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Abstract

Most Statistical Process Control (SPC) research has focused on the development of

charting techniques for process monitoring. Unfortunately, little attention has been paid

to the importance of bringing the process in control automatically via these charting

techniques. This thesis shows that by drawing upon concepts from Automatic Process

Control (APC), it is possible to devise schemes whereby the process is monitored and

automatically controlled via SPC procedures. It is shown that Partial Correlation

Analysis (PCorrA) or Principal Component Analysis (PCA) can be used to determine

the variables that have to be monitored and manipulated as well as the corresponding

control laws.

We call this proposed procedure Active SPC and the capabilities of various strategies

that arise are demonstrated by application to a simulated reaction process. Reactor

product concentration was controlled using different manipulated input configurations

e.g. manipulating all input variables, manipulating only two input variables, and

manipulating only a single input variable. The last two manipulating schemes consider

the cases when all input variables can be measured on-line but not all can be

manipulated on-line. Different types of control charts are also tested with the new

Active SPC method e.g. Shewhart chart with action limits; Shewhart chart with action

and warning limits for individual observations, and lastly the Exponentially Weighted

Moving Average control chart. The effects of calculating control limits on-line to

accommodate possible changes in process characteristics were also studied.

The results indicate that the use of the Exponentially Weighted Moving Average control

chart, with limits calculated using Partial Correlations, showed the best promise for

further development. It is also shown that this particular combination could provide

better performance than the common Proportional Integral (PI) controller when

manipulations incur costs.
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Chapter 1

1.1 Introduction

In recent years, the importance of quality has become increasingly apparent. Stiffer

competition, tougher environmental and safety regulations, and rapidly changing

economic conditions have been key factors in tightening plant product quality.

Virtually everyone in industry agrees that consistent high quality is an essential

ingredient, and possibly the single most important production performance criterion.

Any tool that can provide a measure of performance on a process is appreciated.

Subsequently it can become an integral addition towards quality awareness on the

production floor. Several methods of "process control" have been implemented in

industry to fulfil these quality awareness requirements. There are actually two ways we

can describe the terminology of process control. Firstly, from the view point of the

manufacturing industry that use Statistical Process Control (SPC) charts to monitor the

parts or products that are being produced. Secondly from the process or chemical

industries where they employ various forms of feedback and feedforward strategies for

process adjustment in what is often called Automatic Process Control (APC).

Although the two methods come from different backgrounds, their aims are identical.

However, it is not until recently that both methods are used concurrently. This thesis

looks at combining traditional SPC procedures and APC strategies via multivariate

statistical analysis techniques.

1.2 Overview of the research work

The concepts and methodology of SPC are totally different from those of Automatic

Process Control (APC). However, the objective of both methods is the same,

attempting to reduce the variability in the process, although the respective procedures

for achieving this are quite different. SPC through monitoring the process, seeks the

removal of the root cause while APC counteracts variability by adjusting different

variables and transfers the variability into these less important manipulated variables.
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The SPC methodology has been developed for monitoring the product of

manufacturing industries, where the product is in the form of discrete items. When

SPC methods give an indication that the process is out-of-control, the machine is

stopped. The process of rectifying and identifying is done on the machine to eliminate

the root causes of the problem. When all these problems are solved, the machine is

started again to produce the discrete items. On the other hand, processes in the

chemical industries are continuous systems where they could not afford to shut down

their process as often as in the manufacturing industries. There should be better ways

to overcome this problem when we want to utilise the SPC methodology on chemical

processes. We propose a new scheme whereby the input or manipulated variables are

monitored and controlled when they deviate away from their respective targets, instead

of just monitoring the quality variables using the SPC control charts. All these control

laws are based on using the SPC control charts methodology. This is possible by

translating the control limits of quality variables to the prescribed manipulated

variables. The statistical relationships between the quality variables and the

manipulated variables will provide the basis for developing the control laws. The

rationale here is that if all the manipulated variables are in statistical control, then the

quality variable will follow suit.

In modern process industries, data loggers and sensors are .extensively utilised to

monitor the input and the output variables. The data is then passed to the

microprocessor based controller at a very short interval of time. Thus, an abundant

amount of data is being collected for the process input variables (xi), for instance

process flowrates, temperatures and pressures. Final product quality (xk) such as

concentration and polymer properties are available much less frequently, basically

through off-line laboratory analysis. Since classical SPC methodology only monitors

few quality variables, the technique is inadequate for chemical processes. They ignore

the existence of relationships between the input variables (xi) and the quality variables

(xk). Certainly, if we are going to design an effective scheme for monitoring and

diagnosing the performance of the process, we must be able to use all the data, (xi) and

(xk) to extract the pertinent information. Nevertheless some of the variables are

dependent on each other. Only a few underlying events affect the process at any given

time. The rest are simply different reflections of these perturbed events. Consequently,

examining the variables' one at a time, as if they are a separate events and independent

of each other, makes interpretation and diagnosis difficult. Only multivariate statistical

methods can treat the data simultaneously and can extract the information about how

the variables are behaving relative to each other. In this work, we utilise two types of

multivariate methods, Principal Components Analysis (PCA) and Partial Correlation

2
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Analysis (PCorrA), for process monitoring and diagnosis. Both methods also provide

the control laws needed for the new procedure called Active SPC.

1.3 Summary of Research Objective

On the basis of the preceding discussion, the objective of this research is as follows:

1.3.1 Objective

To study in detail and develop a procedure known as Active SPC that applies

Automatic Process Control (APC) concepts within the realm of Statistical Process

Control (SPC). The new procedure can overcome the weaknesses and combines the

strengths of APC and SPC procedures. The weakness of APC strategies is due to it

continuously making attempts to remove the effects of any disturbance on the output

by adjusting the manipulated variables. In contrast, traditional SPC only gives an

indication for an action to be taken, when the quality variable exceeds some specified

limits on the control chart. However, it is possible to devise a method whereby the

process is monitored and automatically controlled while maintaining the SPC policy of

non-intervention when the process is in state-of-statistical control. In addition to

product quality, input or manipulated variables are also monitored. If these inputs can

be kept within their respective control limits, then the quality variable should also be

maintained within its control limits. Obviously, the former must be related to the latter

limits.

1.3.2 Sub-objectives

The objective above is attained by fulfilling the following sub objectives:

1. By developing a non-linear model of a Continuous Stirred Tank Reactor (CSTR)

reversible reaction process. The model is developed from the first principle by

using the dynamic mass and heat balance equations. The model is then digitally

simulated on the umx based workstation utilising PASCAL language. This will

be used to evaluate all control strategies.

2. By evaluating the effectiveness of the APC feedback control schemes on the

simulated CSTR utilising the Proportional Integral (P1) controller when the

process is subjected to noise variations. The result will be used as a basis for

comparing the APC schemes.

3
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3. Evaluate the use of Partial Correlation coefficients or correlation coefficients

derived from Principal Component Analysis between the input variables and the

quality variable in the Active SPC schemes. The usage of these coefficients serves

two purposes, firstly to determine and select the most influential manipulated

variables for pairing with controlled or quality variable and secondly to determine

and define the limits for the SPC charts used to control the process. They are also

used to define the control laws, i.e. the manipulations that have to be made to the

relevant manipulated variables to keep the quality or controlled variable under

statistical control.

4. Evaluate the effectiveness of the various possible Active SPC control schemes, by

applying it to the simulated CSTR when the process is subjected to noise

variations. The following modified control charts were considered:

(a) Shewhart individual chart with action limits

(b) Shewhart individual chart with both action and warning limits

(c) Exponential Weight Moving Average (EWMA) control chart.

1.4 Contributions

This work presents an overview of both traditional and new statistical process control

methods for monitoring and diagnosing process operating performance. Multivariate

statistical methods such as Principal Component Analysis (PCA) and Partial

Correlation Analysis (PCorrA) form the core technique for this new Active SPC

method. The utilisation of input variables (xi) as well as quality variable (xk) is

illustrated and studied. The methods to integrate the multivariate statistical methods in

Active SPC are discussed. The performances of the new strategies is then apply to

several types of control charts, i.e. Shewhart and EVVMA charts.

The combination of classical control systems theory and Statistical Process Control

scheme known as Active SPC procedure was developed. This study is the first of its

kind. Successful completion will not only meet the objective described in the preceding

section, but it could provide an excellent indicator for the future direction of combining

SPC methods and APC strategies in the process and manufacturing industries. In some

respects, this research provides a starting point from which a control engineer may

become fundamentally involved with statisticians in industry.

4
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1.5 Organisation of the thesis

The remainder of this thesis is divided into seven chapters. Chapter 2 introduces

Statistical Process Control (SPC) strategies and methodologies. It defines the

requirements and the assumptions made in implementing the strategies. It explains the

sources and the types of variations in the process. It discusses the fulfilment of the

normality assumption and the risks involved when making decisions using SPC control

charts. It also elaborates on the two types of control charts that are normally employed

in the industries, i.e. the Shewhart control chart for individual measurements and the

Exponential Weight Moving Average (E'WMA) control chart.

Chapter 3 explores the existing literature on the integration of SPC and APC methods.

First, we review the concept of SPC and APC methods. Then, the two methodology is

compared and lastly the integration of SPC and APC strategies is discussed.

Chapter 4 develops a dynamic mathematical model of a continuous stirred tank reactor

(CSTR), by applying the un-steady state mass and energy balances. Control

performance using a Proportional-Integral (PI) controller was assessed by application

to simulations on the CSTR. The parameters of the PI controller were tuned using the

Process Reaction Curve technique.

Chapter 5 presents an overview of multivariate statistical techniques. The aim of this

section is to present the concepts and methods of multivariate analysis at a level that is

understandable to the readers of this thesis. Two types of multivariate statistical tools

of multivariate analysis are explored, namely Principal Component Analysis (PCA) and

Partial Correlation Analysis (PCorrA). Both methods will be used to calculate the

control limits of the Active SPC control charts.

Chapter 6 develops the strategies for integrating SPC and APC methods. It gives an

overview of the proposed Active SPC strategies and the details of how they may be

realised. The Active SPC schemes are outlined in detail including the procedure of

process monitoring, control-rule design and implementation on the simulated CSTR

process.

Chapter 7 discusses the results of several rigorous simulations studies of several

potential Active SPC strategies. A variety of methods are studied and implemented.

The performances of each method are compared so that we can determine the

effectiveness of the respective strategies. This includes methods for off-line and on-line

5
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updating of the control limits of the SPC charts, the usage of several types of control

charts, several configurations of manipulated variables and lastly, the effectiveness of

implementing the two multivariate data analysis procedures. Then, we consider the use

of different data sets for the design of the control charts. Their effects on control

performances are discussed. Lastly the performances of Active SPC methods were

compared with APC method.

Chapter 8 summarises the findings and recommends future areas of research in this

area.

6



Chapter 2

Statistical Process Control

2.1 Introduction

This chapter introduces the concept of Statistical Process Control (SPC). It discusses

the sources and the types of variations that occur in a process. Then it elaborates on

the normality requirements in the data, the SPC tools, i.e. the control charts that will

be used in this work and finally, hypothesis testing.

In recent years it has been recognised that good quality product is crucial for

production because quality and profitability go hand in hand. Poor product quality is

expensive, because it has to be de-valued, re-processed or dumped as waste. Thus, it

always costs less to produce the product right for the first time. The characteristic of a

good process requires that a consistent output is being produced. It would be nice if

this could be achieved, conclusively, by carefully adjusting the process equipment and

allowing them to run continuously. Unfortunately, this would rarely, if ever result in

uniform product because in practice, extraordinary precautions are needed to ensure

regularity in the products.

Thus, to attain uniformity in the products, normally, the manufacturing industries

employed a technique called Statistical Process Control (SPC) to monitor, detect and

eliminate the substandard materials and counter productive operations in the process.

By monitoring various steps in the process using SPC methods, abnormal trends can be

identified and problems can be solved before they get out of hand. Manufacturers who

implement and use SPC techniques on a regular basis can greatly reduce the

production costs through avoiding the recycling of chemicals, post production

blending, adding additional separation processes and abstaining from dumping the

product as waste. Whether the quality of the product is determined by functionality, by

durability or by appearance, quality must be built into the product, not added as an
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afterthought. Thus, the main objective of SPC methodologies is to regulate the process

and to maintain the standard of the product to the customers' satisfaction. As a result,

it allows manufacturing industries to produce the output at a cost that will fulfil profit

objectives.

2.2 Sources of Variations in the Process

As mentioned, poor quality in the product is due to the inconsistency and variability in

the process. The variability becomes evident whenever the quality characteristic of the

product is measured. The causes of this variability are measurement errors, different

methods of sample taking, variations introduced by raw materials, various methods of

operation and control in the plant, machinery, equipment, different skill levels of

operators, environment, planning and etc. It is impossible to produce an exact replicate

of an item, especially, when there is the slightest inconsistency in the process. Clearly,

the reason for this inconsistency in the output is due to the discrepancy in the input,

not only in materials and parts, but also in assembly and operators.

There are basically three sources of variation as noted by Taguchi (1989). The

identification of the sources of variation is important, as we can then formulate and

implement the appropriate corrections. The first source is due to "outer noise",

referring to external sources of variations that influence the production environment.

Examples of outer noise include ambient temperatures, humidity, and vibrations from

nearby equipment. Second, is "inner noise" where the internal characteristic of the

product is changed because of mechanical wear and ageing in the production

equipment. Finally, there is "variational noise", where the product parameter varies

from one batch to another as a result of the production process. The forces of outer

noise and inner noise can be dealt with effectively through engineering design.

However, variational noise is a feature of production imperfection and hence it can be

dealt with in part at the process level via statistical process control.

In the SPC literature, variational noise can further be categorised into two classes

namely "common cause" and "assignable cause". The former, is also known as random,

common, system or chronic cause. It is simply a term used to describe faults inherent in

the process. Apart from physically altering the nature of the process, there is nothing

else that we can do to remove common causes. A process when affected only by

common causes, is normally said to be in a state of statistical control, where

unnecessary action should not be taken to avoid spending time and money on rectifying

a well-behaved system.

8
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The second type of variability manifests as temporary deviations from target,

signalled by outliers or unusual patterns of points. This type of variability is

sometimes known as assignable or special or sporadic causes and often contributes

toward a large part of overall variability in the process. Evidence of this type of

variation offers important opportunities for improving the uniformity of product.

The quality product mean (p) may change gradually as a result of gradual changes

in temperature, reactants concentration, or operator fatigue. This could happen in

the case of two operators or equipment performing at different operating conditions

(Box, 1993; Deming, 1982; Juran, eta!., 1974; Shewhart, 1931).

Assignable causes create abnormal variations in the process. It indicates that something

has gone wrong with the system. In this incident, the process is in an out-of-control

state. Consequently the search and the elimination of assignable cause should then be

under-taken. This second type of cause must be studied thoroughly by various

techniques of data analysis with the aim of separating it from the common causes.

Table 2.1 summarises the basic nature of process variation and provides some

examples in each case. In the case of common causes it is clear by their nature that

management must take the responsibility for their removal. For example, only

management can take the necessary action to improve training and supervision of the

workers. Through the decision of management, new methods or procedures can be

established for the process. An understanding about the nature of the variability in the

process is important because it will determine the kind of action that is necessary and

whom to assign the responsibility for taking actions.

Table 2.1 The nature of faults in the Process

All processes are subject to two fundamental problems

Faults as used in

the literature.

Local faults

Special causes

Sporadic problems

Assignable causes

System faults

Common Cause

Chronic problems

Chance cause

Examples Broken tools

Equipment malfunction

Material contamination

Poor supervision

Poor training

Inappropriate method

Action by Whom Correctable	 locally	 at	 the

equipment or process by the

operator.

Require a change in the

system. Only management

can specify and implement

the change.

9



(x-11)2
1 

f (x) =	 e 2a2
a-an

(2.1)—03<x<00

Statistical Process Control

2.3 Normal Distribution

The occurrence of variability in the process can be plotted on charts called Frequency

Distribution Curves. Frequently, the variable data from most manufacturing and

process industries follow a Gaussian or "normal distribution" (Wetherill and Brown,

1991). Two parameters ordinarily define a normally distributed population, namely the

mean 0.0 and the variance (G2) and the shorthand notation for a normally distributed

population is given by N(11,a2). The properties of the normal distribution can be

summarised as follows:

(1) Its probability density function (PDF) is symmetric about the population.

(2) Its mean, median and mode are identical.

(3) Its cumulative distribution function (CDF) is completely determined by the mean

and standard deviation.

(4) Any conforming set of data, no matter what is the source, can be translated to a

single universal form known as the standard normal distribution (SND).

Mathematically the normal distribution function is defined as:

The visual appearance of this normal distribution is a symmetric, unimodal or bell

shaped curve and is shown in Figure 2.1. Many measurements of continuous variables

follow this distribution. This is explained by the central limit theorem, which states that

the most extreme non-normal distribution of data, will approach a normal distribution

as the number of collected samples increases (Jaehn, 1989). Because of this result, we

often find good fits of practical data by the normal distribution.

The above function f(x) can be scaled so that the total area under the curve over the

full range of x (-co < x < co) equals to 1.0. If the curve is to be divided up according to

the number of standard deviation from the mean, we find that each proportion is

actually equivalent to the probability of obtaining some values in each zone when the

samples are taken at random from the population.
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Figure 2.1 Graph of a Cumulative Distribution Function

Table 2.2 The Normal Distribution with Probabilities

In Between Inside Outside

±1 a 68.26 % 31.74 %

±2 a 95.44 % 4.56 %

±3a 99.73 % 0.27 %

±4 a 99.9937 % 0.0063 %

Table 2.2 summarises the probabilities of obtaining certain values that lie about the

mean. For example, the probability of obtaining a value lying between ±a is

approximately 68.26%, while the probability of obtaining a value outside these limits is

approximately 31.74%. Likewise the probability of obtaining a value between -2a and

+2a is 0.9544 (95.44%) and between -3a and 1-3a is 0.9973 (99.73%). The probability

of a data value falling outside the ±3a limits is only 0.27%, or 3 in 1000. Since, this

occasion rarely occurs, we usually conclude that when data fall outside the ±3a limits,

it indicates that the distribution function has changed, indicating that the process has

changed. As a consequence there is some abnormality in the process. Therefore, the

area between ±3a in figure 2.1 is often called a region of common cause. On the other

hand, the area outside this region is known as assignable cause zone.

2.4 Standardised Variable

Since the mean (p.) and standard deviation (a) of the normal distribution can take on

many different values from situation to situation, it is convenient to define and work

with a standardised normal distribution. Such a standard normal distribution for the

11
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random variable z is defined to a have a mean li z = 0 and standard deviation az = 1

or N(0,1). Partial areas under this standard normal curve have been calculated and

tabulated in standard statistical texts. It remains for users to establish the relationship

between the particular normal distribution that they are working with the standard

normal distribution, so that they may use the tables. In order to translate from the

normal distribution f(x) to the standard normal distribution f(z), we use the following

transformation:

(2.2)

Where zi is our new value which is in standard deviation unit and xi is our observation,

while g is the mean and a is the standard deviation for variable x.

2.5 SPC Control Charts

SPC methodologies are based on the assumption that serially generated data are

independent and normally distributed. Based on these assumptions, the probabilities of

data values falling in a certain range can therefore be predicted. Using these

assumptions, Shewhart (1931) introduced a simple device called the Shewhart (TO

control chart which enables the user to define the state of the process data. It consists

of a time plot of data with control limits centred about the target, which is taken from a

historical average. The samples are collected in subgroups, randomly from the process,

at a regular time interval. A chart is then plotted based on these observations (T)

against time. Then three lines were drawn on the chart. These lines are the grand mean

(I), the upper control limit line (UCL) and the lower control limit line (LCL).

Basically, the usage of Shewhart control charts are to fulfil the following three

distinctly different purposes:

(i) To deLermine whether a process has achieved a state of statistical process

control. For this purpose, appropriate data are collected and tested against the

trial control limits.

(ii) To monitor the aim and variability in the process. This is possible by

continuously checking the stability of the process. This, in turn will help to

assure that the statistical distribution of product characteristic is consistent with

quality requirements.

(iii) To maintain current control of a process in which the data is tested against

control limits computed from given standards.

12
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In general, a statistically based control chart is a device intended to be used at the point

of operation where the process is carried out, and by the operators of the process. In

the traditional method, the operators are asked to asses the current situation by taking

a sample and plotting the sample results on the control chart, and take action when it is

necessary. To elaborate further let us look at the Shewhart control chart for individual

measurement and the EWMA control chart, in more detail.

2.5.1 Shewhart Control Chart for Individual Measurements

In certain situations, taking several measurements to form a rational sample size

greater than one simply does not make sense because only one measurement is

available or meaningful each time that samples are to be taken. For example, certain

process characteristics such as temperature and flowrate, will not vary in close

proximity in time or space during the period that such sampling normally occurs

because the medium is quite homogenous in nature. The apparently different values

from the multiple observations of such processes at each sampling are results of

reading and measurement error rather than reflections of true process variability.

To initiate the control chart, normally 25 to 50 individual sample measurements are

collected when the process is perceived to be in-statistical-control (Oakland and

Followell, 1990). Using these samples, we obtain an estimate of the process mean (p)

and the process standard deviation (a). Then, lines of mean (p) and control limits are

plotted on the chart. The control limits are placed at p.± 3cT . The process is consider to

be in-statistical control when all the data points fall within these control limits.

To improve the sensitivity of the control chart, the previous Shewhart X chart can be

modified using several supplemental control rules. The most common is the addition of

warning limits. These warning limits are usually set at p. ± 2cY . Two successive points

outside these warning limits are usually taken to be a good evidence that assignable

causes of v ariation are present. This chart is known in the literature as the Shewhart X

chart with action and warning limits.

The above mentioned control charts are used to present the process data in a

framework which will clearly show when an action is necessary, or when further

information is required or when no action is necessary. These three kinds of judgement

are implemented during process operation using the given sampling technique. In the

SPC methodology, inherent variability in the process is inevitable and thus they should

13
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2.5.2 EWMA Control Chart

In Shewhart control chart with action limits for individual measurements, the decision

signal depends on the last plotted value. There exists another type of control chart

called the Exponential Weighted Moving Average control chart. The data plotted is a

moving average of previous data in which each data point is assigned a weight. This

weight decreases in an exponential decaying fashion from present to remote past. Thus

the moving average tends to reflect the most recent performance if most of the weight

is allocated to the most recently collected data. The weighting factor 0, given for the

process is between 0 an 1.

Basically the EWMA statistic is based on the present predicted value plus 0 times the

present observed error of prediction. Thus, the EWMA statistic can be mathematically

expressed as:

:±t+i = + Oe	 (2.3)

•"t+1 =	 + 0( xt	 t)
	 ,(2.4)

where

it+1 = predicted value at time t+1 (the new EWMA value)

xt = observed value at time t

= predicted value at time t (the old EWMA value)

et	= observed error at time t

In order to simplify, of the above equation can be written as:

It+1 = ext + (1— 01.it where xo= g or the target
	

(2.5)

The contr.,' limits of the EWMA chart are placed at:

where p, is the mean of the process which is the centre line of the EWMA chart. K and

0 can be chosen by the user. A single data point outside this limit indicates that the

process is out-of-control.
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If a shift in mean occurs, the EWMA chart will gradually move, depending on the

value of 0, to the new mean of the process. As mentioned previously, EWMA and

Shewhart Control charts differ through the way they handle previous generated data.

The traditional Shewhart control chart without the additional control rule may consider

the process to be out-of-control when a single point falls outside the ±3a limits. This

decision is based entirely on the last plotted point. On the other hand, the EWMA chart

places weight on the measurements. The weights are given by:

wi = 0(1— O)_i
	

(2.7)

where wi is the weight associated with observation xi, and xt is the most recent

observed data point. When a small value of 0 is used, the moving average at any time t

carries with it a greater amount of information from the past. Hence, it will be

relatively insensitive to recent changes in the process. For control chart applications,

where a fast response to process shifts is desired, a relatively large weighting factor of

around 0 = 0.2 to B = 0.5 can be used (DeVor et al., 1992). The weightings for the

EWMA control chart are displayed in figure 2.3 where time = 10 is the weight for the

current observation. The detailed derivations of equations (2.6) to (2.7) are given in

Appendix C.

Figure 2.3 Data Weighting for the EWMA Control Chart with 0 = 0.3

A plotted point of an EWMA chart can be given a long memory, thus providing a chart

similar to the Cumulative Sum (CUSUM) chart (Lucas and Crosier, 1982), or it can be

given a short memory and provide a chart analogous to the Shewhart chart. It all

depends on the value of 0 that we use in the EWMA control chart. When 0 —> 1, Wi -4
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1 and"it+1 practically equals the most recent observation xt. When the process is under

control and 0 = 1, points plotted on the classical Shewhart chart and those on an

EWMA control chart are therefore identical in their ability to detect signals of

departures from assumptions. The EWMA control charts for values of 0 < 0 <1 stands

between the Shewhart and CUSUM control charts in its use.

One of the advantages of using EWMA charts is that this procedure can also be used in

a dynamic process control system because it can provide forecasts of the next value in

production data. Through this feature, a future deviation that is too large from target

can be avoided through the intervention of feedback control and process operators.

Thus, the EWMA chart not only provides the operator with a forecast, but also with

control limits to inform them when the forecast is statistically significantly distant from

target. Therefore, when an EWMA signal is obtained, appropriate corrective action

based on the size of the forecast can be often be devised.

The EWMA chart can be modified to improve its ability to forecast. In situations

where the process mean steadily trends away from the target value, the E'WMA chart

can be improved by adding two more terms to the EWMA prediction equation, i.e.

:i t+1 = -t + e i et + e2,1f et + 03Ver
	 (2.8)

where the symbol Ve t indicates the first difference of the error et; that is V et = e, — et_1.

The forecast value"it+ 1 equals the present predicted value plus three quantities: one

proportional to eo the second is a function of sum in eo and the last one is the function

of the first difference in eo These terms are sometimes called the "proportional",

"integral and "differential" equation in the Automatic Process Control (APC) scheme

of proportional, integral and differential (PID) control equation. The parameters 01, 02

and 03 can be determined from the historical data using least-squares procedure, in

order to give the best forecast (Hunter, 1986; Box and Jenkins, 1976). Appendix C

shows how the parameters 0 1 , 02 and 03 are obtained.

2.6 Hypothesis Testing

Fundamentally, the SPC control chart is similar to hypothesis testing in statistical

inference. Control limits are analogous to decision rules in statistical hypothesis tests,

such that when control limits are exceeded, there is significant evidence to suggest that

the process is not in statistical control. It indicates that the variables being monitored

by the SPC control chart do not have the same mean and variance over time.

17



Statistical Process Control

SPC control charts continuously make statistical hypothesis tests through out the

progress of the process. The null hypothesis Ho for a normally distributed process is

that the true process mean (p) is equal to the target process mean (p.0). The alternative

hypothesis, 111 , is that p. does not equal p.0. The interpretation of Ho is that everything

is in good condition and the process should be left alone, whereas H1 indicates that

there is a problem and actions should be taken on the process.

Any statistical hypothesis test associated with SPC control charts will carry two types

of risks; producer's risk (a) and the consumer's risk (13). The producer's risk (a) is the

chance of making a type I error, that is, the null hypothesis is rejected when the process

output really follows the distribution of N (p0,a2). This is the risk of taking action due

to a signal given by an extreme observation when in fact the process does not change

at all. Hence, this phenomenon is called producer's or manufacturer's risk, or a false

alarm. In traditional SPC applications, the probability of type I error is usually fixed at

a small value. In case of Shewhart (X) with action control limits, a is often fixed at

0.0027. Tests with a small probability of false detection is preferred because of the cost

associated with false alarm. If a false alarm occurs, personnel have to search for the

source of assignable cause variation and when they find none, effort and time will have

been wasted.

The second type of risk, consumer's risk, is the chance of making a type II error. It

implies accepting Ho when actually the process output does not follow the distribution

N(i.t0,a2). It is the chance of not detecting a fault when one occurs or when a

disturbance is present and it is not detected. The power of the hypothesis is the

probability of signalling a disturbance. If a disturbance is present, the power is one

minus the probability of a type II error. The type II error, which having 13 risk, imply

that the consumer has the chance of accepting bad or unacceptable products because

the producer did not detect any malfunction or out-of-control situations in the process.

Hence it is termed consumer's risk. Table 2.3 summarises the errors associated with

various conclusions of hypothesis tests.

Table 2.3 Decision Error in Hypothesis Testing

Decision	 True Ho	 False H, 
H, not rejected No error with probability 1-a 	 Type II error with probability 13

Consumer's Risk

H, rejected	 Type I error with probability a No error with probability 143

Producer's Risk
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2.7 Summary

This chapter discussed the background of Statistical Process Control. We elaborated

the sources of variational noise in the process which can be classified into two

categories, either inherent to the process or abnormal to the process. We tabulated the

characteristics of these basic variations in order to determine what kind of action to

take and whom to assign the responsibility for taking control action. Then we

discussed the importance of normally distributed data in determining the variability in

the process. Two types of control charts were presented, namely the Shewhart control

chart for individual measurement and the E'WMA control chart. Finally, we discussed

hypothesis testing which involves two kinds of risk; either manufacturers' risk or

consumers' risk. In the next chapter we will review the development of integrated SPC

and APC strategies.
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On the other hand, the objective of SPC procedures is to find and to eliminate

assignable causes that bring about variability in the process. These assignable causes

are undesirable because they prevent the process from maintaining a state of statistical

control. The methodology employed to achieve this objective is based on the

application of graphical tests of hypotheses. The observations, Y t (where t is the

current observation), are sequentially plotted and compared against control limits. If

the plotted point falls outside the limits it indicates that the process is being affected by

an assignable cause. The identified assignable cause is to be eliminated from the

process thus forcing the process to eventually reach a state of statistical control.

The origin of this graphical technique is usually associated with the publication of

Shewhart's book in 1931. It was here that the concept of control charts was first

introduced. It was established on the assumption that the measurable characteristics of

manufactured products is always subject to some uncontrollable variations. The

determinations of these variations are based on appropriate statistics and the help of

graphical displays.

The introduction of the control chart aids in determining the capabilities of the

production process. Action is taken when these estimated capabilities are

unsatisfactory in relation to the design specifications. Furthermore, once the process

capabilities have been determined, and are satisfactory, action is taken only when the

control chart indicates that the process has fallen out of statistical control (i.e.

assignable causes of variation have entered). Thus, the control chart has its functions of

firstly, to determine whether the process is capable; secondly, to detect and identify the

assignable causes of variation, and lastly, to suggest the necessary correction to the

process.

Several authors have published reviews on the use of Statistical Process Control

charting developments and techniques. The earliest review on the development of

control charts was given by Gibra (1975). Later, Vance (1983) published a

bibliography on the development of statistical control charting technique until the year

of 1980. In other developments, Vardeman and Cornell (1987) compiled a partial

inventory of statistical literature on quality and productivity through 1985. They

focused on classical statistical quality control and industrial experimental design areas

' which include a listing of journals, review articles, case studies, books, booklets and

some audio-visual materials. Later, Faltin et al. (1991) discussed the application of on-

line quality control for the process industries for the 1990's and beyond. Saniga and

Shirland (1977) made a survey on the usage of quality control methods in industry.
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They found that 71% of those sampled utilised the Shewhart Y Control Chart and

64% used the R (range) chart compared to other types of control chart. Out of all

respondents, the largest percentage of industries using SPC methods came from the

manufacturing industries, followed by the electrical based industries, automotive

industries, chemical industries and lastly the others which comprised the service,

aircraft/aerospace, wood fabrications and other industries. This is not surprising as

SPC was invented to improve operations in the manufacturing industries.

3.3 Comparison of SPC and APC

In order to compare SPC and APC, first it will be necessary to explore the

development of SPC in the chemical industries. As mentioned by Saniga and Shirland

(1977), the chemical industries came fourth amongst those using SPC methods. This

sector deals with the continuous flow of material like the production of chemicals,

petroleum refining and manufacture of synthetic rubbers. Products from such processes

are observed using continuous measures such as pound, gallon and litre. Chemical

processes are sometimes quite complicated, involving a lot of recycling and many

stages of mixing and blending. The application of SPC in this area is quite new, due to

less emphasis on quality awareness on the part of the chemical industries. With the

increase in demand for speciality chemicals, quality consciousness began to grow. This

led to increased implementation of SPC methodologies in the chemical industries (Box

and Kramer, 1992).

Although SPC and APC methods came from different backgrounds, the objective of

both procedures is the same, i.e. to reduce variability in the process. Box and Kramer

(1992) mentioned that both methods achieve this objective by the ways they govern

their critical variables. SPC looks for signals representing assignable causes, which may

indicate an external disturbance that increases process variability. On the other hand,

APC actively reverses the effects of process disturbances by making regular

adjustmerkb to manipulated variables. Since there are usually several possible variables

to manipulate, one has several choices on where to transfer the variation. In view of

this APC, is a short term strategy leading to a more capable process. SPC however,

attempts to improve the process over the long term by finding and suggesting a

removal of root causes behind the variation. For a process with heavy adjusting costs,

SPC can be the best choice because it does not penalise any inherent variation in the

process which is monitored by the SPC chart. If there is no cost associated with the

adjustment of control actions, then APC provides a more powerful approach since it

penalises any variation in the process through the process set point.
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Vander Wiel et al. (1992) provided further the differences between SPC and APC

methodologies. In the application context, SPC expects that successive measurements

in the process are statistically independent and to have a distribution that does not

change over time. This is appropriate for detecting departures from the ideal.

However, APC process measurements are expected to be correlated over time, causing

the process to wander if adjustments are not made. APC is often used tactically where

the system is typically commissioned to maintain the setpoint of important parameters

at their desired values. On the other hand, SPC is often considered as a strategic

procedure. Only important quality characteristics are charted, allowing SPC to have an

immediate impact on the output quality. As far as the target is concern, SPC goes for

quality measurement variables whilst APC selects the process parameters that do not

necessarily have to be quality measurement variables. As for function, SPC just

monitors the process and gives signals in the form of identification and suggestion of

root cause removal. However, it does not adjust the process. On the other hand, APC

controls the process by adjusting the manipulated variables but does not remove the

root or assignable causes. Both strategies are implemented using different ways. SPC is

often a downward concept, driven by upper management or customer as part of a

company-wide quality improvement exercise while APC is often a upward concept

driven by the process control or manufacturing engineer. If all these mentioned

philosophies are successful, SPC will lead to process improvement while APC will lead

to process optimisation. Table 3.1 summarises the APC and SPC philosophies as

discussed.

Comparison of the two methodologies based on Table 3.1 may lead us to believe that

the statisticians who deal with SPC and process control engineers who deal with APC

have nothing in common in the nature of their work. However, MacGregor (1988)

mentioned that although the two groups differ, in reality one very important area of

overlap exists between the SPC group and the APC group. In a large number of

companies, these two groups are trying to solve the same quality-problem, but by using

different techniques. Neither group fully understands the techniques of the other.

Normally, the SPC group uses discrete data obtained from infrequent samples,

analysed off-line in a laboratory. Although the statisticians are comfortable with the

discrete data, they normally have neither a background in process dynamics nor any

familiarity with process control. Process control engineers, on the other hand, have a

good understanding of process fundamentals, process dynamics, and process control

theory using tools such as Laplace Transforms and stability analysis. However, they do

23



Literature Review

not posses a solid background in statistics, and dealing with normal distributed data

and hypothesis testing.

Table 3.1 Com arison of SPC and APC strate ._
Statistical Process Control (SPC) Automatic Process Control (APC)

Philosophy Minimise variability by detecting

and removing process upset

Minimise variability by adjusting

the process to counteract process

upset

Application Expect stationary process Expect continuous process drift

Deployment

Level Strategic Tactical

Target Quality characteristics Process Parameters

Function Detectin: disturbances Monitorin . Set points

Focus People, method and equipment Equipment

Function Monitor the process Control Process

Autocorrelation None Low to high

Implementation Downward Upward

Results Process Improvement Process Optimisation

APC and SPC strategies are based on highly important concepts and both methods

have long and distinguished records of practical achievement. There are some

characteristics from both methodologies which are appropriate for integration. If this

can be achieved, then it may be possible to devise an effective method that is capable

and quick to detect quality changes in the process.

3.4 Integrating SPC and APC strategies

Several researchers including MacGregor (1988); Vander Weil et al. (1992); Tucker et

al. (1993)- and Faltin et al. (1993) suggested that it is essential to integrate the APC

and SPC methods. The integrated system utilise APC to reduce the effects of

predictable quality variations and SPC to monitor the process for detection of

assignable causes. The removal of these assignable causes will result in additional

reduction of overall variability.

Until recently, there has been little effort to integrate SPC monitoring and APC

strategies. MacGregor (1988) mentioned that the low attention paid by some industrial

process control groups in including product quality as part of their control strategy is
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due to several reasons. Firstly, it is due to undergraduate Chemical Engineering

programmes laying heavy emphasis on petrochemical operations where quality has

been less of concern than in speciality chemicals, electronics and biomaterials.

Secondly, due to the managerial structure of many companies, process control groups

have become isolated from the end user. They are rarely able to relate the quality

problems that customers experience back to the operation and control of the process.

Lastly, it is assumed that process control engineers, with their inadequate background

in statistics, are incompetent to handle the noisy, infrequent product quality data that

are typically generated off-line in quality control laboratories.

One of the earliest articles that linked APC and SPC methodologies was presented by

Box and Jenkins (1962). They presented a concept of adaptive control charts which

provide a systematic application of feedback procedures from the data measurement to

achieve appropriate adjustment on the process. However, the surge of activity related

to SPC-APC in the early 1960s was not sustained. Although the general idea is not

new, the idea superimposing statistical process monitoring on a closed-loop system

appears to be quite recent and certainly opens a new line of research in the area of

quality improvement (Vander Weil et al., 1992).

MacGregor (1988) was apparently the first to revive the idea of integrating SPC and

APC in this decade by suggesting to the SPC community that SPC control charts can

be used to monitor the performance of a controlled system. Several other researchers

emerge later to develop hybrid applications of APC and SPC that they called

Algorithmic Statistical Process Control (ASPC) (Vander Well et al., 1992; Tucker et

al., 1993; Faltin et al., 1993). Lately, new interest in applying this method in the

process industries has emerged (MacGregor, 1988; Efthirniadu and Tham, 1991;

Vander Weil et al., 1992). Thompson and Twig (1994) in an other development use

SPC charts to monitor the process output and selectively apply a conventional ND

control algorithm. Some other workers have used SPC charts for filtering the product

measurements before applying feedback control actions (English and Case 1990;

Rhinehart, 1992; Rhinehart, 1995). In other developments, a SPC control chart is used

to monitor, detect, and adjust the process by using the relationship between the quality

variables and the input variables that they called Active SPC (Efthimiadu and Tham

1991; Efthimiadu et al., 1991; Efthimiadu et al., 1992; Efthimiadu eta!., 1993; Ibrahim

and Tham 1995).
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3.4.1 Algorithmic Statistical Process Control.

Recent work by Vander Wiel et al. (1992), Tucker et al. (1993) and Faltin et al.

(1993) led to the development of Algorithmic Statistical Process Control (ASPC).

Vander Well et al. (1992) illustrated the methodology by applying it to a batch

polymerisation process. Tucker et al. (1993) provided technical descriptions of the

ASPC concept. Faltin et al. (1993) described the steps involved in applying ASPC, and

consequently gave the technical and non technical requirements for successfully

implementing ASPC. They defined ASPC as an approach that realises quality gains

through appropriate process adjustment using APC and through elimination of root

causes of variability by using SPC. Thus, ASPC is an integrated approach to quality

improvement. Two features are essential for a process to be a good candidate for

ASPC. Firstly, it must be possible to use past data to construct a good predictor for

future process performance. Secondly, there must be some manipulated variables

available for compensatory adjustment. These manipulated variables must affect the

performances of quality variables of interest if changes are made.

ASPC succeeds in reducing the variation of quality characteristics through feedback

techniques. Then it monitors the entire system to detect and to remove the

unpredictable upset variations. If the process possesses some degree of predictability,

the APC part will minimise the deviations from target in the short term by adjustment

of the process. On the other hand, the SPC part will detect changes from past

performance, identify the root problems, and make attempts to remove them. Hence,

ASPC aims to reduce both short-term and long-term variability by changing the role of

control charts; "monitor, then adjust when out of control" with "adjust optimally and

monitor" (Faltin et al., 1993).

Vander Wiel et al. (1992) also mentioned that although APC and SPC were developed

in isolation from one another, they successfully integrated both fields together so that it

is capable of producing quality improvements through two characteristics mentioned

earlier. They applied the ASPC technique on a polymerisation reactor process, using

viscosity as their quality characteristic and the amount of catalyst as the adjusting

compensatory variable. They used the criteria of minimum square error deviation

(MSE) control rules to regulate the process. Since the plant personnel were already

familiar with Cumulative Sum (CUSUM) monitoring scheme, it was natural to

introduce ASPC coupled with this chart. Two main sources of variations were

identified in the polymerisation process; one is the effect of raw-materials, and the

other is seasonal factors affecting heat-exchanger effectiveness. The net effect of such

26



Deterrnine

Adjustment

UpdateControl
Algorithm (if needed)

Process and
Quality

Characteristics

Statistical
Monitoring

.

Seek/Remove

Root Calyces

Literature Review

shifts results in either a sudden change in product viscosity or the nominal catalyst level

needed to produce material of the target viscosity. The purpose of the CUSUM chart

here was to detect shifts in the system as quickly as possible when they occurred to

resolve which mechanisms was in fact responsible. By applying the ASPC

methodology, they claimed that the viscosity variability in this reaction process stage

has been reduced by 35% and virtually eliminated off-spec material from this source.

Figure 3.1 shows a flow diagram of the ASPC methodology. The top level refers to the

conventional APC feedback control loop while the remaining levels form the SPC

monitoring scheme. The SPC monitoring scheme will provide signals for locating the

assignable cause and provide updates to the APC control algorithm if needed. There

are mainly four procedural steps needed for successful implementation of ASPC. First

is to develop a time series model for the process output using past record data. Second

is to design the control law for the estimated model based on pertinent cost. Third is to

place a SPC chart to monitor the progress of the control loop. This SPC chart will

signal when the process and the controller are no longer acting as anticipated from the

identification and estimation stage. Last is to search for the assignable cause and

remove it when SPC chart gives a signal (Vander Weil et al., 1992).

Figure 3.1 ASPC control algorithm based on Faltin et al. (1993)

In a recent application, Capilla et al. (1995) presented an implementation of integrated

SPC and APC to a polymerisation process. Their technique is similar to the ASPC

technique developed by Vander et al. (1992), Faltin et al. (1993) and Tucker et al.
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(1993). They used the Melt Index (MI), a measure of the polymer viscosity, as their

quality variable, and the reactor temperature as the manipulated variable. Both of these

variables satisfied the requirements of ASPC methodology. That is the MI data is

autoconelated and could be used to construct a good predictor for future process

performance, while the reactor temperature could be utilised as a compensatory

variable, that adjustment would have a predictable effect on the performance quality

variable. Several types of APC strategies were tested on their work including (i)

Minimum Square Error (MSE) controller (ii) Two-Steps Ahead Forecasting Controller

(TSAFC) (iii) Minimum Weighted Variance Controller (MWVC). They compared the

performance of several strategies of APC by using a stochastic control factor k:

k= 
Mean Square ErrorApc

Mean Square ErrorN0Apc

where the denominator of the square root is the deviation of MI from the target (7)

when APC was not applied and the temperature was fixed at its nominal value.

The .APC feedback control algorithm was then integrated with the following

monitoring schemes: (i) Shewhart Chart for individual measurements; (ii) CUSLTM

chart for residuals (i.e. the difference between the current value and the predicted

performance); (iii) Run chart (a Shewhart-type chart without control limits) applied to

monitor the deviation of MI from target and to monitor the temperature adjustments.

They tested the system performance by injecting several types of assignable causes: a

sudden shift of 5a in white noise, MI measurement error in the laboratory (MI lab = 0.3

+ Mlactua), and sustained temperature sensor failure (Tset T= - actual - 1°C). All these

assignable causes were introduced into the process at time t = 25. They concluded that

the combination of Two-Steps Ahead Forecasting Controller (TSAFC) and SPC shows

the best potential to control the polymer viscosity.

In yet ano.ther development, Montgomery (1991) proposed a scheme for the

integration of APC and SPC similar to the ASPC strategy shown in Figure 3.1. The

scheme used feedback control to make adjustments to the manipulated variable xt so

that the controlled variable Yt+1 is on target. This scheme assumed that we can: (i)

predict the next observations on the process; (ii) have some input variables that can be

manipulated in order to affect the process output, and (iii) know the effect of this

manipulated variable so that we can determine how much control action to apply (e.g.

we can make adjustments in the manipulated variable at t that is more likely to produce

the target value in the process output at period t+1). In this case, the SPC chart was

(3.1)
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used for process monitoring but not for control. The function of this control chart was

to search for assignable causes in the process. The control part is executed by the APC

scheme.

Later on, Montgomery et al. (1994) tested the previous proposed scheme by applying

it to MacGregor's (1990) model of a funnel experiment and showed that the combined

APC and SPC control strategies reduced the overall variability even though the system

experiences certain external assignable causes. Two types of assignable causes were

introduced in their work, sudden shifts in the mean having the magnitudes of 1, 2, 5,

7.5 and 10 units and trends in the mean of 0.05, 0.1, 0.25, 0.5 and 1.0 units/period.

Four different types of SPC charts were utilised in the simulation studies, namely

Shewhart chart for individuals with 3a limits, EWMA with e = 0.1 and 3a limits,

EWMA with B = 0.4 and 3a limits, and CUSUM with V-mask using k = 0.5 and h = 5.

Where k is the slope of the V mask arms and the decision intervals is equal to ha. Their

studies were based on a Performance Measure (PM) which is defined by the average

squared deviation from the target (7):

PM = —1 (Yi — T)2
	

(3.2)
n

From the result of the simulation studies, they found that the integrated APC and SPC

strategy gave better performance compared to the APC strategy alone. They concluded

that in chemical process plants and in computer integrated manufacturing environments

combining APC and SPC strategy can become an important tool for improving process

quality.

3.4.2 SPC as Filtering Device in Control Loop

English and Case (1990) employed the EWMA control chart as a filtering device

within the feedback control loop. The function of the filtering device is to determine

whether an out of control situation has occurred in the system. If an out of control is

not due to inherent noise then the current measurement of output is fed back to the

comparator and a HD controller is invoked. However, if the current data indicates that

the process is in a state of statistical control, the current setpoint value (Ysp) is

returned to the controller to represent the process output. Hence the controller will not

take any control action because the error is zero. Figure 3.2 shows the configuration of

SPC chart as the filtering device based on their work.

29



PID
Controller Process

Ym if the process
is out of control

Ysp if the process
in statistical control

EWMA chart
Filtering Device

Ysp

Literature Review

Figure 3.2 SPC chart used as the filtering device in the control loop

Drawing upon similar concepts, Rhinehart (1992) used the CUSUM chart to filter the

output of proportional plus integral (PI) controller. The advantage of this filtering

approach is that it eliminates unnecessary control action on the manipulated variable

and yet remains responsive to real process changes. On the other hand, both of these

filtering methods will only succeed provided there are no significant deviations from

set-point. SPC tools used in this way will create a significant lag in the feedback loop

with a trade off between the quietness of the controller actuation and system error.

3.4.3 SPC as Supervisory Unit with PM Feedback Control

Thomson and Twig (1994) developed a method where they employed SPC control

charts as a supervisory unit. The chart monitored the process output and selectively

applied conventional proportional integral derivative (PID) controller. The advantage

gain from this method lies in the ability of the control loop to distinguish between

inherent process noise and the real error signal. It stopped the controller from acting

unnecessarily. As a result it would prevent the actuator from overwork.

Two types kJ f SPC charts were used as the supervisory unit, the mean chart (7) with a

group size of four and the exponentially weighted moving average (EWMA) chart with

the weight, 0 = 0.2. They tested for assignable causes in their system with four kinds

of rules. Firstly by using the Action rule, where the process is out of control when a

point falls outside the action line. Secondly by using the Warning rule, where two

consecutive points falling outside the warning lines indicates that an assignable cause

has inhibited the process. Thirdly by using the Run rule, when seven consecutive points

fall above or below the target it shows that the mean of the process has changed.
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Lastly by using the trend rule, whenever seven consecutive points either rise or fall it

reveals that the process is being affected by an assignable cause.

If action or warning rules are broken, it indicates that there is a significant error in the

process and thus, the supervisory unit switches to PID mode immediately. If the run

rule or trend rule is broken, it indicates that a gradual drifting of the process average

from the set point is occurring. The supervisory unit then switches to integral mode

that causes only integral action to be applied. This will eliminate small offsets from the

set point. If no rule is broken then the supervisory unit causes the current controller

output to be maintained and no changes of control are implemented.

Apart from the four types of tests mentioned previously, the process is also tested

based on the distribution of individual data. This test is incorporated to detect sudden

error signal immediately without any delay to grouping. The function of this test is to

prevent the PID and PI control actions from returning back to normal before the

process has properly settled down from oscillatory behaviour. The limits of the test are

set at Ysp ± 3a on the individual data chart, where Ysp is the set point. The process

output Y is applied directly to this chart without any grouping. If the process output

falls outside this limit, PID action is summoned. As mentioned before, normal PED

control action is invoked when action and warning rules are broken. An integral mode

action is only applied when the trend or run rule is violated. Lastly constant control

action acts when all rules are obeyed. Figure 3.3 shows the overall picture of this

concept.

EWMA chart

Figure 3.3 The supervisory control using EWMA chart (Thomson and Twig, 1992).
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3.4.4 Active SPC Approach

In another important development, Efthimiadu and Tham (1991) managed to change

the function of SPC monitoring chart to adjust the process automatically. They avoided

the model identification problem by focusing on statistical input-output relationships.

The main cause of variation in product quality was identified via multivariate analysis

using Principal Component Analysis (PCA). The results of the PCA were then used to

identify the manipulated variables and control laws for keeping the quality variable in a

state of statistical control. They demonstrated the effectiveness of their procedure by

applying it to a simulated CSTR process. It was a reversible exothermic reaction where

the heat generated from the process was cooled by the cooling jacket around the

CSTR.

Later, Efthirniadu et al. (1991) and Efthimiadu et al. (1992) extended their work to

include the use of another multivariate technique called Partial Correlation Analysis

(PCorrA) to analyse the process and to determine the control limits and control laws.

They investigated the performance of Active SPC by using Shewhart Charts with

Action line, Shewhart Charts with both Action and Warning lines and EWMA control

charts. They also studied the effects of off-line and on-line updating of the control

limits and control rules for manipulating the input variables. They also considered the

case that an input variable that may not be manipulated on-line, by replacing it with

another variable. This new variable was selected on the basis that it could compensate

for the variation in the latter variable and could affect the quality variable. From their

work, they concluded that the application of the proposed procedure for on-line SPC

would involve the use of both PCA and PCorrA. The former should be used as a first

stage analysis, then, either the PCA or PCorrA technique could be utilised for

determining the control laws and control limits. They found out that the method which

used PCorrA with EMWA gave the best result. But this better control performance

was normally accompanied by a higher level of false alarms.

Later, Efthimiadu et al. (1993) called the method that they proposed as Active SPC.

Ibrahim and Tham (1995) continued their work by focusing specifically on the

utilisation of PCorrA. They investigated the performance of Active SPC by using

Shewhart Chart with Action lines and Shewhart Chart with both Action and Warning

lines. They also studied the effects of on-line and off-line updating of the

corresponding control rules. Additionally, they investigated the outcome of

manipulating all or some input variables. Since better control performance is normally

accompanied by a higher level of false alarms, they developed a criteria called Index of
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Performance (IP). The function of this lP was to determine which of their methods

gave the best control performance. They found out that updating the control rule on-

line coupled with manipulating some input variables, provided the best performance.

The manipulated variables were the CSTR reaction temperature and the flowrate of the

cooling medium.

3.5 Summary

This chapter has made an attempt to review some of the literature published in the

domain of Statistical Process Control in chemical industries, focusing on integrated

SPC and APC strategies. We discussed briefly, the background and origins of the SPC

and APC methodologies and how the methods differ. Then the history of hybrid APC

and SPC strategies and the advantage that can be gained by this integration was

discussed. Several hybridisation schemes are reviewed namely, Algorithmic Statistical

Process Control (ASPC), combination of HD control and SPC charts, SPC charts as

filters in a feedback control loop and lastly the Active SPC scheme. This Active SPC

scheme will be explored in greater detail in the rest of this thesis. In the next chapter,

however, we are going to explore the mathematical modelling and the application of an

APC algorithm to a CSTR process.
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Chapter 4

CSTR Modelling and Control

4.1 Introduction

This chapter introduces the development of dynamic mathematical modelling,

simulation and control on a continuous stirred tank reactor (CSTR). The modelling

approach is made possible by applying dynamic mass and energy balances on the

CSTR. The simulated CSTR process will then be regarded as the process and will be

used through-out the study in this thesis. The . Process Reaction Curve technique was

used to calculate the parameters of the transfer function of the system and used to tune

the feedback controller. This was a Proportional plus Integral controller and its

performance will later be compared with those of Active SPC schemes in Chapter 7.

A good mathematical model is important because it can enhance the understanding of

how the process works. Mathematical modelling and simulation is indispensable,

particularly in operator training when the new process is still under construction or

when new controller modes are being tested on the process. It is usually much cheaper,

safer, and faster to conduct this kind of training using a simulator compared to hands

on experiment on the operating unit. It is not that the real plant training is not

important, but by using simulator a variety of process operating conditions can be

tested without fear of losing production. By interfacing process simulator with standard

process control equipments, a realistic environment can be created for operator training

without the cost and exposure to dangerous conditions that might exist in real plant

conditions. The discussion about the importance of simulation would not be complete

without descriptions of the processes. In the chemical industries, these may involve

reactors, distillation columns, absorption columns and many others. One of the most

important processes is the continuous stirred tank reactor (CSTR).
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4.2 Continuous Stirred Tank Reactor (CSTR)

This work involves the simulated applications of proposed control strategies to a

continuous stirred tank reactor (CSTR). Thus the mathematical modelling and

simulation is performed on this process. Two types of generic reactants A and B are fed

in excess to the CSTR to produce C via non-linear second-order reversible exothermic

reaction kinetics. The energy generated by the reaction process is absorbed by a

cooling jacket. The input variables are the concentrations of reactants, Ath and Bin; the

temperature of reactants, Tin; the input temperature of the cooling medium, Tjin; the

flowrate of reactants, F, and the flowrate of cooling medium, Fj. The output variables

are the temperature of the product, T; coolant output temperature, Tjout; output

concentrations of the reactants, Aout, Bout, and the product concentration, Cout. Cout

is our quality variable of interest, that is, it has to be controlled and kept under

statistical control. Figure 4.1 shows the diagram of the CSTR used in this work.

Figure 4.1 Continuous Stirred Tank Reactor (CSTR)

4.3 Modelling the CSTR Equations

Prior to CSTR modelling, certain assumptions have to be made to simplify the process.

Obviously, rigorous models may involve microscopic detail and will be time consuming

to formulate. It would also be complex and will take an excessive amount of computer

utilisation to solve. An engineering approach should compromise between this rigorous
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description and getting an answer. In practice, normally the optimum approach must

correspond to a model that is as complex as the available computing facilities will

permit. It indeed requires a lot of skill, ingenuity and practise in order to develop a

good model. The assumptions should be carefully considered and listed. The impose

limitation of the model should always be kept in mind when calculating the predicted

results. Following the above discussion, the derivation of the CSTR mathematical

model assumes the following:

• Perfect mixing in the reactor

• Constant heat capacity of the mixture in the reactor.

• Constant volume in the reactor.

Based on the above assumptions, the fundamental equations describing the reversible

reaction process can be modelled by using the mass balance and the heat balance. For

the rest of the discussion, the inputs to the CSTR are chosen as the independent

variables while the outputs are termed as dependent variables. As there are five

dependent variables in the CSTR process, obviously there should be five equations to

describe the process. These equations are categorised below

4.3.1 Energy Balances

Energy balance in the reactor:

dT 
= Fcii (Tin — T)+ c21 [CAout CBout ] — c22r2 [Ccout ]

2
 — Uc31 (T —Tjout)

dt

(4.1)

	

where: F	 is the flowrate of cooling medium into the jacket

	

Tin	 is the reactant temperature into the jacket

Tjout is the cooling medium temperature in the jacket

is the reactor temperature

is the overall heat transfer coefficient

CA out concentration of component A in the CSTR

CBout concentration of component B in the CSTR

C Gout concentration of component C in the CSTR

r.
	 is the rate of reaction i

(litre/sec)

(K)
(K)

(K)

(cal/cm2/K/sec)

(mole/litre)

(mole/litre)

(mole/litre)

(litre/mole/sec)

By applying an energy balance on the cooling jacket of the reactor, the following

equation is obtained:
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= F3c41 (Tjin — Tjout) + Uc51 (T — Tjout)
dTjout

dt
(4.2)

= Fcii(CBin CBout) 71[ CAoutI CBout) r2ICCout)2
dCBout 

dt
(4,4)

= - Fc Ccout + [ CAout ][CBout ]	 r2 [Ccout]2dCCout 
dt

(4.5)
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where: Fi	is the flowrate of cooling medium into the jacket

Tjin is the cooling medium temperature into the jacket

Tjout is the cooling medium temperature in the jacket

is the reactor temperature

is the overall heat transfer coefficient

(litre/sec)

(K)

(K)

(K)

(calkm2/K/sec)

4.3.2 Species Material Balances.

The following relationships are obtained when molar balances are performed on the

individual components in the reaction system. The mass balance of component A in the

reactor is given by:

dCAout = Fci (C Ain — CA)	 7.1[ CAouti[ CBouti	 r2[ CCout] 	 (43)
dt

Mass balance of component B in the reactor:

Mass balance of component C or the product from the reactor:

where: F

CAout

CBout

CCout

CAin

CBin
rj

is the flowrate of reactant into the CSTR

concentration of A in the CSTR

concentration of B in the CSTR

concentration of C in the CSTR

concentration of A into the CSTR

concentration of B into the CSTR

is the rate of reaction i

(litre/sec)

(mole/litre)

(mole/litre)

(mole/litre)

(mole/litre)

(mole/litre)

(litre/mole/sec)
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4.3.3 Constant Parameters.

In order to obtain numerical values later on in the work, the following constant

parameters are specified for the CSTR process:

(—Allr2)	 litre- K	 A	 cm2•Kc2,2 = ,, ,..,	 — 0.01	 c31 —mole	 p p_.ripVcsir — 
0.0034

cal

1 
C41 —T1

j
	= 0.36 litre- 1v ack et

	A 	 cm
2

• K

	

c51 — ,-, „	 — 0.0024
P2t - 7, 'jacket	 cal

U — 19
cm2 • K • see

where:	 isis the reactor volume	 (litre)

Vjacket	 is the jacket volume	 (litre)
CP	 is the heat capacity of reaction mixture	 (cal/mole/K)
U	 is the overall heat transfer coefficient 	 (cal/cm2/K/sec)

Pi	 is the molar density i	 (mole/litre)
AHri	 is the heat of reaction for reaction i	 (cal/mole)

A	 is the surface area for heat transfer	 (cm2)

4.3.4 Arrhenius Equations

The temperature dependence for the reaction rate constant is expressed in the standard
—E,

Arrhenius equation, i.e. ri = Aie RT where ri is the reaction rate constant, Ei is the

activation energy, A i is the frequency factor for reaction i, R is the ideal gas constant

and T is the reaction temperature. The rate constant for the forward (ri) and the

backward (r2) reactions are as follows:

(-12,000)(-13,000)
litre	 litre 

r1 = 1200e 1•987T	 and	 r2 = 100e 1.987T ) (4.6)
mole • sec	 mole • sec
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4.4 CSTR Simulations

In the last section, we developed the dynamic models of the CSTR based on

application of physical and chemical principles. The next step is to discuss how the

differential equation models might be solved numerically using a digital computer.

There are several numerical algorithms in the literature that can be utilised to solve

these problems. If the models are non-linear, the solution of the equations may involve

an iterative method. If they are linear than numerical integration of ordinary differential

equation can be utilised. Normally, discrete finite difference method is used to

approximate the continuous differential equations. In this work, we adopted the Euler

algorithm for solving the differential equations. The method uses explicit calculation of

the derivatives over small time increments. It was chosen because the method is self-

starting and easy to use. For a general integration problem, the Euler Algorithm can be

presented by:

Yi+1 = yi + Ahf(xi,Yi)
	

(4.7)

where yi is the current value of output, yi+i is the next value of output and A h is the

integration step size and f(xi,yi) are the functions given by equations 4.1 to 4.5. yi are

represented by Aout, Bout, Cout, T and Tfout while xi refer to Ain, Bin, Tin, Tjin, F

and Fj.

This Euler algorithm is started using the knowledge of the initial conditions of all

variables, the upper limit of integration and the step size A h. If the step size is small,

the variables estimation will be more accurate but the solution will require extra steps

and excessive amount of computer time. The value of A h must be chosen such that it

is a compromise between the accuracy and the steps needed to solve the differential

equation. The details about the Euler algorithm can be found in any Numerical Analysis

text book. For the purpose of dynamic studies, the initial operating conditions of the

CSTR and A h are presented in Table 4.1

Table 4.1 CSTR initial condition for dynamic response.

T 382.35 K Tjout 359.71 K

F 0.08 litre/sec Fj 0.04 litre/sec

Aout 294.82 mole/litre Bout 294.82 mole/litre

Tin 450K Tjin 288K

Ain 500 mole/litre Bin 500 mole/litre

Cout 205.17 mole/litre A h 1
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4.5 Graphical Fitting of Step Test Results

Once all process parameters have been set up, the process can be simulated digitally.

All simulations were executed on an HP Apollo workstation, running the UNIX

operating system. The software for the simulation was written in Pascal. The results

from the simulation were used to study the dynamic behaviour of the process, i.e. to

obtain the parameters that will aid in the selection of controller constants.

To obtain the gain (Kp), the process time delay (TD), and the process time constant (rp)

of our process, the CSTR was perturbed using several step inputs of different

magnitudes. The magnitude of these step functions were +5%, -5%, +10% and -10%

of the steady-state values of the various input variables tabulated in Table 4.1. When

performing the step-tests, only one input variable at a time was changed. Plots in figure

4.2 shows the responses of various step changes in Tin. Examples of the Cout

responses resulting from these step changes in the input variables are shown in figures

4.3 to 4.8.

Figure 4.2 Step changes in Tin
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Figure 4.3 Responses of Gout to step changes in Tin

Figure 4.4 Responses of Gout to step changes in Tjin

Figure 4.5 Responses of Gout to step changes in Ain
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Figure 4.6 Responses of Gout to step changes in Bin

Figure 4.7 Responses of Gout to step changes in F

Figure 4.8 Responses of Gout to step changes in Fj.

42



CSTR Modelling and Control

Next, the dynamic response were parameterised using the Process Reaction Curve

technique. The technique, first developed by Cohen and Coon in 1953, is based on the

observation that the response of output variable of most open loop systems to a step

change in the input variable, has a sigmoidal shape, which can be adequately

approximated by a first or second order differential equation with dead time. This is

possible because almost all physical processes encountered in a chemical plant are

simple first order or multicapacity processes whose responses have the general over-

damped shaped (Stephanopoulos, 1984). The transfer function of a first order process

with dead time can be mathematically presented using Laplace Transforms as:

K e —T Ds
G (s) —P	

P 

tP S+1

where Gp is the process transfer function that relate the input variable to the output

variable, Kp is the process gain, 'r  the process time constant and TD is the process

time delay. Equation 4.8 can be transformed back to time domain and can be presented

as:

y(t)= Kp (1—e tP )u(t-TD)
	

(4.9)

All the figures in the previous section are accompanied by tables 4.2 to 4.7. These

tables are tabulated with the size of output response (Bu), the size of step change (M),

process gain (Kp), process time delay (TD), and process time constant (Tp) for the

particular step response in the process.

Table 4.2 Transfer function parameters relating Cout to Tin
Step

Function
Bu

(mole/litre)
M
(K)

Kp
(mole/litre/K)

'CD

(second)

10

Tp

(second)

93.92+10% 87.35 45 1.9411

+5% 45.68 22.5 2.0302 9 91.89

-5% -51.51 -22.5 2.2893 10 102.90

-10% -102.93 -45 2.2873 10 109.38

(4.8)
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Table 4.3 Transfer function parameters relatin g Cout to Timn
Step

Function
Bu

(mole/litre)
M
(K)

Kp
(mole/litre/K)

"ED

(second)

19

Tp

(second)

107.52+10% 55.6 28.8 1.931

+5% 29.26 14.4 2.033 19.5 112.74

-5% -31.43 -14.4 2.183 20.5 126.66

-10% -64.24 -28.8 2.231 21 130.68

Table 4.4 Transfer function narameters relatin2 Cout to Ain
Step

Function
Bu

(mole/litre)
M

(mole/litre)
Kp

'ED

(second)
'Cp

(second)

+10% 17.41 55 0.348 12 95.34

+5% 8.89 25 0.356 12 95.04

-5% -8.73 -25 0.349 12 98.52

-10% -17.83 -50 0.357 12 98.28

Table 4.5 Transfer function narameters relatin g Cout to Bin
Step

Function
Bu

(mole/litre).
M

(mole/litre)
Kp

.rD

(second)
Tp

(second)

+10% 17.41 55 0.348 12 95.34

+5% 8.89 25 0.356 12 95.04

-5% -8.73 -25 0.349 12 98.52

-10% -17.83 -50 0.356 12 98.28

Table 4.6 Transfer function parameters relating Cout to F
Step

Function
Bu

(mole/litre)
M

(litre/second)
Kp

(mole/second) (second)

28

_

(second)

142.98+10% 9.93 0.008 1241.1

+5% 5.21 0.004 1302.5 29 144.60

-5% -5.21 -0.004 1302.5 31 159.72

-10% -10.99 -0.008 1373.8 32 162.19

Table 4.7 Transfer function parameters relatin2 Cout to F
Step

Function
Bu

(mole/litre)
M

(litre/second)
Kp

(mole/second)
'TD

(second)

19.5

Tp

(second)

117.72+10% -14.2 0.004 -3550

+5% -7.21 0.002 -3605 20 120.84

-5% 7.98 -0.002 -3989 20 119.52

-10% 16.22 -0.004 -4055 20 118.56
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4.6 Cross-Correlation Function

The time delays (ID) were determined using the Cross-Correlation technique because

these values were very small. This method measures the correlation between the input

variable (xt) and the output variable (ye) . To elaborate, suppose we have N observations

on two variables, x and y. The observation of the bivariate process can be denoted as

(xi,y1),...,(xN,yN). These observations may be regarded as a finite realisation of a

discrete stochastic process (xt,yt).

To describe the properties of bivariate process, it is useful to know the moments of the

process up to second order. For a univariate process, the first two moments are the

mean and auto covariance function. For a bivariate process, the moments up to second

order consists of the mean, auto covariance functions for each of the two components

plus a new function, called the cross-covariance function, which is given by:

y xy(t,k)= cov(xt,h+k)
	

(4.10)

The size of the cross covariance coefficients depends on the units in which xt and yt is

measured. To avoid bias estimates, it is advisable to standardise the cross covariance
function so that it will produce a function called the cross-correlation function p,v(k),

which is defined by:

p„,),(k)=

where:

y(k)

V(7xx ( 0)7yy (0))

y xx (k)= cov(xt,xt+k)

If yy (k)= cov(YbYt+k)

(4.11)

The cross correlation function has the following properties

(a) pxy(k) = Pyx(-10

(b) I PxY I � 1

The above function will be used to measure the correlation between the input variable,

(xt) and output variable Cout, (Yr+k) . A time delay exists when the maximum value of
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the cross-correlation coefficient is not at p(0). The time-delay value is determined by

how far the maximum value has been shifted to the right. Figure 4.9 shows the plot of

the cross-correlation between Cout and Tin. The results were generated from our

simulation and analysed by using a program written using MATLAB. From the figure,

we see that the maximum value of the cross-correlation coefficient occurs at lag k

equal to 9. Since the sampling time use for this step input test is equal to one second,

the TD value for this case will be 9 seconds. All the TD values in table 4.2 to 4.7 were

obtained using the same technique.

Figure 4.9 Cross-correlation using 5% step increase in initial condition of Tin.

4.7 Input-Output Selection

Several judgements could be made based on the input-output responses from figures

4.3 to 4.8. Since it is preferable to choose the input that brings maximum change to the

target output, the input that provide the largest steady state gain Kp is normally

selected. On the other hand we favour input changes that do not exhibit undesirable

characteristics such as a large time delay and inverse response in our output variables.

At the same time, the influence of control must be quick and thus the process time

constant must be small. These qualitative observations are principally based on

engineering common sense and can be used as quick guidelines when needed. In

addition, they can be used as supporting evidence to verify the results obtained by

quantitative analysis.

Our output of interest in this study is the concentration of the product, Cout. Figure 4.7

shows that the step changes in reactant flowrate F, resulted in inverse responses in

Coat. To monitor the concentration Ain and Bin in practise may incur a high cost,
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because they may require special analytical equipment, e.g. gas chromatography. Thus

these three variables were eliminated from the selection process. From tables 4.2, 4.3

and 4.7 we found that Tin has the smallest values of t,1, and TD compared to Tjin and

Fj, indicating a quick response to process change. Although the values of the process

gains (Kp) involving Fj are bigger compared to those associated with Tin and Tjin, the

units of the process gains are not the same. Since Gout is strongly dependent on

temperature, we choose Tin as our manipulated variable to control the CSTR.

4.8 Proportional Integral (PT) Feedback Controller

In the previous section we have the selection of the manipulated variable to control

CSTR product concentration. This section elaborates the proportional integral (PI)

controller mode that will be used to control the process. Only this type of feedback

controller mode will be used to compare with the SPC methods in Chapter 7.

Moreover, this feedback controller is popular in industry.

4.8.1 Digital PI Controller

Normally the conventional feedback controllers are analogue devices. The

characteristic of this analogue controller is that its input and output signals are in

continuous form. Recent advances in the performance and cost of digital equipment

such as minicomputers, microcomputers and corresponding digital interface elements

have made digital control systems generally preferred over conventional analogue

controllers. The advantages of digital control include increased flexibility and accuracy.

Moreover it improves plant monitoring through data acquisition, storage and analysis.

A straight forward way of deriving a digital version of the ideal PI control law is to

replace the integral mode by their discrete equivalents. Thus, by approximating the

integral by summation gives:

pn = /3 +[Kc en +—'6 I i ek]
t i k=1

where At = sampling period of the controlled variable.

pn 	controller output at the n th sampling instant, n = I, 2,....

75 controller output at steady state

en error at the n th sampling instant.

(4.14)
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The above equation is referred to as the position form of PI control algorithm since the

actual controller output is calculated. An alternative approach is to use a velocity form

of the algorithm in which the change in controller output is calculated. It is derived by

extracting the (n-1) sampling instant of the position form:

[	
At ]

APn = Pn – Pn-1 =Kc (en–en-1)+—en
'T •t

(4.15)

There are several advantages to using the velocity form. Firstly, it contains the

provision for antireset windup because the summation of errors is not explicitly

calculated. Secondly, the output term Apn can be utilised directly by final control

elements that require an input change in position, such as the valve driven by a pulsed

stepping motor. Thirdly, if the final control element has been placed in the appropriate

position during the start up procedure it does not require any initialisation when

switching back from manual mode to automatic mode. However, if the actual output is

needed we can re arrange the above equation to solve for pn:

[pn = 	 + Ifc (en – en_j)+—
At

en
]

ti

(4.16)

The purpose of the feedback control system is to ensure that the closed loop system

has a desired dynamic characteristics. Hence, it must satisfy certain performance

criteria. For example, the closed-loop system must be stable; the effects of disturbances

are minimised; it must give rapid, smooth responses to set point-changes; it must also

eliminate offset; and it must avoid excessive control actions. In typical control

problems, it is not possible to achieve all of these goals since they involve inherent

conflicts and trade offs. Thus, the best way is to tune the control parameters using

certain criteria.

4.8.2 Controllek Tuning

When the control system is installed, the controller settings must usually be adjusted

until the control system performance is considered to be satisfactory. Thus, it is

desirable to have good preliminary estimates of satisfactory controller settings. Among

the earlier tuning method was the Ziegler and Nichols Ultimate Gain method (Ziegler

and Nichols, 1942) and Process Reaction Curve method (Cohen and Coon, 1953). The

former devise a trial and error method based on sustained oscillation while the later

utilise a step function in the input variables. These two methods are quite expedient and
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hence find widespread application in the process industries. An alternative approach is

to develop a controller design based on a performance index that consider the entire

loop performance. Typical performance criteria for this are Integral Absolute Error

(IAE), Integral Squared Error (ISE) and Integral Time Absolute Error (ITAE) .

Apart from giving the value of K. TD, and Tp the Process Reaction Curve technique

that we have used before can also be utilised to find the controller setting for the

process. Assuming that equation (4.8) is the true process transfer function, Cohen and

Coon (1953) derived the theoretical values for the controller settings which will fulfil

the criteria of responses having one quarter decay ratio. The decay ratio is the ratio of

two successive peaks of under damped oscillation when the process is subjected to step

response.

4.9 Results and Discussions

Table 4.8 tabulates the values of the controller settings for the proportional integral

(PI) control mode using the Cohen Coon tuning method. The manipulated variable as

previously mentioned is the input temperature (Tin) and the controlled variable is the

concentration of C (Gout). The sampling time, At for the process is roughly one tenth

of the time constant tabulated in table 4.2, i.e. 10 seconds.

Table 4.8 Controller settin g based on Cohen Coon Method

Step Function Proportional Integral (PI)

Kc (mole/litre/K) ti (second)

+10% 4.52 27.24

+5% 4.60 24.87

-5% 4.07 27.68

-10% 4.34 27.95

The integral control mode normally makes the system more sensitive. A high gain (Kc)

in the PI controller will cause the process response to become oscillatory and possibly

unstable. Because of this, we prefer to have Kc small and ti large for the PI controller.

Based on the above limitation, the settings of the PI controller were chosen to be Kc =

4.07 and Ti = 27.68 (see table 4.8) to control the CSTR process.

After the controller settings have been determined the process once again were

simulated. This time, all the input variables were injected with white noise, N(p.,a 2), to

introduce some disturbances to the process. The values of pi were 0 while the value of
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a2 can be specified by the user. The response of the controlled variable (Cout) using PI

controller is depicted in figure 4.10. Figure 4.11 shows the behaviour of manipulated

variable (Tin). The Cohen-Coon controller design tends to yield oscillatory closed loop

response since the design objective is 1/4 decay ratio. If less oscillatory responses are

desired, Kc should be reduced and ; should be increased for PI controller setting. It

seems that no general conclusions about the relative merits can be drawn from figures

4.10 and 4.11. For comparison with the SPC methods in section 7.5.6 of chapter 7, we

would like to determine several parameters: (i) The utilisation of control energy in

relation to the nominal value. Further details about this scheme will be elaborated later

in section 7.5.6; (ii) The number of control action for which the controller has to take

so that the process will not deviate from the setpoint (Ysp). The maximum number of

control actions are 5000. Table 4.9 summarises the result from this simulation. From

the table we can see that the PI control mode take control actions all the time to avoid

deviation from setpoint.

Table 4.9 The merits of PI controller settin s.

Controller Kp

(mole/Litre/K)

Ti

(second)

Energy

Utilisation

Number of

Control Action

PI 4.07 27.68 38218.32 5000

4.10 Summary

In this chapter we discussed the basic mathematical modelling of a CSTR process with

reversible exothermic reaction. We set-up the equations using chemical and physical

principles. Then we proceed with the dynamic studies of the process. We tested the

system with a step function in the input variables and observed the process response.

Then we used a graphical fitting technique referred to as the Process Reaction Curve

method to formulate an approximate process transfer function and calculated the values

of process parameters. Since the values of time delays, t ip are small and very difficult

to discern from tile graphical technique, we used the Cross-Correlation technique. The

transfer function model permits prediction of how the CSTR process will react to other

types of disturbances or input changes. From there, we proceeded with the tuning and

implementation of a Proportional Integral (PI) feedback controller on the process. In

the next chapter we are going to explore the multivariate techniques namely the Partial

Correlations Analysis and Principal Component Analysis. Both of these techniques

will play an important role in Active SPC scheme.
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Chapter 5

Multivariate Data Analysis

5.1 Introduction

The advantages of using multivariate analysis compared to univariate analysis lie in the

ability of the former to treat all the data simultaneously and to extract information

about the variations in the process. It can also give the relevant information on how

the variables are behaving relative to one another. This chapter will introduce the

basics of multivariate analysis. It focuses on the multivariate analysis tools involved in

this work.

Before proceeding further, let us exam the basic problems that normally occur when

analysing multiple input and multiple output processes. When faced by a multivariate

data set, the analyst often feel overwhelmed by the sheer amount of numbers it

contains. An engineer will not consider it excessive to measure twenty different

variables on each unit operation. Yet with only ten unit operations there will be 200

variables being recorded. At this stage, the problem becomes apparent, namely that

these are not 200 separate unrelated variables. However, when we examine them

carefully, some relationships often exist between the 200 variables. These relationships

arise as a consequence of all variables being measured on an individual basis. Each

piece of equipment will then contribute an n x 20 data matrix, where n is the instance

of observation. Ihe natural inclination when presented with this set of numbers, is to

scan through them, in the hope of detecting some interesting features or patterns in the

data.

The above example implies that any single number in the data matrix must be judged in

relation to all the other numbers in the same row as well as the same column of the

data matrix. As a result, simple visual inspection of the data matrix is unlikely to show

up any immediate patterns that may exist in the numbers. The problems will intensify

when more variables and readings are to be measured and analysed. Consequently,
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formal procedures are needed to help engineers and plant operators to search for this

pattern. To overcome all these problems, this part of the thesis will elaborate in detail

how a data set is transformed to facilitate analysis. Some of the information may be

fundamental, but to assure comprehension and the flow of the thesis, this basic

knowledge is included.

This study considers the application of two multivariate statistical methods, Partial

Correlation Analysis (PCorrA) and Principal Component Analysis (PCA). Both

techniques will be used to analyse and to interpret the data from the CSTR described

previously. During the investigation, PCA and PCorrA were used to determine the

correct correlations between the input and the quality variables. These correlations

are then used in the calculation of control limits for the Active SPC charts.

5.2 Basic Matrix Properties.

Throughout this thesis, we will be concerned with analysing measurements made on

several variables. These measurements, commonly called data, must frequently be

arranged and displayed in various ways. To clear the obstacle for later derivation, this

section introduces the preliminary concepts of data organisation.

Consider the hypothetical data, representing m measurements and n variables. The

notation x1J•• denotes the value of the J.' th variable that is observed at the i' th instant.

That is:

xii = i' th observation of the j' th variable.

Consequently, with m number of measurements with n variables we can arrange it in

matrix form with m rows and n columns:

_
xii	 xi2 ... xi] ... xi _n

x21	 x22 --- x2] ... x2n
.	 •.

...

	 .

= {x 1 x 2 ... xi ... xn 1 T	(5.1)
xlj	 x12 -•- Xii	 . Xin

X m 1 X m 2 . . • X mi . • . X mn
n

The above array or matrix X contains all the data in which each column represent a

certain variable and each row represent an instance of observations. There are certain
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advantages when we arrange the data in the form of array. It facilitates exposition and

allows numerical calculations to be performed in an orderly and efficient manner. The

efficiency can be gained through (1) describing numerical calculations as operations of

arrays; (2) implementation on computers, where there are many programming

languages and statistical packages that can readily perform array operations.

Throughout the rest of this thesis, lower case bold alphabets will be used to denote a

column vector; capital bold alphabets will indicate a matrix while italicised alphabets

represent scalars. The first subscript of an entry in an array indicates the row while the

second subscript denote the column.

As mentioned previously, a large data set is bulky and can pose a serious obstacle to

any attempt at visualisation and extraction of any pertinent information. This problem

can be partially avoided through assessing the information in the data by calculating

certain summary numbers, known as "descriptive statistics". Some of the descriptive

statistics normally used are sample mean, sample variance, sample covariance and

sample correlation coefficient. All these simple methods of analysis will be elaborated

in detail below.

Descriptive statistics are used to measure location, spread, and linear association in the

data set. The arithmetic average or sample mean provides a measure of location of

central value for a set of numbers. The sample mean can be computed from the m

measurements on each n variables, so that in general there are n sample means:

,	
1 m	

(5.2)

i=1

In vector notation, the sample means, will be presented by a vector with n elements:

n1

	

(5.3)

A measure of spread is provided by the sample variance, where for m measurements

on thej th variable is defined as:

ftt

N	 2	 1	 - N2var(x )• = s
11
.• = —

m-1
1(x•1• — xJ• )1i 
i=1

j= 1,2,...,n	 (5.4)
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The square root of the sample variance, .\i-s-f is known as the sample standard

deviation. To measure the linear association between the measurements of variable j

and k, we need to find the sample covariance. Association here signifies that the values

of xu bear some clear relationship to the corresponding values xik . Since there are so

many possible varieties of non-linear association, the term "association" is restricted

almost exclusively to indicate linear association. The fundamental measure of linear

association between the variables j and k is defined as:

1	 "1
cov(x i ,xk )= sj2k =	 111(xu

i=1

The sample covariance reduces to the sample variance when j = k. Moreover,
2	 2	 2s ik = ski for all j and k. The sample covariance s ik can either be positive or negative.

If there is no apparent linear trend in the data, the 4 will give a covariance near zero.

In matrix notation the sample covariance will be defined as:

s2

2s11

S2121
••
2

2
'12
s 2

22•.•
2s n2

•	 '

•	 • ••	 • •

2 -sIn
2

52n
•••
2

s nn _

(5.6)

The unsatisfactory feature of sample covariance as a measure of association is that it is

scale dependent. It is influenced by the spread of values in the variable concerned.

However, this can be corrected by "standardising" the variable, in which the mean of a

variable is subtracted from all measurements of that variable and the result is divided

by its standard deviation.

The final descriptive statistic considered is the sample correlation coefficient. It is a

measure of the linear association between two variables, even though both variables

may have different units. The sample correlation coefficient, for the f th and k' th

variable is defined by:

— j)(xik -71c)2s
i= 1 corr(x i , x k ) = rik = 	 	

	

2 2	 ms

	

J1 "C	 )2 in (Xik	 )
2

i=1	 1

(5.5)

(5.7)
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for j = 1,2,...,n and k = 1,2,...,n. Note that rjk = rkj for all j and k. In matrix notation the

sample correlation matrix R is :

1	 r12	 ... /i n -

r21	 1	 ... r2n
.	 .
'	 •.	 .

_ rn 1 rn 2 . .	 1_

Suppose the original values of xu and xik are replaced by standardise value defined as:

• • .
(5.8)

The standardised values are more favourable than the original variables since both sets

are centred to zero mean and expressed in standard deviation units. Thus the sample

correlation coefficient, rik, is just the sample covariance of the standardised

observations.

It is easy to verify that SRS = S 2 and R = (S)-1S2(S)-1 and that S2 can be obtained

from S and R, while R can be obtained from S 2. The expression of these relationships

in terms of matrix operations allows the calculations to be conveniently implemented

on a computer especially using the MATLAB programming environment.

Although the sign of the sample correlation coefficient and the sample covariance are

the same, the sample correlation coefficient is ordinarily easier to interpret because its

magnitude is bounded and has the following properties:

(1) The value of the sample correlation coefficient, rik is between -1 and +1.

(2) The sample correlation coefficient, rjk measures the strength of the linear

association. A value of +1 implies a perfect positive linear association between

xi and xk, a value of -1 implies a perfect negative linear association between xi

and xk, while a value of zero implies no association between xi and xk. It is

important to remember, though, that "no association" here signifies no linear

association.

The quantities 4ic and rjk can convey false association between the two variables

especially when an outlier observation and non linear pattern occur in the data set. In

56



Multivariate Data Analysis

spite of the this weakness, sample covariance and sample correlation coefficients are

routinely calculated and analysed. They provide numerical summaries of association

when the data do not exhibit obvious non-linear patterns and wild observations

(outliers) are not present.

5.3 Partial Correlation Analysis (PCorrA)

Large correlations are often picked out from a correlation matrix as being of special

interest. The variables that exhibit such correlation become the focus of attention.

Much effort is often expanded on explaining, interpreting and investigating the causes

of these large correlations. However, picking out isolated entries from a correlation

matrix can be misleading and sometimes promote incorrect inferences and conclusions.

This happens because some or all the entries in the matrix may be interrelated.

In attempting to interpret or explain a high correlation between two variables xi and

xk, therefore, we must be aware that this high correlation could be due to mutual

association of xi and xk with some other variables. If the correlation between xi and xk

is intrinsic, it should remain high when the effects of extraneous or other variables has

been removed.

If a variable x1. induces a high correlation between xi and xk, it must be because there is

a considerable variation in the observed values of xj, and throughout the whole range

of data there are strong relationships between xi and each of xi and xk. To examine the

"true" association between xi and xk, consequently, we must therefore compute the

correlation between xi and xk with the value of xi held fixed. That way, xi has no

means of influencing the correlation. Similarly, if a set of variables xj,...,xn is thought

to be inducing a high correlation between xi and xk, then the "true" association is

obtained by computing the correlation between xi and xk when all the values of all

variables xi,...,xn are held fixed.

To overcome the above problem, a procedure called Partial Correlation Analysis

(PCorrA) is suggested (e.g. Graybill, 1976). Partial Correlations describe the relative

influence of xi on the variation in xk when all the variables, xi,...,xn are held fixed. The

interpretation of partial correlation here, is that it is a measure of linear association

between xi and xk when both variables have been adjusted for their linear association

with the remaining variables.
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Thus, to gain a better insight into the relationship amongst variables in a multivariate

data set, it is desirable to stratify the population into sub-populations in which one or

more random variables are held constant and to determine the correlation among the

other random variables. Consider a (nx/) vector x, partitioned it into two portions,

where x(1) has q elements and x(2) has the remaining (n-q) elements. Partition x and Te

as shown below:

xl

x Xq
Xq+1

(5.9)

where R(1) and R(2) are the sample mean vectors constructed from the observations
TT

x I and x(2) = [x +1 ... xn ] respectively. Consequently the

sample covariance matrix of the partitioned matrix is :

(i)rx .Lx,

s 2	 5 2
_ n,1	 • •	 n,q

s2•••	 s 2
n,q+1	 n,n

The sample covariance matrix of x(1) is S, that of x(2) is S 22 and that of elements

from x(1) and x(2) is Sh or S. The next step is to calculate the partial covariance

matrix S 121.2 which is the sample covariance matrix of x(1) after the dependence of

x(2) has been removed and is given by:

S 2	 = S2 S 2 ( S2 ) -1 S2
11.2	 11 - 12\S221	 21 (5.12)
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Writing Diu as the diagonal matrix containing the square roots of diagonal elements

of S212 and standardising Sh .2 to R11 .2 -- D-12 S11221D -1 ,2 we obtain the matrix1.	 11..1. 
of sample Partial Correlations. The (i,k) th element of this matrix is an estimate of the

correlation between the i' th and k' th variates of x(1) when the value of variates x(2) is

fixed. This removes the effect of the variables of x( 2) on the relationship between xi and

xk, and gives an estimate of the intrinsic association between xi and xk.

From the above method, the partial correlation coefficient between xi and xk which are

in x(1) given a constant x(2) is:

s 2
ik.(q+1,...,n)

rik.(q+1,...n)	 2	
s 2

ii.(q+1,...,n)

(5.13)

2where s 2 	is the ik' th element of S11.2'ik.(q+1,...,n)

Alternatively, the partial correlation can be built up by using a sequence of recurrent

relationships. Denote by riki the "first order" partial correlation between xi and xk

when fixing x1. Next continue with rikin the "second order" partial correlation between

xi and xk on fixing both xi and xn, and so on. The sequential application of this method

starts from the correlation matrix. The relationship yields:

n72)(1 - rk12)1

	 (5.14)

rik.ln —
( rad rind rkn.1)

11{(1 - rin.1 2 )( 1 - rkn.12)}

(5.15)

This recursion pattern can be used to calculate higher order partial correlations and

enables a q' th order partial correlation to be obtained from those of (q-1) th order

partial correlations. This method is most useful when low order partial correlations are

required.

5.4 Principal Component Analysis (PCA)

When a large number of variables are monitored, it is natural to enquire whether they

could be replaced by a fewer number of variables or appropriate functions provided the
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original information is retained. This is made possible by applying a technique known

as Principal Component Analysis (PCA). PCA is able to look at a single set of variables

and attempts to access the structure of the variables in this set, independently of any

relationship it may have to variables outside the set (\Vold et al., 1987; Jackson, 1980;

Jackson, 1991). The technique can be used to reduce the dimensionality of a set of

variables, that is described by equation (5.1) or matrix X, with little loss of

information. This is achieved via the definition of a new set of variables.

The new variables derived by PCA called Principal Components, are simply weighted

sums of the original variables. The weights are given by the eigenvector of XTX where

X is the original data matrix. The elements of each eigenvector actually define the

orientation of a particular Principal Component line in the co-ordinates of the original

data space. Each of the Principal Component lines describes the maximum data

variation in their respective dimensions and the variance of each Principal Components

is given by the corresponding eigenvalues of matrix XTX (Tham, 1995). The first

Principal Component is a linear combination of the original variables which gives the

largest variance of the original data. It is therefore relevant to examine in what sense

PCA can provide a reduction of data without losing the information that we are

seeking. The premier study on PCA can probably be traced back in the work of

Pearson (1901), while the statistical properties of PCA were investigated in detail by

Hotelling (1933).

The objective of Principal Components analysis is to decompose the total variation of a

set of original variables into new linearly independent composite variables, so that each

Principal Component successively accounts for the maximal variability in the data.

Unique linear combinations from the original variables is achieved through the

computations of eigenvalues and eigenvectors of the characteristic equations for the

covariance or correlation matrix. The transformations are performed such that each

principal components have the maximum variation in that dimension of the transformed

space. Further, we require that the principal components are pairwise uncorrelated.

Only a few Principal Components are needed to summarise the data adequately since

the original variables are generally intercorrelated with each other to a certain degrees.

In practice, we usually retain only the first few principal components that account for

the major pattern of variation. This is because each successive component accounts for

a smaller amount of variance in the sample. Thus, we are assured that the total

variance described by these first few axes is maximal for the chosen dimensionality.

Due to this characteristic, Principal Component analysis is a widely utilised method for
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summarising data in few dimensions while retaining most of the essential information

from the original data.

5.4.1 Geometrical Concepts of PCA

To give the real flavour of Principal Components Analysis let us turn to the object

space, and consider the representation of a two dimensional sample of m individuals. In

order to label the axes and to avoid confusion, the variates or axes are denoted by bold

lower case alphabet and the individual value by italicised alphabet of lower case. The

two dimensional sample, after mean centring can be presented by a scatter plot given

by Figure 5.1.

Figure 5.1 Mean Centring Scatter Plot

Variable x1 and x2 is represented by axes oxi and ox2 respectively. When performing

the data analysis, the reference point of the data configuration is important. For

example, in Figure 5.1 we can rotate the axes of oxi and ox2 to new positions °pi and

op2 without altering any data points. The points are then related to the new axes for

future analysis, and may actually contain some useful meaning to the investigator,

indeed sometimes even more meaningful than the original data set.

Through this rotation of axes (Figure 5.1), the new individual's co-ordinates on °pi

and op2 are given by :

P1= xi cos cc + x2 sin a = v 1 i xi + v /2x2	 (5.16)

p2 = -xi sin a + x2 cos a = v2/x1 + v22x2	 (5.17)
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Multivariate Data Analysis

Where a is the angle between oxi and op i or ox2 and op2. Hence from the equations,

Pi and p2 are linear combinations of x1 and x2. If all the coefficients of v 1 are collected

to form a new matrix V, this new matrix is orthogonal, i.e. it's inverse is equal to its

transpose VT. This can be proved by:

cos a —sin a cos a sina
V TV =[

sin a cos a — sin a cos a

cos2 a + sin 2	 0	 r
0	 cos2 + sin2 a] LO 1

vTv
	

(5.18)

Figure 5.2 Principal Component Plot

When the axes of p i and p2 are re-drawn (Figure 5.2), there is a wide spread of values

along the pi axis. In contrast, the spread of values along the p2 axes is relatively small.

Thus, we can conclude that it is possible to approximate the two dimensional system

using only one dimension. Thus, we can characterise the n individuals sufficiently well,

by quoting the co-ordinates in terms of x1 and x2 for each point, by simply referring to

P11 = x11 cos a + x12 sin a. Replacing the two original variables or co-ordinates

by a single derived variable p i in this way effects a reduction in dimensionality from 2

to 1. This is because we can represent the sampled data by plotting the individuals to

their pi values.

Accordingly, different values of a will give different axes of p i and hence different

plots. Amongst all these plots, there will be one that is deemed to be the best that can

62



Multivariate Data Analysis

represent the "truest" impression of the relationship that exist between the n points in

the two dimensional space. The "truest" impression of all the relationships will be

provided by that value of a that gives rise to the smallest displacement of all points

from the original position.

Figure 5.3 Geometric perspective of Principal Components

From Figure 5.3, the co-ordinate value of c i can be projected orthogonally to axes opi

and indicated by cf. In order to obtain the line opi that fits best all the points, Pearson

(1901) minimised the distance between cc' through minimising y, (c icf ) 2 . In
i=1

contrast, regression lines minimise the sum of square of either horizontal or vertical

displacements. Applying Pythagoras' Theorem to the triangle oc icf, we obtain:

(0c)2 = (002 + (cico2

Considering all data points,

m	 m
= I(ocf) +I(c icf )2

i=1	 i=1	 i=1

(5.19)

(5.20)

The value on the left hand side of the above equation is fixed, irrespective of the co-

ordinate system employed. Thus, choosing opi to minimise the value of y(c ici ')2 is
1=1

equivalent to maximising the value of 	 (ocf ) 2 . The latter maximisation finds °pi

1=1

such that the projections of the points on it have maximum variance. This was how

63



Multivariate Data Analysis

Hotelling (1933) approached the derivation of Principal Components. Choosing op i to

ensure the smallest possible perpendicular deviation of all the points is equivalent to

the choice of rectangular axes that gives the smallest spread of projections on op2 and

hence the largest spread on opi.

For an n-dimensional data set, with an associated (mxn) data matrix, a similar sequence

of steps is adopted. The data is modelled as usual by a swarm of m points in n

dimensions, each corresponding to a measured variable. First, the principal axis op i is

found such that the spread of m points when projected into it is maximum. This

operation defines a derived variable of the form:

P1 = V 1 IX1 -I- V21X2 -I- ... ÷ VniXn
	 (5.21)

n

with I (vii ) 2 = 1 and that the variance of pi is maximised.

Having obtained opi, look for the next principal axes or line op2 orthogonal to opi

such that the spread of points in the remaining (n-1) dimensional subspace when

projected to this line is maximum. However this spread would not be greater than the

spread on opi. This equivalently indicates fmding a line that is at right angles to opi.

The next task is to find the (n-2) dimensional space that is orthogonal to op i and op2,

i.e. a line that is at right angles to both opi and op2 such that the variance or spread is

maximum after the spreads of opi and op2 have been accounted for. The process is

continued until all n mutually orthogonal lines of opi (i = 1,...,n) have been

determined. Each has a derived variable of the form:

pi = 1,1iX1 + V2iX2 + ... + VniXn
	 (5.22)

where the constants vii are determined by the requirement that the variance of pi is

maximum but subject to certain orthogonal constraints, that is:

maximise	 var(pi)
Tsubject to	 v • v • = 11	 1

.,T• i vk = 0 where i # k

The pi obtained from this procedure are called the Principal Components of the system

and analysis based on these new variables is called Principal Components Analysis.
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5.4.2 PCA Mathematical Details

The previous section introduced Principal Components geometrically as those variates

corresponding to the principal axes of the scatter diagram. In order to understand the

subject thoroughly, this section provides the mathematical interpretation of the new

variables. It will show that the Principal Components are just linear combinations of

the original variables which explain progressively smaller portions of the total sample

variance.

Consider, a set of data in the form of equation (5.1), comprising m measurements and

n variables. The definition of Principal Components indicates that we can generate n

new variables from the original n variables. Each of this new variables is a linear

combination of the original variables such that:

pi = v/ ixi + v2ix2 + + vnixn.	 i = 1,2,...,n

The Principal Component matrix is defined by:

P = XV =

x11	 x12

-x21	 -x22

•

_xmi	xm2

...

•••
•

•

xin

x2n
•

xmn _

vil

v21

vnl

v12

v22

vn2

...

•.
•

•-•

yin

v2n
•
•
•

vnn

m n

=

i=1
1.1 (5.23)

where k = 1,2,...,n and each column of matrix V contains the coefficients for the

Principal Components. The first Principal Component, is expressed as:

P1 = 	 + v21x2 +...+ vnixn.

that is:

x11v11+x12v21+...+xinvni

x21v11+x22v21+...+x2nvni
	 tt xijvjl

i=ij=1
+xm2v21+...+xmnvni

The above equation shows how the original matrix X can be converted to the first

Principal Component. To obtain the relationship between the original variables and the

Principal Components, here we will elaborate in detail the method for finding the

covariance of Principal Components in terms of the original variable X. This derivation
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is important for the constraint optimisation problem to be considered later on. Before

we proceed, let us express the mean and covariance matrix X via matrix operations.

The mean of matrix X can be written as follows:

_ -
x11 x12 *** xln

–T	 1	 T	 1
x	 =-1 X = —[1	 - - -

m	 m (mxl)
I]

X12
.
.

x22
.
:

•••
•.

•

x2n
:
•

xm / xm 2 •	 • • xnun _

= {ii • • • Ij —	 n1

	
(5.24)

In order to convert the vector T into a matrix, the above equation is pre-multiplied

by a (mx/) vector of Is.

aT = —1 11
T

X =-
1

m	 m

-
xii	 Xi2 •-• xin

X12 x22 ••• x2n
.	 ..	 .	 ..	 •	 •

_xm / xm 2 - • xmtn

The mean centred matrix is obtained by :

X –
1

—11T X
m

(5.25)

(5.26)

The sample covariance matrix is given by:

S2 = 1 (X--1 11T X)
T
 (X--1-11T X) --•.: -—XT (I--1 111X

m-1	 m	 m	 m -1	 m

(5.27)

The simplification arises because:

T	 1
2	 + il liTiiT = 1_111T

(I-111T ) (I--11T = I---1i
T (5.28)

m	 m)
	

m	 m	 m

66



Multivariate Data Analysis

To find the sample covariance of matrix P, we can again use equation (5.27):

S 2
 ) = cov(P) = 1 P1I-1-111P(P 	 m —1	 m

(5.29)

However from equation (5.23), P = XV. The above equation then becomes:

1	 T	 1 Tcov(P)= —(XV) I — —11 XV
m-1	

( 
m)

1...	 vTxT(I___1 111XV
m-1	 m

= VT { —1 XT (I — —1 1111X}V
m —1	 m

From equation (5.27), equation (5.30) becomes:

S2p) = cov(P) = VTS 2V= L(

(5.30)

(5.31)

From the above equation, we can see that Principal Components is based upon a key

result from matrix algebra. An (nxn) symmetric, non singular matrix, such as the

covariance matrix S2, can be reduced to a diagonal matrix L by pre-multiplying and

post-multiplying it with a particular orthonormal matrix V. The diagonal elements of L,

li,l2,...,ln are called characteristics roots, latent roots or eigenvalues of S2. The

columns of V, v1,v2,...,vn are called the characteristic vectors, principal axes vectors

or eigenvectors of S2.

To elaborate further, let us consider the derivation of the first Principal Component. As

defined, the first Principal Component, p1 is the linear combination of the original

variables Xvi . It will give rise to the maximum variation of var(pi) when the value of
viT s 2 v 1	 Tis maximised subject to the constraint v i v i = 1. This leads to the constraint

optimisation problem where:

maximise	 (qp)1) = var(pi) = vTS 2 v 1

subject to v Tv = 11 1
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Using the Lagrange multiplier X i , the v1 that maximises var(Pi) is the value that sets
aYi
, = 0, where :
dvi .

Y1 = v'Ts2v i - x i (vTv i -1)

and hence,

DY1 = 2(S
2
 — X/I)vi =0

dvi

(5.32)

(5.33)

S2 = XII	 (5.34)

For a non trivial solution, the elements of v1 cannot be a zero or null vector. Thus:

1s 2 -A.,I1=o
	

(5.35)

To continue, consider the second Principal Component. The linear combination for this

step is p2 = Xv2 . It will have the same condition as before, i.e. 4v2 =1, where 4=

[v2i,v22,...,v2n]. Since the principal components are uncorrelated with each other, it
an	 The	 v2Tmust fulfil other criteria which is vIvi = vTv 2 =0. e variance of p2 is S

2 v2.

In order to maximise the variance subject to the above two constraints, we again have

to introduce Lagrange Multipliers. With two constraints, we need to use two such

multipliers, it.,2 and 0, and the maximisation criteria are as follows:

maximise	 (S(2)2) = var(p2) = vIS2v2

subject to	 vIv2 =1
T	 Tv2 v i = v i v2 =0

„ 're2.,	 x f.,,,T„,	 1 N fa,,,T,,,Y2 =-- • 2 ,.• • 2 — 2 ‘ • 2 • 2 — L i — v• 2 • 1

Thus to maximise Y2, we set

aY2 = 2(0 - A, 2I)v2 - 01'1
av2

(5.36)

(5.37)

to zero, yielding:
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2(5 2 - X 2I)v2 — 0v 1 =0
	

(5.38)

Pre-multiplying the above equation by v 	 since vir v i= 1 while v rTv 2 = 0 we

arrive at:

2 (S 2 - 2t. 2 1)v 2 = Ov'rvi

2vS2 v2 =

From the derivation of pi in equation (5.33)

2(S 2	= 0

Pre multiplying this equation by vI and noting that qv] , =0

21/(52 - X ./1)n = 0

2v1S 2v1 = 0

(5.39)

(5.40)

Since vTS 2v2 is a scalar quantity and 52 is symmetric matrix then vTv2=

= 0. Substituting this into equation (5.39 ) leads to 0 = 0 and hence from

equation (5.38) we can conclude that the coefficients v 2 of the second Principal

Component also satisfy:

(52 -X 2I)v 2 = 0	 (5.41)

Using a similar reasoning used in the derivation of pi, the second Principal

Component's variance, a, must be the second largest after the first Principal

Component has been accounted for. Thus the coefficients of the second Principal

Component are given by the elements of column vector v2, the eigenvector

corresponding to the second largest eigenvalue x,2 of S2•

The previous procedure could be extended to calculate the remaining Principal

Components. Although the formal algebra is tedious, the results are essentially

generalisations of the above procedure which can be summarised as:

maximise	 var(pi) = Xi = IT ; S 2v where Xi > 2t.,2 > > > > 2t.n
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subject to	 v. v . =1
vTi vk = vTkvi =0 k � i k=1,2,...,n

5.4.3 Principal Component via Singular Value Decomposition

Principal Components can be derived using several methods. All these methods lead to

the solution of an eigenvalue-eigenvector problem. There is a powerful technique that

can cope with equations or matrices that are either singular or numerically very close

to singular. This technique is known as Singular Value Decomposition (SVD)

(Rawlings, 1988; Press, 1989). Any (mxn) matrix of variables X, whose number of

rows m is greater than or equals to its number of columns n, can be written as the

product of an (mxm) column-orthogonal matrix U, a diagonal matrix L 112 with

positive elements, and the transpose of an (nxn) orthogonal matrix V,

x = uL1/2 vT	 (5.42)

U is the eigenvector matrix of XXT while V is the eigenvector matrix of XTX. L 2 is

a diagonal matrix whose .elements are the positive square roots of the eigenvalues,

(j = 1,...,n) of XTX and are called singular values. The matrices U and V have the

following properties:

uuT = uTu = I
	

(5.43)

vvT = vTv = I
	

(5.44)

The Principal Components of the data matrix X are given by the columns of the (mxn)

matrix P:

p = xv = uL1/2
	

(5.45)

5.4.4 Correlation based on Principal Component calculations

The new transformed variables are used to reduce the dimensional of the original

variables. Now we want to show how these new variables can be utilised to correlate

between the input variables (x i) and the quality variable of interest (xk). Before we

proceed, it is advisable to standardise the original matrix X, because the data from the

process normally come with different units. Then, to determine the correlation

between the xi and xk , we can utilise the equation below:
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COV(X0X0 
corr(x i ,Xk) — ,---	 (5.46)

livar xi vc,iir---. xk

Since our matrix X is in standardised form, var(xi) = 1 and var(xk) = 1. The
corr(x i , xk ) is therefore:

The values of xi and xk can be written in term of Principal Components by using

equation (5.45). Multiplying both sides of equation (5.45) with VT, the relationship

becomes:

X = PVT 	(5.48)

Let	 VT =	 = rii ir 2	 111	 (5.49)

where'fir ={vi1 vj2 yin]	 (5.50)

but i � vir 	(5.51)

where ijir. — 11 1 —
-T-V. V • = 01 J

Then since from equation (5.48) 	 X = PVT

then xi =Pir i	(5.52)

and X k = Pv-k
	 (5.53)

Substitute back equations (5.52) and (5.53) into equation (5.47)

cov(x i , x k )= (NOT Pirk

and rearrange:

N - Tin T Ty-
rCOV(Xi,Xki= • r Vk

VI

(5.54)

(5.55)
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From equation (5.45), P UL112 thus:

pTp = (Ui1/2)T(uL1/2)

rearrange, where UTU = I then:

pTp = ()/2)TuTUL1/2 = L

Inserting equation (5.57) into equation (5.55)

COV(Xj ,Xk) = V i LAI(

(5.56)

(5.57)

(5.58)

The correlation between xi and xk is possible by inserting the above equation back to

equation (5.47), leading to:

corr(x i	= v LAT k
	 (5.59)

Thus the correlation between the original variables x i and xk based on the above

equation can be written in form of the transformed variables from PCA as:

corr(x i ,xk ) = Eviivki/j	 (5.60)

i=1

If some of our Principal Components (pa) are discarded then the value of correlation in

equation (5.60) will be based on reduced space. The detail about how we can reduce

the dimension will be elaborated in chapter 7.3. The function of the above equation can

therefore be used to determine the correlation between the quality variable and the

input variables as will be discussed in the next chapter. It forms the basis for translating

the control limits imposed on the quality variable to corresponding limits for all input

variables.

5.5 Summary

This chapter has examined, elaborated and mathematically defined two types

multivariate statistical methods, Partial Correlation Analysis (PCorrA) and Principal

Component Analysis (PCA). The PCA method was discussed from both geometrical

and the mathematical views. Apart from the ability to reduce the dimension of the

original data via the use of new transformed variables, the PCA method can be used to
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calculate the relationship between the quality variable and the input variables.

Equations (5.13) and (5.60) will be used extensively throughout the rest of this thesis.

In the next chapter we will explore the use of PCorrA and PCA and how they

contribute to the new proposed Active SPC method.
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Chapter 6

The Active SPC Methodology

6.1 Introduction

This chapter discussed in detail the concept of Active SPC. First, we will examine the

requirements of Active SPC methodologies. Second, we will elaborate how the

multivariate data analysis techniques discussed previously can be used to design Active

SPC strategies. In particular, we will show how the results from these multivariate data

analyses can be used to define appropriate control laws. Here, the traditional function

of SPC passive process monitoring is changed to provide an active role, i.e. adjusting

the manipulated variables automatically to keep the process under statistical control.

We have seen in Chapter 4 that Automatic Process Contol WC) stvanits Tawide.

continuous corrective actions whenever the controlled variable deviates away from set

point by adjusting the manipulated variables. It does not matter whether the deviations

are inherent to the process. In some cases, the effort is pointless and may even be

detrimental to the process. Hence, it has been argued that APC does not improve the

process since it doesn't eliminate the root cause of the problem. In contrast, traditional

Statistical Process Control (SPC) charts only give indications on when action should

be taken, namely when the quality variable exceeds some specified limits on the control

chart. However, it is possible to devise a method whereby the process is monitored and

automatically controlled whilst retaining the SPC policy of the non-intervention when

the process is in a state of statistical control. In addition to product quality, input

variables are also monitored. If these inputs can be kept within their respective control

limits, then the quality variable should also be maintained within its control limits.

Obviously, the former must be related to the latter limits. These quantifying

relationships are provided directly from Partial Correlation Analysis (PCorrA) and

correlations derived from Principal Component Analysis (PCA).
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The role of PCorrA and PCA in this work is to describe the relationship between the

quality variable with the input variables. Through this relationship we can work out

which input variables has the greatest influence on the quality variable. Hence, the

influential input variables can be chosen as our manipulated variables. This is similar to

the practical problem of how the quality variables and the manipulated variables should

be paired in a multiloop control scheme. Incorrect pairing will lead to poor control

system performance. PCorrA and PCA will give recommendations concerning the most

effective pairing between the quality variable and the manipulated variables. Both

techniques also avoid the model identification problem by focusing attention on

statistical input-output relationships. The results from the analyses can be utilised

directly to provide guidelines on the required magnitudes of manipulative changes. The

strategy can thus be applied not only for on-line process monitoring but also for the

on-line control of the quality variable by making the appropriate adjustments on the

manipulated variables.

6.2 Preliminary Procedure

One of the functions of a control chart is to monitor the process- by periodically making

observations of the production process. But before the charts can be used to identify

the presence of assignable causes in the process, the process must be brought into a

state of statistical control; that is, the data being used to determine the initial control

limits must be subject only to a constant system of common calasts. This TexpiItme.z.

essential so that the limits on the control chart will not be biased. Once the initial

control limits are established, the charts may be employed to monitor the behaviour of

the process.

Additionally, there are certain considerations concerning the way the data from the

process should be collected. The first step in setting up control charts is the selection

of the sample size. Since we are concerned with continuous processes, which involves

variables me psurement in continuous form, the sample size used for the SPC chart is

one; that is, the sample consists of an individual observation. The second step is to

determine the sampling time (At). The sampling time is chosen based on the

autocorrelation behaviour of the signal and will discussed in detail in section 6.2.1 and

Chapter 7. To provide a basis for the initiation of SPC charts, we should use 25 to 50

samples to estimate the process capability (Wetherill and Brown, 1991). Then,

information about the process is assessed by calculating the process mean and the

process standard deviation.
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The next step is to examine whether the process data is normally distributed. The

normally distributed data assumption will help us determine the regions of common

causes and assignable causes. For an assignable cause to occur is highly unlikely to be

due to chance, because only 0.27% of normally distributed data should fall in this

category. This procedure is fundamental, since it can predict the probability of

occurrence within a certain range of values. The process data is incapable if it is not

normal. As a consequence, SPC chart procedure is not suitable for solving the problem

of quality in the process.

6.2.1 Autocorrelation

Autocorrelation normally plays an important role in determining the properties of time

series data. It gives a series of quantities called sample autocorrelation coefficients,

which are measures of the correlation between observations at different instances in

time. It is similar to the ordinary correlation analysis, but instead of correlating with

different variables, the analysis is performed on an observation and successive

observations of the same variables. Mathematically, the autocorrelation is represented

by:

N-k

l
i (xt - .7)(xt+k

rk - t=1 
	

(6.1)

I(xt -.7)2

t=i

Where rk is the auto-correlation coefficient at lag k, xt is the current observation, is

the average of the process and xt+k is the observation at t+k. The above equation

shows how we can determine the autocorrelation between the current and observations

at k samples apart. It is also possible to calculate the autocorrelation coefficient by

using the autocovariance coefficient, ck which is defined as:

ck = —
1	

(xt –7)(xt÷k – .7)
N—k

(6.2)

t=1

The above equation represents the autocovariance coefficient at lag k. We then

compute the autocorrelation coefficient by :

rk = ck 1 co	 (6.3)
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where co is the variance of the time series. A useful aid in interpreting a set of

autocorrelation coefficients is the correlogram, which is a graph of rk plotted against

the lag k. Nevertheless, interpreting the meaning of a set of autocorrelation coefficients

is not always easy. The correlogram often initially exhibit a fairly large value of r1

followed by few further coefficients which, while greater than zero, tend to get

successively smaller. It will then oscillate about zero and fmally, values of rk for longer

lags tend to be approximately zero.

The data is often not normally distributed when autocorrelation exists in the process.

Autocorrelation is particularly common in the process industries because disturbances

tend to have immediate, as well as lasting effects on the process. Autocorrelations is

not necessarily bad. It does indicate that the process is somewhat predictable and

suggests the possibility of compensation in the process. Nevertheless, it will violate the

assumption associated with the use of SPC charts; that is the data generated by the

process when in control are normally and independently distributed with mean (p.) and

standard deviation (a). During in-control situations, both p. and a are considered

fixed. An out-of-control condition occurs when there is a significant change in p. or CT

or both. When autocorrelation exists in the process, SPC charts will therefore give

misleading results in the form of false alarms. However, the autocorrelation behaviour

can be removed from the data by selecting an appropriate sampling time (At) and this

will be elaborated in Chapter 7.

6.2.2 Transformation and Standardisation

After the process data is successfully made free from autocorrelation behaviour, and

the sampled data is normally distributed, we should then consider the possibility of

non-linear relationships in the variables. Principal Component Analysis (PCA) and

Partial Correlation Analysis (PCorrA) procedure are used only for investigating linear

association among the variables. Non-linear affiliations between variables should be

taken into account prior to application of these techniques. Therefore, any non-linear

relationships between the variables have to be linearised before the analyses is

performed. For example, in the CSTR, temperature relationships are non-linear due to

Arrhenius reaction kinetics. Therefore the temperature of the reactants (Tin) and the

temperature of reaction mass (7) were linearised by using the following

transformations:

Trtin = exp(-1/Tin) and	 Tr = exp(-1/7)	 (6.4)
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After the non-linear variables have been linearised, we should then treat all the

variables in the process so that they have the same units. This is accomplished by

standardising the data. By doing so, the data will be dimensionless and in the form of

standard deviation unit. This conversion actually allows all normal distributed data

from each variable to be related in one form. The probabilities or areas under the curve

then can be extracted from a standard table which can be found in any statistic text

book. The data is standardised by subtracting its mean from each observation and

dividing by its standard deviation.

6.3 PCorrA and PCA in Active SPC

Having completed all the necessary data conditioning, we can now apply PCorrA and

PCA to design Active SPC methodologies. Initially, the partial correlations and

correlation derived from PCA between inputs and outputs are calculated using

historical process operating records. Similar to a process operability study or an APC

loop input-output pairing exercise, the correlations are used to determine which

variables are influential in keeping the process under control. Once the variables have

been identified, the appropriate correlations are used to determine the relevant limits

for the control charts as well as the corresponding control laws for maintaining output

quality. The details of this procedure are described below.

6.3.1 Determination of Control Limits

Normally, the individual SPC charts monitor the products or quality variables by

imposing a control limits at R0±-3a . The process is considered to be in statistical

control when it is kept within these limits. If it is out of statistical control, then the

cause is located and rectified. Contrary to this conservative approach, however, we

propose an alternative monitoring and manipulation strategy. Firstly, the PCA or

PCorrA is vsed to determine the strength of association between the quality variable

and the input variables. PCorrA and the correlation derived from PCA can be used to

correlate xk, the quality variable of interest and x i, the inputs variables. When PCorrA

and PCA have been calculated based on standardised variables, the control rule needed

to moderate the variation of the quality variable xk, is to maintain the following

correlation between xk and xi:

...s _ ,—, .,,s
.4 k — L. ik .a. i (6.5)
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where xis, .(xk 	 ak , 4 .(x,	 and Cik are the correlation

coefficient between xsk and xis using standardised variables. The values of Cik are

given by the relationship below:

Cik = rik.(1+1•...,n) or Cik =

	

	 (6.6)

j=1

where rik.(q+1,...,n) is the partial correlation coefficient between xi and xk (equation

5.13) and	 vijvki li is the correlation based on PCA (equation 5.60). Given the
i= 1

correlation Cik, between the inputs and the quality variable, the limits on the quality
variable can be translated to corresponding limits on input variables. When g o ± 3a

output control limits are used, then since xisc. is standardised, the limits becomes:

—3< x s <3
	

(6.7)

The corresponding limits on the input variable are:

—3/ Cik <xf < 3 I Cik
	 (6.8)

Figures 6.1 shows how the Shewhart Chart control lirnits Ems fol the egalitu Nak-Wale

are translated into limits for the input variables.

Figure 6.1 Translated control limits for standardised variables.

If the relationships between input and output variables do not change, then by

maintaining xi between the limits given by equation (6.8), the output should also be

kept within the respective desired control limits, equation (6.7). If any manipulated
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variables fall outside these control limits, control action is invoked on that particular

manipulated variables by bringing it back to the appropriate control limit.

The limits for Shewhart Charts with both action and warning lines, and EWMA charts

can be developed in similar manner. Deviations in input variables from their respective

limits indicate that the quality variable will suffer an out-of-control situation. If the

monitored input variable is also the manipulated variable, adjustment will be made if an

out-of-control situation occurs. As a consequence, the quality variable should not

affected and will be on target. The relationship from the quality variable xk and input

variables xi is given by Cik from equation (6.5). Figure 6.2 shows how the Active SPC

scheme can be implemented on the EWMA control chart.

Figure 6.2 Translated control limits for EWMA chart for standardised variable

6.3.2 Measured Disturbances

In some situations, not all input variables are measured on-line, either because of

economic constraints or because suitable instrumentation does not exist. In other cases,

some input variables cannot be manipulated, e.g. the quality of purchased raw

materials. The proposed technique assumes that all the input variables can be measured

on-line, but does not require that all inputs can be manipulated. If this is the case, an

alternative manipulative input variable, x m, which can affect the quality variable must

be determined. When the monitored variable x i exceeds specified limits, xm must then

be manipulated to compensate for the deviations in xi so that the quality variable xk

remains within its target limits. This alternative control law can be expressed as

follows. The relationship between xk and xmis:

,. s _ r. .„ s
A. k —....nikA,m (6.9)
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(6.10)

tm=	

,_Ax,s	 (xis _ tsi)cik

= 	
Cmk	 Cmk

(6.11)

i	 (6.12)

The Active SPC Methodology

The predicted value of x ks from the monitored value of 4 is given by equation (6.5).

Thus, the difference between this value (4) and a target limit /will be:

Ax s can be expressed in term of Ax. by combining equations. (6.9) and (6.10):
ik	 zm

The amount of xm has to be adjusted to compensate for the predicted deviations of

measured disturbances variables, will be:

ni
ys,new = y s	 Ays
Xm"m

i=1

where ni is the number of measured disturbances variables whose deviations that xm

has to be adjusted for. When two manipulated variables are selected, the reactant

temperature (Trtin) will be used to compensate for out-of-control situations in the

reactants molar concentrations Ain, and Bin; and the flowrate of the reactants, F.

While input coolant temperature (7jin) will compensate for out-of-control variations in

cooling medium flowrate Fj. For manipulating a single variable, the out-of-control

variations in all measured disturbances variables will be compensated by adjusting
Trtin. However, the new value of xm resulting from equation (6.12) is also compared

against its control limits. If these limits are exceeded, then xm is brought back to the

appropriate control limit. The detail of how the manipulated variables are selected are

given in section 7.3.

6.3.3 On-line Calculation of Control Limits

There are two ways to implement Active SPC. One is to calculate the relationship

between the quality variable and the input variables off-line using good operating

records of data. Alternatively, the correlations may be determined on-line. The off-line

analysis is applied first to select the manipulated variables for controlling the quality

variable before the on-line technique is implemented. It will also provide excellent

initial control limits for the SPC charts and hence the degree of correction needed on

the manipulated variables.
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Calculating the correlations continuously as the technique is being implemented

significantly increases the computational requirements. However, an advantage is that

changing relationships can be tracked. If the values of Cik are calculated on-line, then

they should be smoothed to reduce the possibility of abnormal changes due to the out-

of-control situations using the following expression:

aik (0 = (I — A.,)e- ik(t — I) + ?X ik (t)
	

(6.13)

e- ik (t) is the exponentially smoothed value of Cik(t) at time t while X is the smoothing

constant. eik (t) is then used in place of Cik in the equations above.

The above development concerns limits for Shewhart charts with action lines and

EWMA charts. Limits for other SPC charts can be developed in a similar manner.

Inputs which show relatively high correlation coefficients with the quality variable are

monitored and subsequently be chosen as the manipulated variables. If Shewhart charts

are used, the limits are given by equation (6.8). They also define the control laws, i.e.

the manipulations that have to be made to the relevant manipulated variables to keep

the quality variable under statistical control. Manipulations are executed by bringing

deviant back to their allowable limits. Since the most likely causes of process upsets

have been pre-determined via PCorrA and correlation based on PCA, undesirable

deviations due to disturbances can therefore be automatically contained and out-of-

control situations of the quality variable will be minimised. The strategy therefore

anticipate and compensate against potential process upsets. Compared to traditional

practice, it is therefore an active approach to SPC.

In monitoring the important variables, the charting techniques employed the familiar

Shewhart and EWMA control chart. There is no need to resort to multivariate charts

because the inputs and outputs of the process have effectively been decomposed to

smaller, indcpendent sub-system. Since the probable causes of the process deviations

have been predetermined, on-line SPC reduces the need for expensive and time

consuming experimentation after the incidence of out-of-control situations. Moreover,

abnormal variations due to disturbances can be corrected before they affect output

quality. Control is therefore achieved in anticipatory manner.
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6.4 New Development in this Work

This work follows the preliminary studies of Efthimiadu et al. (1991), Efthimiadu et al.

(1992), and Efthimiadu et al. (1993) who attempted to devise a new, pro-active

approach to achieve SPC of continuous process. Detailed evaluations and some

modifications were performed in the current work to assess the applicability of the

various Active SPC strategies that might evolve.

Here, we would like to highlight some of the modifications involved in the current

work compared to the previous work of Efthimiadu et al. (1991), (1992) and (1993).

The control limits that they used to determine the out-of-control situations is based on

the unstandardised variables. Thus, instead of the limits that we used in equations (6.7)

and (6.8), they utilised the equations below:

ilk — 3ak < xk	 +3C7k
	 (6.14)

for the quality variable and the translated version for the inputs control limits will be:

3cr i 	 .3(7
—l.Li<Xi < 1.14 +

Cjk	 Cik
(6.15)

The ambiguous aspect is that the iaXes of C ik that they used ate based an standardised

variables. If Cik are calculated using PCorrA this will not affect the control strategy,

but when we use PCA which is scale dependent, the results will be dubious.

The magnitude of control actions are also different between the current work and the

previous works. If any manipulated variables falls outside the control limits, control

action is invoked on that particular manipulated variable by bringing it back to the

appropriate control limit. The previous work adjusts it back to the mean. The main

reason for this new approach is to avoid over control of the process. Moreover, the

inherent variations in the process is still within the control limits.

Efthimiadu et al. (1992) only considered manipulating all variables and two variables.

For the two manipulated variables case, they utilised Trtin and Fj as the manipulated

variables, which were not based on whether the manipulated variables have high

influence on the quality variable. In the current work, we utilise Trtin and Tjin which

have high influence on the quality variable. We also investigated the use of only one

manipulated variable to control the process.
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To quantify the effectiveness of each strategy, we also defined an "Index of

Performance" (IP) (Ibrahim and Tham, 1995). It is a measure which penalises the out-

of-control situations as well as false alarms. By doing so the Active SPC scheme is

judged, not only by how well it can prevent the out-of-control situations, but also its

propensity to limit the number of unnecessary control actions. That is, the IP provides

a measure of overall control performance.

6.5 The Active SPC Procedure

The proposed technique can be viewed as a form of static feedforward control with

dead zones. Instead of deterministic steady state models used in the design of static

feedforward compensation strategies, the proposed scheme makes use of statistical

relationships. Nevertheless, it is suggested that the proposed technique offers better

flexibility. Apart from being able to compensate for deviations in inputs that cannot be

manipulated, the control framework can also be easily extended to provide the

equivalent of feedback-feedforward control (Ibrahim and Tham, 1995).

The implementation of the Active SPC strategy can be divided into five stages:

observation, evaluation, diagnosis, decision, and lastly, the application stage. The

observation stage considers which variables are to be collected, how many sample

measurements to take and how often should they be taken, i.e. sampling time. The

sampling time is chosen so that the samples are not autocorrelated. Next, the necessary

conditioning on the data is performed, i.e. linearise the non linear variables and

transform the variables to standardised variables.

The evaluation stage involves analysis of the observed data. After the means and

standard deviations have been determined, the data is checked to assess whether the

normality assumption holds. Based on this, control limits are determined, then the

control chart., are plotted to implement control on-line.

The diagnosis stage is perhaps the most crucial part in this work. Here we applied two

types of multivariate statistical analysis, the Principal Component Analysis (PCA) and

Partial Correlation Analysis (PCorrA) to identify the correlations that might exist

between the quality variables and the input variables. If correlations exist between the

quality variable xk and the input variable xi, the indications is that the values of x i will

affect the value of xk. These input variables will be selected as the manipulated

variables.
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Once the appropriate manipulated variables have been decided, it is necessary to

specify the tool for making the correction in the implementation stage. Here, we

utilised traditional control charts namely the Shewhart chart with action lines (ShewA),

Shewhart chart with both action and warning lines (ShewAW), and the EWMA chart

to rectify the process if it departs from intended operating conditions.

Apart from being used in the diagnosing stage, both PCA and PCorrA are also

extensively used in the decision stage. The correlations derived from both methods are

used to modify the control limits of the traditional SPC charts. They are used to

formulate the control law and the magnitude of control actions for adjusting the

process when assignable causes occur. This is made possible by translating the control

limits on the quality variable xk to limits on the input variable x i through the

correlation procedure. The input variables selected for monitoring and manipulation

are based on how they influence the quality characteristics. By calculating the

correlations on-line, changing relationships between the quality variable xk and the

input variables xi can be tracked.

6.6 Summary

The procedural steps to follow for applying Active SPC are summarised below:

1. Choose a sampling time (At) such that there is no autocorrelation behaviour in

the sampled data.

2. Collect the data during a period when the process is perceived to be in

statistical control.

3. Calculate the mean and the standard deviation for all variables in the process.

4. Check whether the data fulfils the normal distributed data assumption. If it

fulfils this criterion proceed to step 5, if not go back to step 1.

5. Transform all non-linear variables in the process.

6. Standardise the data so that it will be dimensionless and in standard deviation

units.

7. Calculate the correlation coefficient based on either Partial Correlation

Analysis (equation 5.13) or Principal Component Analysis (equation 5.60).

8. Based on this result, select the most influential manipulated variables for

controlling the quality variables.

9. Use the correlation between the quality variable and the input variables to

determine the control limits and the control laws for the manipulated variables.
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10. Translate the given control limits and control laws to an existing control chart

e.g. Shewhart Charts or EWMA chart.

11. If the input variables cannot be manipulated then use equation (6.11) and

equation (6.12), to calculate a relationship based on an alternative manipulated

variable.

12. For on-line correlations updating, use equation (6.13) to smooth the value of

Cik.

In the next chapter we will evaluate the performance of this Active SPC strategy by

application to a simulated CSTR where a reversible exothermic reaction takes place.
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Chapter 7

Evaluation of Active SPC by application to a CSTR

7.1 Introduction

This chapter applies the proposed Active SPC methodology to the non-linear

simulation of a continuous stirred tank reactor (CSTR) described previously. The input

variables for the simulated process are: the concentration of Ain; concentration of Bin;

the temperature of reactants, Tin; temperature of the cooling medium, Tjin; the

flowrate of reactants, F; and the flowrate of the cooling medium, Fj. Meanwhile the

output variables are: the temperature of the reaction mass, T; cooling medium output

temperature, Tjout; concentration of Aout and Bout; and filially Gout, the product

concentration which was chosen as the quality variable and has to be kept under

statistical control.

Several Active SPC schemes were tested on the process to evaluate the effectiveness of

the respective configurations. Four situations were considered: (i) using on-line and

off-line calculation of control rules; (ii) applying different types of multivariate

techniques to calculate the correlations between the quality variable and the input

variables, i.e. using either PCA or PCorrA; (iii) using different manipulating strategies

to control the process, by manipulating all input variables, by using two manipulated

variables and lastly by utilising a single manipulated variable; (iv) utilising different

types of SPC charts, particularly, Shewhart charts with action limits (ShewA),

Shewhart chart with both action and warning limits (ShewAW), and Exponential

Weight Moving Average (EWMA) charts. We also discuss the importance of historical

data on the performance of Active SPC techniques. Lastly, we compare the

performance of these Active SPC methods with the APC strategy, specifically

Proportional Integral (PI) feedback control.
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7.2 Prerequisites Before Plotting Control Chart

Before process data is collected, there are several requirements that have to be fulfilled

as mentioned in chapter 6. The sampling interval (At) for collecting, monitoring and

controlling the process must be determined. This has to fulfil the criterion that there

must be no autocorrelation in the sampled data. Then, we collect the data using this

sampling time when the process is perceived to be in statistical control. The means and

the standard deviations were then calculated from the historical data. Later, the data is

checked for normality, so that the probabilities of data values falling within certain

ranges can be predicted. Non-linear behaviour in the data were also linearised before

PCorrA or PCA is applied to determine the relationship between the quality variable

and the input variables. This requirement is essential since both of these multivariate

methods are intended for determining linear association in the data. These requirements

have to be fulfilled before Active SPC can be implemented on the process.

7.2.1 Determining the Sampling Interval At

As mentioned previously, the collection of measurements from the process is based on

individual observations. The task now, is to determine the sampling interval, At for

collecting the data. In the APC scheme of chapter 4, the sampling interval, At was

chosen to be one tenth of the process time constant ('rp) which was determined by

using the Process Reaction Curve method. For SPC schemes, the sampling interval At

is chosen such that there is no autocorrelation in the data. To do this, 50 sample

measurements (m), were collected from the process with a sample interval of 10

seconds. Wetherill and Brown (1991) mentioned that any autocorrelation coefficient

falling outside the range of ±2/ -,Fn can be regarded as significant indicating that the

data is autocorrelated. Generally, we expect higher correlations for initial values of lag

k. The autocorrelation then starts to subside, fuially oscillating near zero for large lags.

Figure 7.1 shows the autocorrelation for all input variables while Figure 7.2 shows the

autocorrelation for Cout, the quality variable. From Figure 7.2, the autocorrelation line

crosses the ±2 I,,rrn at lag k . 10. Since, the sampling interval for collecting the

measurements was 10 seconds, the appropriate sampling time At for variable Cout was

therefore determined to be 100 seconds. The same principle can be used to determine

the sampling interval for other variables. Since the autocorrelation line cross the

±2/ -./7n line at lag k .---. 1 for all input variables in figure 7.1, the sampling interval At

for these input variables were chosen to be 10 seconds. Thus, the sampling time (At)

for the quality variable will be 100 seconds, while the input variables will be sampled,

monitored and controlled if necessary every 10 seconds.
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Figure 7.1 Autocorrelation functions for all manipulated variables
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Figure 7.2 Autocorrelation function for Gout

7.2.2 Calculation of the Initial Control Limits

After the sampling time, At, has been determined, 100 data records were collected

when the process was perceived to be in statistical control. The means and standard

deviations of all input variables, output variables and quality variable were calculated

and the results are given in table 7.1.

Table 7.1 Means and standard deviations based on historical data

Variables Mean (j1) Standard Deviation (a)

Trtin 0.99778 K 1.5802e-05 K

7'jin 288K 1.0716K

Ain 500 mole/litre 8.7009 mole/litre

Bin 500 mole/litre 2.9797 mole/litre

F 0.08 litre/sec 0.0022 litre/sec

F) 0.04 litre/sec 0.0007 litre/sec

Cout 205 mole/litre 10.0217 mole/litre

Tr 0.99738 K 2.4874e-05 K

7jout 359.79 K 2.9313 K

Aout 294.90 mole/litre 11.9016 mole/litre

Bout 294.53 mole/litre 9.6629 mole/litre
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The means and the standard deviations for the input and the quality variables were

used for the design of the SPC charts. The mean (ii) was the target while the standard

deviation, (a) was used to determine the control limits on the SPC charts.

7.2.3 Normality Distributed in the Data

As discussed in the previous chapter, the data from the process must be normally

distributed before SPC charts can be plotted. Normally distributed properties play an

important role in SPC control chart because the probability of data falling within

certain ranges can then be predicted. We can then determine the range in which the

process is considered to be in statistical control.

To test whether our data from the CSTR process satisfy this assumption, normal

probability plots are constructed for all input variables and the quality variable. These

normal probability plots have cumulative probabilities scale on the vertical axis and

values of the variable on the horizontal axis. Then a line of normal probability is drawn

at the centre of the plot passing through the mean (jt) of the variable and the 50%

cumulative probability. If most of the data points lie on this line, the data may be

considered to be normally distributed. Conversely, if the points appear to be an S-

shape, then the indication is that the data are not normally distributed. Sometimes, the

line of normal probability describes the majority of the data but does not characterise a

few extreme points. These extreme points are outliers that may have arisen from a

different distribution. If a part or all of the data naturally cluster about a straight line

and does not go through the intersection of the mean and 50% of cumulative

probability, it indicates that there is an error in the estimated mean. We can also obtain

a graphical estimate of the variable's standard deviation (a) by finding the associated

value measured along the horizontal axis corresponding to P15.87% on the vertical axis.

(DeVor et al., 1992)

Figure 7.3 shows the normal probability plots for all input variables while figure 7.4

shows the normal probability plot for the quality variable, Gout. The majority of the

data points of all variables are close to the line except for a few at either end of the line.

Moreover, all the normal distributed lines pass through the intersection of the mean

tabulated in table 7.1 and its 50% cumulative probability. Thus we can conclude that all

variables approximately follow the normal distribution, and that the respective sampling

intervals have been appropriately chosen.
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Figure 7.3 Normal probability plots for all input variables.
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Figure 7.4 Normal probability plot for Cout.

7.2.4 Effect of Transformation on the CSTR Temperature.

Figure 7.5 shows the variation of quality product concentration (Cout) due to variation

in CSTR temperature (D. From the figure, we see the non-linear behaviour of product

concentration with temperature. As mentioned previously this non-linear behaviour is

due to the Arrhenius reaction kinetics. To enable analysis using PCA or PCorrA, we

have to linearise the effects of CSTR temperature (7). This was achieved by applying

exp(-1/7) (e.g. equation 6.4). Figure 7.6 shows the relationship between this

transformed temperature on Gout. Here, we see that we have a linear function between

the transformed CSTR temperature (Tr) and Gout.
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Figure 7.5 Effect of variation in CSTR temperature (7) on the product quality

concentration (Cout)

Figure 7.6 Effect of variation of transformed CSTR temperature (Tr) on the product

quality concentration (Cout)
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7.3 Calculation of PCorrA and PCA from the preliminary data.

The 100 data records collected were then used in the Principal Component Analysis

(PCA) and the Partial Correlations Analysis (PCorrA). The resulting correlations (Cik)

are used to quantify the relationships between the quality variable and the manipulated

variables. Before we proceed with the calculations, we know that the temperature of

the reaction mixture is governed by the non-linear Arrhenius equation. Since both

multivariate methods are only applicable for linear systems, the values of the input

temperature (Tin) and the reactor temperature, (7) were linearised using the

exponential transformation of equation (6.4). Then all input and output variables were

standardised before PCA and PCorrA analyses were performed.

The results from the PCA and PCorrA calculations are tabulated in Tables 7.2 and 7.3.

Table 7.2 shows the percentage of contribution of each Principal Component to the

total variation in the data. They are arranged according to the corresponding

eigenvalues in descending order. The results reveal that the first seven principal

components account for more than 98% of the total variation in the data. It verifies

that most of the variations in the process is due to the six input variables and the

quality variable which describe the variation in the outputs. The four remaining

principal components do not offer any significant explanation about the data variation

and hence can be neglected from further analysis. Thus the reduction of dimension in

the data space n in equation (5.60) for this case will be to 7 instead of 11.

Table 7.2 Percentage variation due to each Princi pal Components

Pj P1 P2 P3 P4 P5 P6 P7 P8 P9P11

2
l .1 5.279 1.403 1.108 0.952 0.919 0.622 0.495 0.193 0.024

% var 47.99 12.76 10.08 8.661 8.357 5.662 4.502 1.761 0.227

I % 47.99 60.75 70.83 79.49 87.84 93.51 98.01 99.77 100

Table 7.3 shows the result of applying equations (5.13) and (5.60) to calculate the Cik

values. The results show that Fj has a negative correlation with Gout. The negative

correlation between Cout and Fj is significant because it matches the analysis based on

the Process Reaction Curve. From figure (4.8), we can see that increasing the flowrate

of the cooling medium decreases the concentration of Gout. The results also show that

Gout have positive correlations with Trtin, Tjin, Ain, Bin and F. From the same table
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we also found that Trtin is the most influential input variable. This is shown by its

highest Cik value.

Table 7.3 C based on PCA and PCorrA

var Trtin Tjin Ain Bin F Fi

PCA Gout 0.8075 0.6487 0.1066 0.2214 0.1665 -0.0136

PCorrA Gout 0.7837 0.4525 0.3072 0.2848 0.2292 -0.1922

These correlations between the input variables and the quality variables are used to

select the manipulated variables to control the process. Three manipulating strategies

will be implemented on the system. Firstly, we are going to use all the inputs as

manipulated variables. For cases where some of the input variables cannot be

manipulated, we are going to implement two kinds of manipulating schemes, e.g. either

using two or a single manipulated variable to control the process. For the two

manipulated variables option, appropriate adjustments of Trtin could compensate for

variations in Ain, Bin and F, while appropriate adjustment in Tjin could compensate for

variations in Fj, thus maintaining control of Cout. These two variables were selected

because of their high influence towards the quality variable compared to the other input

variables. Since Trtin is the most influential variable compared to the. others it witl be I

good candidate as the manipulated variable for a single variable manipulation scheme.

Comparison of the coefficients in table 7.3 shows that although the signs of

correlations of the inputs with the quality output are the same in both techniques, the

magnitudes of PCA correlations are higher in general for Trtin, and Tjin in particular.

The anticipated consequence is that the PCorrA based charts will be less sensitive,

compared to PCA based chart. This is because the limits of PCorrA based SPC charts

will be wider than those of PCA based charts.

7.4 Performance Evaluation

To evaluate the effectiveness of the various Active SPC methodologies that are being

considered, white noise was added to the inputs to simulate out of statistical control

situations. Table 7.4 shows the standard deviations of the white noise used for the

input variables. Active SPC charts with limits determined as described in the previous

chapter were then applied to monitor those input variables indicated by the PCA or the

PCorrA as being significantly correlated with the product concentration. When out-of-
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control cases were detected, adjustments were made on the chosen manipulated

variables. The control actions on the manipulated variable were to simply bring them

back within the particular inputs' limits.

Table 7.4 Standard deviations for white noise

Input variable Standard Deviation

Trtin 0.8487 Kelvin

Tjin 6.0 Kelvin

Ain 18 mole/litre

Bin 30 mole/litre

F 0.05 litre/second

Fj 0.02 litre/second

7.4.1 Cases Considered

Initially, it was assumed that all input variables affecting the quality variable Cout could

be measured and manipulated on-line. However, there are situations where some of the

input variables are not measured was also considered. For example, the concentration

of Ain and Bin may need to be measured using gas chromatography (GC) which is very

expensive. In other situations, sometimes the input variable cannot be manipulated on-

line. In this work we assume that all the input variables can be measured on-line, but

some variables cannot be manipulated. The manipulation of all inputs, the manipulation

of only some inputs, and the manipulation of a single input were then considered. In the

strategy involving only some of the inputs, it was assumed that the input concentrations

of the reactants, the flowrate of reactants and the flowrate of the coolant cannot be

adjusted on-line leaving only Trtin and 7'jin as the manipulated variables. The last

scheme assumes that only Trtin can be manipulated.

This study also considered the use of Shewhart charts with action limits (ShewA);

Shewhart charts with both action and warning limits (ShewAW), and lastly Exponential

Weight Moving Average (EWMA) charts. The ShewA chart is a time plot of data with

action limits at ±3a centred about the mean and the process is considered to be out-of-

control when a single observation falls outside these limits. The ShewAW chart will be

more sensitive to variation, because this chart is equipped with two control rules. The

first rule is adopted from the ShewA control rule while the second one considers the

process to be out-of-control when two out of three consecutive observations lie

beyond the mean ± 2a warning lines. On the hand, using the EWMA chart, if an
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0 
observation falls outside the mean ± 3a I	 limits, the process is considered to

(2 — 0)

be out-of-control, where 0 is the weight assigned to the current sample observation.

Here, 0 was chosen to be 0.3.

The use of fixed as well as on-line calculated PCA or PCorrA coefficients were also

investigated. The coded manipulation strategies for the above cases are described

below and have the following meanings:

1st digit:	 1) Off-line correlations calculation

2) On-line correlations calculation

2nd digit:	 1) Utilising Partial Correlation Analysis (PCorrA)

2) Utilising Principal Component Analysis (PCA)

3rd digit:	 1) Shewhart chart with action limits (ShewA)

2) Shewhart chart with action and warning limits (ShewAW)

3) EWMA control Chart (EWMA)

4th digit:	 1) Manipulate all input variables

2) Manipulate Trtin and Tjin only

3) Manipulate Trtin only

Thus, the code 2112 denotes results obtained using Shewhart charts with action limits

(ShewA), where the limits are based on Partial Correlations Analysis (PCorrA)

calculated on-line using Trtin and Tjin as manipulated variables.

7.4.2 Block Diagrams of Active SPC schemes

Figures 7.7 to 7.12 show the block diagrams for several configurations of Active SPC

schemes. Figure 7.7 and 7.8 show the Active SPC schemes for on-line calculated

control limits for PCA and PCorrA, utilising all input variables as manipulated

variables. Figure 7.9 and 7.10 show the corresponding control schemes when only two

manipulated variables are used. Finally figures 7.11 and 7.12 show the Active SPC

scheme utilising only one manipulated variable to control the quality variable. When

fixed control limits are used, the PCorrA block and PCA block with the block referring

to equation (5.60) are calculated off-line. Additionally equation (6.13) that is used to

smooth the C ik values is no longer necessary.
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Figure 7.7 Active SPC scheme for on-line PCA calculated control limits using six

manipulated variables

Figure 7.8 Active SPC schemes for on-line PCorrA calculated control limits using six

manipulated variables
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Figure 7.9 Active SPC scheme for on-line PCA calculated control limits using only two

manipulated variables

Figure 7.10 Active SPC scheme for on-line PCorrA calculated control limits using only

two manipulated variables

100



ik= ( 1 -X )eik( t - 1 )-F XCik

Equation (6.13)
Disturbances

F, Fj, Tjin
V

 
vijvkIJ uation (5.60)Active SPC

monitoring
chartsAM, Bin

PCA
xsik = cik(xsi - 11)

AXIIc
t\ Tr, TjoutA	 sLx Cnik Process

s,new	 s
X m	 = X,

ni

- im

Aout, Bout

Cout
— 1=1

Manipulated
variable 	

	

Trtin  
Active SPC

monitoring & control
chart

SPC
monitoring —0. Cout

chart

;lc = ( 1 -X, )eik( t - 1 )+ XCik

Equation (6.13)
Disturbances

F, Fj,

Mn, Bin

V

Active SPC
monitoring

charts

N--

Cout

PCorrA1)1
A	 = Cik(x-5i 	11)

AXIk
SPC

monitoring
chart

A s —xiin	 Cink

ni
s,new	 s	 'VA 	 s

Process

X	 - 1-i LAX im
m.

1=1

Manipulated
variable

Active SPC
Trtin	 monitoring & control

chart

Evaluation of Active SPC by application to a CSTR

Figure 7.11 Active SPC scheme for on-line PCA calculated control limits using only a

single manipulated variable

Figure 7.12 Active SPC scheme for on-line PCorrA calculated control limits using only

a single manipulated variable
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7.4.3 Application of PCA and PCorrA

The 100 data records, as described previously, were used to determine the control

limits used in implementing the Active SPC methodology. When on-line calculated

coefficient were employed, the off-line calculated Cik were used for the first 50

observations. Thereafter, the Cik were calculated every 5th. sample instant using a

window of 50 previous samples. These were then smoothed using equation (6.13) with

X = 0.3 and the smoothed values were used to update the respective control limits and

the manipulated variables. When PCA was used to determine the Cik coefficients, only

those principal components which contributed to 95% of the cumulative variation were

considered.

7.5 Results and Discussions

The performance of the various strategies were evaluated by observing the percentage

of out-of-control (NOC), controlled (NUC) and false alarms (NFA) associated with the

quality variable over 500 observations when the Active SPC methods were applied to

the CSTR process. The percentage of NOC, NUC and NFA were determined based on

the number of out-of-control points that would have occurred if the process was not

controlled. Table 7.5 shows the maximum number of out-of-control situations and the

maximum number of false alarms in each type of control charts if the process was not

controlled.

Table 7.5 Maximum NOC and NFA in different control charts

Type of Charts Maximum number of

Out of Control Points

Maximum number of

False Alarms

ShewA 11 489

ShewAW 19 481

EWMA 38 462

Table 7.5 also shows the sensitivity of the respective SPC charts. The ShewAW chart

have eight extra out-of-control situations compared to the ShewA chart. These eight

extra out-of-control points were due to the violation of two out of three consecutive

point falling between mean ± 2a to mean ± 3a limit lines. The EWMA chart is even

more sensitive having thirty eight out-of-control situations. The number of false alarm

for each SPC charts were calculated by taking away the maximum number of out-of-

control points from the maximum number of observations in the process. The rest of
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the results from this work is tabulated in Appendix A. Selected features from these

results will be discussed in the following sections.

7.5.1 Using Fixed Control Limits from off-line Multivariate Analysis

Figure 7.13 shows the performances of the various Active SPC strategies that

manipulated all variables when the coefficients were calculated using off-line analysis.

As mentioned before, the PCorrA based charts (x 1 xx) are conservative compared to

the PCA based charts (x2xx). For example, this can be seen by comparing the

performance of run 1111 with run 1211. Run 1211 resulted in less out-of-control

instances compared to run 1111.

Figure 7.13 Performances of off-line analysis by manipulating all variables.

Comparing the performances of all the SPC charts considered, we are able to assess the

sensitivity of the control charts involved. ShewAW charts (xx2x) only allow a low

percentage of out-of-control points to occur. Meanwhile, the EWMA charts (xx3x) are

the most sensitive. It does not allow any out-of-control situations to take place in the

process. Since the EWMA charts are sensitive to small shifts in the process, it will

always be alert and take control action when the process show signs of change. This is

also reflected in the higher number of false alarms recorded. The main reason for this is

that it has the smallest band of control limits compared to the other two charts. As a

result the control is tighter but at the expense of a higher number of false alarms. This
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behaviour of high false alarms can also be seen in the ShewAW charts' performance,

which was caused by the implementation of extra control rules.

Figure 7.14 shows the performances of the Active SPC strategies, manipulating only

Trtin and Tjin using off-line calculated coefficients. The EWMA and ShewAW charts

maintained their tight control performance by not allowing out-of-control points in the

process. Looking at the figure, we can again see that in general, tight control

performance is accompanied by a high number of false alarms.

Figure 7.14 Performances of off-line analysis by manipulating Trtin and Tjin

The performances of manipulating only two variables are better compared to those

manipulating all variables. This can be seen by comparing the performance of runs

1111 and 1211 from figure 7.13 with their counterparts 1112 and 1212 in figure 7.14.

By changing the manipulation strategy from all input variables to two input variables

the percentage of out-of-control using scheme 1112 was reduced by 18% and for the

1212 chart, were reduced by 9%. The possibility of this good performance is because

the out-of-control situations of the other measured disturbances variables were

compensated by utilising Trtin and Tjin as the manipulated variables, both of which

have the highest correlation between the input and the quality variables (Table 7.3).

Thus these manipulated variables will be very sensitive to changes in the process. Even

though Trtin and Tjin were also manipulated in the (xxxl) schemes, the effect of trying

to compensate for deviations in measured disturbance variables in (xxx2) schemes,
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ensures that Trtin and 7jin are always affected when we have out-of-control situations

in these measured disturbances variables (see equation 6.12). However, the number of

false alarms remain approximately the same as in the previous case.

Figure 7.15 shows the performances of the SPC charts, manipulating only Trtin, using

off-line calculated control limits. The EWMA and ShewAW strategies still maintain

their tight control performance by not allowing any out-of-control situations. Overall,

better control is achieved using this single manipulated variable. The percentage out-of-

control in run 1113 is further reduced by 18% using this manipulation strategy. On the

other hand, there are no out-of-control points for run 1213 (see runs 1211 and 1212 in

figures 7.13 and 7.14).

Figure 7.15 Performances of off-line analysis by manipulating only Trtin

From the preceding discussion we can see that changing the manipulation strategy from

all variables to two and finally to one variable reduces the percentage of out-of-control

points for the ShewA and ShewAW charts. For ShewAW charts, both multivariate

methods reduce the out-of-control points by 5% when we reduce the number of

manipulated variable from all to two. However, each change of manipulation strategy

reduces the percentage of out-of-control cases in PCorrA based ShewA charts by 18%.

For PCA based ShewA charts, changing the manipulation strategy from manipulating

all inputs to two reduces the percentage of out-of-control point by 9%. However,

reducing the manipulated variable from two to one for PCA based charts, a further
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reduction of 18% in the percentage of out-of-control points is achieved. A possible

reason for this good performance when manipulating a single variable is because we

used Trtin as the manipulated variable which is sensitive to changes in the process (e.g.

having the highest Cik value, see table 7.3). It seems that the summation effects of out-

of-control situations from the rest of the measured disturbances render control using

Trtin more sensitive.

All EWMA and ShewAW charts with off-line calculated control rules have identical

percentages of controlled points but differ slightly in the percentage of false alarms,

except for runs 1121 and 1221. If the performances of both multivariate methods are

compared using the preceding mentioned strategies, we see that PCorrA based charts

generally have a lower percentages of false alarm compared to PCA based charts. This

is because the correlation based on PCorrA is smaller compared to PCA (see table 7.3)

and thus it will take a slightly more conservative approach towards controlling the

process.

From this set of results we can observe that the control performance generally becomes

better as we change the type of control charts that are used. This can be seen by low

percentages of out-of-control (NOC) situations when ShewAW charts were used and

no out-of-control points when EWMA were utilised. This is expected, since tighter

control limits and more control rules on the SPC charts will suppress out-of-control

situations, but at the expense of an increase in false alarms.

7.5.2 Results using on-line Calculated Control Limits

Figure 7.16 shows the performances of the Active SPC charts, manipulating all

variables, and using on-line updating of b-'s ik . As illustrated in the figure, PCorrA based

SPC charts (2111) resulted in 18% out-of-control points. This is a 40% improvement

over the results obtained using the (1111) scheme. Meanwhile, the PCA based SPC

chart (2211) allowed about 45% out-of-control cases to pass through the process. This

is 18% more out-of-control points compared to the performance of run 1211.

The values of b-ik calculated on-line using PCorrA started to increase compared to the

off-line method. Meanwhile, the values of b-ik based on PCA started to decrease. This

can be seen in figure 7.17, where the eik for Trtin, Tjin, Ain, Bin, F and Fj are seen to

be increasing for run 2111 and decreasing for run 2211. As a result the PCorrA based

charts become more sensitive to changes in the process, while the PCA based charts

become conservative, i.e. have wider control limits. Thus, better control is achieved
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using PCorrA based charts. On the other hand, the performance of PCA based charts

degraded when the C k coefficients are calculated on-line. Nevertheless, the method

performed well when fixed Cik values were used because the data is free from out-of-

control situations. During on-line updating, the calculation of - ik is based on the data

as the process being controlled, and this included data containing several out-of-control

situations.

Figure 7.16 Performances based on on-line analysis by manipulating all variables

The same trend of degrading performances can also be seen for the on-line calculated

control limits for the PCA based ShewAW and EWMA charts. There are around 5%

out-of-control situations for these two charts. Both of these phenomenon will be

discussed later in section 7.5.3. Here, the observations indicate that we can reduce the

percentages of out-of-control points in the process by changing the types of PCA based

charts. The 45% out-of-control points using ShewA chart (2211) can be reduced to

roughly 5% by using the ShewAW (2221) and EWMA (2231) charts.
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Figure 7.17 eik values for runs 2111 and 2211
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Figure 7.18 shows the performances of the SPC charts that update e'ik on-line, and

manipulating Trtin and Tjin. The on-line updated eik via PCorrA reduces the out-of-

control points in the ShewA SPC chart (2112) by 9% compared to the 2111 chart.

Meanwhile the rest of PCorrA based charts maintained the good control performances

by not allowing any out-of-control situations to pass through the process.

Figure 7.18 Performances based on on-line analysis and manipulating Trtin and Tjin

On the other hand, on-line updating of eik using PCA resulted in higher percentages of

out-of-control situations compared to the previous manipulating strategy. This can be

explained by looking at figure 7.19, where the Cjk values of runs 2211, 2212 and 2213

are illustrated as the process is being controlled. From the figure we can see that the

'eik values for Trtin and Bin in run 2212 are smaller than run 2211. At the same time

the other -eik values are similar. Since, for this control schemes we are using just two

variables to control the process, the control charts for Trtin will become conservative

and have wider limits. This will allow more variations to enter the process.

Nevertheless the percentages of out-of-control situation reduce as we change the type

of control chart to govern the process, e.g. from ShewA to ShewAW and lastly to

EWMA.
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Figure 7.19 eik values for runs 2211, 2212 and 2213
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Figure 7.20 shows the performances of the last set of SPC charts with 'eik updated on-

line, and manipulating only Trtin. There are no out-of-control points when the 2113

chart was used, an improvement over the previous chart of 2112. Here we see that

changing the strategy of PCorrA based ShewA charts from manipulating all to two and

fmally to a single variable decreases the percentage out-of-control cases by 9% each

time, (compare runs 2111, 2112 and 2113). The above situations can be explained by

looking at how the lie& values based on PCorrA changes during the control run as

shown in figure 7.21. In this figure, the 1/ eik values of run 2111, 2112 and 2113 are

plotted for comparison. From the figure we can see that the 1/ -eik values for Trtin and

Fj are similar for all runs. The 1/ ...'ik values for Bin and F are similar for runs 2112 and

2113, but they are smaller than that for run 2111. On the other hand, the lie& values

for Tjin are similar for run 2111 and 2112, but they are bigger than that for run 2113.

Lastly when we compare the lie& value for Ain, we see that run 2111 has a larger

lie& than 2112, and 2112 has a larger 1/E' ik value than 2113. From this, through the

combined effects of all variables, we can deduce why the control performance of

manipulating a single variable (Trtin) is better than manipulating two variables and all

variables for PCorrA based ShewA charts. Even though we are using only Trtin to

manipulate the process, in run 2113 we still have to take into account the effect of the

rest of the measured disturbances variables in the above discussion. This is because

they were the basis of intended control limit by which Trtin is used to compensate for

variations in the other inputs to the process (refer to equations 6.)) and 6.)2).

Figure 7.20 Performances based on on-line analysis and manipulating only Trtin
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Figure 7.21 lieik values for runs 2111, 2112 and 2113
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However, the ShewA charts based on PCA show increases of 9% in out-of-control

situations as we change the manipulation strategy from manipulating all to two and

fmally to a single variable, (compare the runs of 2211, 2212 and 2213). This

phenomenon can be seen by looking at the .e-ik values of Trtin and Tfin of run 2213,

which is smaller than run 2212 in figure 7.19. Due to this phenomenon, the 2213

control scheme, (i.e. only Trtin is the manipulated variable for this case) is no longer

sensitive compared to run 2212.

Updating the eik values on-line for PCorrA based charts improved the control

performance compared to the off-line method. This can be seen by comparing the

performances of charts 2111, 2112 and 2113 with their off-line counterparts, 1111,

1112 and 1113. For the first case, comparing 2111 and 1111, there were 27% less out-

of-control situations, for the second case, comparing 2112 and 1112, there were 18%

less out-of-control situations and finally when comparing 2113 and 1113, there were

9% less out-of-control situations when e- ik was calculated on-line.

On the other hand, the converse was true when PCA was used to calculate e-ik. Here

the use of on-line calculated control limits degraded control performance and several

out-of-control points were allowed to pass through the process.

7.5.3 Index of Performance

From the above discussions, it is difficult to discern which configuration gave the best

overall control performance. Figures 7.13 to 7.16, 7.18 and 7.20 show that high

percentage of points under control (NUC) is normally accompanied by a high rate of

false alarms, i.e. increased producer's risk, which is undesirable. In judging which of the

Active SPC configuration provided the best overall performance, a compromise is

therefore necessary to balance reduced consumer risk against increased producer risk.

In this investigation, the following heuristically derived index of performance (IP) was

used to identify the configuration that provided the best control:

1p. 1.0.5(  %N0C+%NFA)

L%NUC +%NFA

This index penalises the percentage of out-of-control points as well as the percentage

of false alarms. It is scaled so that the best control strategy, i.e. no out-of-control

points and no false alarms would have an IP equal to one. The worst case which

corresponds to all points being out-of-control (e.g. NOC=100%, NUC=0%) and 100

(7.1)
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percent false alarms would lead to an IP of zero. The IPs for the various configurations

tested previously are plotted in figures 7.22 to 7.23 and 7.27.

From figure 7.22, which shows the IPs of ShewA charts, we see that changing the

number of manipulating variables from all to two and finally to one generally increases

the IP for SPC charts using fixed control limits. The use of on-line calculated Cik using

PCorrA also shows the same trend. In contrast, the use of on-line calculated b- ik via

PCA resulted in decreasing JP values as the number of manipulated inputs were

decreased.

Figure 7.22 IPs for ShewA charts

The best IP performance for the ShewA charts was recorded by the 1213, followed by

the 2113 control scheme. Both of these runs did not allow any out-of-control points to

pass through the process. In fact these two control schemes have the highest IP values

when we compare all the control schemes considered in this study. A possible reason

why the 1213 and 1113 control schemes have the best IP is because the manipulated

variable that we chose, Trtin, was very sensitive to changes in the process (see table

7.3).

Figure 7.22 also show that the IPs of PCA based ShewA charts where Cik is fixed, are

generally better compared to its multivariate analysis counterpart, PCorrA based

ShewA charts using the same Cik calculation scheme (compare 1211 with 1111, 1212
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with 1112, and 1213 with 1113). This is also because the former is more sensitive to

changes compared to the latter as shown in table 7.3.

The results in figure 7.22 also shows that the use of PCorrA to update the limits for

ShewA charts on-line generally leads to better control performances than when fixed

limits were used. This implementation deal with changes in process characteristics by

changing the control limits.

Figure 7.23 shows the IPs for the ShewAW charts. The ShewAW charts maintained

the same trend of IPs as the ShewA charts, where charts using off-line calculated limits

and limits calculated on-line via PCorrA show better control performance when the

number of manipulating variables was reduced. This is because as we reduce the

number of manipulating variables from all to two and finally to one, for the off-line

calculated control limits, the combination of manipulative variables that we chose as

the substitute become more sensitive to changes in the process (i.e. have high Cik

values). On the other hand, the on-line updating scheme for PCA based ShewAW

charts show a contrasting behaviour, having a downward trend in IPs. This is because
the b-ik values for the chosen manipulated variables such as Trtin and Tjin started to

decrease as we reduce the number of manipulated variables for on-line PCA updating
schemes. This phenomenon can be seen in figure 7.24 where the eik values for all input

variables are plotted for runs 2221, 2222 and 2223.

Figure 7.23 IPs for ShewAW charts
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Figure 7.24 eik values for runs 2221, 2222 and 2223
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Comparing the IPs for all PCorrA based ShewAW charts, we see that the IP values of

off-line designs are generally better than the on-line methods. It seems that changing

the specification of control limits from off-line design to on-line updating deteriorates

the overall performance. Nevertheless, all the charts (x12x) do not allow any out-of-

control point to pass through the process except for run 1121. Thus the NOC = 0%,

NUC = 100%. The only difference between all these charts is their values of NFA.

we arrange the IPs of charts, i.e. 1121,1122,1123,2123,2122, and 2121; we see from

figure 7.25 that changing control limits calculation strategy from off-line to on-line, the

number of false alarms is increased.

Figure 7.25 IPs for PCorrA ShewAW charts

The .eik values for PCorrA on-line updating schemes are illustrated in figure 7.26. The

'aik value of Trtin for a single manipulated variable is the most conservative, compared

to the other two manipulating strategies. Nevertheless, through the combined effects of

other input variables, the performance of run 2123 is a bit conservative compared to

run 2122 and run 2121. The result is that the percentage of NFA in run 2123 is slightly

less compared to runs 2122 and run 2121. They make the IP of run 2123 is better than

run 2122 and run 2121. The on-line updated scheme PCorrA based ShewAW charts

are more sensitive compared to their off-line updated counterparts. Since, the NUC for

the on-line updating scheme is zero, this sensitive behaviour increased the percentages

of false alarms. As a result some of the off-line updating schemes shows better overall

performance than the on-line designs (e.g. 1123 compared to 2123 and 1122 compared

to 2122).
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Figure 7.26 .eik values for runs 2121, 2122 and 2123
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The best overall IP for the ShewAW charts is that obtained using PCorrA off-line

design by manipulating two and a single manipulated variable (1122 and 1123). Both of

these charts have the same IP values. These are followed by the PCA off-line updating

schemes utilising the same manipulating strategies (1222 and 1223). Almost all the

ShewAW charts used in this study do not violate the warning rules, except for runs

2212 and 2213. Furthermore all the ShewAW charts used in this study have IPs greater

than 0.75.

Figure 7.27 shows the IPs for EWMA charts. For PCorrA based SPC charts, there is a

downward trend in IP from 1131 to 1133 and 2131 to 2133. However there are no

out-of-control situations in all these PCorrA based charts. In general, it is rare to have

data points fall outside the limits on EWMA charts because of the tighter limits that

these charts are using. The fall in IPs is due to the increase in the number of false

alarms.

Figure 7.27 IPs for EWMA control charts

For the EWMA charts based on PCA, the same circumstances prevail. There is a

downward trend all the way from the off-line to on-line calculations of control limits.

However, the downward trend of IPs for the PCA on-line calculated control limits

included cases where there are several out-of-control points. This is because the chosen

manipulated variables that are suppose to be sensitive became conservative during the
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run. This event can be traced to the downward trend in 'eik value for Trtin as shown in

figure 7.28.

In general, the IPs for the EWMA control charts decrease as we reduce the number of

manipulated variables. Although we have this decreasing trend in IP for the EWMA

charts, there is no out-of-control incident for the PCorrA based charts and PCA off-

line calculated control limits. They only differ because of the percentages of false

alarms, which increase as we reduce the number of manipulated variables. This

indicates that these control schemes remain sensitive to changes in the process.

Generally, the EWMA charts gave very good control performance by not allowing any

out-of-control points to pass through the process except when PCA is used to update

the control limits on-line. Nevertheless all the EWMA charts used in this study have IP

values greater than 0.72. The weakness of this chart is due to the associated high rate

of false alarms. From Chapter Two we mentioned that the EWMA chart is equivalent

to Proportional feedback control. Thus it has some characteristic of feedback control

where it takes a lot of control action when the process deviates away from the limits.

From figure 7.22, 7.23 and 7.27 we see that the descending order of IPs for PCA on-

line updating schemes goes from 22x1 to 22x2 and 22x3. For all these manipulating

strategies, the percentages of out-of-control points increase as we change the

manipulating strategies from all to two to a single manipulated variable. The main

reason for this as mentioned is due to the correlation between the quality variable and

the chosen manipulated variables become smaller. As a result, the chosen manipulated

variables control charts become conservative and can tolerate wider control limits. Due

to this effect much variations can enter the process.
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Figure 7.28 .eik values for runs 2231, 2232 and 2233
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7.5.4 The Effects of Historical Data in Designing Active SPC Strategies

As mentioned, the data used to design the Active SPC strategies and with their effects

on their performances will be discussed here. Two sets of historical data were taken

from the process when it is perceived to be in statistical control. These two set of

historical data have the same means but differ in standard deviations, and hence yields

different initial values of Cik. The performances of charts designed based on each of

these data sets are compared in figures 7.29-7.31. The charts without asterisk is based

on historical data that we have used and discussed in previous sections, while the

charts coded with asterisk (*) indicates the use of the new batch of historical data. The

latter data set will be referred to as data set "b", while the former will be referred to as

history data set "a". Only PCorrA based charts will be discussed because they showed

more consistent results as indicated by the analyses in section 7.5.1 to 7.5.3. The

results for data set "b" and their initial values of Cik are tabulated in Appendix B.

Figure 7.29 Effects of different data sets for off-line PCorrA, manipulating all inputs

Figure 7.29 shows the performances of charts with limits determined off-line and

manipulating all variables. From this figure we see that the performance of charts based

on data set "a" is superior to those based on data set "b" as the latter strategy allow

out-of-control points to pass through the process (e.g. comparing 1121* and 1121; and

1131* and 1131). However, when both data sets resulted in charts having the same

number of NUC, the use of data set "b" gave better performance than "a", due to less
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false alarms. This phenomenon can be seen by comparing the runs 1111* and 1111.

From this discussion we can see that data set "b" results in more conservative charts

compared to data set "a".

To elaborate further, let us look at charts with fixed limits that manipulate only Trtin.

From figure 7.30 we see the same effects. Whenever out-of-control situations occur,

and where the NUC are not the same, the use of data set "a" leads to better control

performances than data set "b" and vice versa if there are no out-of-control situations

and NUC are the same. By comparing the IPs for all these charts in figure 7.31, the

same trend is observed. Based on these results we can conclude that although the

history data "b" is conservative compared to "a", whenever the control charts are

designed based on both data sets can eliminate out-of-control situations from the

process, those based on data set "b" will perform better than those based on data set

"a". This is because having smaller band of control limits on the charts can only

improve the control performance to a certain extent. Beyond this, it will just increase

the percentages of false alarm.

Figure 7.30 Effects of different data sets for off-line PCorrA charts, manipulating Trtin
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Figure 7.31 Comparison of IP between histories data

7.5.5 SPC Charts that being used in the Analysis

Figures 7.32 to 7.34 show examples of SPC charts that have been discussed in this

chapter. Figure 7.32 and figure 7.33 show the reactants input temperature (Trtin) and

the coolant temperature (Tjin) for the PCA based ShewA chart using on-line calculated

control limits, manipulating only two input variables (i.e. run 2212). For the first 50

samples, both manipulated variables ShewA charts control limits were kept constant.

Then as the limits were updated on-line based on the calculated PCA correlation

coefficients, significant changes were observed after the 50'th sample in the ShewA

charts for Trtin and Tjin. The limits on both charts started to widen, rendering the

control charts more conservative. Due to this, we have several out-of-control points in

the quality variable as shown in the ShewA chart of figure 7.34.
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7.5.6 Comparison between Active SPC and APC

In this section, we will compare the performances of Active SPC and the APC method.

With the Active SPC methods, only those charts that do not allow out-of-control

points by manipulating Trtin will be used. Figure 7.35 shows the percentages of control

actions for both methods. The APC method recorded the highest percentage of control

actions followed by the EWMA charts, ShewAW charts and lastly the ShewA charts.

The high percentages of control action in EWMA charts is expected because it has the

smallest control limits compared to the rest of the SPC charts used in this study. The

ShewAW chart has high percentage of control actions because of additional control

rules. From figure 7.35 we see that the 1213 chart have the least percentages of control

action followed by charts 1123 and 2123.

Figure 7.35 Comparison of control action percentages between Active SPC and APC

Regarding the percentages of control action shown in figure 7.35, it is clear that APC

is the most effective method for maintaining set point because it is always constantly

taking control action to make sure that the process is on target. However, since APC

systems are continually making physical adjustments to a process, there can be

increased in wear on final control elements. This, together with the maintenance

requirements of the control equipment itself, can substantially increase the costs.
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Figure 7.36 shows the amount of energy used in relation to the nominal level. The

nominal value is the minimum energy needed to maintain the process in control when

there are no out-of-control situations in the process. The nominal level value is

calculated by summing the deviations of the manipulated variable, (Trtin) from the

mean reactant temperature which is 450 Kelvin. In the case of our CSTR example, the

utilisation of Trtin as the manipulated variable incurs energy costs. For example, higher

costs are incurred if Trtin has to be raised to satisfy control objectives. During the

calculation of this base line value, the process is in statistical control.

To evaluate the effectiveness of the Active SPC and the APC method, white noise was

added again to the inputs to simulate out-of-control situations. Then, the sum of

reactant temperature deviation from the mean was calculated. From this new value, we

take away the nominal value of energy used. The results are illustrated in figure 7.36.

From the figure, we see that the EWMA based chart (xx33) utilised the least energy to

control the process. The main reason for this is because it has the smallest band of

control limits compared to ShewAW and ShewA charts. On the other hand, the APC

method consumed the highest amount of energy in maintaining the process at set-point.

Figure 7.36 The amount of energy used in relation to nominal level

From the above result we can conclude that Active SPC using EWMA control charts

can out perform the APC method and the rest of the SPC charts. Although the

percentages of control action in EWMA charts is higher compared to the ShewAW and
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ShewA charts, savings can be gained through less energy utilisation for process

control. In addition, based on the performances of Active SPC schemes in section 7.5.1

and 7.52, we observed that there are no out-of-control situations for all PCorrA based

charts and PCA based EWMA chart for the off-line updating control limits schemes.

Moreover, as discussed in Chapter Two, the EWMA statistics can be used for

forecasting future data. Thus it has an added advantage compared to the other two

types of control charts used in this study.

7.6 Summary

This chapter discussed the results of applying Active SPC methods on the simulated

CSTR. A procedure for determining an appropriate sampling time is given and

elaborated, and it was shown that the procedure leads to data that fulfils normality

assumptions. Off-line multivariate analyses were performed on historical data to select

relevant manipulated variables for controlling the process. From there, we control the

process by using several Active SPC methods. An "Index of Performance" (IP) was

also defined to enable assessment of the overall performance of the Active SPC

schemes. We also discussed the effects of the historical data used to provide the initial

values of Cik on the performance of the Active SPC techniques. Lastly, we compare

the performance of these Active SPC methods with the APC strategy, specifically PI

feedback control.

Based on the results, we found out that reducing the number of manipulated variables

will increase the IP for the PCorrA based ShewA and ShewAW charts. The same

phenomenon is observed for the off-line calculated limits for the PCA based ShewA

and ShewAW charts. However, the converse is true for on-line calculated limits for

PCA based charts. For the EWMA control charts, the IF decreases as we reduce the

number of manipulated variables. Although we have this decreasing trend in IPs for the

EWMA c h arts, there are no out-of-control incidents for the PCorrA based charts and

PCA off-line calculated control limits. They only differ in the number of false alarms,

which increases as we reduce the number of manipulated variables. It indicates that

these control schemes remain sensitive to changes in the process. Since the NOC is

zero and the NFA is increasing, the IP for these manipulation strategies will show a

downward trend because we penalise the number of false alarms in calculating the IP .

All charts with limits calculated on-line using PCA shows a decreasing trend in IP as

we reduce the number of manipulated variables. The number of out-of-control points

are generally larger than when off-line calculated control limits were used. For off-line
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cases, the data used to calculate the limits do not have any out-of-control points, but

the converse may not be true. Thus, when off-line calculated limits are used, the chosen

manipulated variables are sensitive to changes in the process but when we switch to the

on-line updating scheme, the chosen manipulated variables may no longer be sensitive.

Comparing the control performances of the types of control charts used in this study,

we found that EWMA charts are the most sensitive, followed by the ShewAW and

lastly the ShewA charts. The main reason for this sensitive nature of the EWMA charts

is that they have tighter control limits compared to the other two charts, while, the

ShewAW charts have an added control rule compared to ShewA chart. Nevertheless,

the best overall IP for the Active SPC schemes for this study is run 1213 (PCA based

ShewA with off-line calculated limits).

This study also highlighted the importance of the data used to determine the state of

the process. Only PCorrA based charts were considered because they appear to give

the most consistent results. From our comparison of two sets of historical data that

differ only in standard deviations and hence Cik values, we observed some obvious

trends in the results for the PCorrA based SPC charts. Whenever we want a tighter

control on the process (e.g. NOC = 0) it is preferably to choose the data sets that have

smaller values of standard deviations. On the other hand, by selecting a data set with

smaller standard deviations, we may risk a higher number of false alarms. If we want to

avoid excessive incidents of false alarms or if control actions may incur cost, we would

choose data sets that contain larger values of standard deviations. However, there may

be several out-of-control situations.

Comparing the Active SPC and the APC method, we conclude that the EWMA based

charts generally perform better. In our example, it utilised the least energy in relation to

the nominal level value even though it makes more control actions compared to the

ShewA arri ShewAW charts. However, the EWMA charts has an added advantage

compared to the other two charts because it can be utilised to forecast the data for a

drifting process. Thus, the EWMA charts may be viewed as a better alternative to

either the ShewA and ShewAW control charts because it can be utilised in both SPC

and APC methodologies.
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Chapter 8

Conclusions and Future Research

This chapter summarises the important findings in this thesis and suggests new areas

where this research can be extended. The section on future research has two major

thrusts (i) discussion on the enhancements that can be attempted, and (ii) exploration

of new areas pertaining to Active SPC schemes.

8.1 Conclusions

This work follows the preliminary studies of Efthimiadu et al. (1991), Efthimiadu et al.

(1992), Efthimiadu et al. (1993) who attempted to devise a new, pro-active approach

to SPC of continuous process. Detailed evaluations and some modifications were

performed in the current work to assess the applicability of the various Active SPC

strategies that might evolve.

Procedures for designing and implementing automatic Statistical Process Control

(S PC) charts were described. Traditional charts are still used for monitoring purposes.

In addition to the quality variable, those inputs identified using Partial Correlation

Analysis (PCorrA) or Principal Components Analysis (PCA) that can potentially cause

process upsets are also monitored. The limits for the monitoring charts and more

significantly, the manipulation rules to keep the process under statistical control arise

naturally as part of the analysis. Since the potential causes of process deviations have

been pre-determined, abnormal variations in the input variables can be corrected

automatically before they affect output quality. Thus, unlike traditional SPC strategies,

control is achieved in an anticipatory manner. The need for expensive and time

consuming experimentation after out-of-control incidences is therefore reduced.
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Several control strategies were applied to a simulated CSTR process to evaluate the

performances of various Active SPC strategies. These arise by using two types of

multivariate analysis, PCorrA and PCA; use of different types of traditional SPC

charts, (e.g. ShewA and ShewAW for individual observation and EWMA charts),

using off-line and on-line correlation updating; and finally the use of different

manipulation strategies to control product quality (e.g. manipulating all input variables,

manipulating two input variables and lastly manipulating only a single input variable).

The effects of historical data on the performance of the Active SPC were also

discussed and compared. Lastly, this work compared the Active SPC method with the

APC feedback Proportional Integral (PI) controller. The results obtained are

promising and point towards potential applications of Active SPC to continuous

process engineering systems. A summary of some important findings are listed below:

(i) The work detailed in this thesis shows that it is possible to design and

successfully implement Active SPC strategies using the correlations calculated

via either PCA or PCorrA. In all cases, performances were better than the

uncontrolled system, but strategies involving EWMA charts for monitoring and

control provided the best performances.

The historical data used in the design of Active SPC methods plays an important

role in determining the performance of the respective schemes. It determines the

efficiencies of manipulating the process when fixed control rules are used and for

the first 50 observations in schemes where control rules are updated on-line.

Only PCorrA based charts were used in this study because they gave consistent

results through out the analyses in section 7.5.1 to 7.5.3. From the comparison

of two sets of historical data that differ in standard deviations and the C•k values,

we observed some trends in the results of PCorrA based SPC charts. If we want

a control performance with a low number of out-of-control points and can

tolerate high percentage of false alarms, historical data sets with small standard

deviations are preferable. In other situations, if we are concerned with the cost of

taking control actions on the process, then historical data sets with higher values

of standard deviations can be chosen. For this case, however, we may have

several out-of-control situations.

(iii) Comparing the performance of charts with limits calculated off-line using both

multivariate analyses employed in this study, we found that the performance of

PCA based charts are more sensitive than the PCorrA based charts. This can be

seen by the higher correlation (Cik) coefficients between the inputs reactant
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temperature (Trtin) and cooling medium temperature (Tjin) and the quality

variable as shown in table 7.3. Thus, when we compare the performance of

charts with off-line calculated control limits, the PCA based charts always

recorded higher percentages of false alarms. It indicates that the PCA based

charts always take more control action on the process compared to the PCorrA

based charts. If both multivariate based charts have different percentages of out-

of-control (NOC) points in the process, the PCA based charts will always have a

lower percentage of NOC due to its sensitivity. Thus its index of performance

(IP) will be higher than PCorrA based charts for such cases. The index of

performance (IP) is a measure, designed to identify which configurations of

Active SPC schemes can provide better overall control performance. It penalises

the percentage of out-of-control points as well as the percentage of false alarms.

However, when both multivariate charts have the same percentage of NOC, the

IF of PCorrA based charts will be higher than PCA based charts. This is due to

the former having a more conservative approach in taking control policy and,

thus the PCorrA based chart will have lower percentage of false alarms.

(iv) For on-line calculated control limits, only one trend was observed when we

compared the performance of both multivariate methods. Here, PCorrA based

charts are superior than the PCA based charts. If we compare the charts and the

strategy used, generally the IP of the PCorrA based charts are higher than those

of the PCA based charts. This is because the charts with PCorrA on-line

calculated limits show more sensitivity towards changing conditions in the

process. On the other hand the sensitivity of PCA on-line calculated based charts

started to degrade as the process is being controlled. This can be explained by
comparing the Cik values of on-line calculated Shewhart Action limits for both

multivariate methods in figure 7.17, and the 'ea for PCA based Shewhart action

and warning limits (ShewAW) and Exponential Weight Moving Average
(EWMA) charts in figure 7.24 and figure 7.28. When the eik in PCA based

charts start to decrease, a more conservative approach will be adopted on the

process and the systems tolerates larger deviations.

(v) Generally when there is good statistical control, i.e. the percentage of out-of-

control points decrease, and the percentages of false alarm will increase. This is

clearly illustrated when the type of control chart is changed from ShewA to

ShewAW and lastly to EWMA. This is because the EWMA charts have the

smallest band of control limits, while ShewAW charts have additional control

rules. Although, out-of-control situations will be reduced the false alarm rate is
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increased. From the analyses of section 7.5.3, we observed that the IP for all

ShewAW charts are greater than 0.75, while the IP of all EWMA charts are

greater than 0.72. Nevertheless there are no out-of-control points when using the

EWMA charts compared to the ShewAW charts, except when their control limits

were updated on-line using the PCA method. On this basis, we can conclude that

the EWMA control chart is a good candidate for future use with Active SPC

schemes.

(vi) Different manipulation strategies were applied to account for practical cases

where not all inputs could be manipulated. Comparing the performance of

different manipulation strategies (i.e. configurations of manipulated variables) for

controlling the product quality, we found out that whenever the input variables

and the given manipulated variables are sensitive to the changes in the process,

that particular manipulation strategy will perform better in terms of the Index of

Performance (IP). For all PCorrA based ShewA and ShewAW charts and

ShewA and ShewAW charts using PCA off-line calculated control limits, we

discovered that when changing the manipulation strategies from all input

variables to two input variables and fmally to a single input variable, the IF will

increase. This is because the selected manipulated variables that we chose for

two and single manipulated variables have the highest C ik values compared to the

rest of the input variables. For these manipulation strategies, we chose the

temperature of input reactants (Trtin) and temperature of cooling medium (Tjin)

as the manipulated variables for the two manipulated variable control scheme,

while Trtin was chosen for the single manipulated input control strategy. From

table 7.3 we see that Trtin has the highest Cik values followed by Tjin. However,

for on-line calculated control limits, the IP of PCA based charts are degraded as

we reduce the number of manipulated variables to control the quality variables.

For these cases, the manipulated variables that we have chosen, especially Trtin

and Tjin, are no longer sensitive to changes in the process. As the process is

controlled, the value of eik for Trtin and Tjin started to fall. This phenomenon

can be seen in figures 7.19, 7.24 and 7.28. Although the PCorrA based EWMA

charts showed a downward trend in IF, there were no out-of-control incidences.

They only differ because of the number of false alarms which showed an

increasing trend when the number of manipulated variables is reduced. It shows

that these on-line updated PCorrA based EWMA charts are still sensitive to

changes in the process.

134



Conclusions and Future Research

(vii) Comparing the Active SPC strategies method and the APC method in this study,

we found that some of the Active SPC strategies is superior to the APC

Proportional Integral (PI) controller. Some of the Active SPC strategies achieve

control with fewer control actions on the process compared to the APC method.

The main reason for this is that Active SPC methods do not penalise any

disturbances that are inherent to the process. Meanwhile the APC method always

takes control action on the process whenever the controlled variable deviates

away from set-point. In terms of the amount of energy used in relation to the

nominal level required to maintain the process in control, the Active SPC control

schemes considered for this comparison, utilised the least amount of energy

compared to the APC method. This is because whenever a disturbance is

perceived to be out-of-control in the Active SPC, the control action is to bring

the disturbance back to its allowable limits. Since the EWMA control charts have

the smallest band of control limits compared to the other two control charts used

in this study, the EWMA charts consume the least energy. Although the

percentages of control actions in EWMA charts are greater than the other two

SPC charts, this can be compensated by the energy saved. Moreover, as

mentioned in chapter two, the EWMA charts have an added advantage compared

to the other two charts because apart from monitoring and giving an indication

that the process is out-of-control, it also can be used to forecast future data for a

drifting process. Thus, it will be a very good candidate for future use in Active

SPC strategies.

8.2 Future Research

The principal objective of this research is to study in detail the potential of Active SPC

schemes and to develop an Active SPC chart which can monitor and automatically

adjust the process when out-of-control situations occurred. This has been made

possible by monitoring the quality and the input variables, and manipulating the input

variables. The techniques retain the SPC chart characteristic of non-intervention when

the process is in a state of statistical control. However, there are still some intriguing

questions about the behaviour of some of the Active SPC methods considered that

should be answered.

8.2.1 Enhancements of Current Research

Section 6.3.1 of this thesis showed how the ShewA, ShewAW and EWMA control

charts could be adapted to form Active SPC methodologies. The methodologies are
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designed via the use of correlational procedures based on either the Principal

Components Analysis (PCA) or Partial Correlation Analysis (PCorrA). These

correlations (Cik) are used to translate the control limits on the quality variable to the

control limits on input variables. Examination of these strategies showed that in

general, the false alarm rate increases when the assignable causes were eliminated. To

make the control strategy more efficient to use in practice, this effect should be

reduced or eliminated. The following aspects should be considered in future work.

(i) The control performances of PCA based charts with fixed control rules are better

compared to its on-line updated schemes. The off-line schemes have less number

of out-of-control points compared to the on-line schemes. Fixed control rules are

derived off-line using statistically in-control data. With on-line updating schemes

the control rules are determined from data collected from the process as it is

being controlled. On the basis of the results in sections 7.5.2 and 7.5.3 we

observed that once we opt for a PCA on-line control limit updating scheme, the

'eik values for the input variables started to decrease. As a result, the

performance of charts updated on-line using PCA becomes more conservative

(i.e. the control limits become wider). As a consequence, the percentages of out-

of-control situations in these schemes are greater than its off-line counterparts. A

study should be performed to look into the properties of PCA, to explain why

Cik decreases when out-of-control points occur.

The use of PCorrA with Active SPC methodologies yielded good performances.

The on-line updated charts are generally better compared to the off-line designed

charts because they reduced the percentage of out-of-control situations. These

feature were not observed with the PCA based methods. Thus, it appears that

PCorrA is a good tool for designing Active SPC strategies. When on-line

updated control rules are being used, it seems that the PCorrA based methods

can cope with the changes in the process by tightening the control limits of the

input variables. As a consequence, the on-line calculated control limits for

PCorrA based charts become more sensitive. To further enhance this study, we

should therefore look at the properties of PCorrA to investigate why this

multivariate technique tightens up the control limits (increases -eik values) when

the on-line updating scheme is used.
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8.2.2 New Areas of Investigations

There are also several new areas that merit investigation to test the capability of Active

SPC charts to remove assignable causes. It is suggested that the most important areas

to explore, in terms of providing Active SPC schemes that would be most beneficial to

the process industries, are as follows:

(i) The discussion in this thesis has centred on the implementation of Active SPC to

multiple input and single output (MISO) and single input and single output

(SISO) systems. Almost all modern process industries are multiple input and

multiple output (MIMO) systems. Therefore, an obvious area of development of

Active SPC is to extend it to the MIMO case. In order to test the capability of

this new procedure, a holistic approach to implement Active SPC would be

needed so that the problems of constraints could also be addressed, e.g. the

excess reactants from the CSTR can be recycled or prescribed control limits on

some of the output variables.

In chapter 4 we see that our simulated process has time-delays associated with

various input-output relationships. Fortunately, these were insignificant. There

are many processes where time-delays are large and may be time varying. It

would be a challenging problem to devise an Active SPC scheme that could

accommodate these dynamics characteristics.

(iii) The Active SPC strategy that we proposed resembles feedforward control. It can

achieve perfect control when all the disturbances in the process can be accounted

for. However, when we have unmeasured disturbances affecting the process, the

proposed Active SPC may fail to provide effective control. Thus, to counter the

effects of such disturbances, the incorporation of some feedback method is

necessary. Future work on Active SPC should address this problem.
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Appendix A

INVESTIGATION INTO ON-LINE SPC

Date : February 5, 1996 Monday
	

Time : 11.00 am
Name of Historical Data File: jan31.dat

	 Lt= 100 sec
Maximum Number of Observations : 500
ShewA
ShewAW
EWMA

Runs

Maximum Number of NFA: 489
Maximum Number of NFA: 481
Maximum Number of NFA: 462

% NOC	 % NUC	 % NFA

Maximum Number of NOC :
Maximum Number of NOC :
Maximum Number of NOC :

IP	 EC

11
19
38

# CA

1111 45.45 54.55 34.36 0.5511
1112 27.27 72.73 34.36 0.7122
1113 9.09 90.91 34.36 0.8266 16625.5488 1734
1121 5.26 94.74 50.73 0.8075
1122 00.00 100.00 50.73 0.8317
1123 00.00 100.00 50.73 0.8317 15285.9434 2529
1131 00.00 100.00 65.15 0.8028
1132 00.00 100.00 68.83 0.7962
1133 00.00 100.00 75.54 0.7848 9276.7539 3320
1211 27.27 72.73 36.61 0.7079
1212 18.18 81.82 36.61 0.7687
1213 00.00 100.00 36.61 0.8660 17829.1289 1913
1221 5.26 94.74 52.18 0.8045
1222 00.00 100.00 52.18 0.8286
1223 00.00 100.00 52.18 0.8286 15961.8633 2612
1231 00.00 100.00 66.23 0.8008
1232 00.00 100.00 66.45 0.8004
1233 00.00 100.00 76.19 0.7838 9104.2441 3523
2111 18.18 81.82 41.31 0.7584
2112 9.09 90.91 43.35 0.8047
2113 00.00 100.00 45.40 0.8439 20348.8359 2302
2121 00.00 100.00 55.93 0.8207
2122 00.00 100.00 55.72 0.8211
2123 00.00 100.00 55.09 0.8224 18124.6328 2753
2131 00.00 100.00 70.35 0.7935
2132 00.00 100.00 75.32 0.7852
2133 00.00 100.00 79.65 0.7783 13732.9688 3690
2211 45.45 54.55 30.06 0.5537
2212 54.55 45.45 25.56 0.4360
2213 63.64 36.36 17.18 0.2453 13879.6895 904
2221 5.26 94.74 48.02 0.8134
2222 15.79 84.21 38.46 0.7789
2223 21.05 89.50 29.11 0.7679 14114.8340 1451
2231 5.26 94.74 62.77 0.7840
2232 13.16 86.84 61.04 0.7491
2233 18.42 81.58 56.93 0.7280 17403.6152 2352

NOC : Out-of-control points 	 NUC
IP : Index of Performance 	 CA:
First Digit	 (1) Off-line
Second Digit	 (1) PCorrA
Third Digit	 (1) Shewhart Action
Fourth Digit	 (1) All Variables

: Controlled Points NFA : Number of False Alarm
Control Actions EC : Energy consumption

(2) On-line
(2) PCA
(2) Shewhart Action & Warning (3) EWMA
(2) Trtin & Tjin only
	

(3) Trtin only
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Appendix B

INVESTIGATION INTO ON-LINE SPC

Date : January 24, 1996 Wednesday	 Time : 11.10 am
Name of Historical Data File: jan29.dat 	 At = 100 sec
Maximum Number of Observations : 500
ShewA Maximum Number of NFA: 489 Maximum Number of NOC : 11
ShewAW Maximum Number of NFA: 481 Maximum Number of NOC : 19
EWMA Maximum Number of NFA: 462 Maximum Number of NOC : 38

Runs % NOC	 % NUC	 % NFA IP

1111 45.45 54.55 29.04 0.5544
1112 36.36 63.64 29.04 0.6471
1113 27.27 72.73 29.04 0.7233
1121 15.79 84.21 46.57 0.7616
1122 10.53 89.47 46.36 0.7906
1123 00.00 100.00 46.36 0.8416
1131 5.26 94.74 61.69 0.7860
1132 5.26 94.74 65.80 0.7790
1133 2.63 97.37 70.13 0.7828

NOC : Out-of-control points 	 NUC : Controlled Points
NFA : Number of False Alarm	 IP : Index of Performance
First Digit	 . (1) Off-line	 (2) On-line
Second Digit	 (1) PCorrA	 (2) PCA
Third Digit	 (1) Shewhart Action	 (2) Shewhart Action & Warning (3) EWMA
Fourth Digit	 (1) All Variables	 (2) Trtin & Tjin only	 (3) Trtin only

Table B1 Cj, based on PCA and PCorrA

var Trtin Tjin Ain Bin F Fi

PCA Cout 0.8073 0.6487 0.1066 0.2215 0.1666 -0.0135

PCorrA Cout 0.7832 0.4521 0.3069 0.2840 0.2284 -0.1913
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Appendix C

Equation (2.5) is given by:

54+1 = Oxt + (1- 0).54

Time-shifting one step back, equation (2.5) becomes

(2.5)

= Oxt_i + (1- 0).it_ i (c.1)

Substituting equation (c.1) into equation (2.5) gives the EWMA

it+1	 Oxt +0(1-0)xt_1 +(1- 0) 2 is--t-1

but

= °Xt-2 + (")t-2

(c.2)

(c.3)

Thus

t+i = Oxt +0(1-0)xt_ i +0(1-0)2 Xt-2	 (/— 0)3 (c.4)

By repeating the substitution, we find that the EWMA is a linear combination of x

it+I =

	

	
(c.5)

i=0

where the weights are given by equation (2.7)

= 0(1- 0)t-i
	

(2.7)

The variance of the EWMA is given by

var(i) = 1,4)(52
i=0

where a2 = var(x)	 (c.6)

By putting equation (2.7) into equation (c.6) we get
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(c.9)

Jo 
a i = (7\1(2 — 0)

(c.11)

var(k‘) = 0 2a2 [1+ (1— 0) 2 + (1-8)4+...]

Simplifying the above equation we get

0 2a2
var(i) =

{1—(1— 0)2]

0(32
var(i) = 	 	 (c.10)

(2 — 0)

Thus the standard deviation for the EWMA is given by

The corresponding standard deviation from equation (c.11) can be used to construct
control limits at g, ± Ka i limits. This is then given by equation (2.6). If 30' control

limits are used, then the control limits for the EWMA chart will 1.1. ± 3 a i.

In cases where the process mean steadily trend away from the target, the EWMA chart

can be improved by adding extra terms (equation 2.8) (Hunter, 1986)

1t+1 = it +Ole/. +02E et + 03Vet	 (2.8)

Where

et = xt — it

Eet =I(xt — it)

Vet = (xt — :it)—(xt_i— It_i)

The coefficients 0 1 , 02 and 03 can be estimated from the historical data by using least

squares. Rearranging equation (2.8)

i t+1 — it  =0 jet +li et +0 3V et	 (c.12)
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Next define the following:

4)-- 1101 0 2 031T

L i t+1 — it 1	 et

a=	 B= [ :

IN — iN-1	 eN

1yet Vet

yeN VeN

The least-squares solution of (1) is:

(I) = (B TB) 1ira	 (c.13)
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