechain placement functionality, whereby sidechain residues are fitted to protein backbone. Any NMR distance constraints are applied and the residues are subjected to simulated annealing. This process minimises each sidechain group and performs local dynamics simulation. This allows the residues to occupy all possible areas of conformational space and adopt the lowest energy structure.
(ix) Summary

Current methodologies for modelling an unknown protein structure are limited by the amount of existing data from elucidated structures. With time, these limits will be surpassed as the crystal databases expand to encompass all the different classes of protein. This part of the research work was highly ambitious and tackled many of the issues that are faced by Protein Modelling groups. At this point in time, we are still dependent on the valuable data from the x-ray crystallographer in order to understand more about protein structure and function. It is my firm belief that in the next 20 years we will be able to have a significantly greater level of automation in the elucidation of novel protein structures. Computational instrumentation is still improving, and the computermodeller has increasingly more and more powerful hardware and software at his/her disposal. When one considers that the computer equipment used in this
work has an equivalent today eight times more powerful, then one is confident that more elegant and sophisticated algorithms will be developed. These predictive tools will greatly aid the scientist in the pursuit of Nirvana - tertiary structure from primary amino acid sequence.

PART TWO
 THYMIDYLATE SYNTHASE AND NOVEL DRUG DESIGN

2.1 INTRODUCTION

(i) Thymidylate Synthase

Thymidylate Synthase (TS) has been regarded as a key enzyme in cancer chemotherapy for well over a decade. ${ }^{45-46}$ TS catalyses the reductive methylation of 2^{\prime} deoxyuridylate monophosphate (dUMP) to 2^{\prime}-deoxythymidylate monophosphate (dTMP) with the accompanying conversion of 5,10 -methylene tetrahydrofolate (5,10 met THF) to 7,8-dihydrofolate (7,8 DHF). 47

Blocking this dTMP synthesis results in "Thymineless death",48-49 where rapidly proliferating cells become starved of the DNA necessary for cellular division. Protein and RNA biosynthesis is unaffected by TS inhibition thus making this enzyme a seemingly attractive target for cancer treatment.

Throughout the 1980's considerable effort was put into development of a potent antifolate, one of the most notable being N^{10}-Propargyl-5,8-dideazafolic acid (CB3717). ${ }^{50-55}$ Phase I and phase II clinical studies were carried out using CB3717 with varying degrees of success. ${ }^{\mathbf{5 6}-59}$
Although CB3717 proved a very tight binding inhibitor of TS and overcame methotrexate resistance, the drug was found to display renal toxicity. This renal toxicity was due to poor aqueous solubility and human studies were discontinued. Recent studies have involved modification of the CB3717 to improve solubility while maintaining cytotoxity to cancer cells. $60-64$

(ii) Thymidylate Synthase Crystal Structure

The structure of Escherichia coli thymidylate synthase complexed with the substrate dUMP and an analogue of THF (CB3717) was solved and refined at 1.97 angstroms by Robert M. Stroud and his group at the University of California in 1989.65-66 This crystal structure was kindly made available for analysis.
TS exists as a dimer with a single active site in each subunit. Stroud crystallised TS in two forms; a "reduced" (major) form and "oxidised" (minor) form. The major form of TS contains dUMP covalently bound to cysteine in both dUMP sites and in the presence of CB3717 (see Figure 2.1).

Figure 2.1

One active site of the minor form contains dUMP noncovalently bound and in the presence of CB3717 while the other active site contains only inorganic phosphate and CB3717.
The active site of TS is a large cavity which binds CB3717 in two possible conformations. One is seen in the major form and one in the minor form (see Figure 2.2).
(iii) Computer modelling using OUANTA/CHARMm
a) Overview

The three-dimensional coordinates provided by Stroud acted as the starting point for all modelling work. ${ }^{66}$ The programs CHARMm (version 21.2) and QUANTA (version 3.0) were used as supplied by Molecular Simulations. ${ }^{68}$

CHARMm is a software tool for modelling both structure and function of molecules. The program can perform many different computational tasks, but only the functions utilised in this work will be discussed in depth:
b) Architecture of modelling

CHARMm consists of FORTRAN source code which can manipulate data in two ways: either directly, input created by the user fed into the program via a command stream, or through the use of external files that are opened and closed with computational results written to another external file.
Crystal Structures can be read directly into CHARMm for analysis but where definitive Cartesian coordinates are not available, the information must be generated within CHARMm using the standard parameter set .
This parameter set defines the atomic masses, partial charges, bonds, angles, dihedral angles and improper torsional angles between atoms. From this parameter set, a residue topology file (RTF) is created with the correct molecular topology for each individual residue in the molecule. In the case of large molecules, in order to reduce computational time, an extended atom representation is used in the RTF. An extended representation specifies methyl, methylene and methine groups as single 'atoms'. The remaining aliphatic hydrogens are not simulated.

Figure 2.2

Only polar hydrogens are defined i.e. those hydrogen atoms bound to oxygen, nitrogen, a carbonyl carbon or an olefin carbon. ${ }^{68}$

Once all the RTF's have been created, the primary structure file (PSF) is generated and read into CHARMm.
The PSF only contains molecular topology information and partial atomic charges. All other data such as bond angle or force constraints are read in from the binary version of parameter file.
c) Atomic coordinate manipulation

A complete set of Cartesian coordinates is always necessary if molecular energy computations are to be performed. Crystal structure analysis yields these coordinates but in cases where all the coordinates are not available, it is possible to generate the entire structure from internal coordinates (I.C.'s). I.C.'s are generated from the internal coordinate table which contains the reference geometries about which the bond, angle or dihedral angles are determined. If the positions of any three atoms are known, the position of a fourth atom can be defined from the IC's. The IC's consist of three values - an angle, a distance and a dihedral angle. The IC table contains five values corresponding to angle, distance and dihedral values. Given four atoms, A,B,C and D arranged as below:-

The IC table contains the A-C bond distance, the A-B-C bond angle, the A-B-C-D dihedral angle, the B-C-D bond angle and the C-D bond distance.
(iv) Computational Algorithms
a) Overview

In addition to building molecular structures CHARMm provides algorithms for calculation of empirical energy in energy minimisation of structures, molecular dynamics and vibrational analysis. This work is concerned with the energy minimisation routines associated with TS and novel antifolate ligands.
b) Energetics and force

Provided that Cartesian coordinates, or parameter set and a PSF are available, the potential energy of any molecular structure can be calculated. The total energy of a molecule is described by the following equation where the total energy is the sum of the following terms:-

$$
\begin{array}{rlr}
\operatorname{ENERGY}(E)= & E_{b}+E_{\phi}+E_{\theta}+E_{l}+ & \text { internal } \\
& E_{e l}+E_{v d w}+E_{h b}+ & \text { external } \\
& E_{\text {cons }}+E_{u s e r} & \text { special }
\end{array}
$$

This comprehensive empirical energy function is based on the Born-Oppenheimer approximation. ${ }^{69}$
c) Internal Energy Terms

CHARMm describes energy empirically, ${ }^{70}$ in that the internal and external energy terms are a function only of the nuclear coordinates and not of the electronic positions. This assumption
states that electronic and nuclear components of nuclei motion are separable as electrons can adjust their positions instantaneously in response to movement of the nuclei. The internal energy terms are described as follows:-

$$
\text { Bond Energy: } \quad E_{b}=\sum k_{b}\left(r-r_{o}\right)^{2}
$$

where $k_{b}=$ force constant and $r_{o}=$ equilibrium bond length.

$$
\text { Bond Angle Energy: } E_{\theta}=\Sigma k_{\theta}\left(\theta-\theta_{0}\right)^{2}
$$

where $k_{\theta}=$ force constant and $\theta_{O}=$ equilibrium bond angle.

$$
\begin{gathered}
\text { Dihedral Energy: } E_{\phi}=\sum k_{\phi}[1+\cos (n \phi-\delta)] \\
\text { where } k_{\phi}=\text { force constant, } \phi=\text { dihedral angle and } n=\text { periodicity }
\end{gathered}
$$

$$
\text { Improper Energy : } E_{l}=\sum k_{l}\left(l-l_{o}\right)^{2}
$$

where $k_{l}=$ force constant, $i_{o}=$ equilibrium improper angle
d) External Energy Terms

Nonbonded interactions make up most of the computational time when potential energy is calculated. Any two atoms in a molecular structure have an interaction between them. For large molecules such as TS (over 5000 atoms), each atom will be affected by all the other atoms in the structure. The computational time needed to evaluate all these interactions is extremely long - fortunately CHARMm allows the user to specify a distance beyond which no interactions are calculated. This is called the switching function and is important in saving computational time when calculating potential energies. For example, a cut off distance of $11 \AA$ (i.e. for each atom, only atoms within an $11 \AA$ radius are involved in calculation of nonbonded interaction for that atom) ensures that 95% of the associated nonbonded energy is computed for that atom. The Electrostatic and Van der Waals interactions contribute nearly all the external (nonbonded) energy of a molecular system.
e) Electrostatic Energy

Electrostatic energy is due primarily to the interactions of polar and charged atoms. Polar atoms arise from non-uniform charge distribution of covalently bound atoms of different electronegativities. The total electrostatic energy results from the summation of attractive and repulsive partial or net charges and is greater than van der Waals energy. Electrostatic energy also acts at a longer range than van der Waals forces.

$$
\text { Electrostatic Energy: } E_{e l}=\sum_{i, j>i}\left(\frac{q_{i} q_{j}}{4 \pi \varepsilon_{o} r_{i j}}\right)
$$

where $q_{i} q_{j}=$ atomic charges, $\varepsilon_{0}=$ dielectric constant and $r_{i j}=$ interatomic distance

CHARMm approximates the positive and negative partial or net charge as point charges, centered at each individual atom. This is the monopole approximation, the energy between two point charges being dependent on the distance between them.

f) van der Waals Energy

van der Waals energy principally is due to the forces of electron shell repulsion and an attractive dispersion force between a pair of atoms. The attractive forces or London forces are the universal forces between atoms that hold non-polar molecules together in the liquid phase. This force is due to the fluctuating dipolar moment of molecules, resulting in a net attractive force.
van der Waals Energy: $E_{v d w}=\sum_{i, j>j}\left(\frac{A_{i j}}{r_{i j}^{12}}-\frac{B_{i j}}{r_{i j}^{6}}\right)$
where $r_{i j}=$ interatomic distance
Balancing the attractive forces are short range repulsive forces which result from electron cloud overlap between molecules. The repulsive force is more sensitive to distance between molecules than the attractive force. The resulting force is referred to as a 6-12 potential or the Lennard-Jones potential.

To maximise the efficiency of nonbonded calculations (van der Waals and electrostatic interactions), CHARMm creates a list of all the pairs of interactions that are to be calculated. Careful modification of the nonbonded list can dramatically reduce the computational time required to perform minimisation routines.
Atom pairs that are too far apart or directly connected (via bond or bond angle) are excluded from the nonbonded list. The nonbonded cutoff distance (CUTNB) used throughout this work is $12 \AA$, atom pairs that are further than $12 \AA$ are not included in the nonbonded list.
The nonbonded list is constructed in two steps. Firstly, all residues that can interact are found and a minimum rectangular solid box about each separate residue is created. All
potentially interacting pairs are then computed. The second stage in the nonbonded list generation searches all atoms in the residue pairs that interact to create the final list.

For most calculations, a cutoff point of $12 \AA$ makes very little difference to the energy of a large molecule, however there is always the possibility that overall long range interactions outside the $12 \AA$ cutoff distance may not be negligible. Individual long range interactions are negligible as the van der Waals and electrostatic potentials beyond $11 \AA$ are very small.
In order to smooth out the change in energy beyond $12 \AA$ - automatically zero, as no atoms outside this range are considered, CHARMm includes two functions to smooth out the energy around the cutoff distance.

The switching function (VSWITCH) is applied to the van der Waals interaction and the shifting function (SHIFT) applied to the electrostatic function - the default applies the SWITCH function to both nonbonded terms.

The SHIFT function is more simple than the VSWITCH function - SHIFT modifies the potential energy and forces so that they disappear at a given cutoff distance (CUTOFNB). The CUTOFNB value in this work is $11 \AA$. The function takes the following form:

$$
\left(1-\frac{2 r_{i j}^{2}}{r_{c u t}^{2}}+\frac{r_{i j}^{4}}{r_{c u t}^{4}}\right)
$$

where $r_{i j}=$ interatomic distance and $r_{c u t}=$ cutoff distance
The VSWITCH function requires two variables CTONNB and CTOFNB to define the switching function. CTONNB defines the distance at which the VSWITCH function is "on" and CTOFNB, the distance when the function is "off". In this work CTONNB $=9 \AA$ and $C T O F N B=11 \AA$ (as above).

$$
r<r_{o n}: 1 \quad r_{o n}<r<r_{o f f}: \frac{\left(r_{o f f}-r\right)^{2}\left(r_{o f f}+2 r-3 r_{o n}\right)}{\left(r_{o f f}-r_{o n}\right)^{3}} r_{o f f}<r: 0
$$

The update frequency of the nonbonded list is specified by INBFRQ - in this work the
nonbonded list is updated every 10 steps unless otherwise specified.

g) Constraint Energy

Atomic constraints fix atoms in space so that they do not move during minimisation of the molecular structure. The simplest form of constraint is to allow atoms no movement and all energy terms involving fixed atoms remain fixed. However, for most applications, it is desirable to allow atoms some freedom of movement whilst minimisation is performed.

In cases where the starting structure is well ordered and near to a conformational minimum, such as an X-ray crystal structure, a harmonic constraint is applied to the atoms.

$$
E_{c o n s}=\Sigma_{i} k_{i} \text { mass }_{i}\left(r_{i}-r_{o i}\right)^{\exp }
$$

where $E_{\text {cons }}=$ the constraint energy, k_{i} and massi, the force constant and the mass of the atom i, r_{i} the position of the atom and $\mathrm{r}_{o i}$, its reference position about which the atom is to be centred.
Harmonic constraints on atoms allow a molecular structure to relax during minimisation while avoiding large displacement of atoms.
(v) Minimisation

When potential energies and forces acting on the atoms in a molecular structure have been defined, it is possible to calculate the total potential of the structure. However, this is a calculation of a single fixed conformation and usually it is preferable to determine a "low energy" structure or a number of low energy structures of the molecule under investigation. Minimum energy conformations are obtained by minimisation. Minimisation is performed to relieve strain in conformations obtained experimentally and determine the conformational local energy minimum. In this work, local minima around the starting x-ray crystal structure are examined. Many minimisation techniques exist for finding low energy conformations. CHARMm supports five different, iterative minimisation algorithms. Of these, three algorithms were used to minimise the TS crystal structure.
a) Steepest Descents (SD)

This is the simplest non convergent first derivative method of minimisation. SD moves atoms directly down the energy gradient. A displacement opposite to the potential energy gradient is added to the Cartesian coordinates at each step. If a lower energy results, the step size is increased, otherwise it is decreased. This algorithm is robust and quickly improves poor starting geometries (such as close contacts between atoms). However, SD suffers from poor convergence near the minimum and can often overshoot a local minimum.
Generally, SD is useful for initial minimisation of large, well ordered structures (such as X-ray crystal structures) where small changes in atomic positions can relieve close contacts. SD can also minimise and relieve steric strain in small molecules with poorly defined structure.. SD stores no information on the previous directional movement of atoms, so cannot predict better movement directions.
b) Powell (POWE)

The second minimisation algorithm used in this work is the conjugate gradient Powell method minimiser. This is an iterative method of minimisation and makes use of the previous change in energy (as well as the current gradient) after each minimisation step. The POWE method converges to a minimum energy faster than SD, requiring fewer evaluations of the energy and energy gradient to achieve the same reduction in energy.
However, POWE does not update the non-bonded and hydrogen bonded interaction lists. Very poor starting conformations can cause numerical data overflows. POWE is a useful algorithm minimising low energy conformation structures, before employing the sophisticated Adopted Basis Set Newton-Raphson method
c) Adopted Basis Set Newton Raphson (ABNR)

ABNR is based on the second derivative minimisation method Newton Raphson (NR$)^{71}$. NR is much more efficient in locating a minimum, although it has poor tolerance for bad starting structures. NR requires excessive computational storage - a $3 \mathrm{~N} \times 3 \mathrm{~N}$ second derivative matrix (where 3 N dimensions correspond to the 3 N degrees of freedom of the structure) must be stored and inverted.

Computational time is extremely long using NR and is therefore is restricted to 200 or fewer atom systems in CHARMm. For most large molecular systems (200 atoms or
more) ABNR is normally the preferred algorithm. ABNR performs energy minimisation using the NR algorithm. The positions and forces from each of the previous steps are stored and the second derivative matrix is constructed by finite differences from the displacement and the first derivative vectors. SD steps are applied along the directions of zero or negative eigenvalues
(to avoid saddle points). Any new directions are incorporated into the displacements subspace (the basis set) by using a SD step along the residual gradient vector calculated at each step. ABNR is two to three times faster than NR as the second derivative matrix is much smaller.

(vi) Electrostatic Potential Surface

Effective representation of important atomic and molecular properties (such as accessibility and electrostatic potential) is provided within QUANTA. An adaptation of the Connolly Molecular surface program ${ }^{72}$ can be applied from the Calculate menu under Solvent Surfaces. A probe sphere of radius $1.4 \AA$ (equivalent to a charged proton) is rolled over the surface of the molecule or atoms under consideration, resulting in a smooth surface of dots which represents the Electrostatic potential surface accessible to a water molecule, including internal cavities. Connolly surfaces are used to study the shape, depth and chemical characteristics of receptor sites of a molecular structure.

2.2 MATERIALS AND METHODS

(i) Software

The programs CHARMm (Version 21.2) and QUANTA (Version 3.2.3) were used as supplied by Molecular Simulations without modification of source code.

(ii) Hardware

Computational drug design was performed using Silicon Graphics 4D/20 Personal Iris workstations with 12 MB main memory and 380 MB disk storage capacity.
(iii) Data

The source of the three-dimensional coordinates of Thymidylate Synthase was in the form of the crystal structure of Escherichia coli Thymidylate Synthase (TS) complexed with the substrate dUMP and CB3717 (an analogue of the cofactor methylene tetrahydrofolate), solved by multiple isomorphous replacement and refined at $1.97 \AA$ resolution. ${ }^{65,67}$

The parameter set PARM30.PRM that defined atomic masses, partial charges etc. was slightly modified to include several customised parameters (see Appendix 2.1).
Novel compounds designed as TS inhibitors were derived from the crystal structure of CB3717 in TS.

(iv) Methods

The original crystal data for each form of TS was obtained from 8 separate files. All headers were removed from each structure file and catenated together. The molecular structure files (MSF's) were generated using QUANTA's amino acid dictionary for proteins with polar hydrogens only (v 20.3 parameters), renamed, reordered and assigned to new segments within QUANTA as follows:

SEGMENT NAME

$1 S$	1	TO	264
2 S	301	TO	564
1 H	565	TO	566
$2 H$	567	TO	568

This order is common to all MSF's of TS in this work (see Appendix 2.2 for full structure information).
a) Comparison of the two TS forms

TS was crystallised in two forms - a "reduced" (so called as it was recrystallised in a greater amount of mercaptoethanol) and an "oxidised" form (see Figure 2.3).

The monomers of each form were compared using the Protein Package within the Applications menu in QUANTA. The main chains of the monomer subunits were compared using Comparison and Superposition.
b) Analysis of crystal structure

Secondary structure was assigned to each TS form by using Calculate \mathbf{H} bonds and Calculate secondary structure within the Protein package. The b-value parameter in the raw crystal data was assigned by colour in the TS structure - red corresponding to the high b-value and blue to a low b-value. The b - value is an indicator of the thermal mobility, a high value indicates large fluctuations of movement while a low value indicates small fluctuations. Polar hydrogens were added to the starting structure using the Add polar hydrogens within Molecular Editor
c) Active site comparison

From initial visual studies of the TS crystal structure, there appeared to be two distinct pockets that CB3717 could occupy.
A common RTF for CB3717 was generated in the Molecular Editor of QUANTA. Each monomer of TS contained one active site, so there are four active sites in all, when both TS forms are considered.

Both forms of TS were read into QUANTA and mapped onto the reduced form of TS active site that contained CB3717 and dUMP covalently bound - within Protein Package,, the oxidised form of TS was superimposed in two segments onto segment $1 S$ of the reduced form of TS

Then a Comparison using LSQ keyboard (the least squares algorithm) mapped all the monomers of the TS protein onto each other. Note that the CB3717 and dUMP molecules were not directly superimposed into the "averaged" active site, but were allowed to move in each active site.
d) Conformational preferences of CB3717

In order to determine any conformational preferences, CB3717 (the antifolate) was removed from both the oxidised and reduced form of TS , then minimised in vacuo using the steepest descents algorithm (SD). Once the r.m.s. deviation was consistently below 0.3 kcal between two coordinate sets, this provided a good indication of the overall change in conformation of a molecule between minimisation steps.

Then Adopted-basis set Newton Raphson (ABNR) was applied until r.m.s. deviation was below 0.1. Typically, an in vacuo minimisation of CB3717 underwent 150 steps SD and 250 steps ABNR with a step size of 0.1. Any change in CB3717 conformation after minimisation was noted.
e) THF and DHF conformations

Methylene tetrahydrofolate (THF) and dihydrofolate (DHF) are the normal cofactors of TS. CB3717 was selected from both the major and minor forms of TS and converted into DHF and THF using the molecular editor. Atom types and charges were assigned using charge templates within QUANTA - (charge smoothing over all atoms) and the coordinates saved with all hydrogen atoms included in the structure.
f) Application of Patches

In order to allow CHARMm to recognise the covalent bond between the two dUMP molecules and the cysteine residues in the major ("reduced") form of TS, a "patch" file was created. This was called MAJO.RTF and this patch specified the covalent S-H bond for residues 1S:146 to 1H:565 and 2S:446 to 2H:567 (CYS to dUMP).
(see Appendix 2.3)
g) Minimisation of TS containing CB3717, THF and DHF

For docking of DHF and THF into TS, the RTF's corresponding to these structures were changed to include polar hydrogens within QUANTA's Molecular Editor. The newly created RTF's with polar hydrogen representation were called THF.RTF and DHF.RTF

This was to determine preferred conformation of DHF and THF either within TS or in vacuo. Once minimisation of the substrate/enzyme complex was completed, DHF and THF were removed from the structure and reminimised as before to check if a reasonable fit was attained.
h) N^{10} substitution and N^{9} ligand design

Now that the behaviour of THF, DHF and CB3717 within TS and in vacuo had been determined, an investigation of the effect of the propargyl group (CP1, $\mathrm{CP} 2, \mathrm{CP} 3$ and H 46) of CB3717 was undertaken.
The propargyl group is responsible for the highest specificity of the N^{10}-substituted quinazoline based series of ligands for TS. ${ }^{73-83}$
i) Minimisation of one subunit of TS

In order to significantly reduce the computational time required to minimise TS and associated bound novel ligands, half of the dimer crystal structure was minimised.
The minor form of TS had one monomer fixed so that the constrained atoms did not move during minimisation. Segments 2 S and 2 H were subjected to a CONS FIX command in CHARMm. This fixed all atoms in residues 301 to 564 and 567 to 568 . Four ARG residues (424 to 427) were not fixed as these residues formed part of the active site of the second subunit (see Figure 2.4).

Figure 2.4

Similarly the major form of TS had segments $1 S$ and 1 H fixed (residues 1 to 264 and 565 to 566) apart from the four ARG residues 124 to 127).
Each TS form was then subjected to 25 steps SD and 250 steps ABNR. Minimised coordinate were read out to "TS_HALF_MIN.CRD" and "TS_RED_HALF_MIN.CRD" respectively.
j) Bifurcated ligand design - the BIF series

Bifurcated ligands based on the crystal structure of CB3717 were built as follows:
The 1 S segment of the minor from of TS was matched with the 2 S segment of the major form using comparison in QUANTA's protein package.
Residues 1H:566 from the TS minor form and 2H:568 from the major form were selected and saved to separate MSF's. In Molecular editor, the propargyl groups of each CB3717 were removed and the quinazoline ring system from $2 \mathrm{H}: 568$ (major) added to N^{10} of the $1 \mathrm{H}: 566$ (minor) CB3717. This was called BIF1, the bifurcated ligand based on the CB3717 found in the minor form of TS in the 1 S segment(see Figure 2.5).

Similarly, BIF2 was created by removing the propargyl groups of both template CB3717 molecules and the quinazoline ring system 1H:566(minor) added to N^{10} of $2 \mathrm{H}: 566$ (major)

Atom numbers for both new bifurcated molecules were changed accordingly.

All atoms were retyped and bond types correctly assigned. Atoms were charged using charge templates option in molecular editor.

To relieve any steric strain or incorrect dihedral angle conformation around the N^{10} the two new ligands were separately minimised with a harmonic constraint force of $50 \mathrm{kcal} / \mathrm{mol}$ placed on all atoms in each new structure apart from C 11 , C9, C6, C26 and N10 which were allowed to minimise freely.

With these constraints in place the BIF ligands underwent 25 steps SD and 250 x 4 steps ABNR, while the harmonic constraint force was allowed to relax. Once harmonic constraints were removed, a further 25 steps SD and 250×4 steps ABNR were performed to give final minimised structures of bifurcated ligand. The new BIF molecules were introduced into their respective active sites: BIF1

Figure 2.5

into the locus previously occupied by 1H:566 CB3717 of the minor TS form and BIF2 into $1 \mathrm{H}: 568$ of the major form.

The BIF ligands were then fixed using the CONS FIX command and the enzyme allowed to minimise around them with 25 steps SD and 250×4 steps ABNR.

Finally, the BIF ligands were allowed to minimise freely within TS with 25 steps SD and $500 \times 2 \mathrm{ABNR}$. This gave a final, minimised TS structure containing BIF1 in the minor form and BIF2 in the major form (see Figure 2.6 and 2.7).
k) External energy interactions for each atom in the BIF and CB3717 series at 4,
8 and $12 \AA$ range

Once minimisations were completed, a script file was set up to calculate van der Waals and electrostatic contributions (the nonbonded interactions) at a 4, 8 and $12 \AA$ sphere around each ligand. Charges were reported back from CHARMm for each atom in the bound ligand. By using "awk" files (see Appendix 2.3) it was possible to determine the contributions made by specific functional groups and hence assess binding affinity of the whole ligand. Summated contributions of the quinazoline ring systems and glutamate tails sections of CB3717 were noted and compared to the contributions from atoms in the BIF molecules.

1) Comparison of internal and external energy contributions

The dihedral, angle, bond and improper angle values were calculated using CHARMm for each ligand. (BIF1, BIF2 and the major and minor CB3717 ligands). These were the internal energy terms (as described in Chapter 2.1) and were summed and compared with the external energy contributions. This indicated whether binding was affected more by ligand conformation or by atomic structure.
m) Van der Waals and electrostatic summation - bumps and gaps

Once individual atomic contributions to nonbonded interaction were collated, those atoms that had poor van der Waals and electrostatic contributions were substituted with other atoms to create new ligands. This was performed in the molecular editor by changing one atom type at a time in either BIF1 or BIF2. Each structure was saved to a new filename and atoms retyped and recharged on

Figure 2.6

Figure 2.7

exit of the Molecular editor. In total there were 18 ligands generated from BIF1 and BIF2 making a total of 20 novel structures that could bind into the active site of TS in both major and minor forms of the enzyme.

The changes to BIF1 and BIF2 were also influenced by the assessment of close contacts within the active site. The close contacts were assessed using the neighbouring atoms tool in the main viewport of QUANTA. The dot surface generation program in QUANTA was also used to define the 3 dimensional space of the active site pocket and shape of the ligand. A dot surface (20 point density) was generated based on the van der Waals calculation of atomic size. The two dot surfaces (for the TS pocket and ligand) were attached to the structure using the manage graphical objects tool in QUANTA. This allowed visual inspection of the goodness of fit of each structure generated.

Atoms in the ligand that visibly overlapped the active site pocket were selected and changed in the molecular editor. Areas that revealed "gaps" in the pocket were noted and in the cases of obvious gaps, an atom substitution was made in the ligand structure to fill the pocket more snugly.
n) Solvation energies - comparison of interaction

To approximate the behaviour of each of the ligands (20 BIF and CB3717 parent structures) either complexed to TS or in solution the following approach was used.

A $15 \AA$ sphere of 420 water molecules was placed around each individual BIF ligand and minimised (see Figure 2.8) The final energy associated with the solvated ligand was noted. This value was compared to the equivalent solvation and subsequent minimisation of the two CB3717 ligands - again in 420 water molecules. This solvation was carried out using the solvate option under the CHARMm submenu of QUANTA.

To approximate each ligand's preference for either remaining in solution or bound to TS, the solvated CB3717 energy values were subtracted from the energy values from the final minimisation of TS containing each CB3717 ligand. This energy difference corresponded to a positive value relating to the parent ligand's preference for remaining in solution.

Figure 2.8

Each BIF ligand was similarly assessed, with solvated energies compared to final energies of bound ligand in TS. If the positive value obtained from this calculation was lower than the corresponding CB3717 value, the new bifurcated ligand was deemed to have a reduced preference for remaining in solution i.e. a greater preference for binding to the TS molecule.
m) Most promising ligands

Those new bifurcated ligands which showed greatest affinity for the TS enzyme were subjected to further scrutiny. A Connolly electrostatic surface was generated for each ligand and corresponding active site pocket. Visual assessments of bumps and gaps were made (see Figure 2.9 and 2.10), with emphasis on visualisation of electrostatically favourable interactions (e.g. a blue or negatively charged ligand surface close to a red or positively charged pocket surface). The Connolly surface was generated from the Calculate option in QUANTA, using a probe radius of $1.4 \AA$ and formal charge of +1 . Electrostatic surfaces were rendered using a 20 point dot density with colouring of each surface ramped from red to blue (positive to negative).

Figure 2.9

2.3 RESULTS

(i) TS Forms - major and minor conformations

The main chains (a carbon backbone and side chain residues) of the TS monomers are almost identical in structure. Mainchain comparison of each monomer gave an r.m.s. displacement of $0.535 \AA$ and a maximum displacement of $4.121 \AA$.
The entire structure of each monomer gave an r.m.s. displacement of $1.123 \AA$ and a maximum displacement of $10.533 \AA$. The global structure of the monomer is highly conserved in both forms of TS . 65

The coordinate data obtained from Stroud is well-resolved and the residues in both TS forms are identical with the exception of one residue in each monomer LYS 235 and LYS 535 in the major form dimer are replaced by ALA 235 and ALA 535 in the minor form dimer.

(ii) Crystal Structure

Assuming that TS crystal structure is an accurate representation of in vivo structure, it necessarily follows that computer modelling and drug design based on this structure is valid.

B-values from raw data indicate that the crystal lattice is highly stable around the core of the dimer molecule. Typical core protein b-values are of the order of 1 to 2. The surface of the crystal structure has a greater b-value range from 1 to 7 . This is to be expected, as this is at the solvent interface in which the TS crystals were solved.

The overall structure of the TS molecule bound to CB3717 is similar to a previously solved TS unbound structure of L.Casei ${ }^{84}$ or E.Coli . ${ }^{85}$ The major and minor forms consist of 528 residues but the contents of each active site differs markedly.

(iii) Active site comparison

The residues that define the boundaries of the TS binding sites are highly conserved. ${ }^{65-66}$

TS exists as a dimer with a single active site in each subunit. The major from of TS contains dUMP covalently bound to cysteines 1S:146 and 2S:446 in both active sites in the presence of CB3717 (CB3:566 and CB3:568). One active site of the minor form contains dUMP (residue $1 \mathrm{H}: 565$) noncovalently bound in the presence of CB3717 (CB3:566) whilst the other contains only phosphate (2S:567) and CB3717.

The active site is a large cavity that allows CB3717 to bind in one conformation in the major form and a different one in the minor form. This second binding site ${ }^{65}$ has CB3717 with the quinazoline ring rotated 147° away from the position occupied in the major form binding site.

The phosphate ion in the major form is lodged between four arginine residue side-chains, two ARG from each monomer and a serine (SER).

Analysis of CB3717 in the TS crystal structure reveals that in the major form (reduced) the glutamate tail is oriented in two different positions, approximately 180° about the C14 carbon. The benzyl group of CB3717 shifts only slightly along the plane in the major and minor forms. The major difference is the 147° shift of the quinazoline ring.

The "minor" pocket containing the alternate CB3717 conformation undergoes little sidechain disturbance, which may indicate a stable second pocket in TS.

The quinazoline rings of CB3717 in the minor form push dUMP out of the "major" pocket, while in the minor TS form, dUMP remains more planar, lining the pocket boundary. The pocket dimensions are approximately $7 \AA \times 10 \AA \times$ $10 \AA$. This would indicate that the preferred conformation of CB3717 is the "minor" conformation when no dUMP is present.

In the minor form where dUMP is present, the pocket in the major form is blocked by the dUMP, so CB3717 adopts the 147° shift, occupying the "minor" pocket.

In the major form, covalently bound dUMP is drawn away from the pocket, giving CB3717 enough space to take up the "major" conformation.

(iv) Conformational preferences of CB3717

From initial in vacuo minimisation of CB3717 there appears to be no conformational preference for either "major" or "minor" positions. However, within TS, the preferred conformation of CB3717 is the "minor" structure. Even when noncovalently bound dUMP is present in the pocket, CB3717 still prefers the "minor" conformation. In the major form of TS, when the CYS: 146 residue covalently binds to dUMP, conditions in the pocket that the "minor" CB3717 occupy become unfavourable. The dUMP moves across to sterically block the "minor" pocket. The "major" pocket is preferred. So, when no dUMP is present, CB3717 prefers the "minor" conformation. When dUMP is present but is noncovalently bound, the "minor" conformation is still preferred. Finally, when dUMP is covalently bound , the preferred conformation is the "major" conformation.

(v) Conformational preferences of DHF and THE

Minimisation in vacuo of DHF and 5,10-THF gave conflicting results. DHF appears to have no preferential conformation while $5,10-\mathrm{THF}$ prefers the "reduced" (major) conformation. This basic minimisation procedure gave only a rough estimate of conformational preference - the final conformation of 5,10THF may well have been governed by the atom constraints placed on 5,10-THF at $\mathrm{C} 4 \mathrm{~A}, \mathrm{C} 8 \mathrm{~A}$ and Cl 1 around the 5 -membered ring.

(vi) Conformational preferences of DHF and THF in TS

From comparison of minimised structures of TS (containing either DHF or 5,10--THF substrates) compared to starting crystal structures, DHF and 5,10-THF seem to have no preference for which pocket they occupy.

(vii) The cbnew series of ligands

The N9 substituted series of ligands were found to be energetically unfavourable within the major and minor TS active sites. the N10 substituted CB371786 ligands were pushed out of the pocket as the propargyl group on C10 was not in the most favourable orientation. Close contacts (bumps) were found between the HG of SER 2S:444 and H38 of the cb3new ligand and HG of ASN 2S:441 and H 39 of cb3new. Reorientation of the propargyl group to point into the active site
cavity did not stop the whole ligand from being forced out of the active site (cb3new) in both major and minor TS forms.

The ammonium group that then replaced the propargyl (cb4new) resulted in the ligand remaining within the active site. Extension of this ammonium group (by additions of CH 2 units to the C 10 group) allowed the $\mathrm{NH} 3+$ to hydrogen bond to the inorganic phosphate (in the minor form of TS). This extended carbon chain from the Cl 0 group proved to be highly flexible. Consequently many energetically unfavourable conformations were generated. These cbnew ligands were deemed unsuitable for further investigation.

(viii) Monomer minimisations

By placing a CONS FIX constraint on a monomeric subunit of each form of TS, the run-time of each minimisation was reduced by up to 30%. Typically a series of half enzyme minimisations now took 5 hours of C.P.U. time rather than in excess of 8 . No gross change in structure was observed at the interface between monomeric subunits. The total energy of major and minor forms of TS was $-6151 \mathrm{kcal} \mathrm{mol}^{-1}$ and $-6113 \mathrm{kcal} \mathrm{mol}^{-1}$ respectively.

(ix) The BIF series of ligands

A comparison of the relative energy contributions of the new quinazoline ring system in the BIF ligands compared with the propargyl group in CB3717, revealed that the new quinazoline bifurcated portions contributed to a net decrease in energy of each enzyme system. Atom naming covention for BIF1 is shown below:

Comparison of Energy	bif1_quinazoline cb3717_minor_propargyl	$-33.39 \mathrm{kcal} / \mathrm{mol}$ $-0.97 \mathrm{kcal} / \mathrm{mol}$
	bif2_quinazoline cb3_major_propargyl	$-19.76 \mathrm{kcal} / \mathrm{mol}$ $-4.85 \mathrm{kcal} / \mathrm{mol}$
IC Energy Contributions	BIF1 CB3717 minor	$7.74 \mathrm{kcal} / \mathrm{mol}$ $4.11 \mathrm{kcal} / \mathrm{mol}$
	BIF2 CB3717 major	$9.91 \mathrm{kcal} / \mathrm{mol}$ $2.78 \mathrm{kcal} / \mathrm{mol}$
TOTAL ENERGY of TS	MINOR FORM containing BIF1 containing CB3717	$-6144.59 \mathrm{kcal} / \mathrm{mol}$ -6117.14 kcal/mol
	MAJOR FORM containing BIF2 containing CB3717	$-6214.23 \mathrm{kcal} / \mathrm{mol}$ $-6153.99 \mathrm{kcal} / \mathrm{mol}$

(x) Interactions at 4.8 and $11 \AA$.

Individual Van der Waals' and Electrostatic ${ }^{87}$ energies were calculated for each atom in BIF1 and BIF2 ligands over a sphere radius of 4,8 and $11 \AA$. These energy contributions were compared to the parent CB3717 compound (see Appendix 2.4 for details). The atoms that gave poor contribution to overall energy were changed in subsequent BIF ligands. From the BIF1 and BIF2 ligands, these were the atoms that were changed: $\mathrm{N} 21, \mathrm{~N} 1, \mathrm{~N} 3, \mathrm{~N} 23, \mathrm{C} 8, \mathrm{C} 23$ and C28.
LIGAND NUMBER PARENT ATOM NEW ATOM TYPE

MINOR FORM TS

BIF3	N21	C21
BIF5	N1	C1
BIF7	N21 \& N1	C21 \& C1
BIF9	C28	N28
BIF11	C8	N8
BIF13	C28 \& C8	N28 \& N8
BIF15	N23	C23
BIF17	N3	C3
BIF19	N23 \& N3	C23 \& C3

MAJOR FORM TS

BIF4	N21	C21
BIF6	N1	C1
BIF8	N21 \& N1	C21 \& C1
BIF10	C8	N8
BIF12	C28	N28
BIF14	C8 \& C28	N8 \& N28
BIF16	N3	C3
BIF18	N23	C23
BIF20	N23 \& N3	C23 \& C3

(xi) Solvation energies and minimisation

The BIF series ligands were minimised within TS and also within a $15 \AA$ water sphere containing 420 TIP3 water molecules. From comparison of CB3717 minimised within TS or in a sphere of 420 water molecules a comparison could be made between BIF ligands and CB3717. This comparison indicated the energy associated with each ligand for remaining in solution or bound to TS. From 20 novel compounds designed, studies indicated all but BIF2 had greater preference to be bound to TS rather than in solution when compared to their parent CB3717 ligand (see Figure 2.11 and 2.12). The most notable of these were BIF5, BIF7, BIF9, BIF10, BIF12 and BIF18.(see Appendix 2.4 and Figures 2.13 to 2.16)

(xii) Connolly surface calculations

Examination of electrostatic potential surface ${ }^{88}$ for the BIF series of ligands showed that these new ligands fit snugly into the bifurcated pocket of TS with no overlapping electrostatic contacts. The Connolly surfaces also showed that there were no poor steric interactions within the TS pocket of both major and minor forms.

Figure 2.11

Figure 2.12

Figure 2.15

Figure 2.16

2.4 DISCUSSION

(i) Molecular Mechanics and Drug Design

Molecular mechanics is a classical method of expressing a molecular structure as a set of balls and springs, with series of potential energy functions expressing the molecular force field as a sum of these functions. ${ }^{89}$ More elegant models describing these molecules include cross valence, polarization and nonbonded interactions.

Each individual energy term has a preferential equilibrium position (e.g. bond length, bond angle, van der Waals etc.) and force constants are used to associate energetic penalties with each individual deviation from the equilibrium. A "Force Field" is simply the complete set of analytical energy functions and their associated sets of numerical parameters (based on experimentally or theoretically calculated force constants).

CHARMm is one of the most extensively tested force fields ${ }^{90}$ - others include MM2 ${ }^{89}$ and AMBER. ${ }^{91-92}$ CHARMm force fields are considered the standard for macromolecules ${ }^{90}$ and use the "united-atom" representation - all nonhydrogen bonding hydrogens are implicitly included by slightly increasing the effective size of the parent atom to which the hydrogens are bonded. ${ }^{93}$ In cases where the force field does not describe the parameters of certain functional groups, an estimation of bond, bond angle or dihedral angle is required (see Appendix 2.1).
Once all the necessary parameters have been obtained, molecular mechanics energy minimisation can be performed.

(ii) History of Computer-aided drug design

Man has been fighting disease for centuries. Many varieties of plants and herbs have found their way (often by chance or observation) into the front line in combating disease and illness. More recently, observations of effective compounds has been backed up with scientific reasoning - active substances in plants and herbs (which have been traditionally considered to be of medical importance) have undergone in-depth investigation.

At the start of this century, scientists began to follow up unexpected results of chemical investigations and biochemical experiments. Chemists began massive
screening programs of hundreds of derivatives of active compounds - empiricism ruled supreme!

In the 1950's drugs were designed, based only on vague notions of physical properties and functional groups. Structure-activity relationships were based more on chance and guesswork than rational drug design. By the mid 1960's, more key or "lead" drugs were reaching hospitals - good drugs were being replaced by better ones, often from just a small structural change to the original compound.
Advances in Physical chemistry and Biochemistry provided the foundation of knowledge on which a new quantitative approach to drug design was built.

In 1962, the Organic chemist Corwin Hansch brought together the quantitative terms that mathematics was now able to describe - structure and activity combined with the computational power of the emerging (and constantly improving) computers. This new approach to drug design opened the doors to a new area of scientific research. ${ }^{94}$

The first X-ray diffraction photograph was displayed in 1912 - from this simple X-ray picture of an inorganic structure developed the protein crystallography and protein modelling that is today working hand in hand with computational chemistry and computer-aided drug design.
From 1930 to 1980, equipment and techniques in X-ray crystallography steadily improved, especially with the introduction of automatic diffractometers and rapid data-processing with computers. In the 1980s, synchrotron radiation greatly enhanced protein crystal structure analysis. The high resolution and intensity available from synchrotron radiation allowed many more protein/inhibitor complexes to be resolved - even some protein/substrate complexes were elucidated.
1965 saw the introduction of a novel tool for the x-ray crystallographer. A line -drawing cathode ray tube controlled by a small computer was used to display small proteins and protein folding.
Within only 5 years, over 20 other graphical systems were in use, and as technology improved through the 1970's, interactive systems were developed.

By the 1980's not only could structures be represented but properties: van der Waals surfaces could be represented by contour lines, as could electrostatic potentials. Colour and dot surface generation brought structures out from the 2
dimensional screen. It became possible to see active sites of proteins and to see interactions between residues.

In 1982, Martin Karplus and his colleagues put forward a computer program to model complete macromolecular systems. This program could build structures (either from existing data or from scratch), energy minimise them and perform a range of tasks. These included molecular dynamics simulation and analysis of structural equilibrium and dynamic properties of molecules.

Today, state-of-the-art molecular modelling systems provide extensive computational and graphics facilities for analysing known structures and interactions.
It is now possible to gain accurate three-dimensional structural information on proteins and complexes formed between these proteins and inhibitors.
(iii) Use and Limitations of Modelling

Models are essential components of experimental and theoretical chemistry. Computer modelling draws together mathematical, conceptual, iconic and enactive modelling methods employed by the chemist. The mathematical model is described in the forcefield of the modelling program, the iconic model in the three-dimensional graphics displayed on the computer monitor, the enactive by the manipulations of structure made possible by the modelling program and the conceptual model is realised by the modeller as he/she sees the compound described by the previous models. Computer modelling acts as a stimulus to creative thinking. An experienced modeller can distinguish between "possible" and "improbable" compounds. This speeds up the selection process in the development of novel compounds and is a very important feature of computer modelling. Traditional benchmark chemistry is a slow and thorough process computer modelling can help a chemist design novel compounds faster.

One must take care not to fall into the trap of relying on computer modelling to provide the definitive answer. The data generated by a modelling program acts as a pointer to chemical interaction and does not always generate the same results that benchwork provides. Modelling currently facilitates the work of a scientist, whether that scientist is building a structural model based on NMR distance constraints, X-ray crystal data refinement or a de novo model using theory alone.

(v) Physiology of TS

TS is not similar to other folate-based enzymes in its binding to substrate. ${ }^{99}$ TS is an intracellular enzyme that is responsible for the synthesis of dTMP, a key building block in the production of DNA. Dihydrofolate reductase (DHFR) was a pervious target for drug design, but unlike TS, blocking of this enzyme by methotrexate resulted in purine synthesis and blocking of RNA production. Cells also became resistant to these drugs by simply raising the level of intracellular DHFR. ${ }^{100-101}$ Many different classes of compound have an inhibitory effect on TS ${ }^{102-109}$ and polyglutamation of these drugs is known to increase inhibitory effect up to one hundred times. ${ }^{110}$ If the two pockets in TS can be utilised simultaneously, then a suitable drug analogue would have tetrahydrofolate and dihydrofolate chemical characteristics. The amount of intracellular dUMP present would obviously affect the relative binding of these compounds

(vi) Active site of TS

It was reasoned that if inorganic phosphate was needed in 1 pocket of TS for catalytic activity, then a $\mathrm{NH} 3+$ moiety interacting with the inorganic phosphate would induce allosteric blocking of enzyme activity. if the phosphate was an artefact (or not present under physiological conditions) then a carboxyl (COO-) group could be introduced to mimic the ARG residue binding to phosphate and resulting in competitive inhibition of THF.
(vii) Novel Ligands

From the computer modelling in this study, the following ligands are put forward for future work: BIF5, BIF7, BIF9, BIF10, BIF12 and BIF18. The structural data obtained from this study have been maintained on archived data tape and are available for analysis should provision be made for suitable experimental synthesis. Whether these compounds are indeed better inhibitors of TS in vivo will only be revealed after an adventurous organic chemist has produced them! To this end, I propose that BIF5 and BIF7 be put forward for synthesis as these are the best relative inhibitors of TS and are reasonably easy to synthesise.
(viii) Euture Work

Should the crystal coordinates of human TS become available on the Brookhaven database, a full screen of existing compounds should be made.

Ligands with low binding affinity for TS should be compared to more active compounds. The use of computer modelling will greatly facilitate this process and lead to a greater understanding of biological activity of these antifolates. Site directed mutagenesis of TS will give an insight into the catalytic mechanisms of TS and the mode of inhibitor action. One of the BIF ligands at least should be put forward to enzyme assay and cell cytotoxicity studies, even if it proves inactive. The knowledge gained from this exercise will certainly benefit future work in the development of novel TS inhibitors.
(ix) Summary

TS is still a protein very much under the attention of the scientific community. This work has shown that there is a large pocket within TS into which a bifurcated molecule can fit. Initial studies indicate that such a compound may have increased binding affinity for TS and hence be a more potent inhibitor of the enzyme. This work also indicates that TS may exist in two distinct forms, dependent on the levels of substrate present. It is not known if both active sites are simultaneously involved in synthesis of dTMP. I sincerely hope that this work will help another to develop a potent antifolate that will go at least part of the way to combating cancer -an illness for which there must be a solution.

REFERENCES

1. Rapp, P. and Wagner, F. (1986). Appli. Environ. Microbiol., 51, 746764.
2. Pettipher, G.L. and Latham, M.J. (1979). J.Gen.Microbiol., 110, 21-27.
3. Gilbert, H.J., Jenkins, G., Sullivan, D.A. and Hall, J. (1987). Mol. Gen. Genet., 210, 551-556.
4. Esterban, R., Villanueva, J.R. and Villa, T.G. (1982). Can. J. Microbiol., 28, 733-739.
5. Hall, J., Hazelwood, G.P., Huskinsson, N.S., Durrant, A.J. and Gilbert, H.J. (1989). Molecular Microbiol, 3, 1211-1219.
6. Hall, J. and Gilbert, H.J. (1988). Mol. Gen. Genet. 213, 112-117.
7. Gilbert, H.J., Hall, J., Hazelwood, G.P. and Ferreira, L.M.A. (1990). Mol. Microbiol., 4, 759-767.
8. Ferreira, L.M.A., Durrant, A.J., Hall, J., Hazelwood, G.P. and Gilbert, H.J. (1990). Biochem. J., 269, 261-264.
9. Wolff, B.R., Mudry, T.A., Glick, B.R. and Pasternak, J.J. (1986). Appl. Environ. Microbiol., 51, 1367-1369.
10. Appelt, K., Bacquet, R.J., Bertlett, C.A., Booth, C.L.J., Freer, S.T., Fuhry, M.A.M., Gehring, M.R., Herrmann, S.M., Howland, E.F., Janson, C.A., Jones, T.R., Kan, C., Kathardekar, V., Lewis, K.K., Marzoni, G.P., Matthews, D.A., Mohr, C., Moomaw, E.W., Morse, C.A., Oatley, S.J., Ogden, R.C, Reddy, M.R., Reich, S.H., Schoettlin, W.S., Smith, W.W., Varney, M.D.,Villafranca, J.E., Ward, R.W., Webber, S., Webber, S.E., Welsh, K.M. and White, J (1991). J. Med. Chem. 34, 1925-1934.
11. Hol, W.G.J. (1986). Angewandte Chemie., 25, 767-852.
12. Rooman, M.J., and Wodak, S.J. (1988). Nature, 355, 45-50.
13. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S. and Karplus, M. (1983). J.Comp.Chem., 4, 187-217.
14. Garnier, J., Osguthorpe, D.J. and Robson, B.(1978). J.Mol.Biol., 120, 97-120
15. Gilbrat, J.F., Garnier, J. and Robson, B. (1987). J.Mol.Biol., 198, 425443.
16. Dembo, R.S. (1982). Nonlinear Optimization. 1981, 361 ed. Powell, M.J.D. Academic Press, New York.
17. Ponder, J.W. and Richards, F.M. (1987). J.Comp.Chem., 8, 1016-1024.
18. Norrander, J., Kemp, T. and Messing, J. (1983). Gene, 26, 101-116.
19. Hawley, D.K. and McClure, W.R. (1983). Nucleic Acid Res., II, $2237-$ 2255.
20. Viera, J. and Messing, J. (1982). Gene, 19, 259-268.
21. Gilbert, H.J., Blazek, R., Bullman, H.M.S. and Minton, N.P. (1986). J.Gen. Microbiol., 132, 151-160.
22. Biely, P., Mislovicoan, D. and Toman, R. (1985). Anal. Biochem, 144, 142-146.
23. Lee, B. and Richards, F.M. (1971). J.Mol.Biol., 55, 379-400.
24. Crippen, G.M. and Kuntz, I.D. (1978). Int.J.Pept.Protein Res., 12, 4756.
25. Chou, P.Y. and Fasman, G.D.(1974). Biochemisty, 211-222, 222-245.
26. Biou, V., Gilbrat, J., F., Levin, J.M., Robson, B., and Garnier, J. (1988). Protein. Engineering, 2, 185-191.
27. Lim, V.I. (1974). J.Mol.Biol., 88, 857-872, 873-894.
28. Hagler, A.T and Honig, B. (1978). Proc. Natl. Acad. Sci. USA, 75, 554558.
29. Cohen, F.E. and Sternberg, M.J.E. (1980). J.Mol.Biol., 138, 321-333.
30. Moult, J. and James, M.N.G. (1987). Proteins, 1, 146-163.
31. Klein, P. and DeLisi, C. (1986). Biopolymers, 25, 1659-1672.
32. Holley, L.H. and Karplus, M. (1989). Proc.Natl. Acad. Sci. USA, 86, 152-156.
33. Bohr, H., Bohr, J., Brunak, S. and Cotterill, R.M.J. (1988). FEBS Lett., 241, 223-228.
34. Welling, G.W., Weiser, W.J., van der Zee, R. and Welling-Webster, S. (1985). FEBS Lett. 188, 215-218.
35. Robson, B., Platt, E., Fishleigh, R. V., Marsden, A. and Millard, P. (1987). J.Mol. Graphics, 5, 8-17.
36. Goraj, K., Renard, A. and Martial, J.A. (1990). Protein Engineering, 3, 259-266.
37. Kabsch, W. and Sander, C. (1984). Proc. Nattl. Acad. Sci. USA, 81, 1075-1078.
38. Levitt, M. and Chothia, C. (1976). Nature, 261, 552-558.
39. Taylor, W.R. and Thornton, J.M.(1984). J.Mol.Biol., 173, 487-514.
40. Blundell, T.L. and Johnson, L.N. (1976). Protein Crystallography, Academic Press, London.
41. McPherson, A. (1982). Preparation and Analysis of Protein Crystals, Wiley, New York.
42. Lebioda, L. and Stec, B. (1988). Nature, 333, 683-686.
43. McDonald, P., Edwards, R.A. and Greenhalgh, J.F.D. (1981). Silage, 367-376. Animal Nutrition (3rd Edition), Longmans.
44. Hurle, M.R., Mattews, C.R., Cohen, F.E., Kuntz, I.D., Toumadje, A and Johnson, Jr, W.C. (1987). Proteins, 2, 210-224.
45. Freidkin, M. (1973). Adv. Enzymol., 38, 235-335.
46. Danenberg, P.V. (1977). Biochhimica et Biophysica Acta., 473, 73-85.
47. Santi, D.V. and Brewer, C.F. (1973). Biochemistry, 12, 2416.
48. Curtin, N.J., Harris, A.L., James, O.F.W. and Bassendine, M.F. (1986). British Journal of Cancer, 53, 361-368.
49. Curtin, N.J., Harris, A.L. and Aherne, G.W. (1991). Cancer Research, 51, 2346-2352.
50. Jones, T.R., Calvert, A.H., Jackman, A.L., Brown, S.J., Jones, M. and Harrap, K.R. (1981). Europ.J.Cancer, 17, 11-19.
51. Jackson, R.C., Jackman, A.L. and Calvert, A.H. (1983). Biochem. Pharmacol.. 24, 3783-3790.
52. Jackman, A.L., Taylor, G.A., Calvert, A.H. and Harrap, K.R. (1984). Biochem. Pharmacol., 33, 3269-3275.
53. Newell, D.R., Alison, D.L., Calvert, A.H., Harrap, K.R., Jarman, M., Jones, T.R., Manteuffel-Cymborowska M. and O'Connor P. (1986). Cancer Treatment Reports, 70, 971-978.
54. Sikora, E.W., Jackman, A.L., Newell, D.R. and Calvert, A.H. (1988). Biochem. Pharmacol., 37, 4047-4054.
55. Jackman, A.L., Taylor, G.A., O'Connor, B.M., Bishop, J.A., Moran, R.G. and Calvert, A.H. Cancer Research, 50, 5212-5218.
56. Cantwell, B.M.J., Earnshaw, M. and Harris, A.L.. (1986). Cancer Treatment Reports, 70, 1335-1336.
57. Sessa, C., Zucchetti, M., Ginier, M., Williams, Y., 'Incalci, M.D and Cavalli, F. (1988). Eur. J. Clinical. Oncology, 24, 769-775.
58. Vest, S., Bork, E. and Hansen, H.H. (1988). Eur. J. Clinical. Oncology, 21, 201-204.
59. Cantwell, B.M.J., Macaulay, V., Harris, A.L., Kaye, S.B., Smith, I.E., Milsted, R.A.V. and Calvert, A.H. (1988). Eur. J. Clinical. Oncology, 24, 733-736.
60. Patil, S.D., Jones, C., Nair, M.G., Galivan, J., Maley, F., Kisliuk, R.L., Gaumont, Y., Duck, D. and Ferone, R.. (1989). J.Med.Chem, 32, 12841289.
61. Jones, T.R., Thornton, T.J., Flinn, A., Jackman, A.L., Newell, D.R. and Calvert ,A.H. (1989). J.Med.Chem., 32, 847-852.
62. Jackman, A.L., Newell, D.R., Gibson, W., Jodrell, D.I., Taylor, G.A., Bishop, J.A., Huges, L.R. and Calvert, A.H.. (1991). Biochem. Pharmacol., 42, 1885-1895.
63. Jackman, A.L., Taylor, G.A., Gibson, W., Kimbell, R., Brown, M., Clavert, A.H., Hudson, I.R. and Huges, L.R. (1991). Cancer Research, 51, 5579-5586.
64. Ward, W.H.J., Kimbell, R. and Jackman, A.L. Short Communications. (1992). Biochem. Pharmacol., 43, 2029-2031.
65. Montfort, W.R., Perry, K.M., Fauman ,E.B., Finer-Moore, J.S., Maley, G.F., Hardy, L., Maley, F. and Stroud, R.M. (1990) Bicohemistry, 29, 6964-6977.
66. Finer-Moore, J.S., Montfort, W.R. and Stroud, R.M. (1990) Biochemistry, 29, 6978-6986.
67. Matthews, D.A., Appelt, K., Oatley, S.J. and Xuong, N.H. (1990) J.Mol.Biol., 214, 923-936.
68. Brooks, B.R., Bruccoleri, R.E. , Olafson, B.D., States, D.J., Swaminatham, S. and Karplus, M. (1983). J.Comp.Chem., 4, 187-217.
69. Born, M. and Oppenheimer, R. (1927). Annalen der Physik, 74. 457484.
70. Nilsson, L. and Karplus, M. (1986). J. Comp. Chem., 7, 591-616.
71. Ponder, J.W. and Richards, F.M. (1987). J.Comp.Chem., 8, 1016-1024.
72. Connolly, M.L. (1983). Science, 221, 709
73. Jones, T.R., Calvert, A.H., Jackman, A.L., Eakin, M.A., Smithers, M.J., Betteridge, R.F., Newell, D.R., Hayter, A.J., Stocker, A., Harland, S.J., Davies, L.C. and Harrap, K.R. (1985). J. Med. Chem, 28, 1468-1476.
74. Marsham, P.R., Chamber, P., Hayter, A.J., Huges, L.R., Jackman, A.L., O'Connor, B.M., Bishop, J.A.M. and Calvert, A.H. (1989). J. Med. Chem., 32, 569-575.
75. Jones, T.R., Betteridge, R.F., Newell, D.R. and Jackman, A.L. (1989). Heterocyclic Chem, 26, 1501-1507.
76. Pawelczak, K., Jones, T.R., Kempny, M., Jackman, A.L., Newell, D.R., Krzyzanowski, L. and Rzeszotarska, B. (1989). J. Med. Chem., 32, 160165.
77. Marsham, P.R., Jackman, A.L., Oldfield, J., Huges, L.R., Thornton, T.J., Bisset, G.M.F., O'Connor, B.M., Bishop, J.A.M and Calvert, A.H. (1990). J. Med. Chem., 33, 3072-3078.
78. Jackman, A.L., Marsham, P.R., Thornton, T.J., Hughes, L.R., Calvert, A.H. and Jones, T.R. (1990). J. Med. Chem., 33, 3067-3071.
79. Seither, R.L., Trent, D.F., Mikulecky, D.C., Rape, T.J. and Goldman, I.D. (1991). J. Biological Chem, 266, 4112-4118.
80. Marsham, P.R., Huges, L.R., Jackman, A.L., Hayter, A.J., Oldfield, J., Wardelworth, J.M., Bishop, J.A.M., O'Connor, B.M. and Calvert, A.H. (1991). J. Med. Chem., 34, 1594-1605.
81. Thornton, T.J., Jones, T.R., Jackman, A.L., Flinn, A., O'Connor, B.M., Warner, P. and Calvert, A.H. (1991). J. Med. Chem, 34, 978-984.
82. Rosowsky, A., Forsch, R.A. and Moran, R.G. (1992). J. Med. Chem, 35, 2626-2630.
83. Rosowsky, A., Galivan, J., Beardsley, G.P., Bader, H., O'Connor, B.M., Russello, O., Moroson, B.A., DeYarman, M.T., Kerwar, S.S. and Freisheim, J.H. (1992). Cancer Research, 52, 2148-2155.
84. Hardy, L.M., Finer-Moore, J.S., Montfort, W.R., Jones, M.O., Santi, D.V. and Stroud, R.M. (1987). Science, 235, 448-455.
85. Perry, K.M., Fauman, E.B., Finer-Moore, J.S., Montfort, W.R., Maley, C.F. and Stroud, R.M. (1990). Proteins, 8, 315-333.
86. Cichowicz, D.J., Hynes, J.B. and Shane, B. (1988). Biochimica et Biophysica Acta., 957, 363-369.
87. Head-Gordon, T. and Brooks III, C.L. (1987). J. Phys. Chem, 91, 33423349.
88. Weiner, P.K., Langridge, R., Blaney, J.M., Schaeffer, R. and Kollman, P.A. (1982). Proc. Natl. Acad. Sci. USA. 79, 3754-3758.
89. Buckert, U. and Allinger, N.L. (1982). Molecular Mechnics, American Chemical Societ; Washington D.C.
90. Cohen, N.C., Blaney, J.M., Humblet, C., Gund, P. and Barry, D.C. (1990). J. Med. Chem., 33, 883-895.
91. Weiner, P.K. and Kollman, P.A. (1981), J. Comp. Chem., 2, 287.
92. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S. Jnr. and Weiner, P.K. (1984). J. Am. Chem. Soc., 106, 765.
93. Ripka, W.C. and Blaney, J.M. (1991). Topics in Stereochemistry, 20, 1-83.
94. Hansch, C. (1969). Acc. Chem. Res., 2, 232.
95. Momany, F.A. and Rone, R. (1992). J. Comp. Chem, 13, 888-900.
96. Clark, M., Cramer III, R.D. and Van Opdenbosch, N. (1989). J. Comp. Chem., 10, 982.
97. Mayo, S.L., Olafson, B.D. and Goddard III, (1990). J. Phys. Chem., 94, 8897.
98. Momany, F.A. and Klimkowski, V.J. (1990). J. Comp. Chem., 11, $654-$ 662.
99. Fleischman, S.H. and Brooks III, C.L. (1990). Proteins, 7, 52-61.
100. Tattersall, M.H.N., Jackson, R.C., Jackson, S.T.M. and Harrap, K.R. (1974). Europ. J. Cancer, 10, 819-826.
101. Calvert, A.H., Jones, T.R., Dady, P.J., Grzelakowska-Szyabert,B., Paine, R.M., Taylor, G.A. and Harrap, K.R. (1980). Europ. J. Cancer, 16, 713-722.
102. Spears, C.P., Hayes, A.A., Shahinian, A.H. and Danenburg, P.V. (1989). Biochemical Pharmacology, 38, 2985-2993.
103. Chen, S.C., Daron, H.H. and Aull, J.L. (1989). Int. J. Biochem., 21, 1217-1221.
104. Huges, L.R., Jackman, A.L., Oldfield, J., Smith, R.C., Burrows, K.D., Marsham, P.R., Bishop, J.A.M., Jones, T.R., O'Connor, B.M. and Calvert, A.H. (1990). J. Med. Chem, 33, 3060-3066.
105. Thorndike, J., Kisliuk, R.L., Gaumont, Y., Piper, J.R. and Nair, M.G. (1990).Arch. Biochem and Biophysics, 2, 334-341.
106. Bures, A.K., Daron, H.H. and Aull, J.L. (1991). Int. J. Biochem, 23, 733-736.
107. Kalman, T.I., Marinelli, E.R. Xu, B., Vengopala-Reddy, A.R., Johnson, F. and Grollman, A.P. (1991). Biochem. Pharmacol., 42, 431-437.
108. Peters, G.J., Van Groeningen, C.J., Laurensse, E.J. and Pinedo, H.M. (1991).Eur. J. Cancer, 27, 263-267.
109. Hynes, J.B., Tomazic, A., Parrish, C.A. and Fetzer, O.S. (1991). J. Heterocyclic Chem., 28, 1357-1363.
110. Rosowsky, A., Galivan, J., Beardsley, G.P., Bader, H., O'Connor, B.M., Moroson, B.A., DeYarman, M.T., Kerwar, S.S. and Freisheim, J.H. (1992).Cancer Research, 52, 2148-2155.
111. Webber, S.E., Bleckman, T.M., Attard, J., Deal, J.G., Kathardekar, V., Welsh, K.M., Webber, S., Janson, C.A., Matthews, D.A., Smith, W.W., Freer, S.T., Jordan, S.R., Bacquet, R.J., Howland, E.F., Booth, C.L.J., Ward, R.W., Hermann, S.M., White, J., Morse, C.A., Hilliard, J.A. and Bartlett, C.A. (1993). J.Med.Chem., 36, 733-746.

Appendix 1.1

Transformation of Religated Plasmids

Cultures of JM83 containing pNM52 were grown overnight at $37^{\circ} \mathrm{C}$ in an orbiting shaker by taking 1 ml of stock culture of the strain and inoculating aseptically into 10 ml of prewarmed L-broth (see Appendix 1.2) containing $10 \mu \mathrm{TETR}$. The following day 1 ml of the JM83 culture was pipetted into a sterilised 2 litre flask containing 200 ml of pre-warmed L-broth and $200 \mu \mathrm{TET}$ R .

The Cells were grown at 200 rpm until the optical density of the culture was 0.4 at 550 nm . The Culture was cooled on ice for 10 minutes to prevent further growth. Approximately $2 \times 50 \mathrm{ml}$ of the culture was removed and centrifuged at 4000 rpm for 4 mins at $4^{\circ} \mathrm{C}$.

After the supernatant was discarded, the cells were resuspended in half the volume (25 ml) of ice cold sterile $0.1 \mathrm{~m} \mathrm{MgCl}_{2}$ and recentrifuged at 4000 rpm for 4 mins at $4^{\circ} \mathrm{C}$ (Approximately $5000 \times \mathrm{g}$).
After the supernatant was decanted off, each cell culture pellet was resuspended in 4 ml ice cold sterile 0.1 m CaCl 2 . The Cells were maintained on ice for 2 hours, after which time they were competent and took up the B 41 and $\mathrm{pN} 23++$ plasmids.
$10 \mu \mathrm{l}$ of either $\mathrm{pN} 23++$ or B 41 plasmid was added to 200 ml competent JM83 (containing pNM52) cells and placed on ice for 30 minutes in eppendorfs. Transformants were placed in a $42^{\circ} \mathrm{C}$ water bath for exactly 2 minutes and transferred to ice for a further 30 minutes to allow the cells to recover and express resistance.

Appendix 1.2

1. L-Broth preparation

Compound	g/litre
Bactotryptone	10
Bactoyeast	5
NaCl	10

For a working solution of 4 litres L-broth, slightly less than 2 litres of single distilled water were poured into a 5 litre beaker. The above ingredients (x 4) were added, and the pH raised to 7.5 (the optimum pH for E.coli growth) using 1 M NaOH . The solution was made up to 4 litres with single distilled water. The L-Broth was decanted into 500 ml duran bottles (up to the 400 ml mark). The bottles were autoclaved at $120^{\circ} \mathrm{C}$ for 15 minutes.

2. Agar Plate preparation

A 2% bacto agar medium was prepared by adding 8 g of bacto agar to 400 ml of L Broth duran bottles. The bottles were autoclaved at $120^{\circ} \mathrm{C}$ for 15 minutes. Following sterilisation, plates were poured immediately, allowed to set for 30 minutes and dried inverted in a $37^{\circ} \mathrm{C}$ incubator for 1 hour.

3. L-Agar Plates containing antibiotics

The same procedure was followed as with L -agar plates, except that after sterilisation, the agar was cooled to $55^{\circ} \mathrm{C}$ (as antibiotics are thermolabile). The following antibiotic concentrations were added depending on the media required:

Media	Concentration add per 400 ml L-Broth	Final antibiotic concentration
L-Agar and Ampicillin	4 ml of $10 \mathrm{mg} / \mathrm{ml}$ stock ampicllin solution added $700 \mu \mathrm{l}$ of a $1 / 1000$ stock	$100 \mu \mathrm{~g} / \mathrm{ml}$
L-Agar and Tetracycline	$15 \mu \mathrm{~g} / \mathrm{ml}$ tetracycline solution added	

Plates were poured as described previously.

Appendix 1.3

Preparation of periplasmic fraction from Cultures

Cultures were kept on ice whenever possible. For 100 mls volume of culture: the culture was cooled on ice for 10 minutes to prevent further growth. The cells were spun down ($2 \times 50 \mathrm{ml}$) at 800 rpm at $4^{\circ} \mathrm{C}$ for 10 minutes. After supernatant was discarded, the cells were resuspended gently in $5 \mathrm{ml} 20 \%$ sucrose in 10 mM tris buffer pH 8.0 (ice cold). To this mixture was then added 0.25 ml EDTA (0.5 m) and the cells were maintained on ice for 30 minutes.

The cells were then recentrifuged at 8000 rpm at $4^{\circ} \mathrm{C}$ for 10 minutes. The supernatant was decanted (this was the "sucrose wash" - if needed, then this was transferred to eppendorfs).
The cells were resuspended vigorously in 5 ml ice cold sterile water and maintained on ice for a further 30 minutes.

Finally, the cells were recentrifuged at 8000 rpm at $4^{\circ} \mathrm{C}$ for 10 minutes and supernatant decanted to eppendorfs (total volume approximately 5 ml). This was the periplasmic protein fraction of the cell culture.

Appendix 1.4

Xylanase assay stock preparation

For 1.3% w/v xylan stock:
1.3 g xylan made up to 100 ml

DNSA reagent:
1% w/v DNSA
$0.2 \% \mathrm{w} / \mathrm{v}$ phenol, $1 \% \mathrm{w} / \mathrm{v} \mathrm{NaOH}$
(to activate DNSA just before use, DNSA reagent made up fresh for all assays.To 100 ml of DNSA reagent was added Xylose stock $1 \mathrm{mg} / \mathrm{ml}$ in PC buffer $1 \mathrm{ml} 5 \% \mathrm{w} / \mathrm{v}$ Sodium sulphate, and $10 \mu \mathrm{l} 20 \% \mathrm{w} / \mathrm{v}$ glucose)

Xylanase assay

Standard curve Figure A

Xylose Stock $\mu \mathrm{g} / \mathrm{ml}$	$\mathrm{E}_{575 \mathrm{~nm}}$ Extinction	
0	0.000	
50	0.090	
100	0.170	
200	0.360	
300	0.550	
400	0.800	
500	0.900	
600	1.220	
700	1.350	
B41 plasmid	Sucrose wash	Periplasm
	0.150	0.975
	0.195	0.975
	0.210	1.245
	0.250	1.155
Average extinction value:	0.201	1.088
p 23 plasmid	Sucrose wash	Periplasm
	0.233	0.425
	0.275	0.805
	0.285	0.695
	0.225	0.470
Average extinction value:	0.255	0.599

Standard Curve Figure B

Xylose Stock $\mu \mathrm{g} / \mathrm{ml}$	$\mathbf{E}_{575 n m}$ Extinction	
0	0.000	
200	0.230	
300	0.380	
400	0.500	
500	0.600	
600	0.720	
700	0.860	
1000	1.240	
B41 plasmid	Sucrose wash	Periplasm
	0.140	0.810
	0.190	1.060
	0.190	1.040
	0.080	1.050
Average extinction value:	0.150	0.990
pN 23 plasmid	Sucrose wash	Periplasm
	0.150	0.580
	0.180	0.710
	0.100	0.790
	0.110	0.490
Average extinction value:	0.135	0.643

Standard curve Figure C

Xylose Stock $\mu \mathrm{g} / \mathrm{ml}$	$\mathbf{E}_{575 \mathrm{~nm}}$ Extinction
0	0.000
50	0.100
100	0.170
200	0.320
300	0.500
400	0.610
500	0.810
600	0.910
700	1.080
800	1.140
B41 plasmid	$0.000(-0.130)$
B41 plasmid + IPTG	1.675
pN23 plasmid	$0.000(-0.123)$
pN23 plasmid + IPTG	1.005

Standard curve Figure D

Xylose Stock $\mu \mathrm{g} / \mathrm{ml}$				$\mathbf{E}_{575 \mathrm{~nm}}$ extinction
0				0.000
100				0.220
200				0.420
500				1.080
800				1.650
Time after IPTG induction (mins)	B41 neat periplasm	B41 (10-1)	pN 23 neat periplasm	pN 23 (10-1)
	$\mathrm{E}_{575 \mathrm{~nm}}$	$\mathrm{E}_{575 \mathrm{~nm}}$	$\mathbf{E}_{575 \mathrm{~nm}}$	$\mathbf{E}_{575 \mathrm{~nm}}$
90	0.245	0.167	0.178	0.250
120	0.832	0.329	0.829	0.176
270	1.006	0.666	1.931	0.553
360	2.018	0.781	1.262	0.527
960	1.758	0.938	1.987	0.859

Xylanase Assay - Standard Curve Figure A
anang paepuełs

Xylanase Assay - Standard Curve Figure B

Xylanase Assay - Standard Curve Figure C

Xylanase Assay - Standard Curve Figure D

Appendix 2.1

Custom parameter set

BOND

C CR66	386.0	1.419	!
CH2E from C CR56			
CUY1	350.0	1.46	! from CT CUY1

THETAS

C	C6R	NT	70.0	120.0	!* from C C6R NP
N6R	C6R	NT	70.0	120.0	!* from N6R C6R N5R
H	NT	C6R	35.0	109.47	!* from H NT C
CR66	C	N6R	62.0	111.3	!* from CR56 C N6R
CR66	C	0	86.0	128.8	!* from CR56 C O
C	CR66	CR66	116.0	119.2	!* from C CR56 CR56
C	CR66	C6R	70.0	120.0	!* from C6R CR66 C6R
C	CR66	C6RE	70.0	120.0	!* from C6R CR66 C6R
CUY1	CH2E	NT	50.0	109.47	!* from CuY1 CT NT
CH2E	CUY1	CUY1	25.0	180.0	!* from CT CUY1 CUY1
CH 2 E	C	N	58.0	120.0	!* from CT C N
C	C6R	N	70.0	120.0	!* from C C6R NP
C6RE	C	NP	70.0	117.5	!* from C6R C NP
CUY1	CH2E	NP	50.0	109.47	!* from CuY1 CT NT
C6R	C6RE	C	70.0	120.0	!* from C6R C6R C
C6RE	C	CR66	65.0	120.0	!* from C6RE C6R CR66

| PHI | | | | | | |
| :--- | :--- | :--- | ---: | :--- | ---: | :--- | :--- |
| X | C6RE C | X | 3.1 | 2 | 180.0 | ! |
| X | CH2E CUY1 X X X C6RE C6RE X | | | | | |
| X | C6RE CR66 X | 0.4 | 3 | 0.0 | ! * from X CT CUY1 X | |
| X | 3.1 | 2 | 180.0 | ! * from X C6R CR66 X | | |
| X | C CR66 X | 3.1 | 2 | 180.0 | ! * from X C6R CR66 X | |

Appendix 2.2

Residue Topology Files

PHOSPHATE and dUMP

CB3717

* Proprietory and Confidential Property of Polygen Corporation
* TEMPLATE FOR CREATING CHARMm RTF file (from ChemNote)
* (\%_m) replaced by first 4 characters of molecule name
* (\%_r) replaced by RTF format of residue definition
* Build RTF for phs
* residue definition in RTF format built inline

21	3			
MASS	1	H	1.00800	! Hydrogen bonding hydrogen (neutral group)
MASS	2	HC	1.00800	Hydrogen bonding hydrogen (charged group)
MASS	3	HA	1.00800	! Aliphatic or aromatic hydrogen
MASS	4	HT	1.00800	! TIPS3P water model hydrogen
MASS	5	LP	0.0	! ST2 lone pair
MASS	6	MBE	9.01218	! Beryllium
MASS	7	B	10.81	! Boron
MASS	8	HO	1.00800	Hydrogen on an alcohol oxygen
MASS	9	HMU	1.00800	Mu-bonded hydrogen for metals and boron-hydride
MASS	10	CT	12.01100	Aliphatic carbon (tetrahedral)
MASS	11	CH1E	13.01900	Extended atom carbon with one hydrogen
MASS	12	CH2E	14.02700	Extended atom carbon with two hydrogens
MASS	13	CH3E	15.03500	Extended atom carbon with three hydrogens
MASS	14	C	12.01100	Carbonyl or Guanidinium carbon
MASS	15	CM	12.01100	Carbonmonoxide, or other triply bonded, carbon
MASS	16	CUA1	12.01100	! Carbon in double bond, first pair
MASS	17	CUA2	12.01100	! Carbon in double bond, second conjugated pair
MASS	18	CUY1	12.01100	! Carbon in triple bond, first pair
MASS	19	CUY2	12.01100	! Carbon in triple bond, second conjugated pair
MASS	20	CUA3	12.01100	! Carbon in double bond, third conjugated pair
MASS	21	C5R	12.01100	! Aromatic carbon in a five membered ring
MASS	22	C6R	12.01100	! Aromatic carbon in a six membered ring
MASS	23	C5RE	13.01900	! Extended aromatic carbon in five membered ring
MASS	24	C6RE	13.01900	! Extended aromatic carbon in six membered ring
MASS	25	CR55	12.01100	! Aromatic carbon-merged five membered rings
MASS	26	CR56	12.01100	! Aromatic carbon-merged five/six membered rings
MASS	27	CR66	12.01100	! Aromatic carbon-merged six membered rings
MASS	28	C5RP	12.01100	! for Aryl-Aryl bond between C5R rings
MASS	29	C6RP	12.01100	! for Aryl-Aryl bond between C6R rings
MASS	30	N5RP	14.00670	! for Ar-Ar bond between five membered rings
MASS	31	N	14.00670	! Nitrogen; planar-valence of 3, i.e. nitrile, et
MASS	32	NP	14.00670	! Nitrogen in peptide, amide, or related, group
MASS	33	NX	14.00670	! Proline nitrogen, or similar
MASS	34	N5R	14.00670	! Nitrogen in a five membered aromatic ring
MASS	35	N6R	14.00670	! Nitrogen in a six membered aromatic ring
MASS	36	NT	14.00670	! Nitrogen (tetrahedral), i.e. Amine, etc.
MASS	37	NC	14.00670	! Charged guanidinuim-type nitrogen
MASS	38	NO2	14.00670	! Nitrogen in nitro, or related, group
MASS	39	N6RP	14.00670	! for Aryl-Aryl bond between six membered rings
MASS	40	\bigcirc	15.99940	! Carbonyl oxygen for amides, or related structur
MASS	41	OA	15.99940	! Carbonyl oxygen for aldehydes, or related struc
MASS	42	OK	15.99940	! Carbonyl oxygen for ketones, or related structu
MASS	43	OC	15.99940	Charged oxygen
MASS	45	OT	15.99940	Hydroxyl oxygen (tetrahedral)/Ionizable acid ox
MASS	46	OW	15.99940	! TIP3P water model oxygen

MASS	47	OH 2	15.99940	! ST2 water model oxygen
MASS	48	OM	15.99940	! Carbonmonoxide, or other triply bonded, oxygen
MASS	49	OS	15.99940	! Ester oxygen
MASS	50	OE	15.99940	! Ether oxygen / Acetal oxygen
MASS	51	OAC	15.99940	! Carbonyl oxygen for acids
MASS	52	O5R	15.99940	! Oxygen in five membered aromatic ring-radicals,
MASS	53	O6R	15.99940	! Oxygen in aromatic ring - radicals etc.
MASS	55	OSI	15.99940	! Oxygen in Si-O-Si bond
MASS	56	O2M	15.99940	! Oxygen in Si-O-Al or Al-O-Al bond
MASS	57	OSH	0.00000	! Massless O for zeolites, or related cage compou.
MASS	60	PT	30.9738	! Phosphorous, general; usually tetrahedral
MASS	61	PO3	30.9738	! Phosphorous bonded to three oxygens
MASS	62	PO4	30.9738	! Phosphorous bonded to four oxygens
MASS	63	PUA1	30.9738	! Phosphorous double bond
MASS	64	P6R	30.9738	! Phosphorous in aromatic 6-membered ring
MASS	70	ST	32.06000	! Sulphur, general; usually tetrahedral
MASS	71	SH1E	33.06800	! Extended atom sulphur with one hydrogen
MASS	72	S5R	32.0600	! Sulphur in a five membered aromatic ring
MASS	73	S6R	32.0600	! Sulphur in a six membered aromatic ring
MASS	74	SE	32.060	! Thioether sulphur
MASS	75	SK	32.060	! Thioketone sulphur
MASS	76	SO1	32.0600	! Sulphur bonded to one oxygen
MASS	77	SO2	32.0600	! Sulphur bonded to two oxygens
MASS	78	SO3	32.0600	! Sulphur bonded to three oxygens
MASS	79	SO4	32.0600	! Sulphur bonded to four oxygens
MASS	80	MLI	6.941	! Lithium
MASS	81	MNA	22.9898	! Sodium
MASS	82	MMG	24.305	! Magnesiun
MASS	83	MK	39.098	! Potassium
MASS	84	MCA	40.080	! Calcium
MASS	85	MMN	54.938	! Manganese
MASS	86	MFE	55.847	! Iron
MASS	87	MZN	65.38	! Zinc
MASS	88	MRB	85.4678	! Rubidium
MASS	89	MCS	132.9054	! Cesium
MASS	90	MSI	28.0855	! Silicon
MASS	91	MAL	26.9815	! ALuminum
MASS	92	XF	18.99840	! Fluorine
MASS	93	XCL	35.45300	! Chlorine
MASS	94	XBR	79.904	! Bromine
MASS	95	XI	126.9045	! Iodine
MASS	96	MCU	63.546	! Copper
MASS	97	MV	50.9415	! Vanadium
MASS	98	MCR	51.996	! Chromium
MASS	99	MCO	58.9332	! Cobalt
MASS	100	MNI	58.69	! Nickel
MASS	101	MAS	74.9216	! Arsenic
MASS	102	MSE	78.96	! Selenium
MASS	103	MSR	87.62	! Strontium
MASS	104	MY	88.9059	! Yttrium
MASS	105	MZR	91.22	! Zirconium
MASS	106	MNB	92.9064	! Niobium
MASS	107	MMO	95.94	! Molybdenum
MASS	108	MRU	101.07	! Ruthenium
MASS	109	MRH	102.9055	! Rhodium
MASS	110	MPD	106.42	! Palladium
MASS	111	MAG	107.868	! Silver
MASS	112	MCD	112.41	! Cadmium

MASS	113 MSN	118.69	! Tin
MASS	114 MSB	121.75	! Antimony
MASS	115 MBA	137.33	! Barium
MASS	116 MW	183.85	! Tungsten
MASS	117 MOS	190.2	! Osmium
MASS	118 MPT	195.08	! Platinum
MASS	119 MAU	196.08	! Gold
MASS	120 MHG	200.59	! Mercury
MASS	121 MPB	207.2	! Lead
MASS	122 MBI	208.9804	! Bismuth
MASS	123 MLA	138.9055	! Lanthanum
MASS	124 MCE	140.12	! Cerium
MASS	125 MPR	140.9077	! Praseodymium
MASS	126 MAC	227.0278	! Actinium
MASS	127 MTH	232.0381	! Thorium
MASS	128 MU	238.0289	! Uranium
MASS	129 MTE	127.60	! Tellurium
MASS	130 MPO	209.0	! Polonium
MASS	131 XAT	210.0	! Astatine
MASS	132 MTC	98.0	! Technetium
MASS	133 MSC	44.9559	! Scandium
MASS	134 MTI	47.88	! Titanium
MASS	135 MGA	69.72	! Gallium
MASS	136 MGE	72.59	! Germanium
MASS	137 MIN	114.82	! Indium
MASS	138 MHF	178.49	! Hafnium
MASS	139 MTA	180.9479	! Tantalum
MASS	140 MIR	192.22	! Iridium
MASS	141 MTL	204.383	! Thallium
MASS	142 MFR	223.0	! Francium
MASS	143 MRA	226.0254	! Radium
MASS	144 MND	144.24	! Neodymium
MASS	145 MPM	145.0	! Promethium
MASS	146 MSM	150.36	! Samarium
MASS	147 MEU	151.96	! Europium
MASS	148 MGD	157.25	! Gadolinium
MASS	149 MTB	158.9254	! Terbium
MASS	150 MDY	162.50	! Dysprosium
MASS	151 MHO	164.9304	! Holmium
MASS	152 MER	167.26	! Erbium
MASS	153 MTM	168.9342	! Thulium
MASS	154 MYB	173.04	! Ytterbium
MASS	155 MLU	174.967	! Lutetium
MASS	156 MPA	231.0359	! Protactinium
MASS	157 MNP	237.0482	! Neptunium
MASS	158 MPU	244.0	! Plutonium
MASS	159 MAM	243.0	! Americium
MASS	160 MCM	247.0	! Curium
MASS	161 MBK	247.0	! Berkelium
MASS	162 MCF	251.0	! Californium
MASS	163 MES	252.0	! Einsteinium
MASS	164 MFM	257.0	! Fermium
MASS	165 MMD	258.0	! Medelevium
MASS	166 MNO	259.0	! Nobelium
MASS	167 MLR	260.0	! Lawrencium
MASS	168 HE	4.00260	! Helium
MASS	169 NE	20.179	! Neon
MASS	170 AR	39.948	! Argon

AUTOGENERATE ANGLES DIHE DEFA FIRS NONE LAST NONE

RESI phs -1.520
GROUP
ATOM P PO4 1.36
ATOM OP1 OC -0.72
ATOM OP2 OC -0.72
ATOM OP3 OC -0.72
ATOM OP4 OC -0.72
BOND P OP1
BOND P OP2
BOND P OP3
BOND P OP4
ACCE OP1 P
ACCE OP2 P
ACCE OP3 P
ACCE OP4 P
END

! n.b. these taken from DNA.RTF's for Thimine taken on 3.10.91
note much higher charge than old RTF's

* . .
* Proprietory and Confidential Property of Polygen Corporation
* TEMPLATE FOR CREATING CHARMm RTF file (from ChemNote)
* ••••
* (\%_m) replaced by first 4 characters of molecule name * (\%_r) replaced by RTF format of residue definition
* . . .
* Build RTF for dum
* ...
* residue definition in RTF format built inline
*

213

MASS

1 H
2 HC
3 HA
4 HT
5 LP
7 B
8 но
9 HMU
10 CT
11 CH 1 E
12 CH 2 E
13 CH3E
14 C
15 CM
16 CUA1
17 CUA2
18 CUY1
19 CUY2
20 CUA3 12.01100
21 C5R
22 C6R
23 C5RE
24 C6RE
13.01900
13.01900

25 CR55 12.01100
26 CR56 12.01100
27 CR66 12.01100
28 C5RP 12.01100
29 C6RP 12.01100
30 N5RP 14.00670
31 N
32 NP
33 NX
34 N5R
35 N6R
36 NT
37 NC
38 NO2
39 N6RP
400
41 OA
42 OK 15.99940
43 OC
45 OT 15.99940
46 OW
1.00800
1.00800
10.81
1.00800
1.00800 !
12.01100
13.01900
1.00800 ! Aliphatic or aromatic hydrogen
1.00800 ! TIPS3P water model hydrogen
0.0 ! ST2 lone pair
9.01218 ! Beryllium
! Extended atom carbon with two hydrogens
! Extended atom carbon with three hydrogens
Carbonyl or Guanidinium carbon
Carbonmonoxide, or other triply bonded, carbon
Carbon in double bond, first pair
Carbon in double bond, second conjugated pair
Carbon in triple bond, first pair
Carbon in triple bond, second conjugated pair
Carbon in double bond, third conjugated pair
! Aromatic carbon in a five membered ring
Aromatic carbon in a six membered ring
Extended aromatic carbon in five membered ring
Extended aromatic carbon in six membered ring
Aromatic carbon-merged five membered rings
Aromatic carbon-merged five/six membered rings
Aromatic carbon-merged six membered rings
for Aryl-Aryl bond between C5R rings
for Aryl-Aryl bond between C6R rings
for Ar-Ar bond between five membered rings
Nitrogen; planar-valence of 3, i.e. nitrile, et
Nitrogen in peptide, amide, or related, group
Proline nitrogen, or similar
Nitrogen in a five membered aromatic ring
Nitrogen in a six membered aromatic ring
Nitrogen (tetrahedral), i.e. Amine, etc.
Charged guanidinuim-type nitrogen
Nitrogen in nitro, or related, group
for Aryl-Aryl bond between six membered rings
Carbonyl oxygen for amides, or related structur
Carbonyl oxygen for aldehydes, or related struc
Carbonyl oxygen for ketones, or related structu
Charged oxygen
Hydroxyl oxygen (tetrahedral)/Ionizable acid ox:
TIP3P water model oxygen

MASS	47 OH 2	15.99940	ST2 water model oxygen
MASS	48 OM	15.99940	Carbonmonoxide, or other triply bonded, oxygen
MASS	49 OS	15.99940	Ester oxygen
MASS	50 OE	15.99940	! Ether oxygen / Acetal oxygen
MASS	51 OAC	15.99940	! Carbonyl oxygen for acids
MASS	52 O5R	15.99940	! Oxygen in five membered aromatic ring-radicals,
MASS	53 O6R	15.99940	! Oxygen in aromatic ring - radicals etc.
MASS	55 OSI	15.99940	Oxygen in Si-O-Si bond
MASS	56 O2M	15.99940	Oxygen in Si-O-Al or Al-O-A1 bond
MASS	57 OSH	0.00000	Massless O for zeolites, or related cage compou
MASS	60 PT	30.9738	Phosphorous, general; usually tetrahedral
MASS	61 PO3	30.9738	$!$ Phosphorous bonded to three oxygens
MASS	62 PO4	30.9738	! Phosphorous bonded to four oxygens
MASS	63 PUA1	30.9738	! Phosphorous double bond
MASS	64 P6R	30.9738	! Phosphorous in aromatic 6-membered ring
MASS	70 ST	32.06000	! Sulphur, general; usually tetrahedral
MASS	71 SH1E	33.06800	! Extended atom sulphur with one hydrogen
MASS	72 S5R	32.0600	Sulphur in a five membered aromatic ring
MASS	73 S6R	32.0600	Sulphur in a six membered aromatic ring
MASS	74 SE	32.060	! Thioether sulphur
MASS	75 SK	32.060	! Thioketone sulphur
MASS	76 SO1	32.0600	! Sulphur bonded to one oxygen
MASS	77 SO2	32.0600	! Sulphur bonded to two oxygens
MASS	78 SO3	32.0600	Sulphur bonded to three oxygens
MASS	79 SO4	32.0600	Sulphur bonded to four oxygens
MASS	80 MLI	6.941	Lithium
MASS	81 MNA	22.9898	Sodium
MASS	82 MMG	24.305	Magnesiun
MASS	83 MK	39.098	Potassium
MASS	84 MCA	40.080	Calcium
MASS	85 MMN	54.938	Manganese
MASS	86 MFE	55.847	Iron
MASS	87 MZN	65.38	Zinc
MASS	88 MRB	85.4678	! Rubidium
MASS	89 MCS	132.9054	! Cesium
MASS	90 MSI	28.0855	! Silicon
MASS	91 MAL	26.9815	! Aluminum
MASS	92 XF	18.99840	! Fluorine
MASS	93 XCL	35.45300	Chlorine
MASS	94 XBR	79.904	$!$ Bromine
MASS	95 XI	126.9045	! Iodine
MASS	96 MCU	63.546	Copper
MASS	97 MV	50.9415	! Vanadium
MASS	98 MCR	51.996	! Chromium
MASS	99 MCO	58.9332	! Cobalt
MASS	100 MNI	58.69	! Nickel
MASS	101 MAS	74.9216	! Arsenic
MASS	102 MSE	78.96	! Selenium
MASS	103 MSR	87.62	! Strontium
MASS	104 MY	88.9059	! Yttrium
MASS	105 MZR	91.22	! Zirconium
MASS	106 MNB	92.9064	! Niobium
MASS	107 MMO	95.94	! Molybdenum
MASS	108 MRU	101.07	! Ruthenium
MASS	109 MRH	102.9055	! Rhodium
MASS	110 MPD	106.42	! Palladium
MASS	111 MAG	107.868	! Silver
MASS	112 MCD	112.41	! Cadmium

MASS	113 MSN	118.69	! Tin
MASS	114 MSB	121.75	! Antimony
MASS	115 MBA	137.33	! Barium
MASS	116 MW	183.85	! Tungsten
MASS	117 MOS	190.2	! Osmium
MASS	118 MPT	195.08	! Platinum
MASS	119 MAU	196.08	! Gold
MASS	120 MHG	200.59	! Mercury
MASS	121 MPB	207.2	! Lead
MASS	122 MBI	208.9804	! Bismuth
MASS	123 MLA	138.9055	! Lanthanum
MASS	124 MCE	140.12	! Cerium
MASS	125 MPR	140.9077	! Praseodymium
MASS	126 MAC	227.0278	! Actinium
MASS	127 MTH	232.0381	! Thorium
MASS	128 MU	238.0289	! Uranium
MASS	129 MTE	127.60	! Tellurium
MASS	130 MPO	209.0	! Polonium
MASS	131 XAT	210.0	! Astatine
MASS	132 MTC	98.0	! Technetium
MASS	133 MSC	44.9559	! Scandium
MASS	134 MTI	47.88	! Titanium
MASS	135 MGA	69.72	! Gallium
MASS	136 MGE	72.59	! Germanium
MASS	137 MIN	114.82	! Indium
MASS	138 MHF	178.49	! Hafnium
MASS	139 MTA	180.9479	! Tantalum
MASS	140 MIR	192.22	! Iridium
MASS	141 MTL	204.383	! Thallium
MASS	142 MFR	223.0	! Francium
MASS	143 MRA	226.0254	! Radium
MASS	144 MND	144.24	! Neodymium
MASS	145 MPM	145.0	! Promethium
MASS	146 MSM	150.36	! Samarium
MASS	147 MEU	151.96	! Europium
MASS	148 MGD	157.25	! Gadolinium
MASS	149 MTB	158.9254	! Terbium
MASS	150 MDY	162.50	! Dysprosium
MASS	151 MHO	164.9304	! Holmium
MASS	152 MER	167.26	! Erbium
MASS	153 MTM	168.9342	! Thulium
MASS	154 MYB	173.04	! Ytterbium
MASS	155 MLU	174.967	! Lutetium
MASS	156 MPA	231.0359	! Protactinium
MASS	157 MNP	237.0482	! Neptunium
MASS	158 MPU	244.0	! Plutonium
MASS	159 MAM	243.0	! Americium
MASS	160 MCM	247.0	! Curium
MASS	161 MBK	247.0	! Berkelium
MASS	162 MCF	251.0	! Californium
MASS	163 MES	252.0	! Einsteinium
MASS	164 MFM	257.0	! Fermium
MASS	165 MMD	258.0	! Medelevium
MASS	166 MNO	259.0	! Nobelium
MASS	167 MLR	260.0	! Lawrencium
MASS	168 HE	4.00260	! Helium
MASS	169 NE	20.179	! Neon
MASS	170 AR	39.948	! Argon

MASS	171	KR	83.80	Krypton
MASS	172	XE	131.29	! Xenon
MASS	173	RN	222.0	! Radon
MASS	174	MRF	261.0	! Rutherfordium/Kurchatovium
MASS	175	MHA	262.0	! Hahnium
MASS	176	MRE	186.31	! Rhenium
MASS	177	MSIU	28.08550	! Silicon when as double bond
MASS	180	NR56	14.00670	! N at fused bond between 5 and 6-membered aromat
MASS	181	NR66	14.00670	! N at fused bond between two 6-membered aromatic
MASS	182	NR55	14.00670	! N at fused bond between two 5-membered aromatic
MASS	183	NR1	14.00670	! Protonated nitrogen in neutral histidine ring
MASS	184	NR2	14.00670	! Unprotonated nitrogen in neutral histidine ring
MASS	185	NR3	14.00670	! Nitrogens in charged histidine ring
MASS	186	NC2	14.00670	! for neutral guanidinium group - Arg sidechain
MASS	189	C5RQ	12.01100	! for second Ar-Ar bond between C5RP rings (ortho
MASS	190	C3	12.01100	! Carbonyl carbon in 3-membered aliphatic ring
MASS	191	CT3	12.01100	! C in 3-membered aliphatic ring, usually tetrahe
MASS	192	C4	12.01100	! Carbonyl carbons in 4-membered aliphatic ring
MASS	193	CT4	12.01100	! C in 4-membered aliphatic ring, usually tetrahe
MASS	194	C6RQ	12.01100	! Carbon of C6RP type ortho to C6RP pair
MASS	195	CQ66	12.01100	! Third adjacent pair of CR66 types in fused ring
MASS	196	CS66	12.01100	! Second adjacent pair of CR66 types in fused rin
MASS	197	CPH1	12.01100	! CG and CD2 carbons in histidine ring
MASS	198	CPH2	12.01100	! CE1 carbon in histidine ring
MASS	199	CP3	12.01100	! Carbon on nitrogen in proline ring

AUTOGENERATE ANGLES DIHE
DEFA FIRS NONE LAST NONE

RESI DUM -1.000
GROUP
ATOM P PO4 1.356
ATOM OP1 OT -0.603
ATOM OP2 OC -0.623
ATOM OP3 OC -0.623
ATOM OR5 OS -0.463
ATOM CR5 CH2E 0.067
ATOM CR4 CH1E 0.097
ATOM CR3 CH1E -0.003
ATOM OR3 OT -0.653
ATOM CR2 CH2E 0.067
ATOM CR1 CH1E 0.197
ATOM OR1 OE -0.373
ATOM N1 N6R -0.183
ATOM C2 C 0.797
ATOM O2 O -0.553
ATOM N3 NP -0.813
ATOM C4 C 0.867
ATOM O4 O -0.553
ATOM C5 C6RE -0.293
ATOM C6 C6RE 0.257
ATOM H21 H 0.397
ATOM H24 HO 0.187
ATOM H25 H 0.447
BOND P OP1
BOND OP1 H21
BOND P OP2
BOND P OP3
BOND P OR5
BOND OR5 CR5
BOND CR5 CR4
BOND CR4 CR3
BOND CR3 OR3
BOND OR3 H24
BOND CR3 CR2

END

```
* Proprietory and Confidential Property of Polygen Corporation
* ....
* TEMPLATE FOR CREATING CHARMm RTF file (from ChemNote)
* ....
* (%_m) replaced by first 4 characters of molecule name
* (%_r) replaced by RTF format of residue definition
* ..
* Build RTF for CB3
* ...
* residue definition in RTF format built inline
```

*

21	3	1.00800 ! Hydrogen bonding hydrogen (neutral group
MASS	1 H	1.0000

MASS
MAS
MASS $\quad 37$ NC
MASS $\quad 38$ NO
MASS
MASS 40
MASS 41 OA
MASS 42 OK 15.99940 !
MASS 43 OC 15.99940 !

MASS	45	OT
MASS	15.99940	

MASS 46 OW 15.99940
1.00800
1.00800
0.0
9.01218
10.81
1.00800
1.00800
12.01100 !
13.01900 !
14.02700 !
$15.03500!$
$12.01100!$
$12.01100!$
$12.01100!$
12.01100 !
12.01100
12.01100 !
12.01100 !
12.01100
12.01100

21 C 5 R
22 C6R
23 C5RE
13.01900 !
13.01900 !
12.01100 !

26 CR56 12.01100
28 C5RP 12.01100
29 C6RP 12.01100
30 N5RP 14.00670
31 N
32 NP
33 NX
34 N5R
35 N6R
14.00670
14.00670 !
14.00670 !
$14.00670!$
14.00670
14.00670 !
14.00670 !
14.00670
14.00670 !
15.99940 !
15.99940 !
1.00800
arbonyl oxygen for aldehydes, or related struc
! Carbonyl oxygen for ketones, or related structu
! Charged oxygen
! Hydroxyl oxygen (tetrahedral)/Ionizable acid ox
! TIP3P water model oxygen

MASS

47 OH 2
48 OM 15.99940 15.99940 15.99940 15.99940 15.99940 15.99940 15.99940

$$
15.99940
$$

! Ester oxygen

$$
15.99940
$$

$$
0.00000
$$

$$
30.9738
$$

$$
30.9738
$$

$$
30.9738
$$

$$
30.9738
$$

$$
30.9738
$$

$$
32.06000
$$

$$
33.06800
$$

$$
32.0600
$$

$$
32.0600
$$

$$
32.060
$$

! Thioether sulphur

$$
32.060
$$

$$
32.0600
$$

$$
32.0600
$$

$$
32.0600
$$

$$
32.0600
$$

$$
6.941
$$

$\begin{array}{ll}58.69 & \text { ! Nickel } \\ 74.9216 & \text { ! Arsenic }\end{array}$
87.62 ! Strontium
91.22 ! Zirconium
102.9055 ! Rhodium

Sodium
Magnesiun

$$
39.098
$$

Potassium

$$
40.080
$$

$$
54.938
$$

$$
55.847
$$

! Copper
51.996 ! Chromium
78.96 ! Selenium
88.9059 ! Yttrium
92.9064 ! Niobium
! Lithium

$$
22.9898
$$

$$
24.305
$$

! Calcium
! Manganese
Iron

$$
65.38
$$

$$
85.4678
$$

Rubidium

$$
132.9054
$$

$$
28.0855
$$

$$
\begin{aligned}
& 26.9815 \\
& 18.99840
\end{aligned}
$$

! Cobalt
! Nickel
101.07 ! Ruthenium
$\begin{array}{ll}107.868 & \text { : Silver } \\ 112.41 & \text { Cadmium }\end{array}$
Zinc
Cesium
Silicon
ALuminum
Fluorine

$$
35.45300
$$

Chlorine

$$
79.904
$$

! Vanadium
95.94 : Molybdenum
106.42 ! Palladium
! Bromine

$$
126.9045
$$

$$
50.9415
$$

$\begin{array}{ll}107.868 & \text { ! Silver } \\ 112.41 & \text { Cadmium }\end{array}$
Iodine

$$
63.546
$$

Iodine
58.9332 ! Cobalt
! ST2 water model oxygen
! Carbonmonoxide, or other triply bonded, oxygen
! Ether oxygen / Acetal oxygen
! Carbonyl oxygen for acids
! Oxygen in five membered aromatic ring-radicals,
! Oxygen in aromatic ring - radicals etc.
! Oxygen in Si-O-Si bond
! Oxygen in Si-O-Al or Al-O-Al bond
Massless 0 for zeolites, or related cage compou:
! Phosphorous, general; usually tetrahedral
! Phosphorous bonded to three oxygens
! Phosphorous bonded to four oxygens
! Phosphorous double bond
Phosphorous in aromatic 6-membered ring
Sulphur, general; usually tetrahedral
Extended atom sulphur with one hydrogen
! Sulphur in a five membered aromatic ring
! Sulphur in a six membered aromatic ring
Thioketone sulphur
! Sulphur bonded to one oxygen
! Sulphur bonded to two oxygens
! Sulphur bonded to three oxygens
! Sulphur bonded to four oxygens

MASS	113 MSN	118.69	! Tin
MASS	114 MSB	121.75	! Antimony
MASS	115 MBA	137.33	! Barium
MASS	116 MW	183.85	! Tungsten
MASS	117 MOS	190.2	Osmium
MASS	118 MPT	195.08	Platinum
MASS	119 MAU	196.08	Gold
MASS	120 MHG	200.59	! Mercury
MASS	121 MPB	207.2	! Lead
MASS	122 MBI	208.9804	! Bismuth
MASS	123 MLA	138.9055	! Lanthanum
MASS	124 MCE	140.12	! Cerium
MASS	125 MPR	140.9077	! Praseodymium
MASS	126 MAC	227.0278	! Actinium
MASS	127 MTH	232.0381	! Thorium
MASS	128 MU	238.0289	! Uranium
MASS	129 MTE	127.60	! Tellurium
MASS	130 MPO	209.0	! Polonium
MASS	131 XAT	210.0	! Astatine
MASS	132 MTC	98.0	! Technetium
MASS	133 MSC	44.9559	! Scandium
MASS	134 MTI	47.88	! Titanium
MASS	135 MGA	69.72	! Gallium
MASS	136 MGE	72.59	! Germanium
MASS	137 MIN	114.82	! Indium
MASS	138 MHF	178.49	! Hafnium
MASS	139 MTA	180.9479	! Tantalum
MASS	140 MIR	192.22	! Iridium
MASS	141 MTL	204.383	! Thallium
MASS	142 MFR	223.0	! Francium
MASS	143 MRA	226.0254	! Radium
MASS	144 MND	144.24	! Neodymium
MASS	145 MPM	145.0	! Promethium
MASS	146 MSM	150.36	! Samarium
MASS	147 MEU	151.96	! Europium
MASS	148 MGD	157.25	! Gadolinium
MASS	149 MTB	158.9254	! Terbium
MASS	150 MDY	162.50	! Dysprosium
MASS	151 MHO	164.9304	! Holmium
MASS	152 MER	167.26	! Erbium
MASS	153 MTM	168.9342	! Thulium
MASS	154 MYB	173.04	! Ytterbium
MASS	155 MLU	174.967	! Lutetium
MASS	156 MPA	231.0359	! Protactinium
MASS	157 MNP	237.0482	! Neptunium
MASS	158 MPU	244.0	! Plutonium
MASS	159 MAM	243.0	! Americium
MASS	160 MCM	247.0	! Curium
MASS	161 MBK	247.0	! Berkelium
MASS	162 MCF	251.0	! Californium
MASS	163 MES	252.0	! Einsteinium
MASS	164 MFM	257.0	! Fermium
MASS	165 MMD	258.0	! Medelevium
MASS	166 MNO	259.0	! Nobelium
MASS	167 MLR	260.0	! Lawrencium
MASS	168 HE	4.00260	! Helium
MASS	169 NE	20.179	! Neon
MASS	170 AR	39.948	Argon

MASS	171	KR	83.80	Krypton
MASS	172	XE	131.29	Xenon
MASS	173	RN	222.0	Radon
MASS	174	MRF	261.0	Rutherfordium/Kurchatovium
MASS	175	MHA	262.0	Hahnium
MASS	176	MRE	186.31	Rhenium
MASS	177	MSIU	28.08550	Silicon when as double bond
MASS	180	NR56	14.00670	N at fused bond between 5 and 6-membered aromat
MASS	181	NR66	14.00670	! N at fused bond between two 6-membered aromatic
MASS	182	NR55	14.00670	N at fused bond between two 5-membered aromatic
MASS	183	NR1	14.00670	Protonated nitrogen in neutral histidine ring
MASS	184	NR2	14.00670	Unprotonated nitrogen in neutral histidine ring
MASS	185	NR3	14.00670	Nitrogens in charged histidine ring
MASS	186	NC2	14.00670	for neutral guanidinium group - Arg sidechain
MASS	189	C5RQ	12.01100	for second Ar-Ar bond between C5RP rings (ortho
MASS	190	C3	12.01100	Carbonyl carbon in 3-membered aliphatic ring
MASS	191	CT3	12.01100	C in 3 -membered aliphatic ring, usually tetrahe
MASS	192	C4	12.01100	Carbonyl carbons in 4-membered aliphatic ring
MASS	193	CT4	12.01100	C in 4-membered aliphatic ring, usually tetrahe
MASS	194	C6RQ	12.01100	Carbon of C6RP type ortho to C6RP pair
MASS	195	CQ66	12.01100	Third adjacent pair of CR66 types in fused ring
MASS	196	CS66	12.01100	Second adjacent pair of CR66 types in fused rin
MASS	197	CPH1	12.01100	CG and CD2 carbons in histidine ring
MASS	198	CPH2	12.01100	! CE1 carbon in histidine ring
MASS	199	CP3	12.01100	Carbon on nitrogen in proline ring

AUTOGENERATE ANGLES DIHE
DEFA FIRS NONE LAST NONE

```
RESI CB3 -2.000
GROUP
ATOM N1 N6R -0.740
ATOM C2 C6R 0.900
ATOM NA2 NP -0.750
ATOM N3 N6R -0.560
ATOM C4 C 0.580
ATOM OA4 O -0.519
ATOM C4A CR66 -0.069
ATOM C5 C6RE 0.031
ATOM C6 C6R 0.031
ATOM C7 C6RE 0.031
ATOM C8 C6RE 0.031
ATOM C8A CR66 -0.069
ATOM C9 CH2E 0.031
ATOM N10 NP -0.369
ATOM CP1 CH2E 0.031
ATOM CP2 CUY1 -0.269
ATOM CP3 CUY1 -0.259
ATOM C11 C6R 0.231
ATOM C12 C6RE 0.031
ATOM C13 C6RE 0.031
ATOM C14 C6R 0.131
ATOM C15 C6RE 0.031
ATOM C16 C6RE 0.031
ATOM C C 0.580
ATOM O O -0.519
ATOM N NP -0.319
```

```
ATOM CA CH1E 0.131
ATOM CT C 0.171
ATOM O1 OC -0.540
ATOM O2 OC -0.540
ATOM CB CH2E 0.031
ATOM CG CH2E 0.031
ATOM CD C 0.171
ATOM OE1 OC -0.539
ATOM OE2 OC -0.540
ATOM H36 H 0.281
ATOM H37 H 0.331
ATOM H38 H 0.361
ATOM H39 H 0.361
BOND N1 C2
BOND C2 NA2
BOND NA2 H38
BOND NA2 H39
BOND C2 N3
BOND N3 C4
BOND C4 OA4
BOND C4 C4A ! parameter for bond distance not found
BOND C4A C5
BOND C5 C6
BOND C6 C7
BOND C7 C8
BOND C8 C8A
BOND C8A N1
BOND C8A C4A
BOND C6 C9
BOND C9 N10
BOND N10 CP1
BOND CP1 CP2 ! parameter for bond distance not found
BOND CP2 CP3
BOND N10 C11
BOND C11 C12
BOND C12 C13
BOND C13 C14
BOND C14 C15
BOND C15 C16
BOND C16 C11
BOND C14 C
BOND C O
BOND C N
BOND N CA
BOND CA CT
BOND CT O1
BOND CT O2
BOND CA CB
BOND CB CG
BOND CG CD
BOND CD OE1
BOND CD OE2
BOND N H36
BOND N3 H37
IMPH C8A N1 C2 N3
IMPH N1 C2 N3 C4
IMPH C2 N3 C4 C4A
IMPH N3 C4 C4A C8A
```

```
IMPH C8A C4A C5 C6
IMPH C4A C5 C6 C7
IMPH C5 C6 C7 C8
IMPH C6 C7 C8 C8A
IMPH C7 C8 C8A C4A
IMPH C4A C8A N1 C2
IMPH N1 C8A C4A C4
IMPH C16 C11 C12 C13
IMPH C11 C12 C13 C14
IMPH C12 C13 C14 C15
IMPH C13 C14 C15 C16
IMPH C14 C15 C16 C11
IMPH C15 C16 C11 C12
IMPH C2 N3 N1 NA2
IMPH NA2 H39 C2 H38
IMPH N3 C2 C4 H37
IMPH C4 C4A N3 OA4
IMPH C4A C5 C8A C4
IMPH C6 C5 C7 C9
IMPH C8A C4A C8 N1
IMPH N10 CP1 C11 C9
IMPH C11 C12 C16 N10
IMPH C14 C13 C15 C
IMPH C N C14 O
IMPH N C CA H36
IMPH CA N CT CB
IMPH CT O1 O2 CA
IMPH CD OE1 OE2 CG
DONO H38 NA2
DONO H39 NA2
DONO H37 N3
DONO H36 N
ACCE N1
ACCE NA2
ACCE N3
ACCE OA4 C4
ACCE N10
ACCE O C
ACCE N
ACCE O1 CT
ACCE O2 CT
ACCE OE1 CD
ACCE OE2 CD
IC C8A N1 C2 NA2 1.44 123.91 -179.54 114.88 1.47
IC C8A N1 C2 N3 1.44 123.91 -1.60 119.99 1.47
IC N1 NA2 *C2 N3 1.15 114.88 -177.82 125.09 1.47
IC N1 C2 NA2 H39 1.15 114.88 -77.32 119.96 1.09
IC N3 C2 NA2 H39 1.47 125.09 104.85 119.96 1.09
IC N1 C2 NA2 H38 1.15 114.88 102.61 120.00 1.09
IC C2 H38 *NA2 H39 1.47 120.00 179.93 120.04 1.09
IC N1 C2 N3 C4 1.15 119.99 1.57 117.56 1.23
IC NA2 C2 N3 C4 1.47 125.09 179.28 117.56 1.23
IC N1 C2 N3 H37 1.15 119.99 -178.40 121.21 1.09
IC C2 C4 *N3 H37 1.47 117.56 179.97 121.23 1.09
IC C2 N3 C4 OA4 1.47 117.56 -178.93 117.03 1.22
IC H37 N3 C4 OA4 1.09 121.23 1.03 117.03 1.22
IC C2 N3 C4 C4A 1.47 117.56 0.95 125.09 1.31
IC N3 OA4 *C4 C4A 1.23 117.03 -179.89 117.89 1.31
```



```
IC CA O1 *CT O2 1.57 128.27 -135.23 96.56 1.26
IC N CA CB CG 1.45 113.02 15.12 111.03 1.52
IC CT CA CB CG 1.57 111.23 -106.95 111.03 1.52
IC CA CB CG CD 1.56 111.03 153.31 105.72 1.57
IC CB CG CD OE1 1.52 105.72 -79.91 116.38 1.41
IC CB CG CD OE2 1.52 105.72 53.53 118.09 1.27
IC CG OE1 *CD OE2 1.57 116.38 -137.19 109.52 1.27
END
```


Appendix 2.3

patch data and awk files

* ...
* Proprietory and Confidential Property of Polygen Corporation
* ••••
* TEMPLATE FOR CREATING CHARMm RTF file (from ChemNote)
* ••••
* (\%_m) replaced by first 4 characters of molecule name
* (\%_r) replaced by RTF format of residue definition
* ...
* Build RTF for CB3
* •••
* residue definition in RTF format built inline
*

213

MASS 1 H MA MASS MASS MASS MASS MASS MASS MASS MASS
MASS
MASS 13 CH3E MASS MASS

MASS

16 CUA1
MASS 17 CUA2
MASS 18 CUY1
MASS 19 CUY2
MASS
MASS 45 OT
MASS 46 OW
1.00800
1.00800 (neutral group)
1.00800 , Hydrogen bonding hydrogen (charged group)
1.00800 , Aliphatic or aromatic hyarogen
0.0 ! ST2 lone pair
9.01218 ! Beryllium
10.81 ! Boron
1.00800 ! Hydrogen on an alcohol oxygen
1.00800 ! Mu-bonded hydrogen for metals and boron-hydride
12.01100 ! Aliphatic carbon (tetrahedral)
13.01900 ! Extended atom carbon with one hydrogen
14.02700 ! Extended atom carbon with two hydrogens
15.03500 ! Extended atom carbon with three hydrogens
12.01100 ! Carbonyl or Guanidinium carbon
12.01100 ! Carbonmonoxide, or other triply bonded, carbon
12.01100 ! Carbon in double bond, first pair
12.01100 ! Carbon in double bond, second conj
12.01100 ! Carbon in triple bond, first pair
12.01100 ! Carbon in triple bond, second conjugated pair
12.01100 ! Carbon in double bond, third conjugated pair
12.01100 ! Aromatic carbon in a five membered ring

Aromatic carbon in a six membered ring
! Extended aromatic carbon in five membered ring
! Extended aromatic carbon in six membered ring
Aromatic carbon-merged five membered rings
Aromatic carbon-merged five/six membered rings
Aromatic carbon-merged six membered rings
for Aryl-Aryl bond between C5R rings
for Aryl-Aryl bond between C6R rings
for $A r-A r$ bond between five membered rings
Nitrogen; planar-valence of 3 , i.e. nitrile, et
Nitrogen in peptide, amide, or related, group
! Proline nitrogen, or similar
! Nitrogen in a five membered aromatic ring
! Nitrogen in a six membered aromatic ring
! Nitrogen (tetrahedral), i.e. Amine, etc.
Charged guanidinuim-type nitrogen
Nitrogen in nitro, or related, group
for Aryl-Aryl bond between six membered rings
Carbonyl oxygen for amides, or related structur
Carbonyl oxygen for aldehydes, or related struc
! Carbonyl oxygen for ketones, or related structu
! Charged oxygen
! Hydroxyl oxygen (tetrahedral)/Ionizable acid ox ! TIP3P water model oxygen

MASS	47 OH 2	15.99940	ST2 water model oxygen
MASS	48 OM	15.99940	! Carbonmonoxide, or other triply bonded, oxygen
MASS	49 OS	15.99940	Ester oxygen
MASS	50 OE	15.99940	! Ether oxygen / Acetal oxygen
MASS	51 OAC	15.99940	! Carbonyl oxygen for acids
MASS	52 O5R	15.99940	! Oxygen in five membered aromatic ring-radicals,
MASS	53 O6R	15.99940	! Oxygen in aromatic ring - radicals etc.
MASS	55 OSI	15.99940	! Oxygen in Si-O-Si bond
MASS	56 O2M	15.99940	! Oxygen in Si-O-Al or Al-O-Al bond
MASS	57 OSH	0.00000	! Massless 0 for zeolites, or related cage compou
MASS	60 PT	30.9738	! Phosphorous, general; usually tetrahedral
MASS	61 PO3	30.9738	! Phosphorous bonded to three oxygens
MASS	62 PO4	30.9738	! Phosphorous bonded to four oxygens
MASS	63 PUA1	30.9738	! Phosphorous double bond
MASS	64 P6R	30.9738	! Phosphorous in aromatic 6-membered ring
MASS	70 ST	32.06000	! Sulphur, general; usually tetrahedral
MASS	71 SH1E	33.06800	! Extended atom sulphur with one hydrogen
MASS	72 S5R	32.0600	! Sulphur in a five membered aromatic ring
MASS	73 S6R	32.0600	! Sulphur in a six membered aromatic ring
MASS	74 SE	32.060	! Thioether sulphur
MASS	75 SK	32.060	! Thioketone sulphur
MASS	76 SO1	32.0600	! Sulphur bonded to one oxygen
MASS	77 SO2	32.0600	! Sulphur bonded to two oxygens
MASS	78 SO3	32.0600	! Sulphur bonded to three oxygens
MASS	79 SO4	32.0600	! Sulphur bonded to four oxygens
MASS	80 MLI	6.941	! Lithium
MASS	81 MNA	22.9898	! Sodium
MASS	82 MMG	24.305	! Magnesiun
MASS	83 MK	39.098	! Potassium
MASS	84 MCA	40.080	! Calcium
MASS	85 MMN	54.938	Manganese
MASS	86 MFE	55.847	! Iron
MASS	87 MZN	65.38	! Zinc
MASS	88 MRB	85.4678	! Rubidium
MASS	89 MCS	132.9054	! Cesium
MASS	90 MSI	28.0855	! Silicon
MASS	91 MAL	26.9815	ALuminum
MASS	92 XF	18.99840	Fluorine
MASS	93 XCL	35.45300	Chlorine
MASS	94 XBR	79.904	Bromine
MASS	95 XI	126.9045	! Iodine
MASS	96 MCU	63.546	! Copper
MASS	97 MV	50.9415	! Vanadium
MASS	98 MCR	51.996	! Chromium
MASS	99 MCO	58.9332	! Cobalt
MASS	100 MNI	58.69	! Nickel
MASS	101 MAS	74.9216	! Arsenic
MASS	102 MSE	78.96	! Selenium
MASS	103 MSR	87.62	! Strontium
MASS	104 MY	88.9059	Yttrium
MASS	105 MZR	91.22	Zirconium
MASS	106 MNB	92.9064	! Niobium
MASS	107 MMO	95.94	! Molybdenum
MASS	108 MRU	101.07	! Ruthenium
MASS	109 MRH	102.9055	! Rhodium
MASS	110 MPD	106.42	! Palladium
MASS	111 MAG	107.868	! Silver
MASS	112 MCD	112.41	! Cadmium

MASS	113 MSN	118.69	! Tin
MASS	114 MSB	121.75	! Antimony
MASS	115 MBA	137.33	! Barium
MASS	116 MW	183.85	! Tungsten
MASS	117 MOS	190.2	! Osmium
MASS	118 MPT	195.08	! Platinum
MASS	119 MAU	196.08	! Gold
MASS	120 MHG	200.59	! Mercury
MASS	121 MPB	207.2	! Lead
MASS	122 MBI	208.9804	! Bismuth
MASS	123 MLA	138.9055	! Lanthanum
MASS	124 MCE	140.12	! Cerium
MASS	125 MPR	140.9077	! Praseodymium
MASS	126 MAC	227.0278	! Actinium
MASS	127 MTH	232.0381	! Thorium
MASS	128 MU	238.0289	! Uranium
MASS	129 MTE	127.60	! Tellurium
MASS	130 MPO	209.0	! Polonium
MASS	131 XAT	210.0	! Astatine
MASS	132 MTC	98.0	! Technetium
MASS	133 MSC	44.9559	! Scandium
MASS	134 MTI	47.88	! Titanium
MASS	135 MGA	69.72	! Gallium
MASS	136 MGE	72.59	! Germanium
MASS	137 MIN	114.82	! Indium
MASS	138 MHF	178.49	! Hafnium
MASS	139 MTA	180.9479	! Tantalum
MASS	140 MIR	192.22	! Iridium
MASS	141 MTL	204.383	! Thallium
MASS	142 MFR	223.0	! Francium
MASS	143 MRA	226.0254	! Radium
MASS	144 MND	144.24	! Neodymium
MASS	145 MPM	145.0	! Promethium
MASS	146 MSM	150.36	! Samarium
MASS	147 MEU	151.96	! Europium
MASS	148 MGD	157.25	! Gadolinium
MASS	149 MTB	158.9254	! Terbium
MASS	150 MDY	162.50	! Dysprosium
MASS	151 MHO	164.9304	! Holmium
MASS	152 MER	167.26	! Erbium
MASS	153 MTM	168.9342	! Thulium
MASS	154 MYB	173.04	! Ytterbium
MASS	155 MLU	174.967	! Lutetium
MASS	156 MPA	231.0359	! Protactinium
MASS	157 MNP	237.0482	! Neptunium
MASS	158 MPU	244.0	! Plutonium
MASS	159 MAM	243.0	! Americium
MASS	160 MCM	247.0	! Curium
MASS	161 MBK	247.0	! Berkelium
MASS	162 MCF	251.0	! Californium
MASS	163 MES	252.0	! Einsteinium
MASS	164 MFM	257.0	! Fermium
MASS	165 MMD	258.0	! Medelevium
MASS	166 MNO	259.0	! Nobelium
MASS	167 MLR	260.0	! Lawrencium
MASS	168 HE	4.00260	! Helium
MASS	169 NE	20.179	! Neon
MASS	170 AR	39.948	! Argon

MASS	171	KR	83.80	Krypton
MASS	172	XE	131.29	! Xenon
MASS	173	RN	222.0	! Radon
MASS	174	MRF	261.0	! Rutherfordium/Kurchatovium
MASS	175	MHA	262.0	! Hahnium
MASS	176	MRE	186.31	Rhenium
MASS	177	MSIU	28.08550	Silicon when as double bond
MASS	180	NR56	14.00670	! N at fused bond between 5 and 6-membered aromat
MASS	181	NR66	14.00670	! N at fused bond between two 6-membered aromatic
MASS	182	NR55	14.00670	! N at fused bond between two 5-membered aromatic
MASS	183	NR1	14.00670	! Protonated nitrogen in neutral histidine ring
MASS	184	NR2	14.00670	! Unprotonated nitrogen in neutral histidine ring
MASS	185	NR3	14.00670	Nitrogens in charged histidine ring
MASS	186	NC2	14.00670	! for neutral guanidinium group - Arg sidechain
MASS	189	C5RQ	12.01100	! for second Ar-Ar bond between C5RP rings (ortho
MASS	190	C3	12.01100	! Carbonyl carbon in 3 -membered aliphatic ring
MASS	191	CT3	12.01100	! C in 3-membered aliphatic ring, usually tetrahe
MASS	192	C4	12.01100	! Carbonyl carbons in 4-membered aliphatic ring
MASS	193	CT4	12.01100	! C in 4 -membered aliphatic ring, usually tetrahe
MASS	194	C6RQ	12.01100	! Carbon of C6RP type ortho to C6RP pair
MASS	195	CQ66	12.01100	! Third adjacent pair of CR66 types in fused ring
MASS	196	CS66	12.01100	! Second adjacent pair of CR66 types in fused rin
MASS	197	CPH1	12.01100	! CG and CD2 carbons in histidine ring
MASS	198	CPH2	12.01100	! CE1 carbon in histidine ring
MASS	199	CP3	12.01100	Carbon on nitrogen in proline ring

AUTOGENERATE ANGLES DIHE
DEFA FIRS NONE LAST NONE
PRES MAJO -0.33
! Patch for dump to CYS This may not actually work but who knows?
GROUP
ATOM 1SG SE -0.12
GROUP
ATOM 2N1 NP -0.20
ATOM 2C6 CH1E -0.10
ATOM 2C5 CH2E +0.12
BOND 1SG 2C6
ANGL 2N1 2C6 1SG 2C6 1SG 1CB 2C5 2C6 1SG
DIHE 2CR1 2N1 2C6 1SG
DIHE 2C2 2N1 2C6 1SG
DIHE 2C4 2C5 2C6 1SG
DIHE 2N1 2C6 1SG 1CB
DIHE 2C5 2C6 1SG 1CB
DIHE 2C6 1SG 1CB 1CA

IC	2CR1 2N1 2C6	1SG	0.0	0.0	180.0	0.0	0.0
IC	2C2 $2 \mathrm{N1}$ 2C6	1SG	0.0	0.0	180.0	0.0	0.0
IC	2C4 2C5	2C6 1SG	0.0	0.0	180.0	0.0	0.0
IC	2N1 2C6 1SG	1CB	0.0	0.0	180.0	0.0	0.0
IC	2C5 2C6 1SG 1CB	0.0	0.0	180.0	0.0	0.0	
IC	2C6 1SG 1CB	1CA	0.0	0.0	180.0	0.0	0.0

END

```
#! /bin/sh
nawk '
{if ($4 ~ /^(N2A|H33|H34|H35|C22|N23|N21|C24|O4A|CA4|CA8|C28|C25|C26|C27|C2
{
    {if (NF == 12)
    {sum += $11; sum2 += $12}
}
    {if (NF == 11)
    {sum += $10; sum2 += $11}
}
}
{if ($4 ~ /^(NA2|H39|H38|H37|C2|N3|N1|C4|OA4|C4A|C8A|C8|C5|C6|C7|C9)$/)
    {if (NF == 12)
    {sum5 += $11; sum6 += $12}
}
    (if (NF == 11)
    {sum5 += $10; sum6 += $11}
}
}
{if ($4 !~ /^(N2A|H33|H34|H35|C22|N23|N21|C24|O4A|CA4|CA8|C28|C25|C26|C27|C
    {if (NF == 12)
    {sum3 += $11; sum4 += $12}
}
    {if (NF == 11)
    {sum3 += $10; sum4 += $11}
}
}
{if ($4 ~ /^(O1|O2|CT)$/)
    {if (NF == 12)
    {sum7 += $11; sum8 += $12}
}
    {if (NF == 11)
    {sum7 += $10; sum8 += $11}
}
}
{if ($4 ~ /^(01)$/)
{
    {if (NF == 12)
    {sum15 += $11; sum16 += $12}
}
    {if (NF == 11)
    {sum15 += $10; sum16 += $11}
}
}
{if ($4 ~ /^(O2)$/)
    {if (NF == 12)
    {sum17 += $11; sum18 += $12}
}
    {if (NF == 11)
```

```
    {sum17 += $10; sum18 += $11}
}
}
{if ($4 ~ /^(OE1)$/)
    {if (NF == 12)
    {sum19 += $11; sum20 += $12}
}
    (if (NF == 11)
    {sum19 += $10; sum20 += $11}
}
}
{if ($4 ~ /^(OE2)$/)
    {if (NF == 12)
    {sum21 += $11; sum22 += $12}
}
    {if (NF == 11)
    {sum21 += $10; sum22 += $11}
}
}
{if($4 ~ /^(OE1|OE2|CD|CG|CB)$/)
    {if (NF == 12)
    {sum9 += $11; sum10 += $12}
}
    {if (NF == 11)
    {sum9 += $10; sum10 += $11}
}
}
{if ($4 ~ /^(C11|C12|C13|C14|C15|C16)$/)
    {if (NF == 12)
    {sum11 += $11; sum12 += $12}
}
    {if (NF == 11)
    {sum11 += $10; sum12 += $11}
}
}
}
{if ($4 ~ /^(C|O|N|H)$/)
    {if (NF == 12)
    {sum13 += $11; sum14 += $12}
}
    {if (NF == 11)
    {sum13 += $10; sum14 += $11}
}
}
}
END {print "FILE = '$1"";
    print "TOTAL VDW of bif = ", sum;
    print "TOTAL ELEC of bif = ", sum2;
    print "TOTAL VDW of quin = ", sum5;
```

```
    print "TOTAL ELEC of quin = ", sum6;
    print "TOTAL nonbonded of both sides = ", sum5 + sum6 + sum + sum2;
    print "TOTAL VDW of main = ", sum3;
    print "TOTAL ELEC of main = ", sum4;
    print "TOTAL nonbonded of main = ", sum3 + sum4;
    print "TOTAL VDW = ", sum + sum3;
    print "TOTAL ELEC = ", sum2 + sum4;
    print "TOTAL VDW of short acid = ", sum7;
    print "TOTAL ELEC of short acid = ", sum8;
    print "TOTAL VDW of O1 = ", sum15;
    print "TOTAL ELEC of O1 = ", sum16;
    print "TOTAL VDW of O2 = ", sum17;
    print "TOTAL ELEC of O2 = ", sum18;
    print "TOTAL VDW of long acid = ", sum9;
    print "TOTAL ELEC of long acid = ", sum10;
    print "TOTAL VDW of OE1 = ", sum19;
    print "TOTAL ELEC of OE1 = ", sum20;
    print "TOTAL VDW of OE2 = ", sum21;
    print "TOTAL ELEC of OE2 = ", sum22;
    print "TOTAL VDW of ring = ", sum11;
    print "TOTAL ELEC of ring = ", sum12;
    print "TOTAL VDW of amide = ", sum13;
    print "TOTAL ELEC of amide = ", sum14;
    print "TOTAL nonbonded = ", sum2 + sum4 + sum + sum3}' $1
nawk
{if ($4 ~ /^(NA2|H39|H38|H37|C2|N3|N1|C4|OA4|C4A|C8A|C8|C5|C6|C7|C9)$/)
    {if (NF == 12)
    {sum += $11; sum2 += $12}
}
    {if (NF == 11)
    {sum += $10; sum2 += $11}
}
}
{if ($4 ~ /^(N2A|H33|H34|H35|C22|N23|N21|C24|O4A|CA4|CA8|C28|C25|C26|C27|C2
    {if (NF == 12)
    {sum5 += $11; sum6 += $12}
}
    {if (NF == 11)
    {sum5 += $10; sum6 += $11}
}
}
{if ($4 !~ /^(NA2|H39|H38|H37|C2|N3|N1|C4|OA4|C4A|C8A|C8|C5|C6|C7|C9)$/)
    {if (NF == 12)
    {sum3 += $11; sum4 += $12}
}
    {if (NF == 11)
    {sum3 += $10; sum4 += $11}
}
}
}
{if ($4 ~ /^(O1|O2|CT)$/)
{
    {if (NF == 12)
```

```
    {sum7 += $11; sum8 += $12}
}
    (if (NF == 11)
    {sum7 += $10; sum8 += $11}
}
}
{if ($4 ~ /^(01)$/)
    {if (NF == 12)
    {sum15 += $11; sum16 += $12}
}
    {if (NF == 11)
    {sum15 += $10; sum16 += $11}
}
}
{if ($4 ~ /^(O2)$/)
    {if (NF == 12)
    {sum17 += $11; sum18 += $12}
}
    {if (NF == 11)
    {sum17 += $10; sum18 += $11}
}
}
}
{if ($4 ~ /^(OE1)$/)
    {if (NF == 12)
    {sum19 += $11; sum20 += $12}
}
    {if (NF == 11)
    {sum19 += $10; sum20 += $11}
}
(if ($4 ~ /^(OE2)$/)
    {if (NF == 12)
    {sum21 += $11; sum22 += $12}
}
    {if (NF == 11)
    {sum21 += $10; sum22 += $11}
}
{if ($4 ~ /^(OE1|OE2|CD|CG|CB)$/)
    {if (NF == 12)
    {sum9 += $11; sum10 += $12}
}
    {if (NF == 11)
    {sum9 += $10; sum10 += $11}
}
}
{if ($4 ~ /^(C11|C12|C13|C14|C15|C16)$/)
```

```
    {if (NF == 12)
    {sum11 += $11; sum12 += $12}
}
    (if (NF == 11)
    {sum11 += $10; sum12 += $11}
}
}
{if ($4 ~ /^(ClO|N|H)$/)
    {if (NF == 12)
    {sum13 += $11; sum14 += $12}
}
    {if (NF == 11)
    {sum13 += $10; sum14 += $11}
}
}
}
END {print "FILE = '$2'";
    print "TOTAL VDW of bif = ", sum;
    print "TOTAL ELEC of bif = ", sum2;
    print "TOTAL VDW of quin = ", sum5;
    print "TOTAL ELEC of quin = ", sum6;
    print "TOTAL nonbonded of both sides = ", sum5 + sum6 + sum + sum2;
    print "TOTAL VDW of main = ", sum3;
    print "TOTAL ELEC of main = ", sum4;
    print "TOTAL nonbonded of main = ", sum3 + sum4;
    print "TOTAL VDW = ", sum + sum3;
    print "TOTAL ELEC = ", sum2 + sum4;
    print "TOTAL VDW of short acid = ", sum7;
    print "TOTAL ELEC of short acid = ", sum8;
    print "TOTAL VDW of O1 = ", sum15;
    print "TOTAL ELEC of O1 = ", sum16;
    print "TOTAL VDW of O2 = ", sum17;
print "TOTAL ELEC of O2 = ", sum18;
print "TOTAL VDW of long acid = ", sum9;
print "TOTAL ELEC of long acid = ", sum10;
print "TOTAL VDW of OE1 = ", sum19;
print "TOTAL ELEC of OE1 = ", sum20;
print "TOTAL VDW of OE2 = ", sum21;
print "TOTAL ELEC of OE2 = ", sum22;
print "TOTAL VDW of ring = ", sum11;
print "TOTAL ELEC of ring = ", sum12;
print "TOTAL VDW of amide = ", sum13;
print "TOTAL ELEC of amide = ", sum14;
print "TOTAL nonbonded = ", sum2 + sum4 + sum + sum3}' $2
nawk '
{if ($4 ~ /^(CP1|CP2|CP3)$/)
    {if (NF == 12)
    {sum += $11; sum2 += $12}
}
    {if (NF == 11)
    {sum += $10; sum2 += $11}
```

\}

```
{if ($4 ~ /^(NA2|H39|H38|H37|C2|N3|N1|C4|OA4|C4A|C8A|C8|C5|C6|C7|C9)$/)
{
    {if (NF == 12)
    {sum5 += $11; sum6 += $12}
}
    {if (NF == 11)
    {sum5 += $10; sum6 += $11}
}
}
{if ($4 !~ /^(CP1|CP2|CP3)$/)
    {if (NF == 12)
    {sum3 += $11; sum4 += $12}
}
    (if (NF == 11)
    {sum3 += $10; sum4 += $11}
}
(if ($4 ~ /^(O1|O2|CT)$/)
    {if (NF == 12)
    {sum7 += $11; sum8 += $12}
}
    {if (NF == 11)
    {sum7 += $10; sum8 += $11}
}
{if ($4 ~ /^(01)$/)
    {if (NF == 12)
    {sum15 += $11; sum16 += $12}
}
    {if (NF == 11)
    {sum15 += $10; sum16 += $11}
}
}
{if ($4 ~ /^(O2)$/)
    {if (NF == 12)
    {sum17 += $11; sum18 += $12}
}
    {if (NF == 11)
    {sum17 += $10; sum18 += $11}
}
}
}
{if ($4 ~ /^(OE1)$/)
    {if (NF == 12)
    {sum19 += $11; sum20 += $12}
}
    {if (NF == 11)
    {sum19 += $10; sum20 += $11}
}
```

```
}
}
{if ($4 ~ /^(OE2)$/)
    {if (NF == 12)
    {sum21 += $11; sum22 += $12}
}
    {if (NF == 11)
    {sum21 += $10; sum22 += $11}
}
}
}
{if ($4 ~ /^(OE1|OE2|CD|CG|CB)$/)
    {if (NF == 12)
    {sum9 += $11; sum10 += $12}
}
    {if (NF == 11)
    {sum9 += $10; sum10 += $11}
}
}
{if ($4 ~ /^(C11|C12|C13|C14|C15|C16)$/)
{
    {if (NF == 12)
    {sum11 += $11; sum12 += $12}
}
    {if (NF == 11)
    {sum11 += $10; sum12 += $11}
}
}
}
{if ($4 ~ /^(C|O|N|H)$/)
{
    {if (NF == 12)
    {sum13 += $11; sum14 += $12}
}
    {if (NF == 11)
    {sum13 += $10; sum14 += $11}
}
}
}
END {print "FILE = '$3'";
    print "TOTAL VDW of prop = ", sum;
    print "TOTAL ELEC of prop = ", sum2;
    print "TOTAL VDW of quin = ", sum5;
    print "TOTAL ELEC of quin = ", sum6;
    print "TOTAL nonbonded of both sides = ", sum5 + sum6 + sum + sum2;
    print "TOTAL VDW of main = ", sum3;
    print "TOTAL ELEC of main = ", sum4;
    print "TOTAL nonbonded of main = ", sum3 + sum4;
    print "TOTAL VDW = ", sum + sum3;
    print "TOTAL ELEC = ", sum2 + sum4;
    print "TOTAL VDW of short acid = ", sum7;
    print "TOTAL ELEC of short acid = ", sum8;
    print "TOTAL VDW of O1 = ", sum15;
    print "TOTAL ELEC of 01 = ", sum16;
    print "TOTAL VDW of O2 = ", sum17;
```

```
    print "TOTAL ELEC of O2 = ", sum18;
    print "TOTAL VDW of long acid = ", sum9;
    print "TOTAL ELEC of long acid = ", sum10;
    print "TOTAL VDW of OE1 = ", sum19;
    print "TOTAL ELEC of OE1 = ", sum20;
    print "TOTAL VDW of OE2 = ", sum21;
    print "TOTAL ELEC of OE2 = ", sum22;
    print "TOTAL VDW of ring = ", sum11;
    print "TOTAL ELEC of ring = ", sum12;
    print "TOTAL VDW of amide = ", sum13;
    print "TOTAL ELEC of amide = ", sum14;
    print "TOTAL nonbonded = ", sum2 + sum4 + sum + sum3}' $3
nawk '
{if ($4 ~ /^(CP1|CP2|CP3)$/)
{
    {if (NF == 12)
    {sum += $11; sum2 += $12}
}
    {if (NF == 11)
    {sum += $10; sum2 += $11}
}
}
}
{if ($4 ~ /^(NA2|H39|H38|H37|C2|N3|N1|C4|OA4|C4A|C8A|C8|C5|C6|C7|C9)$/)
{
    (if (NF == 12)
    {sum5 += $11; sum6 += $12}
}
    {if (NF == 11)
    {sum5 += $10; sum6 += $11}
}
}
}
{if ($4 !~ /^(CP1|CP2|CP3)$/)
    (if (NF == 12)
    {sum3 += $11; sum4 += $12}
}
    {if (NF == 11)
    {sum3 += $10; sum4 += $11}
}
}
{if ($4 ~ /^(01|O2|CT)$/)
    {if (NF == 12)
    {sum7 += $11; sum8 += $12}
}
    {if (NF == 11)
    {sum7 += $10; sum8 += $11}
}
}
{if ($4 ~ /^(O1)$/)
{
    {if (NF == 12)
    {sum15 += $11; sum16 += $12}
}
```

```
    (if (NF == 11)
    {sum15 += $10; sum16 += $11}
}
}
{if ($4 ~ /^(O2)$/)
    {if (NF == 12)
    {sum17 += $11; sum18 += $12}
}
    {if (NF == 11)
    {sum17 += $10; sum18 += $11}
}
}
{if ($4 ~ /^(OE1)$/)
    {if (NF == 12)
    {sum19 += $11; sum20 += $12}
    {if (NF == 11)
    {sum19 += $10; sum20 += $11}
}
{if ($4 ~ /^(OE2)$/)
    {if (NF == 12)
    {sum21 += $11; sum22 += $12}
    {if (NF == 11)
    {sum21 += $10; sum22 += $11}
}
}
{if ($4 ~ /^(OE1|OE2|CD|CG|CB)$/)
    {if (NF == 12)
    {sum9 += $11; sum10 += $12}
}
    {if (NF == 11)
    {sum9 += $10; sum10 += $11}
}
}
{if ($4 ~ /^(C11|C12|C13|C14|C15|C16)$/)
{
    {if (NF == 12)
    {sum11 += $11; sum12 += $12}
}
    {if (NF == 11)
    {sum11 += $10; sum12 += $11}
}
}
{if ($4 ~ /^(C|O|N|H)$/)
    {if (NF == 12)
```

```
    {sum13 += $11; sum14 += $12}
}
    {if (NF == 11)
    {sum13 += $10; sum14 += $11}
}
}
END {print "FILE = '$4'";
print "TOTAL VDW of prop = ", sum;
print "TOTAL ELEC of prop = ", sum2;
print "TOTAL VDW of quin = ", sum5;
print "TOTAL ELEC of quin = ", sum6;
print "TOTAL nonbonded of both sides = ", sum5 + sum6 + sum + sum2;
print "TOTAL VDW of main = ", sum3;
print "TOTAL ELEC of main = ", sum4;
print "TOTAL nonbonded of main = ", sum3 + sum4;
print "TOTAL VDW = ", sum + sum3;
print "TOTAL ELEC = ", sum2 + sum4;
print "TOTAL VDW of short acid = ", sum7;
print "TOTAL ELEC of short acid = ", sum8;
print "TOTAL VDW of O1 = ", sum15;
print "TOTAL ELEC of O1 = ", sum16;
print "TOTAL VDW of O2 = ", sum17;
print "TOTAL ELEC of O2 = ", sum18;
print "TOTAL VDW of long acid = ", sum9;
print "TOTAL ELEC of long acid = ", sum10;
print "TOTAL VDW of OE1 = ", sum19;
print "TOTAL ELEC of OE1 = ", sum20;
print "TOTAL VDW of OE2 = ", sum21;
print "TOTAL ELEC of OE2 = ", sum22;
print "TOTAL VDW of ring = ", sum11;
print "TOTAL ELEC of ring = ", sum12;
print "TOTAL VDW of amide = ", sum13;
print "TOTAL ELEC of amide = ", sum14;
print "TOTAL nonbonded = ", sum2 + sum4 + sum + sum3}" $4
```


Appendix 2.4

solvation energies and input files

MINOR TS		E kcal/mol	MAJOR TS		E kcal/mol
CB3717	TS + ligand	-6113.03	CB3717	TS + ligand	-6151.21
	$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6628.62		$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6618.23
	Δ Energy	-515.59		\triangle Energy	-467.02
	$\mathrm{H}_{2} \mathrm{O}$ only	-6352.93		$\mathrm{H}_{2} \mathrm{O}$ only	-6394.04
BIF1	TS + ligand	-6136.85	BIF2	TS + ligand	-6127.05
	$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6613.77		$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6605.50
	Δ Energy	-476.92		Δ Energy	-478.45
	$\mathrm{H}_{2} \mathrm{O}$ only	-6347.63		$\mathrm{H}_{2} \mathrm{O}$ only	-6348.96
	$\Delta \triangle \mathrm{E}$	-38.67		$\triangle \Delta \mathrm{E}$	11.43
BIF3	TS + ligand	-6109.14	BIF4	TS + ligand	-6131.47
	$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6573.33		$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6577.30
	Δ Energy	-464.19		Δ Energy	-445.83
	$\mathrm{H}_{2} \mathrm{O}$ only	-6346.02		$\mathrm{H}_{2} \mathrm{O}$ only	-6329.25
	$\Delta \Delta \mathrm{E}$	-51.40		$\triangle \triangle \mathrm{E}$	-21.19
BIF5	TS + ligand	-6122.46	BIF6	TS + ligand	-6111.41
	$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6535.69		$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6560.46
	Δ Energy	-414.23		Δ Energy	-449.05
	$\mathrm{H}_{2} \mathrm{O}$ only	-6342.39		$\mathrm{H}_{2} \mathrm{O}$ only	-6333.36
	$\Delta \Delta \mathrm{E}$	-101.36		$\triangle \triangle E$	-17.97
BIF7	TS + ligand	-6115.25	BIF8	TS + ligand	-6124.65
	$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6520.20		$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6575.71
	Δ Energy	-405.75		Δ Energy	-451.06
	$\mathrm{H}_{2} \mathrm{O}$ only	-6342.94		$\mathrm{H}_{2} \mathrm{O}$ only	-6333.25
	$\triangle \triangle E$	-109.84		$\Delta \Delta \mathrm{E}$	-15.96
BIF9		-6114.83	BIF10		-6140.55
	$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6550.45		$\mathrm{H}_{2} \mathrm{O}+\text { ligand }$	-6564.85
	Δ Energy	-435.61		Δ Energy	-424.30
	$\mathrm{H}_{2} \mathrm{O}$ only	-6341.59		$\mathrm{H}_{2} \mathrm{O}$ only	-6250.86
	$\Delta \triangle \mathrm{E}$	-79.98		$\Delta \triangle \mathrm{E}$	-42.72
BIF11	TS + ligand	-6103.57	BIF12	TS + ligand	-6141.63
	$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6560.13		$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6505.89
	Δ Energy	-456.56		Δ Energy	-364.26
	$\mathrm{H}_{2} \mathrm{O}$ only	-6354.63		$\mathrm{H}_{2} \mathrm{O}$ only	-6556.65
	$\Delta \Delta \mathrm{E}$	-59.03		$\Delta \Delta \mathrm{E}$	-102.76
BIF13	TS + ligand	-6110.62	BIF14		-6145.32
	$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6562.25		$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6600.84
	Δ Energy	-451.63		Δ Energy	-455.52
	$\mathrm{H}_{2} \mathrm{O}$ only	-6331.56		$\mathrm{H}_{2} \mathrm{O}$ only	-6338.98
	$\Delta \Delta \mathrm{E}$	-63.96		$\Delta \Delta \mathrm{E}$	-11.50

BIF15	TS + ligand	-6117.24	BIF16	TS + ligand	-6125.58
	$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6556.09		$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6560.82
	Δ Energy	-438.84		Δ Energy	-435.50
	$\mathrm{H}_{2} \mathrm{O}$ only	-6340.65		$\mathrm{H}_{2} \mathrm{O}$ only	-6350.72
	$\Delta \Delta \mathrm{E}$	-76.75		$\Delta \Delta \mathrm{E}$	-31.52
BIF17	TS + ligand	-6100.71	BIF18	TS + ligand	-6147.70
	$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6558.39		$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6572.22
	Δ Energy	-457.68		Δ Energy	-424.52
	$\mathrm{H}_{2} \mathrm{O}$ only	-6351.04		$\mathrm{H}_{2} \mathrm{O}$ only	-6345.47
	$\Delta \Delta \mathrm{E}$	-57.91		$\Delta \Delta \mathbf{E}$	-42.50
BIF19	TS + ligand	-6073.26	BIF20	TS + ligand	-6103.88
	$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6528.56		$\mathrm{H}_{2} \mathrm{O}+$ ligand	-6545.30
	Δ Energy	-455.30		Δ Energy	-441.42
	$\mathrm{H}_{2} \mathrm{O}$ only	-6356.12		$\mathrm{H}_{2} \mathrm{O}$ only	-6351.34
	$\Delta \Delta \mathrm{E}$	-60.29		$\Delta \triangle \mathbf{E}$	-25.60

* Script file produced by QUANTA
*

!
CHARMm startup file for QUANTA
!
! Redirect the CHARMM output
open write unit 7 Card name bif14_in_final.LOG line outu 7
bomlev -2
bann
open read unit 11 file name \$CHM_DATA/AMINO.BIN
read rtf unit 11 file
open read unit 12 card name \$CHM_DATA/PATCHA.RTF
read ref unit 12 card appe
open read unit 02 file name PARM.BIN
read para unit 02 file
! Script for reading RTF
DELE ATOM SELECT ALL END
OPEN READ UNIT 77 CARD NAME -
"DUM.RTF"
READ RTF CARD UNIT 77 APPEND
CLOSE UNIT 77
! Script for reading RTF
DELE ATOM SELECT ALL END
OPEN READ UNIT 77 CARD NAME "CB3.RTF"
READ RTF CARD UNIT 77 APPEND
CLOSE UNIT 77
! Script for reading RTF
DELE ATOM SELECT ALL END
OPEN READ UNIT 77 CARD NAME -
"MAJO.RTF"
READ RTF CARD UNIT 77 APPEND
CLOSE UNIT 77
! Script for reading RTF
DELE ATOM SELECT ALL END
OPEN READ UNIT 77 CARD NAME -
"BI14.RTF"
READ RTF CARD UNIT 77 APPEND
CLOSE UNIT 77
read sequ quanta

* Read sequence using special QUANTA option
*

1
BI14 1
generate BI14 setup
read sequ quanta

* Read sequence using special QUANTA option
* 264

MET	1	LYS	2	GLN	3	TYR	4	LEU	5	GLU	6
LEU	7	MET	8	GLN	9	LYS	10	VAL	11	LEU	12
ASP	13	GLU	14	GLY	15	THR	16	GLN	17	LYS	18
ASN	19	ASP	20	ARG	21	THR	22	GLY	23	THR	24
GLY	25	THR	26	LEU	27	SER	28	ILE	29	PHE	30
GLY	31	HSD	32	GLN	33	MET	34	ARG	35	PHE	36
ASN	37	LEU	38	GLN	39	ASP	40	GLY	41	PHE	42
PRO	43	LEU	44	VAL	45	THR	46	THR	47	LYS	48

ARG	49	CYS	50	HIS	51	LEU	52	ARG	53	SER	54
ILE	55	ILE	56	HSD	57	GLU	58	LEU	59	LEU	60
TRP	61	PHE	62	LEU	63	GLN	64	GLY	65	ASP	66
THR	67	ASN	68	ILE	69	ALA	70	TYR	71	LEU	72
HSD	73	GLU	74	ASN	75	ASN	76	VAL	77	THR	78
ILE	79	TRP	80	ASP	81	GLU	82	TRP	83	ALA	84
ASP	85	GLU	86	ASN	87	GLY	88	ASP	89	LEU	90
GLY	91	PRO	92	VAL	93	TYR	94	GLY	95	LYS	96
GLN	97	TRP	98	ARG	99	ALA	100	TRP	101	PRO	102
THR	103	PRO	104	ASP	105	GLY	106	ARG	107	HIS	108
ILE	109	ASP	110	GLN	111	ILE	112	THR	113	THR	114
VAL	115	LEU	116	ASN	117	GLN	118	LEU	119	LYS	120
ASN	121	ASP	122	PRO	123	ASP	124	SER	125	ARG	126
ARG	127	ILE	128	ILE	129	VAL	130	SER	131	ALA	132
TRP	133	ASN	134	VAL	135	GLY	136	GLU	137	LEU	138
ASP	139	LYS	140	MET	141	ALA	142	LEU	143	ALA	144
PRO	145	CYS	146	HSD	147	ALA	148	PHE	149	PHE	150
GLN	151	PHE	152	TYR	153	VAL	154	ALA	155	ASP	156
GLY	157	LYS	158	LEU	159	SER	160	CYS	161	GLN	162
LEU	163	TYR	164	GLN	165	ARG	166	SER	167	CYS	168
ASP	169	VAL	170	PHE	171	LEU	172	GLY	173	LEU	174
PRO	175	PHE	176	ASN	177	ILE	178	ALA	179	SER	180
TYR	181	ALA	182	LEU	183	LEU	184	VAL	185	HIS	186
MET	187	MET	188	ALA	189	GLN	190	GLN	191	CYS	192
ASP	193	LEU	194	GLU	195	VAL	196	GLY	197	ASP	198
PHE	199	VAL	200	TRP	201	THR	202	GLY	203	GLY	204
ASP	205	THR	206	HSD	207	LEU	208	TYR	209	SER	210
ASN	211	HSD	212	MET	213	ASP	214	GLN	215	THR	216
HSD	217	LEU	218	GLN	219	LEU	220	SER	221	ARG	222
GLU	223	PRO	224	ARG	225	PRO	226	LEU	227	PRO	228
LYS	229	LEU	230	ILE	231	ILE	232	LYS	233	ARG	234
LYS	235	PRO	236	GLU	237	SER	238	ILE	239	PHE	240
ASP	241	TYR	242	ARG	243	PHE	244	GLU	245	ASP	246
PHE	247	GLU	248	ILE	249	GLU	250	GLY	251	TYR	252
ASP	253	PRO	254	HSD	255	PRO	256	GLY	257	ILE	258
LYS	259	ALA	260	PRO	261	VAL	262	ALA	263	ILE	264

read sequ quanta

* Read sequence using special QUANTA option *

```
264
```

MET	301	LYS	302	GLN	303	TYR	304	LEU	305	GLU	306
LEU	307	MET	308	GLN	309	LYS	310	VAL	311	LEU	312
ASP	313	GLU	314	GLY	315	THR	316	GLN	317	LYS	318
ASN	319	ASP	320	ARG	321	THR	322	GLY	323	THR	324
GLY	325	THR	326	LEU	327	SER	328	ILE	329	PHE	330
GLY	331	HSD	332	GLN	333	MET	334	ARG	335	PHE	336
ASN	337	LEU	338	GLN	339	ASP	340	GLY	341	PHE	342
PRO	343	LEU	344	VAL	345	THR	346	THR	347	LYS	348
ARG	349	CYS	350	HIS	351	LEU	352	ARG	353	SER	354
ILE	355	ILE	356	HSD	357	GLU	358	LEU	359	LEU	360
TRP	361	PHE	362	LEU	363	GLN	364	GLY	365	ASP	366
THR	367	ASN	368	ILE	369	ALA	370	TYR	371	LEU	372
HSD	373	GLU	374	ASN	375	ASN	376	VAL	377	THR	378
ILE	379	TRP	380	ASP	381	GLU	382	TRP	383	ALA	384
ASP	385	GLU	386	ASN	387	GLY	388	ASP	389	LEU	390
GLY	391	PRO	392	VAL	393	TYR	394	GLY	395	LYS	396
GLN	397	TRP	398	ARG	399	ALA	400	TRP	401	PRO	402

FAST 0
SHAKE OFF

```
MINI SD -
    NSTE 25 NPRI 5 TOLG 0.000000 STEP 0.020000 TOLS 0.000000 TOLENR 0.001000 -
    INBFRQ 10 CUTNB 12.000000 CTONNB 9.000000 CTOFNB 11.000000 -
    VSWITCH SHIFT RDIE EPS 1.000000 -
    IHBFRQ 0 -
    IMGFRQ 10 CUTIM 12.000000
MINI ABNR -
    NSTE 500 NPRI 5 TOLG 0.000000 STEP 0.020000 TOLS 0.000000 TOLENR 0.001000
    INBFRQ 10 CUTNB 12.000000 CTONNB 9.000000 CTOFNB 11.000000 -
    VSWITCH SHIFT RDIE EPS 1.000000 -
    IHBFRQ 0 -
    IMGFRQ 10 CUTIM 12.000000
MINI ABNR -
    NSTE 500 NPRI 5 TOLG 0.000000 STEP 0.020000 TOLS 0.000000 TOLENR 0.001000
    INBFRQ 10 CUTNB 12.000000 CTONNB 9.000000 CTOFNB 11.000000 -
    VSWITCH SHIFT RDIE EPS 1.000000 -
    IHBFRQ 0 -
    IMGFRQ 10 CUTIM 12.000000
open write unit 10 card name bif14_final_min.crd
write coor unit 10 card
close unit 10
```

* Script file produced by QUANTA
,
: CHARMm startup file for QUANTA
!
! Redirect the CHARMM output
open write unit 7 Card name bif15_in_final.LOG line outu 7
bomlev -2
bann
open read unit 11 file name \$CHM_DATA/AMINO.BIN
read rtf unit 11 file
open read unit 12 card name \$CHM_DATA/PATCHA.RTF
read rtf unit 12 card appe
open read unit 02 file name PARM.BIN
read para unit 02 file
! Script for reading RTF
DELE ATOM SELECT ALL END
OPEN READ UNIT 77 CARD NAME -
"DUM.RTF"
READ RTF CARD UNIT 77 APPEND CLOSE UNIT 77
! Script for reading RTF
DELE ATOM SELECT ALL END
OPEN READ UNIT 77 CARD NAME -
"CB3.RTF"
READ RTF CARD UNIT 77 APPEND
CLOSE UNIT 77
! Script for reading RTF
DELE ATOM SELECT ALL END
OPEN READ UNIT 77 CARD NAME "PHS.RTF"
READ RTF CARD UNIT 77 APPEND
CLOSE UNIT 77
! Script for reading RTF
DELE ATOM SELECT ALL END
OPEN READ UNIT 77 CARD NAME -
"BI15.RTF"
READ RTF CARD UNIT 77 APPEND
CLOSE UNIT 77
read sequ quanta
* Read sequence using special QUANTA option
*

BI15 ${ }^{1} 1$
generate BII5 setup
read sequ quanta

* Read sequence using special QUANTA option
*

264

MET	1	LYS	2	GLN	3	TYR	4	LEU	5	GLU	6
LEU	7	MET	8	GLN	9	LYS	10	VAL	11	LEU	12
ASP	13	GLU	14	GLY	15	THR	16	GLN	17	LYS	18
ASN	19	ASP	20	ARG	21	THR	22	GLY	23	THR	24
GLY	25	THR	26	LEU	27	SER	28	ILE	29	PHE	30
GLY	31	HSD	32	GLN	33	MET	34	ARG	35	PHE	36
ASN	37	LEU	38	GLN	39	ASP	40	GLY	41	PHE	42
PRO	43	LEU	44	VAL	45	THR	46	THR	47	LYS	48

ARG	49	CYS	50	HIS	51	LEU	52	ARG	53	SER	54
ILE	55	ILE	56	HSD	57	GLU	58	LEU	59	LEU	60
TRP	61	PHE	62	LEU	63	GLN	64	GLY	65	ASP	66
THR	67	ASN	68	ILE	69	ALA	70	TYR	71	LEU	72
HSD	73	GLU	74	ASN	75	ASN	76	VAL	77	THR	78
ILE	79	TRP	80	ASP	81	GLU	82	TRP	83	ALA	84
ASP	85	GLU	86	ASN	87	GLY	88	ASP	89	LEU	90
GLY	91	PRO	92	VAL	93	TYR	94	GLY	95	LYS	96
GLN	97	TRP	98	ARG	99	ALA	100	TRP	101	PRO	102
THR	103	PRO	104	ASP	105	GLY	106	ARG	107	HIS	108
ILE	109	ASP	110	GLN	111	ILE	112	THR	113	THR	114
VAL	115	LEU	116	ASN	117	GLN	118	LEU	119	LYS	120
ASN	121	ASP	122	PRO	123	ASP	124	SER	125	ARG	126
ARG	127	ILE	128	ILE	129	VAL	130	SER	131	ALA	132
TRP	133	ASN	134	VAL	135	GLY	136	GLU	137	LEU	138
ASP	139	LYS	140	MET	141	ALA	142	LEU	143	ALA	144
PRO	145	CYS	146	HSD	147	ALA	148	PHE	149	PHE	150
GLN	151	PHE	152	TYR	153	VAL	154	ALA	155	ASP	156
GLY	157	LYS	158	LEU	159	SER	160	CYS	161	GLN	162
LEU	163	TYR	164	GLN	165	ARG	166	SER	167	CYS	168
ASP	169	VAL	170	PHE	171	LEU	172	GLY	173	LEU	174
PRO	175	PHE	176	ASN	177	ILE	178	ALA	179	SER	180
TYR	181	ALA	182	LEU	183	LEU	184	VAL	185	HIS	186
MET	187	MET	188	ALA	189	GLN	190	GLN	191	CYS	192
ASP	193	LEU	194	GLU	195	VAL	196	GLY	197	ASP	198
PHE	199	VAL	200	TRP	201	THR	202	GLY	203	GLY	204
ASP	205	THR	206	HSD	207	LEU	208	TYR	209	SER	210
ASN	211	HSD	212	MET	213	ASP	214	GLN	215	THR	216
HSD	217	LEU	218	GLN	219	LEU	220	SER	221	ARG	222
GLU	223	PRO	224	ARG	225	PRO	226	LEU	227	PRO	228
LYS	229	LEU	230	ILE	231	ILE	232	LYS	233	ARG	234
ALA	235	PRO	236	GLU	237	SER	238	ILE	239	PHE	240
ASP	241	TYR	242	ARG	243	PHE	244	GLU	245	ASP	246
PHE	247	GLU	248	ILE	249	GLU	250	GLY	251	TYR	252
ASP	253	PRO	254	HSD	255	PRO	256	GLY	257	ILE	258
LYS	259	ALA	260	PRO	261	VAL	262	ALA	263	ILE	264
generate 1S setup read sequ quanta											
* Read sequence using special QUANTA option											
MET	301	LYS	302	GLN	303	TYR	304	LEU	305	GLU	306
LEU	307	MET	308	GLN	309	LYS	310	VAL	311	LEU	312
ASP	313	GLU	314	GLY	315	THR	316	GLN	317	LYS	318
ASN	319	ASP	320	ARG	321	THR	322	GLY	323	THR	324
GLY	325	THR	326	LEU	327	SER	328	ILE	329	PHE	330
GLY	331	HSD	332	GLN	333	MET	334	ARG	335	PHE	336
ASN	337	LEU	338	GLN	339	ASP	340	GLY	341	PHE	342
PRO	343	LEU	344	VAL	345	THR	346	THR	347	LYS	348
ARG	349	CYS	350	HIS	351	LEU	352	ARG	353	SER	354
ILE	355	ILE	356	HSD	357	GLU	358	LEU	359	LEU	360
TRP	361	PHE	362	LEU	363	GLN	364	GLY	365	ASP	366
THR	367	ASN	368	ILE	369	ALA	370	TYR	371	LEU	372
HSD	373	GLU	374	ASN	375	ASN	376	VAL	377	THR	378
ILE	379	TRP	380	ASP	381	GLU	382	TRP	383	ALA	384
ASP	385	GLU	386	ASN	387	GLY	388	ASP	389	LEU	390
GLY	391	PRO	392	VAL	393	TYR	394	GLY	395	LYS	396
GLN	397	TRP	398	ARG	399	ALA	400	TRP	401	PRO	402

! QUANTA coordinates included in script file
open read unit 10 card name bif15_in_ts.crd read coor unit 10 card close unit 10
cons fix sele (segid 2s .or. segid 2 h) .and. .not. (resid 424 : 428) end print coor sele (segid 2 s .or. segid 2 h) .and. .not. (resid 424 : 428) end
! Energy script for CHARMm
! Energy script for CHARMm
!

FAST 0
SHAKE OFF

```
MINI SD -
    NSTE 25 NPRI 5 TOLG 0.000000 STEP 0.020000 TOLS 0.000000 TOLENR 0.001000.
    INBFRQ 10 CUTNB 12.000000 CTONNB 9.000000 CTOFNB 11.000000 -
    VSWITCH SHIFT RDIE EPS 1.000000 -
    IHBFRQ 0 -
    IMGFRQ 10 CUTIM 12.000000
MINI ABNR -
    NSTE 500 NPRI 5 TOLG 0.000000 STEP 0.020000 TOLS 0.000000 TOLENR 0.001000
    INBFRQ 10 CUTNB 12.000000 CTONNB 9.000000 CTOFNB 11.000000 -
    VSWITCH SHIFT RDIE EPS 1.000000 -
    IHBFRQ 0 -
    IMGFRQ 10 CUTIM 12.000000
MINI ABNR -
    NSTE 500 NPRI 5 TOLG 0.000000 STEP 0.020000 TOLS 0.000000 TOLENR 0.001000
    INBFRQ 10 CUTNB 12.000000 CTONNB 9.000000 CTOFNB 11.000000 -
    VSWITCH SHIFT RDIE EPS 1.000000 -
    IHBFRQ O -
    IMGFRQ 10 CUTIM 12.000000
open write unit 10 card name bif15_final_min.crd
write coor unit 10 card
close unit 10
```


[^0]: * Bam Hl is the name of a commercially available restriction endonuclease

