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S U M M A R Y
Density variations drive mass transport in the Earth from plate tectonics to convection in
the mantle and core. Nevertheless, density remains poorly known because most geophysical
measurements used to probe the Earth’s interior either have little sensitivity to density, suffer
from trade-offs or from non-uniqueness. With the ongoing expansion of computational power,
it has become possible to accurately model complete seismic wavefields in a 3-D heterogeneous
Earth, and to develop waveform inversion techniques that account for complicated wavefield
effects. This may help to improve resolution of density. Here, we present a pilot study where
we explore the extent to which waveform inversion may be used to better recover density as
a separate, independent parameter. We perform numerical simulations in 2-D to investigate
under which conditions, and to what extent density anomalies may be recovered in the Earth’s
mantle. We conclude that density can indeed be constrained by seismic waveforms, mainly as
a result of scattering effects at density contrasts. As a consequence, the low-frequency part of
the wavefield is the most important for constraining the actual extent of anomalies. While the
impact of density heterogeneities on the wavefield is small compared to the effects of velocity
variations, it is likely to be detectable in modern regional- to global-scale measurements. We
also conclude that the use of gravity data as additional information does not help to further
improve the recovery of density anomalies unless strong a priori constraints on the geometry
of density variations are applied. This is a result of the inherent physical non-uniqueness of
potential-field inverse problems. Finally, in the limited numerical setup that we employ, we
find that the initially supplied anomalies in S- and P-velocity models are of minor importance.

Key words: Gravity anomalies and Earth structure; Inverse theory; Waveform inversion;
Seismic tomography; Wave propagation; Wave scattering and diffraction.

1 I N T RO D U C T I O N

Density is one of the most important material properties influenc-
ing the dynamics of our planet’s interior. Lateral density variations
drive mass transport on all scales, from plate tectonics (e.g. Forsyth
& Uyeda 1975; Chapple & Tullis 1977; Bunge et al. 2003; Liu &
Gurnis 2008; Warners-Ruckstuhl et al. 2012) to whole-mantle con-
vection (Turcotte & Schubert 2014). Knowledge of density is also
required to distinguish between thermal and compositional hetero-
geneities (e.g. Trampert et al. 2004; Mosca et al. 2012). Despite its
importance, however, variations of density inside the Earth remain
poorly constrained, compared to variations of seismic wave speeds.

1.1 Why is density difficult to constrain?

The majority of tomographic studies traditionally rely on picked ar-
rival times of specific seismic phases. While this is a tried and tested
way to infer variations of seismic velocities inside the Earth, infinite-
frequency ray theory predicts that arrival times of body waves are
exactly insensitive to density (Cerveny 2001). At finite frequencies,

the scattering properties of density anomalies also indicate weak
sensitivity of arrival times to density: while the scattered wave of
a pure velocity anomaly travels forward with the seismic wave, the
scattered signal of a pure density anomaly (velocities remaining
constant) travels in the opposite direction, which means that the
forward travelling wave remains unperturbed (e.g. Wu & Aki 1985;
Tarantola 1986; Fichtner & Trampert 2011).

The amplitudes of reflected and transmitted waves depend di-
rectly on density contrasts (Aki & Richards 2002). There are, how-
ever, large trade-offs with velocity, because the impedance contrasts
causing the partitioning of energy into reflected and transmitted sig-
nals are also a function of seismic velocity.

The frequency-dependent arrival times of Rayleigh waves are
sensitive to density, but this sensitivity is oscillatory with depth
(Takeuchi & Saito 1972). This means that a positive density anomaly
may interact with both the positive and negative parts of the sensi-
tivity kernel, thus strongly reducing the net effect. Normal modes
display sensitivity to density due to the gravitational restoring force.
However, this effect is strongest for the gravest normal modes
and these are only sensitive to the longest wavelength structure
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in the Earth (e.g. Dahlen & Tromp 1998; Woodhouse & Deuss
2007).

Gravity data are sensitive to mass distribution only, and as such
are most directly related to density. However, because they are
potential-field measurements, solutions to the gravitational inverse
problem are inherently non-unique (Blakely 1995). This means that
even in the case of full surface coverage and error-free data, an in-
finity of solutions remains—this in contrast to, for example, ray to-
mography, where the central-slice theorem dictates that a perfect re-
construction would be obtained in that case (Iyer & Hirahara 1993).
Gravity on its own can thus provide only weak constraints on density
structure, and as a result, strong prior information needs to be incor-
porated into the inverse problem (Blakely 1995; Tarantola 2005).

1.2 Previous work

1.2.1 Seismic data

Laterally averaged 1-D density models (e.g. Dziewoński et al. 1975;
Dziewoński & Anderson 1981) are based on measurements of the
Earth’s total mass and moment of inertia and on frequencies of the
gravest normal modes. Because of the persistent non-uniqueness
of the resulting inverse problem, these models have to be supple-
mented with a priori assumptions about possible adiabaticity in
different portions of the Earth, as well as about the density jumps
at discontinuities. These assumptions may lead to biases, especially
near discontinuities (Kennett 1998; de Wit & Trampert 2015). In-
formation about the density contrast at such discontinuities can be
obtained from the amplitudes of reflected and transmitted waves,
but these suffer from trade-offs with velocity structure (Shearer &
Flanagan 1999; Kato & Kawakatsu 2001).

The sensitivity of normal modes has also been used to study
the long-wavelength 3-D density structure in the lower mantle
(Ishii & Tromp 1999, 2001, 2004). However, the robustness of
these results has been questioned by various authors (Resovsky &
Ritzwoller 1999; Kuo & Romanowicz 2002; Resovsky & Tram-
pert 2002). Koelemeijer et al. (2017) confirmed that earlier results
from normal-mode data were not robust, but can be improved sig-
nificantly with the addition of the most recent measurements.

For long-period surface waves (100–500 s), density may be re-
solvable in the upper 150–200 km (Tanimoto 1991). At these depths,
an anticorrelation of density and S velocity is found in some regions,
where continents appear light, but fast. The ratio of horizontal and
vertical components (H/V ratios) of higher frequency surface waves
can be used to map density as well (e.g. Lin et al. 2012). However,
H/V sensitivity displays strong trade-offs with other parameters,
and can only be used with significant regularization, or with the
inclusion of a priori scaling relations.

Scaling relations are a commonly used method to incorporate
density into seismic tomography. For instance, the magnitude of
relative density anomalies is often scaled to that of relative S-wave
velocity. Such scaling ratios dlnρ/dlnvS typically range between
0.1 and 0.4 (e.g. Karato & Karki 2001; Simmons et al. 2009), but
may be negative especially in (some parts of) the shallow and deep
mantle. While in many regions, this results in reasonable models
that may also agree well with gravity data, these scaling relations
preclude the detection of those interesting regions where they do not
hold. Such regions may be present in all parts of the Earth, from the
crust to the deep mantle (e.g. Tanimoto 1991; Ishii & Tromp 1999;
Simmons et al. 2009), and may point, for example, to chemical
heterogeneity or the presence of melt.

On exploration scales, density is generally incorporated into stud-
ies by way of (contrasts in) impedance (e.g. Mora 1987) although
some recent work has been done to study density separately (e.g.
Jeong et al. 2012; Prieux et al. 2013).

1.2.2 Gravity data

Apart from seismic data, gravity measurements have been used
to study the density distribution within the Earth—usually in the
shallower crust and asthenosphere but sometimes on the global scale
as well. Such gravity studies are often augmented with additional
information to reduce non-uniqueness. Seismic models are used to
provide a starting density model (e.g. Chaves & Ussami 2013) or
to isolate the contribution of specific layers (e.g. Kaban et al. 2004;
Herceg et al. 2016; Root et al. 2017). Both approaches may rely on a
pre-defined density model or scaling between density and velocity,
which precludes the discovery of those interesting cases where the
scaling is different or may result in artefacts of the same size as the
structure of interest (Herceg et al. 2016). Alternatively, the shapes
of anomalies can be extracted from seismic velocity models, the
density of which is then adjusted in order to fit the gravity data
(e.g. Fadel et al. 2015). In this case, the assumption is made that the
shapes of anomalies in seismic velocity coincide with the shapes
of density anomalies. Finally, the contribution of modelled density
anomalies can be analysed and compared to maps of the geoid,
gravity field or gravity gradients (e.g. Panet et al. 2014).

1.2.3 Joint inversions

Another approach, aimed at exploiting the complementary informa-
tion present in different data sets, consists of combining multiple
types of observables into a joint inversion. These data can range
from body and surface waves, to normal modes and geodynamic
data, including estimates of past plate motions and the location
of subducting slabs. Such joint inversions have been carried out
with the aim of constraining velocity and density structure in the
whole mantle (e.g. Ricard et al. 1993; Nataf & Ricard 1996; Tondi
et al. 2009; Simmons et al. 2010; Moulik & Ekström 2016). De-
spite the additional data, however, in many cases such studies still
rely on imposed scaling relations between velocity and density, or
on subjective choices of damping in order to avoid artefacts and
reduce trade-offs.

1.3 The effect of density on the seismic wavefield

Despite the issues outlined above, density anomalies do affect
the seismic wavefield in a characteristic way, as illustrated in
Fig. 1, which is in principle measurable (Płonka et al. 2016). For
Fig. 1, wave propagation was calculated in 2-D for a single source
in a medium with constant seismic velocities and a rectangular
10 per cent (+260 kg m−3) density anomaly. Such a setup is simi-
lar to scattering experiments conducted, for example, by Frankel &
Clayton (1986) and, more recently, Prieux et al. (2013), and serves to
visualize how structure affects the seismic wavefield. The radiation
pattern of the source is such that mainly S waves travel in the hori-
zontal direction. All boundaries are absorbing (Cerjan et al. 1985).
As the S wave reaches the anomaly, it interacts with it (Figs 1a–c),
causing perturbations in the wavefield travelling both in the forward
and backward directions (Figs 1d–f). These wavefield perturbations
are generated at the edges of the anomaly, where there is a contrast
in density. With a density anomaly of 10 per cent, the differential
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Figure 1. Snapshots of an S wave propagating past a rectangular 10 per cent (+260 kg m−3) density anomaly. The complete video of this wave propagation
can be found in the online Supporting Information. (a)–(c) Velocity wavefield. (d)–(f) Differential wavefield caused by the density anomaly only—amplitudes
here are 5 per cent of the amplitudes shown in (a)–(c). (g) Seismograms recorded at receivers 1 and 2 for both cases, with and without a density anomaly. At
receiver 1, a clear separate arrival is visible caused by the reflection at the first density interface. (h) Differential seismograms from receivers 1 and 2, obtained
by subtracting vdiff = vρ anomaly − vhomog.

wavefield caused by the density anomaly has amplitudes of about
5 per cent of the original wavefield (see seismograms in Fig. 1g).
This is not a very large signal, but it is measurable with current
state-of-the-art broad-band sensors. A significant part of the energy
is scattered in directions other than the propagation direction of the
primary wave, most notably in the backwards direction, that is, as a
reflection towards the source. As a result, a separate arrival is visible
at receiver 1 after the direct wave has passed through (indicated by
the dotted lines in Fig. 1g). This constitutes the largest amplitude
differential signal (Fig. 1h).

The differential wavefield caused by the density anomaly travels
with the same speed as the original wavefield, which means that for
the wave travelling directly from source to receiver 2, it is mainly
visible as an amplitude change. Nevertheless, the shape of the wave-
form is altered (Fig. 1g) and this expresses itself as a slight change
in finite-frequency traveltime of about 0.5 s, which can be measured,
for instance, by cross-correlation (e.g. Luo & Schuster 1991; Dahlen
et al. 2000; Płonka et al. 2016). In addition to these direct-wave
effects, scattered waves emanating from the density heterogeneity
can be measured as small-amplitude arrivals at receivers off the

direct wave path. As Fig. 1 illustrates, the strongest sensitivity of
seismic waves to density lies in density contrasts or gradients, il-
lustrating the close relationship of density with reflection and trans-
mission coefficients on one hand, and with surface wave sensitivity
on the other.

1.3.1 Our approach

The above observations, complemented by the recent study by
Płonka et al. (2016) showing that Earth-like density variations on
the crustal scale have measurable effects on seismograms, lead
us to speculate that waveform inversion may be a viable method
to study density in the Earth’s interior at regional scales. Wave-
form inversion studies have existed for a long time (Woodhouse
& Dziewoński 1984; Gauthier et al. 1986) and have the advan-
tage that in principle, all information contained in the seismo-
gram can be used (e.g. Fichtner & Igel 2008; Bozdağ et al. 2011;
Rickers et al. 2012). In this paper, we will study to what extent wave-
form inversion can be used to recover density as an independent
parameter.
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Our philosophy is to introduce as few constraints on density as
possible. To study the pure effect of density heterogeneity on wave
propagation, we will not assume any scaling relationship between
seismic velocity and density structure. Moreover, we will not assume
any prior information on the distribution of density heterogeneity
throughout our models. This is because we want to study to what
extent it is possible to image density completely independently from
other parameters.

In this study, we will investigate the conditions that must be
met in order to reconstruct density on the regional to global scale,
and the types of prior information and inversion strategies that can
be exploited. For the sake of simplicity, we assume an isotropic,
non-attenuating medium in which the source locations and signals
are assumed to be known. This is in order to focus on the effect
of density on seismic wave propagation. While some of these as-
pects are known to be important when studying the real Earth, with
this study we simply want to explore the kind of quality level that
must be reached in terms of data, a priori information, inversion
scheme, etc.

First, we investigate to what extent it is possible to recover density
from the seismic signal at all. We will also asses how the inversion
is affected if density is ignored or (erroneously) scaled to S velocity.
Next, we will focus on prior information in the form of starting
models in S and P velocities, and the extent to which we can assume
that these are correct, and thus invert for density only. We will study
the effect of including gravity information into our inversion, and
investigate the effect of noise on the recovery of density structure.
Finally, we will check to what extent density can be recovered when
no strong impedance contrasts are present, contrary to the scenario
in Fig. 1 where they generated the most significant density signal.
Additional tests on parametrization and anomaly amplitude can be
found in the online Supporting Information.

2 M E T H O D S

In the following sections, we will elaborate on the numerical exper-
iments that we carry out in this study. To have a flexible workflow
in which it is easy to test different types of inversion schemes and
model setups, and still remain within reasonable bounds of com-
putational time and effort, we use a 2-D Cartesian model setup in
which we solve the elastic isotropic wave equation.

2.1 Model

Our 2-D model is designed to mimic the Earth’s mantle. This choice
is driven by our interest in density on the regional to global scales,
but it should be noted that in principle, our experiments are scale-
independent. The size of the domain is 2890 km vertically (approx-
imately the depth of the Earth’s mantle) by 6000 km horizontally.
The 1-D background values for the seismic velocities and density
are taken from PREM (Dziewoński & Anderson 1981). The top
and bottom boundaries are reflecting, mimicking in a simplistic but
effective manner the Earth’s surface and the core–mantle boundary.
The side boundaries are absorbing using the Gaussian taper method
of Cerjan et al. (1985) to avoid artificial illumination by reflected
waves that do not exist in the real Earth. Since waves propagating
multiple times around the Earth are also not modelled, the illu-
mination in this setup can be considered conservative. The model
is divided into 430 × 207 blocks, resulting in a grid spacing of
∼14 km.

Figure 2. Target model. Three columns of positive and negative anomalies
are present: density anomalies on the left, S-velocity anomalies in the middle
and P-velocity anomalies on the right. All anomalies are 1 per cent of the
background value (PREM, Dziewoński & Anderson 1981).

In the target model, separate perturbations of ±1 per cent strength
in density, and S and P velocities are superimposed onto the back-
ground model PREM (Fig. 2). These perturbations are completely
uncorrelated to one another. This is done in order to make sure that,
for instance, an apparently resolved density structure is not just an
artefact of velocity structure leaking into density.

2.2 Sources and receivers

There are four seismic source locations at 56 km depth, at each of
which two ‘events’ in the form of vector forces are excited. Their
radiation patterns vary such that one event radiates predominantly
P waves in the vertical direction, and the other predominantly S
waves. Because of the absorbing boundaries, most of the energy
propagating in the horizontal direction is lost, although it will serve
to illuminate the upper mantle to some extent. This results in a total
of eight events. Our choices concerning the number of sources and
receivers are deliberately conservative, intended to prevent overly
optimistic results.

Near the surface of the domain, 16 seismic receivers are located
which are spaced ∼350 km apart. This source–receiver configu-
ration is computationally convenient and proves sufficient for our
purposes, although in the real Earth, a much denser coverage, al-
beit more irregular can be expected. Because of the model grid
spacing, the minimum source wavelength is limited to 100 km to
ensure sufficiently accurate synthetics. This is achieved by band-
pass filtering the source-time function at periods longer than 30 s.
As a result, the signals have frequencies from 0.0067 to 0.032 Hz
(periods 30–150 s), a frequency range for which broad-band
seismometers generally supply good-quality data on the global
scale. The seismic signal is recorded for 1200 s in order for both the
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synthetic core reflections ‘PcP’ and ‘ScS’ to reach the receivers. At
20 km above the surface, gravity is measured at 51 separate gravity
sensors. This is done in a point-mass approach: every gridpoint is
assigned a mass, which contributes to the gravity field measured at
each sensor. In order to remove artefacts that might result from this,
the gravity sensors are not placed directly at the surface but 20 km
above it.

2.3 Seismic waveform inversion

Within the model domain, we solve the wave equation

ρ(x) ∂2
t u(x, t) − ∇ · [C(x) : ∇u(x, t)] = f(x, t), (1)

where u is the displacement field and f is the forcing term. Further-
more, ρ denotes density and C is the elastic tensor, which is in our
case the isotropic elastic tensor Cijkl = λ(δijδkl) + μ(δikδjl + δikδjl).
In the following, we use m to denote the ensemble of all model pa-
rameters in order to treat different parametrizations of the material
properties in a unified way. We developed a 2-D finite-difference
wave propagation code with a computationally efficient staggered
grid (Virieux 1984, 1986) in which we define x = (x, z) where x is
the horizontal and z the vertical direction. We only consider P–SV
motion, that is, particle motion that is in the same plane as the one
in which the model is defined.

To recover our target model, we compare the seismograms of test
models to those of the target model. To this end, we construct an
L2-norm misfit functional in which we compare the complete 1200 s
of waveform data, summed over all components (c), receivers (r)
and sources (s), and normalized by the initial misfit:

min J (m) : =
∑

s,r,c

∫
t [u(m, t) − utarget(t)]2dt∑

s,r,c

∫
t [u(m0, t) − utarget(t)]2dt

,

subject to eq. (1). (2)

The advantage of an L2 norm is that it automatically takes into ac-
count all the information, meaning that theoretically, every single
oscillation can be exploited. The disadvantage is that because the
pure waveform difference is the measurement, this metric is natu-
rally dominated by the largest amplitude signals. It is thus expected
that S velocity is imaged best, while the subtle density effects as
shown in Fig. 1 have a much less pronounced effect. While the
least-squares misfit is known to enhance nonlinearity (e.g. Gauthier
et al. 1986; Luo & Schuster 1991) this is not a problem for the
global scale considered here because heterogeneities are generally
so small that the initial model is always sufficiently close to the
optimum. We use a deterministic inversion approach in which con-
secutive updates are calculated starting from some initial model m0.
For a given model mi , an updated model mi+1 that better explains
the data are calculated from a descent direction si , scaled by some
step length γ i > 0:

mi+1 = mi + γi si , (3)

to ensure J (mi+1) < J (mi ). The descent direction si is determined
by the negative gradient of the misfit of the current model, pre-
conditioned by an approximation of the inverse Hessian Bi :

si = −Bi · ∇ J (mi ). (4)

(Nocedal & Wright 2006). Using the adjoint approach (e.g. Taran-
tola 1988; Liu & Tromp 2008; Fichtner et al. 2006), we calculate
the gradients of the seismic data misfit ∇ J (mi ) using only two
wave propagation simulations per event. The forward wavefield is
stored at evenly spaced intervals (every 10 time steps, in our case).

Gradients, or sensitivity kernels, are then constructed on the fly
during the time-reversed adjoint simulation by combining informa-
tion from the forward and adjoint wavefields. Sensitivity kernels for
density, S and P velocities are defined by

Kρ,event = −
∫

T
u̇† · u̇ dt + (v2

P − 2v2
S)

∫
T

(∇ · u)(∇ · u†) dt

+ v2
S

∫
T

2ε† : ε dt, (5)

KvS,event = 2ρvS

∫
T

(∇ · u)(∇ · u†) dt − 4ρvS

∫
T

2ε† : ε dt, (6)

KvP,event = 2ρv2
P

∫
T

2ε† : ε dt, (7)

with : denoting the elementwise scalar product of two tensors, ε the
strain tensor corresponding to the wavefield u, u† the (time-reversed)
adjoint wavefield and ε† the adjoint strain tensor corresponding to it
(e.g. Fichtner 2010). For legibility, we omitted spatial and temporal
dependences. The event kernels are summed to obtain the final
kernels. Gradients are obtained from eqs (5)–(7) using the Riesz
representation, that is, the projection of the kernel onto the finite-
difference grid. Note that the definitions above are given for the
physical parameters, but the actual inversion parameters are defined
as relative perturbations with respect to a background model, that
is, we use

m = (m1 m2 m3)T (8)

and define

ρ = ρref · (1 + m1),

vS = vS,ref · (1 + m2),

vP = vP,ref · (1 + m3). (9)

This non-dimensionalization serves to circumvent issues with dif-
ferences between the magnitudes of the different parameters and
improves the scaling of line search methods where all parameters
are updated with the same step length. Partial derivatives with re-
spect to m can be computed easily using the sensitivity kernels
defined in eqs (5)–(7) and applying the chain rule. On the kernels,
this has the effect of scaling them by the reference model.

2.4 Descent method

For the iterative misfit reduction, we employ the L-BFGS scheme
(Byrd et al. 1995; Nocedal & Wright 2006), which uses the models
and gradients of previous iterations to construct an approximation
of the inverse Hessian, that is, Bi in eq. (4). This serves to include
curvature information into the inversion. L-BFGS is matrix-free
and requires only vector–vector operations. Thus, the additional
costs of computing the search direction are negligible compared
to conjugate-gradient methods. While this method is not guaran-
teed to converge towards the actual Hessian, experience shows that
it strongly speeds up convergence. Another advantage is that the
search direction is automatically scaled using curvature informa-
tion which makes it possible to skip the computation of additional
trial step lengths in most cases. Hence, for most updates, two simu-
lations suffice: one forward and one adjoint. The L-BFGS minimiza-
tion scheme (see Appendix) is implemented into our methodology
via an interaction between our finite-difference wave propagation
code and a separate custom-built optimization toolbox for seismic
inversion.
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Table 1. Overview of used frequency ranges. All inversions start with the
lowest frequency band and after every 20 iterations, the scheme switches to
the next band.

Frequency Frequency band Period range
number (Hz) (s)

1 0.0067–0.0067 150–150
2 0.0067–0.0083 150–120
3 0.0067–0.0104 150–96
4 0.0067–0.0130 150–77
5 0.0067–0.0163 150–61
6 0.0067–0.0204 150–49
7 0.0067–0.0254 150–39
8 0.0067–0.0318 150–31

An L2-norm waveform misfit functional may suffer from cycle-
skipping, for which reason we use a multiscale approach (Bunks
et al. 1995), starting the inversion with the longest periods (150 s,
or 0.0067 Hz), and adding higher frequency content in a stepwise
manner across iterations, up to periods of ∼30 s (0.032 Hz). The
complete frequency progression is summarized in Table 1. As a
mild form of regularization, we applied a ∼30 km wide Gaussian
smoothing of the sensitivity kernels to avoid the appearance of
small-scale artefacts. We experimented with the number of itera-
tions per frequency, and found that 20 is sufficient to explain the
artificial data to such an extent that it prevents cycle skips when
going to the next higher frequency band. This results in a total of
160 iterations (8 frequency bands × 20 iterations).

3 N U M E R I C A L E X P E R I M E N T S

We carry out a number of tests assessing different inversion strate-
gies. In this section, we will briefly introduce these tests, the moti-
vation for doing them and some information on their construction.
Their results will be discussed in Section 4, and for a number of
additional tests in the on-line Supporting Information.

3.1 Reference case: inverting for density

As a very first experiment, we will assess to what extent density
can be recovered as an independent parameter in addition to the
seismic velocities vS and vP. In this case, we supply no a priori
information other than the background and initial model PREM.
All three parameters are free to vary. This experiment will provide
a first indication of what part of density structure is recoverable.

3.2 Neglecting density

In seismic tomography, it is often the case that only S and/or P
velocity are inverted for. While seismic traveltimes in the ray ap-
proximation are by construction insensitive to density, this is not
the case for complete seismic waveforms, which include the phases
and amplitudes of body, surface and scattered waves. In waveform
inversion, therefore, this sensitivity to density, if ignored, may lead
to biases in the recovered velocity model. In this test, we will com-
pare the results of an inversion where only S and P velocities are
variable, in contrast to our reference case where all three parameters
are inverted for. One can keep density fixed by simply not updating
it:

ρ = ρref (fixed),

vS = vS,ref · (1 + m2),

vP = vP,ref · (1 + m3). (10)

In this test, too, the starting model is PREM. Because density is
kept fixed, there is only two-third of the number of free parameters
compared to the reference case of Section 3.1.

3.3 Scaling density to S velocity

Alternatively, it is common to scale density to S velocity as

Rρ/S = dlnρ/dlnvS. (11)

Here, we will investigate what the effect is of constraining an inver-
sion to a pre-defined scaling ratio between density and S velocity.
Again, we will assess to which extent this constraint causes errors in
the recovery of parameters. For the actual inversion parameters, this
means that again, there are only two-thirds as many free parameters.
Here, however, density is also a function of m2:

ρ = ρref · (1 + Rρ/S · m2),

vS = vS,ref · (1 + m2),

vP = vP,ref · (1 + m3) (12)

with an imposed scaling of Rρ/S = 0.2. Note that the resulting
sensitivity kernel for m2 will now also include a term with Kρ .

Our target model, however, has three differently scaled columns
with Rρ/S = 0.4, 0.2 and −0.2. All of these lie within the assumed
range of validity within the Earth (see e.g. Karato & Karki 2001;
Simmons et al. 2009). This means that the imposed scaling will
only be correct for one of the three columns, whereas it is incorrect
for the other two.

3.4 Initial velocity models

While the previous tests assumed no initial information on any of the
parameters, in most regions of the Earth some information is present
on the velocity structure. We therefore also conduct a series of tests
in which the target S- and P-velocity structures are included in the
starting model to progressively better degrees. Our approach is to
include a percentage of the magnitude of the target S- and P-velocity
anomalies into the starting models. The rationale behind this is that
tomographic inversions often recover the (long-wavelength) shape
of anomalies reasonably well, but have problems constraining their
amplitude. In our starting models, S- and P-velocity anomalies are
50, 75 and 100 per cent of their actual values, respectively. The
more the starting model resembles the true model, the more of
the signal is due to density only and so the better convergence
should be.

3.5 Constraints on velocity structure

Because the effect of density heterogeneity on the seismic wavefield
is small compared to the effect of velocity variations, the recovery of
density will also be relatively slow. We therefore test here whether
it is beneficial for the recovery of density to reduce the number of
free parameters by inverting for density only. Fixing the velocity
model may be reasonable if one is certain that it is accurate for a
given region, but the question is what is ‘accurate’ enough. The aim
of this test is therefore twofold: on one hand, to investigate whether
the recovery of density is improved and/or sped up if it is the only
parameter inverted for, and on the other hand, to assess the extent to
which errors in the velocity starting model influence the recovery of
density structure. Such errors may consist of artefacts, smearing and
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a limited recovery in the amplitude of anomalies. Starting models
are the same as in Section 3.4, but now, only density is allowed
to vary. The percentages reflect the variation in recovered velocity
anomaly strength that is often found across different tomographic
studies and seems reasonable in the light of performed resolution
analysis of waveform inversions (Fichtner & van Leeuwen 2015;
Simutė et al. 2016). We here invert for density only, with vS and
vp fixed to the initial values, only one parameter is inverted for,
effectively reducing the model space:

ρ = ρref · (1 + m1),

vS = vS,ref ,

vP = vP,ref . (13)

If the velocity model is correct, we expect the recovery of density
to be both faster and better. However, because density has a much
smaller effect on wave propagation than variations in seismic ve-
locity (Fig. 1), we also expect that even small deviations from the
correct velocity model will translate into significant errors in the
density model.

3.6 Including gravity information

Because gravity has significant sensitivity to the distribution of mass
that may be complementary to seismic sensitivity, we also test to
what extent the inclusion of gravity data into the inversion aids the
recovery of density structure. There are many ways in which gravity
can be included into the inversion, depending on the chosen data
types, constraints on the size and/or extent of anomalies, relation-
ship of density to other parameters, artificial scaling of sensitivity,
etc. Here, we take the simplest and most straightforward approach
which does not make any explicit a priori assumptions on density
distribution or its correlation with velocity structure. We therefore
add a gravity term to the misfit functional in eq. (2):

Jseis+grav = Jseis + Jgrav with

Jgrav(g, ρ) :=
∑

r,c [g(ρ) − gtarget]2

∑
r,c [g(ρ0) − gtarget]2

. (14)

This gravity misfit is constructed similarly to the seismic misfit that
is also normalized by the initial model misfit. As a result, both are
unitless and can be added up consistently. The full gravity vector
g is used in eq. (14), but we also perform tests using the gravity
potential ϕ which is related to g through g = −∇ϕ and is usually
expressed in terms of the geoid height. For the relations of g and ϕ

to the distribution of density, we have

g(ρ) = −G

∫
V

ρ(x)

r (x)3
r(x) dx, (15)

ϕ(ρ) = −G

∫
V

ρ(x)

r (x)
dx, (16)

where r is the vector between the receiver and x, r is its length and G
is the universal gravitational constant. Because gravity is unrelated
to vS and vP, it only affects the density part of the gradients. The
total density kernel corresponding to the joint misfit (14) is given
by

K total,ρ = Kseis,ρ + Kgrav,ρ . (17)

The additional gradient Kgrav,ρ now has to be calculated. The gradient
for a single gravity sensor and component for measurements of g

and ϕ with respect to density becomes:

Kg,ρ = −2G · [g − gtarget]∑
r,c [g(ρ0) − gtarget]2

· r

r 3
, (18)

Kϕ,ρ = −2G · [ϕ − ϕtarget]∑
r,c [ϕ(ρ0) − ϕtarget]2

· 1

r
. (19)

These are summed over sensors and components in order to obtain
the total gravity kernels. Due to the r/r 3 and 1/r terms in eqs (18)
and (19), gravity sensitivity to density is generally concentrated near
the surface, closest to the receivers. The different dependencies
on r imply that geoid kernels will have larger sensitivity to deep
structure than gravity vector kernels evaluated at the same receiver
location. This sensitivity is, however, also much smoother and thus
less detailed.

In Fig. 3, we compare sensitivity to density for several mea-
surements used in this study. Sensitivity kernels are calculated for
a blank PREM starting model compared to data obtained from
the standard target model (Fig. 2). This means that these kernels
are effectively the contributions from each of these measurements
to a first model update in a steepest descent inversion algorithm.
In Figs 3(a)–(d), we compare the sensitivity to density for both
the gravity vector g and potential ϕ for measurements done at
two different heights above the model. For the full gravity vec-
tor (Figs 3a and b, 1/r2 dependence), sensitivity is concentrated
near the surface, and ‘sees’ the two upper-mantle anomalies: one
positive and one negative. For the gravity potential (Figs 3c and d,
1/r dependence), sensitivity is less concentrated near the top sur-
face, and hence ‘sees’ the lower mantle more strongly. Only the
signal of the upper (negative) density anomaly in the lower mantle
is visible in the kernels, as the lower (positive) one is deeper, and
thus has a weaker signal which is completely hidden by the upper
anomaly. A similar effect occurs when one applies upward contin-
uation of the gravity data, which can be seen when comparing the
kernels for measurements at different heights (compare Figs 3a and c
to b and d).

Compared to gravity, the seismic kernel (Fig. 3e) shows much
more detail. Sensitivity clearly focuses in the upper-mantle anoma-
lies, and even a hint of the edges of the lower-mantle anomalies
is visible. At the same time, however, there are more artefacts, a
somewhat oscillatory pattern and some trade-off to S-velocity struc-
ture. Here, too, there is sensitivity especially to the upper-mantle
anomalies.

3.7 The effect of noise

The outset of this study was to assess to what extent and under which
conditions it is possible to recover density variations inside the
Earth from geophysical data. Because the density signal is relatively
small in amplitude (Fig. 1), it is important to assess what noise
levels are allowable for the recovery of these anomalies. In the
next series of tests, we will therefore study the effect of noise on
the inversion results. We will investigate both uncorrelated noise
(simulating instrumental noise) and correlated noise (simulating
ambient noise).

3.7.1 Generating uncorrelated noise

Uncorrelated noise is generated as follows. Four each source–
receiver pair and each component, a noise trace is prepared by
generating independent random noise traces for all recordings, and

Downloaded from https://academic.oup.com/gji/article-abstract/209/2/1204/3059142
by University of Cambridge user
on 05 April 2018



Synthetic inversions for density 1211

Figure 3. Density kernels for gravity and seismic data. The kernels depicted in panels (a)–(d) represent the negative descent direction for the gravity term in
the misfit functional of eq. (14), meaning that in a steepest descent inversion strategy, this is what the gravity contribution to the first-iteration model update
will be. Both using geoid instead of gravity vector data and evaluating the data at greater height have the effect of a low-pass filter. In contrast, sensitivity
of seismic measurements (panel e) shows much more detail and clearly highlights the true upper-mantle anomalies. (a) Full gravity vector kernel from data
measured at 20 km height above the top surface. (b) Same, at 255 km height. (c) Gravity potential kernel from data measured at 20 km height. (d) Same, but
at 255 km height. (e) Seismic sensitivity kernel for data filtered at periods of 150 s. (f) Target density model. The difference between gravity vectors for the
starting and target models g − gobs is plotted in green arrows.

filtering at the maximum frequency band of the data. The noise
traces are scaled to a prescribed signal-to-noise ratio and then band-
pass filtered again at each inversion frequency band individually
(see Table 1). Because the low-pass filter does not have a sharp
cut-off, the noise at lower frequencies will be relatively strong com-
pared to that at higher frequencies. This is reminiscent of what is
generally observed in real-data waveforms on the regional to global
scale. Noise is then added to the traces.

3.7.2 Generating correlated noise

Correlated noise is generated by performing wave propagation
through the target model from noise sources at the surface. For
each event, random noise is emitted at each gridpoint along the top
surface of the model domain, mimicking ambient noise generation.
The noise emitted at each point is prepared using a random number
generator, scaled to a random magnitude, and then bandpass filtered
to remove frequencies which are too high for the numerical grid.
The noise sources all radiate their signal simultaneously, for the
whole duration of the wave propagation simulation (1200 s). This
results in a separate noise event for each actual event. These are
scaled and then bandpass filtered at each inversion frequency band
individually (see Table 1). Similarly to the uncorrelated noise, this
procedure results in a variable noise level for each frequency band.

3.8 The effect of impedance contrast

The effect of density on the seismic wavefield is most apparent at
impedance contrasts (Fig. 1), with P and S impedance defined as

Z P = vP · ρ, ZS = vS · ρ. (20)

A lack of impedance contrast may thus be expected to cause a
reduction in the recovery of density. We therefore design a test
in which a density contrast is offset by a contrast in the seismic
velocities, so that both P and S impedance variations are roughly
zero. This means that if an increase in density across an interface

is offset by a reduction in velocity (and vice versa), the impedance
remains constant. Our target model in this case only features one
column of anomalies, in which density, vS and vP overlap such
that the impedance effect of each density contrast is cancelled by
a velocity contrast of opposite sign (this therefore also results in
a negative Rρ/S). The starting model is again PREM. Situations in
which density and velocity change with opposite sign across an
interface exist in nature; one such example is a transition from
sandstone to salt, in which case seismic velocity increases while
density decreases.

4 R E S U LT S

In this section, we will discuss the results of the experiments de-
scribed above in Section 3.

4.1 Reference case

In our initial reference experiment, we assess to what extent it is
possible to recover density alongside the seismic velocities using a
starting model which contains no information on the target anoma-
lies, and without including any additional information. Results are
shown in Figs 4(d)–(f). All three parameters are indeed well re-
covered, especially in the upper mantle. While density is the least
recovered of the three, the target anomalies are still clearly visible.
The shapes of the anomalies are recovered almost perfectly and
there is no mapping of any parameter into one of the others.

Interestingly, the recovered density model has notable ‘shadows’
of opposite sign around the recovered anomalies. This reflects the
fact that it is contrasts in density that alter the waveforms most
significantly (see Fig. 1). Similar ‘shadows’ are not present in the
velocity models. The recovered S-velocity anomalies are somewhat
sharper than the P anomalies—a result of the fact that P waves
travel faster and (all other factors being equal) thus have longer
wavelength signals at the same source frequency.
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Figure 4. Results of tests 1 and 2, compared to the target model. (a)–(c) Target model. (d)–(f) Recovered models for the reference test (Section 4.1). All three
parameters are recovered, although density is fainter than the others. (g)–(i) Recoverd models for the inversion where only S- and P-velocities are unconstrained
(Section 4.2). Density remains fixed at PREM values, despite the fact that there is density structure in the target model. This density structure that is not
accounted for results in small-scale artefacts in the other parameters.

4.2 Neglecting density

In the second test, only seismic velocity structure is updated, and
potentially present density structure is ignored. Results for this
test are shown in Figs 4(g)–(i). While the recovery of the seismic
velocities is again very close to the target, there are now small-scale
artefacts all throughout the model domain with a concentration in
the lower mantle. In addition to that, circular artefacts appear at the
locations of the edges of the actual density anomalies. These are
especially apparent at the lowest frequencies and become narrower
as the frequency content of the inversion is increased, but they do
remain present (Figs 4h and i).

4.3 Scaling density to S velocity

In the third set of tests, we assess the effect of scaling density to
S velocity in a fixed manner (eqs 11 and 12). Results are shown in
Fig. 5. This is compared to a case where all parameters are allowed
to update freely such that density is independent from S velocity. In
this case, the three columns of differently scaled anomalies are all
recovered to some extent. There are significant artefacts throughout
the model domain, but the main shape, sign and relative strength
of each of the three columns is visible. If on the other hand density
is kept at a fixed scaling of Rρ/S = 0.2, only the middle column
is ‘correct’. The target model’s negative scaling in the rightmost
column is completely overruled by the imposed Rρ/S, and the scaling
of the leftmost column is not strong enough compared to the target
model. These violations of the actual model result in artefacts in
P-velocity structure that are stronger than in the case where all
parameters are free.

4.4 Initial velocity structure

The influence of prior information on P- and S-velocity structure on
the recovery of density is shown in Fig. 6. The similarity between the

final density models (Figs 6a, d and g) shows that for the recovery
of density, it matters little what information on S and P velocities is
supplied. The most significant effect of including prior knowledge
is that short-wavelength artefacts are reduced. Unsurprisingly, re-
covery of S and P velocities improves with the inclusion of prior
information on these parameters, but in all cases the overall shapes
are correct.

4.5 Constraints on velocity structure

The next set of tests describes the effect of fixing velocities to invert
for density only. In contrast to the previous tests of Section 4.4,
the velocity model has an enormous influence on the recovery of
density if it is kept fixed. If the correct velocity model is taken, the
recovery of density is indeed significantly better and faster than in
the cases where all three parameters are allowed to vary (Fig. 7a,
compare to Fig. 6g). This is a result of the fact that the seismic
velocities, whose sensitivities are generally larger, are not allowed
to vary.

This result, however, degrades quickly as soon as the velocity
model does not have the exact target values. When the velocity
model has anomalies of 75 per cent of their actual strength (Fig. 7b),
numerous short-wavelength artefacts appear and missing S-velocity
structure maps into the density model. At 50 per cent of the actual
values, the recovered density structure is completely overshadowed
by the artefacts and mapped S- and P-velocity structure.

4.6 Including gravity information

Fig. 8 shows the resulting final models for an inversion using only
seismic information (a)–(c), using seismic and gravity vector data
(d)–(f) and using seismic and geoid data (g)–(i). Surprisingly, the
recovery of all three parameters decreases slightly when gravity
data are added to the inversion. This effect is, however, clearest for
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Figure 5. The effect of imposing a fixed scaling Rρ/S between density anomalies and S-velocity anomalies (see eq. 11 and Section 4.3). Models in density
are shown in the large panels (a)–(c), while the corresponding S- and P-velocity models are shown in smaller panels to the right of these. (a) Target model
in density. Each column has a different actual scaling Rρ/S, that fall within the reported range of scalings between density and S-velocity (see, e.g. Karato
& Karki 2001; Simmons et al. 2009). The target anomalies in S velocities are of the same size in each column (1 per cent just like in the reference model),
while there are no target heterogeneities in P-velocity. (b) Recovered density model if all parameters are allowed to update freely. While numerous artefacts
are present, the model is qualitatively similar to the target model. The recovered S-velocity model is very similar while there are some minor artefacts in the
P-velocity model. (c) Recovered density model if it is scaled in a fixed manner to S-velocity with Rρ/S = 0.2. Here, the target density structure of the left and
right columns is completely overruled. Artefacts in P-velocity are now somewhat stronger but the recovered S-velocity model is similar to the previous test.

density. Despite the difference in kernel shape (Fig. 3), the density
recovery of the full gravity vector case and the gravity potential
case does not differ by much, although it is slightly worse using the
smoother gravity potential information.

4.7 The effect of noise

As expected, the presence of data noise deteriorates the recovery of
anomalies, as shown in Fig. 9. Noise levels are similar for correlated
and uncorrelated noise, ranging from a maximum of ∼10 per cent
at the lowest frequencies to ∼0.5 per cent at the highest frequencies
(Figs 9j and k). These levels are intended to mimic real high-quality
data commonly used in full-waveform inversion in those frequency
ranges (e.g. Colli et al. 2013; Fichtner & Villaseñor 2015; Simutė
et al. 2016).

There is not a large difference between the uncorrelated and
correlated noise tests (Figs 9d and g). In both cases, the presence of
data noise results in artefacts in the recovered models of all three
parameters, but this effect is most pronounced for density. Here, the
recovered anomalies are also most strongly affected. The shape of
the artefacts is still relatively large because the noise level is more
severe at the lower frequencies (Figs 9j and k). Recovery decreases

as the noise level increases. Because of the low receiver density (one
per ∼350 km), the effect of noise is relatively pronounced. When
using more receivers, the results will improve, especially in the
case with uncorrelated (random) noise. In this regard, our synthetic
inversion results are somewhat conservative.

4.8 The effect of impedance

In our final test, a slightly different target model is used, in which
density, S- and P-velocity anomalies lie on top of each other in such
a manner that the impedance contrast is zero at the edges. Results
of this are shown in Fig. 10. If there is no impedance contrast, the
recovery of density is reduced (compare, e.g. to Figs 4d–f), but not
removed. The recovery of the seismic velocities, too, is somewhat
reduced.

5 D I S C U S S I O N

In this study, we show that density heterogeneities can be recovered
as an independent parameter in 2-D synthetic seismic waveform
tomography. Our experiments are executed in a simple setup that
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Figure 6. Recovered models for different starting models. (Section 4.4, shown for vS and vP in the small panels beneath each of the columns. The starting
model for density is always PREM. The inclusion of extra a priori information on vS and vP does not have a great influence on the final model after 160
iterations.)

Figure 7. Recovered density models for different fixed S- and P-velocity models (Section 4.5). (a) If vS and vP are fixed at the actual values, the recovery of
density is improved significantly compared to the reference case where all three parameters are free (Fig. 6g). (b) and (c) However, the more the S and P models
deviate from the target model, the more artefacts are mapped into density, to the extent that these completely overpower the density signal.

does not take into account some factors that are known to influence
the seismic wavefield (e.g. attenuation and uncertainties in sources
and receivers). Nevertheless, we believe that our results provide
good indications that the recovery of density may become possible in
3-D real-data inversions. This is relevant in order to more accurately
quantify the forces driving plate tectonics and mantle convection
and can help to distinguish between thermal and compositional
heterogeneities. In the following discussion, we address key issues
of density tomography using waveform inversion such as the effect
of density anomalies on the wavefield, inversion strategies and data
types used.

5.1 The effect of density on the seismic wavefield

Density contrasts create a scattered wavefield that travels both along
with the direct wave and in other directions (Fig. 1). The influence

of density on the wavefield derives largely from impedance con-
trasts created by density contrasts. As a result, it is mainly the
short-wavelength components of anomalies that are recovered in an
inversion approach (Fig. 4). Inversion strategies aimed at recovering
density thus rely crucially on the availability of low-frequency data.
These should be used in a multiscale approach where the lowest
frequencies are inverted for first (e.g. Bunks et al. 1995). This is
in order to make sure that also the longer wavelength components
of anomalies are recovered properly. While this is not a problem in
regional- to global-scale seismology, this may be more difficult in
the case of active-source experiments, where low frequencies are
more difficult to obtain.

Frequencies should be chosen carefully so that no local minima
are created when the inversion switches to a band containing higher
frequencies. In the results presented here, this was achieved by
increasing the maximum frequency by a factor of no more than 1.3
across frequency bands.
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Figure 8. The effect of including gravity data into the inversion (Section 4.6). (a)–(c) Reference test. (d)–(f) Recovered model using seismic and gravity
vector data. Artefacts seem slightly more pronounced than in the reference case that used only seismic data. (g)–(i) Recovered model using seismic and gravity
potential data. Results are similar to those from the previous test with seismic and gravity vector data.

Figure 9. The effect of data noise on the recovery of model parameters (Section 4.7). (a)–(c) Reference test. (d)–(f) Recovered model for a test with uncorrelated
noise with frequency-dependent amplitudes of about 0.5–10 per cent of the maximum data amplitudes (see panel j). The effect of noise is especially significant
for density, the imprint of which on the wave propagation has low amplitude itself. (g)–(i) Recovered model for a test with correlated noise (see Section 3.7.2)
with amplitudes of about 0.5–10 per cent of the maximum data amplitudes (see panel k). (j) Variation of random noise levels across frequencies. (k) Variation
of correlated noise levels across frequencies.
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Figure 10. Results from Section 4.8, where the target model has a zero impedance contrast. (a)–(c) Target model. In contrast to all previous tests, the anomalies
in density and S- and P-velocities lie in the same locations and are chosen such that the impedance contrasts across the anomaly edges are zero. (d)–(f)
Recovered model. A lack of impedance contrast somewhat deteriorates the recovery of especially density (compare Figs 4d–f). The starting model was PREM.

While it is the effect on impedance contrast of density that has
the most significant impact on the seismic wavefield, density can
still be recovered even if the impedance contrast is zero (as a result
of opposite contrasts in P and S velocities—see Fig. 10).

Common strategies in seismic tomography are to either ignore
density altogether, or scale it to S velocity. In contrast to seismic
traveltimes in the ray approximation, the full seismic waveforms
do have a dependence on density. As a result, both ignoring and
scaling density may lead to erroneous results. If ignored, the ef-
fect of density on the seismic wavefield may lead to artefacts in
the recovery of S and P velocities (Fig. 4). The missing density
structure, in particular the locations of density contrasts, is then
mapped into S and P velocities, thus causing artefacts throughout
the model domain. Similar effects occur if an incorrect scaling be-
tween density and S velocity is imposed (Fig. 5). Most problemati-
cally, however, potentially interesting density structure is completely
overruled.

In the experiments presented here, we use an L2-norm waveform
misfit functional, a metric that is most sensitive to the largest ampli-
tude signals. As a result, it is not surprising that S-velocity structure
is in general recovered best, while the density structure, whose ef-
fect on the wavefield is much more subtle, is recovered much more
slowly.

Our measurements are sensitive to density partially because we
include entire seismograms in the misfit functional. This means that
also the scattered waves are included that are caused by the density
anomaly (e.g. the reflected wave indicated in Fig. 1g). These are not
normally picked up when one specifically studies the (traveltimes of)
classical P, S and surface wave phases. Nevertheless, even if cross-
correlation traveltime differences are used to determine misfit of
such ‘classical’ phases, measurable changes in phase occur as well
(Płonka et al. 2016). This is because the density signal travelling
with the direct wave alters the shape of the waveform. Similar results
were obtained by Yuan et al. (2015).

The density effect on the wavefield is relatively small. Because of
this, the effect of data noise is especially significant for the recovery
of density (and stronger than on vS and vP—see Fig. 9). Never-
theless, even with a noise level of around 5 per cent at the lowest
frequencies, the parameters are still recoverable to some extent.
These are noise levels which are realistic in regional- to global-
scale inversion setups, although it requires careful data selection
and dense coverage. The noise results presented here can be viewed
as conservative for these synthetic results, as we make use of only
16 receivers spread over a distance of 6000 km, resulting in an
interstation distance of about 350 km. In realistic applications, the
receiver coverage, although irregular, will be denser. Using more
receivers will lead to more efficient cancelling of at the least the
uncorrelated noise.

5.2 The influence of gravity data

When studying density in the Earth’s interior, gravity is a natural
observable that is often employed (e.g. Kaban et al. 2004; Chaves
& Ussami 2013; Panet et al. 2014; Fadel et al. 2015). In our results,
however, the inclusion of gravity measurements does not improve
the recovery of density compared to the seismic waveform-only in-
versions. This is despite the fact that gravity may have sensitivity to
density that is additional and complementary to seismic sensitivity,
which is mainly caused by density contrasts.

This is a consequence of the fact that solutions to inverse prob-
lems from potential fields such as gravity are physically non-unique
and thus ill-posed: a given set of gravity measurements has an
infinite variety of mass distributions that all explain it perfectly
even when coverage is perfect and measurement errors are absent
(Blakely 1995). In contrast, our inverse approach is deterministic,
which means that a single direction of update is chosen. In principle,
the inclusion of additional data should increase the curvature of the
misfit functional near the optimum. Because of its non-uniqueness,
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however, the addition of gravity data makes it more difficult to ac-
tually reach this minimum. The gravity component of the direction
of update is one out of many, and thus unlikely to be in a direction
that is favourable to convergence.

The non-uniqueness of potential-field inverse problems is physi-
cal, and would exist even if the data were perfect and continuously
measured along the surface. It is also independent of the misfit func-
tional that is chosen, and even in the perfect-data case, the solutions
resulting from the different misfit functionals are simply different
points in an infinitely large space of models that fit the gravity data
exactly equally well.

The misfit functionals used in this study have a 1/r2 or 1/r de-
pendence on distance from the receivers (eq. 14), which means that
the gradients will also be strongest in the vicinity of the receivers,
that is, at the surface (Fig. 3). However, the strength of the actual
density anomalies we study does not have a 1/rn dependence, so
a misfit functional based on the gravity potential or gravity vector
works to push the inversion into the wrong direction. The same is
true for measurements of the gravity gradient, which would result in
an even stronger concentration towards the surface. In general, there
is no reason to assume that a 1/rn density distribution is present in
the actual Earth.

Of course, it is possible to pre-condition the gravity misfit such
that the distance dependence is removed, but this does not remove
the ill-posedness of the problem: it simply shifts the solution into
a different direction in the infinite set of equally valid solutions.
Including gravity without additional constraints thus slows down
the inversion.

Several types of constraints can be included in order to reduce the
non-uniqueness. The most generally taken approach when combin-
ing observables is to link density anomalies to seismic anomalies,
for example, through some sort of scaling relation between the pa-
rameters (e.g. Maceira & Ammon 2009; Tondi et al. 2009; Lin
et al. 2012; Chaves & Ussami 2013). This however excludes the
interesting cases where velocities and density are not scaled—a
decorrelation that might indicate the presence of chemical hetero-
geneity. In another variant, the shapes of the presumed density
anomalies are chosen from a priori supplied (and often seismically
obtained) models of the subsurface (e.g. Fadel et al. 2015). If this
information is sufficiently reliable, this approach can work to reduce
the non-uniqueness, but does not necessarily remove it completely.
The problem with both these types of methods is that the use of
a misfit based on any type of gravity data tends to overstress the
contribution of near-surface heterogeneities. More problematically,
these sorts of potentially incorrect prior knowledge may lead to
incorrect results.

Other constraints include setting a maximum density contrast
(which limits the extent to which the anomalies can get focused at the
surface but does not remove the non-uniqueness) and a minimum-
volume constraint. This latter constraint is, however, geologically
not necessarily obvious: it is easy to think of geological situations in
which masses are not expected to be concentrated into the smallest
possible volume.

5.3 Other factors influencing the recovery of density

The effect of prior information on S and P velocities on the recovery
of density is minimal. Even if these parameters are completely
correct in the starting model, the recovery of density is not notably
improved (see Fig. 6). This changes if the seismic velocities are
then kept fixed and only density is allowed to update. The recovery

of density is very good if the velocities are fixed to the true model
(Fig. 7)—significantly better than with vS and vP free. However, if
the velocity model is not entirely correct, results deteriorate. This
means that in practice, it will not be possible to keep velocities
fixed, unless observables can be found that are uniquely sensitive to
density. Finding such observables, for instance, using the optimal
observable approach of Bernauer et al. (2014), will be the focus of
future work.

Our method uses a simplified 2-D setup with only isotropic pa-
rameters and no attenuation, in order to study the first-order effects
that density has on the seismic wavefield and on inversions. Espe-
cially attenuation should, however, be taken into account as well, as
its effect on seismograms is in the same order of magnitude as that
of density (Płonka et al. 2016). However, while attenuation only
reduces the amplitudes of already-present seismic phases, density
causes significant scattering in all directions (Fig. 1), thereby pro-
viding additional constraints. In our experiments, we furthermore
assume that the sources are perfectly known, which will not be the
case for real data in regional and global seismology.

Another aspect of our approach that must be kept in mind is that
the amplitude information that we use in the L2-norm misfit may not
be reliable for real data as it is susceptible to, for example, instrument
and site effects. Nevertheless, as Fig. 1(g) shows, amplitude changes
caused by a density anomaly may have a measurable effect on the
phase and general waveform. Finally, additional arrivals caused by
reflections can still be picked up as separate signals unconnected to
the main phase.

6 C O N C LU S I O N S

In this study, we show that density can be recovered using waveform
inversion on the global scale. Our study treats density as an inde-
pendent parameter and does intentionally not introduce any prior
constraints on its relation to seismic anomalies. This is relevant in
order to be able to quantify the forces driving plate tectonics and
mantle convection.

The effect of density on the seismic wavefield is small. This
means that the presence of data noise affects the recovery of density
more strongly than of S and P velocities. However, at noise levels to
be expected on regional to global scales, density is still recoverable
from the data. While the effect of density on the seismic wavefield
lies mainly in impedance contrasts, density is still recoverable even
if the impedance contrast is negligible.

We also show that the presence of density anomalies, if not ac-
counted for, may negatively affect the recovery of other parameters.
Furthermore, without strong additional constraints, the inclusion
of gravity measurements into the misfit functional deteriorates the
recovery of density and the other parameters. Finally, we show that
prior information on the seismic velocities has little influence on
the recovery of density, unless this prior model is fixed. However,
the velocities can only be fixed if the velocity model is completely
accurate, a situation is unlikely to occur in real-data cases. If the
fixed velocity model is slightly wrong, errors therein severely map
into density.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJIRAS online.

Figure 1. The effect of inversion parametrization on the recovery of
density alongside seismic velocities for the ‘reference‘ target model
(given in Fig. 2).
Figure 2. The effect of inversion parametrization for a target model
in which density is scaled to S velocity with different scalings. This
is the same model as used in the ‘Scaling relations’ experiment of
our paper (Fig. 5).
Figure 3. The effect of increased anomaly strength on the recovery
of density and seismic velocities from waveform inversion using an
L2-norm. As the anomalies are ten times the amplitude of those in
the reference test, the colour scale is similarly adapted.
Figure 4. Reproduction of Fig. 4 in the paper.

Supplementary data in the form of extra experiments on anomaly
strength and inversion parametrisation, as well as a video of wave
propagation displayed in Figure 1 are available at GJIRAS online.
All synthetic data used in this study as well as the code used to gen-
erate them can be found at doi.org/10.5281/zenodo.268929 (Blom
2017).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X : L - B F G S

Here follows a brief description of the L-BFGS algorithm as used
in our inversions.

In order to compute the L-BFGS update si in eq. (4), we require
the models and gradients from the last k iterations to construct
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the approximation of the inverse Hessian. Note that the matrix Bi

is never constructed explicitly, but we only compute its action on
the negative gradient by using a two-loop recursion outlined in
Algorithm 1. The implementation mostly follows algorithm 7.4
in Nocedal & Wright (2006). However, there are two important
modifications to the classical textbook implementation. First, the
optimization variables represent discretized continuous fields (e.g.
density) evaluated at the gridpoints of the numerical mesh. It is
important to use an inner product in a gradient-based descent al-
gorithm that takes these spatial dependencies into account, because
the choice of inner product can largely influence the convergence
behaviour (e.g. Collis et al. 2001). In particular, using the standard
Euclidean inner product often results in badly scaled gradient di-
rections. Hence, we use a diagonal mass matrix D that incorporates
the spatial grid sizes dx and dz of the finite-difference discretiza-
tion for all vector–vector multiplications. Second, any smoothing
or depth scaling should not be applied to the gradient itself, be-
cause this would result in inconsistent search directions. Instead,
we can either incorporate those operations into the inner prod-
uct as well or define a scaling and smoothing matrix S that is
used as L-BFGS initialization matrix, which is done in line 13 of
Algorithm 1.

Algorithm 1 L-BFGS search direction

1: Input: models mi , . . . , mi−k and gradients
∇ J (mi ), . . . , ∇ J (mi−k)

2: Output: search direction s to update the model
3: for j = i − k to i − 1 do
4: s j ← m j+1 − m j

5: y j ← ∇ J (m j+1) − ∇ J (m j )
6: ρ j ← (y j

T D s j )−1

7: end for
8: q ← −∇ J (mi )
9: for j = i − 1 to i − k do

10: α j ← ρ j s j
T D q

11: q ← q − α j y j

12: end for
13: s ← (s j−1

T D y j−1)(y j−1
T D y j−1)−1 S q

14: for j = i − k to i − 1 do
15: β ← ρ j y j

T D s
16: s ← s + (α j − β)sj

17: end for
18: return s

s
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