
Object Replication in a

Distributed System

by

Mark C Little

1 L.[. UN :i vE:Fs ir'' L i'RY

Y' 1 51448 2

1QL LQ2

Ph.D. Thesis

September 1991

The University of Newcastle upon Tyne

Computing Laboratory

Abstract

Abstract

A number of techniques have been proposed for the construction of fault—tolerant

applications. One of these techniques is to replicate vital system resources so that if one

copy fails sufficient copies may still remain operational to allow the application to

continue to function. Interactions with replicated resources are inherently more complex

than non—replicated interactions, and hence some form of replication transparency is

necessary. This may be achieved by employing replica consistency protocols to mask replica

failures and maintain consistency of state between functioning replicas.

To achieve consistency between replicas it is necessary to ensure that all replicas

receive the same set of messages in the same order, despite failures at the senders and

receivers. This can be accomplished by making use of order preserving reliable

communication protocols. However, we shall show how it can be more efficient to use

unordered reliable communication and to impose ordering at the application level, by

making use of syntactic knowledge of the application.

This thesis develops techniques for replicating objects: in general this is harder than

replicating data, as objects (which can contain data) can contain calls on other objects.

Handling replicated objects is essentially the same as handling replicated computations,

and presents more problems than simply replicating data. We shall use the concept of the

object to provide transparent replication to users: a user will interact with only a single

object interface which hides the fact that the object is actually replicated.

The main aspects of the replication scheme presented in this thesis have been fully

implemented and tested. This includes the design and implementation of a replicated

object invocation protocol and the algorithms which ensure that (replicated) atomic

actions can manipulate replicated objects.

Acknowledgements

Acknowledgements

Firstly I would like to thank my supervisor, Professor Santosh Shrivastava, who

suggested this area of research and with whom I have had numerous discussions over the

years. I would also like to thank Dr. Graham Parrington and Dr. Stuart Wheater for

reading and commenting upon the numerous drafts of this thesis. Their efforts are greatly

appreciated.

I would like to thank my fellow members of the Computing Laboratory, in particular

Dan McCue, Dr. Paul Ezhilchelvan and Xavier Rousset, for many useful comments and

discussions I have had on this work.

Finally I would like to thank my family for their support and encouragement which they

gave me during my studies. Without them it would not have been possible.

Financial support for much of the work described in this thesis was provided by a

Research Studentship from the Science and Engineering Research Council and Esprit

Project 2267 (Integrated Systems Architecture).

	

1 : Introduction. 	 1

	

1 .1: Dependability and Fault Tolerance............................ 	 2

	

1 .2: Replication... 	 2

	

1.2.1: Increased Availability....................................... 	 3

	

1.2.2: Increased Performance..................................... 	 4

	

1.2.3: Design Diversity... 	 4

	

1.2.4: Replica Groups.. 	 4

	

1.2.5: Replica Consistency Protocols............................... 	 5

	

1.2.6: Further Aspects of Replication................................ 	 6

	

1 .3: Transparency... 	 7

	

1 .4: Contributions of the Thesis.................................. 	 8

	

1 .5: Structure of the Thesis.....................................	 9

2: Basic Fault-Tolerance Techniques.
	

10

	

2.1: Object-Oriented Programming............................... 	 10

	

2.2: Atomic Actions.. 	 11

	

2.2.1: Action Primitives... 	 12

	

2.2.2: Failure Atomicity... 	 13
	2.2.3: Concurrency in an object-based system....................... 	 13

	

2.2.4: Objects and Actions..	 15

	

2.3: Distributed Objects... 	 15

	

2.3.1: Remote Procedure Call..................................... 	 16

	

2.3.2: Groups..	 17

	

2.3.3: Multicast Communication...................................	 19

	

2.4: Summary.. 	 20

3: Principles of Object Replication. . •.
	

22

	

3 .1: Replication and Failure Modes...............................	 22

	

3.1.1: Failure Classification....................................... 	 22

	

3.1.2: Fault Classification... 	 24

	

3.2: Replication Overview....................................... 	 24

	3.3: Active Replication and Passive Replication......................	 26

	

3.3.1: Fail-Silent Processors......................................	 26

	

3.3.2: Passive Replication.. 	 27
3.3.2.1: DetermInism and Message Collation...............................	 28
3.3.2.2: Primary Backups... 	 29
3.3.2.3: Retained Results...	 29
3.3.2.4: Failure Detection...	 30
3.3.2.5: Primary Functionality.. 	 30

	

3.3.3: Active Replication.. 	 32
3.3.3.1: The State Machine... 	 33
3.3.3.2: State Machine and Fault-Tolerance................................ 	 33

3.3.3.3: Operation Semantics	 .	 35

	

3.3.4: Communications Requirements.............................. 	 36

	

3.3.4.1: ActIve Replication.. 	 36

	

3.3.4.2: Passive Replication..	 37

	

3.3.5: Using Active Replicated Services............................. 	 38

	

3.3.5.1: Increased Performance..	 38

	

3 .4: Replication and Failure Masking.............................. 	 39

	

3.4.1: Active Replication..	 40

	

3.4.1.1: Permanent Omission Failures..................................... 	 40

	

3.4.1.2: Value and Omission Failures..................................... 	 41

	

3.4.1.3: Timing Failures..	 41

	

3.4.1.4: Arbitrary Failures...	 42

	3.4.2: Passive Replication.. 	 43

	3.4.2.1: Permanent Omission Failures..................................... 	 43

	

3.4.2.2: Other Failures... 	 43

	

3.5: Summary..	 44

4: ReplicaGroupCommunication..... 	 46

	4.1: Remote Object Invocation................................... 	 48

	

4.1.1: One-to-Many Communication............................... 	 49

	

4.1.1.1: Unordered and Unreliable....................................... 	 49

	

4.1.1.2: FIFO Muiticast... 	 50

	

4.1.1.3: Atomic multicast...	 50

	

4.1.1.4: Causal multicast... 	 51

	

4.1.1.5: Totally ordered muiticast...	 52

	

4.2: Multicasts and Latency..................................... 	 52

	

4.3: Review of an Existing Multicast Protocol....................... 	 53

	

4.3.1: Psync... 	 54

	

4.3.1.1: Conversations and Context Graphs................................ 	 54

	

4.3.1.2: Dealing with Network and Host Failures............................	 56

	

4.3.1.3: Total Ordering... 	 57

	

4.4: Multicasts and Replication................................... 	 58

4.5: The rel/REL Family of Multicast Protocols...................... 59

4.5.1: The rel/RELmjc Protocol...60
4.5.1.1: Other Delivery Properties..63
4.5.1.2: Protocol Analysis and Performance................................64

	

4.6: Implementation...	 66

	

4.6.1: rel.. 	 67

	

4.6.1.1: Timings.. 	 68

	

4.6.2: rel/REL RPC..	 69

	

4.6.2.1: TImings..	 70

	

4.7: Enhancements for Replicated Procedure Calls..................	 72

	

4.7.1: Optimizations to the RPC.................................... 	 72

	

4.7.2: Timeouts...	 73

	

4.7.3: The Proposed Solution.....................................	 74

	

4.7.4: Estimation of the timeout period...............................	 76

4.7.4.1: Slow Replicas	 .	 77

	

4.7.4.2: Example Figures... 	 78

	

4.7.5: Flow Control Problem......................................	 78

	

4.7.6: The Proposed Solution..................................... 	 79

	

4.8: Overview of Existing Systems................................ 	 81

	

4.8.1: One-to-Many Communication............................... 	 82

	

4.8.1.1: The V System...	 82

	

4.8.1.2: The Andrew System..	 83

	

4.8.2: Many-to-Many Communication.............................. 	 83

	

4.8.2.1: The Circus System... 	 83

	

4.9: Summary.. 	 84

5: Objectfleplication In Practice. 	 87

	5.1: Replication and Atomic Actions.............................. 	 87

	

5.1.1: Replicas within Actions..................................... 	 87

	

5.1.2: Replicated Actions... 	 88

	

5.2: Data Replication in Atomic Action Systems.....................	 91

	

5.2.1: Available Copies... 	 92

	

5.2.2: Weighted Voting... 	 95

	

5.2.3: Missing Writes..	 97

	

5.2.4: Voting With Ghosts... 	 97

	

5.2.5: Regeneration... 	 98

	

5.2.6: Primary Copy... 	 99

	5.2.7: Optimistic and Pessimistic Consistency Control.................. 	 100

	

5.2.8: Effectiveness of Replication Strategies......................... 	 101

	

5.2.8.1: SimulatIon Results... 	 101

	5.3: Object and Process Replication.............................. 	 102

	

5.3.1: Coordinator-Cohort Replication.............................. 	 103

	

5.3.1.1: ABCAST Communication....................................... 	 103
5.3.1.2: CBCAST Communication..	 104
5.3.1.3: GBCAST Communication.. 	 104
5.3.1.4: ReplicatIon in ISIS.. 	 104

	

5.3.1.5: Checkpointing of State.. 	 106
5.3.1.6: Concurrency Control..	 106
5.3.1.7: Failure Detection... 	 106
5.3.1.8: Coordinator Election.. 	 107

	5.3.2: Lazy Replication... 	 108
5.3.2.1: The Ordering Protocols.. 	 108
5.3.2.2: System Assumptions... 	 109
5.3.2.3: Client-Ordered Replica Groups................................... 	 110
5.3.2.4: Missing Updates... 	 111

	5.3.3: Viewstamped Replication....................................	 112
5.3.3.1: The View Management Algorithm.................................. 	 112
5.3.3.2: PrImary Election... 	 114
5.3.3.3: AtomIc Action Processing.......................................	 115
5.3.3.4: Example Interaction... 	 116

	5.3.4: Delta-4... 	 117

5.3.4.1: Leader/Follower 118
5.3.4.2: Synchronization..119
5.3.4.3: Leader Election..119

5.3.5: Psync Replication Protocol..................................120
5.3.5.1: GeneraHzed Algorithm..122

5.4: Summary..123

6: Replicated ObJectslnArjuna. 124

6.1: Arjuna System Overview....................................124

	

6.2: Replication Algorithms...................................... 	 125

	

6.2.1: Overview... 	 126

	

6.2.2: Failure Assumptions..	 127
6.2.2.1: Available Objects..	 128
6.2.2.2: Voting Objects... 	 129
6.2.2.3: Primary Objects.. 	 129

	

6.2.3: The Group-View Database.................................. 	 129
6.2.3.1: Replicated Object Information....................................	 129
6.2.3.2: Node Information...	 130
6.2.3.3: Example of Database Information................................. 	 131
6.2.3.4: Operations on the Group-View Database........................... 	 131
6.2.3.5: Using the Database..	 134
6.2.3.6: Correctness Properties..	 135

	

6.3: Available Objects.. 	 136
6.3.1: Distinguishing Operations...	 137

	

6.3.2: The Replication Protocol.................................... 	 137
6.3.2.1: Replica Group Initiation... 	 138
6.3.2.2: Constructing and Processing Exclude Lists......................... 139
6.3.2.3: Concurrency Control.. 	 141
6.3.2.4: Issuing Requests... 	 143
6.3.2.5: Committing Actions...	 144
6.3.2.6: Commit Optimizations.. 	 146
6.3.2.7: Termination of Replica Groups.................................... 	 146

	

6.3.3: Node Recovery..	 147

	

6.3.4: Making The Group-View Database Highly Available.............. 	 149

	

6.3.5: implementation... 	 150

	

6.4: Tolerating Network Partitions................................. 	 153

	

6.4.1: Protocol Overview... 	 153
6.4.1.1: Action Divergence..	 155
6.4.1.2: Example.. 	 156

	

6.4.2: The Algorithm... 	 157
6.4.2.1: Object State... 	 158
6.4.2.2: The Group-View Database....................................... 	 159
6.4.2.3: Example.. 	 160
6.4.2.4: Replica Group Initiation.. 	 161
6.4.2.5: Operation InvocatIons...	 162
6.4.2.6: Locking of Replica Groups....................................... 	 163
6.4.2.7: Committing Actions... 	 164
6.4.2.8: Aborting Actions...	 164
6.4.2.9: Uncommitted Replicas... 	 165

	

6.4.2.10: Recovering Nodes 	 .	 166

	

6.4.2.11: Updating of Replicas.. 	 166

	

6.4.3: Assessment..	 166

	

6.4.4: The Update Daemon....................................... 	 168

	

6.4.5: Group-View Database Update............................... 	 168

	

6.5: Passive Replication..	 169

	

6.5.1: The Algorithm... 	 169

	

6.5.1.1: Operation invocations...
	 170

	

6.5.1.2: Cohort Failures..
	 171

	

6.5.1.3: Primary Failure...
	 171

	

6.5.1.4: Multiple Primaries..
	 172

	

6.5.1.5: Recovering Nodes...
	 172

	

6.5.1.6: Replica Updates...
	 173

	

6.5.1.7: When to Checkpoint..
	 173

	

6.5.1.8: Group-View Database Replication................................
	 174

	

6.6: Summary..
	 175

7: Conclusions..•..••. • • • • • • • 177

	

7.1: Thesis Summary..
	 177

	

7.2: Main Contributions..
	 179

7.3: Future Work..180

Chapter 1
	

Introduction

1: Introduction.

The increasing availability of cheaper, more powerful workstations and new

networking capabilities has seen a corresponding increase in the use of distributed systems

in many areas. These include applications in banking, office information systems, and

real—time process control. Many organizations are by their very nature distributed, with

individuals working in different locations but nevertheless requiring the ability to

exchange information easily. Distributed computing systems have the potential for

providing the facilities for cooperative work within such organizations.

Distributed systems also have the potential to be more extensible than centralized

systems. For example, if an increase in the range of services is required (e.g., a dedicated

processor could be added to a network which could be used by many people on the

network) then it can be provided by adding the service and registering its presence so users

can gain access to it. Although some centralized systems can also be extended in this way,

distributed systems have the potential for much greater scaling.

Distributed processing also presents solutions to some of the problems associated with

centralized systems when constructing reliable applications. Most notably, in a centralized

computer system the probability that an individual component failure will cause the entire

system to fail is high, leading to the situation where no services are available. Whereas in a

distributed system it is possible to make use of the availability of resources on components

with independent modes of failure to tolerate such failures.

However, because components are distributed (e.g., workstations separated by a

communications medium) and the failure of one component does not automatically result

in the failure of another component, this poses new problems not normally encountered in

centralized systems. Failures such as message loss and corruption, processor crashes, and

network partitioning, can create difficulties in maintaining the consistency of information

stored over a number of components. Further, because of the increased number of

components that make up a distributed system (machines, communication links, etc.)

1

Chapter 1	 Introduction

there is a corresponding increase in the probability that one or more of the components

can be faulty. Although these failures need not cause the entire system to fail, they do

cause problems in maintaining the consistency of data and computations within the

distributed system, leading to the necessity to create applications which are dependable

despite faults in the distributed system.

1.1: Dependability and Fault Tolerance.

From the previous discussion it can be seen that it is essential to incorporate provisions

for dependability in distributed systems if applications that can tolerate component failures

are to be used. Dependability is defined as the trustworthiness of a component such that

reliance can justifiably be placed on the service (the behaviour as perceived by a user) it

delivers [Laprie 90][Anderson 81]. The reliability is a measure of continuous correct

service delivery. A system is a collection of components connected by a communications

medium, which can cooperate to perform some computation.

Keeping with the definitions in [Laprie 90], a failure occurs when the service provided

by the system no longer complies with its specification. An error is that part of a system

state which is liable to lead to failure, and a fault is defined as the cause of an error.

Since all physical components eventually fail, a computer system can be made

dependable by making it fault—tolerant. A fault—tolerant system is one which is designed to

fulfil its specified purpose despite the occurrence of component failures. Techniques for

providing fault—tolerance usually require mechanisms for consistent state recovery and

detecting errors produced by faulty components. The fault—tolerance technique that this

thesis will concentrate on is the use of replication of resources on components with

independent modes of failure to attempt to mask component failures in the system.

1.2: Replication.

Using replication it is possible to construct fault—tolerant services (i.e., services capable

of tolerating component failures) by replicating vital system components (both in software

2

Chapter 1	 Introduction

as well as hardware) and providing the notion of an abstract component/service to the users

(one which exhibits the properties of a single component but is actually made up of many

components). It will be assumed that replicated resources will reside on distinct nodes

(workstations, or processors) in a distributed system (replicating on the same node has

limited value, especially in terms of improving availability in the presence of node failures,

as described below).

Replication can be used for two main reasons in a distributed system: increased

availability, and increased performance. As we shall see, replication can also be used to

provide a means of tolerating software design failures.

1.2.1: Increased Availability.

Consider a replicated service S and a user of this service U. When U issues requests on

S this user may not know that the service is replicated and one reply from any replica in S

may be sufficient for U to consider its request successfully executed. If a failure of one of

the replicas which constitute S occurs, then U can still continue to operate. In this way the

failures of replicas within S may go unnoticed until all of the replicas fail (this is the same

behaviour as occurs within a non—replicated system if we consider the replicated service as

a single logical service). The redundant components can be used to mask the failures of the

other components from users of the service, with the number of replica failures that can be

tolerated related to the number of correctly functioning replicas. A resilient service has

the following requirements [Birman 85]:

1:Even after some maximum number of node failures, it must be possible to access a

copy of the service.

2: Even after some maximum number of node failures, it must be possible to complete

any operation in progress.

3

Chapter 1
	

Introduction

1.2.2: Increased Performance.

It is also possible to use replication to improve the performance of the distributed

system. Consider the case of a single physical server component A and client components

B and C. All client components which need to useA must communicate with it regardless

of the load imposed onA. Furthermore, client B may have to wait forA to finish processing

the request from client C before its request can be executed.

Now consider the case where A is made up of redundant components A1 and A2 . All

clients interact with this replicated service, but it may now be possible for B and C to use

different replicas of this service, possibly also taking into account any network topology

information to achieve better response times (e.g., be using the replica which resides

nearest the client's node). If B and C request operations on A which can be performed

concurrently (e.g., two read operations) then the performance of the system may be

improved as each client's request is processed by a different replica without being delayed

by the other's request. However, if the operations requested cannot be performed

concurrently (e.g., modifying the same state) then they must be performed consistently by

each replica. 13rpically this means that read operations are made to run faster at the

expense of causing slower writes.

1.2.3: Design Diversity.

As long as each replicated object provides the same interface (set of operations) to a

client, there is no reason why replicas should be physical copies of each other i.e., the same

code. With different implementations of the same service (design diversity) it is possible

that mistakes made in one implementation will not be made in another. Therefore a

measure of tolerance against design faults can be obtained.

1.2.4: Replica Groups.

A natural way of managing replicas is to consider the individual replicas as members of

a replica group. Providing and using replication then becomes a problem of managing the

4

Chapter 1	 Introduction

interactions with groups rather than interactions with the individual group members

(effectively changing the granularity from individual replicas to replica groups). The

failure of a particular replica then becomes a separate issue to the failure of the entire

group. Reliability of a service then depends on the reliability of the group providing the

service.

When there is more than one replica in a group there is a possibility that different

clients can make use of different replicas simultaneously, perhaps attempting to modify

their states in a conflicting manner. A replica consistency protocol is necessary to ensure

that concurrent invocations on different replicas leave all copies in a mutually consistent

state. Such a protocol handles, among other things, concurrency control and recovery of

failed replicas.

1.2.5: Replica Consistency Protocols.

There are two categories of replica consistency protocols which dictate the way in

which replicas can interact with the rest of the system.

(i) active replicas - operations are invoked on all replicas of a given group, which

execute the operations as though they were the only member of the group, and then return

a reply to the invoker (client). If a client invokes an operation on a replica group with n

members (assuming no failures) then the client will receive n identical replies to the

original invocation.

(ii)passive replicas - operations are invoked on only one member of the replica group

(the primaiy), which executes the operation and returns a reply. If a modification to the

primary's state occurs then this primary checkpoints its state to the other members of the

group (its backups). If the primary fails then the remaining members of the replica group

will conduct an election amongst themselves to arrive at a new primary, which will then

service subsequent requests.

5

Chapter 1
	

Introduction

Each of these approaches has its own advantages and disadvantages e.g., in passive

replication checkpointing of state can be time consuming, while in active replication the

problem of maintaining consistency between the replicas is harder because they all

execute independently, which requires greater functionality from the communications

medium. These issues will be described in more detail in chapter 3.

1.2.6: Further Aspects of Replication.

A replicated service will consume more system resources (network bandwidth,

processor memory, etc.) than a non—replicated service. This increase in resource usage is

offset by the improvement in the availability of the service. With extra modifications to the

replication protocols and the underlying distributed system, it is possible to use these

resources to provide other useful capabilities:

• load sharing. Replicas can cooperate to share the load (client requests) between

themselves whilst at the same time maintaining consistency. It may be possible to

improve further the performance of the replicated service by either increasing, or

decreasing, the number of replicas as the application executes.

• regeneration. When a replica from a group fails it may be possible for the group to

continue to function if the number of replicas within the group does not fall below a

critical level (dictated by the replication protocol being used). However, if such

failures are allowed to continue then the group will eventually fail completely. The

regeneration mechanism causes the system to create new replicas if failures occur,

instead of waiting for those failed replicas to recover. These replicas must be in a

consistent state with any other replicas in the group so that an external observer (user)

cannot distinguish between individual replicas.

• replica migration. If a client requires intensive use of a replicated service then it may be

more efficient to move some of the replicas to the same node as the client. Replicas

6

Chapter 1
	

Introduction

would be moved across nodes to reside on or nearer to the node where the clients who

are making requests on them currently reside.

1.3: Transparency.

The added complexities introduced by distributing and replicating system software and

hardware components means that writing applications for such systems without any

support is difficult. This has lead to the idea of transparency, which means that a distributed

system can be made to behave, where necessary, like its non—distributed counterpart.

There are several complementary aspects to transparency [ANSA 89]:

• access transparency mechanisms provide a uniform means of invoking operations of

both local and remote services, concealing any ensuing network related

communications.

• location transparency mechanisms conceal the need to know the whereabouts of a

particular service, making it sufficient to be able to name a service to access it.

• migration transparency mechanisms build upon the previous two to support movement

of services from node to node for performance and fault—tolerance related reasons.

• concurrency transparency mechanisms ensure interference free access to services in the

presence of concurrent invocations.

• replication transparency mechanisms increase the availability of services by replicating

them but concealing the intricacies of replica consistency maintenance.

• failure transparency mechanisms help exploit the redundancy in the system to mask

failures where possible and to effect recovery measures.

Before considering replication transparency in Chapter 3, we shall discuss in Chapter 2

some of the other tools and techniques used to build reliable applications, with regard to

how they can aid in providing replication. In particular, the concepts of atomic actions

7

Chapter 1	 Introduction

(concurrency transparency and failure transparency), remote procedure calls (access

transparency), and object—oriented programming will be described as these are central to

the replication protocols to be developed.

1.4: Contributions of the Thesis.

Data replication techniques have been extensively studied, especially for database

systems. However, as we shall see, replicating objects is a much more complex problem

because objects can encapsulate not only data, but also operations (methods) which act on

that data. These methods can themselves contain calls on other objects. Thus, handling

replicated objects is similar to handling replicated computations. The concept of active

and passive replica groups will be discussed and it will be shown what advantages and

disadvantages can be gained from each type: the problem of handling replicated

computations is reduced if passive replication is used, but this then reduces the range of

failures which the replicated service can tolerate.

When dealing with replicated objects, it is important to ensure that replicas within a

group are consistent i.e., have the same state. Using active replication further complicates

this as it requires co-ordinating interactions at each replica across the distributed system.

This thesis presents the design and implementation of communication protocols for such

co-ordination. In addition, we will describe how active replication protocols for objects

were built for the Arjuna distributed system. We will show how in Arjuna it is not necessary

to impose ordering of messages at the communication level but that such ordering can be

imposed at the application level (we shall use atomic actions to do this). This thesis will

further show how objects, which are used to encapsulate data and to hide internal

implementation details, can also be used transparently to manage replica groups i.e.,

invocations on a replica (object) group will appear as though they are being made on a

single object.

All of the main ideas developed in this thesis have been implemented and tested on a

realistic distributed system (Arjuna). Where appropriate, we give performance figures for

8

Chapter 1	 Introduction

our implementation. The software developed is expected to be used routinely in the

Arjuna system.

We shall also show how message delivery guarantees cannot ensure replica consistency

in situations where events occur locally to a replica and which cause the replica to take

actions which may not be being taken by other members of the same group e.g., message

buffers can overflow at a replica resulting in the loss of a correctly delivered message. This

thesis will provide solutions to these problems, resulting in the design and implementation

of a reliable group RPC mechanism. The replication protocols to be described and

implemented will make use of this reliable group RPC.

1.5: Structure of the Thesis.

Relevant work on the construction of reliable applications in a distributed system will

be discussed in the next chapter. Chapter 3 then describes the principles behind object

replication. Chapter 4 describes the design and construction of a replicated procedure call

mechanism, and shows how it is to be used in our replication protocol. Chapter 5 then

discusses various replication protocols which have been built and used in other distributed

systems, showing how they have approached the problems of replication. Chapter 6 then

describes a new object replication protocol which has been designed and built for the

Arjuna distributed system. The final chapter then giveS the conclusions arising from the

work discussed in the thesis.

9

Chapter 2
	

Basic Fault—Tolerance Techniques

2: Basic Fault-Tolerance Techniques.

In this section basic techniques which have been proposed for the construction of

reliable applications will be described. These techniques are designed to provide solutions

to the problems of inconsistency due to the partial failure of a distributed system, and also

to the interference between users of an application. These issues, which are difficult to

solve in an environment which does not make use of replication, are more difficult to solve

when replication is used, as shall be shown in Chapter 3. One of the aims of this thesis is to

show how such well understood mechanisms can be integrated with an appropriate

replication protocol in a transparent manner, resulting in more reliable applications.

2.1: Object-Oriented Programming.

A programming methodology which is being increasingly used for software

construction, is that of object—oriented programming. The object—oriented paradigm

supports the concept of data abstraction (information hiding) which allows the

programmer to associate a set of operations, which characterize the behaviour of the

abstraction, with the data structures that represents the abstraction. Objects are instances

of these abstract types (or classes). The objects can only be manipulated by the set of

operations associated with them. Thus, as long as the actual interface remains the same,

the implementation could be changed without affecting the user. If the language supports

encapsulation, then the only way to access the data is by using the operations provided by

the class.

A powerful concept provided in many object—oriented programming languages is that

of inheritance. Inheritance allows the creation of a new class of objects which are either a

refinement or embellishment on an existing class of objects.

There are many object—oriented programming languages, such as C++ [Stroustrup

86][Lippman 89] (which is based on the C programming language [Kernighan 78]),

Smalitalk [Goldberg 83], Clu [Liskov 79], Trellis/Owl [Schaffert 86], Simula-67 [Dahi 70]

10

Chapter 2	 Basic Fault-Tolerance Techniques

[Birwhistle 73] and Eiffel [Meyer 88]. However, throughout this thesis we shall

concentrate on C++. An example for a stack object in C++ could be:

Class Stack
{
public:

Stack();
StackQ;

mt push(int value);
mt pop(int& value);

private:
mt Elem[20]
mt top;

}

The private operations can only be accessed through the public interface, which in this

case is the two operations push and pop, which perform operations on the private

variables E lem and top. The two operations Stack () and - Stack () are special

operations called the constructor and destructor respectively. The constructor is called

automatically when an instance of this class is created (comes into scope) and can be used

to call other operations (methods) necessary to initialise the object. The destructor is

called automatically when an object goes out of scope and it deletes the object, freeing the

memory it used, and can also perform other operations which may be necessary.

An object is termed a persistent (long-lived) entity if it continues to exist after the

application which created it terminates. Nodes can have two types of storage: volatile

storage (e.g., main memory), and stable storage (e.g., hard disk). Object states within

volatile storage are lost if the node fails, whereas those within stable storage are able to

survive node failures.

2.2: Atomic Actions.

One approach to making an object-oriented program fault tolerant essentially

requires the objects themselves to be made fault tolerant. One method used to achieve this

is to make use of the atomic action (or atomic transaction) [Gray 78][Lomet 77].

11

Chapter 2
	

Basic Fault—Tolerance Techniques

An action is a unit of work. During execution an action evolves as operations are

performed on objects within the action's scope. An action appears to be indivisible to its

surrounding environment i.e., it appears to be atomic to other actions. The properties of

atomic actions are:

(1) serialisability - this property ensures that concurrently executing atomic actions appear

to execute in a serial order i.e., they will be free from interference. To provide this property

some form of concurrency control is required.

(ii)failure atomicity— a computation encompassed within an atomic action can be aborted

without producing any effects. To achieve this property, objects must be made recoverable

so that whenever an action is aborted the states which existed at the start of the action can

be restored. This property requires backward error recoveiy and is invoked whenever a

failure occurs which cannot be masked. Backward error recovery can be performed by

either restoring the state of the object to that which existed at the beginning of the action,

or by performing some compensating action which transforms the state to the state at the

beginning of the action e.g., if the atomic action had incremented the object state by 5, the

compensating action could decrease the state by 5.

(iii)permanence of effect - this guarantees that once an action commits normally (does not

abort) the results produced are not destroyed by subsequent node crashes. This can be

achieved if the object's state is recorded on non—volatile storage which can survive node

crashes.

2.2.1: Action Primitives.

In any implementation of atomic actions there will typically be three basic primitives:

Begin_Action and Commit Action , which indicate the start and end of an action

respectively, and finally theAbort_Action primitive, which can be used to abort the current

action. Actions can also be nested within actions. If an action is nested, the enclosing

12

Chapter 2	 Basic Fault-Tolerance Techniques

action (parent action) becomes the current action when the child action commits or

aborts. The top—most action is called a top—level action.

Begin_Action (A)

statements for action A	 // A is the top-level action

Begin_Act ion(B)

statements for action B	 II B is nested within A
Commit_Action(B)

possibly more statements for action A

Commit_Action (A)

Figure 2-1: Nested Atomic Actions.

2.2.2: Failure Atomicity.

To achieve the failure atomicity property objects can be made recoverable, so that if an

action is aborted, the states of those objects which were modified within the action can be

recovered to the states which existed at the start of the action. When an action commits,

the states of those objects which were modified must be made permanent (stable) i.e., they

are not lost due to subsequent node crashes. However, if an action is nested then the

object states cannot be made stable until the outermost action (the parent) has committed

(unless compensating actions are to be used), since this parent action (or other actions

which enclose this committing action) could still abort.

The command Begin_Action represents the start of a recoveiy region. Whenever the

Abort_Action primitive is called from within a recovery region it will cause all recoverable

objects which were modified within the region to be returned to their earlier states. During

the termination of a top—level atomic action, a multi—phase commit protocol is required to

ensure that either all the objects which were updated within the action have their new

states recorded on stable storage or no updates get recorded.

2.2.3: Concurrency in an object-based system.

In an object—based system the objects themselves can be made responsible for

enforcing concurrency control. The most widely used form of such control is to regard

13

Growing

Number of
Locks!

-I

NI

Shrinling phase

Time
Lock

release

Action end

Chapter 2	 Basic Fault—Tolerance Techniques

operations on an object to be one of two types: read or write. Concurrent reads are

allowed since interference cannot occur, but if an action wishes to invoke an operation

that would modify the state of the object it must have exclusive access to that object. This

rule can be imposed by requiring that any action which wishes to perform an operation on

an object must first acquire the correct type of lock for that operation.

To guarantee the serializability feature of atomic actions mentioned earlier, most

systems which use atomic actions have adopted a two-phase locking policy [Eswaran

76] [Moss 81] for the actions. Using such a scheme, no new locks can be acquired after any

lock has been released, resulting in two distinct phases during the lifetime of an action: a

growing phase where locks are being acquired, and a shrinkingphase where locks are being

released. The point where the atomic action has obtained all the locks it requires is called

the locked point. Figure 2-2 illustrates the two-phase locking policy. The dotted line

represents an atomic action using a strict two-phase locking scheme where all locks are

released together, whereas the continuous line represents the general two-phase locking

scheme.

Lock	 I
acquisition

Action start Locked
point

Figure 2-2: Two-phase locking scheme.

A method of providing increased concurrency between objects is to allow for type

specific concurrency control [Schwarz 84]. The user. can redefine the amount of

14

Chapter 2	 Basic Fault-Tolerance Techniques

concurrency allowed within an object which will permit multiple clients to access the

object. If the object provides a number of update operations which do not interfere with

each other it should be possible to allow multiple update operations to be run concurrently

instead of enforcing the "multiple—readers, single—writers" policy. An example of this

would be the modification of two unrelated elements in a spreadsheet object, which

requires write locks on these different elements.

2.2.4: Objects and Actions.

As has been shown in [LeBlanc 85][Shrivastava 88], the object and action model

provides a natural way of structuring fault—tolerant systems with persistent objects.

Persistent objects normally reside in object stores which are designed to be stable i.e., have

a very low probability of failure. Atomic actions are used to control the state changes

which occur on these objects, with the properties of atomic actions ensuring that only

consistent changes can occur, despite failures.

An object normally resides in one object store. As shown in Section 1.2 to increase the

availability of an object it is possible to replicate it on many different nodes. If a replication

protocol is used in a system which also uses atomic actions then it is possible to integrate

the two mechanisms. Atomic actions typically abort because remote services have failed; if

these services are replicated then the probability that an action will have to abort as a

result of such a failure is reduced.

2.3: Distributed Objects.

Since in a distributed system the objects within any given application may be located on

physically distinct nodes, a communication protocol is required which will enable an

application to invoke an operation on a remote object. 1rpically, this protocol will be

implemented as a remote procedure call (RPC) mechanism that passes parameters from

the calling application (client) to the server on the remote node which manages the object

15

Chapter 2	 Basic Fault-Tolerance Techniques

the client wishes to invoke, and returns the result of the operation's execution. The RPC

mechanism is a way of providing access transparency.

2.3.1: Remote Procedure Call.

The idea behind the Remote Procedure Call (RPC) [Birrell 84] is the fact that

conventional procedure calls are well known and are a well understood mechanism for the

transfer of data and control within a program running on a single processor. When a

remote procedure is invoked, the calling process is suspended, any parameters are passed

across the network to the node where the server resides, and then the desired procedure is

executed. When the procedure finishes, any results are passed back to the calling process,

where execution resumes as if returning from a local procedure call. Thus the RPC

provides the system or application programmer a level of abstraction above the underlying

message stream. Instead of sending and receiving messages, the programmer invokes

remote procedures and receives return values.

JCall

Client Suspended
	

Server Active

Reply

Figure 2-3: Remote Procedure Call.

Figure 2-3 shows a client and server interacting via a Remote Procedure Call

interface. When the client makes the call it is suspended until the server has sent a reply. To

prevent the sender being suspended indefinitely the call can have a timeout value

associated with it: after this time limit has elapsed the call could be retried or the sender

16

Chapter 2	 Basic Fault-Tolerance Techniques

could decide that the receiver has failed. Another method, which does not make use of

timeouts in the manner described, instead relies on the sender and receiver transmitting

additional probe messages which indicate that they are alive. As long as these messages are

acknowledged then the original call can continue to be processed and the sender will

continue to wait.

2.3.2: Groups.

[ANSA 90][ANSA 91a][Liang 90][Olsen 91] describe the general role of groups in a

distributed system. Groups provide a convenient and natural way to structure applications

into a set of members cooperating to provide a service. They can be used as a transparent

way of providing fault tolerance using replication, and also as a way of dividing up a task to

exploit parallelism.

A group is a composite of objects sharing common application semantics as well as the

same group identifier (address). Each group is viewed as a single logical entity, without

exposing its internal structure and interactions to users. If a user cannot distinguish the

interaction with a group from the interaction with a single member of that group, then the

group is said to be fully transparent.

Objects are generally grouped together for several reasons: abstracting the common

characteristics of group members and the services they provide; encapsulating the internal

state and hiding interactions among group members from the clients so as to provide a

uniform interface (group interface) to the external world; using groups as building blocks to

construct larger system objects. A group may be composed of many objects (which may

themselves be groups), but users of the group see only the single group interface. [ANSA

90] refers to such a group as an Interface Group.

An object group is defined to be a collection of objects which are grouped together to

provide a service (the notion of the abstract component discussed in Section 1.2) and

accessible only through the group interface. An object group is composed of one or more

group members whose individual object interfaces must conform to that of the group.

17

Chapter 2	 Basic Fault—Tolerance Techniques

Interfaces are types, so that if an interfacex has typeXand an interfacey has type Y, andX

conforms to Y, thenx can be used wherey is used. This type conformance criteria is similar

to that in Emerald [Black 86]. In the rest of this thesis, we shall assume for simplicity that a

given object group is composed of objects which possess identical interfaces (although

their internal implementations could be different).

The object group concept allows a service to be distributed transparently among a set

of objects. Such a group could then be used to support replication to improve reliability of

service (a replica group), or the objects could exploit parallelism by dividing tasks into

parallel activities. Without the notion of the object group and the group interface through

which all interactions take place, users of the group would have to implement their own

protocols to ensure that interactions with the group members occur consistently e.g., to

guarantee that each group member sees the same set of update requests.

By examining the different ways in which groups are required by different applications,

it is possible to define certain requirements which are imposed on groups and the users of

groups (e.g., whether collation of results is necessary from a group used for reliability

purposes). [ANSA 9 la] discusses the logical components which constitute a generic group,

some of which may not be required by every group for every application. These

components are:

• an arbiter, which controls the order in which messages are seen by group members.

• a distributor/collator, which collates messages going out of the group, and distributes

messages coming into the group.

• member servers, which are the actual group members to which invocations are

directed.

For some applications collation may not be necessary e.g., if it can be guaranteed that

all members of a group will always respond with the same result. As we shall see in Section

2.3.3, if the communication primitives can guarantee certain delivery properties for

18

Chapter 2
	

Basic Fault-Tolerance Techniques

messages, then arbitration may also not be necessary. In general, all of these components

constitute a group. In the rest of this thesis the logical components will not be mentioned

explicitly, and the term group member will be used to mean a combination of these

components.

2.3.3: Multicast Communication.

Conventional RPC communication is a unicast call since it involves one—to—one

interaction between a single client and a single server. However, as shown in Section 1.2.4,

when considering replication it is more natural to consider interactions with replica

groups. Group communication is an access transparent way to communicate with the

members of such a group. Such group communication is termed multicasting [Cheriton

85][Hughes 86].

Multicast communication schemes allow a client to send a message to multiple

receivers simultaneously. The receivers are members of a group which the sender specifies

as the destination of the message. A broadcast is the general case of a multicast whereby

instead of speci!ring a subset of the receivers in the system every receiver is sent a copy.

Cal

•

Sender

.

Receiver Group

Figure 2-4: Multicast Communication.

Most multicast communication mechanisms are unreliable as they do not guarantee

that delivery of a given message will occur even if the receiver is functioning correctly (e.g.,

19

Chapter 2	 Basic Fault—Tolerance Techniques

the underlying communication medium could lose a message). When considering the

interaction of client and replica group (or even replica group to replica group

communication) such unreliable delivery can cause problems in maintaining consistency

of state between the individual replicas, complicating the replication control protocol (if

one replica fails to receive a given state-modifying request but continues to receive and

respond to other requests, this resulting state divergence could result in inconsistencies at

the clients). Thus, it is natural to consider such group-to-group communication to be

carried out using reliable multicasts, which give certain guarantees about delivery in the

presence of failures. These can include the guarantee that if a receiver is operational then

the message will be delivered even if the sender fails during transmission, and that the only

reason a destination will not receive a message is because that destination has failed. By

using a reliable multicast communication protocol many of the problems posed by

replicating services can be handled at this low level, simplifying the higher level replica

consistency protocol. These protocols will be discussed in more detail in Chapter 4.

2.4: Summary.

In this section, techniques which have been proposed for building reliable applications

were discussed. Object-oriented programming was described as a useful structuring

methodology for building applications, and it was shown how the atomic action can be

used to construct reliable applications.

Atomic actions provide an integrated mechanism which addresses the problems of

inconsistencies due to partial failures of an application, and interference between

concurrent parts of an application. The failure atomicity and permanence of effect

properties of atomic actions ensures that if partial failures do occur then the application

can recover to a consistent state, and the serialisability property ensures that operations

which occur within concurrent actions and access the same objects can only occur in a

consistent manner.

20

Chapter 2
	

Basic Fault—Tolerance Techniques

It was then shown how the RPC is typically used to enable remote objects to

communicate with each other in a transparent manner. The functionality of the RPC

matches closely that of the traditional procedure call, and as such, writing distributed

applications is simpler because details of how messages are transmitted across the

network are hidden from the application. However, the semantics of the conventional

RPC implicitly assumes that communication will take place on a one-to-one basis (i.e.,

one transmitter and one receiver) and it was shown how there is the need for one-to-many

and even many-to-many communication.

Groups were then described, introducing the concepts of the object group and the

replica group, which showed what components are required within a group to enable it to

function. It was shown that groups are not restricted to providing replication, but can be

used in other areas. The functionality required from a group depends upon the application

in which it will execute.

As soon as groups are used, one-to-many and/or many-to-many communication

(multicasting) is required. Such group communication provides a transparent way to

communicate with the many members of a group. Section 2.3.3 finished by describing why

reliable communication is important when dealing with groups: so it can be guaranteed

that every group member receives the same set of messages.

21

Chapter 3
	

Principles of Object Replication

3: Principles of Object Replication.

By replicating resources on components with independent modes of failure, it is

possible to construct fault—tolerant services, providing the notion of an abstract component

to the users (one which exhibits the properties of a single component but is actually made

up of many replicas). Each abstract component can be represented by a replica group,

which is a number of replicas grouped together and cooperating to provide the same

service. A replication protocol is required to manage all interactions with a replica group

to preserve the notion of the abstract component despite failures in the components. The

replication piotocol must mask failures which occur so that the replicated service can

continue to function. We shall see that there are a range of failures which can occur in a

distributed system, and hence there is also a range of replication protocols which can

tolerate these different failure types. The greater the range of failures which are to be

tolerated, the more complex is the replication protocol required. We shall first examine

the types of faults which can occur in a distributed system before discussing the replication

protocols required to mask each failure type.

3.1: Replication and Failure Modes.

3.1.1: Failure Classification.

Given a (distributed) system, it would be useful if we were able to describe its

behaviour formally in a way that will help establish the correctness of the applications run

on it. If this then imposes restrictions on the permissible behaviour of the applications we

will need to understand how those restrictions can be enforced and the implications in

weakening or strengthening them. A useful method of building such a formal description

with respect to fault—tolerance is to categorize the system components according to the

types of faults they are assumed to exhibit.

Four possible classifications of failures are: omission, value, timing, and arbitrary.

Associated with each component in the system will be a specification of its correct

22

Chapter 3
	

Principles of Object Replication

behaviour for a given set of inputs. A non—faulty component will produce an output that is

in accordance with this specification. The response from a faulty component need not be

as specified i.e., it can be anything. As stated in [Shrivastava 90b] the response from a

given component for a given input will be considered to be correct if not only the output

value is correct but also that the output is produced on time i.e., produced within a

specified time limit. In keeping with the definitions in [Shrivastava 90b] the classifications

are:

• Omission fault/failure: a component that does not respond to an input from another

component, and thereby fails by not producing the expected output is exhibiting an

omission fault and the corresponding failure an omission failure. A communication link

which occasionally loses messages is an example of a component suffering from an

omission fault.

• Value fault/failure: a fault that causes a component to respond within the correct time

interval but with an incorrect value is termed a value fault (with the corresponding

failure called a value failure). A communication link which delivers corrupted

messages on time suffers from a value fault.

• Timing fault/failure: a timing fault causes the component to respond with the correct

value but outside the specified interval (either too soon, or too late). The

corresponding failure is a timing failure. An overloaded processor which produces

correct values but with an excessive delay suffers from a timing failure. Timing failures

can only occur in systems which impose timing constraints on components.

• Arbitraiy fault/failure: the previous failure classes have specified how a component can

be considered to fail in either the value and time domain. It is possible for a component

to fail in both the domains in a manner which is not covered by one of the previous

classes. A failed component which produces such an output will be said to be exhibiting

an arbitraiy failure (Byzantine failure).

23

value timing

Chapter 3
	

Principles of Object Replication

3.1.2: Fault Classification.

An arbitrary fault causes any violation of a component's specified behaviour. All other

fault types preclude certain types of faulty behaviour, the omission fault type being the

most restrictive. Thus the omission and arbitrary faults represent two ends of a fault

classification spectrum, with the other fault types placed in between. The later failure

classifications thus subsume the characteristics of those classes before them e.g., omission

faults (failures) can be treated as a special case of value, and timing faults (failures). Such

ordering can be represented as:

Arbitrary

Figure 3-1: Failure Classification Hierarchy.

Now that we have examined the various classification of faults that can occur in a

distributed system we shall discuss the classes of replication protocols which can be used to

mask these faults should they occur.

3.2: Replication Overview.

The management of replicated objects is a complex operation. The main difficulty

arises from the fact that an object is not just data, but data (instance variables) plus code

(methods or operations which operate on the instance variables); furthennore, method

executions can result in calls on other objects. Thus the problem of managing replicated

objects really amounts to that of managing replicated computations.

24

Chapter 3
	

Principles 0/Object Replication

This problem can be best formulated in terms of the management of object groups

(where each group will represent a replicated object) which are interacting via messages.

To avoid any consistency problems it is necessary to ensure that a group appears to behave

like a single entity in the presence of concurrent invocations and failures. If not managed

properly, concurrent invocations could be serviced in different order by the members of a

group, with the consequence that the states of replicas could diverge from each other.

Group membership changes (caused by events such as replica failures and insertion of new

replicas) can also cause problems if these events are observed in differing order by the

users of the group.

For example, consider the following scenario (Figure 3-2) which uses active

replication, where object group GA (replicasAi ,A2) is invoking an operation on group GB

(a single object B) and B fails during delivery of the reply to GA. Suppose that the reply

message is received byAi but not byA2 , in which case the subsequent action taken byAi

and A2 can diverge. The problem is caused by the fact that the failure of B has been 'seen'

byA2 and not A1.

GA

B

A2/	 GB

Figure 3-2: Object Groups.

Note that initially it will be implicitly assumed that all communication between clients

and servers will be synchronous in nature i.e., a client is suspended until the server(s) has

executed its request and returned a result.

25

Chapter 3
	

Principles of Object Replication

3.3: Active Replication and Passive Replication.

It has already been mentioned in Chapter 1 that replication protocols break down into

two classes: active replication and passive replication. Both active and passive replication

can be used to mask failures of individual replicas within a replicated service and still

enable the service to execute further requests from clients. However, the method of

providing increased availability differs greatly between the two schemes. Because of the

differences in the way individual replicas and replica groups are treated by these

replication protocols it is not possible just to take a generic application and replicate it

using either passive or active replication techniques. Each replication class implicitly

assumes certain characteristics about both the application and the distributed system,

which makes such general replication impossible practically. Note that although server

groups will be discussed, it is possible for clients also to be replicated.

To be able to describe the way in which replication protocols function it is first

necessary to make some assumptions about the failure modes of the components (nodes)

upon which replicas will execute.

3.3.1: Fail-Silent Processors.

We shall initially assume that all nodes in the distributed system are fail-silent. A

fail-silent processor is distinguished by its extremely simple failure-mode operating

characteristics: it either works correctly or fails by halting without doing any spurious

work. A fail-silent node exhibits per7nanent omission failures i.e., when a failure occurs the

node stops functioning permanently (or until the fault can be corrected). Therefore a

fail-silent processor never performs an erroneous state transformation due to failure: if a

failure occurs, the processor simply halts.

A fail-silent processor is an idealized abstraction of real processors. However, given

sufficient hardware it is possible to build realistic approximations to such processors

[Schlichting 83][Shrivastava 90c][Barrett 90]. We shall see that when this premise is

26

Chapter 3	 Principles of Object Replication

relaxed, certain modifications need to be made to the replication protocols in order to

compensate for the increased range of failures which can occur.

It is important to note that the internal state of a fail—silent processor and some

predefined portion of the connected storage are assumed to be volatile (i.e., the contents

are lost whenever a failure occurs). The remaining storage is defined to be stable (i.e., it is

unaffected by any kind of failure). This stable storage property is necessary in order to

continue a task that was running on a failed processor, since the state of that task must be

available to the processor that is to continue it.

3.3.2: Passive Replication.

In a passive replica group (Fig. 3-3) only one member of the group (the primaiy)

receives, evaluates, and responds to invocations from clients. To ensure that members stay

mutually consistent the primary must send a checkpoint (snapshot) of its state to the

passive members. In the event of failure of the primary, the remaining members use a

protocol to elect a new primary, and this replica takes over from the failed primary and

resumes execution of the operation from the most recent checkpoint. No further

invocations can be processed until the new primary has been elected.

Since only one replica ever performs an operation, the replicas need not be

deterministic in nature (something which, as we shall see, is necessary for active

replication). Possible non—deterministic behaviour can be hidden by the fact that only the

primary ever responds to the client and this response is the group response as the primary's

state is also imposed onto its backups.

27

Chapter 3
	

Principles of Object Replication

Figure 3-3: Passive Replication.

3.3.2.1: Determinism and Message Collation.

Because only one active member performs a given computation and then checkpoints

its state to its backups, there is no need to ensure that the individual members of the

replica group are deterministic (determinism means that given the same initial state and

the same set of messages in the same relative order, all operational replicas will arrive at

the same final state). As we shall see, if an object or application can possibly exhibit

non—deterministic behaviour then this is the only protocol that can be used to replicate it.

Because a user of such a replica group only communicates with one member of the

group this means that only one message typically passes between client and server group

and the protocol to handle the reception of messages from replica groups can be

simplified. (No form of collation of return results is necessary). The primary copy can

receive multiple requests for the same operation from replicated clients (which may not be

passively replicated), but each client should only receive one reply (from the primary),

removing the need for a mechanism to handle multiple responses, as is necessary in active

replication.

28

Chapter 3
	

Principles of Object Replication

3.3.2.2: Primary Backups.

Backups which do not receive checkpoints for whatever reason, and hence are

out-of-date, must be handled in such a manner that they cannot become the new active

member of the group until they are consistent with the previous primary's state at its last

checkpoint (which is the state that clients expect to find the replica group in). Ensuring this

can take the form of the current primary excluding the unresponsive backups from the

replica group until they have performed update actions. Another method would be for the

primary election protocol to be sufficiently sophisticated that it cannot elect an

out-of-date replica as the new primary without that replica first performing an update

action. Either of these methods is sufficient to guarantee that the response a client receives

is from an up-to-date primary. The updating of out-of-date backups can be performed by

such a replica simply receiving the most recent checkpoint from the current primary.

3.3.2.3: Retained Results.

A potential race condition does exist if the primary fails after completing the execution

of the client's request and checkpointing its state, but before it delivers the result to the

client. The client may attempt to execute the request again, but this could cause problems

if the operation is not idempotent (i.e., executing the operation twice does not yield the

same result as executing it once). To avoid this, it is possible to enable the new active

member to recognise the repeated request from the client as an operation which has

already been performed and to simply retransmit the result again. ([Birman 85] referred to

this as retained results).

For example, consider the case of a passive replica group being used to implement a

cash dispenser. The current primary executes the request (R1) to dispense the money,

checkpoints its state (and the fact that it has executed R1), and then crashes before replying

to the client (the central banking computer, say). If the client retries R1 the new primary

will be able to determine that this operation has already been executed and instead of

29

Chapter 3	 Principles of Object Replication

dispensing the money again, simply transmits the acknowledgement to the client which the

initial primary failed to do.

3.3.2.4: Failure Detection.

The need for a failure detection mechanism is obvious in this type of replication

protocol. Such a mechanism regularly probes the primary member of the group to

determine whether it is still operational (this can be done by sending "are you alive ?"

messages and waiting for a response) and if a failure is detected then the backups are

notified and the re—election process begins (it is assumed that failures can be detected

eventually). The failure detection can be performed by the backups themselves, or by a

separate, independent mechanism, or by the users of the group. However the failures are

detected, the frequency with which the detector operates dictates how rapidly the replica

group can recover from a failure of the primary, and hence how rapidly the group can

resume executing requests on behalf of clients.

3.3.2.5: Primary Functionality.

From the initial description, it would appear that if all operations must be directed to

the primary then this could become a bottleneck in terms of operation throughput.

However, in some situations it may be possible for different replicas within the same

replica group to become the active member for different clients as long as the operations

they perform are not conflicting: for example, suppose that multiple clients wished to read

or modify different, independent values in the same replicated object; in such a situation it

would be possible for different server replicas to receive and service these requests as

though they were the only primary.

When a client makes a request on the replica group it typically does so without having

to know which replica is the current primary. The replication protocol guarantees that only

one replica will ever respond to the client, and when this response is received it is

guaranteed that this primary has checkpointed its state to a sufficient number of its

functioning backups to be able to provide the level of fault—tolerance required.

30

Chapter 3
	

Principles of Object Replication

The number of backups which must receive the checkpoint is application and system

dependant. If the replicated service must be able to tolerate K node failures then K

replicas must save the checkpoint as well as the primary. Checkpointing of state is an

expensive operation which increases the time between a client issuing a request and

receiving a reply. By reducing the rate at which checkpoints are made it is possible to

improve the performance of the replica group when no primary failures occur, but at the

expense of possibly having subsequent primaries re-execute a substantial amount of work,

with subsequent effects on users of the replica group which may have to retransmit

requests.

When a primary fails, users of a passive replica group may have to re-transmit requests

which occurred after the last primary checkpoint, and therefore may also have to

re-evaluate the replies from the new primary. As such, clients of a passively replicated

service must maintain the ability to re-transmit requests and re-evaluate replies (rolling

back their states to the state which they had when the failed primary last made its

checkpoint). A checkpoint of the primary's state gives users of the group a point beyond

which they will not have to rollback and can effectively "forget" about requests

transmitted previous to this point. Note that information obtained from a passive replica

group which has not checkpointed its state should not be transmitted to other objects until

the checkpoint has been made, otherwise if the replica group fails then the number of

objects which must undo operations can increase in a cascading manner.

Thus, there is a trade-off that must be examined on a per application basis, taking into

account the needs of the application and the characteristics of the distributed system. For

example, if the distributed system fails infrequently and read operations are performed

more often than write operations then checkpointing of primary state can occur

infrequently.

31

Chapter 3
	

Principles of Object Replication

3.3.3: Active Replication.

In this protocol all members in an active replica group (Fig. 3-4) evaluate every

invocation sent to the group and all members respond. Because all operational replicas

execute the requests there is no need for checkpointing as is the case for a passive replica

group. However, new members still need to be brought up-to-date with existing group

members before they can be allowed to receive and respond to requests. When using an

active replication protocol, there is an additional cost paid in the form of resources

allocated to the redundant members which all need to execute. This is in contrast to the

resource allocation needed for a passively replicated service, where typically only one

replica executes requests.

Figure 3-4: Active Replication.

Because every non-faulty member of an active replica group executes the same set of

invocations it is necessary that such replicas be deterministic. If this were not the case then

inconsistencies could arise in the replicated states. Also, since every non-faulty member of

an active replica group responds to a request, some form of collation of these results is

necessary at the client side. (If replicated clients exist then the collation problem is

symmetrical at the server side). Principles of active replication have been developed using

the state machine approach discussed below.

32

Chapter 3
	

Principles of Object Replication

3.3.3.1: The State Machine.

In [Schneider 90] the State Machine was described as the general way to implement a

fault-tolerant service by replicating services and co-ordinating the interactions of clients

with such replicated services. This approach also provides a framework for understanding

and designing replication management protocols which are based upon active replication.

We shall use this framework here to show the conditions that must be satisfied for an active

replication protocol to function correctly.

A state machine consists of state variables, which encode its state, and commands,

which transform its state (thus a state machine can be thought of as being equivalent to an

object). Each command is implemented by a deterministic program, and the execution of a

given command is done atomically with respect to other commands and modifies the state

variable and possibly produces some output. Requests are processed by a state machine

one at a time, in an order that preserves any causal relationships between requests

[Lamport 78]. Clients of a state machine can make the following assumptions about the

order in which requests are processed:

1: Requests issued by a single client to a given state machine sm are processed bysm in

the order they were issued.

2: If the fact that request r was made to a state machine sm by client c could have caused a

request r' to be made by a client c' to Sm, then sm processes r before r'.

Outputs from a state machine are completely determined by the sequence of requests

it processes, independent of time and any other activity in the system.

3.3.3.2: State Machine and Fault-Tolerance.

A system consisting of a set of distinct components is t fault-tolerant if it satisfies its

specification provided that no more than t components fail during some time interval of

interest. A t fault-tolerant version of a state machine can be implemented by active

replication of the state machine. Provided that each replica being run by a non-faulty

33

Chapter 3	 Principles of Object Replication

processor starts in the same initial state and executes the same requests in the same order,

then each replica will perform the same set of operations and produce the same output. If

the failure of a given processor (state machine) does not affect any of the other state

machine replicas, then by combining the outputs of the remaining non-faulty state

machines in the group, we obtain the output of the t fault-tolerant state machine.

When implementing an active replica group it is therefore necessary to ensure that all

replicas receive and process the same sequences of requests. This can be decomposed into

two requirements concerning the dissemination of information to the members of the

group.

Cl: every non-faulty state machine replica receives every request (agreement requirement).

C2: every non-faulty state machine replica processes the requests it receives in the same

relative order (order requirement).

Requirement Cl governs the behaviour of a client which is interacting with state

machine replicas. C2 governs the behaviour of a state machine replica with respect to

requests from multiple clients.

There are various ways of implementing requirements Cl and C2, some of which will

be described in later sections. However, these conditions do not make any assumptions

about clients or state machine commands. With some knowledge of the commands it is

possible to weaken the requirements, and allow cheaper protocols to be used. For

example, requirement Cl can be relaxed for read-only requests when fail-silent

processors are being used. When fail-silent processors are used, a request which does not

modify the state variables need only be sent to one state machine replica. This is because

the response from any one non-faulty replica is guaranteed to be the same as the response

from any other non-faulty replica in the same group. Because the read-only operation

does not change any state variables the one replica which does respond will still be

consistent with those which do not.

34

Chapter 3
	

Principles .01 Object Replication

However, the resource usage for an active replica group is greater than that for a

passive replica group because each member of the group executes. The number of

messages which flow across the communications medium is also greater, leading to the

need for some form of collation of requests/replies. Optimizations exist which can reduce

the resources usage and the number of messages, but these must be integrated into the

replication protocol. For example, if each replicated server receives a copy of any reply

that is sent by one of its replicas then it can use this information and decide not to send

another copy of the same reply.

3.3.3.3: Operation Semantics.

Replication protocols typically rely on the ability of the invoking process to determine

the type of operation that is being performed on the remote replica i.e., a read or a write

operation. The protocols can function differently depending upon the operation type (e.g.,

in active replication it is only necessary for one replica to be contacted for a read

operation, whereas all replicas must be contacted for a write). These are purely efficiency

measures which can be made, as it is possible to assume every operation can modify the

state of an object and design accordingly a less efficient, although still logically correct,

replication protocol.

In an object-oriented system an object exports an interface with certain operations

through which it is possible to manipulate its state. Some of these operations may modify

the state, whilst others will leave it unchanged. From the exported interface definition it is

not generally possible for a client to determine which operations modify the state and

which do not.

This encapsulation of operations in the object makes the construction of a replication

protocol which can exploit semantic information about the application and objects more

difficult. The obvious solution to this is to take the pessimistic approach and assume every

operation has the potential to modify the object state. However, this can impose

substantial performance penalties since write operations are more expensive than read

35

Chapter 3	 Principles of Object Replication

operations. The other approach is to be optimistic and simply perform all operations on a

single replica, with the understanding that if conflicts do occur some form of

compensation (or rollback) must be carried out. These methods (and the one which we

shall use, which allows the type of operation to be discerned) will be described in more

detail in Chapter 5 and Chapter 6.

3.3.4: Communications Requirements.

3.3.4.1: Active Replication.

As was shown in Section 3.3.3.2, for active replication to function correctly there are

two conditions which must be met (Cl and C2). This imposes certain restrictions on the

way in which the underlying communications primitives can function. Both conditions can

be met by making use of an atomic broadcast mechanism, which ensures that all

functioning members of a given replica group will receive the same set of messages

(condition Cl) in the same relative order (condition C2), despite failures of the senders. If

the communications medium cannot guarantee either of these conditions then further

extensions to the replication protocol must be made to compensate e.g., only allowing

operations to succeed if at least a majority of replicas receive and respond to requests

(these modifications will be described in Section 3.4).

In Arjuna, which is an atomic action based system to be presented in Chapter 6,

condition Cl is met by the communications layer, which uses a reliable broadcast

mechanism which guarantees that despite sender failures all operation members of the

same replica group will receive a given message. However, this does not ensure that the

order of the received messages is the same between different replicas. Condition C2 is met

by the higher level transaction serialization mechanism which imposes ordering only

where necessary e.g., to ensure that conflicting operations are executed by all replicas in

the same order. This separation of the conditions can typically improve the performance

of the distributed application by allowing a simpler communications protocol to be used.

36

Chapter 3
	

Principles , f Object Replication

If asynchronous communication is used to allow client and server interaction, where

the client is not suspended after issuing a request on a server and can collect replies at a

later time, then it is necessary that the causal ordering between exchanged messages (the

"happened before" ordering of messages), is preserved i.e., condition C2 should satisfy the

causal ordering.

Figure 3-5: Exchange of Messages Requiring Causal Ordering.

Consider the situation shown in Figure 3-5. ClientA issues an asynchronous request

on server C (message mj) and then issues another request on server B (message m2). B

then issues its own request on server C (message m3), and this request arrives at C before

the initial request fromA. It would be incorrect of C to execute m3 before ml as m3 could

depend upon work that should be done by ml. In such a situation C must be aware that

there are other messages which should be processed first, which m3 is dependant upon

(i.e., the causal ordering). Condition 02 assumes that such causal orderings are preserved.

Protocols which preserve the causal ordering of messages will be described in Chapter 4.

3.3.4.2: Passive Replication.

When using a passive replication protocol and communication is synchronous then

client and primary interaction is similar to the more traditional client and non-replicated

server interaction. Ideally the interaction between client and primary would be carried out

with a communications protocol which at a minimum functionality ensures reliable

delivery of messages. However, as in the non-replicated case, if an unreliable

37

Chapter 3	 Principles f Object Replication

communications protocol is used then messages could be lost between client and primary,

but the client can simply retransmit requests until it receives a reply.

Communication between the primary and its backups must be atomic, however, since

all of the operational backups must either receive a checkpoint or fail to receive it,

ensuring only consistent backups are elected as new primaries. As stated previously, those

backups which do not receive checkpoints must either be excluded from the group, or

must update their states before they can be elected as a subsequent primary. If client and

primary interaction is carried out asynchronously then all communication (including the

checkpointing of primary state to the backups if multiple primaries are allowed to execute

concurrently) must be at least causally ordered for the reasons discussed in Section 3.3.4.1.

The ISIS system to be described in Section 5.3.1 provides a replication scheme which

operates in the way.

3.3.5: Using Active Replicated Services.

Active replication is most appropriate in applications which require uninterrupted

services, with minimum overhead during failures. In an environment which can satisfy the

constraints outlined in Section 3.3.3.1, active replication has the promise of performing

better than passive replication in the presence of failures, since there is no election of a

primary or any need to ensure that backups are consistent. Although a service which is

replicated using an active replication protocol consumes more resources than a similar

service passively replicated, this increase in resources can be used advantageously. For

these reasons active replication has been chosen as the main subject for this thesis. The

advantages of this scheme are discussed below in detail.

3.3.5.1: Increased Performance.

Although replication can be used to improve the fault—tolerance of a given service,

because multiple instances of this service must be contacted for each operation the overall

performance of the service must be reduced (in some protocols read operations are made

to run as though the service were not replicated, but write operations impose a greater

38

Chapter 3	 Principles of Object Replication

overhead than in the non-replicated case). In active replication, because conditions Cl

and C2 must be met, this necessarily imposes an overhead on all client and replicated

service interactions. In passive replication, the overhead comes about because the primary

must checkpoint its state to its backups, waiting for sufficient replies before it can reply to

the client (it proceeds at the speed of the slowest backup). However, it is possible to

improve the performance of an application which uses an active replica group relative to

one which uses a passive replica group, while at the same time satisfying the necessary

conditions for it to function correctly.

Because there is no primary copy in active replication there is no need to run a

(possibly) expensive re-election protocol as is the case for passive replication when

failures occur. The replicas need not monitor the state (liveness) of other replicas in the

group to determine when to run such a protocol either. Having to run such a protocol, as in

the primary copy scheme, means that the replica group is unavailable while the protocol is

taking place and clients must wait to have their requests processed i.e., the performance is

degraded while the re-election takes place.

With an appropriate active replication protocol it may be possible for a client who

makes a call on a replica group to continue to execute (stop waiting for more replies) as

soon as the first reply is received from the fastest replica. In such a situation the

performance would be almost the same as that in a non-replicated interaction and yet still

provide the fault-tolerance and availability aspects. Also, it may be possible for a client to

issue its requests on those replicas which are located physically close to it in the distributed

system, hence reducing the overhead incurred by communicating over large distances of

the network.

3.4: Replication and Failure Masking.

From the discussions of the two classifications of replication protocols it can be seen

that there is a restricted subset of applications which can be replicated with each protocol

type. This section will describe the type of faults that they can be used to mask. With a

39

Chapter 3	 Principles of Object Replication

restrictive fault model (i.e., assuming only a certain subset of faults which can occur) then

the replication protocol can be simplified, and vice versa. The lattice of failure

classifications outlined in Section 3.1.2 will also be followed, as any replication protocol

which can function correctly in a less restrictive failure environment can continue to

function correctly in a more restrictive failure environment.

We shall consider the number of replicas that are required by each replication protocol

to be able to tolerate K replica failures, given a specific set of failure characteristics for the

distributed system (assumptions about how the components will perform). We will assume

that the only communication failure is that of network partitioning which prevents a

functioning process from communicating with another functioning process. Other

communications problems such as corrupted or duplicated messages can usually be

detected and corrected for using well understood techniques used in most distributed

systems. Aspects of the replication protocols concerned with replica recovery will not be

considered here as they are orthogonal to the issue to be discussed (they will be discussed

in Chapter 5).

3.4.1: Active Replication.

3.4.1.1: Permanent Omission Failures.

If we assume that the components in the distributed system either function correctly or

cease to function in a silent manner (i.e., are fail—silent) then they can only suffer from

permanent omission failures. In the absence of network partitions, K out of a total of K+ 1

replica failures can be tolerated before an object becomes unavailable (which is termed

K—Resilient [Birman 85]). Because components fail cleanly, the replication protocol can

be simplified in terms of the state machine description of active replication: there is no

need for a collation of return values from functioning replicas, as they will all be identical;

a client need only read from a single replica as long as write operations are performed on

all functioning replicas.

40

Chapter 3
	

Principles pf Object Replication

3.4.1.2: Value and Omission Failures.

If a failed replica can produce erroneous outputs (rather than no outputs) then it

becomes necessary to validate those outputs from the replicas, by comparing the results

produced. Note that a replica which suffers from occasional omission failures falls into this

category as it may miss some update operations to its state and hence respond incorrectly

to subsequent requests. To be able to tolerate K such failures it then becomes necessary to

have 2K+ 1 replicas in a group (so that a majority of correctly functioning replicas can

always be obtained), and for the client to collate the replies from these replicas and

perform a majority vote on them.

Network partitions can also be the cause of omission faults and so in order to be able to

function in the presence of such partitions it is also necessary to have 2K+ 1 replicas and

the replication protocol must only allow operations to occur in the majority partition, if

one exists.

3.4.1.3: Timing Failures.

Timing failures can only occur in those systems which impose timing constraints. If

there are no constraints on "when" operations can occur or "when" results must be

returned, then such messages can be neither too early, nor too late. However, most

distributed systems and applications function by making use of such timing constraints, for

example to detect when a process has crashed, or that a message has been lost.

Components which suffer from timing failures must be handled so that they appear as

though they have crashed i.e., timing failures are masked to appear as permanent omission

failures. In this way, only those "functioning" components (those replicas which respond in

a timely manner) are ever read from and written to, in much the same way as happens for

components which have crashed. This is because it is not possible (in some finite period of

time) to distinguish a timing failure from an omission (crash) failure.

If timing failures occur it is necessary that all clients have the same view of which

replicas have up-to-date states (i.e., have received all requests and responded on time) as

41

Chapter 3	 Principles of Object Replication

these are the only replicas which can be guaranteed to be correct at this time. To be able to

tolerate K failures in such an environment, it is therefore necessary to have a minimum of

2K+ 1 replicas. The replication protocol must then collate the responses from the

individual replicas and decide whether or not a given request can be considered successful,

by only allowing operations to occur if a majority of the replicas respond on time with the

same values. The protocol must ensure that despite components failing, multiple clients

accessing the same replica group have a consistent view of the group and its state, and that

conflicting operations cannot be performed. The Voting protocol to be described in

Chapter 5 ensures this by only allowing operations to be performed if a specific subset

(typically the majority) of the replicas can be contacted (called a Quorum). Although

different clients may obtain replies from different subsets of the replicas in a given group,

as long as the replicas which the clients contact intersect then each client will be able to

observe the same state.

3.4.1.4: Arbitrary Failures.

If we assume that components can suffer from arbitrary failures (Byzantine failures)

[Schneider 84] then a complex agreement protocol must be run before any actions can be

performed on a replica group, or any results from such a group can be used. Each replica

must exchange messages it has received with the other members of the group and they then

perform a majority vote on the messages to determine what the final request/reply is. The

messages exchanged between members must include those messages which were received

from other replicas within the group as part of this agreement protocol.

As shown in [Lamport 82], in such a situation, ensuring consistency between replicas in

the same group requires 2K+ 1 replicas if messages can be authenticated i.e., it is possible

to determine that the message sent is correct and has not been corrupted at source (digital

signatures can be used to implement authentication with a high probability). By

performing a majority vote on the results obtained it is possible to use the majority value

which will be correct provided no more than K failures occur.

42

Chapter 3
	

Principles of Object Replication

If message authentication is not possible then 3K+ 1 replicas are necessary to tolerate

K failures because it is no longer possible to distinguish a message sent by a faulty replica

from a correctly functioning replica which is simply retransmitting an incorrect message it

received from the replica which is actually faulty.

3.4.2: Passive Replication.

3.4.2.1: Permanent Omission Failures.

As with active replication, if the components are fail-silent then it is possible to have a

protocol which is K-resilient. Failures of backups have no affect on the service unless K

such replicas fail making it impossible for the primary to checkpoint its state. Failure of the

primary results in a new primary being elected from the remaining backups. If no backups

remain then the replicated service has failed completely. Therefore the service can

tolerate K replica failures out of a total of K+ 1 replicas, whether the failed replicas are

primaries or backups, before becoming unavailable.

3.4.2.2: Other Failures.

It is not possible to tolerate the other classes of failures with a passive replica group

because only one member of such a group (the primary) transmits and receives messages.

No collation of replica states is possible, as in active replication, to obtain a majority view.

If the primary responds to a client then the result must be assumed to be correct (unless the

message is corrupted, and can be detected as such). The primary imposes its view and its

state on users of the group, and because such users never get to interact directly with the

primary's backups these cannot be used to detect and mask other failure types as they are

in active replication. As such, if the characteristics of the distributed system fail to meet the

assumptions in Section 3.4.2.1 then passive replication cannot be used to replicate a

service and ensure that the service continues to operate correctly in the presence of

component failures.

It is however possible to tolerate network partitions in a passive replica group. The

problem arises when a new primary has to be elected. Since it is not possible to

43

Chapter 3	 Principles of Object Replication

differentiate a failed replica from one which has been partitioned, it becomes possible for

each replica group which spans a partition to have a separate primary. To prevent this

requires 2K+ 1 replicas and requires the primary election protocol to vote on whether a

new primary should be elected. If a majority of the replicas can be contacted then a new

primary can be elected, otherwise no new primary can take over.

3.5: Summary.

This chapter concentrated on the principles of replication, starting with a description

of the classes of failures normally encountered in a distributed system and which

replication of resources is typically used to mask. Then the requirements from a

replication protocol were described, and it was shown that managing replicated objects is

more complex than managing replicated data because an object's methods could contain

calls on other objects. Hence, the problem of managing replicated objects amounts to

being able to handle replicated computations, which can be best formulated in terms of

managing replica groups. To avoid inconsistency it is necessary to ensure that a group

appears to behave like a single entity in the presence of concurrent invocations and

failures.

The two classifications of replication protocol were then discussed in detail: active

replication, and passive replication. The differences between the two classes of replication

were described, and it was shown that active replication required much more complex

communications protocols than passive replication. Also, active replication assumes that

all replicas are deterministic i.e., given the same starting state, and the same set of

operations in the same order, they will all arrive at the same final state. Passive replication

does not impose such a constraint. When considering active replication it is therefore

necessary to use the State Machine approach. The two State Machine conditions were

described, which state that each functioning replica must receive the same set of messages

and executed them in the same order. These conditions must be met in order to ensure that

all replicas within the same group have the same state. -

44

Chapter 3
	

Principles of Object Replication

Finally, we showed how active and passive replication can be used to mask the

different classifications of failures described previously. Because of the way in which

replication is handled by each class of protocol, it was shown that passive replication can

be used to mask only a subset of the types of failures which active replication can mask. It

was further shown how the number of replicas required to tolerate K failures increases as

the severity of the failure model increases.

45

Chapter 4	 Replica Group Communication

4: Replica Group Communication.

As has been shown in the Chapter 3, the functionality of the communications

primitives of a distributed system and the characteristics of its communications medium

must be taken into account when considering the interaction of replica groups. Whether

these services are replicated actively or passively also affects what is required from the

communication level e.g., collation of requests and results. It was also shown that the

communications requirements for active replication can be much more demanding than

those for passive replication. As this thesis is principally concerned with active replica

groups we shall now discuss in detail what functionality is required from the underlying

communications layer and how it affects the replication protocols which will run on it.

When considering active replication it is a necessary condition that all functioning

replicas receive and process the same set of messages in the same order (this was shown in

Section 3.3.3.1). Messages sent to replica groups should be delivered to all functioning

members of the group. If the message delivery property cannot be met then it is possible

for a process on a functioning processor occasionally to miss receiving messages directed

to it. Such behaviour can create inconsistencies in replicated resources. Consider the

interaction of replicas shown in Fig. 4-1.

Pj	 !

P.	 J	 •..

G

Figure 4_.1: State divergence due to message loss.

Message m from Pk is being used by replicas P1 and I to determine whether that service

is functioning or not. However, because the necessary message delivery property could not

be met in this system, m is delivered to P but not to i j, and hence F', considers Pk to have

46

Chapter 4
	

Replica Group Communication

failed while P1 does not. 1, may then take some other action than that taken by P1 which

may lead to its state diverging from that of its P1.

Ensuring mutual consistency between members of the same replica group breaks

down into two areas:

• maintaining replica consistency to external events: this ensures that all functioning

replicas of a given group observe the same set of external events, despite failures. The

external events considered are messages which are sent and received by objects. These

messages must be ordered identically at each replica. Since typically clients and servers

have associated message queues where messages are placed prior to being used, this

can be obtained by having identically ordered message queues. However, this raises

the problem of ensuring that the queues do not overflow.

• maintaining replica consistency to internal events: this ensures that all functioning

replicas of a given group observe the same set of internal events, despite failures. The

internal events which we shall consider are local RPC timeouts (on behalf of remote

services). Because such timeouts can depend upon factors local to the client or server,

such as the load on the host node or local network congestion, there can be no

guarantee that the timeout has occurred at other replicas in the same group.

Therefore, unless these events are handled consistently by each replica, the states of

the replicas within a given group could diverge.

As was indicated in Section 2.3.1, a remote procedure call (RPC) can be tenninated

either when a timeout on behalf of the remote service occurs or when an "are you alive?"

probe message fails to be acknowledged by the remote service. The problem of

maintaining consistency to internal events as outlined above, only occurs if the RPC is

implemented with timeout values. If probe messages are transmitted using

communication protocols with some of the delivery characteristics to be described below,

then they can be ordered consistently with respect to all other messages in the system so

that they occur at every replica's message queue in the same order i.e., if one replica

47

Chapter 4	 Replica Group Communication

determines that a server has failed, then all replicas in the same group will come to the

same decision. Local timeouts cannot be so ordered.

For this reason, and the fact that the system that we designed our replication protocols

for uses a timeout based RPC mechanism (to be described later), we shall consider only

that type of RPC in what follows. Possible solutions to this problem will be described in

Section 4.7. Note that active replication is also suitable in real-time environments where

RPCs are often made with deadlines to ensure that actions are taken within a specified

period of time. So our solution can be also extended to real-time systems.

We shall now discuss in detail the problems involved in maintaining replica consistency

to external events, and propose some solutions by using the delivery guarantees that can

be obtained from the communications layer. It is first necessary to consider the

interactions which occur when non-replicated clients and servers interact across a

network, before extending this reasoning to replica groups.

4.1: Remote Object Invocation.

Invocations on objects which are not replicated are traditionally based on the RPC as

this retains the correct semantics of a procedure call i.e., a single flow (thread) of control

from caller to callee and back again (as with a traditional procedure call). Section 2.3.1

described the concept of the Remote Procedure Call, and the simplified model of

client-server interaction shown in Figure 4-2 will be assumed for the discussion to follow:

a client uses the primitives sendjequest() for sending a call request and receive_result() for

receiving the corresponding results. Clients and servers maintain enough state

information to recognize and discard duplicate messages (filter requests). The server

maintains a queue of messages from possibly multiple clients, and uses the primitive

receive_re quest() to pick a message from the queue in a fifo order. After invoking the right

method, the result is sent to the client with the send_result() primitive.

48

Chapter 4
	 Replica Group communication

CLIENT
	

SERVER
repeat

send_request () 	 receive_request ()
repeat	 filter_request

receive_result ()	 until valid_request
filter result	 call object_method

until valid_result	 send_result ()

Figure 4-2: RPC Primitives.

When making replicated invocations (such as when calling a replica group) the

semantics of such communication differ considerably from that of the traditional RPC:

there is no longer a single thread of control, but rather multiple threads which may all

eventually return to the caller. Such invocations are typically referred to as Replicated

Procedure Calls [Cooper 84aJ[Cooper 85], and can be implemented using one—to—many

(or multicast) communication facilities. We discuss various aspects of multicast

communication below.

4.1.1: One—to—Many Communication.

The main services a multicast protocol provides can be categorised into three classes:

ordering, reliability and latency. By imposing (increasing) ordering and reliability

constraints on the delivery of multicast messages it is possible to define increasingly

sophisticated protocols (typically at the expense of the latency). To understand these

protocols first assume that a sender S is attempting to multicast to a group G = {Pi,...,P}.

Following the definitions outlined in [Shrivastava 90b][ANSA 90]:

4.1.1.1: Unordered and Unreliable.

A multicast from S will be received by a subset of functioning nodes Pi E G. Successive

multicasts from S will be received in an arbitrary order at the destinations. Figure 4-3

shows sender S multicasting messages m1 and m2 to the group G. The first message is

received by P2 and P in different orders, and message m2 is not received by P1.

49

S1

S2

P1

Pn

Chapter 4
	

Replica Group Communication

S

P1

P2

Pn

send(m 1 ,G)	 send(m2,G)

time

Figure 4-3: Unordered and Unreliable multicasts.

4.1.1.2: FIFO Multicast.

Provided the sender does not crash while transmitting the message, all correctly

functioning receivers are guaranteed to get the message. Furthermore, the multicasts will

be received in the order they were made.

Figure 4-4 shows two senders (S 1 and S2) multicasting to the group G. All members of

G received m 1 before m2, but some members may receive m3 before m2. This last ordering

is correct given the definition of the protocol: no information about the relative ordering

of multicasts between senders is available to the receivers.

send(m 1 ' 0)	 send (m2,G)

time

Figure 4-4: Ordered and Reliable multicasts.

4.1.1.3: Atomic multicast.

If the sender does not crash before completing a multicast, the message is guaranteed

to be received by all functioning members. If, however, the sender crashes during a

50

Chapter 4	 Replica Group Communication

multicast, then it is guaranteed that the message is received by either all or none of the

functioning processes (atomic deliveiy). All multicasts from the same sender are received

in the order they were made.

4.1.1.4: Causal multicast.

This multicast extends the ordering property of the Atomic multicast to causally

related sends from different senders while still meeting the reliability guarantee. [Lamport

78] was the first to introduce the concept of potential causal relationships into computer

interactions and showed what effects these relationships can have on the operations of

interacting processes. Two events are potentially causally related if information from the

first event could have reached the second event before it occurred. The notation used to

denote such relationships is typicallyX -+ Y, where -, means precedes (happened before).

Note that if X and Y are events from the same process and Y follows X then Y is

necessarily causally related to X. A causal communication system will only preserve an

ordering of events if the order is causally related. If two events are not related in this way

then there is no guarantee on the delivery order.

- -	 _._u._._ (-------------	 (.'t

time

Figure 4-5: Causal multicasts.

In Figure 4-5, S 1 is multicasting the groups G 1 and G2, P1 is multicasting to group G1.

G1 {P2,P3} and G2 = {P1,P4}. There is a potential flow of information from send(m1,Gi)

to send(m2,G2), and from send(m 2,02) to send(m3,G1). This means that the sending of m3

by P i is potentially causally related to the sending of m 1 by S 1. Hence the causal multicast

51

Chapter 4
	

Replica Group Communication

protocol must ensure that all functioning members of G 1 receive m1 before m3. Events

such as m3 and m4 which are not causally related can be received in any order (they are

termed concurrent).

4.1.1.5: Totally ordered multicast.

The (partial) causal order can be extended to a total order of messages such that all

messages (whether causally related or not) are received by all destinations in the same

order (which must also preserve causality).

4.2: Multicasts and Latency.

As described in [Shrivastava 90a], the latency of a multicast service is defined to be the

time taken for a message, once sent, to reach the destination processes. This latency is

particularly important for protocols providing reliability and ordering guarantees. As we

shall see, whereas the latency for an unreliable multicast service is bounded (typically of

the order of a few milliseconds), the latency for a multicast service which operates in the

presence of failures (message losses and node crashes) can be bounded or unbounded

depending upon the implementation.

Existing order preserving protocols can be broadly classified in the following way:

• message histoiy based: the main idea behind such protocols is that when a process sends

a message it appends some historical information about the messages it has received in

its recent past. This historical information enables the receivers to retrieve any missing

messages and to order them properly. This type of protocol ensures that an incomplete

multicast is eventually completed, and hence possesses an unbounded latency property.

• centralised distributors: here the sender delivers the message to a specific member of

the group (the primary) who is then responsible for distributing the message to the

fellow members of the group. The primary can assign a total order to the messages it

receives. As we have already seen, failure detection mechanisms are necessary to

detect failed primaries and to elect new primaries which can take over and complete

52

Chapter 4
	

Replica Group Communication

the multicasts. Such protocols can possess bounded latency, but the necessity to detect

asynchronously occurring failures can impose an overhead on performance.

• multi-phase commit: these protocols, providing total order, use multiphase algorithms

(typically 2 or 3 message rounds) which are similar to the two-phase algorithm

described earlier for atomic action commits. The sender delivers the message to the

destinations which return sufficient information to the sender about the messages that

they have received so that in the subsequent rounds of the protocol the sender can

impose an identical order of the message onto the destinations. The message is only

considered to have been delivered if all of the phases of the protocol complete. Such

protocols provide bounded latency.

• clock-based: these protocols are an important class of the multi-phase algorithms, and

assume the existence of a global time base. Timestamps derived from such a time base

can then be used for imposing a total order on messages. Such protocols can provide

constant latency communication, having the attractive property that if a sender

multicasts a message at clock time T, then it can be sure that all functioning receivers

will have received the message by clock time T + , where is the constant indicating

the protocol latency (must be determined by applying worst case timing and failure

assumptions).

We shall now examine a system which provides a reliable multicast protocol using a

message history based approach.

4.3: Review of an Existing Multicast Protocol.

We shall now consider one implementation of a communication subsystem which

provides some of the delivery properties described previously. It is important to

understand how these ordering requirements can be met, and the overhead which is

involved in guaranteeing them, before we discuss how such communication primitives can

be used to provide replicated object groups. Other reliable communication subsystems

53

Chapter 4	 Replica Group Communication

exist, of which [Chang 84][Cristian 85][Cristian 90][Verissimo 89] are a sample, but we

shall consider Psync because it illustrates many points clearly.

4.3.1: Psync.

Psync [Peterson 87][Mishra 89] ("pseudosynchronous") is a communication subsystem

designed to provide reliable multicast communication between objects, and is based on

the message history approach described above. The system assumes that operations on

objects which change the state occur atomically and are idempotent. Associated with each

object is a manager process. A client process locates a particular manager (perhaps by

consulting a naming service) and then invokes operations on the object by sending

requests to that manager. When a manager receives a request to invoke a particular

operation on an object, it encapsulates the operation in a message and uses the Psync

many-to-many communications protocol to forward the message to all of the managers

involved (including itself) if the object is a member of a group. Based on the set of received

messages, each manager can then decide on an order in which to apply the operations to its

copy of the object. This protocol can be extended to be used for the interactions of

replicated object groups, and the exact details of the replication protocol used in Psync will

be described in Section 5.3.5.

4.3.1.1: Conversations and Context Graphs.

Psync explicitly preserves the partial ordering of messages exchanged among a

collection of processes in the presence of communication and processor failures (Psync

cannot function in the presence of network partitions). A collection of processes exchange

messages through a conversation abstraction. This conversation is defined by a directed

acyclic graph (a context graph) that preserves the partial order of the exchanged messages.

This ordering is made available to all managers involved in a conversation and by using

this they can determine when to execute operations on their local objects.

When processes communicate they do so by sending messages in the context of those

messages they have already received. Participants are able to receive all messages sent by

54

Chapter 4	 Replica Group Communication

the other participants in the conversation but they do not receive the messages that they

themselves send. Each participant in a conversation has a view of the context graph that

corresponds to those messages it has sent or received. The semantics of the

communications primitives provided by Psync are defined in terms of the context graph

and a participant's view.

Figure 4-6 shows an example of a context graph. This conversation is started with the

initial message mi . Messages m2 and m3 were sent by processes that had received ml, but

are independent of each other (hence no link between them), and m4 was sent by a process

that had received ml and m3 , but not m2. Messages that are not in the context of some

other message are said to be concurrent (occur at the same logical time). The relation <is

defined to be "in the context of".

rn/mN

m/

Figure 4-6: A Context Graph.

The context graph contains information about which processes have received what

messages. The receipt of a message implies that the sender has seen all of the messages

which came before it in the context graph. A message m sent by process p is said to be

stable if for each participant in the conversation qp, there exists vertex mq in the context

graph sent by q, such that m <mq. For a message to be stable means that all participants

except the sender have received it, it must follow that all future messages sent to the

conversation must be in the context of the stable message.

55

Chapter 4
	

Replica Group Communication

In figure 4-7, we have a context graph which depicts a conversation between three

participants, a, b, and c. Messages al, a2, ... denotes the sequence of messages sent by

process a, and so on. Message al, b1 , and ci are the only stable messages; messages a2 and

a are two unstable messages sent by process a.

Cl	 a/N/
a3

b3

Figure 4-7: Stable and Unstable messages.

Psync maintains a copy of a conversation's context graph at each host on which a

participant in the conversation resides. Each process in the conversation receives

messages from this local copy of the context graph, which is termed the image. Whenever a

process at one host sends a message, Psync propagates a copy of the message to each of the

hosts in the conversation. This message contains information about all messages upon

which the new message depends, so that the receiving hosts can append it to their context

graphs in the correct place.

4.3.1.2: Dealing with Network and Host Failures.

Suppose message m is not delivered to some host because of a network failure. If at

some future time a message m' arrives that depends on m then the host will detect that it is

missing m and will send a retransmission request form to the host that sent m', (this host is

56

Chapter 4	 Replica Group Communication

guaranteed to have m as a local participant has just sent a message which is in the context

of it).

The operations provided to aid applications in recovering from host failures include

the ability for a participant to remove a failed participant from its definition of the

participant set for a conversation. This is necessary so that messages will eventually

stabilize relative to the functioning participants. Once a given participant has been

masked out, Psync ignores all further messages from that process.

There is also an inverse operation that allows a participant to rejoin a participant set. It

would be invoked when a participant becomes aware that another participant which was

formally failed has now recovered.

When a host recovers, a participant can initiate a recovery action which will inform

other participants that the invoking participant has restarted, and to initiate

reconstruction of the local image of the context graph. Each member of the conversation

will transmit its local copy of the context graph to the recovering participant who can then

use this to reconstruct its own local copy.

4.3.1.3: Total Ordering.

As described, the Psync protocol only gives a partial ordering of messages i.e., only the

causal ordering of messages is preserved. To convert a partial order into a total order,

whereby messages which are not causally related are ordered identically at all overlapping

destinations, requires additional information to be shared amongst the destinations which

indicates the order in which to place such messages. In Psync, the context graph which

accompanies each message provides this information. The partial order that Psync

provides can be used to give a total order if all participants perform the same topological

sort of the context graph. This sort must be incremental i.e., each process waits for a

portion of its view to be stabilized before allowing the sort to proceed. This is done to

ensure that no future messages sent to the conversation will invalidate the total ordering.

57

Chapter 4	 Replica Grpup Communication

The replication protocol used in Psync uses just such a scheme and will be described in

Section 5.3.5.

4.4: Multicasts and Replication.

In the previous sections we have discussed what delivery properties can be provided by

the communication subsystem, and how they can be implemented. We shall now discuss

how such communications primitives can be used in a replication scheme to aid in

maintaining replica consistency.

Group invocations can be implemented as replicated RPCs by replacing the

one-to-one communication of send_request and send_result in Figure 4-2 with

one-to-many communication. Every non-faulty member of a client group sends the

request message to every non-faulty member of the server group, which in turn send a

reply back. If multiple client groups invoke methods on the same replicated server group

then it must be ensured that concurrent invocations are executed in an identical order at

all of the correctly functioning replicas, otherwise the states of the replicas may diverge. In

order to ensure this property, the objects must not only be deterministic in nature, but all

correctly functioning replicas must receive the same sets of messages in the same order

i.e., a totally ordered multicast must be employed.

The State Machine conditions Cl and C2 can both be met by making use of totally

ordered multicasts to deliver all messages transmitted by clients and servers. However,

such total ordering of messages may be unnecessary for all interactions: if two,

non-conflicting, non-related messages are received at members of the same replica group

(e.g., two unrelated electronic mail messages from different users) then they need not be

ordered consistently at these destinations. If they were related in some manner (e.g., from

the same user) then they could be ordered consistently. Application level ordering can be

achieved more efficiently as cheaper, reliable broadcast protocols can be used to deliver

messages for which ordering is unimportant, resorting to the more complex order

preserving protocols only where necessary. Since such protocols typically need more

58

Chapter 4	 Replica Group Communication

rounds of messages to be transmitted, the reduction in their use can be beneficial to the

system as a whole, whilst maintaining overall replica consistency.

One method of achieving such application level ordering would be to transmit

messages using unordered atomic multicasts (since it is still important that the messages are

received by all functioning replicas) which only guarantee delivery to all functioning

replicas but make no guarantee of the order (described in Section 4.1.1.3), and then to

impose ordering on top of this i.e., at a level above the communication layer. If atomic

actions are used in the system then we can make use of their properties to impose the

ordering on message execution that we require i.e., the order shall be equivalent to the

serialization order imposed by atomic actions. This has the advantage that operations

from different clients which do not conflict (e.g., multiple read operations) can be

executed in a different order at each replica. Atomic actions will ensure that multiple

accesses from different clients to the same resource will be allowed only if such interaction

is serialisable.

It is just such an approach that we shall describe in this thesis, starting with a

description of the communication subsystem which has been implemented, called

rel/REL. It provides atomic multicast functionality as described in Section 4.1.1.3.

4.5: The rel/REL Family of Multicast Protocols.

Using the failure model described in Section 3.3.1, we shall now describe the design of

a reliable (unordered) atomic multicast protocol, which shall be used in the replication

protocol to be described in Chapter 6.

If a client process wishes to send a multicast message m to a server group G, then the

delivery mechanism is said to be atomic if a functioning process P1 E 0 receives the

message m and all functioning processes P E G will also receive m even if the sender fails

during the call.

59

Chapter 4
	

Replica Group communication

The message deliveiy property can be met realistically in bounded time if the

communication network does not get congested, causing messages to be transported

extremely slowly, and the network interface of each host contains a sufficiently powerful

processor with enough memory such that not only every message correctly delivered by the

network is acknowledged but also a delivered message is not subsequently lost due to

buffer space shortages. This means that a bounded number of retransmissions to get

acknowledgements are assumed to be sufficient for a functioning processor to be able to

deliver a message to other functioning processors.

The rel/REL reliable atomic multicast [Shrivastava 90a] was designed and built as a

result of the work towards providing replication for the Arjuna system [Shrivastava 88]. As

such, the replication protocol presented in Section 6.3 uses this multicast, although any

other reliable atomic multicast could be used. rel/REL is actually a family of multicast

protocols which can provide such functionality as causal ordering, total ordering, and

atomic multicasting. The description we shall give will be that of the basic protocol

rel/RELatomic which provides reliable atomic multicasting, preserving order only between

messages sent by the same sender, and.follows closely the description given in [Shrivastava

90a].

The name results from the way in which the protocol works. Message transmission is

carried out in two rounds: the first round (rel) is the transmission of the message in a•

reliable manner (as described in Section 4.1.1.2). This ensures that as long as the sender

does not fail, all functioning destinations will receive the message. The second round

(REL) is used to ensure that such guaranteed delivery occurs despite sender failure.

4.5.1: The rel/RELatomic Protocol.

The protocol is developed in two layers: a lower level transport service, rel, and the next

layer which provides fifo multicasts.

rel: rel provides a multicast transport service for one—to—many communication; its

functionality isfifo reliable (non—atomic). There could be several possible network specific

60

Chapter 4
	

Replica Group Communication

protocols for providing this service. For example, on a broadcast network such as an

Ethernet, a multicast datagram service (unordered and unreliable) combined with

acknowledgements and selective retransmissions could form the basis of implementing

rel. In what follows, the existence of rel will be assumed.

Every host is assumed to have a TRANSMI TIER process to which local processes

wishing to perform multicasts send their messages via FIFO queues. The

TRANSMIITER process has a number of concurrent threads (lightweight processes), say

n, which are cyclically picking up messages from these queues (operation get message(m))

and invoking a procedure REL for network transmission.

TRANSMITTER:

loop_forever do

{
get_message(m);

REL(m);

}

A message contains a list of destination addresses and a type field indicating which

round of the protocol it was sent in (type = first: first round of the protocol, type = second:

second round). The algorithm for the procedure REL is given below:

procedure REL (m : message)

{

m.type := first; rel (m); /* first inulticast send.. .*/

m.type := second; re]. (m); /* and the second one */

}

Every host also has a RECEIVER process which is responsible for picking up

messages. TRANSMITIER and RECEiVER processes use the services of rel for message

transmission and reception.

61

Chapter 4
	

Replica Group Communication

RECEIVER:

loop_forever do

{
receive(m);	 / receive message from network *1
case m.type of {

first: If duplicate(m) then discard(m);
else {

deposit(m, m.dest); /* put m in queues of *,

/* m.dest *1

rn_thread = start_thread(m);
deposit(m, rn_thread);
/* start a thread to finish protocol and *,

/* deposit message in its queue */

}
second:If duplicate(m) then discard(m);

else deposit(m, rn_thread);

}
}

Destination processes expecting multicast messages are connected to the RECEIVER

process via FIFO delivery queues. As soon as the RECEiVER process receives a new

message (type = first) from the network, saym, it delivers copies of m to the queues of the

local host destination processes. The RECEiVER process also creates a new thread to

monitor the progress of the multicast which gave rise to m. Second round messages are

passed on to their respective threads.

THREAD:

{
get(m);
start_timer(t);
loop_forever

/* get message from queue for this thread */
/* wait for second message with a timeout */

{

	

	 /* start concurrent sub-threads */
If get(m) = ok then die; 1* second message, kill thread */
if timeout then

{

REL(m); 1* timeout, so complete transmission *1

die;

}
}

}

A thread picks up the first round message (passed on by the RECEIVER) and then

starts a timer. After this two sub—threads are created (concurrent sub—threads within the

62

Chapter 4	 Replica Group Communication

loop_forever statement) : one waits for the second message to arrive, after which the

entire thread is killed; the other initiates a multicast to complete the protocol if the timer

expires. Note that if during the multicast initiated by this sub—thread, a second round

message is received by the other sub—thread, then this initiated multicast will be aborted,

since the entire thread is killed. This ensures that the number of completing multicasts is

limited.

With this protocol, a received message can be delivered to local destination processes

soon after being received, while monitoring and completion of the multicast can be

carried out concurrently. Certain optimizations to this protocol are possible to reduce the

size and the number of messages. Consider the following worst case scenario: the sender

crashes after completing the first round. Since there is no way a receiver can find out

whether the first round completed successfully, all the receivers initiate multicasts to

complete the transmission, all but one of which are unnecessary. The number of such

multicasts (the majority of which are likely to be aborted half way through) however, can

be reduced (to a minimum of one) by slightly staggering the timeout periods, since a

thread of a RECEIVER will not initiate a multicast if it receives a second round message -

which can come from some other RECEIVER's thread whose timeout expired earlier.

Well known 'piggybacking' techniques can also be exploited by more sophisticated

versions of the TRANSMIT IER for carrying first round messages in the preceding

multicast's second round messages; further the second round message need only contain

the sequence number of the first round message.

4.5.1 .1: Other Delivery Properties.

From the description of rel/RELa tomic it can be seen that in certain situations the

delivery property may not be good enough to maintain consistency. For example, consider

the situation in figure 4-8. Object A sends a multicast to replica group B. Only group

member bi receives the message, and A then fails. Suppose bi produces some stable state

changes (or sends a multicast message to another group) and at the same time starts to

63

Chapter 4	 Replica Group Communication

complete the delivery protocol to ensure that all other members of B will receive the

request from A i.e., bi has detennined that A has failed. However, assume that bi fails at

this point, so no functioning member of B has got the message.

B

C

Figure 4-8: Receive Atomicity.

By the definition of relfRELatomic this is correct behaviour. However, the fact that bi

could have produced some side effects can lead to consistency problems. To avoid this it is

necessary to use a communication protocol which preserves receive atomicily, such that the

processing of any given message is delayed until all intended functioning receivers have

the message. The rel/REL family of protocols includes such a communication protocol.

However, in the discussions to follow, we shall use rel/RELatomic for multicasting

messages, assuming that the production of stable state changes take longer than the time

taken to complete the delivery protocol.

4.5.1.2: Protocol Analysis and Performance.

Let t, denote the maximum measurable time duration taken for multicasting a given

message to a given group by an execution of the protocol implementing rel. The tj is

estimated to include the message queueing delays at the TRANSMITtER and

RECEIVERS. Let td, the duration of the timeout interval used by threads created by

64

Chapter 4	 Replica Group Communication

RECEIVER be the maximum measurable time interval within which the first round m and

the second round m will be received at any functioning destination in a group, given that

the sender completes multicasting m to the group. Both tj and td are to be estimated by

considering message queueing delays at the sending and receiving nodes, message

transmission delays in the communication medium and the size of the group. For the sake

of simplicity, we will use the same 	 and td for groups of different size.

The latency, L, of a protocol will be defined as the maximum time that can elapse

between a sender starting a multicast to a group and a functioning process in the group

receiving the message. In measuring the protocol performance, a message will be

considered to have been delivered to a process when that message is deposited in the

queue for that process; also, we will ignore a RECEIVER process's delay in depositing a

message into the queues of the destination processes and the time taken by the

RECEiVER and THREAD to execute the instructions of their respective algorithms.

(This will simplify measuring protocol performance only in terms of t, and td).

The latency of the TCl/RELomk protocol, Latomic, under a variety of situations can be

expressed as:

(i) no failures: tj

(ii) sender crash after first round: t,j

(iii) sender crash in the first round: t,j + td + t

(iv) worst casef crashes (sender and (f—i) receivers crash during their first rounds):

t, +f(td + t,).

A reasonable estimate of td would be to make it equal to then assuming say t,j = 5

msecs for some particular multicast, the worst case latency figure under a single crash

situation (case(iii)) would be 15 msecs and the worst case figure for two crashes would be

25 msecs. Thus this simple protocol can achieve good performance despite the occurrence

of failures.

65

Chapter 4
	

Replica Group Communication

Another performance parameter of interest will be the skew denoted as Satomic and

defined as the maximum time duration within which two functioning receivers are

guaranteed to be delivered of a multicast message. From the analysis, Sagomk, can be seen

to be (td + t,j). This means that when a process receives a multicast message m by

rel/RELatomk protocol, it can assume, after Satomw time, that every other functioning

process in the group will have received m.

4.6: Implementation.

We have implemented a replicated RPC mechanism using rel/REL. The multicast

version of the Rajdoot RPC mechanism [Panzieri 88] which this communication protocol

replaces, works by multicasting a message to its destination(s) and then waiting for all of

the replies, starting a timeout clock to detect failures in the remote services, if replies are

not received within this timeout period then the initial call is resent. This occurs a finite

number of times before the RPC mechanism assumes that the remote service has failed

(similar to the V System [Cheriton 84] and the Circus System [Cooper 84b]). The multicast

communication can be carried out in a number of ways. One method would be for the

transmitter to send the message to each member of the group individually. Another would

be to broadcast a message, relying on filter processes at nodes to discard unwanted

messages. The current implementation of Rajdoot has both of these methods

implemented, but it is the former method which is typically used (and was used for the

following results). Note that no atomicity assurance is given: if the client fails, only a subset

of the servers may be invoked.

66

Chapter 4
	

Replica Group Communication

rpc_ca].]. (m)

{

start_timeout;

retry = 0;

do {

/* initialise retry value */

retry retry +1;

send_message(m);

receive_replies Q;

} while not(timeout) and no_reply and retry != max_retry;

if received_result then ok;

else fail;	 / no result received in time */

}

Since the message to be transmitted may be larger than the maximum transmissible

packet allowed by the network, send_message fragments the message into packets which

can be sent. At the receiving side, the receiver re—assembles the message from the packets

(each packet contains enough information for the receiver to be able to do this). If packets

are lost then the entire message transmission is considered a failure. Since the receiver

does not send acknowledgements to "corrupted" messages the sender will eventually

timeout and retransmit the message.

4.6.1: rel.

Because the communications medium we use in our tests is an Ethernet LAN, the loss

of packets is a very rare occurrence. As such, our initial implementation of rel is a simple

protocol which has the ability to assemble messages even lithe packets are received in the

wrong order. Each packet contains enough information for the receiver to be able to

reconstruct the whole message from the fragments, even lithe packets are not received in

the correct order. It was decided that the additional overhead imposed by having a

protocol which acknowledged the reception of every packet was unnecessary in our system

as packet loss is extremely rare.

67

Chapter 4
	

Replica Group Communication

rel(m)

{
split_message(m);

send_packets 0;

}

receive(m)

{

/* Transmit message *,

/* Send message packets *1

/* Receive message *,

receive_packetsO;	 /* Receive message packets */

m = assemble messageQ; /* re-assemble message in correct order */

}

To test the implementation of rd an RPC mechanism was built which uses rel. The

initial implementation is very close to the Rajdoot implementation described above.

Messages are mutlicast to their destinations and then the client waits for the correct

number of replies to be received. The sender will wait for a set period of time for all replies

to be received. If a destination has failed then this will only become apparent when no

reply is received from it, at which time the client will attempt to retransmit the message.

rel_call (m)

{
start_timeout;

retry = 0;
	

/ initialise retry value *1

do {

retry = retry +1;

rel(m);

receive(n);

} while flot(timeout) and no_reply and retry != max_retry;

if received_result then ok;

else fail;	 / no result received in time */

}

4.6.1.1: Timings.

Table 1-1 shows the timings taken for a RPC built using just the initial implementation

of rel. These timings were performed between SUN SPARC workstations connected by a

10 Mb/sec Ethernet. Each message transmitted was a null RPC i.e., one character in

length, and used the algorithm outlined above. The figures given represent the round—trip

time for a request to be sent to a server and for the reply to be received by the client.

68

Chapter 4
	

Replica Group Communication

Number	 1\,pe of Interaction	 rel RPC (null RPC)

1	 1 clIent to 1 server	 7.5 ms

2	 1 client to 3 servers	 10.8 ms

3	 1 client to 3 servers	 8.3 ms

4	 1 client to 3 servers with a failed server 	 15.12 seconds

Table 1—i: rel RPC timings.

Timing number 3 represents a client which only waited for the first reply to arrive from

the replica group instead of waiting for all of the replies, as was the case in timing number

2. Timing number 4 is quoted in seconds because the client only detects the fact that a

server has failed when a reply is not received. Since the timeout for this RPC was set to 5

seconds, the reply was not overdue until this time had elapsed. After that the client

attempts to retransmit the message in case the original message was lost. It takes a further

10 seconds for the client to decide that the server has in fact failed.

4.6.2: rel/REL RPC.

The rel/REL implementation follows very closely the original rel/REL algorithm. An

RPC mechanism was then implemented using the rel/REL implementation.

CLIENT
	

SERVER

send_request (m)

rel(m)

rel(in)

}

repeat

{	 receive_requestl()

thread_receive_request2 0;

if thread_timeout

send_request(m) { ... }

fi

repeat

receive_result C)

filter_result

until valid_result

filter_request

until valid_request

call_obj ect_method

send_result(n) {

rel (n)

rel(n)

}

Figure 4-9: rel/REL.

69

Chapter 4
	

Replica Group Communication

The send_request function transmits the message m twice, using the rel protocol

discussed previously. Once the sender has successfully multicast the message it can then

return and call receive_resultO. At the server side, receive_requesti 0 waits for the first

round of the request to arrive. It then spawns a thread to receive the second round message

(receive_re quest2O), while the main thread returns to execute the request. If the second

round of the request does not arrive then the thread will eventually timeout and will

complete the transmission of the request (by calling send_request). The receiver transmits

its result using send_result, which operates like send_request, in that it too uses the rel/REL

protocol. The sender function receive_result operates in exactly the same way as the

corresponding receiver function.

There are currently two implementations of the rel/REL RPC, one of which uses

threads as indicated in Figure 4-9 to complete the communication protocol, and one

which does not use a separate thread but instead simply waits for the second round of the

protocol to be received before allowing the client or server to continue to execute. The

thread based implementation, although the more efficient of the two, is currently not fully

integrated with the rest of our system to allow its use for general applications and

replication. As such, timings have been given for the synchronous implementation only.

It is possible to specify how many replies are required from our reliable group RPC

mechanism before it returns a reply to the user. The two conditions which we use, which

will be described in Chapter 6, are: type = all, meaning get replies from all functioning

group members and type = one, meaning a single reply would do.

4.6.2.1: Timings.

Various timings have been carried out on the preliminary implementation of the

rel/REL based RPC. These were again done on Sun Sparc machines. The timings were

done using null RPCs (length of one character). Replicated clients were used to illustrate

that the protocol works correctly even if one of the senders of a request fails during

transmission. In the case where one of the replicated clients was faulty, it transmitted the

70

Chapter 4
	

Replica Group Communication

first round of the protocol before failing, leaving the servers to complete the protocol

before replying. The other client remained operational to receive the replies from the

servers. The timeout period for the protocol (the time between the first round being

received and the second round being deemed overdue) was 5 ms.

Note that as has been mentioned throughout the discussion on replica group

interactions, all requests and replies to replica groups are sent to all of the group members

and the servers only execute a replicated request once regardless of the number of such

requests which are received.

Number	 1pe of Interaction	 State of Clients	 rel/REL RPC

1	 1 client to 1 server	 client not faulty	 11.6 ms

2	 1 client to 3 servers	 client not faulty	 16.6 ms

3	 1 client to 3 servers	 client not faulty	 12.2 ms

4	 1 client to 3 servers with	 client not faulty	 15.28 seconds
1 server crash

5	 2 clients to 3 servers 	 1 client faulty	 17.1 ms

6	 2 clients to 3 servers	 1 client faulty	 25.7 ms

Table 1-2: Non—thread based rel/REL timings.

The overhead incurred by using rel/REL occurs in the time required to receive the

additional messages (approximately 2 ms per message) at both the client and server side. If

threads are used then our clients/servers can resume execution as soon as the first

reply/request arrives because they spawn a separate thread to receive any other messages.

Thus the overhead would not be experienced directly by the client/server.

Timing number 2 represents a client waiting for all replies to arrive from the replica

group, whereas timing number 3 shows a client which waited for only one reply to arrive

before it continued to execute. This is why timing number 3 is approximately the same as

timing number 1, as the interactions are similar.

There are two timings given for the interaction between 2 clients and 3 servers

(numbered 5 and 6) because of the non—deterministic way in which messages could be

71

Chapter 4	 Replica Group Communication

delivered to the servers from the clients. In the first timing, the servers received the request

from the non-faulty client and sent a reply, which is why the time given is approximately

the same as timing number 2.

The difference of approximately 8 ms between the last two results is because in timing

number 6 the servers receive the first round of the protocol from the faulty client first and

then timeout after not receiving the second round of rel/REL (after 5 ms) and then

re-send the message (another 2 ms). Because by completing the rel/REL protocol each

server transmits the request to the destinations the original client attempted to send it to,

each server may again receive the request. However, it will appear as though the messages

originated from the original (faulty) client, and will be considered retransmissions so the

servers will not execute the request again if they received the original message. After

completing the receive protocol the servers reply to the faulty-client and this reply is also

sent to the functioning member of the client group.

4.7: Enhancements for Replicated Procedure Calls.

As described previously there are two sources of possible replica state divergence

which cannot be solved by simply making use of only the broadcast protocols described.

These sources of state divergence are local timeouts, and input message buffer overflow.

What we present below are enhancements to the broadcast protocols described which

provide solutions to these two sources of non-deterministic behaviour. Note that the

presence of a reliable multicast'protocol is assumed (rel/RELomjc in this case). We shall

first look at an optimization to the RPC which can result in fewer messages being

exchanged between replica groups.

4.7.1: Optimizations to the nPc.

The design discussed previously can be optimized to reduce the number of message

exchanges between client group C and server group S and fully exploit the capability of the

72

Chapter 4	 Replica group Communication

reliable multicasting service as follows: suppose that C and S become members of a

composite group SG as well, as shown in Figure 4-10.

Then a call message to S sent to SG by will be received by all other members of C;

similarly if a reply message is sent to SG (rather than directly to C) then it will be received

by all of the servers as well. Thus, a client process sends a call message only if no such

message exists in its message queue; similarly a server process sends a reply message only if

its message queue does not contain such a message. In the best case situation only one

message will flow from client to server and vice versa. The scheme proposed in [Jalote 89]

is similar to this.

0
S d

SG

Figure 4-10: rel/REL Optimization.

4.7.2: Timeouts.

Consider the case where a client replica group (A, B, C, and D) is communicating via

RPC with a server replica group. The replicated RPC requests sent to the server group are

handled by a filter mechanism at each server node which identifies and discards redundant

RPC requests. Similarly, a filter mechanism exists at each client node which will filter

redundant replies from the server group, if the server group is made up of more than one

server.

It is possible that one client node, (say A), experiences its RPC timeout expiring

without any response from the server group being received, while another client node has

73

Chapter 4	 Replica Group Communication

received the RPC reply before its locally set RPC timeout expired. This can happen if, for

example, C (running slower than A) makes its request much later than A did, and the

servers are running slower than clients assumed when they set their RPC timeout. To

maintain consistency among clients in such circumstances, all functioning client nodes

must agree either to regard that the RPC reply has been "timely" (even if one or more

clients had their local timeout expired before the RPC reply arrived) or to discard the RPC

reply as being late (even if some of the clients had received the reply before their local

timeout expired).

The solution to this client consistency maintenance problem can be outlined as

follows: if at least one functioning client has received the RPC reply before its local

timeout expired and before it knew of any other client's expiry of local timeout, then they

all agree to accept the RPC reply as timely; or, if all functioning nodes know of some other

client's timeout expiry before they receive the RPC reply, then they all agree to discard the

RPC reply as being late.

The consistency maintenance problem that exists at the client side can also exist at the

server side when servers in a replicated server group process an RPC request with local

timeouts. A fast server that received the RPC request first will be able to provide the RPC

reply. However, other (slower) servers may see their local timeout expiring before they

complete processing the RPC request and they will be forced to abort processing the

request. Though the server inconsistency problem is less serious in the sense that it can be

avoided by letting the servers assume a sufficiently large RPC timeout, the solution

proposed here for the client consistency problem can be easily adopted at the server end as

well.

4.7.3: The Proposed Solution.

In the description to follow, we shall assume the use of a rel/RELa tomic. Section 4.5.1.1

showed that in certain rare situations the delivery property offered by this protocol may be

insufficient to prevent replica divergence, necessitating the use of a protocol with stronger

74

Chapter 4	 Replica Group Communication

delivery properties. However, the use of such a communication protocol would simply

impose a greater overhead on all group communications and does not affect the algorithm

to be described.

If a client times out waiting on an RPC—timeout for an RPC reply, it multicasts a

timeout message to other clients and sets up another timeout for duration D. By

multicasting a timeout message and by waiting on the second timeout D, the client forces,

and waits for, an agreement to be reached with other clients over the timeliness of the RPC

request. If it receives the original RPC reply after setting the second timeout it does not

process the reply but keeps the reply in its message queue until agreement is reached.

When another client whose timeout has not yet expired receives the first client's

timeout message, it will find itself in one of two situations:

(1) it has not yet received the RPC reply.

(ii) it has already received, and possibly processed, the reply.

In the first case, the client stops the RPC timeout and sets up a new timeout for

duration D. If it receives the RPC reply while waiting on the timeout D, it, like the client

that initially multicast the timeout message, does not process the reply but keeps the reply

in its message queue.

In the second case, the client multicasts an ok message to all other clients so that the

ones that wait on timeout D (after either multicasting or receiving a timeout message) can

agree that the RPC reply should be timely. The timeout period D is calculated so that

within that period, all functioning clients will agree unanimously on the timeliness of the

RPC reply, and either all or none of the functioning clients will receive the RPC reply, if

the RPC reply is agreed to be timely.

75

Chapter 4
	

Replica Group Communication

4.7.4: Estimation of the timeout period.

Let i (I') be Latomic (described in Section 4.5.1.2) in the worst case failure situation

where there are f crashes (sender and (f—i) receivers crash during their first rounds).

Therefore, (f) t j +Jt j + tcj).

A client that has seen its RPC—timeout expire will multicast a timeout message which

will be received by every other client within trel time units. If there is a client that has

received the RPC—reply before receiving the timeout message, it will multicast an ok

message which can take at most (J) time units to be delivered. Therefore, within

(f) + after the RPC—timeout expiry, the client that multicast the timeout message will

be able to receive an ok message if one has been multicast at all. If that client does not

receive an ok message within that period it will never receive an ok message because,

either no client received the RPC reply before receiving the timeout message, or any client

that has received the RPC reply crashed before responding to the timeout message, or

possibly both. Let D' = (f) + Thus, within D' time units after the RPC—timeout

expired, the client that has multicast a timeout message can decide on the timeliness of the

RPC.

Consider a clientA that has received the timeout message from another client B before

it received the RPC reply. Client A can assume that within trel time units the timeout

message it received will be received by every other client if B has not crashed; otherwise, it

will be within + t time units, due to the thread of rel/RELomk protocol running on its

node completing the multicast of the timeout message. If an ok message has been multicast

in response to the timeout message then that message will be received within (f) time

units if the first client that has initiated the timeout multicast (B) has not crashed, or within

(f-i) time units if B has crashed. Thus, following the reception of a timeout message,

a client that has not received, but is still waiting for, the RPC reply can decide on the

timeliness of the RPC no later than max{trei + (/), id + trel + (f-1)} = D' time units.

76

Chapter 4
	

Replica Group Communication

Thus, by waiting on a timeout of duration D', the client that multicast the timeout

message or received a timeout message before receiving the RPC reply can reach a

unanimous agreement over the timeliness of the RPC. This unanimous agreement

reached is also guaranteed to be valid in the sense that if at least one (or no) functioning

client has regarded the RPC reply as timely then all other functioning clients (no other

functioning client) will also regard the RPC reply as timely.

Consider a client that received the RPC reply before the expiry of its local timeout and

before receiving any timeout message from another client. This client, upon receiving a

timeout message, will initiate multicasting an ok message through rel/RELomjc protocol.

Its host node, after receiving the RPC reply, would have set up a thread, according to

rel/REL,Jomk protocol, to monitor the completion of the server's multicast which delivered

the RPC reply. This thread will wait on a timeout period of td and if the server's multicast is

suspected to be incomplete, the thread will start multicasting the RPC reply after this

timeout expires. Therefore, the maximum time difference between the client initiating the

multicast of an ok message and initiating the multicast of the RPC reply will be at most td.

If, however, the thread sees the server's multicast to be complete, then, by the property of

the Tel IRELatomic protocol, all functioning clients will have received the RPC reply directly

from the server. Therefore, by no later than td + (x) time after this client has received the

timeout message either all or none of the functioning clients are guaranteed to receive the

reply, where x is the number of client crashes. Thus, by setting D = D' + td, either all or

none of the functioning clients are guaranteed to receive the reply. Since D > D', before

the expiry of timeout D, all clients that are waiting on timeout D will reach an unanimous

agreement on the timeliness of RPC timeouts.

4.7.4.1: Slow Replicas.

It is possible that replicas on slow (overloaded) nodes may receive timeout messages

from faster replicas for servers with which they have not yet communicated. Our protocol

can still function correctly because it does not depend upon replicas having processed

77

Chapter 4	 Replica Group Communication

eveiy message which has arrived in their message queues. The atomic nature of the

communication primitives ensures that every functioning replica will receive messages,

whether or not they are currently able to process them. If a replica receives a timeout

message, it (or a separate thread which can be made responsible for handling timeout

messages) can inspect the message queue and respond accordingly. The replica which

initiated the timeout protocol is only interested in knowing whether any other replica has

received a message from the server in question, not whether that replica has processed the

message, because this means it will eventually receive the message also.

4.7.4.2: Example Figures.

Following the definitions in Section 4.5.1.2 and Section 4.7.4 we shall examine some

example figures for D. If we assume that tj is8 ms and that tj is 5 ms, then the following

table shows (f) and D for different numbers of process crashes, f:

Number of failures	 (f)	 D

1	 2lms	 34ms

2	 34ms	 47ms

3	 47ms	 6Oms

Table 1-3: Estimation of timeout value D.

4.7.5: Flow Control Problem.

Consider the same replicated client group consisting ofA, B, C, and D. Each client has

a message buffer from which it extracts the next reply message. Incoming messages which

cannot be accepted directly by the client are queued here. However, since this message

buffer is of a finite size it is possible that it could eventually overflow, with some messages

being lost even though they were delivered to the client node correctly. This can lead to a

virtual partition, where a client can appear to be partitioned from the network for some

messages but not for others.

This problem can occur even if the clients were not replicated. Replicating clients and

servers increases the likelihood of a virtual partition occurring. A typical way in which

78

Chapter 4	 Replica Group Communication

buffer overflow can occur is if one of the clients is executing on a fast node (relative to the

others). This client (A, say) sends requests and processes the replies as soon as they arrive.

The replies are multicast back to the replicated client group and so the other clients will

find them in their message buffers. If clients B, C, and D cannot deal with the inflow of

messages then their buffers will eventually overflow, leading to the situation in which

replicated clients could then take different actions.

4.7.6: The Proposed Solution.

The proposed solution is simply for the slower replicas, whose message buffers are

about to overflow, to prevent the faster replicas from sending any further requests until the

message buffers are empty (or enough space has been freed in the buffers). When a replica

detennines that its message buffer has grown too large then it sends a HALT message to

the replica group. When a HALT message arrives in a message buffer it prevents any

further request messages from being sent once it has been observed by the receiving

replica. Requests and replies which have been sent but have not yet been delivered will still

be received, and replicas can still deal with messages which are currently residing within

the queue. If replicas have the identities of other groups with which they have been

communicating, then it is possible for them to also send the HALT message to those

groups, which will simply refuse to send any further requests/replies to that group until the

HALT message has been removed. For the rest of this discussion we shall assume that only

the members of the client's replica group are involved in the protocol.

When a replica transmits a HALT message it also determines how long it will require

to reduce its message queue to an acceptable size, and this is transmitted in the HALT

message. Receivers of the message then start a timer using this value (Tprune) as the

timeout. If the sender of the HALT message reduces its queue before this timeout has

expired then it sends a START message. START messages cancel any timers that were

started because of the reception of the initial HALT. The reception and execution of a

START message also implicitly removes the original HALT message from the message

79

Chapter 4	 Replica Group Communication

queue. Replicas can then continue to transmit requests. Since it is possible for an object to

be a member of more than one group it is also possible for an object to have received

multiple HALT messages from those different groups. Because of this, associated with

each HALT and START message is an identifier and START1 (where i is the identifier)

cancels only timers started with HALT1.

If no START message has arrived before the timeout expires then this can mean either

that the initiator of the HALT message has failed or that it is taking longer to deal with the

messages in its queue than it originally expected. However, the true fate of this replica is

unknown to other replicas in the group and they simply assume that it has crashed and

remove the HALT message in their queues before returning to transmitting requests and

receiving replies. If the replica which initiated the HALT message has not crashed and

needs more time to deal with messages in its buffer then it simply starts the protocol again

by transmitting another HALT message. (The object which sent the original HALT

message could send another if the timeout is about to expire, to "refresh" the timeout).

Fig. 4-11 shows replicated clientsA, B, C, andD with their associated message queues

(only reply messages are shown here for simplicity, but if client requests are also multicast

back to the client group they too would be visible). ClientA is executing faster than B and

C, which are operating at approximately the same speed but are still executing faster than

D. The clients are assumed to be communicating with some service which is not shown in

the diagram, with messages Replyl and Reply2 being sent back as a result of requests (say,

Requesti and Request2).

80

Chapter 4
	

Replica Group Communication

Message Queues

I LTI	 I	 I

B
	

I1ep1y4IAL11	
I

cO	 y2JHAL j

D
	

f
ReP1y1}eP1Yj

Figure 4-11: Buffer Overflow Problem.

Client A has sent Requesti, processed Replyl, sent Request2 and processed Reply2

before clientD has been able to process Replyl. It's message queue is about to overflow, so

it starts the HALT protocol by sending a HALT message to the client group. This message

appears in the message queue of all clients (including the sender). The clients then start a

timer and while this is running they are prevented from sending any further requests

(although they are able to process any messages which are in the queue). D then has the

opportunity to remove messages from its queue and send a START message later.

Note that the HALT and START messages need not be placed in the client's main

message queue. A separate message queue could be made available for such priority

message (including the timeout message described in Section 4.7.2).

4.8: Overview of Existing Systems.

Existing distributed systems which make use of multicast communication can be

categorised as using either one—to—many communication (one client interacting with a

replica group) or many—to—many communication (replica groups interacting with replica

groups). We shall now describe a number of the popular protocols and show how they have

81

Chapter 4	 Replica Group Communication

approached the problems of maintaining replica consistency to both external and internal

events.

4.8.1: One-to-Many Communication.

4.8.1.1: The V System.

The V System [Cheriton 84][Cheriton 85] makes use of what they term one-to-many

communication transactions, where the start of a transaction marks the end of the previous

transaction (any outstanding messages associated with the old transaction are destroyed

without being processed). Each group member has a finite message buffer into which

replies are queued provided they arrive before the start of the next send transaction.

Although a reliable communication protocol is not used, the assumption is made that by

making use of retransmissions is it possible to ensure (with a high probability) that

messages are delivered if the sender and receiver remain operational. A further

assumption is that at least one operational group member receives and replies to a

message.

The designers of the V System recognized the possibility of message loss due to

message buffer overflow, and their solution was to make use of larger buffers and to

modify the kernel to introduce a random delay when replying to a group send, thereby

reducing the number of messages in a queue at any time. This imposes a consistent

overhead on all group replies but still does not ensure that buffer overflow will never occur

(if the number of different groups interacting with each other increases then even with this

delay it is still probable that the finite sized message queues will overflow).

When servers reply to a client they do so on a many-to--one basis i.e., all servers which

received a request from a particular client will attempt to reply to that client (and not to

any replica group the client may be a member of). This means that there is the possibility of

members of the same group taking different actions as a result of local events such as

timeouts (resulting in state divergence), because the servers replied to some, but not all,

clients on time.

82

Chapter 4
	

Replica Group Communication

4.8.1.2: The Andrew System.

The Andrew system [Satyanarayanan 901 assumes that the communication system is

reliable in much the same manner as the V System i.e., given a sufficient number of retries

then any operational server can always be contacted. Communication is one-to-many and

the termination conditions for a particular client-server interaction is set on a per call

basis (depending on the application). The designers recognized that calls between remote

processes can take an indeterminate amount of time and so if a client times out it sends an

"are you alive" message to any server replica which has not responded and if a reply is

returned then it continues to wait. However, because servers reply on a many-to-one

basis, state divergence between replicated clients can still occur: if only one client receives

a reply sent before all servers fail, then the replicated clients may take different actions.

It was recognized that messages might be lost by processes because of message buffer

overflow, but in Andrew it is assumed that such loses will be detected by retries. This

implicitly relies on the servers keeping the last transmitted replies to every client, but

could still result in state divergence if, for example, a server group is seen to have failed by

one replicated client when it retries a request, when in fact all other members of the client

group received the reply before the failure.

4.8.2: Many-to-Many Communication.

4.8.2.1: The Circus System.

The Circus System [Cooper 84b] (and Multi-Functions [Banatre 86b] in Gothic

[Banatre 86a1) makes use of many-to-many communication, with both client and server

groups. As with the V System they assume that with a sufficient number of transmission

retries it is possible to deliver messages to all operational members of a group. Thus, if a

call eventually times out (after retrying a sufficient number of times) a sender can assume

that the receiver(s) has failed. Each member of a group has a message queue which is

assumed to be infinite in size (if this assumption cannot be made then the designers of

83

Chapter 4	 Replica Group Communication

Circus assume that retransmissions of requests and replies can account for losses due to

buffer overflow).

Throughout the description of Circus the assumption is made that the members of a

group are detenninistic (given the same set of messages in the same order and the same

starting state then they will all arrive at the same next state). Client groups' members

operate as though they were not replicated and do not know that they are members of a

replica group. No mention is made of how this determinism of group members extends to

asynchronous local events such as timeouts.

Despite the assumptions made by the designers, both the problem of message buffer

overflow, and local timeouts, can occur in the Circus system, leading to replica state

divergence.

4.9: Summary.

This chapter started by introducing the problems which arise in maintaining replica

consistency in the presence of failures, and described how the communications subsystem

can be used to given certain guarantees on the delivery of messages. It was shown how

maintaining replica consistency breaks down into maintaining consistency to both

external and internal events (message delivery, and local events such as timeouts). This

requires the design of a reliable group RPC mechanism, which the remainder of this

chapter described.

The next section described what ordering properties can be obtained from a

communication subsystem (ordered multicasts), with a view towards maintaining

consistency in a group to external events, and ended with a description of Psync, a

subsystem which provides some of the ordering properties described. How such ordered

multicast communication can be used in providing active replication was then shown,

indicating how the State Machine conditions can be met by making use of totally ordered

multicasts. However, it was noted that in many situations making use of such a delivery

property can impose too much of an overhead e.g., if twb messages arrive at overlapping

84

Chapter 4	 Replica Group Communication

destinations and their respective ordering is unimportant, then using a protocol which will

order them consistently is unnecessary. For this reason, we have chosen to use unordered

atomic multicasts and to impose ordering at the application level. The algorithm and

implementation of just such a multicast protocol (rel/REL) was then described, with

various timings shown to indicate the overhead imposed by ensuring consistent delivery in

the presence of node failures.

The next section then returned to the issue of maintaining replica consistency to

internal events. It described how it is possible (given the existence of a reliable group RPC)

to ensure that either all members of a replica group will determine that a local timeout has

occurred on behalf of a remote service, or they will all determine that it has not occurred.

This involves running an agreement protocol between the members, but since this

protocol is only invoked when a timeout is observed it should not impose a great overhead

on the application.

It was also shown how the number of messages exchanged between replica groups can

be minimized. If client and server replica groups also receive messages sent by their own

members then a given replica need not transmit a similar message if one has already been

sent by another member of the same group. In the best case situation this can lead to only

one message actually being sent between replica groups.

To deal with message buffer overflows another protocol was described. The replica(s)

which determines that its message buffer is about to overflow can prevent the other

members of its group from transmitting any further requests until it has made sufficient

space in its buffer by dealing with those message which are currently there.

Finally, an overview of some RPC mechanisms was given to illustrate how they attempt

to handle the consistency problems which arise in allowing replica groups. It was shown

how none of them provide sufficient provision for ensuring that replica states cannot

diverge as a result of either message buffer overflow, or local timeouts occurring on behalf

of other remote services. None of the systems described made use of reliable

85

Chapter 4
	

Replica Group Communication

communication, instead making the assumption that given a sufficient number of

retransmission of requests and replies any message will eventually be delivered if the

destination is functioning. None of the systems provided a solution to the problem of

consistency in the event of local timeouts, but they did attempt to solve the problem of

message buffer overflows. However, none of these solutions were complete and thorough,

still leading to the possibility of state divergence.

86

Chapter 5
	

Object Replication in Practice

5: Object Replication in Practice.

Chapter 3 described the principles behind object replication, and outlined some of the

problems encountered. This chapter will continue that discussion by examining some

systems for which replication schemes have been designed. We shall use this information

in Chapter 6 to show how our replication protocol was developed to operate in an

integrated manner with atomic actions, relying on the underlying communications layer to

impose reliable delivery of messages, and the atomic actions to impose ordering on the

messages when necessary.

Although the subject of this thesis is replication in systems which use atomic actions,

we shall also discuss replication in systems where actions are not used, to illustrate how

those systems need to provide similar mechanisms in order that their replication protocols

are consistent and correct in the presence of failures. Because most replication techniques

to date have been developed for replicating data (as against objects or processes) we shall

examine these protocols first and consider what changes are necessary when objects or

processes are the unit of replication instead of data.

5.1: Replication and Atomic Actions.

Replication can be integrated into atomic actions in two ways: replicas within actions,

and replicated actions. These two methods are substantially different from each other and

yet attempt to solve the same problem: to ensure (with a high degree of probability) that an

action can commit despite a finite number of component failures.

5.1.1: Replicas within Actions.

Of the two methods of combining replication with atomic actions, this method is the

most intuitive: each non-replicated object is replaced by a replica group. Whenever an

action issues a request on the object this is translated into a request on the entire replica

group (how the requests are interpreted depends upon the replica consistency protocol).

Failures of replicas within a given replica group are handled by the replication protocol in

87

Chapter 5	 Object Replication in Practice

an effort to mask them until a sufficient number of failures have occurred which makes

masking impossible, and in this case the replica group fails. When an action comes to

commit, the replication protocol dictates the minimum number of replicas which must be

functioning in any given replica group for that group to be considered operational and

allow the action to commit.

Problems which arise from this method have already been outlined in Chapter 3 and

Chapter 4. The replication protocol must be able to deal with multiple messages from

both replicated client groups as well as replicated server groups; the majority of

replication protocols assume that replicated objects within the same replica group are

deterministic; problems can occur in maintaining consistency between replicas when local

asynchronous events can occur such as RPC timeouts (Section 4.7).

It is this method of combining atomic actions and replication which is used by most

distributed systems, and will be examined and used within this thesis.

5.1.2: Replicated Actions.

The idea behind Replicated Actions [Ahamad 87][Ng 89] is to take an atomic action

written for a non-replicated system and replicate the entire action to achieve availability.

In this scheme the unit of replication is the action along with non-replicated objects used

within it. In the Clouds distributed system [Ahamad 87] the replicated actions are called

PETS (Parallel Execution Threads). By replicating the action N times (creating N PETS)

and hence by also replicating the objects which the action uses, the probability of at least

one action being able to commit successfully is increased. Although the actions and

objects are replicated, each action only ever communicates with one replica from a given

object-replica group and does not know about either the other replicas or the other

actions until it comes to commit. Subsequently, if this replica fails, so too does the action

(as is the case in a non-replicated system).

Because each action only uses one replica in a given group and each replica only

receives messages from this one action, the replicas need not be deterministic, and there is

88

A

B

C

D

Chapter 5
	

Object Replication in Practice

no need to devise some protocol for dealing with multiple requests (or replies) from a

client (server) group. When the replicated actions commit, it is necessary to ensure that

only one action does so (to maintain consistency between the replicated objects). To do

this, typically the first action to commit (the fastest) as part of its commit protocol copies

the states of the objects it has used to those replicas it did not use (i.e. the replicas used by

the other actions) and causes the other actions to abort. This is done atomically, so that if

this atomic action should fail then the next replicated action which commits will proceed as

though it had finished first.

Figure 5-1: Replicated Transactions.

Figure 5-1 shows the state of the objects A, B, C, and D which are replicated three

times, just as the replicated actions, which are also replicated three times, , I, and ,

begin commit processing. The execution paths of these actions is indicated by the lines.

When actions and I come to commit they will be unable to do so because the object D

89

Chapter 5	 Object Replication in Practice

(which used) and C (which 13 used) have failed, making commit impossible. However,

action will be able to commit, and will then update the states of all remaining functioning

replicas. Failed replicas must be updated before they can be reused.

Obviously the choice of which replicas the actions should use is important e.g. in

Figure 5-1 if action had used the same copy of object D as action then the failure of this

object would have caused the two actions to have failed instead of one. In some systems

[Ahamad 87] the choice of which replica a particular action uses is made randomly

because they make the assumption that with a sufficient number of object replicas the

chances of two actions using the same copy are small. However, in [Ng 89] they propose a

different approach by using information about the nature of the distributed system

(reliability of nodes, probability of network partitions occurring) to come up with an

optimal route for each action to take when using replicated objects. This route attempts to

minimize the object overlap between replicated actions and minimize the number of

different nodes that an action visits during the course of its execution.

The advantage of using replicated actions as opposed to using replicas within an action

are the same advantages obtained from using a passive replication protocol as opposed to

using an active replication protocol: there is no need to ensure that all copies of the same

object are deterministic since the action which commits will impose its view of the state of

the object on all other copies, and each replica will receive a reduced number of repeated

requests from replicated clients (reduced to only one message if each action makes use of a

different replica).

However, the scheme also suffers from the problems inherent with a passive

replication scheme: checkpointing of state across a network can be a time consuming,

expensive operation. If we assume failures to be rare (as would be the case) then this

scheme will cause large numbers of actions to abort. The action which commits first will

overwrite the states of the other replicas, effectively removing the knowledge that the

other actions ever ran. In some applications it may prove more of an overhead to

90

Chapter 5	 Object Replication in Practice

checkpoint the state of one action in this way rather than allowing all functioning actions

simply to commit.

We have now discussed two ways in which atomic actions and objects can interact in a

replicated environment: replicated objects within an atomic action, and replicated atomic

actions. Because the former method of using replicated objects within atomic actions is

used by most distributed systems we will be using this method in the remainder of this

thesis. We shall now examine various replication protocols which have been designed to

manage replicated objects within such an atomic action environment.

5.2: Data Replication in Atomic Action Systems.

Data replication techniques for atomic action systems to maintain one-copy

serialisability (1SR) have been extensively studied (most notably with regard to replicating

databases). When designing a replication protocol it is natural to examine those protocols

(and systems which use them) that already exist, to determine whether they have any

relevance. This is the approach we took when designing the object replication protocol to

be described in Chapter 6.

Definition: If the effect of a group of atomic actions executing on a replicated object is

equivalent to running those same atomic actions on a single copy of the object

then the overall execution is said to be 1SR.

Definition: A replica consistency protocol is one which ensures 1SR.

Because most replication protocols have been developed for use in database

environments it is important to understand the differences between the way in which

operations function in a database system and the way in which similar operations would

function in an object-oriented environment. These differences are important as they

affect the way in which the replication protocols function.

In a database system, which performs operations on data structures, a read operation is

typically implemented as a "read entire data structure", and a write operation is in fact a

91

Chapter 5	 Object Replication in Practice

"read entire data structure, update state locally to the invoker, then write entire new data

state back". In this way, a single write operation can also update (or re-initialise) the state

of an out-of-date data structure.

In an object-oriented system, the read operation is typically implemented as "read a

specific data value". Similarly, the write is "perform some operation which will modify the

state of the object". The object simply exports an interface with certain operations through

which it is possible to manipulate the object state. Some of these operations may update

the state of the object, whilst others will simply leave it unchanged. A write operation in

this case may only modify a subset of an object's state, and so cannot be guaranteed to

perform an update as in a database system.

In a database system, the fact that a single write operation can update the entire state

of a replica is used in replication protocols such as Available Copies. If these protocols are

to be used in an object-oriented system then they will require explicit update protocols.

Finally, in a database system the invoker of a given operation knows whether that

operation is state modifying or not i.e., it knows which type of lock will be required.

However, in an object-oriented system users of a given object only see the exported

interface and see nothing of the implementation, and therefore do not know whether a

given operation will modify the state of the object. This difference is important as many of

the replication protocols to be described implicitly assume that clients have this type of

knowledge (it is used to ensure that read operations can be executed faster than write

operations).

We shall now examine some of the replication protocols which have been proposed for

managing replicated data.

5.2.1: Available Copies.

In the Available Copies [Bernstein 87] replication protocol, a user of a replicated

service reads from one replica and writes to all available replicas. Prior to the execution of

92

Chapter 5	 Object Replication in Practice

an action, each client detennines how many replicas of the service there are available, and

where they are, (this infonnation may be stored in a naming service and is accessed before

each atomic action is performed). Whenever a client detects a failure of a replica it must

update the naming service (name-server) view of the replicated object by performing a

delete operation for the failed copy. All copies of the name-server, if it too is replicated,

must be updated atomically.

When a write operation is performed all copies are written to and they must all reply to

this request within a specified time (it is assumed that it is always possible to communicate

with non-faulty replicas). Locks must be acquired on all of the functioning replicas before

the operations can be performed, and if conflicts between clients occur then some replicas

will not be locked on behalf of a client, and the client will be informed, at which point the

calling action is aborted. Using this locking policy and the serialisability property of the

actions within which operations occur, it is possible to ensure that all replicas execute the

operations in identical order.

If all replicas reply to a write operation then the action may continue. However, if only

a subset reply the action must ensure that the silent members have in fact failed, If the

silent replicas subsequently reply then the action must abort and try again (this is because

the states of the replicas may have diverged). However, if the silent copies have actually

failed then the action can still commit since all available copies are in a consistent state.

Whenever a new copy is created (or recovers from a failure) it must be brought

up-to-date before the name-server is informed of the recovery (before a client can make

use of the replica). When this is done the copy can take requests from clients along with the

other members of the group. The updating of recovered replicas can be done

automatically if an out-of-date replica intercepts/receives a write request from a current

transaction, as has been mentioned previously.

Consider the history of events shown in the diagram below, where T 1 and T2 are

different transactions operating on two replica groups whose members are xl,x2 and

93

Chapter 5	 Object Replication in Practice

yl,y2. Assume that Ti and T2 are using a "read—one copy, write—all—available copies"

scheme and that there are initially two copies of objects x and y which they both wish to

access. The execution of events is as shown, with time increasing down the y—axis.

If we examine the above history, it is clearly not 1SR i.e., neither the serial execution

T 1 ;T2 nor T2;T1 are consistent with the above history. Thus, the idea of "read—one copy,

write—all—available copies" by itself cannot guarantee 1SR. It is necessary to execute a

validation protocol before the transaction can commit to ensure correctness. In Available

Copies this takes the form of ensuring that every copy that was accessed is still available at

commit time, and every replica that was unavailable is still unavailable, otherwise the

action must abort.

'12

Read xl	 Readyl

ii	 xlfails/Ylfails_.j

Writey2	 Writex2

I	 I
Commit	 Commit

Because of the assumption made by Available Copies that all functional replicas can

always be contacted, this means that this protocol cannot be used in the presence of

network partitions. Anode which is partitioned cannot be distinguished from a failed node

until it has been reconnected. If the replication protocol assumes that all nodes which are

unavailable have failed when in fact some have only been partitioned, inconsistencies can

result in the replicas, as shown in Section 3.4. As such, if partitions can occur then the

replication protocol must be sufficiently sophisticated that it can ensure consistent

behaviour despite such failures.

94

Chapter 5
	

Object Replication in Practice

5.2.2: Weighted Voting.

The Voting (or Quorum Consensus) replication protocol [Gifford 79] is a replication

scheme which can operate correctly in the presence of network partitions. In this method a

non—negative weight is assigned to each replica and this weight information is available to

every client in the network. When a client wishes to read (write) the group it must first gain

access to what is known as a read (write) quorum. A quorum is any set of replicas with

(typically) more than half the total weight of all copies. A read quorum (N r) and a write

quorum (Nw) are defined such that Nr+Nw > N (the total weight).

t Pb I0 (f2
Client	 :	 I N

Server Group

Figure 5-2: Configuration of Read/Write Quorum.

A read operation requires the access of any Nr copies (only data from up—to—date

replicas should be used), and a write operation requires N up—to—date copies (so updates

are not applied to obsolete replicas). The number of inaccessible copies tolerated by a

read is NNr, and for a write operation it is N—Nw. The purpose of having quora is to

ensure that read and write operations have at least one copy of an object in common. If the

network partitions then voting allows access only from the majority partition if one exists.

Associated with each replica is a timestamp or update number which clients can use to

determine which replicas are up—to—date. If N 	 N -then a read quorum is required to

95

Chapter 5	 Object Replication in Practice

obtain the most up-to-date version of this number. If N = N then every functioning copy

must contain the same value because every write operation has been performed on every

replica in the group. This update number is used by clients to ensure that they only read

data from up-to-date replicas, even though they may acquire access to out-of-date

replicas in their read quorum.

The write operation is a two-phase, atomic operation, because either the states of N

copies are modified or none of them are changed (to ensure that subsequent read and

write quorum overlap and that a majority of the replicas are consistent). If a write quorum

cannot be obtained the transaction must be aborted. However, a separate transaction can

be run to copy the state of a current replica to an out-of-date replica. It is always legal to

copy the contents of replicas in this way.

The weights assigned to replicas should be based on their relative importance to the

system e.g., a printer spooler which resides on a very fast node would be considered better

for throughput than one which resides on a slower node and would therefore be assigned a

higher weight than a replica on a slower node. A replica with higher weight is more likely

to be in the quorum component.

A major problem with this protocol is that read operations require a quorum, even if

there is a local copy of the object. This can prove inconvenient (and slow) if an object

wishes to carry out many read operations on that object in a short space of time. There is

also the problem of fault tolerance: many copies of an object must be created to be able to

tolerate only a few failures e.g., we require five copies just to be able to tolerate two

crashes.

Note that to cut down on the storage requirements Witnesses [Paris 86] can be used in

place of actual replicas. A witness only maintains the current version number of the data.

They can take part in quora, but there must be at least one "real" replica in a quorum.

Other replication protocols based on the Voting protocol also exist [Abbadi 90][Jajodia

89][Davcev 89]. They address issues such as the need to acquire a quorum for a read

96

Chapter 5	 Object Replication in Practice

the responses of "true" copies. A write can only succeed if a write quorum contains at least

one non-ghost copy.

Because of the way in which ghosts are created and used, a ghost is used to ensure that a

particular non-ghost copy has failed due to a node crash and not to a segment partition. If

it is possible to create a ghost then the segment has not been partitioned and only the node

has failed. In Available Copies when a replica does not respond it is simply assumed that it

is because of node failure, which can result in inconsistencies if the copy was partitioned.

When the node on which the non-ghost copy originally resided is re-booted it is possible

to convert the ghost copy back into its live version.

5.2.5: Regeneration.

Regeneration [Pu 86] is a similar replication scheme to Available Copies in that a

client only requires one replica to service a read request but a write must be performed by

all copies. When an update occurs, if fewer than the required number of replicas are

available then additional copies are regenerated on other operating nodes. In doing so the

system must check that there is sufficient space available on the target node for the new

replica (in terms of the volatile and stable storage that it may use) and also that a copy does

not already reside there. A write failure occurs if it is not possible to update the correct

number of replicas, and a read failure occurs if no replica is available.

A recovering node and replica cannot simply rejoin the system. For each replicated

resource the system must check to see whether the maximum number of replicas already

exist. If so the recovering replica is deleted. If the maximum number does not exist the

system must check one of the available replicas to determine whether the state of the

recovering replica is consistent. If the recovering replica is inconsistent (i.e. an update has

occurred since this replica failed) then it must be deleted because a new copy has already

been created to take its place but is currently unavailable.

98

Chapter 5
	

Object Replication in Practice

5.2.6: PrImary Copy.

The Primary Copy [Alsberg 76] mechanism is an implementation of the passive

replication strategy, where one copy of an object is designated as the primary, and the

other copies become its backups. All write operations are performed on the primary copy

first, which then propagates the update to the secondary copies before replying to the

request. Reads can be serviced by any replica since they all contain consistent copies of the

state. Any inaccessible secondary copies are typically marked as such (perhaps to a

name-server) so that they cannot be used as either a future primary or to be read from

until they have been brought up-to-date (another method would be physically to remove

them from the replica group until they have been updated). If the Primary Copy fails then a

reassignment takes place between the remaining copies to elect a new Primary.

A problem arises when the Primary copy fails. If the primary site is down a

reassignment is in order. However, if the network has become partitioned a reassignment

would compromise consistency. If network partitioning has a low probability of

occurrence then the process for electing a new primary can be allowed: the secondaries

should be notified of the primary's failure and they must agree amongst themselves which

one is to become the new primary copy. If the election of a newprimary takes place and the

existing primary has not actually failed (perhaps it was not able to reply to the 'are you

alive' probe-messages in time because of an overloaded node) then the protocol should

ensure that the client will only accept a reply from the newly elected primary, as the old

primary could be in an inconsistent state. The protocol described in [Alsberg 76] tolerates

network partitions by allowing operations to continue in all partitioned segments and

relying upon some "integration" protocol to merge the states of replica groups when the

partitions are re-joined. However, such integration is not guaranteed to be resolvable.

If we take the case of only a fixed primary site i.e., no secondary takes over because

partitioning is possible, then a resource replicated using this strategy only increases the

99

Chapter 5	 Object Replication in Practice

read availability. Its write availability is the same as the availability of the primary site. The

other replication strategies all provide ways of increasing write availability.

5.2.7: Optimistic and Pessimistic Consistency Control.

The replication protocols described previously can all be considered pessimistic with

regard to consistency of data in the presence of network partitions. Until a partitioned

network is reconnected, it is impossible for nodes on one side of the partition to

differentiate between being partitioned and a failure of the nodes on the other side of the

partition. As has been described in previous sections, this can have an adverse affect on

replicated groups which have also been partitioned, unless some method is provided to

ensure that update operations can only be performed consistently on the entire group.

'1rpically, these replication protocols are used in conjunction with atomic actions, and in

the event of a network partition either only one partition (in the case of Voting) or no

partition is allowed to continue to progress, meaning that any atomic actions that were

executing must be aborted to maintain consistency of state between the partitioned

replicas. They are pessimistic, using the principle that, if it is not possible to tell definitely

that replicas have failed then it is better to do nothing at all. Those protocols which can

operate correctly in the presence of a network partition (still maintain consistency of

replicas), such as Voting, typically impose an overhead on the cost of performing

operations on replicas (in the Voting protocol, the cost of performing a read operation is

increased because a quorum of replicas must be obtained).

An optimistic consistency control scheme like those described in [Davidson

84][Abbadi 89] take a different approach and allow actions to continue operating even in

the event of a partition. When the partition is eventually resolved it must be possible to

detect any conflicts that have arisen as a result of the original failure and to be able to

resolve them. These protocols assume that it is possible for committed actions to be rolled

back (i.e., un—committed). How the detection and resolution of conflicts is performed is

100

Chapter 5	 Object Replication in Practice

system specific e.g., in some systems it must be done manually, whereas in [Davidson 84] a

mechanism is described that will allow the system to automate much of the work.

The use of such an optimistic consistency control scheme is restricted to a subset of

possible applications and systems because resolution can be time consuming, and in many

atomic actions system the facility to un-commit actions is not available. This thesis will

concentrate only on pessimistic consistency control.

5.2.8: Effectiveness of Replication Strategies.

In [Noe 86] a simulation study for the comparison of available copies, quorum

consensus, and regeneration was carried out to determine which replication protocol was

the most efficient given a specific configuration of distributed system, and a certain set of

failure characteristics.

The model was programmed in SIMULA [Birwhistle 73], and assumed a local area

network consisting of a number of separate computers interconnected by a

communications medium such as an Ethernet, with no communications failures. The

parameters used in the simulation, such as crash rates and node load, were obtained from

studies of existing distributed systems and from mathematical models, and all parameters

were the same for each replication protocol simulated. Crash frequency varied between

100 and 300 days, with repair times having a mean of 7 days. The number of replicated

resources ranged from only one copy to having three copies, and the ratio of read requests

to write requests varied from a probability of 0.3 up to 0.7, with request frequencies

varying from between 50 and 400 requests per day. The number of nodes in the system also

varied from 10 to 30. All measured results were taken over a simulated time of 2 years of

operation.

5.2.8.1: Simulation Results.

The quantities calculated from the results were the read and write availability of the

replicated service. The read availability was defined and calculated as the total number of

101

Chapter 5	 Object Replication in Practice

successful read requests divided by the total number of read requests. Write availability

was similarly defined in terms of write requests.

What was found from the results was that replication provides a significant increase in

availability. However, there is little point in going beyond a maximum of two copies. Both

the Available Copies and Regeneration techniques provide a substantial increase in

availability, raising the value of read and write availability very close to 1.0 i.e., whenever a

request is performed upon a replicated resource it will be carried out successfully. There is

very little additional gain with either of these protocols in having a maximum of 3 copies of

each resource.

The Voting protocol provided less protection than either of the other protocols and

would not even be considered until a maximum of 3 copies were used. In such a case the

optimal size for a read and write quorum is 2; with a write quorum of 3 the replicated

resource performed worse than in the non-replicated case because there are three ways to

lose a single copy and destroy the write quorum.

Both Available Copies and Regeneration are preferable to Voting if network

partitions are rare, or if measures are added to prevent or reconcile independent updates

during partition rejoining. The read and write availability of the Available Copies

technique are the same, and remain relatively constant despite changes in the request rate

and the number of nodes. Regeneration can be preferable to Available Copies in an

unstable environment that suffers from high crash frequencies, with a high number of

updates and frequent reconfiguration of the network. Further, Regeneration can equal or

surpass the performance of the Available Copies technique only if enough additional

storage is supplied to allow regeneration, as was described in Section 5.2.5.

5.3: Object and Process Replication.

We shall now examine replication protocols which have been designed to operate on

objects and processes, as opposed to pure data. As we have already seen, object or process

102

Chapter 5	 Object Replication in Practice

replication is more difficult than data replication as objects and processes can be active

and issue further requests on other replica groups.

5.3.1: Coordinator-Cohort Replication.

ISIS [Binnan 88}[Birman 87a][Birman 87b] is a distributed system which provides a

number of communication protocols which possess different delivery properties. ISIS

addresses the problem we described in Chapter 4 of using cheaper communication

protocols (weaker delivery properties) for certain applications. In ISIS it is possible to use

a protocol which reliably delivers messages but guarantees that only those messages which

need to be received in an identical order by all destinations will be e.g., an electronic mail

service can ensure that all messages from a given user are delivered in the order that they

were sent, but mail messages from different users may be ordered differently at

overlapping destinations. This allows applications to use cheaper delivery mechanisms

where they are required, using the syntactic knowledge of the application and its

interactions, but the system still ensures that state changes occur in a consistent manner.

There are three broadcast primitives available in ISIS, each providing different

functionality: ABCAST, CBCAST, and GBCAST. All of the primitives are atomic i.e.,

either all operational destinations of the message receive it or none do. There is also an

implicit assumption in ISIS that network partitions do not occur. If this were not the case

then the communication protocols could not guarantee delivery of messages to all

operational processes.

5.3.1.1: ABCAST Communication.

ABCAST primitive: this primitive delivers messages atomically and in the same order

everywhere i.e., it is an atomic multicast as described in Section 4.1.1.3. If two concurrent

messages are sent by different client processes using ABCAST then a delivery ordering

will be picked by the system and preserved at all overlapping destinations. ABCAST uses a

multi-phase commit protocol similar to those described in Section 4.2.

103

Chapter 5
	

Object Replication in Practice

5.3.1.2: CBCAST Communication.

CBCAST primitive: this communication primitive preserves only causal relationships

between events. A causal communication system will only preserve an ordering of events if

the order is causally related. If two events are not related in this way then there is no

guarantee on the delivery order. The functionality provided by CBCAST is the same as

that provided by the Psync system described in Section 4.3 and it is implemented in a

similar way by making use of a history of messages which is transmitted along with every

message.

5.3.1.3: GBCAST Communication.

It is entirely possible to construct an application using a mixture of both ABCAST and

CBCAST primitives. It should be noted however, that ABCAST and CBCAST are

unordered with respect to each other. GBCAST however, provides totally ordered

broadcasts (Section 4.1.1.5) which are ordered with respect to every other type of

broadcast i.e., ifXis a GBCAST and Yis some other broadcast type then Xand Ywill be

ordered consistently at every overlapping destination. When a process failure is detected

all operational processes are informed using a GB CAST and this will ensure that they will

record the failure of the process after they have received all outstanding messages from

that process.

5.3.1.4: Replication in ISIS.

The Coordinator-Cohort replication mechanism [Birman 85][Birman 87b][Birman

88] which is used in ISIS is related closely to the Passive Replication protocol described in

Section 3.3.2. Consider figure 5-3 in which there are three copies of the same replicated

resource which form a single replica group.

104

Chapter 5
	

Object Replication in Practice

SA
jnsgl
	 msg2

Figure 5-3: Coordinator—Cohort Replication.

In ISIS each member of a group maintains information about the other functioning

members of the group. This information is kept up—to—date by a failure detector in the

system which monitors all objects, and whenever a failure of an object is detected it

informs all of the remaining objects using GBCAST so that the failure is ordered

consistently.

In figure 5-3 there are two clients (A and B) which require access to this group.

Suppose that A and B concurrently send requests to the group for a service. Such group

requests are sent using the ABCAST primitive, so that all functioning replicas receive

them in an identical order. Instead of both clients interacting with the same primary

replica as is the case in Primary Copy, in this replication scheme each client will be serviced

by a different member of the group (which becomes the client's coordinator), with the

remaining members acting as the backups (the coordinator's cohorts). Because each

replica in the group has an up—to—date record of which other members are in the group, by

using the same deterministic algorithm all replicas in the group can unilaterally reach the

same decision about which replica will become coordinator for a given client. Thus, in this

diagram C may be chosen by all of the replicas to service A, while E may be chosen to

service B. A given replica may be coordinator for several requests, whilst at the same time

acting as cohort for another coordinator.

105

Chapter 5
	

Object Replication in Practice

5.3.1.5: Checkpointing of State.

Once a request has been completed a checkpoint/update is made to the cohorts so that

they can update their own states, and the client is informed. The checkpoint and reply are

typically sent as one message using CBCAST. It is therefore guaranteed that all

functioning group members will have received the update message and updated their

states before any future requests are executed which may depend upon the initial request

and reply. Causality also ensures that if there are multiple coordinators at any given time

also transmitting checkpoint messages then only those messages which need to be ordered

at each replica will be ordered, thus improving the performance of the replica group. If

ABCAST was used to transmit the update messages then every replica would have a

consistent order imposed on the checkpoint/update messages even if such message are

unrelated i.e., can be delivered in an arbitrary order.

5.3.1.6: Concurrency Control.

If the operations received by multiple coordinators require exclusive access to the

replicated resource then the coordinators must lock the group in the appropriate manner,

by broadcasting a lock request to the group members. ISIS ensures that only one

coordinator will be able to acquire the lock.

5.3.1.7: Failure Detection.

In ISIS, every node maintains a Site Monitoring process which monitors the current

state of every process on the node i.e., whether they are operational or not. If a process is

detected to have failed then the Site Monitor sends a failure GB CAST message to all

processes in the system which ensures that the failure is observed by all processes

consistently. When a node recovers this information is again propagated to other nodes

using recover GB CAST. This ensures that the recovery of a node is observed after its

failure (if the order was arbitrary then inconsistencies could arise).

106

Chapter 5
	

Object Replication in Practice

5.3.1.8: Coordinator Election.

The election of coordinators is carried out with no exchange of messages between the

members of the group. This is because each group member maintains a list of exactly

which replicas are currently members of the group. This group information is formed

when the group is initially created, and events such as group member failures and

recoveries are observed by all functioning replicas in a consistent manner (as these

messages are transmitted using GBCAST). As such, each functioning group member will

have the same group membership information when the election of the coordinator takes

place. By making use of this group view information and the same deterministic rule, all

members come to the same decision about which replica should service a particular client

request. The deterministic rule used is based on the physical location of the client (a

replica on the same node as the client will always be preferred) and load balancing

information.

Once a particular replica has been assigned to a client as its coordinator, it will begin to

interpret the request; all of the other members will remain passive as far as this client is

concerned (become cohorts) but will await any further requests from other clients, lithe

original coordinator fails then the Site Monitor will inform the cohorts and a new

coordinator is elected which will continue the operation from the last checkpoint it

received from the now failed coordinator. This process of electing new coordinators to

take over from failed coordinators continues until either the request has successfully

terminated or no further group members are available.

If a coordinator fails before replying, exactly one cohort will take over. If the

coordinator replies before failing and the reply is delivered, then no cohort will take over

because the request has been completed successfully. Thus, the coordinator—cohort

scheme can guarantee a form of atomicity of execution: as long as the entire replica group

does not fail, an operation will be performed and a reply will be sent. If the group does fail

107

Chapter 5	 Object Replication in Practice

then the caller will be informed but will be unable to determine at which point the

execution failed.

5.3.2: Lazy Replication.

Lazy replication [Ladin 90] and other similar protocols [Downing 90][Garcia-Molina

90][Alonso 90] do not insist that all operations within an application are performed in the

same order eveiywhere, and are hence termed weakly consistent replication protocols.

They allow application programmers to exploit syntactic knowledge of the application to

use cheaper, more efficient protocols where possible whilst at the same time maintaining

the 1SR property for the application's (distributed) state.

A weak-consistency method represents a trade-off between consistency and

availability. It allows temporary inconsistencies to develop among the replicas as a result

of multiple users independently updating different replicas and the time necessary for an

update to propagate to all replicas. The system guarantees to resolve these inconsistencies

using techniques based on syntactic dependencies among conflicting actions, the global

order in which actions were executed, or the semantic properties of operations and

applications, and return the replicas to mutual consistency.

5.3.2.1: The Ordering Protocols.

Lazy replication is designed to run in the Argus [Liskov 87a][Liskov 88] distributed

system. Argus uses objects and actions, where operations on objects are performed within

atomic actions. Such objects may be replicated and the standard replication scheme

provided ensures 1SR. However, to allow for weaker consistency ordering users can make

use of the three communications primitives provided by Argus which allow the order of

operations to be specified on a per operation basis:

• client-ordered: this allows clients to define the order of calls to service operations

either implicitly or explicitly. The system guarantees that the service will perform

operations consistent with this order. The order resulting from the implicit

108

Chapter 5
	

Object Replication in Practice

specification corresponds to the causal order, while the explicit specification allows the

definition of weaker orderings.

. server-ordered: this is an atomic communication protocol with the system

guaranteeing that all server-ordered operations will be perfonned in the same order at

all destinations. If concurrent server-ordered operations occur then an order will be

chosen non-deterministically and followed by all functioning destinations i.e., if

multiple server-ordered operations are received from different sources at overlapping

destinations then some order will be chosen and followed by all of the destinations.

• globally-ordered: this is a totally ordered communication protocol which is used

where a globally ordered message delivery is required.

Lazy replication is primarily concerned with client-ordered interactions, where

operations can be ordered arbitrarily at different replicas, provided that such orderings

maintain consistency between the replicas. Server-ordered interactions ensure that all

replicas receive messages in the same order, and will be described in Section 5.3.3. The

principle behind lazy replication is that performance improvements can be obtained for an

application by exploiting the syntactic knowledge of the application and enforcing strict

ordering only where necessary. In lazy replication, a client performs operations on a single

replica, but the system guarantees that the replicated service will remain consistent i.e.,

that all replicas within a group will eventually have the same state. Effects of calls which are

performed on a single replica are propagated to other replicas by a lazy exchange of gossip

messages.

5.3.2.2: System Assumptions.

Before proceeding to a description of how lazy replication works, it is important to

review the system assumptions made by the designers. A service is implemented by a fixed

number of replicas (objects) which reside at well known locations. These replicas work as

an active replica group, with the state of a replica kept in stable storage. A service provides

109

Chapter 5	 Object Replication in Practice

two kinds of operations: update operations that modify the state of the replica, and quely

operations that observe the state.

Nodes may fail, but always recover in a finite amount of time. All operations are

individually atomic (multi—operation actions are not supported) so that if an update

operations completes then the changes it has made are stored on stable storage, along with

sufficient information to identify the message which caused the state transformation.

5.3.2.3: Client—Ordered Replica Groups.

Clients indicate the ordering between operations by transmitting ordering information

with each call. This information indicates which other operations must have been

performed before this operation can be executed. Since the service respects only those

dependencies explicitly defined, the client must ensure that all intended ordering

requirements are conveyed to the service. This can be done automatically by the system,

resulting in a causal ordering, but greater performance benefits can be obtained if the

client does this explicitly.

When a replica receives an update operation it can be processed immediately, even if

some other messages upon which this message may depend have not been received. To do

this, the actual operation is registered but not actually performed until all undelivered

messages have been received. Query operations must be postponed if messages upon

which they depend have not been received. This allows for faster write operations at the

expense of possible delays for read requests.

Every client runs a front end at its node. When a client invokes an operation on a

service this front end sends an appropriate message to one of the replicas in the service

group, which executes the request and sends back a reply. The front end may send the

request to several replicas if the initial response is slow in arriving, or if the client wants a

response from the fastest replica available. Each update request transmitted is assigned a

unique identifier which is used to ensure that such operations are performed only once at

each replica. The replicas in a system supporting lazy replication are therefore active in

110

Chapter 5	 Object Replication in Practice

that they can all potentially receive and process the same request from a client (as in active

replication) but typically only a single member of a replica group will receive the request

and respond to the client and then inform the other members of the group (as in passive

replication).

All replicas maintain a log of update operations they have received and periodically

they construct gossip messages from this and transmit the information to the other

replicas. This information contains the actual messages received as gossip messages are

the usual way that replicas learn about state changes which have occurred at other replicas

within their group. When a gossip message is received each replica will remove from it the

update messages it has not yet received and order them with respect to other messages it

has received. Since each replica receives a copy of the gossip message it is possible that a

replica could receive multiple copies of the same request (if it received the initial update

request as well as a subsequent gossip message which also contained the same request).

However, because each update message is associated with a unique identifier it is possible

to ensure that a given replica only executes each update request once.

5.3.2.4: Missing Updates.

It is possible that a replica which receives the only copy of an update operation fails

after successfully replying to the sender but before transmitting a gossip message. If the

same sender then issues a subsequent query operation this operation will go to another

replica. However, because no other replica in the service group has received the original

update message this query operation must be suspended. The designers point out that this

situation can be made unlikely by sending frequent gossip messages before or in parallel

with the update response. Another method would be for an updated replica to notify some

number of other replicas (backups), and await acknowledgments before sending the user a

response.

111

Chapter 5
	

Object Replication in Practice

5.3.3: Viewstamped Replication.

The Viewstamped replication scheme [Oki 88] employed in Argus [Liskov

87a][Liskov 87b][Liskov 88] is based on the passive replication technique. The object and

action paradigm described in Section 2.2.4 is used in Argus. Argus objects are called

guardians. The logical unit of replication within Argus is the guardian, and replication is

achieved by creating guardian groups, which consist of several instances called cohorts,

which behave as a single logical entity. The cohorts can be accessed on an individual or

group basis. The set of cohorts is the group's configuration. Each cohort knows the group

and the configuration to which it belongs.

A distinguished cohort is designated as the primaiy, which will execute handler calls

and take part in the two-phase commit. The remaining cohorts are called backups. The

membership of a guardian group is called a view. If the primary fails then a backup will be

elected to take over. Such reorganization is tenned a view change, and the algorithm that

carries it out, the view management algorithm. View changes are necessary whenever a

cohort fails (whether it is a backup or a primary).

5.3.3.1: The View Management Algorithm.

To preserve the abstraction of a single-object image it is necessary to mask the failures

of members of the replica group automatically and efficiently. In Figure 5-4, the view that

client F, and the members of 0 have of the group is vi = {a: b c d e}, where a is the

primary, and b, c, d, and e are its backups, and vi is the viewid. (The configuration is {a b c d

e}, and the view is always a subset of the configuration). Note that what is not shown in the

diagram is the interaction of the backups with the primary. Such interaction is necessary

for the backups to monitor the current state of the primary i.e., whether it is operational or

not.

112

Chapter 5
	

Object Replication in Practice

G

Figure 5-4: Guardian Group.

Figure 5-5 shows the same group but with a failure in the initial primary (this could be

a node failure). The remaining cohorts find that they can no longer communicate with the

original primary and so a new primary must be elected. A new primary is chosen from the

remaining backups as long as the backups and new primary constitute at least a majority of

all cohorts in the guardian configuration. In the case of the group shown, this condition has

been met and so b, say, can be elected as the new primary.

In this case, the new view for F would be v2 = {b: c d e}. If cohort a is actually

operational but cannot communicate with its backups because of communication failures,

it too will attempt to execute the view change algorithm. However, because it cannot

communicate with a majority of the cohorts in G this view change will be unsuccessful.

Cohort a will remain in view vi, but will become inactive, which means that it will refuse to

execute requests on behalf of clients.

113

a

Chapter 5
	 Object Replication in Practice

Figure 5-5: Guardian Group view change.

When a view change occurs all cohorts in the new view will be initialised with a new

state. This state is the most recent state that any cohort in the group has (and this cohort

will be elected as the new primary). It is guaranteed that at least one cohort in the new view

will have the most recent state that the old primary sent as a checkpoint. This can be

guaranteed because the old view must have contained a majority of cohorts, and the

current view consists of a majority, so they must have at least one cohort in common that

was in both views. Therefore the new view "knows" what happened in the previous view,

and logically it must also know about everything that happened since the creation of this

guardian group.

5.3.3.2: Primary Election.

Cohorts in the group periodically sent "are you alive" messages to each other. If a

failure is detected then a view change is necessary and the cohort which detected the

failure will attempt to contact a sub-majority of the other cohorts and get them to agree to

change the view. If an agreement is reached then the view changes and the cohort with the

114

Chapter 5	 Object Replication in Practice

most recent state becomes the new primary (this is done using viewstamps to be described

below).

5.3.3.3: Atomic Action Processing.

When a view change occurs in a guardian group, it is necessary for a user of the group

to be able to tell whether the new primary "knows enough" to allow the actions which

interacted with the group prior to the failure to commit. The viewstamped replication

scheme uses timestamps and views to determine what is known by a given primary.

When a primary communicates with its backups (termed an event) it generates a new

timestamp which is guaranteed to be unique within a view, and which form a total order.

An event record identifies the type of the event, and contains the event's timestamp and

other relevant information. Each event is assigned a timestamp, and primaries send event

records to the backups in timestamp order. Each backup receives the event records in

timestamp order, and must execute them in this order. Therefore, if a backup knows about

event x it must know about the events which preceded x.

A viewstamp is a tuple consisting of a timestamp and the view in which it was generated.

Each cohort maintains a viewstamp histoiy that represents the sequence of events from all

views seen by the cohort. For example, a viewstamp history for a given cohort might be as

follows: <vi, 5>, <v2, 10>. This means that the state of this cohort reflects all events

that occurred in view vi up to timestamp 5. Then the view changed to v2 and the cohort

received all events up to timestamp 10, which is the current view and the most recent

timestamp it received from the current primary.

When a client makes a handler call to servers it includes the viewid in the call along

with other relevant information. The primary of the group processes the call and assigns

the call a new viewstamp. This viewstamp is returned to the client which remembers it in

association with the group identifier. When the top—level action comes to commit, the

client has a collection of viewstamps (there is at least one viewstamp associated with each

server which participated in the action). The client actS as the coordinator for the action

115

Chapter 5	 Object Replication in Practice

commit protocol and sends prepare messages to the primaries; each prepare message

contains the relevant viewstamp, which represents what must be known by the primary in

order for the action to be able to commit.

When servers receive prepare messages they can compare the viewstamp contained

within, with the viewstamp that they currently possess (which represents what is known).

By checking that the received viewstamps are less than, or equal to the associated

viewstamp in the viewstamp history, it is possible to determine whether the servers

remember enough to commit the top—level action.

5.3.3.4: Example Interaction.

In Figure 5-6 client F is the coordinator for a top—level action involving guardian

group 0. When the group was created the initial view that F had of the group was vi = {a:

b c d}. This primary a received and processed correctly 8 operations during this view

before a view change was initiated because d was detected to have failed. This then

resulted in the new view v2 = {a: b c} being created. Once the view change had been

completed F continued to send requests to the group, and at the time of Figure 5-6 has

sent 6 requests (the primary has seen 10 events during this new view from various clients,

and has checkpointed 9 of these to its backups).

F now sends the prepare message to G along with the viewstamp history that it requires

the primary to know about. The primary knows about everything in view vi that is

required, and knows more about view v2 than the coordinator requires (other events have

occurred which do not have any relevance for this top—level action). In this case, cohort a

knows enough for F to be able to commit.

116

Chapter 5
	

Object Replication in Practice

G

Figure 5-6: Committing a top-level action.

Even though the primary knows enough for the action to commit, it is necessary to

ensure that the events are known at enough backups to survive a view change. The primary

ensures this by forcing event records to the backups in the current view and waiting until a

sub-majority know before responding ok to the coordinator. (A sub-majority is one less

than a simple majority of the configuration).

5.3.4: Delta-4.

The Delta-4 System [Barrett 90] is specifically designed to address the requirements of

real-time systems with respect to both throughput and response. The system supports the

real-time concepts of priorities and deadlines, and reflects these in its communications

protocols, which implement reliable group-to-group communication. As in ISIS and Lazy

replication, the communications layer provides a range of primitives, each with different

ordering and delivery characteristics.

In Delta-4 replicated software components are used to provide fault-tolerance. As

was shown in Section 3.4, different replication protocols can tolerate a different range of

failure classifications. As such, Delta-4 provides a number of replication protocols for

117

Chapter 5	 Object Replication in Practice

use, depending upon the failure characteristics of the application and the distributed

system's components.

If the system is to tolerate arbitrary failures than an active replication protocol using

voting, is provided which uses the states of the various replicas to detect any such failures

and mask them as long as a majority of the replicas agree. If fail-silent nodes are being

used in the system then voting is not necessary since messages generated by replicas can be

assumed to be correct. However, as has been indicated in Section 3.3.4, active replication

requires some form of atomic multicasting to ensure that all functioning replicas receive

the same set of messages in the same order (to satisfy State Machine conditions Cl and

C2). Such protocols are necessarily complex. It is important that such replicas are

deterministic as they are required to respond quickly to external events through some

form of pre-emption as is typical in dynamic real-time environments. Therefore the

difficulty in maintaining consistency is compounded. Pre-emption is complex and costly to

synchronise between active replicates since each replicate must be preempted at exactly

the same point in its processing. The replication schemes discussed before do not support

pre-emption. The leader/follower scheme of Delta-4 to be described next is capable of

dealing with pre-emption.

5.3.4.1: Leader/Follower.

The leader/follower model of replication is a combination of active and passive

replication techniques, designed for use on fail-silent nodes. All replicas are active,

receiving and executing requests from clients, but only one replica (the leader) propagates

output messages. The leader is responsible for taking all decisions which affect replicate

determinism; such decisions are propagated from leader to followers via synchronization

messages. System nodes are assumed to be fail-silent; messages are sent by the leader to

the followers immediately they are generated, and when the followers generate the same

messages they will be automatically discarded by the communication system.

118

Chapter 5
	

Object Replication in Practice

5.3.4.2: Synchronization.

In leader/follower, State Machine conditions Cl and C2 are met as follows: atomic

(unordered) multicast is used to ensure Cl; C2 is ensured by imposing the choice of the

leader onto its followers. Therefore, when the leader selects an input message it also

constructs a synchronization message containing the identity of that input message and

sends this to its followers. When the followers receive the synchronisation message they

use it to execute the original input message in the same order as the leader, thus preserving

replica determinism.

Leader/follower provides a solution to preserving replica determinism in the case of

pre-emption by making use of the concept of pre-emption points; these are predefined

points in the processing of an object at which it may be pre-empted. To achieve

pre-emption synchronisation, each time the leader reaches a pre-emption point it

increments a counter. When a message arrives at the leader, a check is made to determine

whether this message requires the leader to be pre-empted. If so, the pre-emption point

at which this will occur is selected (the current counter plus 1 represents the next

pre-emption point) and assigned, and a synchronisation message is sent to the followers.

The followers will then use this message to process the pre-emption at the correct point

(this obviously requires the followers to be executing at least one step behind the leader,

where a step represents the receipt of a synchronisation message due either to a

pre-emption, or to the consumption of an input message by the leader).

5.3.4.3: Leader Election.

The leader is elected by a static ranking of the replicas which is created when the

service begins. Subsequent leaders are chosen from this ranking. Leader failures (and

follower failures) can be detected in three ways:

• failures of replicas can be detected by the communication system when it attempts to

deliver a message to the destinations.

119

Chapter 5
	

Object Replication in Practice

• the Delta-4 system has the notion of a Group Manager which maintains its own view of

the state of the system: which nodes are currently active, which objects currently exist

within the system, and which groups they are associated with, and the identity and

status of each replica of an object.

• leaders periodically send "I am alive" messages to the followers.

When a leader is detected to have failed the followers will be informed and the next

ranked replica takes over. There is no need for an exchange of messages between the

followers to elect the new leader.

To summarize: the leader/follower approach has two advantages over the schemes

presented previously:

• the leader can begin processing a message as soon as it arrives (there is no need to wait

for an agreement on order to be achieved).

• the leader/follower scheme includes the provision for pre—emption.

5.3.5: Psync Replication Protocol.

The Psync communication subsystem was described in Section 4.3.1. We shall now

describe how applications can make use of the delivery properties guaranteed by Psync to

allow active replica groups to be used in a consistent manner despite failures.

Because active replication is used it is important to enforce a consistent ordering of

operations on all members of the same replica group. A total ordering of operations is

possible, but as shown in Section 5.3.2 this can be overly restrictive if the actual order in

which operations are executed does not matter (e.g., two read operations could be ordered

differently by the same replicas). The replication scheme used in Psync takes advantage of

both the partial ordering of messages preserved by Psync and the semantics of the

operations provided by the service to be replicated i.e., whether they are commutative or

not.

120

Chapter 5
	

Object Replication in Practice

The Psync approach is to first order the operations of an application based on the

partial ordering e.g., operation i1 is executed before operation i2 because it was invoked

first, and then to take advantage of the commutativity of the operations to enhance

concurrency. Operations which are not commutative must be executed in the same order

by each application manager and they must be totally ordered with respect to the

commutative operations i.e., a precedence is assigned to the operations and this is used to

break ties between operations that were invoked at the same logical time.

If we initially assume that none of the operations provided by an application are

commutative then they will have to be sorted into the same total order at each host where a

replica resides. In Psync this can be done by having each manager do the same topological

sort of the context graph. Before the sort can be performed, each process must wait for a

portion of its graph to become stable to ensure that no future messages sent to the

conversation will invalidate the total ordering. Psync defines a wave to be a maximal set of

messages for which the context relation does not hold between any pair. A wave is

complete when it can be guaranteed that no further messages can arrive which belong to

this wave. The topological sort proceeds from one wave to the next as the waves complete.

When a message is stable all future messages must follow it in the context graph, therefore

a single stable message in a wave implies that all possible members of the wave are

contained in the participant's view i.e., as soon as a single message in a wave is stable, the

wave can be sorted according to some deterministic sort algorithm and this sorted order

gives the total order of the messages.

If some of the application's operations are commutative then the ordering can be

slightly different at each conversation member because two or more commutative

operations can be executed in any order. In particular, different managers can order

commutative operations differently as long as there are no non-commutative operations

between them. More formally, an op-group 0 is defined to be a set of operations in the

context graph such that:

121

Chapter 5	 Object Replication in Practice

1: 0 contains exactly one non-commutative operation, or

2: 0 is a maximal set of commutative operations, such that for any path in the context

graph between any two operations in 0, there are no non-commutative operations.

If there exists some op-group that contains a non-commutative operation and some

other op-group 13 that contains a set of commutative operations, then one of the following

two cases must be true: either the non-commutative operation in precedes zero or more

of the operations in 13 and is at the same logical time as the remaining operations in 13, or

the non-commutative operation in is at the same logical time as one of more of the

operations in 13 and is after the remaining operations in 13. while managers must generate

the same total order of op-groups, they may invoke the operations within each op-group

in an arbitrary order.

5.3.5.1: Generalized Algorithm.

The generalized algorithm that all participant managers within Psync use to determine

when to execute replicated operations can be outlined as follows. Assume a system of

replicated objects where there are n different operations that can be applied to these

objects. Assume that these operations can be subdivided into k disjoint sets Si , S2 , ..., Sk

where any two operations within a set are commutative and any two operations from

different sets are not commutative. Also, let different invocations of an operation in sets

Si ,S2 , ..., S, (j ^ k) be commutative. For such a system it is possible to define the properties

A2, A3, ..., Ak:

Property Al: All the leaves in the view are the unexecuted operations from the sets

Sj,S^1,...,Sk or they are in the context of some unexecuted operations from the sets

Observer that operations in set S., can be executed immediately if they are not in the

context of some unexecuted operations from the other sets. In order to execute operations

from S2 , property A2 must be satisfied and the wave containing the S2 operation must be

122

Chapter 5	 Object Replication in Practice

complete i.e., to execute operations in S2 , a total ordering is required. Since a total

ordering is required it is possible to execute all the operations from sets S2,... ,Sk in the

current wave as soon as the property A2 is satisfied and the current wave is complete. Thus,

in the case where object operations can be subdivided into more than two sets of

commutative operations, the partial ordering is used to execute the operations in the first

set and total ordering is used to execute operations in the other sets i.e., Psync only allows

additional concurrency for the first set Si.

5.4: Summary.

This chapter started with a description of the two ways in which atomic actions and

replication are typically integrated: replica groups within an atomic action, or replicated

atomic actions. The various advantages and disadvantages were discussed, and it was

shown that replica groups within atomic actions is the more flexible way to integrate the

two mechanisms. It is the scheme that we shall be using in the next chapter.

We then moved on to a description of replication protocols proposed for use in

'conventional' systems which also use atomic actions. It was shown how most of these

systems use data as their unit of replication, and hence the problems involved in

replication are less complex. The replication protocols described were available copies,

voting, regeneration and primary copy, and it was shown how they can tolerate failures and

still continue to provide a consistent service.

The next sections described the replication techniques used in distributed systems

whose units of replication are not data, but objects or processes. The systems studied

included ISIS and Argus, which introduced the notion of lazy replication techniques i.e.,

where the relative order of message delivery is unimportant it is possible to use cheaper

delivery protocols rather than the more expensive total order protocols typically used to

ensure replica consistency. In the next chapter we shall see how such principles have been

used in the design of a replication protocol for use in the Arjuna distributed system.

123

Chapter 6
	

Replicated Objects in Arjuna

6: Replicated Objects in Arjuna.

This chapter describes some replication schemes which have been designed for the

Arjuna distributed system. The first scheme has also been implemented, and makes use of

the replicated RPC whose design and implementation was discussed in Chapter 4.

6.1: Arjuna System Overview.

The Arjuna system [Shrivastava 91][Dixon 89] provides tools to assist the construction

of fault—tolerant applications structured as atomic actions operating on persistent objects.

The Arjuna system is implemented in C++ and extensively uses the type—inheritance

facilities provided by the language. User objects can inherit desirable characteristics such

as persistence and recoverability. We shall be using inheritance and the stub generator

[Parrington 89] to create transparently replicated objects (replica groups) which are

manipulated through a single, common interface.

Every persistent object in Arjuna has a 'home node' where it normally resides in a

passive state in a (stable) object store; it is made active once it comes into the scope of a

client computation. Activating an object entails bringing the state of the object into the

home node's primary memory using a primitive operation initiate (- -) and linking it to

the object's methods; a server process is also associated with the object to serve

invocations (a well—known manager process on every node is responsible for creating

servers). Once activated, an object stays that way, ready to receive invocations. When a top

level commit occurs, the current state of the object is forced back to the stable store. A

complementary operation to initiate, called terminate is available for passivating an

activated object (and destroying the server process). The simple example below illustrates

the relationships between activation, termination and commitment:

124

Chapter 6
	

Replicated Objects in Arjuna

{
01 objctl
02 objct2

AtomicAction act

act.begin 0
objctl.op(...)

objct2.op(...)

/t objctl activated SI

/s objct2 activated */

/* start of atomic action act /

I invocations *1

act.end()
	

1* act commits /

}
	

1* objctl, objct2 passivated *1

A naming system maintains the mapping between object names and locations

(hostnames). The task of locating a (passive) object and activating it before invocations

has been automated through a C++ stub generator which also performs parameter

marshalling and other functions necessaiy for making RPCs. Atomic actions can be

nested; the commitment of an outer most action (the top level action) is responsible for

making any state changes made to persistent objects stable and releasing the locks on the

objects. If desired, an atomic action can invoke (start) a top level atomic action, not nested

within the invoking action, which can commit independent of the invoker.

6.2: Replication Algorithms.

In Chapter 3 we saw how the State Machine approach to active replication specifies

two conditions which must be met in order that all interactions with active replica groups

maintain consistency of state amongst the replicas. The conditions were:

• Cl: every non—faulty state machine replica receives every request (agreement

requirement).

• C2: every non—faulty state machine replica processes the requests it receives in the

same relative order (order requirement).

In the replication scheme which we have designed, condition Cl is met by the reliable

group RPC mechanism (using rel/RELwhich was described in Chapter 4). The group RPC

guarantees atomic delivery of requests i.e., requests sent from a (replicated) client to a

replica group will be received by all functioning members of the group despite failures at

125

Chapter 6	 Replicated Objects in Arfuna

the client and at the replica group. The order in which the request will be received at each

replica is not guaranteed, however. We have seen in Chapter 4 that a total order of

messages is unnecessary for all applications, and therefore condition C2 is met at the

application level by relying upon the serialisation property of atomic actions.

Such an approach can have two important performance related advantages: (i) it is

usually possible to implement faster protocols for atomic delivery as compared to totally

ordered delivery; and (ii) application level ordering through concurrency control enforces

order only where necessary (for example, concurrent 'read' invocations on an object group

need not be ordered). Thus, the designs to be described below indicate how object

replication can be supported in atomic action based systems without the use of order

preserving multicast communication primitives.

The Group RPC mechanism (GRPC) is used by invoking the GRPC_call (G, ..., type...)

on the replica group, where G is the group to which the request/reply is being sent. The

termination conditions for a call are: type = all, meaning get replies from all functioning

members of G and type = one, meaning a single reply would do. These termination

conditions were described briefly in Chapter 4.

6.2.1: Overview.

One of the problems encountered in any replication protocol is ensuring that users of a

replica group interact only with consistent members of that group (the Voting scheme

described in Section 5.2.2 uses an update number associated with every replica which

indicates whether the replica is up-to-date, and this needs to be inspected by every user of

the replica group before it can decide whether or not to make use of a particular replica).

Our scheme makes use of a database which maintains lists of only those (consistent)

replicas which users can interact with (the database is called the Group-View Database). In

our protocol, users acquire the list of consistent replicas (the groupview) from the

database, and use this to interact with the replica group. This list consists of the location

and name of each of the replicas in the group. After the clients have finished, if any of the

126

Chapter 6	 Replicated Objects in Arjuna

replicas are detected to have failed then this information is used to update the groupview

held by the database.

Before communicating with a replica group, clients start an atomic action, within

which all operations will occur. When the groupview has been obtained, the clients will

issue requests on the replica group. All interactions with the replica group then occur by

making use of the reliable group RPC mechanism, which ensures that all messages will be

delivered to every functioning destination, despite failures. The serialization property of

the atomic actions ensures that all interactions with the replica groups take place without

interference from other clients.

During the interaction with the replica group, the clients assemble an Exclude List,

which is a list of those replicas which have been detected to have failed (they did not

respond to a given request). At commit time, this list is used to update the groupview held

at the Group—View Database, so that the replicas whose names are in the exclude list are

no longer in the group.

Note that we assume that it is possible to obtain the state of an object. This is necessary

in order that recovering replicas can obtain the current state of the relevant objects before

rejoining the group. We will use the save_state and restore_state operations which all

persistent objects within Arjuna possess.

6.2.2: Failure Assumptions.

What will be discussed in the following sections is the design of a family of replication

protocols for use in an object—oriented distributed system which supports atomic actions.

Each protocol has been designed to function in an environment which conforms to a given

set of failure assumptions.

• All of the replication protocols to be described assume that the nodes on which

replicas will reside are fail—silent (Section 3.3.1).

127

Chapter 6
	

Replicated Objects in Arfuna

However, the protocols differ in whether they can function correctly in the presence of

network partitions: we say that a network partition has occurred if a functioning node is

unable to communicate with some other functioning node. The term virtual partition will

be used if this inability is temporary in nature, which is usually caused by network

congestion and/or overloaded nodes.

6.2.2.1: Available Objects.

The first protocol to be presented (Available Objects) is based on the Available Copies

database protocol (Section 5.2.1), and makes similar assumptions as described in Section

3.3.4.1.

• For this protocol to function correctly no network partitions can occur.

This assumption, combined with the assumption that all replicas reside on fail-silent

nodes, means that the only reason a replica will not respond to a request is because that

replica (node) has failed.

The current implementation of this replication protocol makes use of the reliable

group RPC we have implemented (and described in Chapter 4). The group RPC uses the

rel/REL reliable message passing protocol described in Section 4.5, which assumes that

messages take at most a known bounded amount of time for reaching destinations. The

relfREL based RPC mechanism cannot tolerate virtual partitions, and therefore neither

can the current implementation of Available Objects: nodes which are virtually

partitioned will be assumed to have failed, and this can lead to inconsistencies between

members of the same replica group.

However, if the reliable group RPC was implemented using a Psync style reliable

message passing protocol (Section 4.3) then virtual partitions can be tolerated. Psync is a

message history based protocol (described in Section 4.2) which does not make use of

bounded delay assumptions and can therefore tolerate virtual partitions.

128

Chapter 6
	

Replicated Objects in Arfuna

6.2.2.2: Voting Objects.

The second protocol described is a variation of the previous protocol, and is based on

Weighted Voting (Section 5.2.2). This protocol can tolerate network partitions:

• if a rel/REL based group RPC is used, then virtual partitions can cause the affected

nodes to be excluded from use.

• if a Psync based group RPC is used, then nodes which are virtually partitioned will not

be excluded, and will still be available for use.

6.2.2.3: Primary Objects.

Unlike the first two protocols which use active replication, the final protocol makes

use of passive replication, and is based on the Primary Copy replication protocol (Section

5.2.6). This protocol can also tolerate network partitions in the same manner as indicated

above.

The replication protocols to be described can be split into two mechanisms: a means of

ensuring a consistent view of a particular replica group between its users, and a means of

preserving consistency of state between these replicas. The means of ensuring a consistent

view of the members within a replica group is common to all of the protocols to follow, and

is provided by the Group-View Database.

6.2.3: The Group-View Database.

To ensure that every user of a particular replica group sees the same group

membership it is necessary for there to be available some method of obtaining the group

view at any time. This is provided by the Group-View Database.

6.2.3.1: Replicated Object Information.

Information concerning every persistent replicated object which exists in the

distributed system is recorded in the Group-View Database. The information maintained

about the replicated object (group) includes a list of all of the objects which are members

129

Chapter 6	 Replicated Objects in Arfuna

of the group (including where they are located), called the group list, and (possibly) the type

of service it exports (e.g., spreadsheet). This can be accessed by clients which require use of

the service by either explicitly naming the replicated object itself (giving the replica group

name), or perhaps by giving a service name (e.g., "Spreadsheet").

The group information also contains an Exclude List, which is a list of all those

members mentioned in the group list which have failed i.e., whose states may be

inconsistent due to failures. When a client requests the list of replicas which currently

make up the replica group, the database uses the Exclude List as a mask, and only passes to

the client the list containing the names of consistent replicas. Such a list is known as the

Available List.

Finally, associated with every group is a Use List and a Use Counter, which indicates

whether the group is currently in use. Everytime a client gains successful access to a replica

group, the node on which the client resides and the client's name are added to the Use List

as a <hostname, process_id> pair so that multiple users on the same node are identified

uniquely, and the Use Counter is incremented. Once the client has terminated all

interactions with the group, this counter will be decremented and the node reference

removed.

All of the information held on behalf of a given group is collectively called the

groupview.

6.2.3.2: Node Information.

Also maintained by the database is information on each node in the system. The

information maintained is a Node Exclude List, which is a list of those replicas associated

with that node, which have been detected to have failed and therefore will not be in the

available lists, and an In Use List which is a list of all those replicas which belong to groups

which are currently in use. This information is used by recovering nodes to determine

which replicas need updating, and shall be explained later.

130

Chapter 6
	

Replicated Objects in Arjuna

6.2.3.3: Example of Database Information.

In the example in Table 1-4, the replicated service SpreadSheet currently has 3 replicas

located on nodes called ulgham, semilon, and cabernet. Of these three replicas, only the

ones on ulgham and cabernet are in use, as the node semilon has failed. Currently 3 clients

are making use of this group (indicated by the Use Counter field).

Object Name	 Use Listfuse_Counter Replica Name Node Name Exclude List

<ulgham, 0>	 SpreadSheetl	 ulgham	 Available

SpreadSheet <ulgham, 1>	 3	 SpreadSheet2	 semillon	 Unavailable

____________ <murton, 0> 	 SpreadSheet3	 cabernet	 Available

Table 1-4: Group-View Database Entry.

The example node entry in Table 1-5 shows what would be visible for each node given

the data in Table 1-4. Node semilon has an entry in its Exclude List for replica

SpreadSheet2, whilst the other two nodes simply have an entry in their mUse List for their

respective replica.

Node Name	 Node Exclude List	 InUse List

ulgham	 -	 SpreadSheetl

semillon	 SpreadSheet2	 -

cabernet	 -	 SpreadSheet3

Table 1-5: Node Entry for SpreadSheet Service.

6.2.3.4: Operations on the Group-View Database.

To prevent the Group-View Database from becoming an access bottleneck, we

attempt to ensure that all accesses to it are brief. However, it is necessary to ensure that all

accesses are concurrency controlled. If the client were to lock the entire Group-View

Database, say while it is modifying a groupview, then this would prevent other clients from

using the rest of the database. As such, we have structured the database so that it is made

up of a collection of group objects. Each group object maintains the information on a single

131

Chapter 6
	

Replicated Objects in Arjuna

replica group as described above. Whenever a client contacts the Group—View Database

to access a particular replica group it acquires a lock on only the group object that it

requires, instead of locking the entire database. This finer granularity of locking allows

concurrent modification of separate groupviews.

All of the following database operations are invoked as top—level actions.

• getview (objectname): this returns the current Available List. When this operation is

called, it write locks the groupview from any other client, reads the Available List, and

increments the appropriate Use counter after updating the Use List. The groupview is

then unlocked and the call ends. All objects which are flagged as in use are placed onto

a particular node's In Use List and removed when the client commits or aborts.

• exclude (<objectnamej, excludelist1 >, <objectname2 , excludelist2 >, ...): this operation

allows a client to update the database's Exclude List with its own. The parameters

passed are the name of the group which is to be updated, and the client's exclude list to

use for the update. The operation first write locks the groupview and then updates the

state of the replica group associated with objectname. When this has occurred the

operation decrements the Use Counter and Use List for this particular client, and then

unlocks the groupview. This sequence of events is performed sequentially for all

entries passed as parameters. The update requires each entry on the client's Exclude

List to be reflected at the database, both at the associated groupview's Exclude List

and the individual node Exclude List, which must also be locked prior to its being

updated.

• include (objectname, hostname): this operation allows a recovering node to include a

previously excluded replica (it can also be used to add completely new replicas). This

operation is invoked after the recovering node has obtained the current state of the

replicated object for the recovering replica (as detailed in Section 6.3.3). This

operation can only occur when the group in question is not currently in use, as adding a

new replica while the group is being used can pose problems with consistency between

132

Chapter 6
	

Replicated Objects in Arjuna

replicas. This operation first write locks the groupview and then inspects the Use Count

for the group. If some other client is currently using the group (the Use Count is not

zero) then the operation must abort, unlocking the groupview, and the invoker of the

operation must try again later. If the group is not in use then the Exclude List is

modified to show that the replica is once again available (or the groupview is modified

if this is a totally new replica). If this is a new object then it will be added to the

corresponding replica group (or a new instance will be created if one does not exist). If

the hostname is new then it is added to the database and the object will be added to any

existing replica group. The operation then decrements the Use Count and ends.

• remove (objectname, hostname): this operation is invoked by functioning nodes to

remove objects associated with the hostname from the groupview. If the Use Count for

objectname is zero then remove the entry (if any) for the hostname from the groupview,

provided the Available List does not become empty; else return tiylater. It is important

for recovery reasons that the Available List does not become empty: since we shall be

using replicas mentioned in the groupview to update recovering replicas, it is

important that there be at least one replica always associated with a group otherwise

recovering replicas will be unable to obtain an up-to-date state.

• release (objectname, hostname): decrement the Use counter associated with objectname

and remove the reference to hostname in the Use List. This operation is invoked by

users of objectname which do not have exclude lists for the group but which do need to

indicate to the Group-View Database that they have finished using the group i.e., it is

used when an action commits or aborts.

• recover (hostname): remove the entries for the hostname from all the Use Lists kept in

the database. This is used by recovering nodes to remove references to themselves

from the database. It is similar to release except that it is performed on all groups

currently mentioned in the database.

133

Chapter 6	 Replicated Objects in Arjuna

• status (replicaname, objectname): returns the current status of the given replicaname

which is associated with the group objectname. This will be either tiylater if the object

group is currently in use, not-modified if the replicaname is not on an Exclude List, or

modified if it appears on an exclude list. This operation is used during recovery to

determine whether a replica needs to be updated before it can accept any further

invocations.

Because all of the operations are mutually exclusive, requiring a write lock, and

because this Group-View Database is used by eveiy application level atomic action which

accesses replicated objects, it is necessary to prevent it from becoming an access

bottleneck. The design presented attempts to prevent this from happening by ensuring

that the database is not locked for long durations.

6.2.3.5: Using the Database.

Making use of the example replicated service outlined in Section 6.2.3.3 we shall show

how a client interacts with the Group-View Database. The client (A, say, on the node

called muTton) which wishes to make use of the replicated SpreadSheet service,

interrogates the database for the Available List, by invoking the getview("SpreadSheet")

operation. It will obtain a list of replicas which are available, and in this case the list will be

of the form [< ulgham, SpreadSheetl>, <cabernet, SpreadSheet3>]. The Use counter and

UseList associated with SpreadSheet will be updated to show that A has acquired the

current groupview: the Use counter will be incremented to 4, and the UseList will have the

hostname muTton added to it.

Once the client has obtained the available list it invokes the initiate operation on all of

the replicas mentioned in the Available List, as described in Section 6.1. The initiate

operation returns to the client an address which the client uses to communicate with the

replica group. The client can then invoke operations on the initiated objects. If a replica

failure is detected then the client will assemble an exclude list on behalf of the object.

134

Chapter 6
	

Replicated Objects in Arfuna

WhenA comes to commit, it will either call the exclude operation if it has a non-empty

exclude list, or it will call the release operation as release ("SpreadSheet' murton). These

operations will decrement the Use Count and remove the client's entry from the Use List,

thus indicating that the group is no longer in use by this particular client. In this way, the

data held at the database is always kept up-to-date with respect to committed actions.

Clients only remove entries from the Use List of groups and decrement the associated

Use Count when their actions either commit or abort. As has been mentioned, recovering

replicas can only re-join their groups when no other clients are using the groups i.e., when

the Use Count associated with the groupviewis zero. However, if a node fails before clients

on it can decrement the Use Counts they have previously incremented, recovering replicas

will never be able to re-join their groups. Thus, when a node recovers it must first invoke

the recover operation on the Group-View Database to release any groups currently

"locked" in this way. The node can then perform update operations on those out-of-date

replicas which reside on it before invoking the include operation to add them to the

groupviews held by the database.

6.2.3.6: Correctness Properties.

The groupview data stored in the Group-View Database satisfies the following safety

property: the passive states of the object replicas held in the object stores of the nodes

whose names are listed in an Available List are identical, so it is always safe to activate

these replicas. As nodes crash, any replicas held in those object stores become unavailable

and their states may get stale: such replicas are automatically excluded from the Available

Lists.

The Group-View Database also satisfies the following liveness property: provided

atomic actions using replicated objects eventually commit or abort and every failed node

eventually recovers, the hostname of each and every excluded replica eventually gets

included in the respective Available Lists.

135

Chapter 6	 Replicated Objects in Arjuna

The Use Lists satisfy the following safety properly: if an object is active (meaning in use),

its Use List will not be empty. This property is exploited to prevent a replica insertion when

an object group is in use. The liveness property of the Use Lists states (provided, as before,

atomic actions using replicated objects eventually commit or abort and every failed node

eventually recovers) that an object group not in use will eventually have its Use List made

empty; thus replica insertion is always possible.

These properties are necessary to ensure that replicas on functioning nodes are in fact

available for use, despite occasional node failures.

6.3: Available Objects.

The first replication technique is based on active replication (Available Copies): every

available replica attempts to execute the same request and then return the result to the

invoker. The failure assumptions for this first protocol were stated in Section 6.2.2.

Our protocol functions differently for read and write operations: because our protocol

ensures that all functioning replicas have identical states a client need not wait for more

than one reply if it has invoked a read operation; a write operation requires all responses

as the Exclude List must be updated with those replicas which do not respond. This is

necessary to ensure that all replicas of a given group which a client makes use of will always

have identical states; replicas which have failed will not receive and process operations

which the other replicas receive, and these operations may modify the state of the

replicated object. If the failed replicas were not excluded from being used by subsequent

clients it is possible that their states could be used later, when the nodes on which they

reside recover.

However, as we have seen, the object—oriented approach isolates the programmer

from the actual implementation of an object by providing an interface through which

operations are invoked on the object's state, and it is usually not possible to determine

136

Chapter 6	 Replicated Objects in Arjuna

simply from the interface whether or not a particular operation will modify the object's

state.

6.3.1: Distinguishing Operations.

The method we shall use to distinguish the type of the operations is as follows: although

the client may not know what effect a particular operation will have on a server's state, the

server does. The client simply makes the call, but the server, as well as sending back the

reply in the RPC also sends back enough information to indicate whether the operation

was a read or a write. If it was a read then the client does not await any further replies

(these will be discarded).

Another approach for distinguishing operations relies on there being some means

available from the underlying system to actually distinguish between the types of

operations. If the interface definition language in which the distributed applications are

written qualifies operations as either read or write then this can be used e.g., in the Arjuna

system, programs are written in C++ and it is possible to define constant functions in the

C++ language. Such functions are assumed to not modify the state of objects they refer to

i.e., are only of read type. This information could be used at compile time to modify the

protocol to take into account the fact that no state changes will take place.

6.3.2: The Replication Protocol.

We shall now extend the example in Section 6.1 to show how a (replicated) client

makes use of a server replica group in Arjuna. Consider a client object A which wishes to

invoke an operation on some other object B (a SpreadSheet, say) which is currently

passive. Both A and B are replicated. Initially the invoking object would start an atomic

action within which all operations would occur. We will assume that object A has been

activated, and all its active replicas belong to a group GA. This sequence of events forA

breaks down into the following (assume that GD is the Group-View Database object):

137

Chapter 6
	

Replicated Objects in Arjuna

Spreadsheet B;
	

/* Activate object *1

I
view = GD.getvlew("B"); 	 /* Get Available List for object B /

working = lnitiate(vlew);	 /* initiate replica group *1

assemble_excludejist(working);	 /* Assemble Exclude List *1

I

Atomic_Action Z; 	 /* Action within which operations will occur /

Z.Begin;	 /* Start Atomic Action */

B. Set_Element ()
	

/* Invoke operation on SpreadSheet */

replies = GRPC_caII("B.Set_EiementO"); / Use group rpc for operations *1

assemble_exclude_list (replies);

I

Z.CominitO;
	 1* Commit Action *1

if exclude_list = empty

GD.release("B", hostname);

else
GD.exclude(<"B", exclude_list>);

I

The course of events within [] are transparent to the user and are generated

automatically by the stub generator and Arjuna libraries, but are shown here for clarity.

We shall now describe the stages involved in more detail.

6.3.2.1: Replica Group Initiation.

The client object (o E GA) begins execution and starts an atomic action (Z). Before

creating the replica group GB, all functioning c E GA must acquire the available list for B

(so each functioning c 'knows' on which nodes to create server processes which will belong

to GB). The client thus contacts the Group—View Database (GD) to obtain the addresses of

the replicas it wishes to communicate with. The client then attempts to activate all copies

mentioned in the database's Available List, making note of which replicas do not respond.

If at least one replica was activated then the client action can continue to operate. More

formally:

The client object invokes initiate(..) to activate the copies. Within initiate client objects

manufacture a group name GB to be used to communicate with the server replica group,

138

Chapter 6	 Replicated Objects in Arjuna

(all objects from the same client group will manufacture the same group name). From

initiate we require the following functionality: for every functioning node named in the

Available List a server process belonging to GB gets created and all functioning acquire

identical membership knowledge of GB. Within initiate every functioning executes the

following algorithm: it individually invokes the getview(.B..) operation as a top level action

(which can commit independent of the invoking action) and obtains the Available List

(note: if there are n functioning members in GA, thenn such actions will be invoked; this is

necessary since entries for each calling node must be made in the use list for B). Let N =

{N1 ... Nm} be the nodes listed in the available list. For every N E N, sends a 'create

server' message (supplying the group identifier GB) to a well known manager process at N.

The manager process at each node has the capability of filtering out multiple create

requests.

If N is functioning, a server process gets created, which joins GB (that is, it can receive

messages directed at GB) and takes the necessary steps for activating the local copy of

object B; this process then replies to GA using the reliable group RPC described in

Chapter 4. If N is not functioning, c is unable to create the server (even after a finite

number of retries); eventually, initiate terminates, returning the list of names where

initiation did succeed. Replies from servers are received by every functioning c, which

ensures that all members of GA get an identical group .riew of GB, since they started with

identical available lists. Once GB has been created, invocations from GA to GB are made

using the reliable group RPC mechanism.

After initiate returns, the client starts to assemble its Exclude List with the names of

those replicas which did not respond.

6.3.2.2: Constructing and Processing Exclude Lists.

Because the Group-View Database does not actively keep track of which nodes in the

system are available, the client action now has a otentially) more up-to-date groupview.

The Exclude List formed by the client is initially held locally to the client, and is updated

139

Chapter 6	 Replicated Objects in Arjuna

whenever a replica failure is detected. At the end of the atomic action the client will

attempt to bring the database up-to-date with the new groupview (and any subsequent

clients will see only the consistent replicas in this new groupview).

The Exclude List performs two functions in our protocol. The first is a mechanism for

keeping track of which objects are available and consistent, and the second is a means of

informing recovered nodes which objects need updating. During this discussion ti is

been an implicit assumption that there is one logical Exclude List per atomic action. If we

consider that calls on replica groups can result in further calls on replica groups, it is

possible to see that each client/server that issues a request on a replica group will form its

own Exclude List based upon which other replica groups it may have communicated with.

To maintain the logical Exclude List (the one which will eventually be used to update

the database) it would be possible to have servers propagate back to clients the exclude

lists which they have assembled (this could form part of the reply which a server sends to

the client). The clients could then use these exclude lists to modify their own and arrive at

the final logical exclude list.

However, as was mentioned in Section 6.2.3.4 in the description of the database

operation include, recovering replicas can only re-join a replica group once that group is

not being used by other atomic actions. This can be determined by examining the Use

Count associated with every replica group. If a node recovers, any replicas on it cannot be

used by clients until they have been updated and the Use Count is zero (a full description

can be found in Section 6.3.3). As such, even if a replica fails and recovers during the

course of an action, it will appear as though it had never recovered. This means that we do

not have to assemble the Exclude List during the execution of the action but after phase 1

of the commit protocol has completed. As shall be shown, this property also means that a

client need not wait for all replies from a replica group to arrive before continuing to

execute.

140

Chapter 6
	

Replicated Objects in Arfuna

6.3.2.3: Concurrency Control.

We now describe how concurrency control for replicated objects is performed. To start

with, objects in Arjuna are responsible for managing their own concurrency (strict two

phase locking in the current version) [Parrington 88a[Parrington 88b]; thus the user of an

object is not explicitly responsible for obtaining a lock, rather the user simply invokes the

desired operation of the object and leaves the responsibility of ensuring proper locking to

the object. Each operation of an object contains the necessary code for obtaining a read or

a write lock. Assume that if a lock cannot be obtained, the operation terminates, returning

a response 'locked'. In keeping with the locking policy for nested actions, held locks are

released only at the commit time of the top level action. When an object is replicated, the

overall effect desired is that of locking the entire group of activated objects. This can be

performed by ensuring that an operation invocation terminates at all the replicas in an

identical manner resulting in identical responses.

Let us consider an example with two objectsA and B, and associated object groups GA

and GB as mentioned above Assume that the operation of B invoked byA requires a write

lock; assume further that there is another object C (group Gc) that contains a call to B

(which also requires a write lock). Thus G and GA are both attempting to use GB

concurrently. Operation invocations from GA and G could reach the replicas of B in

differing order. There are in fact two possible scenarios to consider:

(i) The invocation from GA (Ge) succeeds in obtaining (write) locks at all the replicas,

as a result the operation execution continues and identical replies are returned from

functioning replicas to GA (Gc); this also means that the invocation from G (GA)

terminates with a locked response from all the activated replicas - in which case G (GA) is

free to retry that invocation. Since GA (Ge) has succeeded in its first invocation to GB

(meaning that GB has been locked), all subsequent invocations from GA (Ge) will give rise

to identical responses from replicas - since no lock conflicts will occur (indeed, as we shall

141

Chapter 6	 Replicated Objects in Arjuna

see later, GA (Gc) need not wait for all the replies for an invocation once it has write locked

the group, the first one received being sufficient).

(ii) Both GA and G succeed in locking distinct replicas, with the result that GA (Ge)

will receive 'locked' responses from replicas where locking did not succeed and normal

results from replicas where locking did succeed. Clearly, the replicas of B are no longer

mutually consistent; the only possible steps at GA and G is to abort the actions causing

replicas of B to be restored to original mutually consistent states. An optimization is

certainly possible if the number of activated copies of an object is odd: clients which

manage to lock only a minority abort, while the client holding a majority of locks retries to

obtain the remaining ones (note that a client initiating an object gets to know the

membership of the initiated group, so this is always possible).

To summarize: the above concurrency control scheme ensures that 'exclusive

write/shared read' policy extends to replicated objects. Once a group gets write locked by

a client group, then all subsequent invocations from the client are serviced in identical

order at the locked group (since invocations are synchronous RPCs), where identical state

changes will occur at the member replicas. On the other hand, if a group is read locked,

then the members of the group could receive invocations in different order from

concurrent client groups, but this does not cause any problems of state divergence since no

state changes are taking place. Note that it is important to realise that our concurrency

control scheme will work correctly even if the clients of a server replica group are

themselves replicated. Members of the same replica group can obtain write locks

concurrently on the same server replica group because this cannot cause a conflict, as

would be the case if the client replicas were from different groups.

Substantial performance improvements can be obtained by distinguishing between the

two types of termination conditions for a group invocation:

• type =all, which requires replies from all the functioning members of the invoked

group.

142

Chapter 6
	

Replicated Objects in Arjuna

• type = one, where a single reply would suffice.

Obviously, this latter type of calls could be executed much faster, taking advantage of

faster replicas.

There are only three cases where the former type of calls are required. Using one of the

techniques outlined in Section 6.3.1 we shall assume that the client making a call 'knows'

whether the called operation is of type read/write, thus requiring a read/write lock. Then the

three cases requiring type =all locks are:

• (i) having initiated a replicated object, the client is making the veiy first call, C 1, which

will require locking the group;

. (ii) the client is making a subsequent call C 1, j> 1, which will require lock promotion:

this will happen if C 1 required a read lock and C is an update operation requiring a

write lock, in which case the read lock must be promoted to the status of a write lock; a

lock promotion must succeed at all the functioning replicas (recall that a read locked

object group can be serving more than one client group);

• (iii) the client is committing.

As was mentioned in Section 4.6.2, our reliable group RPC mechanism allows the

number of replies required to be specified on a per call basis.

6.3.2.4: Issuing Requests.

When the client invokes the operation, the call is processed by every operational

member of the server group and a reply sent from each. Because the client action knows

who the members of the group are meant to be, it knows how many replies to expect (the

group membership can shrink at any time due to failures, but cannot increase while the

group is in use). If at least one member of the replica group remains operational then the

action can continue.	 -

143

Chapter 6
	

Replicated Objects in Arjuna

The client can then issue requests on the replica group by making use of the

GRPC_call() described in Section 6.2. The return code from this call will be one of the

following:

• OK: normal termination (in particular, for type = all, all identical replies received)

• failed: no reply received (server group failed)

• conflict: different replies received (this response can only be received for a type = all

call). This indicates whether the replica group has already been locked by a separate

client in a conflicting mode.

6.3.2.5: Committing Actions.

When the client action comes to commit it must do two things: it must commit the

object group(s) it has used, and update the view of the group(s) in the Group-View

Database. If during the commit further servers are detected to have failed then the

Exclude List is again modified. The Exclude List is essentially a list of those replicas which

are now in an inconsistent state with respect to other replicas from the same group.

However, if read operations were only performed on a particular replica group, then

failed copies are still in a consistent state. In Arjuna, when the client action comes to

commit it may inspect the locks which it acquired on the replica group(s) and remove from

the Exclude List any reference to replicas which were simply read, finally obtaining a list of

only those failed replicas which are now out-of-date.

During the first phase of the commit protocol, the client action informs the servers that

they should prepare to commit. Before the commit decision can be made the Group-View

Database must be updated. This is run as a separate top-level atomic action, where the

client action transmits its Exclude List to the database, and the database updates the

Exclude List associated with that group accordingly. If this Group-View update fails for

whatever reason, then the client action must abort, once again bringing all replicas (both

144

Lent action

Chapter 6
	

Replicated Objects in Arjuna

active and failed) back into consistent states. This sequence of actions can best be viewed

by examining Figure 6-1.

If the Group—View update succeeds then the client action can commit.

In a conventional 2—phase atomic action system if an object which was touched during

the lifetime of the action does not respond during the phase 1 prepare phase then the

atomic action aborts. However, by introducing the concept of replica groups the definition

of when an action can commit changes. In our replication strategy, an action may commit

as long as there is at least one replica still active in the group by the end of phase 1 (the failed

copies having been added to the Exclude List).

Assuming that no groups have failed, then once the replies have been gathered, the

coordinating action attempts to update the Group—View Database by calling the exclude

operation and transmitting its Exclude List to it. If this action fails then the user's action

must also fail. The client action then moves on to phase 2 of the protocol. If phase 1 was

successful the client will signal the objects to save their state to stable storage, otherwise

the client will abort the action and signal the objects to do so as well.

Nameserver update action

Figure 6-1: Committing the Exclude List.

The relationship between the two atomic actions (application and update) is that the

application action can only commit if the database update action also commits, but the

145

Chapter 6	 Replicated Objects in Arjuna

database update action can still commit in the absence of an application action commit

(because failed replicas have been excluded from the groupview the protocol guarantees

that all of those replicas which appear in the available list will be in a consistent state).

6.3.2.6: Commit Optimizations.

If the assumption is made that the Group—View Database is always available, then

there will never be a situation in which the client atomic action must abort because the

database update fails. Therefore, it would be possible to use a separate thread of control

to complete the second phase of the commit protocol at the client, so that the client code

can continue to execute as soon as the first phase of the commit protocol has completed

successfully. This main thread would contact the database and update it with the client's

Exclude List after phase 1, creating another thread to finish phase 2.

The saving of object states on the disk can consume some considerable percentage of

the time taken for an action to commit. If we assume that each node is equipped with an

uninterrupted power supply (UPS) powerful enough to allow it to write all of its volatile

memory to stable storage in the case of a power failure (i.e., stable ram), then it would be

possible for the replicas to delay saving their states. During the commit phase the object

does not immediately save its state to stable storage, but responds to the action

coordinator as though it had saved its state. The replica can then save its state after the

action commits. This would lead to a faster commit time for atomic actions. The stable ram

ensures that if the node fails the state will be saved.

6.3.2.7: Termination of Replica Groups.

When the objects which comprise a replica group go out of scope for a particular client

then the terminate (.GB..) primitive is called to passivate the objects by destroying the

server processes. This uses the GRPCcaII(. GB..) for terminating GB.

146

Chapter 6
	

Replicated Objects in Arfuna

6.3.3: Node Recovery.

We must ensure that any recovering object does not service a request until it has been

brought up—to—date with other replicas in the group. Let us consider what happens at a

recovering node which contains a (formerly unavailable) replica. The node must ensure

that eveiy object which belongs to a replica group has its state updated if necessary. As

part of the crash recovery mechanism, a node would first ensure that it is able to run

distributed actions on its own behalf but continue to refuse to run actions for other remote

objects (so that the node appears to be still unavailable until it has fully recovered).

To start with, a recovering node calls the recover operation of the Group—View

Database to remove any entries kept for this node in any of the Use Lists. This is necessary

as these entries record pre—crash usage information which is now out of date. Further, for

all the replicas residing on a node's object store, the node must ensure that the states of

these replicas are made identical to those on functioning nodes. One straightforward

means of getting the current state of a replicated object is for a recovering node ito read

the stable state from any of the node j listed in the Available List provided the object is

passive and not in use (i.e., the Use List is empty). Thus, node i executes the status

operation for every replica it is maintaining; if the response is not—modified then no further

update action is necessary for that replica, since no modifications have taken place and the

replica has not been excluded. If modified response is obtained, then the replica is updated

by obtaining the state of the object from some node j. This involves gaining exclusive

access to the groupview during the update operation, and so the recovering node attempts

to write—lock the members of the group for the duration of the update. Once the group is

locked, the recovering node can request the current state from the group members, using

the first state which it receives since they will all be identical.

Note that as an efficiency measure, the recovering node can request from the database

its In Use List as well as the Exclude List, so that it can determine locally which replicas

147

Chapter 6	 Replicated Objects in Arjuna

need updating, and which replicas may need updating when they are no longer being used

by other clients.

When the recovering replica has been brought up-to-date in this way the include

operation is invoked and the write lock obtained bygetexclusive_groupview is released. A

replica thus processed becomes available, that is, the node can accept initiate requests for

it. A functioning node can remove any of its object replicas by executing the remove

operation (remove ensures that the removal is permitted only if the available list will not

become empty). Inclusion and removal of replicas are performed as atomic actions, to

prevent any interference with on-going computations.

Between the time a failure of a replica is detected by a client (C) and this failure being

reflected at the Group-View Database, there is a finite space of time in which the failed

node could recover. When it does recover it will not find any reference to itself in the

Exclude List (since the updates have not been written), and so will assume every object is

up-to-date. However, since the Use Count associated with the groupview will not be zero

because C is using the group, the recovering node cannot let any of these replicas be

accessed from other remote nodes until the database groupview has been unlocked and

the recovering replicas have been brought up-to-date.

This could lead to the situation where a recovering node which possesses many objects

which are up-to-date refuses to accept requests because a minority of its objects are

currently in an indeterminate state. This can be resolved in two ways:

(i) In Arjuna, there is a manager daemon which is responsible for activating servers to

handle calls to objects. This can be modified so that it can filter out requests for those

objects whose states have not been up-dated. When these objects finally recover, the

manager can again accept requests to activate them.

(ii) When a server is created by the manager daemon it needs to initialise its state. By

removing access to the present (out-of-date) state, the server will be unable to initialise

itself and this can be translated into a failure of the server. Such a failure can be

148

Chapter 6	 Replicated Objects in Arjuna

communicated to the client which requested the server initialisation as though the server

node has failed.

Either of these methods will allow those up-to-date objects on a recovered node to be

accessed, while at the same time maintaining the illusion that the out-of-date objects have

remained in a failed state.

The Group-View Database and the Exclude List are efficient methods of ensuring that

replica consistency is maintained in the presence of failures. The Exclude List is also an

efficient method of ensuring that recovering nodes do not have to execute update

operations on all objects held at the node (which could number in the thousands) but can

instead execute update operations on only those objects which need updating. This means

that a node can recover quickly, and objects can re-join their respective replica groups.

6.3.4: Making The Group-View Database Highly Available.

The replication schemes to be discussed here require that the database holding the

Available Lists be available at all times; this requirement can be met realistically if the

database itself is maintained in a replicated form. Here we will describe how K-resiliency

can be obtained by using a subset of the mechanisms discussed so far.

We will assume that the Group-View Database is implemented as an Arjuna class

group-view and n (n> 1) instances have been created to get an n-replicated object,

group-view. Being an Arjuna object means that group-view can be made persistent and its

operations such as exclude, include can be invoked as atomic actions. All these operations

are mutually exclusive and need a write lock. As stated before, where necessary, these

operations are invoked by clients as top level actions, so the (replicated) object group-view

is kept locked only for short durations (this is important, otherwise group-view could

become an access bottleneck).

We assume that every node 'knows' the locations of the n copies of group-view.

Operations on it are invoked like on any other replicated object, except that no available

149

Chapter 6	 Replicated Objects in Arjuna

list is dynamically obtained during initiate, rather every invoker tries to perform the

operation on all the n copies (whenever type = all calls are made), and further, no exclude

list is prepared. Thus group-view is the only object in the system with a fixed degree of

replication (this has to be true for the object which itself is responsible for maintaining the

group view information for other objects in the system). We assume the class group-view

provides one more operation getstate(...) which returns the current state. A recovering

node N containing a copy of the Group-View Database invokes this operation as a top

level action, which has the effect of locking all the functioning (available) copies before

the state of the object is obtained and then updates to the passive state held at Ni's

objectstore can be performed. Until the recovering database replica has been brought

up-to-date it cannot be used by clients.

6.3.5: Implementation.

A trial version of object replication has been implemented in Arjuna and the results

obtained are promising. The Group-View Database (currently unreplicated) has been

implemented with the operations gelview, include, exclude, and remove. The action

mechanism has been modified to construct Exclude Lists should failures of the replicas be

detected. The present implementation does not provide automatic transparent replication

as these mechanisms have not been integrated with the C++ stub generator. This will be

achieved in the future implementation.

The problems with distinguishing the type of an operation in an object-oriented

environment have been described in Section 6.3.1, and our implementation currently uses

the method which has the server perform the requested operation and then return, along

with the reply, an indication of whether the request modified the state. However, in the

current implementation all operations are assumed to be of type =all, and so the

optimizations which are available for type =one have not been tested.

The locking policy for replica groups as described in Section 6.3.2.3 has been

implemented and tested. When the remote objects perform the operation requested, they

150

else

}

Chapter 6
	

Replicated Objects in Arjuna

return information to the client indicating whether or not the group has been locked on its

behalf. In the current implementation, if the entire group has not been locked then the

action should abort and try the operation later.

To test the replication implementation, an unreplicated client was written which would

interact with a remote replica group and perform operations on the group within an

atomic action. Each replica within the replica group was of type Actlnt, as shown below:

class Actlnt

{
mt Element;

public:
Actlnt(int& v);

ActIntO;

mt Set(int v);

mt Get(int& v);

Actlnt is a simple object which has only one integer state variable, Element, and

provides operations to read and write that variable (get and set respectively). Each of the

operations provided executes within an atomic action.

The commit phase of the atomic action can be represented as follows:

AtomicAction_Commit ()

{
if (prepare()	 PREPARE_NOT_OK)

phase2_abort();

phase2_commit;

The prepare phase of the protocol attempts to contact every object used in the lifetime

of the commiting action, and in a non-replicated situation if some objects do not respond

then the prepare phase returns PREPARENOT_OK and the action proceeds to abort.

Only if all objects respond can the action proceed to phase2_commit. When replication is

used, the prepare phase of the action is modified so that it fails only if a replica group fails

151

Chapter 6	 Replicated Objects in Arjuna

i.e., one response from a replica group will still allow the action to commit despite other

failures in the group.

The timings taken for this were made at the commit level of the atomic action. In the

non-replicated case, a client interacted with a remote instance of the Actlnt object and

then proceeded to commit. When a failure was required it was arranged so that the remote

object would fail before the commit phase, but after the last time the object was used by

the client to perform any operations.

Status of remote Actint Object 	 Time taken to commit/abort

Operational	 0.57 seconds

Failed	 30.40 seconds

Table 1-6: Non-replicated commit timings.

The first timing of 0.57 seconds takes into account the time taken by the remote object

to save its state to stable storage and to then reply to the action coordinator. The

difference of approximately 30 seconds between the two timings is because when the

commit phase of the action does not receive a reply from the Actlnt object it attempts to

contact the object again to ensure that the original message was not lost due to buffer

overflow or an overloaded node. This takes 15 seconds (3 calls in total with 5 second

timeout values each) and when no reply is finally received the action determines that the

remote object is no longer operational. The action then proceeds to the abort phase and it

attempts to contact every object used in the action to inform them that they should abort.

The action commit phase tries very hard to ensure that all objects will be informed of the

abort decision, and so when it cannot contact the failed object during abort it again tries 2

more times, with timeouts of 5 seconds each i.e., the abort phase takes another 15 seconds.

When anActlnt replica group is used in place of a single object, the timings produced

are different (the replica group had two members, and only one of them was made to fail):

152

Chapter 6
	

Replicated Objects in Arfuna

Status of remote Actlnt Object Group 	 Time taken to commIt

OperatIonal	 1.07 seconds

One replica failed	 15.70 seconds

Table 1-7: Replicated commit timings.

The additional time taken to commit the group when all members are operational is a

result of having to communicate with twice the number of objects than previously, each of

which must save its state to stable storage before it can reply. The second timing shows that

although the first phase of the commit protocol takes approximately 15 seconds because of

the failed replica, the action then proceeds to the phase2_commit stage. The fact that one

replica has failed is noted, and it is excluded from this second phase commit, so no further

overhead is imposed. Writing the Exclude List to the Group-View Database takes a few

tens of milliseconds, and has not been separately shown.

The commit time in the presence of failures can be made to approach the failure free

time by introducing concurrency in the commit protocol as was indicated in Section

6.3.2.6. This will be done in future implementations.

6.4: Tolerating Network Partitions.

The Available Objects replication protocol previously presented cannot work in the

presence of network partitions. This is because it is not possible for a client to differentiate

between a failure of a replica and a partition which prevents the client and replica from

communicating. This could lead to clients having different groupviews for the same object

group and this in turn could lead to inconsistencies arising in the states of the replicas

within those groups. However, it is possible to modify the Available Objects protocol so

that it can function correctly in the presence of network partitions.

6.4.1: Protocol Overview.

We shall initially assume that there is only one copy of the Group-View Database,

although we shall later show how it too can be replicated. At the start of an atomic action

153

Chapter 6
	

Replicated Objects in Arjuna

clients use the database as in the Available Objects protocol to obtain the groupview. The

clients then initiate the replicas mentioned in the groupview. The names of any uninitiated

replicas are recorded in the exclude list. These replicas are not invoked in all subsequent

calls.

For all subsequent invocations, the clients continue to assemble/modify their exclude

lists if further failures are detected. They also use the exclude lists as a filter to ignore any

replies from out—of—date replicas or replicas which reply to requests subsequent to being

detected to have "failed", as these replica potentially have out—of—date states also. At

commit time the clients start the commit protocol (phase 1), modifying their exclude lists if

necessary, and as long as one replica remains operational then the client action can

continue to commit.

After phase 1 of the commit protocol has ended a client has an exclude list which

contains the names of all of those replicas which did not respond to all of its requests.

Because network partitions could have occurred, and because some replicas may have

been slow in responding to some clients rather than others (virtual partitioning), it is

possible that replicated clients have different exclude lists.

As in Available Objects, after phase 1 of the commit and before phase 2, the clients

contact the Group—View Database, invoking the exclude operation. If any clients cannot

contact the database then they must abort. If the network is partitioned then only those

clients which can contact the Group—View Database can be allowed to commit. In this

way, only those actions which occur within the same partition as the database will be

allowed to change the state of a replica group. When the database has received all of the

exclude lists it simply takes the intersection of all of them to get the group exclude list: this is

a list of all of those replicas which did not respond to any of the committing clients during

the action.

154

0
0

Chapter 6
	

Replicated Objects in Arjuna

6.4.1.1: Action Divergence.

Chapter 4 showed how the states of replicas within the same group could diverge if

message delivery guarantees could not be met i.e., if some members of a replica group

received messages which other members did not receive. That was the reason for

developing the reliable group RPC mechanism. As we shall see, for operation invocations

this protocol functions similarly to the Available Objects protocol, and as long as one

replica of a group is available an action can commit. However, this protocol functions

differently when we consider what happens at replicated clients when they come to make a

commit or abort decision.

Figure 6-2: Divergence of replicated actions.

Figure 6-2 shows replicated clients Cl and C2 and the server group they have been

communicating with whose member replicas are A, B, and C. If both Cl and C2

communicate with all members of the server group and therefore receive the same

sequence of messages then this protocol will function in exactly the same way as the

Available Objects protocol. If Cl commits then C2 will also commit and vice versa.

Suppose that Cl decides that replica C has failed, and C2 decides that replica A has

failed. Thus, C will appear in Cls exclude list, while A will appear in C2s exclude list

(assume that replica B does not fail). Because both cliônt replicas have a common server

155

Chapter 6	 Replicated Objects in Arjuna

replica (B) then both clients will again receive the same sequence of messages and will

both either commit or abort.

Now assume that Cl can communicate with all members of the server replica group,

but because of a network partition C2 determines that A, B, and C have failed. C2 will

abort its action, and could then invoke operations on another group. Because Cl has not

come to the same decision as C2 the states of the two clients could diverge.

Thus, different replicas of the same replica group could come to different decisions

about whether or not to commit an action. Therefore it is necessary to maintain the

consistency of those replicas mentioned in the database despite such possible

inconsistencies of commiting actions. In order to do this, we allow commits to proceed as

in the Available Objects replication protocol, but aborts occur differently: if an client has

to abort then after the abort has occurred it takes no further part in computations.

Therefore, in the situation shown in Figure 6-2 after the abort C2 will invoke no further

computations.

How this replication protocol affects the committing and aborting of actions will be

described in more detail in Section 6.4.2.7.

6.4.1.2: Example.

Consider the situation shown in figure 6-3, where we have multiple client replicas (A,

B, and C) communicating with server replicas (D, E, and F). Because partitions can occur it

is possible during the lifetime of an action that each client replica can obtain a different

view of the server group membership. For this example we shall assume that client C

believes servers E and F have failed when the other clients believe them to be alive. As

soon as a client determines that a server replica has failed it refuses to accept any further

responses from it for the duration of this action. In the above case, clientsA and B see the

same groupview containing all of the replicas. Client C has decided that servers E and F

have failed and so will have their names in its Exclude List.

156

Chapter 6
	

Replicated Objects in Arjuna

When the clients commit they will transfer their Exclude Lists to the Group—View

Database, which will construct the intersection of all of them and come up with the final

Exclude List to use. If client C fails before contacting the database then onlyA and B will

commit and so servers E and F will not be excluded anyway. Since all of the replicas

responded to all of the requests issued byA and B they must possess identical states. If all

of the client replicas respond (i.e., A, B, and C commit) then the database will take the

intersection of their exclude lists, which in this case will mean that none of the server

replicas will be excluded since they all responded to at least one of the client replicas.

Operational

.

	
• Failed

Clients
	

Servers

Figure 6-3: Diverging Exclude Lists.

As we shall see, although this algorithm can tolerate network partitions, in the case

where partitions do not occur it executes less efficiently than the Available Objects

protocol.

6.4.2: The Algorithm.

The Group—View Database is used in this protocol to ensure that all clients obtain the

same view of a given replica group at the time of initiation despite communication failures

such as network partitions. The description above assumed that there was only one copy of

the database, but it is possible to replicate the database to improve availability. The

157

Chapter 6	 Replicated Objects in Arjuna

replication of the database can be handled in a similar way to that described in Section

6.3.4 except that users of the database must be able to contact a majority of the database

replicas in order that all users obtain the same groupview information despite partitions.

By modifying the Available Objects replication protocol so that a majority of

Group—View Database replicas must always be contacted, it is possible for the original

scheme to then tolerate network partitions. The reliable group RPC which is used by

Available Objects guarantees delivery of messages to all functioning replicas in the

absence of network partitions. The need to contact a majority of the database replicas

guarantees that only those client and server replicas which reside in the majority partition

will be able to operate if a network partition does occur. Any other replicas will be

excluded from the groupview at commit time and will be forced to abort.

However, it is possible to remove the need for a reliable group RPC mechanism

entirely and still guarantee replica consistency in the presence of failures (this allows a

cheaper communications protocol to be used). In the description to follow we shall assume

the group RPC mechanism does not guarantee reliable delivery of messages and we show

how replica consistency is maintained in the presence of failures.

6.4.2.1: Object State.

For this protocol to function correctly it is necessary for users of a replica group to be

able to determine whether a replica has an up—to—date state. In the Available Objects

protocol all objects mentioned in the Available List were guaranteed to have the same

state, and all functioning replicas would continue to have identical states. As it is no longer

now the case that every functioning replica in the groupview will be up—to—date, each

object must possess an update-count as part of its persistent state which indicates how

recently is was modified. This count is incremented after each successful top—level action

commit, and is communicated to all users of the objeét in the object's replies.

158

Chapter 6
	

Replicated Objects in Arjuna

6.4.2.2: The Group—View Database.

The Group—View Database is almost the same as that presented in the previous

algorithm, but with some modifications. Every copy of the database maintains a version

number (the update—count described in Section 6.4.2.1) associated with every groupview,

which indicates how recently the groupview was modified. Clients use the most recently

modified groupview which is agreed upon by a majority of the database replicas i.e., the

most up—to—date groupview. If a majority of database replicas cannot be contacted then

the client cannot continue with this action.

The Use List for each object group is also modified so that it now includes an action id

associated with every client mentioned in the Use List. Replicated actions possess the same

action ids, which are unique across different replicated actions. Exclude lists are

associated with the actions within which they were assembled and the action id is included

in all operations invoked on the database. The action id is used so that the intersection of

exclude lists only occurs for exclude lists which were assembled in the same replicated

action.

All operations on the database must be carried out on a majority of the database

replicas. Any client who fails to obtain a quorum of database replicas must abort.

Therefore, no client replica can communicate with a server replica that other client

replicas do not know about from their initial groupview.

As a computation progresses, it is possible for members of the same replicated client

group to have a different view of the server replica group, and therefore possess different

Exclude Lists. The Group—View Database takes the intersection of all Exclude Lists given

to it by replicated clients. In this way a consistent view can be obtained because all server

replicas not in this composite Exclude List have been seen to have failed by all of the

replicated clients. The database only merges those exclude lists which were from the same

replicated action i.e., that possess the same action id, as merging exclude lists from

separate clients cannot guarantee that the replicas mentioned in the subsequent Available

159

Chapter 6	 Replicated Objects in Arjuna

list will have identical states. When the merging of exclude lists is taking place it is not

posib1e for new users to acquire the groupview. This is to prevent new users from

obtaining an out—of—date groupview (one which contains references to replicas which are

available but possess out—of—date states).

However, the merging of exclude lists can only occur swiftly if all replicated clients give

the database their exclude lists at approximately the same time. If the database has to wait

for all members of a client group to present it with exclude lists then the groupview being

updated could be locked for long durations. One way to avoid unnecessary locking of the

groupview would be that once the merging operation is begun the database will only wait

for client exclude lists until another request for this groupview is received (either a read or

update request), at which time it will impose those exclude lists it has received onto the

groupview. This could result in replicas being excluded which possess consistent states, but

still ensures that those replicas mentioned in the Available list are consistent.

Upon contacting the database, if a client (A) finds that a replica (B) it has been

communicating with has been excluded by another client which is not a member of A's

group, thenA must abort because B could (potentially) have an out—of—date state whichA

has been using.A can then acquire the new groupview and try again. This prevents different

client groups from updating the state of disjoint subsets of the same server replica group.

6.4.2.3: Example.

Consider the interaction of clients and replica group shown in Figure 6-4. Clients Cl

and C2 are separate clients (not members of the same replica group) and contact the

database and obtain the same groupview for the server group (A, B, C, and D). However,

the network has become partitioned in the manner shown, which prevents C2 from being

able to communicate withA and B, and prevents Cl from being able to communicate with

C and D. When Cl and C2 initiate the server group they thus construct their exclude lists,

and because they can communicate with at least one replica in the group the clients can

continue to execute.

160

Chapter 6	 Replicated Objects in Arjuna

If we assume that both clients can still communicate with the Group-View Database,

then at commit time they pass their exclude lists to the database. Because the clients are

not members of the same replica group it does not make sense to merge their exclude lists

(if Cl had incremented the states of the replicas it communicated with by 2 and C2 had

decremented the states of its server replicas by 1, say, then the partitioned replicas have

inconsistent states; however, the intersection of their exclude lists would not exclude any

replicas). Therefore, no intersection of exclude lists is taken, and to ensure that the

replicas mentioned in the Available List are consistent, the first client to contact the

database (Cl, say) will be able to impose its view of the group onto subsequent clients.

When C2 contacts the database it will determine that the server replicas with which it has

been communicating have been excluded, and so it must abort.

0	 network partition

0 0 0

Figure 6-4: Groupview Divergence.

6.4.2.4: Replica Group Initiation.

At initiation time, the clients attempt to obtain the groupview from the database.

Those clients which cannot obtain replies from a majority of the databases cannot

continue with this initiation and must abort. However, those clients which have obtained

161

Chapter 6	 Replicated Objects in Arfuna

the correct groupview information can continue and activate the objects mentioned in the

Available List. As part of the getview operation, the Group-View Database also returns

the update-count for the group in question so that clients can detect out-of-date replicas.

Unlike the Available Objects protocol where it was possible to assemble the Exclude

Lists at the end of the action as was shown in Section 6.3.2.2, in this protocol it is not

possible to do this. This is a result of the difference in the failure assumptions made by the

two protocols. Because we assume that it is now possible for network partitions to occur

and for replicas to fail to respond to some clients whilst responding to others, replicated

clients can possess different views of the same group (a replica which does not respond to

one request could respond to subsequent requests). This could result in replicas from the

same group possessing different states as they receive and respond to different requests.

To prevent this, each client must assemble its Exclude List immediately when the initiate

primitive returns. Further, the Exclude List will have to be constructed at each operation

invocation, as described in Section 6.3.2.2.

If at least one replica responds to the initiate request then the action can continue. It is

neither necessary that all members of the same client group initiate the same number of

replicas, nor that they initiate the same replicas or some overlapping subset.

6.4.2.5: Operation Invocations.

When invoking operation on replica groups the clients use their Exclude Lists as afilter

when accepting replies from replicas. Replicas mentioned in the client's Exclude List

could potentially have out-of-date states and so the client will continue to refuse to use

them even if a replica which appeared to have failed during one call resumes

communication for the next call. A group will be considered to have failed if all of its

members are mentioned in an Exclude List for an action. Unlike the previous replication

protocol, all invocations made on an object group must be of type = all.

If a means exists of informing clients that the operations a "failed" replica missed were

only "read" operations, then it would be possible to allow the client to remove the replica

162

Chapter 6	 Replicated Objects in Arjuna

from its Exclude List and resume accepting results from it. This is an optimization to

maintain a level of availability; during the course of an action the exclusion of such replicas

is logically correct, maintaining consistency of the replicas.

When a response from a replica is received, the client first determines whether the

replica has an up-to-date state (by comparing the update-count received from the

Group-View Database with the update-count returned by all replicas as part of their

reply). If the replica has a lower update-count then it potentially has an out-of-date state

and the client will add it to its exclude list and treat it as though it has failed. If a client

receives a reply from a replica with an update-count greater than the one it currently

possesses then it should abort this action as this client has an out-of-date groupview.

6.4.2.6: Locking of Replica Groups.

A client group will attempt to lock all of the replicas in the server replica group which

responded to initiate, and if a majority do not respond then it must consider the operation a

failure and unlock those replicas that did respond, and possibly retry later. Any client

which does lock a majority of the replica group, either initially or subsequent to another

client group aborting a lock operation, can proceed to use the group. Those replicas which

do not respond (because they have failed or are simply too slow in replying) will be added

to the Exclude List and will be ignored if they subsequently do respond.

Note that it is not necessary for different client groups to lock a majority of all of the

replicas mentioned in the groupview, only a majority of the replicas which were initiated.

This can lead to different client groups using different members of the same server replica

group concurrently (and possibly in a conflicting manner). However, as was shown in

Section 6.4.2.2, this conflict will be detected at commit time when the Group-View

Database is contacted, and only one client group will be permitted to commit; the others

will have to abort.

163

Chapter 6
	

Replicated Objects in Arjuna

6.4.2.7: Committing Actions.

When a client top-level action comes to commit, it enters phase 1 of the commit

protocol and informs the members of the replica group to prepare to commit. Those

replica group members mentioned in the Exclude List are not sent any messages. The

responses to the prepare message are used to modify the Exclude List, as was shown in

Section 6.3.2.5. The client now has an up-to-date Exclude List and can update the

Group-View Database with this information, also incrementing the update-count for the

replica group. To do this it needs to communicate with a majority of the database replicas.

If a majority do not respond favourably then the client must abort the action (or retry

later). When the database has been updated, the client can commit the replicas not

mentioned in the exclude list.

6.4.2.8: Aborting Actions.

A client must abort any action within which it cannot contact a majority of the

Group-View Database replicas, or if the client finds that an entire server replica group has

failed. To maintain consistency between replicas executing the same replicated actions it is

further necessary that a replica which aborts an action should also be terminated i.e., it can

take no further actions once it has aborted and so should terminate. This is a direct result

of the failure assumptions we have made about the distributed system: no one replica can

be certain that the operations it is about to invoke are being carried out by other replicas in

its group. Messages can be lost, and as a result some replicas may be in a position where

they have to abort the action, whilst others may not be. If a replica which aborts an action

were to be allowed to continue operation it might then take some course of action which is

different to the other replicas in its group, resulting in state divergence. By insisting that

the replica should die we are preserving consistency between replicas.

Atomic action aborts within this replication protocol are assumed to be purely local

aborts i.e., no messages are transmitted to other objects informing them that they too

164

Chapter 6	 Replicated Objects in Arfuna

should abort. This is necessary because these objects may be shared between a replica

group some members of which may not require the action to abort.

However, if all of the replicas have come to the same decision to abort the action then

it would be correct to allow them to continue to execute. It is therefore possible to execute

a protocol between the members of the replica group to determine whether or not the

aborting replica should also die. Such a replica would attempt to communicate with all

replicas in its group and if they can all be contacted and they all agree to abort, then it

would be possible for the replica to continue to operate after the action has aborted.

6.4.2.9: Uncommitted Replicas.

During phase 1 of the commit protocol, those server replicas which are on a client's

Exclude List may not receive any message from the coordinating client. If this client was

itself replicated, and all of the client replicas also assumed that the server replica had failed

then it may receive no indication of the state of the action.

It is necessary to ensure that those replicas which were excluded from committing but

were actually operational will eventually abort, undoing any state changes which did occur

before they were considered to have failed, and then updating their states before rejoining

the replica group. There are two ways of ensuring this.

In an atomic action system, the host node of a client which acts as the coordinator for a

top—level action maintains some information which enables a recovering node to

determine the outcome of that action and either commit (if it failed during the commit

phase) or abort. In the case of replication, the information which should be stored needs to

be modified so that to those replicas mentioned in an Exclude List it appears as though the

action aborted, but to other replicas it appears as though it did commit. This can be done

by having a groupview associated with any record information about the outcome of a

given action, and if a particular replica finds that it is not mentioned in the groupview then

it aborts the action.

165

Chapter 6
	

Replicated Objects in Arfuna

Another method of ensuring excluded replicas eventually abort uses the Group-View

Database again. Since these replicas have been excluded at the database, this prevents

them being used by any subsequent clients. When these uncommitted replicas enquire as

to the outcome of an action, they can first check the Group-View Database to determine

whether or not they have been excluded. If they are mentioned in an Exclude List then the

replicas will perform the same sequence of steps that recovering replicas must go through

before being able to rejoin the replica group. If the replica cannot contact a majority of the

database replicas then it should abort i.e., it should die.

6.4.2.10: Recovering Nodes.

The procedure for node recovery in this protocol is the same as that described in

Section 6.3.3, except that such nodes must again vote on the Group-View Database i.e.,

they must be able to communicate with a majority of the database replicas before being

able to update their local replicas.

6.4.2.11: Updating of Replicas.

If a client replica detects a server replica which is out-of-date, due to the client not

having received replies from the replica for some time (i.e., the replica is in the client's

Exclude List) then it can trigger it to carry out update actions. If a replica does not receive

any invocations from a client for a period of time it could also inspect the GroupView

Database's Exclude List for its own entry. If the database indicates that this replica has

been excluded then the replica can attempt to update its state and rejoin the group.

6.4.3: Assessment.

The advantages of this protocol have already been mentioned: it can tolerate network

partitions (including virtual partitions). Unlike the Weighted Voting protocol described in

Section 5.2.2 which can also tolerate network partitions, it is not necessary for a majority

of server replicas to be always available: as long as one replica is available an action can

continue. However, this functionality has been obtained by paying a cost in performance.

166

Chapter 6
	

Replicated Objects in Arjuna

Because it cannot be guaranteed that replicas which do not respond have failed, it is

possible that functioning replicas of the same group can possess states which diverge. As a

result of this, it is no longer possible for clients to be able to continue executing as soon as

they receive a single reply from a replica not mentioned in the client's exclude list. The

client must wait for the time allocated to a particular call and collect all responses,

modifying its exclude list accordingly. Section 6.2 described the two termination

conditions which exist for the reliable group RPC mechanism i.e., type = all, and type =

one. For this protocol to function correctly, the RPC must always operate with type = all as

it is important for clients to know which replicas have received requests and which have

not. In the Available Objects protocol it was guaranteed that if one functioning replica

received a given request then all functioning replicas would receive the request. This can

no longer be guaranteed.

We have already seen that clients of the same replica group can have different views of

the same server replica group (something which cannot occur in Available Objects).

Because of this it is possible that some clients will assume the server group has failed whilst

others are still invoking operations on the members of the group. The clients which

determine the group to have failed must abort as was described in Section 6.4.2.8. Thus,

with this protocol client availability is lost.

As was shown in Section 6.4.2.3, if partitions occur it is possible that different client

groups can communicate with different members of the same server replica group. It is

further possible that they will then be able to communicate with a majority of the

Group—View Database replicas to update the groupview for this server group. The

database will only allow one of the clients to impose an exclude list on the group (the first

one to invoke the exclude operation) and the others will be forced to abort, undoing any

work they have done.

167

Chapter 6
	

Replicated Objects in Arjuna

6.4.4: The Update Daemon.

Because of the assumptions made about the communication medium and the nodes in

the system, it is now possible for a call to fail to reach a given object even though the node

is functioning (it could be severely overloaded). In this case the replica would eventually

be excluded.

However, we now have a functioning replica which will never receive any requests.

This can be solved by having a Site Manager (SM) whose job is periodically to inspect the

Exclude List held by the Group-View Database on behalf of the node on which the SM

resides, and if it finds a reference to any replica(s) which are known to be functioning then

it can force them to run an update and then rejoin the group.

6.4.5: Group-View Database Update.

Because Group-View Database replicas are never excluded, this could mean that

out-of-date copies of the database will never be brought back up-to-date. However, if a

client finds that it can communicate with a Group-View Database replica which is

out-of-date, then it can trigger the replica to perform an update action at the next

convenient (quiet) point, as mentioned in Section 6.4.2.11. Out-of-date database replicas

are recognised because, whenever a groupview is modified, the update-count is

incremented at a majority of the Group-View Database replicas, and so clients can obtain

the most recent value. Any database replica with a value less than this must be out-of-date

as far as this groupview is concerned. The database replica can then perform an update

action, which can update either the entire database state, or can update only that

groupview which has been found to be out-of-date (this is an optimization allowing the

database replica to rejoin the group much quicker than would be the case if the entire state

had to be updated).

168

Chapter 6
	

Replicated Objects in Arjuna

6.5: Passive Replication.

In a passive replication scheme a service is replicated N times, but of those N copies

only one (the primaiy copy) communicates with client processes. This primary copy

executes all requests and replies to the client, while at the same time distributing the new

state to the remaining replicas, whose sole duty is to monitor the state of the primary in

case it should fail. If a failure is detected then the remaining copies must elect a new

primary to take over.

Before any reply returns from this primary all other replicas will be brought

up-to-date by the primary (or excluded from its view). The response to the client is atomic

in the sense that if the primary responds then all of the passive functioning replicas have

been updated, and if no response is made then none of the passive replicas have had their

states modified.

One aspect of passive replication that must be addressed is the problem of network

partitions and their effects on primary election. If a network partitions then this could lead

to the situation where each replica group which is split across the partition has a different

primary copy because it appears as though the original primary has failed to those replicas

not in the same partition as the primary. The replication protocol to be presented can

function correctly in the presence of network partitions.

6.5.1: The Algorithm.

In any passive replication scheme there must exist a means of electing a new primary

should the existing one fail. A static ranking can be used: the order in which the replica

group members appear in the Group-View Database will determine the order in which

they are elected as primary copies should the current primary fail. Cohorts monitor the

state of the primary by periodically sending "are you alive?" messages to it. The

Group-View Database and the Exclude List are again used to impose a consistent view of

a replica group on both clients and servers. As in the previous protocol, the database is

169

Chapter 6	 Replicated Objects in Arjuna

used to ensure consistency in the presence of network partitions. Initially we shall assume

that the database is not replicated, but we shall show how it is possible to replicated it using

this replication protocol.

This protocol does not require a reliable group RPC mechanism to function correctly,

and as such we shall assume that the group RPC mechanism does not guarantee reliable

delivery of messages.

6.5.1.1: Operation Invocations.

A client wishing to make use of a replicated service first obtains the Available List for

the service from the database. The client then calls initiate to active the replicas mentioned

in the Available List. Included in this initiate request will be the identity of the current

primary, which the client received from the Group-View Database. Only the primary

replica will execute requests, the other replicas will simply be placed into a monitoring

mode in which they wait for one of two events: the primary sending them a message

indicating the request has been completed, or the primary is seen to have failed (it does not

respond to an "are you alive?" message).

Upon receiving the request the primary replica executes it and upon completion it

broadcasts its new state to the passive replicas. They use this infonnation to update their

states to become consistent with the primary. When the backups have updated their states

they send acknowledgments to the primary. The primary will wait to collect all of the

replies, assembling an Exclude List for those backups which do not respond. The primary

then contacts the Group-View Database and atomically updates the view of the group

held there i.e., it removes from the view all backup replicas which did not respond. When

the update is complete the primary sends the reply to the client.

The updating of the Group-View Database by the primary to reflect any changes in the

group membership, and the actual updating of the states of the backups, must be done

atomically (Section 6.3.2.5). The cohorts cannot commit their newly modified states until

the groupview has been successfully committed to indicate which members have

170

Chapter 6	 Replicated Objects in Arjuna

up—to—date states. If this database operation fails then the cohorts must undo the latest

checkpoint. This is necessary to ensure that in the event of a primary failure, only a backup

which has a consistent state can be elected as the new primary.

Thus, each RPC is performed as an atomic action, within which the primary executes

the client's request, checkpoints its state to its backups, updates the Group—View

Database, and then replies to the client.

6.5.1.2: Cohort Failures.

All cohort failures are handled by the primary which is also responsible for

maintaining the groupview. If a cohort fails to receive the initial request from the client but

is available to receive the checkpoints from the primary then there is no problem with

consistency as all cohorts which receive checkpoints will have the same state. If a backup

fails to acknowledge a checkpoint message from a primary then the primary will exclude it

from the groupview. This prevents it from being elected as a subsequent primary for this

group until it has been brought up—to—date.

6.5.1.3: Primary Failure.

If a cohort detects that the primary has failed (either because the client has

retransmitted the initial request or because the primary has not responded to an "are you

alive" message) it must begin the primary election protocol. The cohort becomes the

coordinator in this protocol and then contacts the Group—View Database to obtain the

current groupview for this replica group. If this cohort is not mentioned in the groupview

then the replica aborts the operation and will attempt to perform an update action later.

This is possible if this coordinating replica has been previously excluded from the

groupview but was not aware of this fact.

If the replica is in the current groupview then it will communicate with the replica

which is listed as being the next primary in the group. If this replica also determines that

the current primary has failed then it will assume the role of new primary, otherwise it will

reply to the election coordinator with enough information to assure it that the primary is

171

Chapter 6	 Replicated Objects in Arjuna

active (this then stops the election coordinator from contacting the next replica in the

groupview list). If this new primary has also failed then the protocol continues until a

functioning replica is found to take over.

If a new primary is called for, then the replica which is elected must first atomically

update the groupview held at the database to remove the old primary from it, and then

broadcast an acknowledgement to the remaining group members (otherwise the

remaining cohorts will determine that this replica has failed too). The new primary can

then begin to execute requests.

6.5.1.4: Multiple Primaries.

From the above discussion it is still possible for multiple primaries to be in existence

simultaneously. However, the Group-View Database prevents multiple primaries from

being able to reply to the client. Because the client does not explicitly communicate with

one replica in the group but simple broadcasts to the entire group membership, primary

changes are not noticed by the client.

If a new primary is elected when the old primary is still in operation (though perhaps

running on an overloaded node) then the new primary will complete the request. The old

primary must contact its cohorts before it can communicate with the client and they will

inform it that it has been overthrown as primary (and it can then execute recovery actions

before rejoining the group). If the primary cannot communicate with the cohorts then it

will assume they have failed and contact the Group-View Database to exclude them

(again before it has communicated with the client) and find that it has been excluded from

the groupview by the new primary.

6.5.1.5: Recovering Nodes.

Recovering nodes must perform update actions on those replicas which are

out-of-date in the way described for the previous replication protocols. When these

updated replicas are added to the group-view they can be placed back into their original

position in the view list, even if this places them before the current primary.

172

Chapter 6
	

Replicated Objects in Arfuna

6.5.1.6: Replica Updates.

Replicas which have been excluded from the groupview must run update actions

before they can be allowed to rejoin and receive further checkpoints from the primary.

This can be done in various ways: the checkpoint information sent by the primary is

enough to update a replica's state, so the replica could join the group (although not the

groupview at the database) and receive the next checkpoint from the primary before

contacting the database to include itself in the groupview. Another mechanism would be

to use an Update Daemon, as described in Section 6.4.4.

6.5.1.7: When to Checkpoint.

The frequency with which the primary replica checkpoints its state to its backups

dictates how long it will take the primary to respond to a given client request, how much

work must be re-executed to bring the new primary with the most recent checkpointed

state to the same state that the failed primary had before it crashed, and therefore how

many requests and replies clients will have to re-transmit and re-evaluate (as described in

Section 3.3.2.5). The obvious solution is to checkpoint after every operation which causes

the state to be modified. However, this can result in too great an overhead for certain

applications, and so we believe that the checkpoint frequency should be related directly to

the application and to the distributed system's characteristics.

Since all operations occur within an atomic action, we propose that the primary need

not checkpoint its state until the commit phase of the client action. If the primary fails

during the action then the client must abort and restart the action, receiving a new primary

to service its requests. This method has the advantage of allowing all operations to

proceed at the speed of the primary and not at the speed of the slowest backup.

When the action commits, the primary checkpoints its state to its backups and

acknowledges the client. Failures of the primary after this mean that a new primary can be

elected which is in a consistent state with the old primary when it committed. We have

therefore made a distinction between availability of replicas during an atomic action, and

173

Chapter 6	 Replicated Objects in Arfuna

availability of replicas after an atomic action has terminated. For some applications this

distinction can mean reducing the overhead of replication whilst at the same time

providing availability where it is required.

6.5.1.8: Group—View Database Replication.

The replication of the Group—View Database is assumed to also be in a passive

manner, with a primary database to which all requests are directed. However, the

replication scheme for the database replica group is slightly different than for a more

general server replica group.

Each database replica monitors the other replicas as well as the primary, maintaining a

groupview for the Group—View Database (the order the replicas occur within the

groupview is the order in which they will be elected as primary). The primary database

replica checkpoints its state to its backups whenever a change to its state occurs. This is a

two—phase protocol: in the first phase of the protocol the primary transmits the new

checkpoint and possibly a new groupview for the database group. The backups

acknowledge this, and if no further failures are detected the primary will inform the

backups that they can commit their states. Otherwise the primary will abort this update

action and start again with a new groupview.

Group-View Database replicas which fail to complete this protocol, either because

they have crashed or become partitioned from the primary, must perform recovery actions

as they could potentially possess out—of—date states. To update their states the database

replicas must contact the current primary. Until recovery is complete these replicas will

appear as though they have failed.

This two—phase protocol is also used by the primary whenever a database replica fails.

If a primary finds that it can no longer communicate with a majority of the database

replicas mentioned in its current groupview then it must stop executing as the primary may

now be in a minority partition.

174

Chapter 6
	

Replicated Objects in Arjuna

The election of a new database primary occurs in a similar manner to that described in

Section 6.5.1.3. However, for a new primary to be elected, a majority of the database

backups mentioned in the groupview must be available to participate. If this is not the case

then a re-election cannot occur. This is to prevent two Group-View Database primaries

from operating if a network partition occurs. With this protocol, at most one Group-View

primary can be active in a distributed system, and therefore only those client and server

replica groups which occur in the same partition as the database primary can also be

active.

6.6: Summary.

This chapter contained detailed descriptions of a family of replication protocols which

have been designed to operated on an object-oriented system which supports atomic

actions. The system used to implement our replication protocols is Arjuna, and it was

described in the opening sections.

We then described how our replication protocols operate to maintain replica

consistency: using unordered multicasts at the communication level, and to impose

ordering at the application level by relying upon the serialisability property of atomic

actions. This has the desirable property that ordering is imposed only where strictly

necessary. We then went on to describe the Group-View Database which maintains

information about replica groups (the groupview) and individual replicas, and is used in all

of the replication protocols described. The database is used to impose a consistent view of

a given replica group on replicated clients, and is also used by recovering nodes so that

they can run update operations on those replicas which are out-of-date as a result of the

node failure. The concept of the Exclude List was introduced as a means of updating

groupview information held at the database and as an efficient method of only updating

those objects which need to be updated when they recover.

The first replication protocol was then described in detail, and it was shown how clients

can make use of replica groups and how the replication protocol ensures that members of

175

Chapter 6
	

Replicated Objects in Arjuna

a replica group remain consistent by making use of the Group-View Database and the

reliable group communication layer. It was also shown how the concurrency control in

Arjuna (strict two-phase locking in the initial implementation) can be extended to work

on replica groups. It was shown how the commit protocol of the atomic action was

modified so that replica group interaction can be taken into account. In this replication

protocol, as long as a single replica remains operational at the end of an action then the

action can commit. Finally, some the implementation of this replication protocol was

described along with timings which have been taken.

The remaining sections of this chapter discussed how this first replication protocol can

be modified to operate under an additional failure assumption: network partitioning. The

two protocols described can both tolerate network partitions: the first one is an active

replication protocol, whereas the second scheme is a passive replication protocol.

176

Conclusions

7: Conclusions.

This chapter will summarise the material which has been covered in this thesis and

given an indication of the possible areas of future research.

7.1: Thesis Summary.

This first part of this thesis concentrated on the need for replication in distributed

systems to aid in providing fault-tolerant applications. The advantages of using

replication were outlined: increased availability of a replicated service, and increased

performance of client and server interactions.

The next section of the thesis introduced the basic techniques used for the construction

of reliable distributed applications. Atomic actions provide an integrated mechanism

which addresses the problems of inconsistencies due to partial failures of an application,

and interference between concurrent parts of an application. The object-oriented

programming methodology was discussed as a useful way for structuring applications.

Finally, the remote procedure call was described as a way in which remote objects can

communicate, maintaining the concept of a local procedure call and so providing access

transparency. Multicast communication can be used when multiple destinations are

required to receive the same message, which introduced the notion of a replica group.

In the next section the principles behind object replication were described, starting

with a classification of the various types of failures which can occur within a distributed

system and which replication is typically used to mask. Then the two types of replication

techniques were described: active replication, and passive replication. The differences

between these two techniques were mentioned, along with the assumptions that they make

about the distributed system on which they operate, and the requirements they impose on

the underlying communication layer. It was shown that active replication (which is best

modelled using the State Machine approach), is more difficult to provide because of its

requirements, but is capable of tolerating larger classes of failures. To maintain

177

Conclusions

consistency between the members of an active replica group it is necessary that they all

receive the same set of message in the same order. Finally, it was shown how the different

replication classifications can be used to mask the failure types described.

The following section then continued the discussion about the communication layer.

The various delivery properties which can be guaranteed by communication protocols

were described, and it was shown that to maintain consistency between members of an

active replica group we can use a communication protocol which ensures that all

functioning members of the group will receive the same set of messages, without imposing

an ordering on those messages. The ordering can be imposed at the application level by

making use of the serialisability property of atomic actions. The communication protocol

we used (relfREL) was then described. It was then described how this protocol was used in

the design and implementation of a reliable group RPC mechanism (GRPC). This GRPC

was tested for various situations and the results were discussed. This section finished with a

discussion of further modifications which must be made to the communications layer to

ensure that replicas remain consistent despite events such as message buffer overflow and

local timeouts, which cannot be solved by the delivery properties of the communication

layer alone.

The next section described various replication protocols which have been used in

database systems to replicate data. There was also a detailed description of some

distributed systems which support either active or passive replication of objects and

processes. The aim of this section was to show how each system provided replication and

maintained consistency between replicas despite failures in the distributed system.

The final section described the design of three new replication protocols (which can be

used in the Arjuna distributed system). The design of each protocol was discussed, and it

was shown how by relaxing the assumptions which are made about the distributed

environment and the communications layer, it is necessary to modify the replication

protocols. All of the protocols described use atomic actions to impose concurrency control

178

Conclusions

and consistent ordering of operations where necessary. A Group-View Database and

Exclude List are used to maintain replica consistency despite failures, and the Exclude List

is used to ensure that recovering nodes can become available quickly by only having to

execute update operations on those objects which are out-of-date. One of the replication

protocol described (Available Objects) was implemented in Arjuna and an application

was written which made use of the replication facilities provided. The results of this

implementation were shown and discussed.

7.2: Main Contributions.

The contributions made by this thesis can be summarised as follows:

(i) it has been stated that in active replication the replicas need to receive the same set

of message in the same order; this thesis has shown that such ordering can be imposed by

atomic actions, enabling cheaper communication primitives to be used which ensure

reliable delivery of messages. These ideas have been implemented in our system.

(ii) the discussion about replica consistency showed that although guaranteeing

delivery of messages can solve some problems, problems such as message buffer overflow

and local timeouts can still lead to replica state divergence. Two protocols have been

described which solve these problems, leading to the design of a reliable group RPC

mechanism.

(iii) this thesis has discussed and developed techniques for object replication. It has

been shown how it is possible to distinguish the type of the operation being invoked on an

object and how a replication protocol can take advantage of this information. The

techniques proposed in this thesis for object replication are also transparent: users of

replicated objects interact with only a single interface to the group, which hides the

replication protocol.

(iv) a family of replication protocols have been developed for use in distributed

systems. Each replication protocol makes various assumptions about the distributed

179

Conclusions

environment and the communications layer upon which it relies. We have shown how it is

possible to modify the basic replication protocol (Available Objects) when the failure

assumptions do not allow the use of reliable group communications primitives, and still

provide flexible and efficient replication. The Available Objects replication protocol

presented has also been implemented and results from this were presented.

7.3: Future Work.

Work into object replication has raised many interesting points, some of which have

been briefly mentioned here, and which are currently being investigated as part of the

continuing work in the Arjuna project. The work detailed in this thesis will be fully

implemented as part of Arjuna.

• Dynamically Maintaining Replication Levels: it has been mentioned in previous

chapters that replicas which join groups can do so only at specific times i.e., when no

other action is currently using the group. This is to maintain consistency of the

groupview between replicated clients. However, it would be better if replicas can join a

group at any time, especially if they are replicas which have recovered after failing and

so are needed to maintain a level of availability. To be able to do this is complex as

consistency needs to be maintained between the replicated servers and any clients

which are using them. Order preserving communications protocol can be used, but we

shall be examining whether it is possible to maintain a level of replication (availability)

without the use of such protocols. Regeneration of failed replicas is another area of

future research, if it is possible to regenerate failed replicas quickly, then it is possible

to maintain a level of availability during the lifetime of an application. Such

regeneration of failed replicas requires the existence of a dynamic group membership

protocol. The regeneration mechanism also provides the basis for an object—migration

scheme which we are also examining: objects could be moved to the nodes on which

their clients currently reside.

180

Conclusions

• Object Placement: although replication can be used to increase availability, if it is not

used properly then availability can actually decrease e.g., if replicas have a source of

common mode of failure. Further, the performance of an application can depend upon

the number of replicas in use e.g., the more replicas in a group which have to be written

to, the slower the response from a write operation. It is possible to maintain a level of

availability for a replicated service with a smaller number of replicas if those replicas

are located on reliable nodes. This can also improve the performance of an application

because eveiy client—replica group interaction need communicate with only a small

number of replicas. Sometimes the choices involved in providing high availability

conflict with high performance goals. There is a need for automating a method of

finding the optimum location for replicas and the optimum number of replicas

required for each application, given sufficient data about the distributed system and

the requirements of the application e.g., the level of availability that is required and the

performance.

• User Level Group Management: It has also become apparent from this work, and from

building applications which make use of groups, that some way of allowing application

programmers to manipulate groups would be useful. Currently, groups are a low level

structuring technique e.g., for replica groups, and application programmers have no

direct access to them. There are several situations in which it would be beneficial to

application programmers if they could have direct access to groups, creating their own

where necessary e.g., a programmer may wish to group several distinct objects

together so that a message could be multicast to them all.

181

Refrrences

References.

[Abbadi 89]

A. El Abbadi and S. Toueg, "Maintaining Availability in Partitioned Replicated
Databases", ACM T1ansactions on Database Systems, June 1989.

[Abbadi 90]

A. El Abbadi and D. Agrawal, "The IFee Quorum Protocol: An Efficient Approach
for Managing Replicated Data", Proceedings of 16th International Conference on Very
Large Databases, August 1990.

[Ahamad 87]

M. Ahamad, P. Dasgupta, R. J. LeBlanc, and C. T. Wilkes, "Fault Tolerant
Computing in Object Based Distributed Operating Systems", Proceedings of the 6th
Symposium on Reliability in Distributed Systems, March 1987.

[Alonso 90]

R. Alonso and L. L Cova, "Managing Replicated Copies in Very Large Distributed
Systems", Proceedings of the IEEE Workshop on Replicated Data, November 1990.

[Alsberg 76]

P. A. Alsberg and J. D. Day, "A Principle for Resilient Sharing of Distributed
Resources", Proceedings of the Second International Conference on Software
Engineering, 1976.

[Anderson 81]

T. Anderson and P. A. Lee, "Fault Tolerance: Principles and Practice",
Prentice-Hill, 1981.

[ANSA 89]

"Advanced Networked Systems Architecture (ANSA) Reference Manual", Volume
A, Release 1.00, Part VI, Computational Projection, March 1989.

[ANSA 90]

"A Model for Interface Groups", ANSA, ISA Project, APM/RC.093.00, May 1990.

[ANSA 91a]

"An Abstract Model for Groups", ANSA, ISA Project, APM/RC.259.01, June
1991.

[Banatre 86a]

J.P. Banatre, M. Banatre, and F. Ployette, "An Overview of the Gothic Distributed
Operating System", INRIA-Rennes Research Report No. 504, March 1986.

182

References

[Banatre 86b]

J.P. Banatre, M. Banatre, and F. Ployette, "The Concept of Multifunction, a
General Structuring Tool for Distributed Operating System Structuring", Proceedings of
the 6th Distributed Computing Systems Conference, Cambridge, MA, May 1986.

[Barrett 90]

P. A. Barrett et al, "The Delta-4 Extra Performance Architecture (XPA)",
Proceedings of FTCS-20, Newcastle upon '1rne, June 1990.

[Bernstein 87]

P. A. Bernstein, V. Hadzilacos, and N. Goodman, "Concurrency Control and
Recovery in Database Systems", Addison-Wesley, 1987.

[Birman 85]

K. Birman et al, "Implementing Fault-Tolerant Distributed Objects", IEEE
Transactions on Software Engineering, June 1985.

[Birinan 87a]

K. P. Birman and T. A. Joseph, "Reliable Communication in the Presence of
Failures", ACM Transactions on Computer Systems, February 1987.

[Birinan 87b]
K. Birman and T. Joseph, "Exploiting virtual synchrony in distributed systems", in

lith Symposium on Operating System Principles, ACM SIGOPS, November 1987.

[Birman 88]

K. Birman, T. Joseph and F. Schmuck, "ISIS - A Distributed Programming User's
Guide and Reference Manual", The ISIS Project, Department of Computer Science,
Cornell University, Ithaca, NY, March 1988.

[Birrell 84]

A. D. Birrell and B. J. Nelson, "Implementing Remote Procedure Calls", ACM
Transactions on Computer Systems, February 1984.

[Birwhistle 73]

G. M. Birwhistle, O-J. Dahi, B. Myhrhaug and K. Nygaard, "Simula Begin",
Academic Press, 1973.

[Black 86]

A. Black, eta!, "Object Structure in the Emerald System", Proceedings of the ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications,
October 1986.

[Chang 84]

J. Change and N. F. Maxemchuk, "Reliable Broadcast Protocols", ACM
Transactions on Computer Systems, August 1984.

183

References

[Cheriton 84]

D. R. Cheriton and W Zwaenepoel, "One-to-Many Interprocess Communication
in the V-System", Department of Computer Science, Stanford University Report No.
STAN-CS-84-1011.

[Cheriton 85]

D. R. Cheriton and W Zwaenepoel, "Distributed Process Groups in the V Kernel",
ACM Transactions on Computer Systems, May 1985.

[Cooper 84a]

E. C. Cooper, "Replicated Procedure Call", Proceedings of the 3rd Annual ACM
Symposium on Principles of Distributed Computing, August 1984.

[Cooper 84b]

E. C. Cooper, "Circus: A Replicated Procedure Call Facility", Proceedings of the
4th Symposium on Reliability in Distributed Software and Database Systems, October
1984.

[Cooper 85]

E. C. Cooper, "Replicated Distributed Programs", SOSP 10, December 1985.

[Cristian 85]

F. Cristian et al, "Atomic Broadcast: From Simple Message Diffusion to Byzantine
Agreement", 15th International Conference on Fault-Tolerant Computing, Michigan,
June 1985.

[Cristian 90]

F. Cristian, "Synchronous Atomic Broadcast For Redundant Broadcast Channels",
IBM Research Report No. RJ 7203, Yorktown Heights, April 1990.

[Dahi 70]

O-J, Dahi, B. Myhrhaug and K. Nygaard, "SIMULA Common Base Language",
Norwegian Computing Centre S-22, Oslo, Norway, 1970.

[Davcev 89]

D. Davcev, "A Dynamic Voting Scheme in Distributed Systems", IEEE
Transactions on Saoftware Engineering, January 1989.

[Davidson 84]

S. B. Davidson, "Optimism and Consistency in Partitioned Distributed Database
Systems", ACM Transactions on Database Systems, September 1984.

[Dixon 87]

G. N. Dixon, S. K. Shrivastava and G. D. Parrington, "Managing Persistent Objects
in Arjuna: A System for Reliable Distributed Computing", Proceedings of the Workshop
on Persistent Object Systems, Persistent Programming Research Report 44, Department
of Computational Science, University of St. Andrews, August 1987.

184

References

[Dixon 89]

G. N. Dixon, G. D. Parrington, S. K. Shrivastava and S. M. Wheater, "The
Treatment of Persistent Objects in Arjuna", in Proceedings of ECOOP 89. European
Conference on Object Oriented Programming, University of Nottingham, July 1989. (also
in The Computer Journal, Vol. 32, No. 4, April 1989)

[Downing 90]

A. R. Downing, I. B. Greenberg, and J. M. Peha, "OSCAR: A System for
Weak-Consistency Replication", Proceedings of the IEEE Workshop on Replicated Data,
November 1990.

[Eager 83]

D. L. Eager and K. C. Sevcik, "Achieving robustness in distributed database
systems", ACM Transactions on Database Systems, September 1983.

[Eswaran 76]

K. P. Eswaran, J. N. Gray, R. A. Lone, and I. L. 'fraiger, "The Notion of
Consistency and Predicate Locks in a Database System", Communications of the ACM,
Vol. 19, No. 11, November 1976.

[Ezhilchelvan 91]

P. Ezhilchelvan, M. Little, and S. K. Shrivastava, "Implementing Reliable Group
Invocations", Newcastle University Technical Report.

[Garcia-Molina 90]

H. Garcia-Molina and D. Barbara, "The Case for Controlled Inconsistency in
Replicated Data", Proceedings of the IEEE Workshop on Replicated Data, November
1990.

[Gifford 79]

D. K. Gifford, "Weighted Voting for Replicated Data", 7th Symposium on
Operating System Principles, December 1979.

[Goldberg 83]

A. Goldberg and D. Robson, "Smalltalk-80: The Language and its
Implementation", Addison-Wesley, 1983.

[Gray 78]

J. N. Gray, "Notes on Data Base Operating Systems", in Operating Systems An
Advanced Course, Lecture Notes in Computing Science, Vol. 60, Spninger-Varlag 1978.

[Herlihy 85]

M. Herlihy, "Comparing How Atomicity Mechanisms Support Replication"
Technical Report CMU-CS-85- 123, Carnegie-Mellon University, May 1985.

185

References

[Hughes 86]

F. L. Hughes, "Multicast Communications in Distributed Systems", Ph.D Thesis,
Computing Laboratory, University of Newcastle upon 1 rne, October 1986.

[Jajodia 89]

S. Jajodia and D. Mutchier, "A Pessimistic Consistency Control Algorithm for
Replicated Files which Achieves High Availability", IEEE Transactions on Software
Engineering, January 1989.

[Jalote 89]

P. Jalote, "Resilient Objects in Broadcast Networks", IEEE Transactions on
Saoftware Engineering, January 1989.

[Kernighan 78]

B. W. Kernighan and D. M. Ritchie, "The C Programming Language",
Prentice—Hall, Englewood Cliffs, New Jersey, 1979.

[Ladin 90]

R. Ladin, B. Liskov, and L. Shrira, "Lazy Replication: Exploiting the Semantics of
Distributed Services", Proceedings of the 9th ACM Symposium on Principles of
Distributed Computing, August 1990.

[Lamport 78]

L. Lamport, "Time, clocks, and the ordering of events in a distributed system",
Communications of the ACM, Vol. 21, July 1978.

[Lamport 82]

L. Lamport, R. Shostak, and M. Pease, "The Byzantine Generals Problem", ACM
Transactions on Programming Languages and Systems, July 1982.

[Laprie 90]

J. C. Laprie, "Dependability: Basic Concepts and Associated Terminology", IFIP
WG 10.4

[LeBlanc 85]

R. J. LeBlanc and C. T. Wilkes, "Systems Programming with Objects and Actions",
IEEE 1985

[Liang 90]

L. Liang, S. T. Chanson, and G. W Neufeld, "Process Groups and Group
Communications: Classifications and Requirements", IEEE Computer, February 1990.

[Lippman 89]

S. B. Lippman, "C+ + Primer", Addison—Wesley, 1989.

186

References

[Liskov 79]

B. Liskov, R. Atkinson, T. Bloom, J. E. B. Moss, C. Schaffert, R. Scheifler and A.
Snyder, "Clu Reference Manual", Technical Report MIT/LCS/TR-225, MIT Laboratory
for Computer Science, Cambridge, Mass., October 1979.

[Liskov 87a]

B. Liskov, "Implementation of Argus", Proceedings of the 11th ACM Symposium
on Operating Systems Principles, November 1987.

[Liskov 87b]

B. Liskov and L. Shrira, "Promises: an Efficient Procedure Call Mechanism for
Distributed Systems", Programming Methodology Group Memo, Laboratory for
Computer Science, MIT, 1987.

[Liskov 88]

B. Liskov, "Distributed Programming in Argus", Communications of the CACM,
March 1988.

[Lomet 77]

D. B. Lomet, "Process structure, synchronisation and recovery using atomic
actions", in Proceedings of ACM Conference on Language Design for Reliable Software,
SIGPLAN Notices, Vol. 12, No. 3, March 1977.

[Meyer 88]

B. Meyer, "Object-oriented software construction", Prentice-Hall, 1988.

[Mishra 89]

S. Mishra, L. L. Peterson, and R. D. Schlichting, "Implementing Fault-Tolerant
Replicated Objects Using Psync", TR 89-3, Department of Computer Science, University
of Arizona, TUcson, April 1989.

[Moss 81]

J. E. B. Moss, "Nested 'ftansactions: An Approach to Reliable Distributed
Computing", Technical Report MITILCS/TR-260, Massachusetts Institute of Technology
Laboratory for Computer Science, April 1981.

[Nett 85]

E. Nett et al, "Profemo: Design and Implementation of a Fault Tolerant
Distributed System Architecture", GMD-Studien, No. 100, Technical Report, GMD, St.
Augustin, June, 1985.

[Ng 89]

T. P. Ng and S. S. B. Shi, "Replicated Tlansactions", The 9th International,
Conference on Distributed Computing Systems, Newport Beach, CA, June 1989.

187

References

[Noe 86]

J. D. Noe and A. Andreassian, "Effectiveness of Replication in Distributed
Computer Networks", Department of Computer Science, University of Washington,
Technical Report No. 86-06-05.

[Oki 88]

B. M. Oki, "Viewstamped Replication For Highly Available Distributed Systems",
PhD Thesis, MIT Laboratory for Computer Science, August 1988.

[Olsen 91]

M. H. Olsen, E. Oskiewicz, and J. P. Warne, "A Model for Interface Groups",
Proceedings of SRDS-10, Pisa, October 1991.

[Panzieri 88]

F. Panzieri and S. K. Shrivastava, "Rajdoot: a remote procedure call mechanism
supporting orphan detection and killing", in IEEE Transactions on Software Engineering,
Vol. SE-14, No. 1, January 1988.

[Paris 86]

J.-F. Paris, "Voting with Witnesses: A Consistency Scheme for Replicated Files",
Proceedings of the 6th International Conference on Distributed Computing Systems, May
1986.

[Parrington 88a]

G. D. Parrington, "Management of Concurrency in a Reliable Object-Oriented
Computing System", Ph.D Thesis, Technical Report TR/277, Computing Laboratory,
University of Newcastle upon 'Ine, December 1988.

[Parrington 88b]

G. D. Parrington and S. K. Shrivastava, "Implementing Concurrency Control in
Reliable Distributed Object-Oriented Systems", in Proceedings of ECOOP 88. European
Conference on Object Oriented Programming, Norway, August 1988.

[Parrington 89]

G. D. Parrington, "Distributed Programming in C + + via Stub Generation", in
preparation, Computing Laboratory, University of Newcastle upon '1rne, 1989.

[Peterson 87]

L. L. Peterson, "Preserving Context Information in an IPC Abstraction",
Proceedings of the Sixth Symposium on Reliability in Distributed Software and Database
Systems, Williamsburg, March 1987.

[Pu 86]

C. Pu, J. D. Noe, and A. Proudfoot, "Regeneration of Replicated Objects: A
Technique and Its Eden Implementation", 2nd International Conference on Data
Engineering, Los Angeles, February 1986.

188

References

[Satyanarayanan 90]

M. Satyanarayanan and E. H. Siegel, "Parallel Communication in a Large
Distributed Environment", IEEE Transactions on Computers, March 1990.

[Schaffert 86]

C. Schaffert, T. Cooper, B. Bullis, M. Kilian and C. Wilpolt, 'An Introduction to
Trellis/Owl", in OOPSLA '86 Conference Proceedings, September 1986.

[Schlichting 83]

R. D. Schlichting and F. B. Schneider, "Fail-Stop processors: An approach to
designing fault-tolerant computing systems", ACM Transactions on Computer Systems,
August 1983.

[Schneider 84]

F. B. Schneider, "Byzantine Generals in Action: Implementing Fail-Stop
Processors", ACM Transactions on Computer Systems, May 1984.

[Schneider 90]

F B. Schneider, "Implementing Fault-Tolerant Services Using the State Machine
Approach: A Tutorial", ACM Computing Surveys, December 1990.

[Shrivastava 88]

S. K. Shrivastava, 0. N. Dixon, F. Hedayati, G. D. Parrington and S. M. Wheater,
"A Technical Overview of Arjuna: A System for Reliable Distributed Computing",
Proceedings of UK IT 88 Conference, July 1988.

[Shrivastava 90a]

S. K. Shrivastava and P. Ezhilchelvan, "rel/REL: A Family of Reliable Multicast
Protocols for Distributed Systems", Newcastle University Technical Report.

[Shrivastava 90b]

S. K. Shrivastava, P. Ezhilchelvan, and M. Little, "Understanding Component
Failures and Replication in Distributed Systems", ISA Project Report:UNT/TR1.

[Shrivastava 90c]

S. K. Shrivastava et al, "Fail-Controlled Processor Architectures for Distributed
Sysytems", Technical Report, Computing Laboratory, University of Newcastle upon 1rne,
1990.

[Shrivastava 91]

S. K. Shrivastava, G. N. Dixon, and 0. D. Parrington, "An Overview of the Arjuna
Distributed Programming System", IEEE Software, January 1991.

[Schwarz 84]

P. M. Schwarz and A. Z. Spector, "Synchronizing Shared Abstract 1rpes", in ACM
Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

189

References

[Stroustrup 86]

B. Stroustrup, "The C++ Programming Language", Addison Wesley, 1986.

[1nenbaum 88]

A. S. 'Iänenbaum and R. van Renesse, "Voting With Ghosts", Proceedings of the
8th International Conference on Distributed Computing Systems, San Jose, CA, June
1988.

[Verissimo 89]

P. Verissimo, L. Rodrigues, and M. Baptista, 'AMp: A Highly Parallel Atomic
Multicast Protocol", ACM SIGCOMM'89, Austin Texas, September 1989.

190

	DX173035_1_0001.tif
	DX173035_1_0003.tif
	DX173035_1_0005.tif
	DX173035_1_0007.tif
	DX173035_1_0009.tif
	DX173035_1_0011.tif
	DX173035_1_0013.tif
	DX173035_1_0015.tif
	DX173035_1_0017.tif
	DX173035_1_0019.tif
	DX173035_1_0021.tif
	DX173035_1_0023.tif
	DX173035_1_0025.tif
	DX173035_1_0027.tif
	DX173035_1_0029.tif
	DX173035_1_0031.tif
	DX173035_1_0033.tif
	DX173035_1_0035.tif
	DX173035_1_0037.tif
	DX173035_1_0039.tif
	DX173035_1_0041.tif
	DX173035_1_0043.tif
	DX173035_1_0045.tif
	DX173035_1_0047.tif
	DX173035_1_0049.tif
	DX173035_1_0051.tif
	DX173035_1_0053.tif
	DX173035_1_0055.tif
	DX173035_1_0057.tif
	DX173035_1_0059.tif
	DX173035_1_0061.tif
	DX173035_1_0063.tif
	DX173035_1_0065.tif
	DX173035_1_0067.tif
	DX173035_1_0069.tif
	DX173035_1_0071.tif
	DX173035_1_0073.tif
	DX173035_1_0075.tif
	DX173035_1_0077.tif
	DX173035_1_0079.tif
	DX173035_1_0081.tif
	DX173035_1_0083.tif
	DX173035_1_0085.tif
	DX173035_1_0087.tif
	DX173035_1_0089.tif
	DX173035_1_0091.tif
	DX173035_1_0093.tif
	DX173035_1_0095.tif
	DX173035_1_0097.tif
	DX173035_1_0099.tif
	DX173035_1_0101.tif
	DX173035_1_0103.tif
	DX173035_1_0105.tif
	DX173035_1_0107.tif
	DX173035_1_0109.tif
	DX173035_1_0111.tif
	DX173035_1_0113.tif
	DX173035_1_0115.tif
	DX173035_1_0117.tif
	DX173035_1_0119.tif
	DX173035_1_0121.tif
	DX173035_1_0123.tif
	DX173035_1_0125.tif
	DX173035_1_0127.tif
	DX173035_1_0129.tif
	DX173035_1_0131.tif
	DX173035_1_0133.tif
	DX173035_1_0135.tif
	DX173035_1_0137.tif
	DX173035_1_0139.tif
	DX173035_1_0141.tif
	DX173035_1_0143.tif
	DX173035_1_0145.tif
	DX173035_1_0147.tif
	DX173035_1_0149.tif
	DX173035_1_0151.tif
	DX173035_1_0153.tif
	DX173035_1_0155.tif
	DX173035_1_0157.tif
	DX173035_1_0159.tif
	DX173035_1_0161.tif
	DX173035_1_0163.tif
	DX173035_1_0165.tif
	DX173035_1_0167.tif
	DX173035_1_0169.tif
	DX173035_1_0171.tif
	DX173035_1_0173.tif
	DX173035_1_0175.tif
	DX173035_1_0177.tif
	DX173035_1_0179.tif
	DX173035_1_0181.tif
	DX173035_1_0183.tif
	DX173035_1_0185.tif
	DX173035_1_0187.tif
	DX173035_1_0189.tif
	DX173035_1_0191.tif
	DX173035_1_0193.tif
	DX173035_1_0195.tif
	DX173035_1_0197.tif
	DX173035_1_0199.tif
	DX173035_1_0201.tif
	DX173035_1_0203.tif
	DX173035_1_0205.tif
	DX173035_1_0207.tif
	DX173035_1_0209.tif
	DX173035_1_0211.tif
	DX173035_1_0213.tif
	DX173035_1_0215.tif
	DX173035_1_0217.tif
	DX173035_1_0219.tif
	DX173035_1_0221.tif
	DX173035_1_0223.tif
	DX173035_1_0225.tif
	DX173035_1_0227.tif
	DX173035_1_0229.tif
	DX173035_1_0231.tif
	DX173035_1_0233.tif
	DX173035_1_0235.tif
	DX173035_1_0237.tif
	DX173035_1_0239.tif
	DX173035_1_0241.tif
	DX173035_1_0243.tif
	DX173035_1_0245.tif
	DX173035_1_0247.tif
	DX173035_1_0249.tif
	DX173035_1_0251.tif
	DX173035_1_0253.tif
	DX173035_1_0255.tif
	DX173035_1_0257.tif
	DX173035_1_0259.tif
	DX173035_1_0261.tif
	DX173035_1_0263.tif
	DX173035_1_0265.tif
	DX173035_1_0267.tif
	DX173035_1_0269.tif
	DX173035_1_0271.tif
	DX173035_1_0273.tif
	DX173035_1_0275.tif
	DX173035_1_0277.tif
	DX173035_1_0279.tif
	DX173035_1_0281.tif
	DX173035_1_0283.tif
	DX173035_1_0285.tif
	DX173035_1_0287.tif
	DX173035_1_0289.tif
	DX173035_1_0291.tif
	DX173035_1_0293.tif
	DX173035_1_0295.tif
	DX173035_1_0297.tif
	DX173035_1_0299.tif
	DX173035_1_0301.tif
	DX173035_1_0303.tif
	DX173035_1_0305.tif
	DX173035_1_0307.tif
	DX173035_1_0309.tif
	DX173035_1_0311.tif
	DX173035_1_0313.tif
	DX173035_1_0315.tif
	DX173035_1_0317.tif
	DX173035_1_0319.tif
	DX173035_1_0321.tif
	DX173035_1_0323.tif
	DX173035_1_0325.tif
	DX173035_1_0327.tif
	DX173035_1_0329.tif
	DX173035_1_0331.tif
	DX173035_1_0333.tif
	DX173035_1_0335.tif
	DX173035_1_0337.tif
	DX173035_1_0339.tif
	DX173035_1_0341.tif
	DX173035_1_0343.tif
	DX173035_1_0345.tif
	DX173035_1_0347.tif
	DX173035_1_0349.tif
	DX173035_1_0351.tif
	DX173035_1_0353.tif
	DX173035_1_0355.tif
	DX173035_1_0357.tif
	DX173035_1_0359.tif
	DX173035_1_0361.tif
	DX173035_1_0363.tif
	DX173035_1_0365.tif
	DX173035_1_0367.tif
	DX173035_1_0369.tif
	DX173035_1_0371.tif
	DX173035_1_0373.tif
	DX173035_1_0375.tif
	DX173035_1_0377.tif
	DX173035_1_0379.tif
	DX173035_1_0381.tif
	DX173035_1_0383.tif
	DX173035_1_0385.tif
	DX173035_1_0387.tif
	DX173035_1_0389.tif
	DX173035_1_0391.tif
	DX173035_1_0393.tif

