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The Cocktail Party Problem

Illustration of Speech in Crowded Room Scenario



Independent Component Analysis Scheme

• Little standardization [1]

• Blind Source Separation
– Optimally requires no prior signal data [2]

– ICA = Independent Component Analysis
– PCA = Principal Component Analysis

History of Analysis



• Fourier Transform
– Converts signal to 

frequency domain
– Allows for spectral 

analysis [3]

History of Analysis

Frequency Spectra Example



• Phoneme – basic unit of speech [4]

– Examples: /a/ , /t/ , /ch/ , /ng/ 
• Phone – further breakdown of speech [4]

– Example: /t/ pronunciation varies in steak vs. top

Linguistic Theory

Sample Phonetic Breakdown

Key Prediction: Individuals have unique characteristics 
in their pronunciation of phonemes/phones 



The Question(s):

Can principal component analysis of 
spectral voice data be used to identify 
differences between speakers?

Can such differences be used to develop an 
algorithm which separates a mixture of 
vocal signals?



• Recorded speech samples from 30 participants
– 16 Male, 14 Female

• Participants read short story titled “Arthur the 
Rat”
– Used by Dictionary of American Regional English[5]

– Offers full phonetic representation of American 
English

Methodology – Data Collection



• Speech signal broken up into 2500-3500 time segments
• Fast Fourier Transform performed on each segment

– Transforms signal to frequency domain for singular value decomposition

Methodology – Data Processing

Person 1 Frequency Spectra



• Principal Component Analysis – using singular 
value decomposition (SVD) to break up a signal 
into:
– Principal Vectors – “building blocks” of a signal
– Principal Value – corresponding magnitude of a 

value

Methodology – Data Processing



Vector1 * Value1   + Vector2 * Value2   =     Mixed Signal

Methodology – SVD Explained

+ =
Vector 1 Vector 2 Mixed Signal



• SVD on all 30 speakers = principal vector set for 
each

• Compiled 50 most significant principal vectors 
from all 30 sets
– Performed SVD on combined principal vectors, 

producing finalized set of principal vectors 
representative of all 30 speakers

• Using final principal vectors, created projection 
matrix
– Average principal values for all 30 speakers

Methodology – SVD
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Identifying Speakers – Algorithm #1

• 𝑀𝑀 =  Comparable measurement   Select speaker with   
lowest 𝑀𝑀

• 𝛼𝛼 =  Measured principal value
• 𝜇𝜇 =  Average speaker principal value
• 𝜎𝜎 =  Speaker’s standard deviation
• 𝑊𝑊 =  Vector weight

Z - score
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Identifying Speakers – Algorithm #2

• 𝑀𝑀 =  Comparable measurement   Select speaker with   
lowest 𝑀𝑀

• 𝛼𝛼 =  Measured principal value
• 𝜇𝜇 =  Average speaker principal value
• 𝜎𝜎 =  Speaker’s standard deviation
• 𝑖𝑖 =  Vector number

Z - score



Results – Algorithms 1 & 2 Accuracy

Algorithm 1 Accuracy (Single Speaker) Algorithm 2 Accuracy (Single Speaker)



Results – Speaker Predictions

Algorithm 1 Identifications for Speaker 5



Results – Principal Values

The principal values 
overlap between the 
two speakers for most 
of the region, making 
it difficult to use the 
interaction of the 
principal values to 
separate the speakers.

Interaction of two principal values for Speaker 
1 (blue) and Speaker 2 (red)



Results – Speaker Predictions

Principal Values (from PV#4) for males and females



• Algorithms 1and 2 were not successful in 
correctly identifying speakers
– Algorithms tended towards guessing one specific speaker 

to often
– Could not move forward to separation of mixed signals

• Principal Vector #4 = good predictor of gender
• Moving Forward

– Revise principal component analysis process
– Account for empty space, or pauses in speech

Conclusions
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Questions?

Thank You!
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