The Black Male Student: Early Indicators

of
Algebra 1 Failure

Colloquium

April 21, 2018

Presented by:
Roy D. Harris

PROBLEM STATEMENT

- Poor international mathematics performance testing by American students has been documented as early as the 1960s (Mayfield \& Glenn, 2008).
- Documentation of poor achievement via the achievement gap:
- Black and White students
- 1965
- Large scale surveys with national samples (Hedges \& Nowell, 1999)

PROBLEM STATEMENT CONTINUED

- An unacceptable number of Black males between the ages of 14-16 years of age continue to fail algebra 1 mathematics at the high school level.
- The failure of algebra 1 mathematics at the high school level often has lead to a lower curriculum track assignment for the Black male student.
- The new track assignment is absent access: - STEM (Science Technology Engineering \& Mathematics)
(Riegle-Crumb \& Grodsky, 2010; Ballon, 2008)

PURPOSE STATEMENT

- The purpose of this quantitative study was to identify those factors that contributed to the high failure rate among Black males 14-16 years of age enrolled for the first time in a high school algebra 1 course taught in an urban public school in order to find ways to navigate around these barriers inhibiting Black male success in algebra 1 and thereby increase the college acceptance rate for matriculating Black males.

LITERATURE REVIEW

- Among $4^{\text {th }}$ grade males, Black males enter school with:
- Lower math
- Lower reading
- Lower vocabulary skills
- Specific interest has been placed on the low academic performance of the Black male when compared to other ethnic groups
(Kafele, 2012; Whitting, 2006; Sandowski, 2006

LITERATURE REVIEW CONTINUED

- African American youth have unique issues that present barriers to success in their academic performance (Sommers, Owens, \& Pilawsky, 2008)
- Not all Black males get the opportunity to take Algebra in middle school (Davis, 2014).
- Eunsook, Sas, Sas. J. (2006).
-Efficient note taking
-Actual problem Solving

RESEARCH QUESTION \#1

- What differences exists, if any, in the learning styles between those students that passed algebra 1 and students who failed algebra 1 during first semester of the 2016-2017 school year?

RESEARCH QUESTION \#2

- What differences exists, if any, in the mathematics selfefficacy among students who passed algebra 1 and those students who failed algebra 1 during first semester of the 2016-2017 school year?

RESEARCH QUESTION \#3

- What were the early predictors, if any, between the preferred learning styles, math self-efficacy scores, and the standardized test performance scores of participants 14-16 years of age who passed algebra 1 and participants who failed algebra 1 first semester of the 2016-2017 school year.

STUDY SIGNIFICANCE

- To assist those students who still struggle
- For math instructors
- To contribute to the conversation concerning mathematics
- Participant benefits
- To start new conversation about pedagogical change

DESIGN

\square Quantitative

Relationships in a statistical way
$\square \quad$ Chi Square analysis for RQ \#1 and RQ \#2
$\square \quad 2$ groups with nominal data
$\square \quad 2$ sample t-test for RQ \#3
(Leedy \& Ormond, 2013)

PARTICIPANTS

- groups identified for the study.
-Student's who passed algebra 1 during $1^{\text {st }}$ semester of the 2016-2017 school year
-Students who failed algebra 1 during $1^{\text {st }}$ semester of the 2016-2017 school year

INSTRUMENTS UTILIZED

Learning Style Inventory
\square Math Self-Efficacy Scale
$\square \quad$ Both measurements given to participants on the same day
$\square \quad$ Total time required 1hr 5min.

FINDINGS RQ \#1

- What differences exists, if any, in the learning styles between those students that passed algebra 1 and students who failed algebra 1 first semester of the 20162017 school year?
- RQ \#1 - No statistically significant relationship was identified.
- Specifically, $\left(\chi^{2}(4, N=41), p=.498\right)$ represents the results from the Chi Square analysis

FINDINGS RQ \#2

- What differences exists, if any, in the mathematics selfefficacy among students who passed algebra 1 and those students who failed algebra 1 first semester of the 2016-2017 school year?
- RQ \#2- No statistically significant relationship was identified.
- Specifically, $\left(\chi^{2}(30, N=42)=, p=.312\right)$ represented the results from the Chi Square analysis.

FINDINGS RQ \#3

- What were the early predictors, if any, between the preferred learning styles, math self-efficacy scores, and the standardized test performance scores of participants 14-16 years of age who passed algebra 1 and participants who failed algebra 1 first semester of the 2016-2017 school year.
- RQ \#3No statistically significant relationship was identified.
- Specifically, $t(40)=.19, p=.56, t(41)=.21, p=.248$, and $t(41)=.01, p=.858$ were the results generated from the t-test analysis.

CONCLUSIONS

- A relationship does not exist between preferred learning styles and math success for urban Black males who passed or failed high school algebra 1
- A relationship does not exist between the math self-efficacy scores and math success for urban Black males who passed or failed high school algebra 1
- A relationship does not exist among the preferred learning style, math self-efficacy, and standardized test scores between urban Black males who passed or failed high school algebra 1

CONCLUSIONS CONTINUED

- In tandem:
- Preferred learning styles
- Math self-efficacy
- Standardized test performance
-Do not make for suitable predictors of high school algebra 1 failure.
a The existence of the negative phenomena remains

IMPLICATIONS

- An Investigative step has been established
- Practitioner Behaviors must change
- An explanation for the phenomena has not been identified
- Acknowledgement that other variables to algebra 1 failure exist

LIMITATIONS

- At this time, the sample size of the participant group may not be as robust as the researcher would like.
- Pen to paper examination
- End of the day participant assessment
- More extensive use of technology

RECOMMENDATIONS

- Recognition and acceptance of a negative phenomenon in mathematics concerning Black males.
- Future research should be both quantitative and qualitative
- Future research should be in partnership with large urban district
- Future participant groups should be >2000

REFERENCES

Ballon, E. G. (2008). Racial differences in high school math track assignment. Journal of Latinos and Education, 7(4), 272-287.

Davis, J. (2014). The mathematical experiences of Black males in a predominantly Black urban middle school and community. International Journal of Education In Mathematics, Science And Technology, 2(3), 206-222.

Eunsook, H., Sas, M., \& Sas, J. C. (2006). Test-taking strategies of high and low mathematics achievers. Journal of Educational Research, 99(3), 144-155.

Hedges, L. V., \& Nowell, A. (1999). Changes in the Black-White gap in achievement test scores. Sociology of Education, 72(2), 111-135. http:/ /dx.doi.org/10.2307/2673179

REFERENCES CONTINUED

Kafele, B. K. (2012). Empowering young Black males. Educational Leadership, 70(2), 67-70.

Leedy, P. D. \& Ormrod, J. E. (2013). Practical Research Planning and Design. United States, Pearson

National Center for Educational Statistics (2012). Long term trends. Retrieved from
https:/ / nces.ed.gov/pubsearch/ pubsinfo.asp?pubid=2009479
Sadowski, M. (2006). The school readiness gap. Harvard
Education Letter, 22(4), 1-2.

REFERENCES CONTINUED

Schott foundation for public education; Schott foundation report: Gap between black and white male high school graduation rates still widening. (2015). Education Business Weekly, 94.

Sommers, C., Owens, D. \& Pilawsky, M. (2008). Individual and social factors to urban African American adolescents' school performance. High School Journal, 91(3), 1-11.

Whiting, G. W. (2006). From at risk to at promise: Developing scholar identities among black males. Journal of Advanced Academics, 17(4), 222-229,285

