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ABSTRACT 

Background 

RNA polymerase holoenzyme (Eσ) mediates transcription in eubacteria, and is 

composed of five constant subunits (α2ββ’ω) and a variable sigma (σ) subunit that is 

responsible for promoter recognition and initiation of transcription. An alternative sigma 

factor in Salmonella Typhimurium, σ54 (also called RpoN), is mechanistically different 

than classical σ70-type sigmas, requiring a different promoter consensus sequence, an 

activator, and ATP hydrolysis. The Rtc RNA repair operon lies within the regulon of 

RpoN in S. Typhimurium, but has no known physiological function. Previous work 

characterized similar systems in archaea and humans, which were determined to 

function in recovery from environmental stresses. Focusing on recovery from 

environmental stress as a function of the Rtc RNA repair operon, I hypothesized that 

nitrogen limitation, iron limitation and cell wall stress would induce expression of the Rtc 

RNA repair operon in Salmonella Typhimurium.  

 

Results  

A plasmid encoding the quantifiable expression of LacZ under the control of the 

Rtc RNA repair operon was used to measure the impact of environmental stresses on 

expression of the operon. Cefotaxime as a cell wall stressor induced a four-fold increase 

in expression maximally at a dose of 40 μg/ml, nitrogen limitation exhibited a two-fold 

increase, and addition of 2,2’-bipyridyl as an iron chelator did not induce any significant 

increase in expression at 0.2, 0.3, or 0.5 mM. However, these three treatments all fell 

short of the positive control treatment with Mitomycin C (MMC), which had two and four-

fold increases in expression compared to cefotaxime and nitrogen limitation treatments. 

 

Conclusions 



 vii 

Induction of expression upon treatment with MMC, cefotaxime and nitrogen 

limitation displays the diversity of signals that induce the Rtc RNA repair operon. 

Induction with cefotaxime indicates the Rtc RNA repair operon may function to repair 

transcripts essential for metabolites involved in transitioning to anaerobic metabolism. 

Induction with nitrogen limitation suggests that the repair operon plays some role in 

adapting to low nitrogen conditions. However, not all sources of environmental stress 

were able to induce operon expression. Expression upon iron limitation was not 

observed and indicates a distinct difference in the response of rtcR between E. coli and 

Salmonella.  

 

KEYWORDS 

Sigma54, RpoN, Bacterial enhancer-binding protein, Sigma factor, Salmonella, β-

galactosidase assay, nitrogen limitation, iron limitation, cefotaxime, repair operon, 

Mitomycin C  
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INTRODUCTION 

 Salmonella enterica subspecies enterica serovar Typhimurium is estimated to 

cause over 1 million cases of Salmonellosis in the United States, which typically involves 

the onset of diarrhea, fever and abdominal cramps. 19,000 of these cases require 

hospitalization and 380 result in death [1]. Salmonella Typhimurium is a key serovar, or 

serotype, that contains clusters of virulence genes (genes that code for molecules that 

contribute to pathogenicity and permit colonization in the host niche) that allow invasion 

of epithelial cells, replication within macrophages, and colonization of the gastrointestinal 

tract [2]. These characteristics place it among the most prevalent food-borne 

gastrointestinal diseases worldwide [1], with roughly 5% of these cases resulting in 

invasive bacteremia and requiring treatment with antimicrobials [3]. With the rapid 

emergence of antimicrobial resistance in Salmonella, finding new targets for 

antimicrobial agents is becoming increasingly important [3]. The transcriptional control 

system that initiates the timely transcription of virulence genes is also responsible for 

maintaining an appropriate level of cellular fitness that allows the bacteria to compete 

with native microbiota. This remarkably intricate system results in a complex 

transcriptome that remains to be completely described [2]. Further characterization and 

understanding of the mechanisms that Salmonella utilizes in response to changes in its 

environment may elucidate novel targets for these agents. Apart from its medicinal 

benefit, Salmonella, as a model system, has led to identification of virulence factors and 

mechanisms of bacterial transmission [3]. 

 

Transcription 

 Transcription, while absolutely necessary to life, has high-energy costs and 

therefore is extensively regulated in bacteria. Regulation conserves energy sources as 

well as prevents the deleterious effects of expression at inappropriate times [4]. RNA 
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polymerase holoenzyme (Eσ), composed of five constant subunits (α2ββ’ω) and a 

variable sigma subunit (σ), mediates transcription in eubacteria. The constant subunits 

compose the RNA polymerase core (RNAP), which catalyzes polymerization, while the σ 

factor is responsible for promoter recognition and binding as well as initiation of 

transcription [5]. Transcription initiation requires isomerization, or the conversion of the 

transcriptionally inert closed complex of the Eσ, to the active open complex. Given this 

mechanism, the σ factor can modify the specificity of the Eσ, targeting different promoter 

sequences.  

 While the primary sigma factor in bacteria, σ70, recognizes promoters for 

housekeeping genes (those that are constitutively on), alternative sigma factors 

recognize a different subset of genes [5]. Salmonella has 5 alternative sigma factors, 

though the amount varies greatly among different genera. The first four alternative σ 

factors control a group of genes that coordinate a response to a particular type of stress 

[6]; σS/38 regulates genes critical to the cells’ entry into stationary phase, σH/32 controls 

genes in the heat shock response, σE/24 directs the response to envelope stress, and 

σfliA/28 guides expression of flagellar biosynthesis [5]. The fifth alternative sigma factor, 

σ54 (also called RpoN), was initially implicated in the transcription of genes dealing with 

low nitrogen availability [7] (thus the N in RpoN), yet its known repertoire controls a 

diverse set of genes in response to very different types of stresses or environmental 

signals [4]. Its regulon, collection of genes or operons under regulation by σ54, is known 

to consist of 22 promoters in S. Typhimurium [8] and has been shown to be involved in a 

variety of cellular processes including flagellar biogenesis, transport and metabolism of 

carbon substrates, tolerance to heavy metals, composition of the cell exterior, and the 

transport of the precursors of extracellular saccharides [9-13]. Yet this list leaves out a 

known element of the RpoN regulon, specifically, the Rtc RNA repair operon [4]. 
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σ54 versus σ70- family  

 σ54 is mechanistically different from the primary and alternative sigma factors 

(σ70- family), as it requires a different promoter consensus sequence. The promoter 

sequences recognized by σ70- type sigma factors are located at -35 and -10 bp relative 

to the transcription start site (TSS). These consensus sequences, TTGACA and 

TATAAT, are not highly conserved and can maintain function with insertion of 2-3 bp 

between the two sites [14]. However, the promoter sequences essential for σ54 

recognition and binding, center on highly conserved GG and GC consensus sequences 

located at -24 and -10 bp upstream of the TSS [15]. Insertion of even 1 bp will 

completely abolish recognition and binding by σ54 [15].  

 Another difference between the σ70- family and σ54 is the mechanism of activation 

(transcription initiation). Activation of Eσ54 is energy-dependent and requires a bacterial 

enhancer binding protein (bEBP) [5]. Upon recognizing an environmental stimulus, the 

bEBP becomes activated to form a hexamer, which interacts with an enhancer sequence 

that is ~100 bp upstream of the TSS [8, 16]. Then, a DNA looping event allows the bEBP 

to interact with the holoenzyme (Eσ54) bound to the promoter in a closed complex. ATP 

hydrolysis by the bEBP provides the energy needed for Eσ54 to transition into the open 

complex and thus initiate transcription [8] (figure 1). These characteristics (i.e., reliance 

on an enhancer sequence, ATP hydrolysis, and DNA looping) are often found in 

eukaryotic polymerase II, and indicate that Eσ54 may be more similar to eukaryotic 

polymerases than other bacterial sigma factors [17].   
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Figure 1: Activation of σ54-dependent transcription. 
σ54 (red), interacting with core RNA Polymerase (blue), directs binding of the holoenzyme to the -12, -24 
promoter sequence (light blue). The closed complex is stable on the promoter sequence and cannot enter 
the open complex without an activator. The activator (yellow) oligomerizes in response to a cellular signal 
and binds to the enhancer sequence (green), which is typically 80-150 bp upstream of the promoter. DNA 
looping brings the activator in contact with Eσ54 and hydrolysis of ATP causes Eσ54 conformation change into 
the open complex, allowing transcription. In these studies, σ54 was activated by DctD250, a constitutive, 
promiscuous activator of sigma-54-dependent expression, that should activate expression from all sigma-54-
dependent promoters simultaneously [Figure modified from Samuels et al., 2013]. 
 
 

Rtc RNA repair operon 

 The Rtc RNA repair operon in Salmonella is a σ54-dependent operon that 

supposedly encodes an RNA repair system. This operon contains 3 structural genes and 

2 small RNAs. The first gene, rsr, is a Ro-sixty related ribonucleoprotein; the second, 

rtcB, is an RNA ligase; the third, rtcA, is an RNA phosphate cyclase. The 2 small RNAs, 

partners of Rsr, yrlA and yrlB, are encoded between rsr and rtcB [4]. The activator for 

this σ54 dependent pathway is encoded by rtcR, which is adjacent to the RNA repair 

operon, but transcribed in the opposite direction (Figure 2). The physiological function of 

this operon is, to date, unknown, but based on similar RNA repair systems in other 

organisms, such as humans and archaea, some inferences can be made. The potential 
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functions include tRNA splicing, alternative mRNA splicing, recovery from ribotoxin 

damage, and recovery from environmental stresses [4]. Recovery from environmental 

stress, as a function of the Rtc RNA repair operon, is the focus of this study.   

 Mitomycin C (MMC) belongs to the mitomycin family of antibiotics, derived from 

species of Streptomyces. Furthermore, MMC is commonly used as a chemotherapeutic 

agent, and its mechanism of cell death is typically attributed to nuclear DNA damage. 

Recently, MMC has been shown to lead to the degradation of RNA as well [18]. In light 

of these two mechanisms, a study was performed investigating the treatment of 

Salmonella with MMC as an antibiotic, and demonstrated increased expression of the 

Rtc RNA repair operon [4].  

 
Figure 2. The Rtc RNA repair operon. 
The σ54 dependent promoter is delegated as Prsr and the promoter for the enhancer binding protein, rtcR, is 
delegated as PrtcR. These two genes are transcribed in opposite directions. 
 
 
 
Project focus  

 Here, we investigated whether environmental stressors such as carbon 

starvation, nitrogen limitation, and cell wall stress could induce Eσ54 expression of the 

Rtc RNA repair operon. These conditions have been observed to activate the regulators 

of other RpoN-dependent promoters [9-13] as well as toxin-antitoxin systems, which are 

known to cleave RNA and to be activated by the SOS response [19, 20]. Therefore, I 

hypothesized that these environmental stresses would induce expression of the Rtc 

RNA repair operon in Salmonella Typhimurium. If identified, this would provide avenues 
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to determining more specifically the mechanism of activation of the Rtc RNA repair 

operon. Characterization of the induction of this operon in Salmonella may lead to 

identification of virulence factors and mechanisms of bacterial transmission that can be 

targeted. 

 

MATERIALS AND METHODS 

Preparing S. Typhimurium 

 Construction of a reporter plasmid for expression from the promoter for the Rtc 

RNA Repair Operon was initiated by Caleb Gulledge and then completed by Ashley 

Bono and Dr. Anna Karls. Preparation of S. Typhimurium strains carrying the plasmid 

was carried out by Ashley Bono and Dr. Anna Karls of the University of Georgia and 

then shipped to ONU for my study. Briefly, the reporter plasmid pCMG23 was created by 

ligation of a ~200 bp DNA fragment containing the promoter for the Rtc RNA repair 

operon into pNN387 [21], which is a single copy reporter plasmid that contains a multi-

cloning site upstream of a promoterless lac gene. Cloning was done in E.coli DH5α and 

then transformed into pathogenic S. Typhimurium 14028s via electroporation after 

passage through a hsdR- hsdM+ Salmonella strain. 

 

Growth media and conditions 

 Bacteria was grown at 37°C with aeration in MOPS minimal media (MOPS) [22]. 

The antibiotic, chloramphenicol (15 μg/ml), was added to cultures to select for the 

reporter plasmid. Overnight cultures were diluted 1:9 in fresh media with antibiotics, 

grown to mid-exponential phase (OD600= 0.4-0.6), and then treated. Treatments were 

with MMC as the positive control (3 μg/ml), iron limitation (0.2, 0.3, & 0.5 mM 2,2′-

bipyridyl), nitrogen limitation (2.5 mM arginine as sole nitrogen source), and cell wall 

stress (2, 10, 30, 40, 50, 65, & 130 μg/ml of cefotaxime). 
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 MMC treated cultures were grown for an additional 90 minutes for use in the β-

galactosidase assay. The iron chelator was added during the initial subculture, and then 

grown for 10 hours. In the case of nitrogen limitation, once the subculture reached mid-

exponential phase, the culture was pelleted at 12,000 rpm for 10 min, washed in 

nitrogen limiting MOPS, pelleted again, and then resuspended in nitrogen limiting MOPS 

prior to culturing for 3 hours. Cefotaxime treated cultures were grown for an additional 3 

hours once the cells reached mid-exponential phase. 

 

β-galactosidase assay 

 The expression of the lacZ gene, which is controlled by the Rtc RNA repair 

promoter on the reporter plasmid, was assessed as follows. Treated cultures were 

chilled on ice to stop cell growth, and then 0.5 ml aliquots were combined with a cell 

lysing mixture (Z buffer with β-mercaptoethanol, chloroform, 0.1% SDS) to expose the 

intracellular matrix. Cell debris was then spun for 10 seconds and warmed for 5 minutes 

at 37°. The reaction to begin color change was then initiated with the addition of ortho-

Nitrophenyl-β-galactosidase and incubated at 37° until a color reaction occurred, at 

which time the reaction was stopped with 1M Na2CO3. The solution was centrifuged at 

15000xg for 5 minutes and the supernatant was used to measure absorbance at 420nm 

and 550nm. Activity was calculated as Miller units: {1000 x [OD420 – (1.75 x 

OD550)]/[Time (min) x Volume (ml) x OD600]} [23]. At least 3 biological replicates for each 

condition were used. Activity in treated cultures versus untreated cultures were 

compared and analyzed using a 2-tailed Student’s T-test. Error bars indicate standard 

deviation amongst replicates. 

RESULTS 

 To determine the activity of the Rtc RNA repair operon under environmental 

stressors we performed a quantifiable colorimetric assay, β-galactosidase assay, using 
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WT+pCMG23 comparing treated and untreated cultures. Cell wall stress by cefotaxime 

treatment, which inhibits cell wall synthesis by binding to penicillin binding proteins [24], 

revealed significant increases in expression at 10, 30, 40, and 50 μg/ml doses (figure 3). 

Maximal expression of 8.28 Miller units occurred at 40 μg/ml, which is greater than a 

four-fold increase in expression compared to the 1.90 miller unit baseline activity. 

However, this level of activity is half that of the positive control MMC treatment, which 

exhibited activity of 16.26 miller units. Doses of 2 μg/ml and 130 μg/ml caused a 

significant decrease in expression when compared to the untreated samples measuring -

0.20 and -3.12 miller units, respectively. 

 
Figure 3. Cell wall stress by cefotaxime induces Rtc RNA repair operon expression.  
Dosage titration revealed maximal expression of the Rtc RNA Repair Operon at a dosage of 40 μg/ml 
cefotaxime. 
 
 The iron limitation titration using an iron chelator, 2,2’-bipyridyl, did not induce 

significant changes in expression at 0.2, 0.3, or 0.5 mM doses (figure 4). Maximal 

expression of 2.60 miller units was exhibited at the 0.2 mM dose but was not statistically 

significant (p= .230). 
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Figure 4. Iron Limitation by 2,2’-bipyridyl does not induce Rtc RNA repair operon expression. 
Dosage titration revealed maximal expression of the Rtc RNA Repair Operon at a dosage of 0.2 mM 2,2’- 
bipyridyl. This dose induced 2.60 miller units of activity. However, none of the doses revealed a statistically 
significant change in expression when compared to untreated culture. 
 
 Nitrogen limitation was also able to significantly increase Rtc RNA repair operon 

expression, and was compared with cell wall stress and iron limitation treatments (figure 

5). The nitrogen limitation treatment induced 4.04 miller units of activity, which accounts 

for a two-fold increase from baseline, yet four-fold lower when compared to the positive 

control treatment of MMC. Upon comparing all treatments in the study, MMC was the 

best inducer of expression, displaying over an eight-fold increase in expression from 

baseline. Cefotaxime and nitrogen limitation also increased expression by four and two-

fold, respectively, while the iron limitation treatment did not affect expression.  
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Figure 5. Expression of Rtc RNA repair operon is induced by MMC, cefotaxime, and nitrogen 
limitation, but not iron limitation. 
Treatment with cefotaxime elucidated roughly half the activity of treatment with MMC, but also a four-fold 
increase from that of untreated culture. Nitrogen limitation revealed a two-fold increase in expression when 
compared to untreated culture. Iron limitation did not induce expression of the repair operon. 
 
 

DISCUSSION 

 Pathogenic virulence is a major area of study. Repair systems in pathogens are 

often associated with pathogenic virulence, though a repair system in bacteria has yet to 

be fully characterized [4]. By defining conditions of induction, we move closer to the 

mechanism of activation and full characterization of the repair system because we gain 

the ability to trigger the natural response of the pathogen. Understanding these 

physiological responses of the pathogen may allow for directed and novel antimicrobial 

targeting. This study sought to characterize the ability of environmental stress to induce 

Rtc RNA repair operon expression in S. Typhimurium, and identified three treatments 

that induce expression, two of which represent novel discoveries. 
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Cefotaxime 

 A recent study revealed that at sub-inhibitory treatments of cefotaxime, genes 

related to anaerobic metabolism, biosynthesis of purines, pyrimidines, amino acids and 

other metabolites were necessary to survive [25]. The paper concluded that with 

exposure to sub-lethal concentrations of cefotaxime, the systemic colonization of S. 

Typhimurium increased, establishing fitness alterations that deal with the new 

environment. This infers that the cellular mechanisms in response to stress, or the SOS 

response, are up regulated for survival. They also found that upon exposure to 

cefotaxime the cell switches to anaerobic metabolism to sustain growth, even when 

incubated aerobically. This is because cefotaxime inhibits S. Typhimurium’s ability to 

consume oxygen [25]. Though my study initially identified cefotaxime as a cell wall 

stressor, this provides evidence that the mechanism targets the cell’s consumption of 

oxygen and causes oxidative damage. As the sub-lethal levels of cefotaxime intrude, 

preventing ideal growth, the cell expresses different genes in response, in this case, 

genes helpful in anaerobic metabolism.  

 This study identified the minimum inhibitory concentration (MIC) for cefotaxime 

as 130 μg/ml, and used a concentration of 65 μg/ml (0.5 x MIC) for the sub-lethal 

concentration [25]. My study reinforced their findings of the MIC, however my findings 

revealed that maximum expression of the Rtc repair operon was induced with a lower 

dose of cefotaxime (40 μg/ml) in S. Typhimurium. Cefotaxime’s known effects to switch 

to anaerobic conditions, coupled with the increased expression of the Rtc repair operon 

upon treatment with cefotaxime that I found, suggest a possible mechanism of action for 

the Rtc RNA repair operon. The operon may aid in the recovery and repair of transcripts 

of essential metabolites that are involved in the transition to anaerobic metabolism. 

 

Nitrogen limitation 
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 Despite sigma-54’s known function in genes involved with low nitrogen availability 

[7], the nitrogen limiting treatment was less robust, but statistically significant in inducing 

rtc RNA repair operon expression. This finding, along with the increased expression 

upon treatment with MMC and cefotaxime, further demonstrate the diversity of 

responses that sigma-54 is involved in. Though it was not the largest response, nitrogen 

availability did exhibit a two-fold increase in expression, suggesting that the RNA repair 

operon does play some role in low nitrogen conditions. Further investigation into different 

levels of nitrogen availability may reveal greater responses from the repair operon. 

 

Iron limitation 

 The lack of expression during the iron limitation treatment indicates a stark 

difference in expression of the repair operon between E. coli and Salmonella. One study 

induced a three-fold increase in expression of rtcA in E. coli upon addition of the iron 

chelator 2,2’-bipyridyl at 0.2 mM, utilizing essentially the same conditions and 

concentrations as in my own study [26]. One difference in methods was their use of real 

time-PCR, which would give more sensitive results. However, it is unlikely that sensitivity 

could account for a three-fold difference. It is more likely the difference in expression 

between the two organisms indicates a difference in how rtcR responds to environmental 

signals. Though Salmonella RtcB and RtcA are 88% and 68% identical, respectively, to 

those proteins in E. coli [4], the response to stress is controlled by RtcR. While the 

homology of RtcA and RtcB suggest a similar function of the RNA repair operon, it is 

apparent the signals they respond to, which initiate RtcR, are different. 

  

 

Conclusion 

 This work adds to the current body of knowledge, and identifies two novel 
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inducers of the Rtc RNA repair operon by sigma-54 allowing other researchers to build 

on the conditions that I have defined. Moreover, the long-term benefits of this study have 

real potential through application in industrial pharmaceuticals. Studies that target the 

mechanisms of pathogenic virulence have potential to be exploited in pharmaceutical 

production of antimicrobials, which expands their relevance to every part of the globe. 
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