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Abstract 
 
Uveal melanoma (UM) is the most common cancer of the adult eye which can manifest as a 

highly aggressive form approximately half of the time. Here a comprehensive landscape of 

genetic alterations in UMs is described. It was identified by integrating copy number 

alterations (CNAs), and transcriptomic and whole exome sequencing data from 207 primary 

UMs. Focal copy number analysis with the GISTIC algorithm refined the boundaries of 

chromosomal segments with chromosomal gains or losses and candidate cancer genes within 

these segments were identified. Chromosome 8q24.3 was the region most frequently 

amplified in UMs, being detected in 72% of tumours. A comparison of focal copy gains and 

losses with that described by a pan-cancer study revealed Plectin 1 as a candidate gene within 

the 8q24.3 amplicon. Integration of copy number and transcriptomic data also revealed 

enrichment of genes within pathways leading to activation of NF-kappa B, WNT signaling 

and RNA splicing. Using a complementary bioinformatics approach, additional novel 

mutations in known dominant UM driver genes (GNAQ, GNA11, BAP1, SF3B1, EIFIAX and 

CYSLTR2) were identified and an accurate estimate of the frequencies of mutations in each 

gene were obtained. Finally, integration of data obtained from CNAs with mutational and 

transcriptome data reveled homozygous deletions, protein damaging mutations and gene 

fusions that targeted chromatin modifiers, and specifically genes encoding components of the 

human SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex.  Genes 

from the BAF complex (ARID1A and ARID1B) and the PBAF complex (PHF10) were 

subjected to functional loss through CNAs, gene fusions and mutations. Two of these 

chromatin modifiers (ARID1B and PHF10) map to chromosome 6q whose loss is associated 

with metastasis in a subset of UMs, and an ARID1B fusion is found in a tumour with a BAP1 

mutation that subsequently underwent metastasis. In conclusion, this study provides a 

comprehensive overview of the landscape of genomic alterations in UM, identifying 

candidate genes in regions of CNAs and providing further insights into the altered pathways 

of tumour development and progression.  
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Chapter 1. Introduction 
 

1.1 Clinical characteristics 
 

The median age of diagnosis of UM is approximately between 55-65 years 1–3, with a peak in 

diagnosis in the 70-80 year age group  4. Clinical presentation in UM depends on the size and 

location of the tumours. UM can develop in any area of the uveal track of the eye including 

the iris (anterior UM), choroid and the ciliary body (posterior UMs) (Figure 1.1). Iris 

melanomas are clearly visible, whereas ciliary body and choroidal melanomas may escape 

notice without a careful fundoscopic examination. Thus, documentations of the various 

tumour’s characteristics such as tumour thickness, and location by a colour fundus 

photography is important during follow-up to evaluating signs of malignant transformation. 

The incidence of choroidal melanoma is the highest (85%-90%) compared to ciliary body 

(5%-8%) and iris melanoma (3%-5%) with higher proportion of  iris melanoma seen in 

younger patients (less than 20 years) 4,5.  

 

Figure 1.1: The uveal tract of the eye 6. 

 

 

 

 

 

 

 

 

 

The uveal tract of the eye comprising iris, ciliary body and choroid. 

 

1.1.1 Clinical presentation  

!

At the time of diagnosis, more than 80% of the patients present with symptoms, 2,7. 

The most common include, blurred vision, defects in the visual field, photopsia, floaters, 

irritation, metamorphopsia, redness, change in the eye appearance and other rare clinical 
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feature such lipofuscin pigment 8–10 and retinal detachment 11. Choroidal melanoma manifests 

as one of the 3 configurations including dome shaped in the majority of cases (75%), 

mushroom-shaped (20%) and diffused form (5%) 3. When the choroidal tumour breaks 

through Bruch’s membrane and hibernates into the sub-retinal space, it forms a bilobed 

structure giving rise to the mushroom-shaped choroidal melanoma. Diffused melanoma is flat 

in appearance and can be mistaken for a choroidal nevus. In addition, it shows a higher 

probability of metastasizing compared to the non-diffused tumours 12. Ciliary body 

melanoma can be asymptomatic for a long time before it manifest. It can lead to displacement 

of the lens with consecutive refractive, accommodation balances (changes in the optical 

power to maintain clear image) and can cause localized cataract or increase intraocular 

pressure. These tumours may be associated with a dilated pupil and present as dome-shaped 

or sessile lesions. Iris melanoma manifests as growth of a previous iris lesion or a new 

pigmented spot and are usually asymptomatic. However, they are most likely to be 

discovered due to their visible location. Clinical features of iris melanoma include the 

involvement of the iridocorneal angle (the presence of tumour cells encroaching on the iris 

root with or without the trabecular meshwork or anterior ciliary body), prominent tumour 

vascularity, a distorted pupil, ectropion uveae or the presence of iris pigment epithelium on 

the anterior surface of the iris and rarely pigment dispersion and localized cataract 12. 

 

 1.1.2 Tumour classification and Diagnosis  

 

Staging refers to the extent of the cancer with respect to tumour grow and spread and 

classification is based on clinical, pathological and genetic factors. Cancer staging follows 

the Tumour node metastasis (TNM) staging system of the American Joint Committee on 

Cancer (AJCC) for eye cancer 13. The tumour size is evaluated and defined in the T category 

(from 1 to 4), lymph node involvement in the N category (includes NX, N0 and N1) and the 

presence of distant metastasis in the M category (including MX, M0, M1a, M1b, M1c). For 

posterior UM, T classification is based on tumour basal width and thickness and is then 

subdivided into groups reflecting ciliary body involvement and extrascleral extension of the 

tumour (a, b, c, d, e). This classification can predict prognosis, and the 5-year survival rate of 

iris melanoma patients is 56% of patients with T1 tumours, 34% for T2 tumour patients, 2% 

for T3 tumour patients and 1% for patients with tumours classified as T4 14. The rate of 
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metastasis in posterior UM at 5-years was found to be 8% for T1 tumours, 14% for T2 

tumours, 31% for T3 tumours and 51% for T4 tumours 15.   

 The most standard and reliable way to make a diagnosis of choroidal melanoma is 

based on clinical examination by an experienced observer (Optometrist or Ophthalmologist). 

The ophthalmic examination can be done by slit lamp biomicroscopy, indirect 

ophthalmoscopy and other additional diagnostic testing such as ultrasonography, fluorescein 

angiography and optical coherence tomography. The accuracy of diagnosis established by 

clinical examination is quite high 16, however, Damato et al showed tumours were initially 

missed or misdiagnosed in 23% of patients in the United Kingdom, resulting in more 

advanced tumours and higher rate of primary enucleation was more likely in these patients 

who reported that their tumour was missed 2. The differential diagnosis of UM includes 

around 54 different conditions that are able to mimic UM, the most frequent being choroidal 

nevus accounting more than 25% of psuedomelanomas 17,18. Clinical features such as changes 

in drusen and retinal pigment epithelium (RPE) are more prevalent in choroidal nevi whereas 

retinal detachment, choroidal neovascularisation or haemorrhagic retinal detachment can 

occur in both, choroidal nevi and small melanomas. On B-scan Ocular Ultrasound, nevi have 

a high internal reflectivity; In addition, orange pigment and subretinal fluid, a feature of 

potential malignancy can be present in 10% and 18% of nevi respectively. Thus, 

differentiation between choroidal nevi and small melanomas remains a clinical challenge 19. 

Other conditions for differential diagnosis include, congenital hypertrophy of the retinal 

pigment epithelium (CHRPE), optic disc melanocytoma, hyperplasia of the RPE, choroidal 

haemangioma, choroidal osteoma, peripheral exudative hemorrhagic chorioretinopathy 

(PEHC), choroidal haemorrhage, posterior nodular scleritis, intraocular leiomyoma and 

adenoma of RPE.  

Histopathological Features in UM include 3 recognized categories based on H&E 

staining: spindle, epithelioid and mixed cell type differentiated 20. Spindle cells exhibit 

elongated nuclei that may contain eosinophilic nucleoli; grow slowly and are associated with 

better prognosis. On the other hand, the epithelioid cells have a more polygonal cytoplasm 

and contain eccentric placed large pleomorphic nuclei and prominent eosinophilic nucleoli. 

They are fast growing with aggressive behaviour and are associated with poor prognosis. The 

mixed-cell type melanoma has a variable percentage of spindle and epithelioid cells with a 

minimum of 10% of either type. Immunohistochemistry can help with diagnosis where 

HMB45 antibody binds to gp100 expressed by melanocytes. This can be used to differentiate 

UM from non-melanocytic tumours 21.  
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1.1.3 Prognostic factors for metastasis of uveal melanoma 

 

Most of the patients who present with metastatic disease have never been seen by an 

ophthalmologist. This is proposed to be due to the severity of other systematic medical 

problems so that visual related symptoms are not investigated. Fenton and Barak reported 

that the choroidal metastasis was found in 0% of breast cancer and only 2% of the 

asymptomatic choroidal metastases in patients with lung cancer 22,23. Thus, the need for 

ophthalmic screening of all patients has been questioned to be able to justify the high cost of 

such low detection rate.  At the times of diagnosis of choroidal melanoma, less than 4% of 

patients have detectable metastatic diseases 22. However, despite the excellent rate of local 

control and treatment options, almost half of the patients eventually go on to develop 

metastatic disease. Early detection of metastasis in UM is critical for better management of 

the disease. This includes liver directed chemoembolization and recruiting patients into 

clinical trials of adjuvant therapy. UMs disseminate through the bloodstream (hematogenous) 

and the most common site of metastasis is the liver (93%), followed by the lung (24%) and 

bones (16%) 24. UMs do not spread to regional lymph nodes due to lack of lymphatic 

drainage in the eye, except in rare cases of direct invasion of the conjunctiva leading to 

access to regional lymph nodes via conjunctival lymphatics 25. Patients have better survival 

when they do not have liver metastasis or the primary site of metastasis is not liver 26. The 

relevance of isolated or combined liver function tests (LFT) for aspartate aminotransferase 

(AST), alanine transaminase (ALT), yGT, LDH and phosphatidic acid (PA) was evaluated 

for early detection of liver metastasis in UM and found to not be helpful.  However the high 

negative predictive value of these LFT can help clinicians to reassure patients when their 

LFT are negative 27. Various predictors of metastatic outcomes and survival have been 

studied till date, including clinical staging, cytogenetic events, gene mutations and gene 

expression. These predictors have greatly increased the accuracy of predicting the outcome 

and eye biopsies are routinely performed following diagnosis.  

Several histopathological and clinical features have been investigated to predict 

prognosis of UM. Histopathological features which are predictor of poor prognosis include 

epithelioid cell type, mitotic activity, tumour infiltration by M2-macrophages and 

lymphocytes, increased expression of human leukocyte antigen (HLA), extracellular matrix 

patterns and small blood vessel (microvascular) loops and networks 28–31. However, these 

factors are not reliable enough to enable detection of high risk patients. Multivariate analysis 

of clinical factors that predict metastatic risk include increased tumour diameter, increasing 
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patient age, location of ciliary body, increasing tumour thickness, pigmented melanoma, 

intraocular haemorrhage and presence of sub-retinal fluid 3. One of the most important 

clinical feature for predicting prognosis of UM is tumour size. The AJCC classification is 

based on tumour size, ciliary body involvement and extent of extraocular extension. Survival 

decreases rapidly with each increasing AJCC tumour stage (T1-T4). Compared to the T1 

stage which has an estimated death of 4% at 5 years, 8% at 10 years and 11% at 20 years, the 

rate of metastasis and death for T2 is two times greater, T3 is four times greater and T4 is 

eight times greater 15. Among the three sites, patients with iris melanoma have better 

prognosis: The frequency of metastasis at 5 and 10 years of follow is 4.1% and 6.9% 

respectively, compared to 15% and 25% respectively in choroidal melanoma, and 19% and 

33% respectively for ciliary body melanoma 3. 

Cytogenetic studies have significantly improved the prognosis in UMs. Aberrations 

on chromosomes 1, 3, 6 and 8 are common in UMs and are predictors of tumour behaviour 
32–34. Loss of heterozygosity on chromosome 3 (or Monosomy 3) is found in approximately in 

50% of tumours and correlates with poor outcomes, where it is often present with 

abnormalities on chromosome 8 32,35,36. Monosomy 3 is found in approximately 70% of 

metastasizing and in approximately 20% of non-metastasizing UMs 32 and strongly correlates 

with metastases and decreased survival 33,35,36. In addition, loss of the p arm of chromosome 1 

(1p-) with concomitant monosomy 3 is a strong predictor of decreased disease free survival 
37. Gain of chromosome 6p (6p+) mainly occurs in the non-metastasizing tumours and tends 

to occur in a mutually exclusive pattern with monosomy 3 38–40. Cytogenetic based prognostic 

classifiers using status on specific chromosomal regions can also be used for identifying 

high-risk patients. Trolet et al 41 performed clustering analysis on microarray data  from 86 

primary and 66 liver metastases samples and found that disomy 3 tumours could be divided 

into two subgroups and that monosomy 3 tumours could be divided into three subgroups. The 

highest metastatic rates were found in the subgroup defined by 8p gain (8p+), monosomy 3, 

8p loss (8p-) and 16q loss (16q-) and a prognostic classifier which included these 

chromosomal changes led to 85.9% classification accuracy. 

Gene expression profiling (GEP) provides the best prediction of metastatic potential 

in UM. Primary UMs cluster into two distinct molecular classes based on their mRNA 

expression: Class 1 or low-grade tumours associated with low metastatic risk, and class 2 or 

high grade tumours strongly associated with high metastatic risk. The probability of survival 

is 95% for class 1 and 31% for class 2 tumours 42. The molecular classes also show strong 

correlation with other risk factors such as patient age, cell type and chromosomal aberrations 
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42. The GEP based classification has been shown to be superior for predicting metastases 

compared to monosomy 3 and other clinical and histopathological prognostic factors 43,44. 

Molecular classification of these tumours based on transcriptomic analysis from fine needle 

aspiration biopsy in patients is now established 45. Currently, a 15-gene commercial gene-

expression assay from Castle Biosciences is available which separates UM into two classes. 

This assay was initially validated by Onken et al, where metastatic rates of 1% and 25.9% 

were found for class 1 and class 2 tumours 43. Recently, expression of a tumour antigen called 

PRAME has been reported to be an independent marker of metastasis and when combined 

with the GEP panel of 12-genes, it was possible to predict a 5-year metastatic rate of 0% in 

class 1/PRAME negative tumours, 38% in class 1/PRAME positive tumours and 71% in class 

2 tumours46. 

 

1.1.4 Management of primary and metastatic UM 

 

Once a clinician has obtained sufficient evidence to diagnose UM, management will depend 

on several subjective and objective features of the tumour.  The management can be broadly 

classified as global-preserving therapy that includes radiation, surgery and laser therapy, and 

enucleation. The COMS study (Collaborative Ocular Melanoma Study) 20 in the United 

States is a multicentre investigation which evaluates the therapeutic interventions for patients 

with choroidal melanomas. It performed a multicentre randomized clinical trial comparing 

the effectiveness of brachytherapy to enucleation and found no difference in the mortality 

between the two groups for up to a 15 year follow up period. Based on the results of the 

COMS trial, majority of primary UM lesion in the US are treated with plaque brachytherapy.  

The United Kingdom (UK) UM guidelines 20 are convened under the UM Melanoma Study 

Group. The guidelines are available on the Melanoma Focus website and use an evidence 

based systematic approach, the Scottish Intercollegiate Guidelines Network (SIGN) checklist, 

as a guide. Similar procedures to those used in the U.S. are implemented in the management 

of primary tumours in the UK.  

 Radiation therapy includes brachytherapy, proton-based external beam radiation and 

charged particle radiation. Brachytherapy involves delivering high amounts of concentrated 

radiation dose (using radioisotopes 125I or 106Ru) to the tumour by securing a radiation plaque 

to the episclera. Although brachytherapy helps achieve good local control, it is associated 

with various complications. The most common are radiation induced retinopathy (45%-67%) 
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and cataracts (44%) followed by neovascular glaucoma in a third of the patients and macular 

edema in a quarter of the patients.  These complications can lead to moderate vision loss and 

poor visual acuity 47,48. Proton beam therapy has shown positive results in a recent 

retrospective cohort study of patients with T3-T4 choroidal melanomas. One study found a 

local control rate of 96.4% and overall eye retention rate of 95% in a cohort of 982 patients 

treated with proton beam therapy 49. Charged-particle radiotherapy can be used for medium 

to large tumours where brachytherapy may not be an ideal option. Mishra et al reported long-

term outcomes of a randomized controlled trial of helium-ion therapy versus brachytherapy 

for ciliochoroidal melanomas. They demonstrated improved local control of 100% versus 

84% at 5 years and 98% versus 79% at 12 years in favour of charged-particle therapy, in 

addition to improved eye preservation and disease-free survival.  However this study was 

based on a single center and extending the finding to the general population will require 

further studies 50.  

 Laser therapy such as photodynamic laser photocoagulation therapy (PDT) and 

transpupillary thermal therapy (TTT) aims to destroy tumour vascular supplies and reduce 

local recurrence. PDT involves injecting photosensitive dye followed by exposure of the area 

of interest to a laser (689 nm wavelength) which causes liberation of free radicals. TTT is 

used as an alternative to laser photocoagulation for small melanomas and uses an infrared 

diode laser to burn the tumour. However, TTT has been found to be ineffective in treatment 

of smaller or intermediate choroidal melanomas 51,52. In addition, TTT does not shown 

significant improvement in visual outcome when compared to plaque radiotherapy 53.  

 However, undesirable, enucleation remains the most common surgical procedure 

performed in UM. It involves removing the entire eye while leaving the eye muscle and 

remaining orbital content intact. Enucleation is reserved for patients with the worst visual 

prognosis, large tumours, extraocular growth, circumferential tumour invasion, retinal 

detachment, severe haemorrhage or vitreous haemorrhage. Many studies have shown that 

there is no significant difference in mortality between eye-preserving and surgical treatment 

approaches. The COMS study reveal no significant difference in long term survival between 

patients who underwent treatment with brachytherapy and those who had an enucleation. 

Thus eye-preserving options have gained favour over enucleation 54,55. 

Currently there is no standardized therapy that improves survival in metastasizing 

melanoma. Systematic treatment options for metastatic disease include intravenous 

chemotherapy, immunotherapy and other loco-regional techniques for providing local control 

for hepatic metastasis. These include immune-embolization, chemoembolization, isolated 
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liver perfusion and hepatic intra-arterial chemotherapy. Local resection involves excision of 

the tumour with scleral lamellar dissection. Disadvantages with this technique are the serious 

and immediate post-operative complications such as retinal detachment and vitreous 

haemorrhage. Adjuvant therapy has the potential to prevent metastases. Dacarbazine is an 

intravenous alkylating agent that has been evaluated by a randomized controlled study. 

Although initially shown to have significant impact in cutaneous melanoma, it did not 

demonstrate any survival advantage in UM 56. Other adjuvant therapies include Fotemustine, 

which has received a good response although there is no statistical significance in survival 

benefit 57. Other novel therapies include efforts to exploit the high levels of tyrosine-kinase 

receptors such as c-Met and c-Kit in UM 57, Crizotinib has been demonstrated to inhibit the 

establishment of metastasis and is currently being studied 57. Histone deacetyase (HDAC) 

inhibitors such as valproic acid are currently being investigated, the rational being that 

HDACs promote cell differentiation and induce the transition from the aggressive class 2 to 

class 1 UM cells 58. The future of treatments and management in UM is constantly evolving 

and novel therapeutic strategies are emerging with the new discoveries.  

 
1.2 Epidemiology and risk factors in uveal melanoma 
 
Uveal melanoma (UM) is the most common type of eye cancer and the second most common 

type of non-cutaneous melanoma 4. The site of origin of UM is the uveal tract of the eye 

comprising the iris, choroid and the ciliary body. UM predominantly affect adults and is rare 

in children 59–62.  

 

1.2.1 Incidence 

 

Although UM is a common form of eye cancer, it is still a rare cancer with an overall 

incidence estimates of less than 10 cases reported for every million individuals across 

different countries. The incidence varies by gender and ethnicity. Stang et al 63 used data 

from internationally accredited population based cancer registries across the world to obtain 

estimates of the crude and age adjusted incidence trend covering 15 years between the period 

1983-97 by country (Table 1.1). In Europe, the incidence trend clearly reflects a decreasing 

gradient from north to south, with < 3 cases per million in Spain and Italy and > 6 per million 

in Nordic countries. This is consistent with specific incident rates reported previously by 

country 60,64–69 even though earlier studies had shown contradictory evidence for the north-
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south variation 59,70. The most recent epidemiology study from England reflects stable 

incident rates over the past decade (1999-2010) with approximately 1 case per 100,000 and is 

consistent with data from Stang et al 63. Singh et al performed the largest study determining 

the UM incidence trends in the United States and reported a mean age-adjusted annual stable 

rate of 5.1 cases per million, that was consistent over a study period of 36 years from 1973 to 

2008 70. McLaughlin et al 4 examined the difference in the incidence of ocular tumours in the 

United States by latitude and found the overall rates were lower in the south compared to the 

northern states, however the ocular tumours they compared also included conjunctival 

melanomas and tumours from other parts of the eye. A recent study by Keenan et al 71 found 

significant geographical variation in the incidence within England and the population-based 

incidence rates in their study, adjusted for age, may be attributed to difference in the ethnic 

groups in different areas. These geographical differences could also reflect some of the 

important risk factors of UM that include ancestry, light skin and iris pigmentation 63,72–74. 

The incidence of UM among the white population is highest compared to all other non-white 

populations. Data from Stang et al’s study 63 showed the highest incidence rates of UM in 

Northern Europe and Australia and the lowest rates in populations from Costa Rica, Osaka 

and Singapore. In addition, the crude incidence rate of UM in the United States was 20 times 

higher in the white population than in the Afro-Caribbean population. Keenan et al 71 showed 

a similar trend in England with a lower incidence rate in areas with a higher proportion of 

black and Indian populations including those born outside the UK. Margo et al 73 looked 

specifically at race related incidence of UM in the United States between the period 1981 to 

1993 and found a low relative risk of UM for blacks compared to the non-Hispanic and 

Hispanic white population. The non-Hispanic men were found to have 72 times higher risk of 

developing UM compared to black men and non-Hispanic white woman experienced a 22-

fold risk of developing UM compared to black women. The white Hispanic group was less 

likely to develop UM compared to their white non-Hispanic counterparts. Hu et al 74 reported 

age-adjusted incidence rates of UM in various ethnic groups from various cities in the United 

States including white Hispanics, non-Hispanics and blacks and found significant differences 

in comparisons between each group except for black versus Asian population. This study did 

not include any American Indians. Although the incidence of UM is rare in Asian population, 

a few studies have reported a low incidence (< 3 cases per million) in Chinese patients and 

they tend to be younger compared to the white population 75,76. Another study 77 examining 

the ethnic variation among Jewish immigrants to Israel compared to Israeli born Jews and 

their parents found higher rates in individual born to European and American parents and 
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lower rates among individual with African or Asian ancestry. However, examining the 

incidence trends over time, the Israel-born Jews showed increased incidence rates compared 

to the European and American born Jews. Although the rates were not based on large 

numbers, the study concluded that within the Jewish population, the incidence rates were 

lowest in Jews from Asia and Africa and in non-Jews and highest in Jews born in Israel, 

Europe and the Americas. 

 

Table 1.1: Age-adjusted incidence estimates of UM from 1983-1997 !
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Table adapted from Stang et al, (2005). * indicates adjusted to cases per 100,000!

Countries Men* Women* 

Europe     

 Denmark 0.75 0.63 

 UK Scotland 0.69 0.53 

 Slovakia 0.63 0.51 

 Estonia 0.63 0.57 

 Czech 0.56 0.46 

 Eindhoven 0.56 0.31 

 France 0.55 0.44 

 England 0.47 0.42 

 Switzerland 0.42 0.4 

 Italy 0.29 0.26 

 Spain 0.26 0.17 

North and Central America 

   Canada w/o Quebec 0.59 0.48 

 SEER White 0.51 0.42 

 SEER Black 0.04 0.02 

 Costa Rica 0.04 0.09 

Asia and Oceania 

   Australia 0.62 0.52 

 Singapore 0.03 0.01 

 Osaka 0.02 0.02 
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1.2.2 Ethnic and geographical risk factors 

 

Other important risk factors relating to population ethnicity are eye colour and fair skin. A 

population based case control study in Australia on 290 cases and 916 controls found higher 

risk of UM in people with grey, hazel and blue eyes compared to those with brown eye 

colour 78. A meta-analysis of 132 published reports on risk factors for UM provides evidence 

for increased risk with fair skin colour, light iris colour and ability to tan 79. While many 

earlier studies have provided consistent evidence for eye colour 77,80–82, there have been some 

inconsistencies in skin and hair colour as important risk factors for UM 77,79,80,83. 

Furthermore, the geographical variations reported in a few studies 63,69,71 could be attributed 

to ethnicity or environmental factors such as ultraviolet (UV) radiation or other occupational 

risk. Thus, there has been interest in understanding the etiological synergism between the 

light eye colour that correlates with population ancestry and the role of UV radiation to 

support the hypothesis of gene-environment interaction in the causation of UM. The 

increased risk of UM in people with lighter blue or grey iris colour compared to darker brown 

eyes suggests an increased risk due to less melanin in the choroidal melanocytes. This could 

lead to less protection of the DNA in the nuclei of these cells against solar radiation 80. 

Wakamatsu et al 84 studied the relationship between the quality and type of melanin, brown 

eumelanin and yellow or red pheomelanin in relation to the iris colour in cultured uveal 

melanocytes from 61 patients. They found that the quantity and type of melanin, correlate 

with iris colour. The quantity of total melanin and eumelanin/pheomelanin ratio in dark eyes 

were higher compared to light eyes. In addition, the pheomelanin content was constant while 

eumelanin content increased with iris colour. They concluded that melanin in dark-coloured 

irides may be covered by eumelanin while the melanin in light-coloured irides behaves more 

as pheomelanin, a pro-oxidant, and this coupled with lower melanin could explain the high 

prevalence of UM in people with light-eyes. In addition, De Leeuw et al’s 85 study 

demonstrated the protective effect of melanin in cultured skin melanocytes, where they 

showed high melanin content associates with resistance to UV-B cytotoxicity and found the 

best survival in the cell population with a high content of total melanin and low pheomelanin 

content.  

Anatomically, much of the UV radiation impinging on the human eye is absorbed by 

the cornea and lens and less than 1 percent of the radiation below a wavelength of 340nm 

reaches the retina 86. Thus, while exposure to the retina is low, the choroidal region can still 

be exposed to solar UV radiation. A study by Li et al 87 found that the distribution of UM 
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arising in the uveal tract was not uniform. The rate of occurrence was concentrated in the 

macular area and decreased progressively with increasing distance from the macula to the 

ciliary body consistent with the dose distribution of light on retinal sphere. This supports the 

possible role of solar exposure in the induction of these tumours.   

The geographical variation in UM incidence has not been consistent. In the European 

data 69 incidences across latitudes, used as a proxy for sun exposure, where higher ground 

exposure of UV radiation occurs in lower latitudes, showed a decreasing north-south 

gradient. This could be due to the protective effect of ocular and skin pigmentation prevalent 

in the southern populations. On the contrary, Moan et al 88 showed no north-south gradient in 

UM incidences, discounting the role of UV radiation. Adding to this, the incidence estimates 

in UM have remained stable over decades 60,66,71,89 and unlike cutaneous melanoma, the role 

of ultraviolet radiations in the pathogenesis of these tumours is not clear. Further, the 

estimated risk of UM associated with personal exposure to UV-B radiation has been 

inconsistent both within and between case-control studies 80,83,90–92. Giles et al 93 performed a 

case control study in Australia with 290 patients and included additional meta information on 

number of outdoor hours at different times in life, exposure in early life and sun sensitivity. 

They found a strong positive association between sun exposure and increased risk of uveal 

melanoma including choroid and ciliary body tumours. When taken together with previous 

evidence of an association with artificial source of UV radiation 80,91 , this supported the role 

for UV radiation as responsible agent of UM risk. These findings on the synergistic effect of 

light eye iris colour and UV radiation on the risk of UM requires further investigation. 

 

1.2.3 Age and sex-related risk factors  

 

The incidence rates show gender specific differences with higher rates in males 

compared to females 64,70,71. The age adjusted incidence of UM is 5.8 per million males and 

4.4 per million females in the United States 89. The incidence estimates from an Australian 

study gives similar estimates in men and women in the younger age group but significantly 

higher incident rates in men compared to women above 65 years 74.  

Age is a strong determinant factor for risk of UM with increasing incidence after the 

7th decade of life 4,74. Other potential risk factors include sex-related factors 94–96, smoking 97, 

viral infection 98,99 and chemicals 100, however no causative agent has been recognized so far. 

The role of social class is also controversial with some showing a positive association with 
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UM 97,101 whereas Lockington et al reported that socioeconomic status is not a significant 

factor for choroidal melanoma following a retrospective study of 536 from Scotland 101.  

 

1.2.4 Congenital nevi and familial risk factors 

 

Congenital ocular and oculodermal melanocytosis (ODM) also called nevus of Ota 

and nevus or lesions found in the uvea, including choroid and iris nevi, are predisposing 

factors for UM. Singh et al estimated the lifetime risk of developing UM from ODM is 1 in 

400 individuals 3. Melanocytic choroidal lesions (choroidal nevus) ranging between 0.75 to 

6.0 mm are found at a prevalence of 4.6% -7.9% in white individuals and show a slow rate of 

malignant transformation (1 in 8845) to choroidal melanoma 3. Larger choroidal nevi of 

10mm or more in diameter to transform into melanoma in 18% of cases at 10 years 3. In 

addition, other lesions related risk factors include atypical and common cutaneous nevi and 

cutaneous freckles 102. 

A hereditary basis for UM predisposition has been reported by a number of studies 
103–108, although familial incidence is rare. Singh et al 109 investigated 4500 UM patients and 

17 kindreds where the first degree relative of the proband had also been affected with UM 

and found strong statistical evidence for non-coincidental occurrence of familial UM with the 

expected number of affected first degree relative being 0.81 (RR=20.99, 95% CI, 12.2-33.6). 

Recently, germline mutations in the BRCA1 associated protein 1 (BAP1) gene was found to 

be the cause of a novel autosomal dominant syndrome, characterized by high penetrance of 

melanocytic neoplasms and with an increased risk of UM and cutaneous melanoma 110. 

Another independent study 111 also identified germline mutations in BAP1 in two families 

with a high incidence of mesothelioma where some carriers also developed UM. These 

findings were obtained following our identification by the Bowcock laboratory of BAP1 as a 

metastasis suppressor of UM (see below), highlighting the role of BAP1 as a predisposition 

gene in UM. 

 

1.3 Developmental lineage of uveal melanocytes 
 

UMs develop from melanocytes of the uveal tract. Melanocytes are melanin pigment-

producing cells that are found in many different parts of the body (skin, eyes, inner ear, 

central nervous system, heart and muscle) and which are derived from different 
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developmental pathways. During development, the pluripotent neural crest cells develop 

from the embryonic ectoderm cell layer. These then gives rise to non-pigmented melanoblasts 

which differentiate into melanocytes. While migrating during embryogenesis the neural crest 

cells can bypass the natural tissue barriers and basement membrane of the eye and migrate to 

the optic cup. The choroid develops from the mesenchyme that surrounds the inner external 

surface of the optic cup, whereas the iris and the ciliary body develop from the anterior part 

of the optic cup. Within the uvea, the non-pigmented melanoblast mature into melanocytes or 

give rise to the melanocytic stem cells. The location of these uveal melanocytic stems cells is 

unknown. In mammals SOX10 expression specifies the differentiation of melanoblasts from 

the neural crest cells, which subsequently express MIFT, DCT and KIT and specialize to form 

differentiated melanocytes 112. In humans subtle changes in the transcriptional activity of 

MIFT is regulated by IRF1 which is partially responsible for conferring pale skin and blue 

eye 113. In UM, gene expression profile (GEP) based classification (discussed below) 

separates the tumours into two classes that accurately predict metastatic death, namely class1 

tumours with a low propensity to metastasize and class 2 tumours which have a high risk of 

metastasizing. The expression signature of the aggressive class 2 tumours include down 

regulation of neural crest and melanocytic-specific genes and upregulation of epithelial genes 
114. Loss of function mutations in the tumor suppressor gene BAP1 are strongly associated 

with class 2 metastasizing tumours (discussed below)115. Interestingly, depletion of BAP1 in 

UM cell lines leads to downregulation of canonical differentiation genes involved in 

melanocyte differentiation including MITF, TRPM1, TYR and DCT 116. 

 

1.4 Genetics of uveal melanoma 
 

Despite advances in clinical management, UM continues to be an aggressive cancer with 

systemic metastasis seen in approximately half of the patients. For the last 2 decades, our 

group and others have focussed on trying to understand the genetics of UM and the molecular 

basis of tumour formation and systemic metastases. New technologies are helping to reveal 

genome-wide molecular alterations at high resolution.  
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1.4.1 Genome wide association studies in uveal melanoma 

 

As discussed above, UM is associated with risk factors such as skin colour, eye colour and 

ethnicity, and can segregate in families as part of a highly penetrant cancer susceptibility 

syndrome. Thus, the role of genetic risk factors in the etiology of UM is strongly implicated. 

However, due to the rarity of this cancer and the absence of comprehensive genetic data from 

large cohorts of patients, genetic susceptibility to UM has been a challenge. Ferguson et al 

provided the first evidence for genetic factors associated with UM susceptibility. They 

selected 28 SNPs, previously identified as risk variants for cutaneous melanoma (CM) 

through a genome wide association study (GWAS) and tested them for association with UM 
117. They identified 5 variants that were significant after correction for multiple testing. The 

three most significant SNPs were rs12913832, rs1129038 and rs916977 mapping to 

chromosome 15q12 locus in the region of HERC2/OCA2 gene. Variants in this gene are 

associated with different eye colours in the human population 117. Although the study had 

limited power, the most significant association at the HERC2/OCA2 locus had an odds ratio 

(OR) of risk effect of less than 0.6, with rs12913832 having the highest OR of 0.562 (P-value 

= 1.13e-05). Mobuchon et al performed an independent GWAS and found another candidate 

locus on chromosome 5p15.33 (rs421284: OR!=!1.7, CI 1.43–2.05, P = 6 ! 10-3 ) that they 

replicated in an independent cohort 118. This locus harbours two candidate genes: TERT and 

CLPTM1L and many SNPs that were in LD with the original risk SNP 118.  The presence of 

the risk allele (base C) positively correlates with higher expression of CLPTM1L than the 

non-risk allele. Further work is required to determine the biological significance of these 

findings.  

 

1.4.2 Copy number profiles in uveal melanoma 

 

Genomic instability is an important characteristic of cancers and plays an important role in 

tumour development and progression 119. Genomic instability leads to copy number 

alterations (CNA) which can involve gains and losses of small regions or whole 

chromosomes (aneuploidy). CNAs are observed in all major human cancer types 120. Other 

chromosomal abnormality includes structural aberrations such as translocations. For example 

the Philadelphia chromosome involves fusion of the ABL proto-oncogene 1, non-receptor 

tyrosine kinase (ABL1) gene on chromosome 9 and the RhoGEF and GTPase activating 
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protein (BCR) gene on chromosome 22 in chronic myeloid leukaemia 121. Structural 

aberrations and CNAs can affect gene expression either by altering gene dosage or disrupting 

regulatory regions as observed in the healthy population 122. However, disease-specific CNAs 

are of greater interest since they can provide insights into disease pathogenesis. In cancer, 

CNAs can lead to activation of oncogenes or inactivation of tumour suppressor genes that can 

play roles in pathways related to cell growth, proliferation and metastasis. Common examples 

of oncogenic activation of genes due to chromosomal amplification include the v-myc avian 

myelocytomatosis viral oncogene homolog (MYC) observed in a lung cancer cell line 123 and 

erb-b2 receptor tyrosine kinase 2 (ERBB2) in breast cancers 124,125. Inactivation of tumour 

suppressor genes due to homozygous deletions have been observed for RB transcriptional 

corepressor 1 (RB1) gene in retinoblastoma and osteosarcoma 126 and phosphatase and tensin 

homolog (PTEN) in brain, breast and prostate cancers 127. Thus, in addition to providing new 

insights into tumour biology, identification of copy number alterations can enable discovery 

of oncogenes and tumour suppressor genes driving tumorigenesis. While most of the 

chromosomal alterations are likely to be non-specific by-products of overall genomic 

instability, molecular dissection of characteristic recurrent patterns can help in the 

identification of pathogenetically relevant alterations. UMs are notably uniform in their 

clinical and histopathologic features 128 and metastasize in up to 50% of patients. In addition, 

they exhibit characteristic recurrent copy number alterations but less genomic instability 

compared to most solid tumours such as cutaneous and breast cancers 129–131. UMs thus 

present itself as an attractive solid tumour for studying aneuploidy. 

Copy number profiles of uveal melanomas have been characterized by several 

groups and recurrent aneuploidy of a few specific chromosomes remains a key feature in 

these tumours. The first report on molecular abnormalities in UMs by Sisley et al were gross 

alterations of chromosome 1, 3, 6 and 8. This was observed in a karyotype from short-term 

cultures from six posterior UMs 132. Since this landmark discovery several studies employing 

much higher resolution techniques have interrogated this tumour type to identify large-scale 

losses and gains events. Most studies on copy number characterization in UMs have 

identified discrete pattern of chromosomal alterations involving chromosome 1, 3, 6 and 8. 

These studies found loss of the short arm of chromosome 1(1p-), loss of both short and long 

arms of chromosome 3 (Monosomy 3), loss of the long arm of chromosome 6 (6q-), gain of 

the short arm of chromosome 6 (6p+), gain of short and long arms of chromosome 8 (8p+, 

8q+) and loss of short arm of chromosome 8 (8p-). Less frequent abnormalities were reported 

on chromosomes 16q (loss) and 21 40,133,134. The significance of these recurrent alterations 
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was further evaluated by correlating them with clinical and histopathologic parameters. 

Monosomy 3 and large tumour diameter were found to be most significant predictor of 

survival in patients 40. Co-existence of 6p+ and 6p- in same tumours likely represents 

isochromosome 6 i(6p) as it does for chromosome 8 i(8q) which are both commonly 

observed in UMs 135–137. 

UMs exhibit chromosomal patterns characterized by chromosomal 

abnormalities that correlate with mutations and gene expression signatures illustrating 

distinct biological mechanisms that underlie the pathogenesis of these tumours. The most 

striking abnormality associated with clinical and histopathological prognostic factors and 

with increased metastatic risk involves complete and partial loss of chromosome 3. This is 

seen in nearly half of all UMs 36. However, it is only monosomy 3 involving the whole 

chromosome, that is prognostically relevant, conferring a high risk of metastasis 138,139 A 

small number of UMs show intra-tumoral heterogeneity of monosomy 3, but this does not 

show any effect on survival. Mensink et al 140 evaluated genetic heterogeneity in UM with 

FISH and identified subclones with different percentage of monosomy 3 in ten out of sixteen 

tumours. Another study showed a heterogeneous distribution of monosomy 3 based on FISH 

analysis and concluded that fine needle biopsy may be subject sampling error 141. When 

comparing tumours with a low percent of monosomy 3 with those with a high percent of 

monosomy 3 (present in most nuclei), no significant difference was found in metastasis-free 

survival 138. Since the prognostic value of chromosome 3 has been confirmed by been several 

group 33,35,40,142, it is assumed that monosomy 3 is a primary event in UM that often occurs 

with other chromosomal alterations involving chromosome 1, 6 and 8 33,132,135. Co-occurrence 

of chromosome 3 and 8 have been well recorded in previous studies, other alterations that 

occur less frequently with monosomy 3 include gain of 6p, loss of 1p or 6q 102,135,143,144.  

 Gain of 8q is associated with poor prognosis mainly in the context of 8p loss, 

suggesting formation of isochromosome 8q. This occurs in nearly a quarter of all UMs and 

almost exclusively in tumours with monosomy 3 135,145. Considering the GEP status of these 

tumours, isochromosome 8q is associated with the highly metastatic class 2 signature. 

Deletion of 8p12-22 locus is associated with more rapid onset of metastasis and shown to be 

accompanied by silencing of the corresponding retained chromosomal arm 145. Chromosome 

8q loss is thought to be a secondary event in UM 146,147. Van den Bosch et al 148 showed that 

in addition to the presence of monosomy 3 and 8q gain, high percent of these other 

aberrations strongly correlated with poor outcomes compared to cells with a lower percentage 

of aberrations. Increased copies of 8q gain can coincide with an absence or low percent of 
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monosomy 3, relate to larger tumour size and leads to worsening patient survival 148. They 

suggested that tumours accumulate cytogenetic alterations in an increasing number of cells as 

they grow bigger and that this leads to additional copies of 8q and worsening survival.  

 Aberrations on chromosome 6 involve loss of 6q and gain of 6p and occur in up to a 

third of UMs 149. Gain of 6p are frequently found in non-metastasizing disomy 3 tumours, 

suggesting a bifurcation in tumour progression 38–40. The effect of gain of 6p on patient 

outcome is not conclusive as it has been shown to be related to longer survival 35 but is not 

associated with disease-free survival 37. Harbour et al 38 applied statistical pattern recognition 

algorithm to study aneuploidy patterns in 388 primary UMs, 45 from their cohort and 336 

from previously published cases in addition, they performed an integrative analysis of gene 

expression and aneuploidy. They classified tumours based on chromosome 3 and 6p 

alterations (normal copy; 3nl/6pnl, monosomy 3 and 6p gain; 3nl/6p+ and monosomy 3; 3− 

tumours). These changes correlated with their GEPs. Key findings from this study included 

the following: (a) the association between aneuploidy and poor clinical outcome is 

determined by early chromosomal events rather than overall aneuploidy, (b) monosomy 3 and 

6p+ represent almost mutually exclusive alterations and there is a third group of tumours with 

a normal copy of chromosome 3 and 6p (3nl/6pnl). Gene expression profiling suggested this 

group was more genetically similar to 6p+ tumours potentially representing an earlier stage in 

6p+ tumour development but these tumours exhibited better prognosis than 6p+ tumours, (c) 

the gene expression pattern associated with aneuploidy revealed enrichment of genes 

involved in genomic integrity and chromosomal regulation, (d) 8q+ did not achieve statistical 

significance as a predictor of clinical outcome since it was found in all groups, suggesting 

strong selective pressure for gain of genetic material on 8q in all the UM tumours, (e) 

monosomy 3 and 6p+ were thought to be early events and i(8q) and 8p- late events in 

monosomy 3 tumours. Thus, they confirmed that tumours with monosomy 3 and gain of 6p 

represent mutually exclusive alterations and support the idea of phenotypic bifurcation where 

tumours with either one of those changes progress independently. 

 Rearrangements on the short arm of chromosome 1 giving rise to loss of 1p are found 

in UM. However, these 1p aberrations are less common compared to other alterations such as 

monosomy 3, 6p gain and 8q gain, with a frequency of approximately 30% 39,135,142,147,150. 

Loss of 1p provides prognostic information independent of monosomy 3 status, with its 

presence presaging decreased disease-free survival 37. Other less frequent chromosomal 

aberrations that have been identified, include LOH of 9p, 13q and 17p 151, loss of 
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chromosome 11q23 142, gain of chromosome 18q22 and 18q11.2 152,153, gain of  21q 153 and 

loss of chromosome 16q 40,154. 

  

Refined mapping of candidate genes on chromosomes with cytogenetic changes: These 

non-random chromosomal alterations have been further explored to identify candidate 

oncogenes and tumour suppressor involved in UM pathogenesis since they can narrow down 

the altered regions on the chromosomal arm (Table 1.2). Hausler et al 155 performed 

microsatellite genotyping of 70 UMs and identified a smallest commonly deleted region on 

chromosome 1p spanning 55Mb at 1p31. This had been reported previously, by a study that 

screened for copy number alteration on chromosomes 1, 3, 6 and 8 across metastasizing and 

non-metastasizing UMs 32. The genes mapping to this 1p31 locus (PDE4B, IL12RB2 and 

ITGB3BP) showed reduced or absent expression in tumours with monosomy 3, however no 

gene mutation has been found to be in this locus to be associated with UM pathogenesis 37,155. 

However, their role in UM has not been well established in subsequent literature. Partial or 

complete loss of 1p occurs in a quarter of UMs and more often in tumours with monosomy 3 
155. It was found to be a better independent predictor of disease free survival other than 

chromosome 3 37. One study tried to provide evidence for oncogenic role for a spliced variant 

of TP53 homologue p73 gene on 1p however its significance is yet to be established 143.  

In the case of chromosome 6 alterations it is unclear if 6q loss is pathogenetically 

more significant than 6p gain, although loss of 6q and/or gain of 6p occur in close to one-

third of tumours often as isochromosome 6p 137 and associated with better prognosis 

compared to tumours with monosomy 3. This ‘protective effect’ against metastasis could be 

because this change is found in tumours with absence of monosomy 3 149. The common 

region on 6p and 6q identified with CGH and FISH includes gain of 6pter-6p21 and loss of 

6q16.1-6q22 156, however no pathological mutation or differential expression of genes in 

these regions have been identified.  

The smallest region identified on chromosome 8q is at 8q23-24! qter 135,157. This 

contains several potential oncogenes such as MYC, DDEF1 and NBS1. The 8q abnormality 

was further explored and the c-MYC oncogene was shown to occur in at least 30% of primary 

UMs and only tumours with monosomy 3 showed amplification of c-MYC 158, however it is 

still unclear if c-MYC is the main driver on 8q. The pathogenic significance of any of these 

observation on 8q have not been established in UM.  Harbour et al found that loss of 8p has 

higher prognostic value than gain of 8q and identified a region of minimal deletion at 8p12-

22. This deleted region contained 11 well defined genes, six of which were downregulated in 
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GEP based class 2 tumors (CNOT7, ASAH1, ATP6V1B2, LZTS1, DPYSL2 and FZD3). Of 

these six genes, LZTS1 was most strongly linked to metastasis and examined as a candidate 

tumour suppressor gene however, further work is required to determine its significance 145.  

Loss of 9p is found in nearly a quarter of UMs 149 and cytogenetic analyses have 

identified a small region of LOH at 9p21 in nearly a third of tumours 159,160. This locus 

includes the CDKN2A tumour suppressor gene and methylation of the CDKN2A promoter 

occurs in 24-31% of cases. It has been suggested that inactivation of CDKN2A plays a role in 

UM progression 160,161.  

Monosomy 3 occurs in nearly half of all UMs and is strongly associated with clinical, 

histopathologic prognostic factors. Metastasis is the most prognostically significant 

chromosomal marker in UMs with monosomy 3 34,162. Thus, chromosome 3 attracted 

considerable attention with the expectation that a tumor suppressor gene may be involved in 

UM progression 163. Many groups had attempted to narrow this down to a more focally 

deleted region. These included 3p11-14 164,165, 3p25-26 165,166, 3p25.1-3p25.2 167 and 3q 
165,166. And there were many unsuccessful attempts at identifying candidate genes on 

chromosome 3 that played a role in UM metastasis 168–170. Harbour & Bowcock et al used 

next generation sequencing to sequence whole exomes from two tumours with monosomy 3 

that had undergone metastasis and identified deleterious loss of function mutations in 

BRCA1-associated protein-1 (BAP1) which was located on chromosome 3p21.1 in both 

tumours 115. They then screened additional tumours with Sanger sequencing and identified 

inactivating mutations in BAP1 in 47% UMs 115. These mutations occurred in metastasizing 

UMs with monosomy 3 consistent with the Knudson’s ‘two-hit’ model for cancer genes. 

Thus, information on copy number complemented with mutational profiling enabled the 

identification of a key tumor suppressor gene associated with metastasis in UM. 

Harbour et al 42 also showed that UM tumors can be subdivided into prognostically 

significant groups based on a gene expression profile (GEP) of 15 discriminating genes 

where class 1 tumors (low-grade tumors) have longer metastasis-free survival compared to 

class 2 tumors with high propensity to metastasize 42. Copy number alterations that correlated 

with these expression classes are gain of 6p in class 1 tumors and monosomy 3 and 8q gain in 

case of class 2 tumors 129,171. A more recent study by Harbour et al identified high expression 

of a tumor antigen PRAME as an independent prognostic marker for metastasis where tumors 

(both class 1 and class 2) that expressed PRAME above a threshold value (PRAME+) were 

associated with an increased risk of metastasis in UM 46. Both class 1 and class 2 tumors with 

PRAME+ status were associated with 6p gain, 6q loss, 8q gain and 16q loss whereas 1q gain 
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and 8p loss occurred exclusively in class 1 and class 2 respectively. Interestingly, PRAME 

expression was not associated with monosomy 3. These findings highlight greater 

significance of these CNAs when the tumor samples are stratified based on these genes 

expression classifiers and role of these CNAs mediated as cause or effect of PRAME 

upregulation is currently unknown.  

 

Table 1.2: Summary of genomic finding from other studies in uveal melanoma 

 

1.4.3 Structural rearrangements in uveal melanoma 

 

Genomic stability in a key attribute of cancer and can be in the form of gene mutations, copy 

number alterations and other structural aberrations involving rearrangement of the genome, 

such as translocations and inversions events. Structural chromosomal rearrangements events 

may result in convergence of coding or regulatory DNA sequences between genes located 

nearby or faraway from each other to form gene fusions. A few gene fusions are drivers of 

neoplasia and as such represent a novel disease mechanism leading tumourigenesis. Gene 

fusions can enable the sub-classification of tumours and be correlated with clinical 

phenotype. This makes them ideal for diagnostic purposes as seen in case of non-small cell 

lung cancers where ALK fusions are routinely screened for disease management 172. At the 

transcriptomic level the balanced and unbalanced chromosomal rearrangements can result in 

the formation of fused RNAs.  

Fusions can sometimes be seen as chromosomal rearrangements including 

translocations (transfer of segments from one chromosome to another), insertions and 
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inversions (rotation of a segment by 180 degrees within a chromosome) and unbalanced 

events resulting from deletion of an interstitial chromosomal segment (parts of the p and q 

arm of a chromosome which are neither close to the centromere nor telomeres). The first 

reported gene fusion event was a translocation observed on the Philadelphia chromosome 

involving fusion of the ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1) gene on 

chromosome 9 and the RhoGEF and GTPase activating protein (BCR) gene on chromosome 

22 in chronic myeloid leukaemia (CML). Splicing of the hybrid transcript produced by the 

BCR-ABL1 fusion gene, yields an mRNA in which the BCR sequence is fused with exon 2 of 

the ABL1 gene. The presence of this fusion is associated with poor prognosis 121,173. One of 

the most common gene fusions events can be seen in prostate cancers, and involves a 

recurrent fusion of the TMPRSS2 gene to oncogenic ETS family members encoding 

transcription factors ERG, ETV1 or ETV4 174,175.  

Chromosomal abnormalities including copy number changes and structural alterations 

are key features of both solid and liquid (blood-borne) tumours. The number of studies 

characterizing cytogenetic abnormalities are increasing176 and the advent of molecular 

techniques such as FISH along with high-throughput technologies  such as whole genome 

sequencing and RNA sequencing have added a further level of sophistication to the analysis.  

Besides revealing novel chimeric fused genes associated with tumourigenesis these 

technologies can enable the identification of the specific chromosomal breakpoints associated 

with the fusion.  

Despite solid tumours being more common and making a significantly greater 

contribution to morbidity and mortality than liquid cancers, less is known about the role of 

their chromosomal alterations and their importance in a clinical and biological context. For 

example, the reported number of chromosomal rearrangements contributing to gene fusions 

events are far greater in hematopoietic malignancies than in most solid tumours 177. However 

this could due to publication bias as liquid tumours have been far more extensively 

characterized compared to solid tumours 178. Nevertheless, this trend is changing and 

significant information is accumulating on structural chromosomal aberrations in solid 

tumours which exhibit widespread karyotypic changes. In the context of epithelial cancers, 

many gene fusion events have been characterized over the last few decades, including, ALK, 

ROS1 and RET kinase fusions in lung cancer, RAF kinase fusions in brain tumours, 

melanoma, gastric and prostate cancers, R-spondin fusions in colorectal and prostate cancer, 

CD44-SLC1A2 gene fusions in gastric cancers, MAST- and NOTCH-family gene fusions in 

breast cancers and MITF fusions in renal cancer 179. 



! 33!

Interestingly, to date only a single study characterizing chromosomal rearrangement 

events has been published in UM 180; and none describe gene fusion events at a 

transcriptomic level, although several fusions targeting genes such as PAK1 and DGKB have 

been reported recently in cutaneous and other non-cutaneous melanoma 181. Bertrand et al 

recently performed deep whole genome sequencing of 24 primary UMs and 9 metastatic 

samples and found an average of 50 structural variants including a few recurrent inter-

chromosomal rearrangements 180. Their data suggested an absence of major drivers 

constituted by genetic rearrangement events. They reported translocations in 3 out of 33 

samples involving chromosomes 6 and 8, disrupting the genes UBE2W and MYO6 in two 

samples and an intergenic region in the third sample. Additionally, translocations between 

chromosome 13 and 17, and chromosomes 3 and 12 were reported. Although these recurrent 

translocations involved nearly same genomic regions, there was absence of a common gene 

affected by these events.  

Yoshihara et al performed a comprehensive analysis of RNA sequencing data from 

4366 primary tumour samples across 20 cancer types, including 80 UMs from The Cancer 

Genome Atlas (TCGA) dataset. They identified 7887 high confident fusion events and 

tabulated fusions per cancer type in the TCGA Fusion gene data portal 

(http://www.tumorfusions.org) 182. They used a 4-tier system to classify the transcripts based 

on minimum discordant pairs, matched junction spanning reads and uniqueness of the gene 

partner within a sample. Tier 1: fusions harboured a minimum of, three discordant pairs, two 

junction spanning reads and gene partner uniqueness within a sample; Tier 2: fusions with a 

minimum of two discordant read pairs and one junction spanning reads and breakpoints 

within 100Kb from predicted junction point; Tier 3: fusions which showed high consistency 

of predicted junction, gene partner uniqueness within sample, minimum two discordant read 

pairs and one junction spanning reads; and Tier 4: all fusions not present in tiers 1 to 3. The 

validation rate (based on their analysis of the glioblastoma dataset) of tier 1 and tier 2 events 

was greater than the others (tier 3 & tier 4). Although, they did not include UMs in their 

downstream analysis of fusion transcripts, when querying (for the current study) the tier 1 

results of the TCGA UM samples from the fusion gene data portal, revealed 22 reported 

fusions events across 11 samples. Recurrent fusion pairs were absent and seven in-frame 

events were reported. These were: TFG-GPR128, OC1AD1-KIT, RFC1-C4orf34, FILIP1-

KCNQ5, STX7-LMBRD1, 9-SEP-BCAS3 and KLK2-FGFR2. The orthogonal validation of 

these reported fusion events with Sanger sequencing was not assessed probably due to the 
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unavailability of samples for experimental follow up. Thus, the relevance of these events 

requires further investigation. 

Another groups of gene fusions or chimeric RNA are formed by intergenic splicing 

events, referred to as “non-canonical chimeras” 179. These non-canonical chimeric RNAs can 

be formed by trans-splicing (i.e. splicing together exons from multiple separately encoded 

transcripts) or read-through transcripts which are formed when the transcription machinery 

goes beyond the normal termination and reads through intergenic regions of neighboring 

genes. This results in a final chimeric RNA composed of sequences from two different genes. 

The presence of these fusions can increase noise in the data. Thus, identifying gene fusion 

detection tools which filter these read-through transcripts are preferable. Since most studies 

have focused on canonical gene fusions in cancers the relevance of non-canonical chimeras, 

which were only discovered recently, is largely unknown. As described above, although, 

previously analysis of RNA-sequencing data to characterize fusion transcripts in UM has 

been attempted 183, a comprehensive and focused study in UM has not yet been done till date.  

 

1.4.4 Gene expression based classification  

 

Although cytogenetic alterations are valuable for use in clinical prognostication, they can be 

susceptible to sampling error due to the significant intra-tumoral heterogeneity present in UM 
141,184. Previously several groups explored the use of gene expression to gain prognostic 

insights in UM. Zuidervaart et al 185 compared the gene expression of tumour specimens and 

cell lines with nylon filter microarrays containing 1176 gene spots related to cancer 

development. They found 4 genes whose expression levels divided tumours into two distinct 

subgroups 185. These genes included ET2, VBP1, CUL2 and LAMR1. They also found a 

positive correlation for three of the genes (ET2, LAMR1 and VBP1) with PAS-positive loops, 

which are linked to poor outcomes 186. However, they could not find any association with 

survival due to the unavailability of data on all of the tumours.  

Tschentscher et al 187 analysed the expression patterns of primary tumours with 

oligonucleotide arrays tiling 12500 probes sets. They identified genes that were differentially 

expressed between UMs with and without disomy 3.  They found seven genes that were 

absent in monosomy 3 tumours, and they proposed two genes CHL1 and fls485 on 3p25 as 

candidate tumour suppressor genes. However, they could not identify any mutation or 

epigenetic alteration in either of these two genes. They also described several other genes that 
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were highly significantly differentially expressed between the tumours, including SPP1, 

TIMP-3 and HTR2B. High expression of HTR2B was seen in the tumours with monosomy 3 

and was proposed to be a marker of metastasizing tumours.  In addition, expression data was 

used for class discovery by unsupervised clustering. This revealed two distinct tumour classes 

that correlated with cytogenetic alteration on chromosomes 3, 6 and 8. Monosomy 3 was 

confined to only one of the two classes while 6p and 8q gain were seen in both classes. They 

could not establish the prognostic significance of these two classes tumours since the samples 

in their study were from patients with recent diagnosis and data on metastasis were not 

available. 

Onken et al 42 went on to show that GEP could classify tumours into two 

prognostically significant groups with unsupervised clustering techniques, namely class 1 and 

class 2 tumours. Class 1 or low grade tumours had a low risk and class 2 or high grade 

tumours had a higher risk of metastasis. They then used a supervised technique to identify the 

genes that separate the two classes and found 62 discriminating genes, including a significant 

cluster on chromosome 3 and 8q that correlated with metastatic death. However, further 

enrichment of these genes using a signal to noise threshold resulted in exclusion of most the 

genes on chromosomes 3 and 8q. The smallest set of genes that could accurately predict the 

class labels was three, (PHLDA1, FZD6 and ENPP2). Most notably, the prognostic accuracy 

of this GEP based classification outperformed other clinicopathologic prognostic factors 44, 

and was confirmed by several groups 188,189. The GEP from high-density hybridization based 

microarray platform for predicting metastasis was then reduced to twelve discriminating and 

three control genes that could be assayed with a microfluidics platform. This is now used in 

the clinic following aspiration of small quantities of sample with a fine-needle biopsy 190. The 

prognostic accuracy of this assay has been validated in a prospective multicentre study 

spanning 12 independent centers and found to be superior over monosomy 3 status for 

clinical prognostic testing 43. One possible reasons suggested for the superiority of GEP over 

cytogenetic method for prognostication is that cytogenetic markers are distributed 

heterogeneously and subject to sampling error, while GEP represents a less variable 

functional ‘snapshot’ of the tumour microenvironment 149. The most recent work by Harbour 

et al, has revealed four prognostically significant classes based on GEP, namely 1A, 1B, 2A 

and 2B 129. The expression of two discriminating genes (CDH1 and RAB31) from the GEP 

panel was proposed to identify the subset of class 1 tumours with increased metastatic risk.  

Tumours with low expression of CDH1/RAB31 and lower predicted metastatic risk were 

called class 1A, whereas those with higher expression of CDH1/RAB31 genes and higher 
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predicted metastatic risk were called class 1B 191. Class 1A has the longest metastasis free 

survival and class 2B has the shortest survival. Class 1 tumours (1A and 1B) have a better 

prognosis compared to class 2 tumours, with risk of metastasis being 2% for class 1A 

tumours, 21% for 1B tumours and 72% for class 2 tumours 191.  

In addition to providing clinical value, the expression profiles also provide valuable 

insight into UM pathogenesis. The class 1 tumours resemble normal uveal melanocytes and 

low grade spindle cell melanoma. On the other hand, class 2 tumours correspond to high-

grade melanomas with more epithelioid cells and a reduced expression of melanocytic genes. 

Their transcriptomes resemble those of primitive neural/ectodermal cells 192. BAP1 gene are 

frequently mutated in tumours with monosomy 3 and the morphology of cultured class 1 UM 

cells changed into a class 2-like epithelial phenotype when the BAP1 gene is depleted. This is 

consistent with later work implicating  BAP1 in maintenance of key aspects of melanocytic 

differentiation  where its loss can lead to malignant progression 115. 

Worley et al 193 investigated the expression patterns of micro-RNA expression using a 

microarray based approach and showed that a microRNA signature can also cluster tumours 

easily cluster into two groups corresponding to the GEP classification (class 1 and class 2). 

Overall, miRNA expression levels were significantly higher in class 1 compared to the class 

2. However, there were only 6 miRNAs (let-7b, miR-199a, miR-199a*, miR-143, miR-193b 

and miR-625) that were identified as strong discriminators of class and these were all 

upregulated in the class 2 tumours. The most significant discriminating miRNAs were let-7b 

and miR-199a, and their differential expression was validated with q-PCR. The let -7b family 

is involved in lineage programming and let-7b plays a role in cell fate determination and 

neural crest development 193. Predicted targets of let-7b are the melanocyte-related 

developmental regulator box 3, Rb1 and CCND1 genes. Not much is known about miR-199a, 

whose predicted targets include MITF and other melanocyte related genes including CAV1, 

FZD6 and PAX3. Many additional studies have identified novel miRNAs in UMs 194–197, 

however, concordance is only seen for a small number of miRNAs across different studies. 

These discrepancies can be attributed to quality of samples, variation in profiling platforms 

and different protocols for sample processing, tumour heterogeneity and other obscure 

factors. A comprehensive understanding of miRNA dysregulation and abnormalities 

associated with UM is still to be determined.  
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1.4.5 Mutational signatures in uveal melanoma 

 

UMs are characterized by relative genomic stability, with a low mutation and 

structural variation rate. The single nucleotide variant (SNV) mutation rate is less than 1 per 

Mb, compared to most solid tumours including adult cancers and other types of melanomas 

such as cutaneous and acral198–201. Interestingly the somatic mutation rate in UMs is similar to 

paediatric cancers such as rhabdoid tumors and medulloblastomas180.  

Epidemiological studies have implicated population specific factors such as light skin 

colour and blue eyes in UM. However, the role of environmental factors such as UV light 

exposure have not clearly been delineated 77,78,81,83,91. Two independent groups recently 

examined the role of UV radiation at the molecular level and found an absence of a UV-

induced mutational signatures in UM 180,199. Both studies looked at whole genome sequencing 

data from primary UMs and analysed the mutational signatures based on single nucleotide 

variants (SNVs). They looked for a signature of UV-induced damage that is characterized by 

C>T transitions at the 3’ position of pyrimidine dimers 180,199,202. Although, the C>T 

transition were the most common type of substitution in UMs, they accounted for ~35% of 

the lesion and were not restricted to the 3’ position of pyrimidine dinucleotide 199. Thus, 

based on molecular data, UV-induced DNA damage does not appear to play a role in the 

aetiology of UM. Other major mutational signatures described in UM, based on the 

classification of Alexandrov et al 203 include, signatures 12/16, signature 1B, signature 3 and 

signature 6 180,198. Signature 12 is a feature of T>C mutations at NpTpN trinucleotides and 

signature 16 is characterized by T>C mutations at ApTpA, ApTpG and ApTpT. Changes at 

these trinucleotides show strong transcriptional strand bias and are thought to result from 

transcription coupled nucleotide excision repair 203. Signature 3 exhibit more or less equal 

representation of all the 96 substitutions and are associated with a DNA double-strand break 

repair (“BRCA1/2 signature) 203. Signature 6 is characterized predominantly by C>T 

transitions at the NpCpG trinucleotide and is strongly associated with inactivation of DNA 

mismatch repair genes 203. Interestingly, there was no significant association of signature 6 

and the presence of BAP1 mutations in the samples analysed 198. This is surprising since there 

are some reports that the BAP1 protein plays a role in DNA repair 204. Signature 1B is 

characterized by C>T substitutions at the NpCpG trinucleotide and is not well separated from 

other cancer signatures. It arises from the spontaneous deamination of 5-methylcytosine and 

is correlated with the ageing process 203. As a contrast, mutational signature in cutaneous 

melanoma are dominated by signatures 7, which are signatures of ultraviolet radiation 
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exposure 205.  Signature 7 is conspicuously absent in UM 198 consistent with lack of 

epidemiological evidence that UV is a risk factor in this cancer. Signature 7 shows a higher 

prevalence of C>T substitutions on the untranscribed compared to transcribed strand and may 

be formed through UV exposure of pyrimidine dimers and other lesions that are then repaired 

by transcription-coupled NER 203. In addition, analysis of genes involved in cutaneous 

melanoma such as BRAF, NRAS and NF1 revealed no somatic mutations in UM 180,206. Thus, 

taken together these finding support the notion that uveal and cutaneous melanoma share 

different molecular aetiology.  

For many years, causative genetic mutations in UM were a mystery, characterized by 

the absence of activating oncogenes such as NRAS, BRAF and MYC and inactivating 

mutations in the tumor suppressor genes such as INK4A and PTEN commonly found in 

melanomas 207,208. Since then, the mutational profile in UMs have been investigated both at 

coding level by whole exome sequencing and more recently at genome wide scale using 

whole genome sequencing. Currently, the genetics of UM is dominated by frequent mutations 

involving five major genes, including GNAQ, GNA11, BAP1, SF3B1 and EIF1AX (described 

below). 

 

1.4.6 Driver genes in uveal melanoma 

 
According to Volgelstein et al 209 , genomic landscapes of human cancers consists of genes 

altered in a high percent of tumours (“mountains”) and much larger numbers of genes altered 

infrequently (“hills”) that “drive” tumorigenesis (driver genes). Consistent with this, UMs 

display similar characteristic patterns of somatic mutations that have been identified from 

sequencing primary tumours samples. Several key cancer driver genes are mutated 

consistently across various studies. These are discussed below.  

 
Alterations in G-protein coupled receptor pathways in UM 

 

Mutations in BRAF, NRAS, HRAS and KIT are commonly found in the melanomas of the 

skin. However, UMs are characterized by the absence of mutations in these oncogenic 

drivers, even though they exhibit a similar constitutive activation of the MEK/ERK/ERK 

pathways 210,211. One exception is iris melanoma where one study identified BRAF mutations 

(T1799A) in nearly half of all tumours suggesting genetic differences between anterior and 

posterior UMs 210. The first described mutations in UM were activating mutations in genes 
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encoding the G protein-coupled receptors (GPCR), G Protein Subunit Alpha Q (GNAQ) and 

G Protein Subunit Alpha 11 (GNA11). These mutations occurred in a mutually exclusive 

manner, mostly targeting codon 209 and in some cases codon 183 212,213. Raamsdonk et al 

(2010) discovered in a screen of 30,000 mice that germline mutations in the orthologous 

genes, G"q (V179M) and G"11 (I63V) lead to dermal hyperpigmentation 41. The microscopic 

appearance of the skin in these mutant mice resembled blue nevi of humans 214,215. A 

subsequent investigation of mutations in GNAQ and GNA11 in blue nevi and other cutaneous 

melanocytic neoplasms revealed Q209 hotspot mutations in GNAQ and GNA11 in blue nevi, 

and in primary and metastatic UMs 212,213. Hotspot mutations affecting codon R183 compared 

to Q209 were less prevalent and were found in 2% in blue nevi and 6% UMs 212. In total, 

83% of all the UMs analysed have either a somatic mutation in GNAQ or GNA11 genes 

occurring in a mutually exclusive manner 212. Since their discovery, these mutations have 

been confirmed by several studies and are well established as UM specific oncogenic drivers 
180,216–219. Mutations in either GNAQ or GNA11 are found in nearly 85% of all UMs, 

including benign uveal nevi, primary and metastatic tumours 212,216. The GNAQ and GNA11 

mutations are not correlated with survival and are present in the majority of tumours 

irrespective of their cytogenetic status. These mutations are also not correlated with the gene 

expression profile based class status of UM, nor with BAP1 mutation status, that is associated 

with metastatic risk 220,221. Thus, GNAQ/GNA11 mutations appear to be an early or initiating 

event in UM progression. Recently, rarer mutations in two additional oncogenes were 

identified in UM using whole genome and exome sequencing data. These were recurrent 

mutations in cysteinyl leukotriene receptor 2 (CYSLTR2) and phospholipase C #4 (PLCB4), 

targeting codon 129 (L129Q) in CYSLTR2 and codon 630 (D630Y) in PLCB4. These 

mutations were identified in less than 5% of UMs 198,222 and occur in samples without 

mutations in GNAQ or GNA11198,222.  

GNAQ and GNA11 encode the alpha subunits of the transmembrane guanidine 

nucleotide-binding protein (G-proteins), G"q and G"11 respectively and are important 

intermediates between membrane-bound GPCR and intracellular signalling cascades. In a 

normal cell, G-proteins are inactive when bound to guanosine diphosphase (GDP). When a 

ligand binds to the receptor, it changes its conformation and GDP is converted to guanosine 

triphosphase (GTP). This renders the G-protein active to downstream pathways. The GTPase 

activity of the G-protein is rendered inactive when GTP is hydrolysed to GDP 223. However, 

the most common GNAQ/GNA11 mutation affecting codon 209, is crucial for their GTPase 
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activities, and prevents the return of G-protein to an inactive state. This oncogenic mutation 

leads to constitutive activation of downstream MEK-ERK1/2 and Rho/Rac/YAP pathways, 

which promote cell proliferation 224,225. Other oncogenic alterations at the level of the GPCR 

involve mutations in the CYSLTR2 gene. This encodes the seven transmembrane GPCR that 

activates the Gq subunit 222. The L129Q mutation in CYSLTR2 affects the third 

transmembrane helix of the receptor, promoting ligand independent activation of the GPCR 
226. The PLCB4 encodes a phospholipase enzyme that catalyzes the conversion of 

phosphatidylinositol 4,5-biphosphate (PIP2) in the plasma membrane to inositol 1,4,5-

triphosphate (IP3) and diacylglycerol (DAG) 226. Consequently, DAG and IP3 mediate signal 

transduction by downstream activation of protein kinase C (PKC). Mutations affecting codon 

630 of PLCB4 affect the Y-domain of the conserved catalytic core of PLCB4 that controls the 

signal transduction 198. Collectively, mutations affecting genes GNAQ/GNA11, CYSLTR2 and 

potentially PLCB4, affect the GPCR signalling in UMs and raise the possibility of identifying 

therapeutics that target these mutations as well as downstream pathways affected by them. 

 
BAP1 - metastasis associated driver gene 

 

Monosomy 3 was the best predictor of predictor of metastasis in UM for a long time until the 

identification of a gene expression profile (GEP) based classification 36,227. Based on the 

GEP, tumors can be classified as class 1, with a low propensity to metastasize and as class 2, 

which are aggressive and exhibit a high degree of metastasis. The presence of a class 2 GEP 

is usually associated with monosomy 3 42. Although, these markers offered superior value for 

prognostication, the identification of a metastasis suppressor gene on chromosome 3 had 

attracted enormous attention. With the help of whole exome sequencing data, Bowcock and 

Harbour et al (2010) identified BRCA1 associated protein 1 (BAP1) mapping to chromosome 

3p21.1 as a metastasis suppressor of UM 228. Inactivating somatic mutations in BAP1 gene 

were found in 84% of metastasizing class 2 tumours and in only 1 class 1 tumour (2%). Loss 

of BAP1 function is achieved by loss of one chromosome 3 and a second hit on the remaining 

chromosome 3, consistent with Knudson’s definition of a two-hit hypothesis of a tumour 

suppressor gene. Germline BAP1 mutations have also been reported, in a small subset of 

patients (< 5%) and are associated with larger tumours and higher rate of ciliary body 

involvement which are known risk factors for metastases 229. Germline BAP1 mutations are 

estimated to account for 2-3% of all UM patients, although a higher estimate of 8% has been 

reported 230. The discovery of BAP1 as a metastasis suppressor has been confirmed by 
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various other groups, and the types of cancers arising as a result of predisposing germline 

BAP1 mutations has been expanded to include malignant mesothelioma, cutaneous 

melanoma, melanocytic BAP1-associated intradermal tumours (MBAITs) and renal cell 

carcinoma. This is now collectively recognized as the BAP1 familial cancer syndrome 229–233.  

 The BAP1 gene encodes a nuclear-localized ubiquitin carboxy-terminal hydrolase 

(UCH) enzyme 234 and removes ubiquitin molecules from target proteins. BAP1 is part of the 

polycomb repressor complex and many functions have been ascribed to it. The balance of 

transcriptional control is achieved by ubiquitination of polycomb repressive complex and de-

ubiquitination by PR-DUB and loss of BAP1 significantly alters the expression of several 

polycomb targets 230. BAP1 has been implicated in regulation of the cell cycle, DNA damage 

repair, cellular differentiation and transcription. BAP1 can affect the cell cycle by binding 

and deubiquitinating lysine residues in the transcriptional regulator host cell factor 1 (HCF1) 
235. HCF1 is a cell cycle regulator and associates with both activator and repressor 

transcriptional regulators that control cell-cycle progression 236. Transcription factors such as 

E2F1 recruits HCF1 to specific promoters, where it regulates transcription. HCF1 sustains the 

complex formed between the chromatin modifying enzymes, such as histone 

methyltransferase and the transcription factors 236. Ubiquitylation of HCF1 blocks the E2F-

responsive promoter activity and de-ubiquitylation of HCF1 by BAP1 would remove this 

inhibition and promote cell proliferation. BAP1 forms a ternary complex via its association 

with HCF1 and transcription factor Yin Yang 1 (YY1) and regulates gene expression (Figure 

1.2) 235. BAP1 is found to be associated with a multiprotein complex, called the BAP1 

complex and these include HCF1, ASXL1/2, O-linked N-acetylglucosamine transferase 

(OGT) and forkhead transcription factors FoxK1/K2 237,238. The protein partners of this core 

vary under different cell types and conditions. The interaction between BAP1 and HCF1 and 

OCT could play a role in recruiting polycomb repressive deubiquitylase complex to the target 

genes 239. BAP1 also interacts with ASXL1/2 to form a polycomb group repressive 

deubiquitinase complex (PR-DUB). This complex is a critical regulator of stem cell 

pluripotency, embryonic development, self-renewal and differentiation 230,240. In addition, 

BAP1 may play a role in regulating DNA damage and repair via its interaction with 

BRCA1/BARD1. The E3 ubiquitin ligase activity of the BRCA1/BARD1 complex which 

regulates DNA damage response is modulated by de-ubiquitination of BARD1 by BAP1 241.  

In UMs, GEP based class 1 tumors are composed of more differentiated cells 

with similar gene expression to normal melanocytes, whereas class 2 tumors contain cells 

that have lost morphological features of melanocytic differentiation and their gene expression 



! 42!

signatures are enriched for genes expressed in primitive ectodermal and neural stem cells 192. 

Functional experiments by our group to elucidate the effect of BAP1 loss in cultured class 1 

UM cells revealed that depletion of BAP1 leads to loss of differentiation and gain of stem cell 

like properties, including expression of stem cell markers (NANOG and OCT4), increased 

capacity for self-replication and augmented growth in stem cell conditions and acquisition of 

a class 2 gene expression profile. However, this depletion did not result in increased 

proliferation, migration, invasion and tumorigenicity 116. Furthermore, treating short term 

BAP1-mutant UM cell lines with histone deacetylase (HDAC) inhibitors reverted the de-

differentiated state of the class 2 UM cells to a differentiated class 1 phenotype and restored 

the normal level of expression of melanocytic genes that were downregulated by BAP1 loss 
58. The idea behind treating the BAP1 deficient cells with HDAC inhibitors is that BAP1 loss 

leads to hyper ubiquitination of histone H2A, which is shown to be reversed by using HDAC 

inhibitors 58. Thus, transient treatment of BAP1 depleted UM cell lines with HDAC inhibitors 

leads to reversal of the phenotypic effects of BAP1 loss induction of melanocytic 

differentiation and arrest of the cell cycle. HDAC inhibitors also inhibits the growth of UM 

tumours in an in vivo xenograft model 58. Thus, BAP1 appears to function as a regulator of 

differentiation, where cells with loss of BAP1 exhibit stem cell like qualities 116. The exact 

mechanism of how BAP1 loss promotes metastasis in UM is yet to be elucidated.  

 

 

Figure 1.2: Schematic diagram illustrating interaction of BAP1 with HCF1 complex.  

 

 

 

 

 

 
 
 

Figure adapted from Carbone et al.241. BAP1 regulated gene transcription via its interaction with 

HCF1 and YY1. 
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SF3B1 –  driver gene at transcriptional level in uveal melanoma 

 

Our group has also shown that recurrent mutations affecting codon 625 of the splicing factor 

3b subunit 1 (SF3B1) gene are found in nearly 24% of UM and are associated with 

favourable prognosis compared to BAP1 218,242. SF3B1 mutations are relatively specific to the 

GEP based class 1 tumours and are associated with younger patient age 218. When adjusted 

for the impact of monosomy 3, patients with tumours with SF3B1 mutations and disomy 3 

were associated with significantly worse prognosis and developed late metastasis 243. 

Mutations in SF3B1 have subsequently been reported by number of studies and their 

frequency varies between 15% to 30% 199,218,219,242. Interestingly, similar to GNAQ and 

GNA11, mutations in the SF3B1 gene are recurrent and predominantly affect codon 625 

where the arginine residue (R) is changes to different amino acid depending upon the type of 

base change (R625C, R625H, R625G, R625L). This base is also altered in other cancers such 

as CLL and MDS 244,245. SF3B1 lies on chromosome 2q33.1 and evaluation of copy number 

of tumours with this mutation, shows no loss or gain of this locus 242.  Recently 

Yavuzyigitogle et al (2017) showed that tumours with SF3B1 mutations are characterized by 

gain of chromosome 9q (24%), 6p (85%) and 8q (73%), and loss of 6q (52%), 11q (45%) and 

1p (36%) 246. Additionally, UMs with multiple chromosomal structural variants are more 

likely to be SF3B1 mutants 246. Martin et al reported that 29% of tumours with disomy 3 

carry SF3B1 mutations compared to 3% of tumours with monosomy 3 219. Mutations in 

SF3B1 usually occur in a mutually exclusive manner with respect to the other UM driver 

genes BAP1 and EIF1AX (discussed below) 218. Resequencing of other exons in the SF3B1 

gene for mutations in additional hotspots such as those in codon 700 which is found in other 

haematological and lymphoid malignancies 243,247,248 has revealed additional less common 

non-R625 mutations in UM 219.  

 SF3B1 is an essential part of the precursor-mRNA (pre-mRNA) splicing machinery 

and is a component of both the major (U2 small nuclear ribonucleoprotein or snRNP) and 

minor (U12 snRNP) spliceosome complexes 243. SF3B1 is involved in 3’splice site 

recognition and mutations affect splicing of target genes. SF3B1 mutations may also affect 

DNA-damage repair in CLL 243. Furney et al (2013) described a similar pattern of alternative 

splicing due to SF3B1 mutations in UM 199. Differential alternative splicing of UQCC and 

ABCC5, and use of a cryptic splice site near exon 4 of the long coding RNA CRNDE, 

previously implicated in colorectal cancer, was identified 199.  Although Furney et al. (2013) 

showed diverse alternative splicing events in a large number of transcripts, including 
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alternative terminal exon usage, intron retention and cryptic splicing, a clear pattern of target 

genes affected by SF3B1 mutation was lacking 199. Furney et al. (2013) showed that SF3B1 

mutations are associated with alternative splicing patterns in UMs 199. Differential alternative 

splicing of UQCC and ABCC5, and the use of a cryptic splice site near exon 4 of the long 

coding RNA (lincRNA) CRNDE, previously implicated in colorectal cancer , was identified 
199. Three independent studies by DeBoever et al. (2015) 249, Alsafadi et al. (2015) 250 and 

Darman et al. (2015) 251 elucidated the mechanistic role of SF3B1 mutations in deregulation 

of canonical splicing. Some of the key points can be summarized as: (1) SF3B1 mutant 

tumors exhibit global splicing defects by usage of an aberrant cryptic 3’ splice site (3’SS) 

located 10-30 bases upstream of the canonical 3’SS (2) Significantly wildtype SF3B1 

knockdowns and overexpression do not reproduce the effect of mutant SF3B1 and are 

proposed to lead to a “change of function” effect rather than gain or loss of function (3) The 

mutant SF3B1 preferentially recognizes an alternative branch point (BP) upstream of the 

canonical BP site (4) Aberrant splicing is observed in patients with hot-spot R625 mutations 

and the tumors with non-hotspot mutations cluster with wildtype tumours (5) Nearly 50% of 

the aberrantly spliced mRNAs are subjected to non-sense mediated decay and lead to 

downregulation of canonical mRNA or proteins. Taken together these studies provided a 

better understanding of the mechanism underlying the splicing alterations altered due to 

SF3B1 mutation, however, specific targets leading to tumour formation have not been 

identified. 

 
EIF1AX – driver gene at translational level in UM 

 

Mutations in the eukaryotic translation initiation factor 1A (EIF1AX) gene, located on 

chromosome Xp22, were recently discovered by whole exome sequencing of UMs 252. 

EIF1AX is an essential in the initial phase of translation of mRNA to polypeptide in 

eukaryotic cells, the first step by which the mRNA is translated to proteins in eukaryotic cells 

by the transfer of methionyl initiator tRNA to the small ribosomal unit (40S) and stabilizes 

the formation of the ribosome to enable translation 253. The reported frequencies of EIF1AX 

mutations in all UMs range between 14%-25% 198,216,218,219 and unlike the SF3B1 mutations 

which frequently affects a single codon, EIF1AX mutations affect exon 1 and exon 2 of the 

gene. A few mutations affect splicing or lead to amino acid deletion in the N-terminal tail 

(NTT) of the protein, leaving the core protein with its RNA-binding domain intact 219. In 

comparison to BAP1 mutations which are largely truncating and loss of function, EIF1AX 
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mutations are heterozygous missense variants in females and hemizygous in males. 

Evaluation of sex-specific effects of EIF1AX mutation revealed that all mutation target the 

active allele in females with UM, whereas the other allele is silenced at a result of X-

chromosome inactivation 252. Interestingly, mutations in SF3B1 and EIF1AX were found to 

be more frequent in males compared to females with UM although the Y chromosome 

paralog of EIF1AX (EIF1AY) did not show any difference in expression compared to EIF1AX 

or harbour any mutation, indicating it does not contribute to the sex imbalance 252. 

Immunostaining with an EIF1AX antibody revealed protein expression in the cytoplasm of 

all tumours irrespective of the mutation status219.  

Currently, the functional effects of the EIF1AX mutations are not clear, but are 

anticipated to have a global impact on production of protein. Chaudhuri et al have shown that 

mammalian eIF1a is essential for the transfer of the initiator Met-tRNAf (as part of the Met-

tRNAf.eIF2.GTP ternary complex) to the 40 S ribosomal subunit in the absence of mRNA to 

form the 40 S preinitiation complex. This stabilizes the formation of the ribosome (joining 

the 40S and 60S to form the functional 80S initiation complex) around the AUG start codon 
253. Protein eIF1A encoded by EIF1AX may be linked to the mTOR pathway, via its 

interaction with RPS7 and 14-3-3γ (Figure 1.3) and may play a role in promoting protein 

synthesis and cell proliferation 254.  

Mutations in the EIF1AX gene are predominantly found in non-metastatic class 1 

UMs and are associated with good prognosis. EIF1AX mutations have a mutually exclusive 

relationship with BAP1 and SF3B1 mutations and as expected they are predominantly found 

in the disomy 3 tumours and rarely in tumours with monosomy 3 218,219,255. Combining 

information on EIF1AX mutation status with BAP1 mutation status, enhances prognostication 
218,255. Mutations in the EIF1AX gene have been reported in other cancers such as thyroid and 

ovarian cancers 254,256. The sequence of the EIF1AX gene harbouring mutations is highly 

conserved in eukaryotes and the regions with the substitutions correspond to portions of yeast 

eIF1A, OB-fold and $C domains.  The assembly defects of the OB-fold mutation reduces 

40S binding of eIF1A and impair ribosome function, reducing bulk translation 257. This can 

be rescued by overexpressing eIF1, another eukaryotic translation initiation factor that 

communicates with eIF1A when bound to 40S during assembly of the preinitiation complex 
257,258. Another proposed effect of EIF1AX mutation is suppression of the recognition of near-

cognate initiation sites or 5’ proximal AUG codon to alter the relative use of different start 
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codons in mRNAs encoded by tumour promoting genes 219. To understand the effects of 

EIF1AX mutation in UM warrants functional work. 

 

Figure 1.3: Schematic diagram illustrating link between EIF1AX and mTOR complex.  

 

 

 
 
EIF1AX forms a core 

component of the translation initiation complex in Eukaryotes and a potential promoter of mTOR 

activity part of the 14-3-3(gamma) and RPS7. Figure adapter from Hunter et al. 254. 

 
Other low frequency driver gene mutations 

 

Mutations in the promoter of telomerase reverse transcriptase gene (TERT) are commonly 

found in cutaneous melanoma and are consistent with a typical UV-damage signature 259. In 

UMs, mutations in the TERT promoter are very rare 216,260. However, elevated expression of 

TERT is reported in tumours with a wildtype TERT promoter suggesting that a different 

mechanism operates in UM that affects telomere maintenance 261,216. 

 As the number of high-throughput studies increases, a number of rare mutations of 

unclear significance will be identified. This imposes the challenge of distinguishing truly 

pathogenic events from “passenger” events that do not providing any selective advantage but 

which are swept along during tumour evolution. Revisiting Vogelstein’s analogy of “hills” 

and “mountains” to describe driver genes, genes with few mutations (“hills”) will continue to 

be identified and methods based on mutational frequency to identify these drivers will not be 

reliable. However, majority of the key drivers have been identified in UM and are slowly 

providing insights into the mechanistic role of tumour progression. 

 

1.4.7 PRAME as an independent biomarker 

 

Much research in UM has been focussed on the development of prognostic markers that 

predict metastasis. As previously described, cytogenetic and gene expression factors predict 

the risk of metastasis and currently a more accurate 15 gene assay is commercially available 

(DecisionDx-UMTM). This helps identify the patients with high risk of metastases so that they 
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can be treated with adjuvant therapies and kept under surveillance 57. Majority of the 

metastatic events are from the GEP class 2 subgroup of tumours and a very small subset of 

the class 1 tumours (1B). There is a 5-year metastasis rate of 21% for class 1B tumours 

compared to 2% for the class 1A tumours 191. Recently, Field et al investigate mRNA 

expression of the metastasizing and non-metastasizing class 1 tumours at a genome-wide 

level and found overexpression of cancer-testis antigen PRAME in the metastasizing group 
262. Genes expressed by tumours with high levels of PRAME (the PRAME+ group) were 

enriched for functions related to chromosome maintenance, meiotic recombination and 

telomere maintenance 262. This study was further expanded to evaluate the prognostic value 

of upregulated PRAME in a much larger cohort of samples comprising class 1 and class 2 

tumours. This established a PRAME+ threshold that would allow the categorisation of 

samples into those with high versus low PRAME expression 46. The key findings of this 

study were: (a) The only clinical feature associated with PRAME+ status was large tumours 

size suggesting that its transcriptional activation is induced later during tumour progression 

(b) PRAME+ status is more highly correlated with 1B compared to 1A tumours (c) PRAME+ 

is associated with specific cytogenetic alterations including 6p gain, 6q loss, 8q gain and 16q 

loss. This provides evidence for the prognostic significance of 16q loss; a region that has not 

been well studied 40, additionally PRAME+ was found in tumours with isochromosome of 6p 

and 8q (d) PRAME proteins are associated with OSGEP and LAGE3, human orthologues of  

an ancient EKC/KEOPS complex, implicated in transcription, telomere maintenance and 

chromosome segregation 263. Hence, aberrant PRAME expression may predispose tumours 

cells to isochromosome formation and aneuploidy that in turn promotes tumorigenesis (e) 

PRAME+ is associated with SF3B1mutation directly and EIF1AX mutations inversely (f) 

CpG sites around PRAME promoters are aberrantly hypomethylated in PRAME+ class 1 and 

class 2 tumours and loss of this CpG methylation is correlated with transcriptional activation 

of PRAME.  

 PRAME is specifically enriched at transcriptionally active promoters bound by NFY 

at a CCAAT binding motif, 264. Field et al showed that many genes that upregulated in GEP 

class 1 tumours with PRAME overexpression, contain NFY sites in their promoter and, are 

located within regions of 1q gain and 6p gain 262. Furthermore, these genes play a role in 

meiotic recombination, telomere and chromosome maintenance. Taken together these 

findings suggest that upregulation of PRAME may cooperate with 1q and 6q gain to facilitate 

chromosome instability associated with tumour progression 262. However, it is also possible 

that upregulation of PRAME occurs prior to these chromosomal alterations.  
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 Although, PRAME is a tumour antigen that is expressed in variety of cancers and 

provides prognostic value in UM due to its strong association with metastases, its exact role 

in tumour progression is unclear. A recent study identified PRAME as a dominant repressor 

of retinoic acid receptor (RAR) signalling.  PRAME binds to RAR in the presence of retinoic 

acid, and prevents ligand-induced receptor activation, repressing target gene transcription 

through recruitment of Polycomb proteins EZH2 265. It has therefore been proposed that 

overexpression of PRAME in cancer can confer growth and survival advantages by 

antagonizing RAR signaling. Since PRAME is a marker for poor outcome, it is likely to play 

a role in tumour progression rather than early oncogenic transformation. Further work is 

needed to elucidate the mechanistic role of PRAME in UM pathogenesis. 

 
1.5 Perturbed pathways in uveal melanoma 
 

Cancer development is a multistep process and can be defined by several features; Some of 

these “hallmarks of cancer” 266 that can be demonstrated in UM include: (1) resisting 

apoptosis (2) evading growth suppressors (3) self-sufficiency to grow (4) replicative 

immortality (5) sustained angiogenesis and (6) invasion of tissue and metastasis. 

Additionally, other emerging hallmarks include avoiding immune checkpoints and 

deregulating cellular energetics 266. As indicated in the earlier section, UM arise from 

melanocytes in the uveal tract, that have differentiated from the non-pigmented neural-crest 

derived melanoblast precursors. The transition from melanocyte to metastasizing UM could 

be a combination of various genetic and epigenetic alterations. Several molecular pathways 

have been implicated in UM which help with tumour grow and progression. Inhibition of cell 

cycle control and apoptosis is mediated via retinoblastoma (Rb) and p53 pathways, that are 

functionally inhibited in UM.  However, specific mutations targeting either RB1 or TP53 are 

lacking 267–270. The Rb tumour suppressor pathway is disrupted by either hyperphosporylation 

of Rb, overexpression of cyclin D1 or inactivation via hypermethylation of the 

INK4A/CDKN2A/p16 promoter 267–272. Hypermethylation of the CDKN2A promoter has been 

reported previously in UM, however with varying frequencies of between 4% and 33% 
268,271–275. Thus, its role as an additional mechanism for Rb inactivation is unclear. The p53 

pathway is inhibited downstream of p53 activation and may be a consequence of MDM2 

overexpression which is seen in UM 267,275. Defects in the BCL2 family of apoptosis 

regulators represent another way of evading apoptotic regulation and controlling cell survival 
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in UM. BCL2 is a direct transcriptional target of MITF and is highly expressed in UM 267. 

Furthermore the PI3K/AKT pro-survival pathway is constitutively activated in UMs to avoid 

apoptosis 276,277. Activation of AKT has been shown to be associated with higher risk of 

metastatic disease in enucleated eye samples 276 and this association with metastatic risk is 

only seen when phosphor-AKT (Thr308) is expressed 277. Insulin-like growth factor 1 

receptor (IGF1R) interacts with insulin like growth factory to regulate cell proliferation, 

differentiation and apoptosis, is often upregulated and can activate the PI3K-AKY pathway 
278,279. PTEN is a negative regulator of PI3K-AKT pathways and its role as a tumour 

suppressor gene has been investigated. Although mutations in PTEN are rare, loss of 

heterozygosity of the PTEN locus is reported in 76% of tumours 280,281. Additionally, PTEN 

inactivation is associated with increased aneuploidy and decreased survival in UM, 

suggestive of PTEN loss being a later event in UM progression 38,280. The role PTEN in UM 

progression requires further investigation. 

 MEK/MAPK signalling pathways are constitutively activated in UM 210. Although 

UMs are characterized by the absence of oncogenic BRAF, RAS and KIT mutations, 

commonly seen in their cutaneous counterparts 206,282,283 the discovery of the oncogenic 

mutation in the GNAQ/GNA11 genes shed light into the mechanism of MAPK pathway 

activation in UM 212,213 Mutant GNAQ and GNA11 proteins activate the downstream MAPK 

cascade signaling via activation of phospholipase C (PLC). This signals through a critical 

secondary messenger protein kinase C (PKC) stimulated via IP3-DAG. The phosphorylation 

of PKC activates the MAPK cascade through sequential phosphorylation of RAF, MEK1/2 

and ERK1/2, which in turn act on TFs in the nucleus and regulates proliferation and 

apoptosis 284. 

 Upregulation of growth factors such as vascular endothelial growth factor (VEGF) is 

observed in UM, although the mechanism for this overexpression is not known 285,286. 

Evaluation of VEGF expression and its association with tumour formation and metastatic 

characteristics has revealed that it correlates with the presence of necrosis but does not 

correlate with marker of angiogenesis 287. , However serum VEGF has been shown to be 

increased with metastasis 287. One of the driving forces of angiogenic stimulators is 

intratumoral hypoxia. This is associated with increased metastases in many cancers. Hypoxia-

inducible factor 1 (HIF-1) is a transcription factor that mediates an angiogenic phenotype and 

is seen in class 2 tumours 192. Tissue invasion and metastasis in UM is characterized by 

activation of E-cadherin and Wnt/beta-catenin pathways 288,289. Further evaluation of genes 

that contribute directly to epithelial alterations in class 2 tumours has revealed 
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downregulation of ID2, a gene which is highly expressed in normal uveal melanocytes 114. 

Other features of tumour invasion in UM include increased expression of matrix 

metalloproteinases (MMP) and downregulation of the tissue inhibitors (TIMPs), ALCAM 

expression, activation of NOTCH pathway and bi-allelic methylation of embryonal Fyn-

associated substrate (EFS) 290. Other tumour hallmarks such as avoiding destruction by the 

immune system can be mediated by the expression of PD-L1 on the UM cells which 

suppresses the IL2 production and impairs T-cell function 291 and downregulation of HLA 

class 1 expression 291. Varying densities of tumour infiltrating lymphocytes and macrophages 

are proposed to lead to tumour promoting inflammation 292–295. The recently described role of 

PRAME overexpression in UM  in regulating a CTL response46 requires further investigation. 

The interplay of all these different pathways, including PI3K-AKT, MAPK/MEK 

signaling, mTOR and mTOR-IGF-1R blockade, in mediating UM pathogenesis requires more 

functional investigation and may help in identifying strategies for targeted therapy. 

 

1.6 Current disease model  
 

A provisional model can be suggested based on the data acquired on these tumours (Figure 

1.4). The earlier initiating events include oncogenic activation of the G" signalling pathway 

presumably in a normal uveal melanocyte by mutations affecting either a GNAQ/GNA11 or 

CYSLTR2 genes.  This may trigger inappropriate cell cycle re-entry through activation of the 

MAPK pathway. Not all mutant cell clones will progress to form a melanoma, but rather 

undergo cellular senescence resulting in a nevus, or are eliminated by immune surveillance 

mechanisms 149. One in 8000 nevi progress beyond this stage 296 to potentially form different 

GEP classes of melanoma. The class 1 tumours resemble the GEP of normal uveal 

melanocytes and nevi and class 2 exhibit melanocytic differentiation 192. The GEP classes of 

tumours (Class 1 and Class 2) are associated with specific driver gene mutations that occur in 

a mutually exclusive manner.  

Initiating mutations in GNAQ/GNA11/CYSLTR2 genes are followed by 

mutations in the BAP1/SF3B1/EIF1AX genes (referred in the current work as “secondary 

driver” genes since they appear to occur secondarily to the GNAQ/11 mutations). SF3B1 and 

BAP1 mutations occur mutually exclusively, in class 1 and class 2 respectively 218. Within the 

class 1 tumours the SF3B1 and EIF1AX mutations are mutually exclusive 218. The class 1 

tumours can be further differentiated based on the GEP, into the class 1A which rarely 
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metastasize and the class 1B tumours which represent slow growing tumours, with a higher 

propensity to metastasize than the 1As 129. However, a more recently identified biomarker, 

PRAME overexpression can identify the slow growing class 1 tumours that are highly likely 

to metastasize 262. Further, the GEP class 2 tumours are more likely to have overexpression of 

PRAME than class 1 tumours 46. Cytogenetic alterations accompany these tumour groups 

based on gene expression and mutations. Gain of 8q is seen in almost all classes of tumours, 

irrespective of the GEP classification, although there is some evidence that it is more 

common in class 2 tumours 149. Monosomy 3 is almost exclusively observed in the 

metastasizing class 2 tumours which have high PRAME and BAP1 mutations 46. Gain of 6p 

and is predominantly observed in the class 1 tumours or tumours with disomy 3 38,39 and it is 

present in both SF3B1 and EIF1AX mutant tumours 246. Loss of 6p and 11p are seen in class 1 

tumours with SF3B1 mutations and almost never with E1FIAX mutants and is less commonly 

seen in class 2 tumours 246. Loss of 8p occurs frequently in class 2 tumours with PRAME 

overexpression, often as isochromosome 8q. Loss of 16q occur in both class 1 and class 2 

tumours that are associated with PRAME overexpression 46. Loss of 1p is seen in close to a 

third of UM samples and are associated with SF3B1 mutants 246. Gain of 1q is  associated 

with PRAME overexpression only in the class 1 tumours 46. The metastatic tumours have a 

distinct gene expression profile similar to the GEP class 2 tumours 149.  

 

Figure 1.4: Provisional disease model of formation of UM 
 

 

 

 

 

 

 
 

Legends: C1 indicates class 1 tumours and C2 indicates class 2 tumours. Chromosome losses 

indicated by - and gains indicated by +. 
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1.7 Current study hypothesis and objectives 
!

The provisional disease model provides broad insights into cytological and mutational 

events driving tumour processes.  However, a comprehensive study with larger numbers of 

samples interrogated with high throughput technology is warranted to better understand UM 

tumorigenesis. The current knowledge indicates that while GNAQ/11, CYSTLR2 and PLCB4 

mutant proteins are directly involved in the activation of signalling cascades, other key 

drivers including BAP1, SF3B1 and EIF1AX play a role in transcriptional and post-

transcriptional regulation of the cell machinery. The significance of these drivers is 

established at the level of recurrent mutation frequency, however, some less frequent, but 

important gene that are involved in tumorigenic processes may be missed due to small 

sample sizes and heterogeneity among different patients. Thus, much larger number of genes 

that are infrequently mutated but relevant to tumour biology (“hills”) remain to be 

discovered. To date, most of the driver mutations in UM have been identified by non-

systematic analysis of limited samples. However, this trend is changing with increasing 

number of studies employing whole genome or exome sequencing technology (Table 1.3).  

 

Table 1.3: Next gen sequencing based studies.  

 

List of previously published studies utilizing next-generation sequencing technology and reported UM 

driver genes. * (star) indicates the study where the UM driver gene was first identified. 

Year%(month)%
of%
Publication

Study%authors Number%of%samples%
sequenced%by%Nex<gen%
Sequencing

Whole%
exome

Whole%
Genome

UM%Driver%Mutation%
identified

References

2010$(Dec) Bowcock,$
Harbour$et$al.

2 2 0 GNAQ,$GNA11,$BAP1* 115

2013$(Feb) Bowcock,$
Harbour$et$al.

18 18 0 GNAQ,$GNA11,$BAP1,$
SF3B1*

243

2013$(Aug) Martin$et$al 22 22 0 GNAQ,$GNA11,$BAP1,$
SF3B1,$EIF1AX*

220

2013$(Oct) Furney$et$al 12 0 12 GNAQ,$GNA11,$BAP1,$SF3B1 200

2016$(Apr) Moore$et$al 136$($56$previously$
published$+$80$TCGA$
samples)

136 0 GNAQ,$GNA11,$BAP1,$
SF3B1,EIF1AX,$CYSLTR2*

223

2016$(Nov) RoyerYBertrand$et$
al.

33 0 33 GNAQ,$GNA11,$BAP1,$
SF3B1,EIF1AX

181

2016$(Dec) Johansson$et$al. 28 15 13 GNAQ,$GNA11,$BAP1,$
SF3B1,EIF1AX,$PLCB4*

199

2016$(Jul) Field$et$al 104$(24$previously$
published$+$80$TCGA$
samples)

104 0 GNAQ,$GNA11,$BAP1,$
SF3B1,EIF1AX

46
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CNAs have extensively been characterized in UMs with various techniques such as 

Fluorescence In Situ hybridization (FISH), comparative genomic hybridization (CGH), 

multiplex ligation-dependent probe amplification (MLPA), SNP arrays and more recently 

with whole genome sequencing 180. SNP arrays can interrogate both genotypes and copy 

number and can thus detect CNAs and copy neutral loss of heterozygosity events which 

cannot be detected by cytogenetics or CGH arrays. In addition, they have greater resolution 

compared to FISH 297.  

The current understanding of cancer formation involves a stepwise acquisition of 

genetic alterations including point mutations, copy number alterations and fusion formation 

which affect critical genes regulating cellular growth and survival. Thus, the identification of 

genes targeted by these alterations will help accelerate progress in understanding the 

mechanistic basis of tumourigenesis and metastasis 266. With the exception of BAP1, the 

target gene or genes underlying the recurrent cytogenetic events have not been identified. 

While all the major arm level chromosomal aberrations in UMs have been identified so far 

and key genes of prognostic significance have been established so far, a further systematic 

investigation of these CNAs is warranted to identify genes that play a role in mediating 

tumorigenesis and metastasis and to understand their role in the greater context of tumor 

biology. Although as described above, highly recurrent chromosomal gains and losses have 

been observed for some time in UM, most studies have been underpowered in sample size 

and genomic resolution to accurately identify the candidate genes involved in these events.  

The underlying hypothesis proposed in the current study is that some copy number 

and structural alterations harbor genes that are highly selected for and are instrumental in 

causing defects in pathways that lead to UM pathogenesis. Thus, this study attempts to 

identify focal alterations, significantly altered in UM using a large cohort of primary tumors 

interrogated with high density SNP arrays and to identify potential candidate cancer genes 

relevant in UM. One of the limitations of the data analyzed in the current study is the 

heterogeneous sources of data generation. The SNP array platforms used here were from 

Affymetrix or Illumina and use different chemistries. Moreover, the error profiles of the array 

and methods to address the idiosyncrasies of the Illumina data are not well understood. 

Possible errors could come from the sample batch processing, array chemistry and sample 

heterogeneity. Thus, integrating results across multiple cohorts presented a challenge.  

Thus, the main objective of the current study described in this thesis is to perform a 

comprehensive investigation of the genomic landscape of UM including copy number, 

mutations and the transcriptome. To achieve this, high throughput data has been analysed 
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with robust bioinformatics methods to gain further insights into the genetic events that occur 

in UM and to identify novel predisposing genes.  

 
Major aims addressed in this study: 
 
Chapter 3: Copy number profile in uveal melanoma 

 

This chapter aims to perform a comprehensive copy number analysis of 182 UM primary 

tumours to call significant broad and focal copy number peaks that harbour candidate genes. 

Comparison of copy number peaks with pan cancer study to find CNAs common with other 

cancers and those specific to UMs. Further functional relevance of the copy number peaks 

will be accessed by integrating copy number data with gene expression from RNA-

sequencing data followed up with pathway enrichment analysis of genes with copy number 

associated with change in expression to prioritise functionally relevant genes. 

 
Chapter 4: Mutational landscape in uveal melanoma 

 

Comprehensive investigation of primary UM will be performed by analysing the landscape of 

coding mutations in UM using a sample size of 120 samples (a previously published cohort) 

and sequencing data from additional samples (total N=131). In addition, this study describes 

an integration of copy number data from SNP arrays and variants identified from RNA-seq 

data with variants from exome sequencing to prioritise additional candidate genes that are 

likely to also play role in UM pathogenesis.  

 
Chapter 5: Transcriptomic investigation of gene fusions in uveal melanoma 

 

This chapter aims to investigate the global landscape of chimeric RNAs in primary UMs 

using RNA-sequencing data to identify canonical gene fusion events. Using newer 

algorithms, parsing and in-house developed filtering pipeline, this chapter attempts to 

confirm previously reported fusion transcripts and identify novel canonical gene fusion 

events that could play a role in UM pathogenesis. 
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Chapter 2. Data and Bioinformatics 
pipeline 

!

2.1 Copy number analysis  
 
2.1.1 Sample source and SNP array data  

 

All samples used in the current study were enucleated specimens obtained from adult patients 

with informed consent. SNP-genotype data on 182 primary UM tumour samples and 87 

normal samples were generated with different genotyping platforms from three different 

sources (Table 2.1).  

 

Table 2.1: Source of SNP array data  
 

In total of 182 primary tumors and normal UM samples 

 

(1) Raw copy number data (LRR and BAF) for 45 tumour samples and 7 normal samples 

were obtained at Washington University in St Louis (WASH-U cohort). The collection of 

samples for all the tumour/germline DNA was approved by the Institution Review Board.  

Inclusion criteria for primary tumours included pathology-verified diagnosis and exclusion 

criteria include history of ocular brachytherapy or extensive tumour necrosis which can 

confound DNA profiling; The median age of patients was 60 years. Cytogenetic analysis of 

45 primary UMs obtained at enucleation and matched blood on 7 samples was done using 

data obtained from three different Illumina SNP array platforms (Table 2.1). Briefly, 200ng 

of DNA was used for the Infinium whole genome genotyping assay consisting of whole 

genome amplification, hybridization capture on BeadArray, array based primer extension 

SNP scoring and immunohistochemistry-based signal amplification was performed and data 

were generated on these samples comprising two intensity values (X, Y) for each SNP 

corresponding to each allele.  

 

Cohort Primary+tumours+
Samples

Matched+
normal

SNP+Platform

CC 57 0 Illumina,-,Human,Quad66W
TCGA 80 80 Affymetrix,SNParray,6
WASH-U 45 7 Illumina,-,Omniarray,,CytoSNP12,,OmniExpressExome_v1_3
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(2) Raw copy number data (LRR and BAF) was obtained for 57 primary tumour samples 

from Cleveland clinic, Ohio (CC cohort). The LRR and BAF data were downloaded using 

study accession number GSE44299. The median age of patients was 64 years (range 24-91 

years) 

(3) CBS segmented data from 80 tumour samples and 80 matched normal samples from the 

Cancer Genome Atlas Research Network (TCGA cohort) was downloaded from the dbGap 

portal. TCGA is supervised by the National Cancer Institute and the National Genome 

Research Institute and is funded by the US government. TCGA has several centers funded to 

generate and analyze data and the data are currently available for researchers in a three-level 

structure with tier 1 and 2 in a controlled access and the tier 3 without any restricted access. 

The segmented data for the 80 tumor and normal samples are available at tier 3 access. 

TCGA data on the UM cohort (TCGA code – UVM) was downloaded using the GDC data 

transfer tool (https://gdc.cancer.gov/access-data/gdc-data-transfer-tool). The median age of 

patients in the TCGA cohort was 61.5 years (range 22-86 years). 

The data processing steps were performed at three different levels (Figure 

2.1): (1) Raw intensity data for WASH-U cohort; (2) LRR and BAF data for CC cohort; and 

(3) segmented data for the TCGA cohort. All the steps are described below. 

 
Figure 2.1: Schematic representation of copy number analysis.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Schematic representation of the steps used for the analysis of copy number data.  

Raw$Intensity$data LRR$and$BAF$data CBS$Segmentation$data

GenomeStudio

ASCAT9PCF$segmentation

182$Primary$UM$tumours +$87$Normal$samples

26$WASH9U$tumours$
(7$Paired)

19$WASH9U$tumours
57 CC$tumours
($76$Unpaired)

80$TCGA$tumours
(80$paired)

GISTIC$analysis

Integrate$GISTIC$results$by$querying$ segmented$data$$from$all$182$
tumour$samples$and$select$peaks$>15%$samples

Cis9gene$signature$analysis:$Identify$gene$within$GISTIC$peaks$of$focal$
copy$number$change$associated$with$change$in$expression

Pathway$and$gene$enrichment$analysis
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2.1.2 Genotype data processing steps 

 
The raw signal intensity data for data from WASH-C cohort genotyped on the Illumina 

Omniarray platform were processed to obtain the genotypes, Log R ratio and the B-allele 

frequency data. These were then used for downstream copy number calling. The allele 

specific image intensities were imported and normalized in Illumina’s proprietary PC- 

Genome Studio software in order to call genotypes. The normalization algorithm was used to 

adjust for channel-dependent background and global intensities. It also removes outliers and 

scales the data. These two-color channels (X and Y) undergo affine transformations to make 

the data as canonical as possible with the homozygous SNPs positioned along the x and y 

intensity axis  and followed by outlier removal, translational correction, rotational correction, 

shear correction and scaling correction297. After normalization, these intensities were 

transformed to polar coordinate plots of normalized intensities R (R = Xnorm + Ynorm) and 

allelic intensity ratios θ (θ = 2/π * arctan (Ynorm / Xnorm)) where Xnorm and Ynorm represent 

transformed signals from alleles A and B at a locus. Due to the unavailability of matched 

normal DNA for most of the samples, “single sample” analysis mode was used to compute 

log intensity ratios and allelic ratios by a comparison with canonical genotype clusters 

generated from large training sets of normal samples. Log R ratios (LRR) were computed 

from the normalized intensity R as the log (base2) ratio of normalized R value for the SNP 

divided by the expected normalized R values derived by interpolation of R value at the SNP’s 

theta value for a sample relative to the canonical cluster generated by training the normal 

samples. The B allele frequency (BAF) was computed from the allelic intensity ratio θ for 

each SNP corrected for the canonical cluster position generated using normal samples. In 

other words, BAF represents the relative frequency of an allele at a locus in a reference 

population. These two transformed parameters, LRR and BAF are used for inferring copy 

number and LOH calls respectively. LRR measures copy number changes relative to the 

reference genome while BAF also referred to as allelic composition is the normalized 

measure of relative signal intensity between the two alleles (B/A). A LRR value of 0 can be 

interpreted as the presence of 2 alleles, LRR < 0 means loss of an allele or deletion and LRR 

> 0 means gain of an allele or amplification. A BAF of 0 represents allele 1 genotype (A/A or 

A/), whereas 0.5 represents a heterozygous genotype (A/B) and a BAF of 1 represents the 

allele 2 genotype (B/B or B/-). 
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2.1.3 Segmentation and copy number calling on SNP array data 

 
Detection and defining copy number boundaries require a statistical framework that examines 

trends across multiple adjacent markers that share the same copy number and detects changes 

between two neighboring regions. Thus, these algorithms segment or delineate chromosomes 

into equal copy number difference regions. The array based data (LRR) for each marker 

represent the intensities from test and normal reference samples, assumed to not have any 

copy number alterations. This analysis was performed with a bioinformatics method called 

Allelic specific copy number analysis of tumour (ASCAT) 298 which takes into account the 

tumor ploidy and non-aberrant cell admixture to generates a genome-wide allele specific 

copy number profile for each tumor. ASCAT was applied to the LRR and BAF data from 102 

primary tumours samples genotyped with the Illumina platform in the WASH-U (N=45) and 

CC (N=57) cohorts. ASCAT uses an Allele-Specific Piecewise Constant Fitting (ASPCF) 

algorithm to pre-process the LRR and BAF data. ASPCF algorithm is an extension of the 

univariate PCF algorithm 299 and takes as input the LRR and BAF data. It fits a piecewise 

constant regression functions to both the LRR and BAF data simultaneously to make the 

change points occur at the same position in both, iterating separately to each of 40 genomic 

regions corresponding to the chromosomal arms from 1 to X. Briefly, ASPCF tries to 

optimise partitioning of the genome into segments each containing consecutive probes to find 

the partition that minimizes the penalized optimization criterion comprising the number of 

segments, goodness of fit to the LRR data and the BAF data and a penalty variable for 

changes in the function due to discontinuities in the signal. After determining the change 

points and fitting the piecewise constant function the segment mean deviation from 0.5 is 

calculated. The ASPCF smoothed data are then used as input for the ASCAT algorithm to 

estimate the aberrant cell fraction and the tumour ploidy along with the allele specific copy 

number calls. ASCAT profiles can also be used to investigate copy number neutral loss of 

heterozygosity (CN-LOH) and LOH events by allowing the measurement of allele levels. A 

copy neutral event in the current analysis is defined as allelic bias for a SNP in the germline 

such that the total copy number does not change from tumour ploidy (differ more than 0.6) 

and copy number of A allele differs from copy number of B allele. 

All steps were performed with ASCAT (version 2.4.2) package in the R 

computing environment (version 3.3). The following steps were involved (Appendix 1 code 

2.1): (1) The LRR and the BAF data for matched tumour and normal samples were loaded 

using the ascat.loadData function; (2) A GC correction step was performed to account for 
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the genomic ‘wave artefacts’ affecting the SNP arrays since this can affect the performance 

of copy number calling. The wave artefact are correlated with GC content of the surrounding 

genomic region and a wave adjustment procedure was applied to improve detection of copy 

number variation; (3) In the case of unmatched samples where only the tumour data were 

available, the germline prediction function was used to infer the germline genotypes from the 

tumour data and SNP array platform as input using the function 

ascat.predictGermlineGenotypes; (4) The ASPCF segmentation algorithm which calculates 

the allele specific copy number was applied to each sample with the ascat.aspcf function. 

The output file contained the rounded copy number values of A and B allele, the ploidy and 

aberrant cell fraction, segments with chromosomal start and stop positions and raw 

segmentation for each sample.  

 

2.1.4 Broad copy number calling and unsupervised hierarchical clustering 

 

The segmentation file for each sample was then used for calling broad and focal copy number 

aberrations. The segments can be classified as amplified or deleted based on a threshold of 

0.15. The deleted or amplified segments affecting more than 50% of the chromosomal arm 

length were classified as broad arm level alterations. To identify the underlying pattern of 

copy number across all the tumours in an unbiased manner, unsupervised hierarchical 

clustering was applied. Here, an agglomerative method was used for clustering. First, the 

distance between two objects are calculated and followed by clustering using a bottom up 

(agglomerative method) approach where starting with each object in its own cluster, the best 

pair (cluster distance) is merged into a new cluster and repeated until all clusters are fused. A 

heatmap of the data with dendrogram (cluster tree) helps to visualize the inherent pattern in 

the data.  

For hierarchical clustering, all the tumours were assessed for the presence 

(indicated by “1”) or absence (indicated by “0”) of each copy number alteration (samples, 

N=182) and a CNA status matrix was constructed. Samples with deletions were marked as “-

1” and samples with amplification were “1” and the distance matrix was constructed using 

“Euclidean distance” method. This was passed to the R function ‘hclust’ for average 

hierarchical clustering and the number of clusters were chosen by visualizing the clustered 

heatmap. The ‘cutree’ function in R was used to extract the clusters. Association between the 
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metastatic outcomes and clusters were tested using chi-square statistic. Copy number 

segment heatmap was visualized with IGV 300.  

 

2.1.5 Focal copy number analysis with GISTIC 

 
The GISTIC algorithm 301 (version 2.0) was applied to the ASCAT segmented data to further 

narrow down the chromosomal regions of interest. GISTIC identifies somatic copy number 

alterations (SCNA) that are significantly altered at a higher frequency than regions which are 

selectively neutral or weakly deleterious ‘passenger events’. It does this by evaluating the 

frequency and amplitude of the observed events. The algorithm performs 4 main steps:  

1)! Identification and separation of SCNA: The segmented profiles are deconstructed to 

identify the underlying SCNA by modelling the background rate of these alterations and 

separate out the arm-level and focal SCNAs based on length. 

2)!  Assigning scores to each SCNA: The G scores are calculated as negative log of the 

probability of event occurring due to chance for a given background rate. To assign peaks 

that are statistically significantly, a P-value is computed for each marker by comparing 

the G score at each locus to the null distribution of random background score distribution 

generated by recalculating a G-score across all combinations of permutations of the 

marker within each sample.  

3)! Defining genomic regions to identify independent significant events: This step involves 

identification of most significant peak regions and then the use of an “arbitrary peel-off” 

method to prioritize independent potential targets under a significant peak. The segment 

scores of the most significant peaks are split among multiple potential peaks and 

iteratively subtracts segments covering the peaks until no region has an adjusted score 

that exceeds the significant threshold. 

4)! Accurate definition of the peak boundaries: This step defines the peak boundaries with a 

RegBounder method such that target genes are included at a pre-defined confidence 

interval regardless of the event frequency or the number of samples. RegBounder models 

the expected local variation in the G-score (due to neighboring passenger events or error 

determined in the segmentation analysis) to define boundaries predicted to contain true 

targets with user defined confidence intervals for the analyzed peaks. 

Three independent GISTIC analyses were run on segmented data from 182 primary UM 

tumors spanning all three cohorts (7 tumour/normal and 38 unmatched tumour samples from 
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the WASH-U cohort, 80 tumour/normal samples from the TCGA cohort and 57 unmatched 

tumour samples from the CC cohort).  Input files for GISTIC run were formatted as per 

GISTIC 2.0 (software version 6.10) 

(ftp://ftp.broadinstitute.org/pub/genepattern/modules_public_server_doc/GISTIC2.pdf). The 

marker file was generated as per the required GISTIC file format specification by taking the 

first 3 columns of the CN file used as input to the segmentation algorithm that produced the 

segmentation file. The threshold cut-off was determined by estimating the noise in each 

cohort (platform) and the parameter was determined heuristically by analyzing the histograms 

of the segment copy number and finding the first valleys on either side of the central peak. 

Each platform exhibited batch effects that could affect the results. To account for this 

variation, different amplification and deletion thresholds were assessed to determine if using 

platform specific characteristic threshold would be better than using a common threshold. 

There were few differences when comparing platform specific and generic cutoffs. Finally, a 

common threshold of 0.15 was used across all platforms for both amplifications and 

deletions. In addition, a gene GISTIC algorithm is available as an option which calculates the 

significance of deletion and amplification at gene level instead of marker level. An 

“all_thresholded.by_genes” file was included in the output which contained the discrete copy 

number state for each gene based on the threshold for amplification and deletion to help in 

the identification of low-level and high-level copy changes. The parameters used to run the 

analysis are as follows: Gene GISTIC analysis = YES, Amplification and deletion threshold 

= 0.2, Join segment size = 10 markers, Cap-value = 2.5, Confidence level= 0.95, q-value-

0.25, Broad analysis= Yes /No and Arm peel-off= YES. A copy number variants (CNV) 

input file was used to exclude known structural variants in the germline of the healthy 

population obtained from the Database of Genomic Variants 

(http://dgv.tcag.ca/dgv/app/home) and HapMap normals. Frequency plots for the broad copy 

number alterations were plotted using copy number explorer 302. 

 
2.1.6 Integration of GISTIC runs from different platforms 

 

Although GISTIC was applied to samples from all 3 cohorts to identify focal peaks as 

described above, it cannot readily integrate samples from different platforms. Thus, a 

complementary downstream processing step was performed to find the most relevant CNAs 

across different segmented platforms. After GISTIC was applied to all the 182 samples to 

identify focal and broad peaks, a frequency based approach was used to prioritize the GISTIC 
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peaks identified across platforms using the segmented data. The focal copy number 

alterations (FCNA) were combined from independent runs on all three cohorts and the 

breakpoints predicted by GISTIC for a given minimal amplification and deletion peak were 

queried across segments from all the samples to determine whether a sample had a gain or 

loss at that region respectively. For the presence of amplification or deletion, a score of “1” 

was given and “0” was given in case of copy number neutral event. The frequency of GISTIC 

amplification and deletion peaks, was then calculated across all the 182 samples. To prioritize 

the more relevant peaks that would be less affected by the inherent noise in the data due 

variation between different platform and those most likely to have functional effects, peaks 

with frequencies > 15% were selected for further downstream analysis with gene expression 

data. 

 
2.1.7 Integrated analysis of copy number and gene expression 

 
Integrative analysis of focal copy number alterations and gene expression was performed for 

the selected list of focal peaks identified from the GISTIC analysis, to prune the list of 

candidate genes that lie within the region of interest and to assess if these alterations induced 

a significance change in their expression. RNA-sequencing count data from 80 TCGA 

samples, with matched copy number data used for GISTIC analysis, were downloaded from 

TCGA (https://portal.gdc.cancer.gov/) and data formatting was performed with R (version 

3.2). The count data was used to generate count per million (CPM) to normalize for different 

sequencing depth for each sample using edgeR package in R followed by filtering of low 

expressed genes using a CPM threshold of 0.2. Additional quality control steps were 

performed by examining the library sizes and distribution plots and TMM normalization was 

applied to the remove composite biases between libraries. Finally, a voom transformation 303 

was applied to the data matrix to make the data comparable and test for differences between 

tumors with and without alterations.  

To assess the association between copy number level and gene expression for all 

genes that lie within the peak boundaries 70 differential analyses were performed. This 

included all the alterations identified for follow-up. To this end, for each gene, a two-group t-

test was used to assess the difference in expression level between the group with and without 

the focal alterations. Multiple hypothesis testing (MHT) corrected q-values 304 were derived 

for a union of all the tested genes with the FDR procedure using the “q-value” package in R.  
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Here, a q-value was used rather than an adjusted p-value since it gives a better 

measure of each gene’s significance and can be universally interpreted between studies. The 

q-value gives us a measure of the expected proportion of false positives incurred when 

calling the tested feature (gene) significant 304. A false discovery adjusted p-value implies 5% 

of significance test will result in false positives, however, the q-value false discovery rate 

procedure is optimised by considering the distribution of p-values in an experiment. This is 

calculated by estimating the height at which the p-value distribution in an experiment flattens 

out. Thus, a q-value helps to identify how many of the significant results are false positives. 

In this study, 1010 genes across all the selected GISTIC peaks were tested and a q-value 

threshold of 0.05 resulted in 405 genes.  Hence, 20 out of the 405 genes can be expected to be 

false positives. 

The “cis-signature” genes were defined as a set of genes within each peak with an 

FDR q-value less than or equal to 0.05. Functional enrichment analysis based on the 

hypergeometric distribution was then performed for the significant genes using Broad’s 

MsigDB website (http://software.broadinstitute.org/gsea/msigdb/index.jsp). The union of all 

the cis-signature genes were tested for enrichment against 860 genes in the C2 gene set 

collection (KEGG and Reactome pathways) from the MdSigDB repository. For network 

analysis, the genes from significantly enriched pathways were fed into GENEMANIA 

(http://genemania.org/). This is an interactive web service that helps predict the functional 

relationship between genes such as physical interaction (protein interaction), expression in 

the same tissue or cellular location (co-localization) or that have similar expression levels 

(co-expression). The networks were explored to generate a pathway diagram with Cytoscape 

(version 3.5) 305.  
!

2.2 Mutational analysis 
 
2.2.1 Samples and Exome/RNA-seq data 

 
The exome sequenced patient samples came from two cohorts, WASH-U cohort and TCGA, 

consisting of 120 tumours and 104 normal samples in total (Table 2.2). The distribution was 

as follows: (1) A collection of genomic DNAs from 40 tumours and 24 matched normal 

samples obtained from blood were obtained from the WASH-U cohort. Additionally, 22 

tumour RNA samples that had been subjected to RNA-sequencing were included for variant 

calling (data described below under gene fusion analysis). These samples were sequenced 
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and downloaded as FASTQ files from GTAC (Washington University in St Louis). All the 

samples collected as part of the WASH-U cohort were approved by the Institution Review 

Board at Washington University in St Louis. Inclusion criteria for primary tumours included 

pathology-verified diagnosis and exclusion criteria include history of ocular brachytherapy or 

extensive tumour necrosis which can confound DNA profiling. Whole exome data for 80 

tumors and matched normal TCGA-UVM samples were downloaded from controlled access 

tier one using the TCGA data portal. After obtaining a user certification for data access from 

the NIH dbGAP portal, bam files for 80 tumor/normal pair were downloaded with the GDC 

tool. 

 
Table 2.2: Source of exome sequencing data  
 

 
 
 
 
 

 
In total of 120 primary UM samples were used in the analysis. 
 
2.2.2 Data quality control and coverage statistics 

 
The quality of the sequencing data were checked by running FastQC 306 on the fastq files 

from each sample. The quality parameters included base quality, base distribution, sequence 

quality, base content, GC content, read duplication and adapter contamination. Picard’s 

‘CollectHsMetrics’ tool was used to generate mean target coverage, percent of bases reaching 

coverage level and percentage of bases excluded for each sample. The interval file with the 

location of all the probes were downloaded from the Roche’s website and modified 

appropriately to be used for generating the metrics. 

 
2.2.3 Alignment to human reference 

 
Following QC of the Illumina reads (FASTQ files), alignment of reads to the human 

reference genome (hg19) was performed with the Burrows-Wheeler Transformation (BWA) 

alignment algorithm 307 (version 0.7.12). The BWA tool is an aligner based on a backward 

search with the Burror-Wheeler Transform (BWT) method to index the reference genome.  

This decreases the memory usage compared to other aligners such as MAQ which is based on 

hash table using a k-mer. Hwang et al 308 performed a systematic evaluated the performance 

Cohort Primary+tumours+
Samples

Matched+
normal

TCGA 80 80
WASH*U 40 24
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of various aligner and variant calling tools and determined that the BWA aligner with 

different variant callers performed better than other combination aligners such as Novoalign 

(http://novocraft.com/) and Bowtie 309. Although they used the BWA-MEM 310, a newer 

version of the BWA algorithm, in the current study BWA Aln was used, since it was not 

feasible to re-analyze all the data with MEM due to project time constrains. The reference 

(hg19) fasta file was first indexed, followed by the BWA alignment step. The MAPQ for 

unmapped reads were set to zero using Picard’s ‘CleanSam’ on the aligned SAM format file 

(Appendix 1 Code 2.2).  

 
2.2.4 Post-alignment processing  

 
After the alignment step the bam files were run through a series of steps prior to variant 

calling to remove unwanted reads, remove misalignments and correct variation in the base 

quality reported by sequencers. These includee a series of steps using Picard 311 and Genome 

Analysis ToolKit (GATK) tools 312 (Figure 2.2):  

(a)!Conversion of SAM to BAM: The aligned SAM format file was converted to BAM 

format which is the binary form of SAM file. The advantage of this conversion is that 

all the information in SAM is retained. This saves storage space files are can be 

manipulated in a faster fashion (Appendix Code 2.3). 

(b)!Add-read group information: This step added read group information to each read in 

the aligned bam file including, Platform, barcode, sample name, library, sequencing 

center etc. The reads groups were added with Picard’s ‘AddOrReplaceReadGroups’ 

command (Appendix Code 2.3). 

(c)!Fix-mate Information: This step looked at all the mate-pair information between each 

read and its mate pair to ensure they were in sync with each other. Although this step 

is optional and not needed in the newer version of GATK tools, this step helps in 

handling some of the downstream errors resulting due to malformed mate 

information. This step was run with Picard ‘FixMateInformation’ command 

(Appendix Code 2.3). 

(d)!Removal of duplicate reads:  Duplicate reads of a DNA sequence can arise during the 

library preparation step (e.g. PCR amplification step) and represent non-independent 

measurement of that sequence. Such reads can inflate the counting support for the 

variant allele. Thus, removing or marking these duplicate reads is an important step to 
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avoid counting them. This step was run with Picard ‘MarkDuplicate’ command 

(Appendix Code 2.3). 

(e)!Local realignment: The insertion and deletions (INDELs) in reads can cause mapping 

tools to mis-align reads with mismatches. These artifacts can affect the base quality 

recalibration and affect variant detection. This step realigns reads around INDELs and 

corrects mapping errors. This step is no longer necessary with the newer version of 

the Mutect2 and Haplotype variant callers, however it was required for the previous 

version of Mutect. Here, GATK’s ‘IndelRealigner’ command was used.  

(f)! Base quality recalibration (BQSR): The quality scores assigned to the individual base 

calls affects the variant calling algorithms. This step applies a machine learning 

method to model the errors produced due to systematic technical artefacts and adjust 

the quality scores. After realignment, the quality of the reads is recalibrated to correct 

for variation in base quality emitted by the sequencing machines to provide accurate 

quality score for variant calling. This step was run with GATK’s ‘BaseRecalibrator’ 

command (Appendix Code 2.3).  

 
2.2.5 Variant calling from Exome sequencing data 

 
GATK’s recommended pipeline was used for somatic and germline variant calling (Figure 

2.2). Many variant calling tools are currently available, however, a comparison of variant 

callers for short read sequencing data have often indicated that the GATK tools show the best 

performance 313–315. Recently, Hwang et al 308 compared the performance of thirteen variant 

calling pipeline based on gold standard reference variant calls from the Genome in a Bottle 

consortium. They found that the GATK HC method performed better than any other caller in 

calling INDELs, regardless of the alignment method used. However, for accurate variant 

calls, some caution needs to be exercised regarding homozygous SNP calls as GATK shows 

bias towards adding reference alleles 308.  

For somatic single nucleotide variants (SNVs) and INDELs, MuTect2 316 was 

used and for germline SNVs and INDELs, the HaplotypeCaller (HC) algorithm was used. 

MuTect is a highly sensitive method that applies Bayesian classifier to detect somatic 

mutations present at very low allele fractions. The underlying statistical framework of 

MuTect involves prediction of somatic mutation using two Bayesian classifiers: (1) For a 

given site, it is first determined whether the tumour is a non-reference; (2) For all the non-

reference site, the second classifier ensures that it is not a germline variant allele. The 
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unavailability of matched normal samples for majority of tumour samples was circumvented 

with the Mutect2 pipeline which employs a “Panel of Normal” to identify the somatic 

variants across all the matched and unmatched tumour samples. The HC method is also 

capable of calling SNVs and INDELs simultaneously via local de-novo assembly of 

haplotypes in the regions of variation, making it more accurate in calling variants in regions 

which are difficult to call. For example, in regions where the different type of variants (SNV 

and INDELs) are close to each other. The main steps involved in the HC method include: (1) 

Determine the active region or regions of significant evidence for variation; (2) Build a De 

Bruijn like graph to re-assemble the active regions and identify the haplotypes present in the 

data. Each haplotype is then realigned against the reference haplotype using the SW 

algorithm to identify the variant site; (3) The likelihood of the allele for each potential variant 

site given the read data is calculated; (4) Finally, the program applies Bayes’s rule to 

calculate the likelihood of each genotype per sample given the read data observed for that 

sample. 

 

Figure 2.2: Schematic representation of exome analysis  
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MuTect2 is an updated version of MuTect which combines the original method with 

the assembly-based machinery of HC. A key difference between Mutect2 and HC lies in the 

ploidy assumption for inferring the genotype likelihood and variant quality calculation, while 

HC relies on human samples being diploid. MuTect2 allows for a varying allelic fraction for 

each variant as in the case of tumour heterogeneity with less than 100% purity and the 

presence of multiple subclones. Since, HC calculates a variant likelihood that is not well 

suited for extreme allele frequencies (as in the case of variants with allelic ratios dramatically 

divergent from the expected diploid state), it is generally not suited for somatic variant 

discovery. Thus, a combination of HC and MuTect2 has been selected for the current analysis 

to identify germline BAP1 mutations in UM, which have been reported in earlier studies 241. 

The workflow for MuTect2 pipeline used here includes the following steps (Figure 2.2): (1) 

Creation of a panel of normal variants (Appendix 1 Code 2.4); (2) Tumour/Normal variant 

calling (Appendix 1 Code 2.4); (3) Combine variants across all the VCF files (Appendix 1 

Code 2.4). The workflow for the HaplotypeCaller pipeline involves the steps: (1) Genomic 

VCFs (gVCF) generation per-sample with –ERC GVCF mode (Appendix 1 Code 2.5); (2) 

Perform joint genotyping across all samples; (3) Perform variant filtering to remove variants 

that are likely to be artifacts (Variant Recalibration).  

 

2.2.6 Variant calling from RNA-Sequencing data 

 
Identification of genomic variants from existing RNA-sequencing data remains a challenge 

due to the intrinsic complexity of the transcriptome (e.g. splicing), which adds to the 

technical difficulty in calling variants and often leads to many false positive and negative 

calls. However, it can greatly increase the power to detect variants from known genes or help 

resolve the presence of variants with low coverage in samples with matched exome data. For 

the current analysis, GATK’s recommended best practice workflow was used to call variants 

from RNA-sequencing data of 22 tumours (Table 2.3). The steps involved were as follows: 

(1) Raw reads were mapped to the reference with STAR aligner 317, found to achieve highest 

sensitivity to both SNV and INDEL calls. This step uses a 2-pass approach where splice 

junction identified in the first alignment are then used to guide the final alignment (Appendix 

1 Code 2.6); (2) Read groups were added, duplicate reads were removed from the aligned 

bam files and sorted with Picard’s ‘SortSam’; (3) The reads were split into exon segments 

using GATK’s ‘SplitNCigarReads’ tool. It also hard-clips any sequence overhanging into the 

intronic regions; (4) A Base Recalibration step was performed to correct where base qualities 
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have systematic errors due to sequencing artefacts; (5) The variant calling was performed 

with HC with ‘dontUseSoftClippedBases’ option to minimize the false positives and negative 

calls by taking into account the information about intron-exon split regions; (6) The variant 

filtering step involved applying hard filters to remove cluster of at least 3 SNPs within a 

window of 35 bases, Fishers strand value > 30 and Qual by Depth < 2. The filtered variants 

were then passed on to downstream processing involving variant annotation, filtering and 

variant prioritization. 

 
2.2.7 Variant annotation (creation of MAF file) 

 
The identified variants (VCF file) were then run through annotation tools to get the genomic 

annotation, protein annotation, functional impact and variants were queried against various 

databases to get their allele frequency in normal and cancer specific populations. Currently, 

four major popular tools are available for variant annotation: Oncotator 

(http://portals.broadinstitute.org/oncotator/); ENSEMBL’s variant effector predictor (VEP) 
318; ANNOVAR 319 and SnpEff 320. McCarthy et al recently showed that the choice of 

annotation tool and the transcript set can have a significant impact on the classification of the 

variants 321. They showed a concordance of about 65% between loss of function variants 

produced by ANNOVAR and VEP. Although some of the classification between tools 

disagree, filtering steps are performed on an aggregate set of variants and requires a common 

classification scheme. In the current study, Oncotator was used to create a MAF file with 

genomic annotations from GENCODE hg19 transcript reference, protein annotation and 

additional cancer annotations from COSMIC (http://cancer.sanger.ac.uk/cosmic), Cancer Cell 

Line Encyclopedia (https://portals.broadinstitute.org/ccle/home), Familial Cancer Database 

(http://www.familialcancerdatabase.nl/) and Clinvar (https://www.ncbi.nlm.nih.gov/clinvar/) 

and non-cancer annotations from dbSNP, 1000 Genomes and the NHLBI Go Exome 

Sequencing project. Further, all the variants were annotated with ANNOVAR, which 

provides additional information on the Exome Aggregation Consortium (ExAC) 322 

frequency, Combined Annotation-Dependent Depletion (CADD) score 323 and region based 

annotations such as predicted TF binding sites, segmental duplication region and GWAS hits. 

Gene based annotation categories in ANNOVAR are more general and easier to build 

categories for making comparisons.  The VCF files for both Exome and RNA-seq variants 

were used as input to run annotations with Oncotator (version 1.8) and ANNOVAR 
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(2016Feb01) (Appendix 1 code 2.7). Additionally, genes were annotated as chromatin 

modifiers based on an in-house created list from the literature.  

 

2.2.8 Downstream filtering and variant prioritization  

 
After variant annotation, a series of filtering steps were performed to prioritize the variants 

important for cancer pathogenesis. The following filtering steps were applied (Figure 2.3): 

(1) The polymorphic variants from 1000 genome, dbSNP132 and NHLBI-ESP databases 

were filtered; (2) The ExAC dataset, which is characterized by population allele frequencies 

from exome sequencing data on over 60,000 individuals provides a robust frequency 

estimates for rare variants. However, there exists ambiguity on the allele frequency to be 

considered for filtering these “too common” variants. In the current study, a pre-computed 

filtering allele frequency threshold of 0.1% described by Whiffin et al 324 was used to filter 

the variants; (3) All the non-coding variants in the 3’ and 5’ UTRs and intergenic regions 

were filtered; (4) The CADD scores are calculated by using different annotations such as 

SIFT, POLYPHEN etc and is quantitatively predictive of the deleteriousness and 

pathogenicity of variants. All the variants with CADD scaled C-scores (which ranks a variant 

relative to all possible substitution in the human genome) of less than 10 were filtered. This 

can be interpreted as variants that are not present in the 10% of most deleterious substitutions 

that can be present in the human genome; (5) Recurrent variants in multiple samples that are 

generated from same sequencing runs are likely to be artefacts and were filtered. 

 

Figure 2.3: Workflow of post-variant calling steps. 
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Filtering was followed by variant prioritization, this involved the following 

steps: (1) Recurrent mutations across multiple samples; (2) Genes with multiple variants; (3) 

All the previously established known UM driver genes (CYSLTR2, GNAQ, GNA11, BAP1, 

SF3B1 and EIF1AX); (4) The frequently altered regions with loss on chromosomes 1p, 3, 6q, 

8p, 11q and 16q were examined for genes with secondary, hemizygous loss of function 

mutations indicative of tumour suppressors; (5) Variants from RNA-seq analysis were added 

to the list to identify additional frequent gene mutations; (6) Gene set enrichment analysis 

(GSEA) was performed using a list of chromatin modifiers gene set from the literature to test 

if the occurrence of mutations in the chromatin modifiers was statistically significant 

compared to observing the enrichment by chance. To perform GSEA, a fisher’s exact test in 

R (version 3.3) was used to calculate the counts from the two input lists (exome data and 

gene set). Additionally, level 1 mutation calls using four different variant callers (Mutect, 

Varscan, Muse and somatic sniper) run on all the TCGA samples, generated by Broad 

Institute TCGA Genome Data Analysis Center (GDAC) Firehose analysis 

(doi:10.7908/C11G0KM9)! were downloaded for independent verification of mutations 

identified in the current analysis. Published UM driver mutations (GNAQ, GNA11, CYSLTR2, 

SF3B1, BAP1 and EIF1AX) in the WASH-U cohort and validated using sanger sequencing 

were used as complementary data to account for all mutations not identified in the current 

analysis. 

 

2.2.9 Identification of significantly mutated genes (MutSigCV analysis) 

 

As the sample size increases, the power to detect highly mutable cancer genes increases but 

this is at the cost of increasing the false positive rate. Therefore, we also performed an 

unbiased analysis for identifying genes that are mutated more often than one would expect by 

chance. To this end, Significant Mutational analysis in the MutSigCV algorithm (version1.2) 
325 was applied to all the SNVs and INDELs identified from the exome analysis.. Briefly, 

MutSigCV scores every mutation against the background sample/patient specific background 

rate in which it is observed. The null distribution is calculated by combining all the patient 

specific null distributions. A p-value is calculated which compares the observed score to the 

null distribution. In addition, MutSigCV accounts for gene-specific differences in the 

background mutation rate. This background model incorporates patient specific factors 

(overall mutation rate and mutational spectrum such as transitions and transversions) and 
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genomic position specific factors (gene expression, DNA replication timing and HiC-based 

chromatin state estimation). Thus, mutations from all the chromosomes are aggregated and 

the total number of mutations per gene are then computed. This count is then converted to a 

score and compared with the background model to get the significance level. The input files 

to run the analysis include MAF file, coverage table file and covariate table file.  

 

2.2.10 Mutational signature analysis 

 

Mutational signature analysis was performed by decomposing all the single nucleotide 

substitution of nX96 dimensional matrix into r signatures, where n is the number of samples. 

The signatures are decomposed using non-negative matrix factorization (NMF) method and 

once decomposed compared against the known signature by Alexandrov et al 203. The NMF 

algorithm is based on decomposition by parts and can reduce the dimension of the data to 

define the underlying pattern (similar to methods such as principal component analyses) 326. 

Here the input to NMF comprises all the observed somatic mutations across all the tumours. 

It can detect signatures present in the somatic mutations across multiple tumours and 

determine the contribution of each signature to the somatic mutation in each tumour. Default 

parameters were tested where incremental number of mutational signatures are modelled, the 

signature with best possible value (maximum cophenetic coefficient) is selected. Cophenetic 

coefficient is a measure of how faithfully the clustered structures (pairwise distances between 

original unmodeled data points) are preserved thus, an indicator or stable reproducibility. All 

the steps were performed using R package Maftools 327 (version 1.2.30) in R computing 

environment (version 3.3.2). 

  

2.2.11 Statistical analysis and plots 

 

All the univariate statistical analyses were performed in R (version 3.3). Fishers exact test 

was used to evaluate the dichotomous categorical variables. Comparisons include mutational 

status versus gene expression profile, copy number status and metastasis status. A p-value of 

0.05 was used to report statistically significant results. Plots were generated using R Package 

Maftools 327 (version 1.2.30) and GenvisR 328 (version 1.6.0) in R computing environment 

(version 3.3.2).  
!
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2.3 Gene Fusion analysis  
 
2.3.1 Sample source and RNA-sequencing data 

 
In total 22 primary UM tumour samples subjected to RNA sequencing by our group were 

interrogated for novel gene fusion events (Table 2.3). Of these, twelve samples were used to 

generate PolyA-selected RNA-sequencing data. Eight samples downloaded from a previously 

published study 242 and 4 additional samples (unpublished) sequenced at the same time. Total 

RNA from an additional 10 samples were sent to CNAG to generate RNA-seq data. The data 

used in the current study were initially generated as part of another project and used here to 

mine for potential novel gene fusion events. Therefore, two different RNA-seq libraries 

(polyA+ vs total RNA) were used. The adapter trimmed reads were downloaded and 

summary statistics on the raw data were generated with FastQC 306. The samples were 

obtained from our collaborators and the study was approved by the Institution Review Board 

at Washington University in St Louis. To perform the RNA sequencing, total RNA was 

isolated from UM primary tumour biopsies with Qiagen AllPrep kits as per the 

manufacturer’s instruction. The integrity and the quality were assessed on an Agilent 2100 

Bioanalyzer (Agilent, CA) with an Agilent RNA 6000 Nano kit, as per the manufacturer’s 

recommendation. Total RNA with high quality and integrity (RIN > 8) was sent to CNAG, 

Barcelona for library construction and to generate sequencing data. Briefly, 0.5 ug of 

quantified total RNA was subjected to ribosomal depletion with RiboZero Magnetic Gold Kit 

and fragmented by divalent cations at elevated temperature. This resulted in fragments of 80-

450 nucleotides, with the majority peaking at 160 nucleotides. These were used to construct 

amplified libraries. This was followed by performing first strand cDNA synthesis using 

random hexamers as primeres. After second strand synthesis and end repair, the fragments 

then were ligated to Illumina barcoded adapters and the library was amplified with 15 PCR 

cycles. The size and quality of the library were assessed with the Agilent DNA 7500 

Bioanalyzer assay (Agilent, CA) before being loaded into the flowcell for sequencing with 

the Illumina HiSeq2000 (Illumina Inc.) in paired end mode. The adapter trimmed sequencing 

data (FASTQ format) were downloaded and summary statistics on the read depth, read length 

and quality were generated with FastQC 306.  
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Table 2.3: UM primary tumour samples with RNA-seq data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

The tumour class, library type, read length and generated read counts are shown. PolyA selected 

RNA-seq data were from our previously published study 242. 

 

2.3.2 JAFFA gene fusion detection pipeline 

 
One of the major applications of RNA sequencing (RNA-seq) data has been identification of 

chimeric transcripts which can be generated by a gene fusion event at either DNA level 

(canonical gene fusions via chromosomal rearrangements) or RNA level (non-canonical gene 

fusions via trans-splicing or cis-splicing). Identification of these gene fusions events from 

RNA-seq data can be accomplished with the help of many software tools (~ 20 tools) freely 

available to the scientific community. Choosing the best optimum tool for fusion detection is 

a challenge since these tools are based on different algorithms, trained and test on different 

types of datasets and vary in the sensitivity and specificity of detected fusions. Additionally, 

each software requires different set of dependencies to be installed and have different 

computational requirements such as specific operating system, time consumption and 

memory usage.  

File%Name Sample GEP%
class RNAseq%protocol Number%of%

reads
Read%
length

MM010_s_0708_lane2_CGATGTA_2 MM010 class21 PolyA2selected282unstranded 14296315 101
MM016_s_0708_lane2_TGACCAA_1_sequence.fastq.gz MM016 class21 PolyA2selected282unstranded 15069924 101
MM064_s_0708_lane2_AGTCAAC_1_sequence.fastq.gz MM064 class21 PolyA2selected282unstranded 10569982 101
MM065_s_0708_lane2_ACAGTGA_1_sequence.fastq.gz MM065 class21 PolyA2selected282unstranded 17608600 101
MM078_s_0708_lane2_AGTTCCG_1_sequence.fastq.gz MM078 class22 PolyA2selected282unstranded 12191112 101
MM080_s_0708_lane2_ATGTCAG_1_sequence.fastq.gz MM080 class22 PolyA2selected282unstranded 13261166 101
MM082_s_0708_lane2_CCGTCCC_1_sequence.fastq.gz MM082 class21 PolyA2selected282unstranded 10711210 101
MM089_s_0708_lane2_GCCAATA_1_sequence.fastq.gz MM089 class21 PolyA2selected282unstranded 17243880 101
MM097_s_0708_lane2_GTCCGCA_1_sequence.fastq.gz MM097 class22 PolyA2selected282unstranded 10639548 101
MM100_s_0708_lane2_GTGAAAC_1_sequence.fastq.gz MM100 class22 PolyA2selected282unstranded 12754839 101
MM132_s_0708_lane2_CAGATCA_1_sequence.fastq MM132 class21 PolyA2selected282unstranded 13230895 101
MM176_s_0708_lane2_CTTGTAA_1_sequence.fastq MM176 class21 PolyA2selected282unstranded 18107556 101
MM0135_GTGAAA_L007_R1_001.fastq.gz MM135 class22 Total2RNA282stranded 29426922 100
MM0137_CTTGTA_L007_R1_001.fastq.gz MM137 class22 Total2RNA282stranded 31172453 100
MM0141_CGATGT_L008_R1_001.fastq.gz MM141 class21 Total2RNA282stranded 33318412 100
MM0144_ATGTCA_L007_R1_001.fastq.gz MM144 class22 Total2RNA282stranded 28325576 100
MM0171_AGTCAA_L008_R1_001.fastq.gz MM171 class21 Total2RNA282stranded 53498365 100
MM0173_TGACCA_L008_R1_001.fastq.gz MM173 class22 Total2RNA282stranded 44025305 100
MM0175_CAGATC_L008_R1_001.fastq.gz MM175 class22 Total2RNA282stranded 31076611 100
MM0179_CCGTCC_L008_R1_001.fastq.gz MM179 class22 Total2RNA282stranded 34318824 100
MM091_ACAGTG_L007_R1_001.fastq.gz MM091 class22 Total2RNA282stranded 19600588 100
MM094_GCCAAT_L007_R1_001.fastq.gz MM094 class21 Total2RNA282stranded 25302140 100
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Recently, Kumar S et al 329 reported an unbiased evaluation of twelve gene 

fusion detection tools (Bellerophontes, BreakFusion, Chimerascan, EricScript, FusionHunter, 

FusionMap, JAFFA, MapSplice, nFuse, SOAPfuse, and TopHat-Fusion) based on different 

datasets and compared the performance of these tools in terms of sensitivity of detecting 

fusions, positive predictive value and computational load (RAM and time consumption). In 

their comparisons based on the positive dataset containing 50 true fusions, JAFFA 330 was the 

most sensitive tool which detected 44/50 fusions (88% sensitivity) with relatively efficient 

memory usage and time consumption. Based on the positive predictive value, JAFFA 

performed relatively well (95.6%), although the computational performance was poor with 

respect to the negative and mixed datasets used for the evaluation. The performance of 

JAFFA drops with RNA-seq data of read length of less than or equal to 50 nucleotides (nt). 

However, for the current study this was not a problem since the reads lengths were greater or 

equal to 100nt (Table 2.3). The primary goal of the current study was to detect as many true 

fusions events as possible. Thus, the JAFFA gene fusion discovery pipeline (JAFFA 

algorithm, version 1.09) was used to analyze the RNA-seq data  330. 

 JAFFA 330 is a recently developed fusion detection tool which compares a tumour 

transcriptome to the reference transcriptome, rather than the reference genome. JAFFA 

involves multiple steps starting from raw RNA-seq data and outputs a set of candidate 

fusions and their cDNA breakpoints. JAFFA is not a standalone tool, but is rather a pipeline 

relying on different tools implemented using a Bpipe platform and each step is stitched 

together with bash and R scripts. Depending on the read length of the RNA-seq data JAFFA 

can run on three different modes: (1) ‘Assembly mode’ (<70bp) which assembles short reads 

into contigs prior to fusion detection (2) ‘Direct mode’ (>100bp) which uses RNA-seq reads 

directly by selecting reads that do not map to known transcripts and (3) ‘Hybrid mode’ 

(between 70bp and 90bp) which is combination of assembly and direct modes and is the most 

sensitive of the three modes, however it is also the most computationally intensive. For the 

current analysis of long read lengths (>=100bp), the ‘direct mode’ option was used to 

perform the analysis.  

 

The major steps performed by JAFFA pipeline can be described as follows (Figure 2.4): 

  

(1) preliminary read filtering is performed to remove the intragenic and intronic sequences 

and this involves a two-step process. First the raw reads are aligned to the human reference 

transcriptome, GENCODE version hg19, and those reads that map to the transcriptome are 
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retained. In the second step, the unmapped reads are mapped to the human reference genome, 

hg19, where the reads that do not map concordantly to the genome are retained and merged 

with those from the initial step.  

 

(2) Duplicate reads are removed with BBMap version 33.4.  

 

(3) Reads are mapped to GENCODE version 19 reference with bowtie2 using ‘--un’ option 

and those that do not map to known transcripts are selected.  

 

(4) The transcript sequences are aligned to the transcriptome with BLAT.  

 

(5) Reads that match multiple reference transcripts are selected, where the two reference 

transcripts are separated by more than 1 kilobase (kb) in the genome. Further, false chimeras 

are controlled by selecting only those fusion candidates where the chimeric transcripts have 

similar sequences of 13 bases or less in common between the reference genes. 

 

(6) The number of spanning reads and spanning pairs across the breakpoint are counted. 

Spanning reads are defined as the reads that lie across the breakpoint and the spanning pairs 

are defined as pairs in which the reads of each read-pair (paired-end sequencing reads) lie in 

their entirety, one on either side of the breakpoint.  

 

(7) The candidate fusion transcript sequences are aligned to the human reference genome 

using BLAT.  

 

(8) The genomic coordinates for each breakpoint are identified and the genomic gap size is 

calculated. Candidates with less than 10Kb gap size are discarded as they are likely to be 

false positives. In a few scenarios, genuine fusions with small gaps are distinguished from 

read-through transcription or unannotated splicing by looking for evidence of genomic 

rearrangement (such as inversion), based on direction of the fusion transcript with respect to 

the genome. Next, JAFFA checks if breakpoints lie on known exon-exon boundaries. This 

scenario would arise if the fusion occurred within intronic DNA and the exon structure was 

preserved and if this were true, fusions are checked to see if they are in-frame based on the 

most common gene isoform. Finally, based on spanning reads, spanning pairs, transcriptional 
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breakpoints aligned with exon boundaries and genomic gaps, JAFFA classifies the candidates 

as low, medium and high confident events and ranks them.  

 

Figure 2.4: Schematic representation of the JAFFA pipeline  

 

JAFFA pipeline was used for the analysis of RNA-seq data for gene fusion discovery. 

 
2.3.3 Downstream processing and gene fusion prioritization 

 
2.3.3.1 Filtering non-significant gene fusions 

 
Artifacts in gene fusion discovery are common despite the use of state of the art tools 331, thus 

post-processing filtering steps are necessary to mitigate the specific biases at the level of 

sensitivity and specificity. The high and the medium confident fusions categorized by JAFFA 

were selected for further downstream processing to refine the list and prioritize candidates of 

significance. This involved the following filtering steps (Figure 2.5): (1) Filtering fusion 

candidates with less than 2 spanning reads aligned on the fused boundaries; (2) Filtering 

fusion candidates where fusion partner genes are known paralogs or same gene family as 

these are likely to be artifacts due to mapping errors; (3) Annotating genes with Ensemble 

human genes (GRCh37.p13) and their fusion candidates as un-annotated gene partners. For 
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example, pseudogenes and non-protein coding genes (ribosomal RNA, linc-RNAs) and 

highly polymorphic genes such as HLA are filtered since they produce reads that cannot be 

easily mapped to unique locations in the genome; (4) Removal of fusions that are present in 

the normal non-cancerous tissue based on Babiceanu et al’s 332 list with the exception of 

genes that are previously implicated as germline cancer genes. All the fusions are examined 

in databases of known gene fusions across all cancer types to identify known or established 

gene fusions. 

 
Figure 2.5: Steps for gene fusion prioritization 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

2.3.3.2 Classification of fusion events with Oncofuse 

 

After filtering, hundreds of fusions events were identified, raising the question of how 

to differentiate the fusion events important for cancer development or ‘driver event’ and not 

just passenger events. A Bayesian classifier tool called Oncofuse 333 was used to extract 

various features from the candidate input list and returns a Bayesian probability value that 

such a fusion gene belongs to a class of passenger event or a driver event. The filtering steps 

were the following: First, all the candidate fusions were annotated and classified as driver or 

passenger events. This tool uses a set of features, including swapping of promoter and 

untranslated regions and a combination of specific protein domains and protein interaction 

interfaces (PII) to predict the oncogenic potential of the putative gene fusion. Oncofuse uses a 

Naïve Bayes network Classifier which is a model that assigns class labels to problem cases, 

represented as vectors of feature values. Here, 24 classification features were used for 
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classification of ‘driver’ versus’ passenger events. These features were based on the 

following categories: (1) promoter features of the fusion protein gene (FPG), such as 

retention of the 5’ FPG and loss of the 3’ FPG; (2) six functional profile features (3) 3’ UTR 

features; (4) PPI. To trained and test the model a supervised Discretization algorithm in Weka 

machine learning package was used on gene sets obtained from 10 different databases, 

including TICdb3.0, RTH, Mitelman, Oncogene (Sanger), RefSeq, NGS studies and 

ChimerDB2 333.  

To obtain the functional profile of a novel gene fusion the following steps were 

conducted: (1) A list of protein domains was extracted for a given fusion sequence and then 

the genes containing those domains were selected by querying a set of all human genes; (2) 

The gene ontology (GO) terms were extracted for these genes; (3) A functional family 

association score (FFAS) was calculated by counting the number of times a GO term 

overlaps with a set of six predefined functional families, including transcription factor, kinase 

activity, transcription cofactor, GTPase, helicase/histone modifiers and protein binding. 

These scores for each of the six functional profile features were then used for variant 

prioritization. 

 

2.3.3.3 Identifying polygamous and private fusion events 

 

After filtering and classifying fusions as driver events, the candidate fusions were further 

categorized into polygamous and private fusions based on the frequency of occurrence. If 

either the 5’ or the 3’ gene partner were detected in more than one sample, the fusions were 

categorized as polygamous fusions, whereas the those present in only single sample were 

categorized as private gene fusions. Additionally, the private fusion events were selected if 

gene fusions had a high driver probability (>60%) based on classification by Oncofuse. All 

the candidates were checked for previously reported fusions in other cancers, in known 

fusion database such the TCGA gene fusion portal and the 5’ and 3’ fusion gene partners are 

compared against the Mitelman Database of Chromosome Aberrations 176 to estimate the 

recurrence of known or established gene fusions. 

 

 

 



! 80!

2.3.3.4 Statistical tests and plots 

 

Statistical tests were performed to test the association of gene fusions with tumour subgroups 

with respect to gene expression profile, known driver mutations and copy number alterations. 

The Mann-Whitney U test was performed in R (version 3.4) to compare the differences 

between the binary subgroups based on mutation, copy number and expression status. The 

circus plot of all curated fusion events was then plotted in R (version 3.4) with the 

‘chimeraviz’ package (version 1.0.2).   
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Chapter 3. Profiling copy number 
abnormalities in uveal melanoma 

 
3.1. Copy number analysis results 
 
3.1.1 Broad copy number alterations in uveal melanomas 

 

Previous genomic profiling studies in UM have been done at low resolution. In the current 

study, genomic DNA samples from 182 primary enucleated UMs (87 with matched normal 

DNA) were profiled by high-resolution arrays from three different platforms. These 

interrogated >700K probes with a median interprobe spacing ranging from ~24 to ~18Kb. 

Data was compiled from three different sources: high quality Affymetrix SNP6.0 mapping 

array data from The Cancer Genome Atlas (TCGA, 80 cases), Illumina660WQuad array data 

from Cleveland Clinic (CC, 57 cases) and Illumina Omniarray and CytoSNP850K from 

samples recruited at Washington University in St Louis (WASH-U, 45 cases). Tumor specific 

alterations were identified by normalizing the signals with normal reference samples to 

exclude potential germline copy number variation. Copy number alteration (CNA) detection 

was performed on the ASCAT PCF segmented CC and WASH-U cohorts and circular binary 

segmented TCGA cohort. CNAs affecting more than 50% of a chromosomal arm were 

classified as broad events and were inferred from segmented data. A genome-wide 

comparison of CNAs indicated the presence of a high-degree of non-random CNAs across 

samples from all the cohorts.  

 Overall, 1094 broad arm level aberrations were identified (6 on average per sample; 

range 0-39). Twelve broad events affected >10% of all samples including five broad arm 

level amplifications that included 1q gain (1q+), 6p gain (6p+), 8p gain (8p+), gain (8q+), 

21q gain (21q+) and seven broad arm level deletions that include 1p loss (1p-), 3p loss (3p-), 

3q loss (3q-), 6q loss (6q-), 8p loss (8p-), 9p loss (9p-) and 16q loss (16q-) (frequencies are 

provided in Table 3.1, Figure 3.1). The most frequent CNAs were amplification of 

chromosome 8q and monosomy 3 which were detected in more than 50% of all samples 

consistent with previous studies. Gains of 6p and loss of 6q occurred in 23% (41/182) of 

tumours indicative of isochromosome 6p formation. Similarly gains of 8q and loss of 8p were 

observed in 19% (35/182) of tumours forming an isochromosome 8q.  
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Unsupervised hierarchical clustering of all UM samples (N=182) was performed and the 

number of clusters were chosen by visualizing the clustered heatmap with four distinct 

clusters. The four main groups include (Figure 3.2):  Group 1: 1p-/1q+, monosomy 3, 

6p+/6q-, 8p+/8q- and 16q-; Group2: 6p+/6q-, 8q+; Group 3: 6p+ and Group 4: monosomy 3 

and 8p-/8q+ (similar to group 1 with less 1p- and 6p+/6q-). In addition, clusters were tested 

to find correlations with metastatic outcome. Group 1 was not significantly associated with 

metastatic outcome (p-value 0.0728), and Groups 2 (p-value 0.0137) and 3 (p-value 0.0021) 

were significantly associated with non-metastatic outcomes. Group 4 was associated with 

associated with metastatic outcome (p-value 0.0085).  

When examined independently, chromosomal alterations that were associated 

with metastatic disease were loss of 3p (P value = 2.29e-08), loss of 3q (P Value =!2.95e-07), 

loss of 6q (P Value =!0.0246), gain of 8q (P Value =!0.0001) and loss of 8p (P Value =!6.29e-

05). Other alterations which were not directly associated with metastasis but were previously 

shown to be associated with PRAME positive tumours 46 which were not detected  included, 

1q gain (P Value =!0.3589), 6p gain (P Value =!0.0538) and 16q loss (P Value =!0.065). 

Whole chromosome arm-level CN-LOH affecting more than 50% of arm length was 

observed on chromosome 3 (9/76 samples, 11%), chromosome 6 (5/103, ~5%), 9p (2/103, 

~2%), 15q (2/103, ~2%) and 1 sample on chromosome 8, chromosome 10 and 9p.  

3.1.2 Ploidy and aberrant tumour cells in uveal melanoma  

 
The ploidy estimates predicted by ASCAT were examined for 103 tumours samples (from 

WASH-U and CC cohorts) genotyped on the Illumina platform to investigate the relevance of 

aneuploidy in UM.  The tumours showed an average ploidy of 2.4n. The ploidy estimates 

were then correlated with gene expression which predicts UM subtypes. Evaluating the 

ploidy distribution by stratifying the samples based on the GEP classifier information 

available for 45 tumours samples from the WASH-U cohort showed a common state of 

diploidy for majority of both, class 1 and class 2 tumours.  However, a minority of tumours 

had undergone polyploidization by endoreduplication resulting in tetraploid state. This was 

more so in class 2 tumours compared to class 1 although this difference was not statistically 

significant (P Value=0.60) (Figure 3.3 A). In addition to ploidy estimates, the percentage of 

aberrant cells estimated by ASCAT analysis showed a mean of 86% tumour content per 

samples which was similar to the pathological review. Stratifying the aberrant cell fraction 
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estimates by class 1 versus 2 tumour subgroups revealed considerable differences in the class 

1 tumour subgroup compared to class 2 (Figure 3.3 B).  

 

Table 3.1: Recurrent broad chromosomal arm level amplifications and deletions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The alterations are present in >10% of UM primary tumour samples. 

 

Figure 3.1: Genomic profile of the most common gains and losses in UMs.  

Gains are denoted by red and losses denoted by blue for all the samples (N=182). X-axis represents 

the chromosomes and Y-axis represents the proportion of gains and losses in the combined cohort. 

 

#"Event %
Loss 3q 98 54%
Loss 3p 94 52%
Loss 6q 57 31%
Loss 1p 38 21%
Loss 8p 36 20%
Loss 16q 34 19%
Loss 9p 21 12%
Gain 8q 125 69%
Gain 6p 83 46%
Gain 8p 37 20%
Gain 1q 26 14%
Gain 21q 26 14%
Gain 4p 19 10%
Gain 7p 18 10%
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Figure 3.2:!Heatmap of copy number profiles from 182 UM tumours.  

 

Unsupervised hierarchical clustering of all tumours revealed that gains and losses clustered together within 4 groups. Metastasis status represented by color 

labels on the left side; red indicating the metastasis group.  
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Figure 3.3: (A) Distribution of ploidy estimates from ASCAT. (B) Aberrant cell fraction 

estimates from ASCAT  

 

 
 
Box and density plots were plotted for 45 uveal melanomas across class 1 (N=22) and class 2 (N=23) 

GEP based subgroups. Most of the tumours show a ploidy close to 2n and a smaller fraction showed a 

ploidy close to 4n. The class 2 subgroup displays the higher level of ploidy and a broader range (class 

2: mean=2.24, range 1.78-4.75; class 1: mean=2.13, range=1.96-3.83). (B) Box plot showing the 

percentage of aberrant cell fraction across the class 1 and class 2 subgroups. The class 1 group has the 

highest level of aberrant tumour cell fraction compared to class 2 (P value 0.0027, 2-tailed Mann-

Whitney U test). Most the data in the class 1 group have a median close to 1 (0.995) as seen from the 

plot where the median is close to the upper quartile with no whiskers, indicating tumors with 100% 

tumor content. 

 
3.1.3 Focal copy number alterations identified with GISTIC  

 
The large size of chromosomal arm-level alterations makes it difficult to identify specific 

target gene or genes of interest. However, the identification of focal CNAs (FCNA) can 

target genes relevant to tumour biology 334–337. Copy number profiles of the 182 UM primary 

cancer specimens were analysed to identified FCNAs that occur at a significantly higher 

frequency compared to the average background rate in the dataset with GISTIC (genomic 

identification of significant target in cancer) algorithm 301. For each sample, the probe 

intensity (log R ratio) and allelic intensity (B allele frequency) data were processed and 

segmented with the ASCAT-PCF segmentation method to obtain a copy number profile. To 

distinguish biologically significant FCNAs from random events in UMs, GISTIC was run 
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through the segmented data and processed downstream to integrate results from each cohort. 

Although GISTIC was applied to all the 182 samples to identify focal and broad peaks as 

described in the methods, it cannot readily integrate samples from different platforms. Thus, 

the frequency of alterations for each cytoband (GISTIC peak from each independent cohort 

analysis) was determined across all samples using platform independent segmented copy 

number profiles. The term focal CNAs (or FCNA) used here refers to a copy number segment 

smaller than half the length of the chromosomal arm.  

In total 203 independent regions of significantly recurrent somatic FCNAs 

were identified. These included 103 amplifications and 100 deletions across 182 samples 

from pooled analysis on all cohorts without any filtering. The significant GISTIC peaks were 

identified across all the cohorts using a q value threshold of 0.25 (Figure 3.4).  

 

Figure 3.4: Significant GISTIC amplifications and deletion peaks identified. 
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Here, CN gain peaks represented in red and CN-loss peaks represented in blue. Green lines denote the 

threshold for significance FDR value (q-value) < 0.25. (A-B) CC cohort. (C-D) WASHU cohort (E-F) 

TCGA cohort.  
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 The peaks identified from the TCGA data (N=80) were then compared to those 

identified in WASH-U (N=45) and CC (N=57) cohorts (Figure 3.5). The number of peaks in 

the TCGA cohort were substantially higher compared to the WASHU and CC cohort. 

Although, the significance q-value threshold of 0.25 was initially selected based on the 

literature, the analysis was re-run using a lower q-value threshold of 0.05 to account for 

potential false positives however this difference persisted (Appendix 2). This difference 

could be attributed to the variation in the platforms used to generate data across all three 

cohorts in addition to the private germline CNV that could not be filtered out due to the 

unavailability of matched normal samples for some samples in the WASHU and CC cohorts. 

The TCGA data had matched normal for all the tumour samples and thus germline CNVs 

were filtered out for all the samples. Thus, in the case of the TCGA data only truly somatic 

segmented profiles were used for GISTIC peaks calling.  

 

Figure 3.5: Number of GISTIC amplifications and deletions peaks identified across all 

three cohorts  
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The germline CNAs were filtered by adopting a compiled list of genomic variants 

from the Database of Genomic Variants (DGV) and HapMap normals. On average, there 

were 34 focal alterations per sample after germline variants were removed. The most frequent 

of these significant focal alterations were amplification of PLEC1 on chromosome 8q24.3 

(74% of samples) and deletion of PCCB on 3q22.3 (55% of samples). The mRNA expression 
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of PLEC1 and PCCB (normalized RNA-seq read counts) were analyzed between the samples 

with and without copy number change. Samples with focal amplification of 8q24.3 showed 

significant change in PLEC1 expression (p-value=0.1e-3) compared to samples with no 

amplification (FC=1.84) (Figure 3.5). However, no significant difference was observed for 

PCCB expression between the samples with deletion of 3q22.3 and wildtype samples (FC 

0.95, p-value =0.9). The low or partial correlation of gene expression with PCCB deletion is 

not clear but could be due to the CNV identification method where a lower threshold was 

used for deletions. Genes that showed significant change in expression that correlated with 

copy number alterations were selected as putative candidates for follow up, since they were 

more likely to correspond to biologically meaningful events.  

The least frequent events were observed in 2% of samples. Among these 203 regions, 

the CNA boundaries for amplification events revealed a median size of 33.3 Kb (1.5-1610 

Kb) for amplifications and a median size of 90.2Kb (9.5-21104 Kb) for deletions. To 

prioritize the most relevant alterations with respect to uveal melanoma, seventy FCNAs (from 

a total of 207) which occurred in more than 15% of all samples were selected. This also 

eliminated lower frequency spurious alterations and ensured that the alterations were robust 

to changes in the number of samples. These FCNAs include 29 recurrently amplified and 41 

recurrently deleted regions (Table 3.2). For each of the 70 significant FCNAs, a “peak” 

region was identified by GISTIC that is most likely to contain genes or loci involved in 

tumourigenesis. These peaks FCNA peaks lie within a 95% confidence window. The 29 

FCNA peaks contained a median of 3 genes each (range 0-81, including microRNAs and 

other non-coding RNAs); 2 regions contained more than 25 genes each and the remaining 27 

regions encompassed in aggregate 123 potential target genes. The 41 focal deletion peaks 

contained a median of 4 genes each (range 1-505, including microRNAs and other non-

coding RNAs). Six regions contain at least 25 genes and the remaining 35 regions contain in 

aggregate 145 potential target genes. 

GISTIC tended to identify very small regions with the high-resolution platform data 

used in this study and as a result some of the expected genes were missed. For example, on 

3p21.1 it identified a significant peak spanning 162.8 Kb and containing the genes 

TMEM110, TMEM110-MUSTN1 and SFMBT1. This peak did not intersect with the BAP1 

gene, an established tumor suppressor gene in UM 115 which is located 472.8 Kb from the 

reported peak in the same chromosomal band (3p21.1) (Figure 3.6). 
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Figure 3.6: Box and whisker plot of PLEC expression.  

 

 

 

 

 

 

 

 

 

 

 
 
 

Comparison of PLEC expression between in tumors with and without focal amplification of 8q24.4 

locus compared using samples in TCGA cohort (N=80). X-axis: Copy number gain and wildtype; Y-

axis: Normalized read count from RNA-seq data. 

 

Figure 3.7: GISTIC deletion peak on 3p21.1.  
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focal peak identified by GISTIC at 8q in the current analysis was at 8q24.22, which lies more 

than 5 megabases from the MYC locus. This peak contained PLEC1 (indicated above), which 

showed significant correlation between gene expression and copy number change. 

To increase confidence in identifying candidate genes, all the GISTIC peaks were 

combined into a single dataset and those peaks that had overlapping boundaries across any 

two of the three cohorts were selected as high confident peaks. These revealed only four 

overlapping deletion peaks mapping to chromosomes 1p35, 2q37.2, 6q27 and 11q24.3. 

(Table 3). Candidate genes within or near these deletion peaks are also shown and correspond 

to PDLIM1 at chromosome 1p35.2, LOC200772 at chromosome 2q37.2, WDR27, PHF10 

and c6orf120 at chromosome 6127 and FLIT1 on chromosome 11q24.3. Although there were 

no overlapping amplification peaks, there were six peaks where the boundaries between 

dataset-pairs were within 1Mb of each other and these included chromosomes 6p25.2, 

6p22.1, 6q26, 8q24.3, 16p13.3 and 19p13.3 (Table 3.3).  
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Table 3.2.: GISTIC amplification and deletion peaks.  

GISTIC identified peak regions of amplifications (29 peaks) and deletions (41 peaks) present in more 

than 15% of samples across all three cohorts.  

Copy%Number%alteration Band GISTIC%peak%limits
Frequency%across%
all%samples%
(N=182)

TCGA%
(N=80)

WASHFU%
(N=45)

CC%
(N=57)

Significant%top%10%FCNA%genes%associated%with%expression

Amplification,01 1q32.2 chr1:210068118,210122321 18% 13 9 10
Amplification,02 1q43 chr1:240845575,240893966 16% 13 7 10
Amplification,03 1q44 chr1:247640512,249250621 16% 14 5 10
Amplification,04 2p25.2 chr2:5828703,5847674 15% 13 7 7
Amplification,05 2q31.1 chr2:176974105,177008913 16% 9 19 1
Amplification,06 4p16.3 chr4:1190519,1535003 15% 11 8 8 MAEA,@CTBP1,AS2,@CTBP1,@UVSSA,@SPON2,@CRIPAK
Amplification,07 6p21.33 chr6:30416832,30468162 48% 44 23 20
Amplification,08 6p22.1,peak1 chr6:28967039,29009567 48% 44 22 21 ZNF311
Amplification,09 6p22.1,peak2 chr6:28229882,28258984 45% 44 17 21 PGBD1,@RP5,874C20.3
Amplification,10 6p22.3 chr6:19827920,19855932 51% 46 24 23
Amplification,11 6p25.2,peak1 chr6:3144029,3152404 52% 46 21 27 BPHL
Amplification,12 6p25.2,peak2 chr6:2886796,2890282 50% 46 23 22 SERPINB9
Amplification,13 7p15.2 chr7:27205283,27281156 19% 10 21 4
Amplification,14 7p22.1 chr7:6656831,6694717 15% 10 14 4 ZNF316
Amplification,15 7q21.11 chr7:85486010,85511551 16% 9 2 18
Amplification,16 8p23.3,peak1 chr8:1784860,1811396 25% 20 13 13 ARHGEF10
Amplification,17 8p23.3,peak2 chr8:1921161,1954463 25% 20 17 9 KBTBD11,@KBTBD11,OT1,@RP11,439C15.4
Amplification,18 8q11.21 chr8:52020710,52031773 56% 47 20 35
Amplification,19 8q21.3 chr8:89811299,91200675 68% 58 26 39 DECR1,@OSGIN2,@RIPK2,@NBN,@RP11,37B2.1
Amplification,20 8q22.1 chr8:94700402,94749564 70% 60 29 38 FAM92A1,@CTD,2006H14.2
Amplification,21 8q24.22 chr8:133991650,134011691 72% 61 27 43
Amplification,22 8q24.3,peak1 chr8:144229104,144482855 74% 61 30 44 ZNF696,@GLI4,@RP13,582O9.7,@ZFP41,@RHPN1@ZFP41,@LY6H,@TOP1MT,@RHPN1,AS1
Amplification,23 8q24.3,peak2 chr8:144956465,145044748 74% 61 31 42 PLEC
Amplification,24 11p15.5,peak1 chr11:549120,567390 16% 9 16 4 C11orf35,@LRRC56
Amplification,25 11p15.5,peak2 chr11:824043,831882 15% 9 13 6 EFCAB4A,@PNPLA2,@AP006621.8
Amplification,26 16p13.3 chr16:1,889655 19% 4 15 16
Amplification,27 17q25.3 chr17:79976479,80215585 15% 15 10 2 LRRC45,GPS1,DUS1L,RAC3,DCXR,CSNK1D,FASN,STRA13,@RFNG,CCDC57
Amplification,28 21q22.3 chr21:47416325,47465204 20% 16 14 6 COL6A1
Amplification,29 22q13.31 chr22:46363740,46480601 15% 6 18 4
Deletion,01 1p13.1 chr1:116174525,116243379 20% 19 4 13 VANGL1
Deletion,02 1p32.2 chr1:57450404,58743937 26% 23 3 21
Deletion,03 1p35.3@(overlap@1p36.11)chr1:19660871,36108704 34% 32 6 23 CDC42,RPA2,ZBTB40,RP5,997D16.2,KPNA6,IQCC,PITHD1,GPN2,@KIAA0319L,@AK2
Deletion,41 1p36.11 chr1:26412170,26460781 25% 32 6 23 PDIK1L
Deletion,04 1p36.13 chr1:17629005,17694614 27% 23 6 20
Deletion,05 1p36.22 chr1:10442868,10512055 25% 23 4 18 PGD,CORT,@APITD1,CORT
Deletion,06 2q37.2 chr2:231727807,242218174 22% 16 2 22
Deletion,07 3p21.1 chr3:52916917,53079722 52% 44 19 31 SFMBT1,@RP11,894J14.5,@TMEM110,@TMEM110,MUSTN1
Deletion,08 3p21.31 chr3:46959694,47026134 51% 44 19 30 NBEAL2,@CCDC12
Deletion,09 3p25.1 chr3:15693242,15845263 51% 42 19 31
Deletion,10 3p25.3 chr3:11583255,11767552 51% 42 18 33 VGLL4,@ATG7
Deletion,11 3q11.1 chr3:90476372,93759078 54% 44 19 35
Deletion,12 3q22.3 chr3:135956306,136055458 55% 45 20 36
Deletion,13 3q28,peak1 chr3:191040175,191128440 55% 46 19 35 CCDC50,@UTS2B
Deletion,14 3q28,peak2 chr3:189670949,189844960 53% 46 19 32
Deletion,15 3q29 chr3:194400231,194418125 52% 46 18 31
Deletion,16 4q32.3 chr4:165991449,166038190 27% 5 0 44 TMEM192
Deletion,17 4q35.1 chr4:186386588,186459025 23% 5 0 36 CCDC110
Deletion,18 6q12 chr6:64353648,66424344 30% 18 9 28 PHF3
Deletion,19 6q16.2,peak1 chr6:99982340,100034579 37% 22 16 29 CCNC,@RP1,199J3.5
Deletion,20 6q16.2,peak2 chr6:100046934,100089847 35% 21 16 27
Deletion,21 6q16.3 chr6:105154522,105319124 34% 22 16 23 HACE1

Deletion,22 6q24.3 chr6:137517511,158622124 39% 29 15 27
AIG1,@TMEM242,@HEBP2,@ZDHHC14,@HECA,@TAB2,@EPM2A,@RP11,350J20.9,@RP1,
95L4.4,@LRP11

Deletion,23 6q27,peak1@ chr6:170073603,170152990 30% 23 13 19 PHF10,@ERMARD,@WDR27,@RP1,266L20.2,@C6orf120,@TCTE3
Deletion,24 6q27,peak2 chr6:166821252,167278270 30% 23 13 19 RPS6KA2
Deletion,25 7q35 chr7:145807448,148139556 19% 1 0 34
Deletion,26 8p11.21,peak1 chr8:42100553,42191342 30% 20 5 29 POLB,@IKBKB,@VDAC3
Deletion,27 8p11.21,peak2 chr8:42193876,42259298 28% 20 5 26
Deletion,28 8p11.22 chr8:39192482,39405336 27% 20 7 23
Deletion,29 8p21.2 chr8:25037493,25281328 35% 20 5 38 DOCK5
Deletion,30 8p23.1 chr8:11223023,11307117 25% 20 5 21
Deletion,31 9p13.2 chr9:36314567,36401351 18% 8 2 23
Deletion,32 9q21.11 chr9:71719619,71882817 22% 6 0 34
Deletion,33 9q34.11 chr9:131375702,131425763 29% 6 0 46
Deletion,34 11q24.3 chr11:123744052,135006516 16% 11 5 13
Deletion,35 15q24.3 chr15:77283978,77377653 21% 5 1 32 TSPAN3
Deletion,36 16p12.3 chr16:12988185,25246530 16% 2 0 28
Deletion,37 16q12.1 chr16:48390513,48419402 18% 16 6 11 SIAH1,@LONP2
Deletion,38 16q21 chr16:58564865,58668843 21% 16 7 16 CNOT1
Deletion,39 16q24.3 chr16:89304312,90354753 24% 16 5 23 ANKRD11,@DEF8,@CDK10,@SPG7,@VPS9D1,@ZNF276,@CHMP1A,@TCF25,@SPATA33,@URAHP
Deletion,40 22q11.21 chr22:18038787,18079517 23% 1 0 40
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Table 3.3: Overlapping GISTIC focal peaks.  

 

 
The GISTIC focal peaks for overlapping regions for three different independent analysis performed 

on data from 3 different cohorts (WASH-U, TCGA and CC). All peaks boundaries were compared to 

each other and peaks with complete overlaps or within 1 MB are reported here. 

 
3.1.4 Comparison of Focal CNAs in UM and Pan cancer findings 

 
The Focal CNAs from our GISTIC analysis were compared with those of 3131 tumors 

spanning nearly 54 tumors types (Beroukhim 2010) 338, in order to distinguish between CNAs 

that are unique to UMs and those that are found in other tumours . Focal peak boundaries 

from the current analysis of UM were matched with 158 amplification and deletion peaks 

reported in the pan cancer copy number study, of which 6/29 (20%) were regions of copy 

number gain and 12/40 (30%) were regions of copy number loss.  

The identification of regions that were common to both the sets was done by 

annotating UM focal peak boundaries as the reference and categorizing matches as “sub” for 

UM peaks within and “super” for those spanning those from the Pan cancer study.  

Additional regions of copy gain and loss exhibited partial overlap and are indicated as “left” 

or “right” depending on the overlapping boundaries. Shared alterations (Appendix 4 and 

Table 3.4) include gains on chromosomal arms 1q, 6p and 8q and losses on chromosomal 

arms 1p, 4q, 6q, 7q, 8p, 9p, 11q and 16q suggesting a broader role of these alterations in 

multiple tumor types. The shared amplification peaks include 1q44, 6p22.3, 6p25.2 (peaks 1 

& 2) and 8q24.3 (peaks 1 & 2) and deletion peaks include 1p13.2, 1p36.11, 4q35.1, 6q16.2 

(peaks 1 & 2), 6q16.3, 7q35, 8p11.2, 8p21.2, 9p13.2, 11q24.3 and 16q24.3. In contrast 51 
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UM specific focal CNAs were observed and include 23/29 (79%) copy gains and 28/40 

(70%) copy losses (Table 3.4). The median size of shared alterations was 14.7 Mb (range 

5.92-23.46 Mb) for amplifications and 4.37 Mb (range 0.77-28.66 Mb) for deletions.  

Examining genes that lie in these shared copy number alterations across all 18 peaks 

and comparing them with known cancer driver genes of the complied lists of Tamborero 339 

et al, Vogelstein et al 209 and Leiserson et al 340 revealed three potential cancer causing 

candidates. These candidate genes were AT-Rich Interaction Domain 1A (ARID1A) within 

the 1p35.3 deletion peak, Non-SMC Condensin II Complex Subunit D3 (NCAPD3) within 

the 11q25 deletion peak and Plectin 1, Intermediate Filament Binding Protein (PLEC1) 

within the 8q24.3 amplification peak. These three genes were queried against the copy 

number portal Tumourscape (www.broadinstitute.org/tumorscape) to find further information 

on cancer types with somatic copy number alteration (SCNA) that targets these genes of 

interest.  

PLEC1 is significantly focally amplified in 4/14 independent subtypes including 

Acute lymphoblastic leukemia (q =0.155, within a peak), lung non-small cell cancer (NSC) 

(q=5.89e-5, within a peak), melanoma (q =0.185, not in a peak) and ovarian cancer (q <=0.25, 

within a peak). ARID1A is significantly focally deleted across the entire dataset of 3131 

tumours and located within focal peak region of deletion in 8/14 independent cancer subtypes 

including colorectal (q=3.46e-5, within a peak), lung NSC (q=5.83e-5, within a peak), breast 

(q=9.7e-5, within a peak), renal (q=7e-4, within a peak), ovarian (q=0.2718, within a peak), 

myeloproliferative disorder (q=0.0255, within a peak), hepatocellular (q=0.0663, not in a 

peak) and acute lymphoblastic leukemia (q=0.0775, not in a peak). The Non-SMC Condensin 

II Complex Subunit D3 (NCAPD3) gene is deleted in 5/14 independent cancer subtypes 

including lung NSC (q=2.76e-5, within a peak), breast (q=1.82e-4, within a peak), 

medulloblastoma (q=0.024, within a peak), esophageal squamous (q=0.055, within a peak) 

and melanoma (q=0.10, not in a peak).  One exception to the genes in the overlapping region 

between UMs and other previously reported compendium of cancers (Beroukhim et al., 2010) 

was Axis Inhibition Protein 1 (AXIN1) which was significantly focally deleted in lung 

(q=0.018, within a peak) and hepatocellular (q=1.05e-4, within a peak) tumours whereas it 

was amplified in UM samples. 
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Table 3.4: Comparison of copy number profiles with Pan cancer.  

!
!
(
(
(
(
(
(
(
Comparison of copy number alterations events shared by our Uveal Melanoma cohorts and those seen 

in 2433 cancers (Beroukhim et al, 2010); A) Summary of amplification peak overlaps B) Summary of 

deletion peak overlaps C) Figurative explanation of how overlap is described. 

(
(

C) Extent&of&overlap&reference&to&UVM

Same UM Super UM
B&ALL B&ALL

Sub UM Right UM
B&ALL B&ALL

Left UM
B&ALL

A) B)

Amplification Band Match
Matching11
Peak1band

Extent1of1
overlap Size1

(Mb) Deletion Band Match
Matching11
Peak1band

Extent1of1
overlap Size1

(Mb)

Amp&1 1q32.2 No Deletion1 1p13.1 Yes 1p13.2 Sub 9.09
Amp&2 1q43 No Deletion2 1p32.2 No
Amp&3 1q44 Yes 1q44 Left 5.94 Deletion3 1p35.3 Yes 1p36.11 Super 1.16
Amp&4 2p25.2 No Deletion4 1p36.13 No
Amp&5 2q31.1 No Deletion5 1p36.22 No
Amp&6 4p16.3 No Deletion6 2q37.2 No
Amp&7 6p21.33 No Deletion7 3p21.1 No
Amp&8 6p22.1&peak1 No Deletion8 3p21.31 No
Amp&9 6p22.1&peak2 No Deletion9 3p25.1 No
Amp&10 6p22.3 Yes 6p24.1 Sub 23.46 Deletion10 3p25.3 No
Amp&11 6p25.2&peak1 Yes 6p24.1 Sub 23.46 Deletion11 3q11.1 No
Amp&12 6p25.2&peak2 Yes 6p24.1 Sub 23.46 Deletion12 3q22.3 No
Amp&13 7p15.2 No Deletion13 3q28&peak1 No
Amp&14 7p22.1 No Deletion14 3q28&peak2 No
Amp&15 7q21.11 No Deletion15 3q29 No
Amp&16 8p23.3&peak1 No Deletion16 4q32.3 No
Amp&17 8p23.3&peak2 No Deletion17 4q35.1 Yes 4q35.2 Right 4.58
Amp&18 8q11.21 No Deletion18 6q12 No
Amp&19 8q21.3 No Deletion19 6q16.2&peak1 Yes 6q16.1 Sub 28.66
Amp&20 8q22.1 No Deletion20 6q16.2&peak2 Yes 6q16.1 Sub 28.66
Amp&21 8q24.22 No Deletion21 6q16.3 Yes 6q22.1 Sub 20.58
Amp&22 8q24.3&peak1 Yes 8q24.3 Sub 5.92 Deletion22 6q24.3 No
Amp&23 8q24.3&peak2 Yes 8q24.3 Sub 5.92 Deletion23 6q27&peak1 No
Amp&24 11p15.5&peak1 No Deletion24 6q27&peak2 No
Amp&25 11p15.5&peak2 No Deletion25 7q35 Yes 7q35 Sub 3.95
Amp&26 16p13.3 No Deletion26 8p11.21&peak1 No
Amp&27 17q25.3 No Deletion27 8p11.21&peak2 No
Amp&28 21q22.3 No Deletion28 8p11.22 Yes 8p11.22 Sub 2.23
Amp&29 22q13.31 No Deletion29 8p21.2 Yes 8p21.2 Sub 7.95

Deletion30 8p23.1 No
Deletion31 9p13.2 Yes 9p13.2 Right 0.77
Deletion32 9q21.11 No
Deletion33 9q34.11 No
Deletion34 11q24.3 Yes 11q25 Super 4.17
Deletion35 15q24.3 No
Deletion36 16p12.3 No
Deletion37 16q12.1 No
Deletion38 16q21 No
Deletion39 16q24.3 Yes 16q23.3 Super 1.65
Deletion40 22q11.21 No

UM1cohort Pan1cancer1@1ALL UM1cohort Pan1cancer1@1ALL
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3.1.5 Candidate genes in the focal region of interest  

 
Distinguishing between alterations that are highly selected during tumorigenesis (driver 

events) from those that do not offer any selective advantage (passenger events) has been a 

main challenge in the analysis of genetic alterations in cancer. Although GISTIC analysis has 

identified significant focal aberrations, these regions contain multiple genes and identifying 

the underlying target/s with limited data is difficult.  

To discover other novel genes involved in UM pathogenesis, known cancer genes 

reported in earlier studies were queried across 1013 genes spanning 52 out of 70 focal peaks 

in UM previously not reported in the pan cancer analysis, these included protein coding and 

non-coding RNAs. Genes residing in the loci of specific amplification and deletion 

significant peaks identified by GISTIC were assessed to identify potential cancer causing 

gene (oncogenes and tumour suppressors) using a compiled list of cancer driver genes 

previously used for comparing shared alterations. Interestingly, none of the focal 

amplification peaks contain a known candidate cancer gene reported in these studies 209,339,340, 

whereas 6 out of 29 deletion peaks contained cancer genes previously not described in UM. 

These included genes ARHGAP32 (11q24.3), ARID1B (6q24.3), CDON (11q24.3), ESR1 

(6q24.3), FAM118B (11q24.3), FANCA (16q24.3), PTMA (2q37.2), SHPRH (6q24.3), SMG1 

(16p12.3), SYNE1 (6q24.3), TJP2 (9q21.11) and TNFAIP3 (6q24.3). To prioritize genes that 

are likely to have highest impact, copy number states indicating high amplification 

(exceeding higher amplicons threshold 0.9) or homozygous deletion (exceeding higher 

deletion threshold 1.3) events from gene GISTIC analysis were examined.  

Gene AT-Rich Interaction Domain 1B (ARID1B) is part of the human SWI/SNF 

chromatin remodelling complex involved in mobilizing nucleosomes and modulates 

transcription in an ATP dependent manner 341. In the current dataset, ARID1B was found to 

be in a region of homozygous deletion on chromosome 6 in 8 of 182 (4%) samples, with 

broader, single copy deletions of ARID1B occurring in 28% of other samples. ARID1A, maps 

to 1p36.11 and encodes an alternate subunit of the human SWI/SNF complex 341. This was 

found to be in a region of homozygous deletion in 2 of 182 sample (Figure 3.7).  

In addition to previously implicated cancer genes (ARID1A, ARID1B) involved in 

chromatin remodelling complex, another gene PHD Finger Protein 10 (PHF10) which 

encodes for PBAF, another subtype of the human SWI/SNF chromatin remodelling complex 
342 was identified within the 6q27 deletion peak in two independent cohorts (Table 3.3). 6q27 
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was focally deleted in 30% of samples and homozygous deletions were detected in 8 out of 

182 samples (4%) with a broader, single copy deletion seen in 25% of samples (Figure 3.7).   

 

Figure 3.1.9: Copy number alteration of genes in the BAF and PBAF complex.  

(

(
(
(
(

(
(
(
(
 

 

 

 

 
Focally homozygous deletion observed in three genes from the BAF/PBAF complex, in 10 out of 182 

tumours. Sample with the alterations are zoomed in.  

 
The focal alteration on 6q27 harbouring PHF10 was first identified in the WASH-U 

cohort after examining the LRR data for samples with a 6q deletion that had undergone 

metastasis (MM010, MM065, MM016 and MM089). A homozygous deletion 

(chr6:169756330-170141552) in one of the sample (MM016) spanning PHF10 was found 

(Figure 3.8), and later homozygous deletions of a region harbouring this gene were detected 

in two samples from the CC cohort and three samples of the TCGA cohort (Figure 3.9). BAF 

and PBAF (or the human SWI/SNF) complexes alter the epigenetic landscapes to regulate 

transcription thus contributing to malignancies and these alterations point to important 

candidate genes in the chromatin remodelling complexes. 
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Figure 3.8: Log R ratio data for selected samples from WASH-U cohort.  

!
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (Top) showing homozygous deletion in PHF10 gene at 6q27 identified in MM016. Shown (bottom) the zoomed in view of change in log R ratio in 

comparison to other samples. 
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Figure 3.9: Homozygous deletion of PHF10 in IGV 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
The regions of homozygous deletion at chromosome 6q27 in the CC and WASH-U cohorts showing 

the region of overlap that harbours PHF10 and c6orf120. The IGV heatmap of 182 segmented tumour 

profiles is shown below with gains in red and losses in blue. The samples are ordered by their copy 

number value which represents the focality and amplitude of loss. 
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3.1.6 Differentially expressed genes in focal peaks and pathway analysis 

 
The findings of the current study have identified CNAs which have been reported in earlier 

UM studies, have potentially refined the critical locations of some of these CNAs and have 

identified some novel alterations. However, to understand their role in UM pathogenesis, the 

consequences of such genomic alterations need to be understood. For a copy number change 

to confer a selective advantage, one also expects to see a change in gene expression. 

Refinement of such genes in tumorigenesis has been performed successfully in the case of 

BAP1, where deletion of a critical tumour suppressor led to loss of expression. However, 

recent studies have also shown that genomic rearrangements can sometimes destroy 

topological domains, leading expression of an RNA in a nearby region, sometimes as a 

consequence of enhancer hijacking. It is also possible that multiple genes residing within a 

CNA contribute to tumourigenesis 343.  

Thus, to prioritize genes that are most likely to have a functional effect due to direct 

consequence of changes in copy number 80 TCGA samples with matched SNP array and 

RNA-sequencing data were studied. All genes that mapped to 70 focal amplified and deleted 

regions were analyzed for association between the presence or absence of a focal alteration 

and transcript abundance. Here the genes that lie within the significant focal peak boundaries 

are defined as ‘cis-signature’ genes. To extract intrinsic biological patterns of these cis-

signature genes, gene enrichment analysis was then applied to the all the cis-signature genes 

that were statistically significantly associated with change in gene expression (FDR q-value < 

0.05). 

In total 405 cis-genes spanning 70 target regions of interest were identified that were 

associated with a change in expression. Majority of genes were protein coding mRNAs 

followed by different RNA species such as antisense RNA, long intergenic non-coding RNA 

and pseudogenes (Figure 3.10). To extract intrinsic biological patterns of these cis-signature 

genes, 318 out of 405 genes were tested for enrichment of relevant biological categories 

using collection C2 curated gene sets from the MSigDB repository (Subramanian et al, 2005) 
344 using a nominal p-value < 5%. The C2 collection provides a significant number of highly 

enriched genes and are extracted mainly from biomedical literature and biological databases 

such as Kyoto Encyclopedia of Genes and Genomes (KEGG) 345 and Reactome 346.  

In the current analysis, all the deregulated genes (overexpressed and down regulated) 

were analyzed together. Although, this approach could reduce power and make interpretation 

easier, by considering all the genes, positive/negative interactions between genes are 
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accounted for and could highlight pathways where both positive and negative regulators are 

present. The second approach was run for comparison, where the genes in the amplified and 

deleted loci were analyzed separately. Overexpression genes (amplified loci) were enriched 

only for the WNT signaling pathway and downregulated genes (deleted loci) were enriched 

for RNA processing and Immune response.  

 

Figure 3.10: Distribution of gene categories for cis genes.  

 

 

 

 

 

 

 

 

 

 

 

 

For a list of 405 genes found across 70 focal copy number target regions that are significantly 

associated with change in expression, the distribution of the categories in which the genes lie. Most of 

them were protein coding. 

 

The integrative analysis of the union of cis-signature genes and corresponding 

transcript abundance was performed to characterize functional pathways affected by these 

consistently amplified and deleted regions. The pathway enrichment of genes perturbed by 

FCNAs in UMs revealed significantly enriched Reactome and KEGG pathways including 

processes related to immune response, cell cycle and mRNA regulation (Table 3.5). Some of 

these gene sets have different names but include common genes targeted by FCNAs. Genes 

that are present in 3 or more pathways include RPS6KA1, PSMB2, RPA2, SNRNP40, SRSF4, 

NUDC, HDAC1, RBBP4, CDC42, DNAJC8, HNRNPR, SRRM1 on deletion peak 1p35.3, 

TIRAP on 11q24.3 deletion peak, TAB2, NUP43, TNFAIP3, FBXO5, SF3B5 on deletion peak 

6q24.3, RPS6KA2 on deletion peak 6q27, IKBKB on deletion peak 8p11.21 and RIPK2 on 

amplification peak 8q21.3.  

miRNA
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unprocessed_pseudogene
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The top significantly enriched gene sets were seen in immune related genes (FDR p-

value 0.00244). Alterations that perturbed the genes with immune related function include 

deletions in the 1p35.3 peak (RPS6KA1), the 6q24.3 peak (TAB2, TNFAIP3), the 8p11.21 

peak (IKBKB), the 6q27 peak (RPS6KA2) and the 11q24.3 peak (TIRAP) and amplification of 

the 8q21.3 peak (Receptor Interacting Serine/Threonine kinase 2: RIPK2). RIPK2 is focally 

amplified in majority of UM samples (70%), and plays an important role in modulating the 

innate and the adaptive immune responses. RIPK2 activates the NF-kappaB and MAPK 

pathways by interacting with NOD1 and NOD2 via its CARD domain 347,348. NF-kappaB 

pathway activation results in the upregulation of transcription and production of 

inflammatory mediators and has been linked to cancer development 349, One study has 

already shown this pathway to be active in both primary and metastatic UMs 350. The kinase 

gene, RPS6KA2 on 6q27 deletion (seen in 30% of UMs) has been shown to be a putative 

tumor suppressor gene in ovarian cancer 351. 

Interestingly, seven genes closely associated with copy loss of 1p13.1 (VANGL1), 

1p35.3 (WNT4) and 16q12.1 (SIAH1) and copy gain of 16p13.3 (AXIN1), 17q25.3 (RAC3), 

4p16.3 (CTBP1) and 22q13.31 (WNT7B) are components of the WNT signaling pathway 

(FDR p-value 0.0129) (Figure 3.11). Although this pathway has not been implicated in UM, 

the WNT signal transduction pathway maintains the integrity of the stem-cell and promotes 

self-renewal 352. Down regulation of WNT pathway regulators, including CSNK2A2 and 

CTNNB1 was previously shown by Onken et al 42,114 in metastasizing UMs. Another study 

provided evidence for association between immunohistochemical staining of WNT signalling 

members Wnt5a, MMP7 and beta-catenin, and aggressiveness of UMs 353. Hence, CNA 

analysis may have provided important insights into UM pathogenesis by highlighting changes 

affecting WNT signaling. 
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Table 3.5: Significant enriched genes sets. 

!

!
All the pathways (FDR <0.05) from KEGG and Reactome databases in MSigDB significantly 

enriched for copy number target genes which are deregulated in uveal melanoma, and are associated 

with change in expression. Amplified genes are shown in red and deleted genes in blue. 

!
!
 

 

 

  

Gene$Set$Name Description Set$
annotated

#$Genes$in$
Gene$Set

Total$
annotated

Set$size p6value FDR$q6value Hits

REACTOME_IMMUNE_SYSTEM Genes2involved2in2Immune2System
21 933 45956 860 2.84EF06 2.44EF03

ASB1,2ATG7,2CDC42,2DDOST,2EIF4G3,2IFNGR1,2IKBKB,2

NUP43,2PROS1,2PSMB2,2PSMD1,2RAP1GAP,2RIPK2,2

RPS6KA1,2RPS6KA2,2TAB2,2TIRAP,2TNFAIP3,2TRIM63,2
REACTOME_MYD88_MAL_CASCADE_INITIATE

D_ON_PLASMA_MEMBRANE

Genes2involved2in2MyD88:Mal2cascade2

initiated2on2plasma2membrane
6 83 45956 860 2.53EF05 1.00EF02

IKBKB,2RIPK2,2RPS6KA1,2RPS6KA2,2TAB2,2TIRAP

REACTOME_ACTIVATED_TLR4_SIGNALLING Genes2involved2in2Activated2TLR42signalling
6 93 45956 860 4.82EF05 1.00EF02

IKBKB,2RIPK2,2RPS6KA1,2RPS6KA2,2TAB2,2TIRAP

REACTOME_NOD1_2_SIGNALING_PATHWAY Genes2involved2in2NOD1/22Signaling2

Pathway
4 30 45956 860 5.35EF05 1.00EF02

IKBKB,2RIPK2,2TAB2,2TNFAIP3

REACTOME_PROCESSING_OF_CAPPED_INTRO

N_CONTAINING_PRE_MRNA

Genes2involved2in2Processing2of2Capped2

IntronFContaining2PreFmRNA
7 140 45956 860 5.82EF05 1.00EF02

DNAJC8,2HNRNPR,2NUP43,2SF3B5,2SNRNP40,2SRRM1,2

SRSF4

KEGG_WNT_SIGNALING_PATHWAY Wnt2signaling2pathway
7 151 45956 860 9.37EF05 1.29EF02

AXIN1,2CTBP1,2RAC3,2SIAH1,2VANGL1,2WNT4,2WNT7B

REACTOME_MRNA_SPLICING Genes2involved2in2mRNA2Splicing
6 111 45956 860 1.29EF04 1.29EF02

DNAJC8,2HNRNPR,2SF3B5,2SNRNP40,2SRRM1,2SRSF4

REACTOME_MRNA_PROCESSING Genes2involved2in2mRNA2Processing
7 161 45956 860 1.40EF04 1.29EF02

DNAJC8,2HNRNPR,2NUP43,2SF3B5,2SNRNP40,2SRRM1,2

SRSF4

REACTOME_NFKB_AND_MAP_KINASES_ACTIV

ATION_MEDIATED_BY_TLR4_SIGNALING_REPE

RTOIRE

Genes2involved2in2NFkB2and2MAP2kinases2

activation2mediated2by2TLR42signaling2

repertoire

5 72 45956 860 1.47EF04 1.29EF02
IKBKB,2RIPK2,2RPS6KA1,2RPS6KA2,2TAB2

REACTOME_INNATE_IMMUNE_SYSTEM Genes2involved2in2Innate2Immune2System
9 279 45956 860 1.58EF04 1.29EF02

IKBKB,2RIPK2,2RPS6KA1,2RPS6KA2,2TAB2,2TNFAIP3,2

TIRAP,2DDOST,2PROS1

REACTOME_TRIF_MEDIATED_TLR3_SIGNALIN

G

Genes2involved2in2TRIF2mediated2TLR32

signaling
5 74 45956 860 1.68EF04 1.29EF02

IKBKB,2RIPK2,2RPS6KA1,2RPS6KA2,2TAB2

REACTOME_TOLL_RECEPTOR_CASCADES Genes2involved2in2Toll2Receptor2Cascades
6 118 45956 860 1.80EF04 1.29EF02

IKBKB,2RIPK2,2RPS6KA1,2RPS6KA2,2TAB2,2TIRAP

REACTOME_TRAF6_MEDIATED_INDUCTION_O

F_NFKB_AND_MAP_KINASES_UPON_TLR7_8_

OR_9_ACTIVATION

Genes2involved2in2TRAF62mediated2

induction2of2NFkB2and2MAP2kinases2upon2

TLR7/82or292activation

5 77 45956 860 2.02EF04 1.34EF02
IKBKB,2RIPK2,2RPS6KA1,2RPS6KA2,2TAB2

KEGG_SPLICEOSOME Spliceosome
6 128 45956 860 2.80EF04 1.67EF02

SF3B5,2SNRNP40,2SRSF4,2SRSF10,2SYF2,2CCDC12

REACTOME_NUCLEOTIDE_BINDING_DOMAIN_

LEUCINE_RICH_REPEAT_CONTAINING_RECEPT

OR_NLR_SIGNALING_PATHWAYS

Genes2involved2in2NucleotideFbinding2

domain,2leucine2rich2repeat2containing2

receptor2(NLR)2signaling2pathways

4 46 45956 860 2.92EF04 1.67EF02
IKBKB,2RIPK2,2TAB2,2TNFAIP3

REACTOME_MITOTIC_G1_G1_S_PHASES Genes2involved2in2Mitotic2G1FG1/S2phases
6 137 45956 860 4.03EF04 2.04EF02

PSMB2,2PSMD1,2RPA2,2HDAC1,2RBBP4,2FBXO5

REACTOME_MAP_KINASE_ACTIVATION_IN_TL

R_CASCADE

Genes2involved2in2MAP2kinase2activation2in2

TLR2cascade
4 50 45956 860 4.03EF04 2.04EF02

RIPK2,2TAB2,2RPS6KA1,2RPS6KA2

REACTOME_ADAPTIVE_IMMUNE_SYSTEM Genes2involved2in2Adaptive2Immune2System
12 539 45956 860 4.29EF04 2.05EF02

RIPK2,2TAB2,2PSMB2,2PSMD1,2IKBKB,2ASB1,2ATG7,2

CDC42,2RAP1GAP,2TRIM63,2UBE2F,2ULBP3

REACTOME_CELL_CYCLE_MITOTIC Genes2involved2in2Cell2Cycle,2Mitotic
9 325 45956 860 4.82EF04 2.18EF02

PSMB2,2PSMD1,2RPA2,2HDAC1,2RBBP4,2FBXO5,2

NUP43,2CSNK1D,2NUDC

REACTOME_TAK1_ACTIVATES_NFKB_BY_PHOS

PHORYLATION_AND_ACTIVATION_OF_IKKS_C

OMPLEX

Genes2involved2in2TAK12activates2NFkB2by2

phosphorylation2and2activation2of2IKKs2

complex

3 23 45956 860 5.25EF04 2.26EF02
RIPK2,2TAB2,2IKBKB

KEGG_MAPK_SIGNALING_PATHWAY MAPK2signaling2pathway
8 267 45956 860 5.91EF04 2.42EF02

TAB2,2IKBKB,2CDC42,2RPS6KA1,2RPS6KA2,2RAC3,2

STMN1,2MAP3K6

REACTOME_CELL_CYCLE Genes2involved2in2Cell2Cycle
10 421 45956 860 7.82EF04 3.06EF02

PSMB2,2PSMD1,2RPA2,2HDAC1,2RBBP4,2FBXO5,2

NUP43,2CSNK1D,2NUDC,2SYNE1

KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PAT

HWAY

NODFlike2receptor2signaling2pathway
4 62 45956 860 9.15EF04 3.42EF02

IKBKB,2TAB2,2RIPK2,2TNFAIP3

REACTOME_MITOTIC_M_M_G1_PHASES Genes2involved2in2Mitotic2MFM/G12phases
6 172 45956 860 1.32EF03 4.73EF02

PSMB2,2PSMD1,2RPA2,2FBXO5,2NUP43,2NUDC
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Figure 3.11: The WNT signaling pathway highlighting genes perturbed by focal copy number alteration.  

!
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This includes genes identified by the cis-signature pathway enrichment analysis. RAC3 which is related to the WNT pathway has not been captured here. 

Amplified genes are shown in red and deleted genes in blue. The accompanying table indicates the frequency of samples with alterations of specific genes 

alteration in the focal region of interest. The pathway diagram is adapted from KEGG pathway for Wnt Signalling. 

 

WNT4

WNT7B

VANGL1

SIAH1

AXIN1

CTBP1

Locus Alteration Gene Frequency2
(%)

16p13.3 Amplification026 AXIN1 15
4p16.3 Amplification006 CTBP1 15
17q25.3 Amplification027 RAC3 15
16q12.1 Deletion037 SIAH1 21
1p13.1 Deletion001 VANGL1 21
1p35.3 Deletion003 WNT4 29
22q13.31 Amplification029 WNT7B 17
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Another significantly enriched gene set is “Processing of Capped Intron-

Containing Pre-mRNA pathway” (FDR 0.01). This encompasses genes involved in mRNA 

splicing and transport of mature mRNAs. Seven genes involved in this pathway include a 

cluster of 6 genes with copy loss residing in the 1p35.3 peak (SRSF4, SNRNP40, SRRM1, 

HNRNPR, DNAJC8 and NUP43) and one splicing factor gene (SF3B5) in the 6q24.3 peak. 

The SRRM1 gene (alias SRm160) is a SR-related protein involved in pre-mRNA processing 

events and splicing activation via constitutive and exonic splicing enhancer (ESE)-dependent 

mechanisms. It brings together sequence specific SR family proteins (such as SFRS4, SFRS5 

and SFRS10) and basal small nuclear ribonucleoproteins or snRNPs (such as SNRP70 and 

SNRPA1) to form the spliceosomes 354–359.  

Gene interaction network showed strong physical interaction network between 

SRRM1 and the genes SRSF4, SNRNP40 (component of U5 snRNP subunit) and DNAJC8, 

supporting its role in bridging SR proteins and snRNP (Figure 3.12). SRRM1 also induces 

apoptosis and regulate eye and genital development in Drosophila 360. UMs can harbor 

mutations in SF3B1, and the alterations lead to change in splicing.  These complementary set 

of genes on FCNAs could represent alternative mechanism of regulating the splicing 

machinery in UMs (Figure 3.13). Further examination of these genes to see if they are 

affected by mutation could help in understanding the role of this additional mechanism of 

transcriptomic regulation and is described in the chapter on exome sequencing.  
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Figure 3.12: Gene interaction network 
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The figure shows genetic connections between the genes with altered copy number from the top most 

enriched pathway which relates to RNA processing and mRNA splicing. Here the genes are 

connected based on Pathways, co-expression, co-localization and physical interaction. The nodes 

represent the genes and the links represent the interactions. The weight, represent by the thickness of 

the link is a measure of how informative the network for these 7 genes is.  
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Figure 3.13: RNA processing and spliceosome genes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Adapted from Reactome Processing of Capped Intron-Containing Pre-mRNA pathway highlighting in yellow boxes FCNA genes in the pathway.  
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3.2 Discussion 
 
Using a combination of high density SNP arrays, gene expression data and pathway analysis, 

novel candidate cancer driver genes and perturbed pathways in UM have been identified. 

Although previous studies have described profiling of copy number events in UM, the current 

study incorporated deep global copy number profiling in large samples size and integrated 

that with gene expression data. The latest high density SNP platforms that were used also 

offered more precision in determining the boundaries of recurrent alterations, allowed the 

examination of additional copy number events such as copy neutral-LOH events and 

estimated tumour ploidy, which was not possible with the older aCGH arrays.  

Clustering of broad copy number revealed four groups characterized mainly by 

alterations involving 1p loss, 1q gain, monosomy 3, 6p gain, 6q loss, 8p gain/loss 8q gain and 

16q loss. Previously, Harbour et al 38 identified prognostically relevant groups using 

chromosome 3 and 6p status, where they found that 3- and 6p+ occurs in a mutually 

exclusive manner. However, examining data in the current study revealed a small subset of 

tumors with both 3- and 6p+. Recently, expression of PRAME tumor antigen has been 

identified as an independent marker of metastasis and associated with additional 

chromosomal alterations including, 1q gain, 6p gain and 16q loss. However, these alterations 

did not reach statistical significance for associated with metastasis independent of PRAME 

status in the current study. Although, gain of 6p was found in a third of all UMs, as 

previously shown, the effect of gain of 6p on patient outcome is not conclusive. Although it 

has been shown to be related to longer survival 35, it co-occurred in tumours with Monosomy 

3 in a small subset of samples (11%, 20/182) which could perhaps indicate tumour 

heterogeneity with ongoing sub-clonal evolution.  

The distribution of ploidy and aberrant cell fraction across UM suggests that these 

tumours are genomically homogeneous with majority of tumors having ploidy close to 2n 

with a small fraction of tumours exhibiting tetraploid state. Although, there was no 

significant differences in the ploidy estimates between the class 1 and class 2 subgroups, 

class 2 tumours tend to exhibit higher ploidy states (tetraploidy). Monosomy 3 which is 

characteristic feature of class 2 tumors leads to accumulation of aneuploidy and further 

increase genomic instability 129. The aberrant cell fraction estimate reflects intratumoural 

non-aberrant cells and normal cells surrounding the tumour. Here, the class 2 tumors showed 

a higher percent of non-aberrant cells compared to class 1 tumours. These higher number of 
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non-aberrant cells could indicate the presence of other cells related to the immune response 

such tumour-infiltrating macrophages or tumour-infiltrating lymphocytes, which are 

associated with poor prognosis in UM and can perhaps exacerbate rather than mitigate tumor 

progression 361.  

To uncover the candidate genes that lie in these regions with recurrent chromosomal 

alteration, the GISTIC algorithm was applied. In this way genes driving the loss or gain of a 

chromosome or chromosomal arm can be identified. GISTIC analysis of segmented profiles 

from the 3 cohorts revealed various non-overlapping multiple low frequency copy number 

peaks and posed the challenge of effectively integrating data from all 3 cohorts genotyped 

across different platforms. This was resolved by systematically evaluation of each GISTIC 

peak with platform independent segmentation profiles across all the samples and deriving a 

frequency based criteria to prioritize focal copy number alterations and associated genes. A 

further ad-hoc approach was used to increase confidence in candidate genes by combining all 

the GISTIC peaks into a single dataset and identifying those peaks that had overlapping 

boundaries and/or boundaries that lie within 1Mb across any two of the three cohorts. These 

were then selected as high confident peaks. This helped identify focal deletions on 1p35, 

2q37.2, 6p25.2, 6p22.1, 6q26, 6q27, 8q24.3, 16p13.3, 11q24.3 and 19p13.3 and revealed a 

few potential candidate genes for further investigations, including PDLIM1 (1p35.2), 

LOC200772 (2q37.2), WDR27, PHF10/c6orf120 (6q27) and FLIT1 11q24.3.  

To distinguish between CNAs that are unique to UMs and those that are found in 

other tumours the focal CNAs from GISTIC analysis were compared with those of 3131 

tumors spanning nearly 54 tumors types (Beroukhim 2010) 338. Examining genes that lie in 

the shared copy number alterations across all 18 peaks and comparing them with known 

cancer driver genes revealed three potential cancer genes that could be implicated in UM: 

ARID1A (1p35.3 deletion peak), NCAPD3 (11q25 deletion peak) and PLEC1 (8q24.3 

amplification peak). 

To prioritize genes that are most likely to have a functional effect due to a direct 

consequence of changes in copy number, 80 TCGA samples with matched SNP array and 

RNA-sequencing data were studied. CNAs associated with change in gene expression were 

then identified, followed by pathway analysis of genes in altered regions. This approach 

revealed a large complementary set of focal copy number events that harbor candidate genes 

affecting many overlapping pathways. These included NF-kappa B and MAPK signalling, 

WNT signalling and mRNA splicing/RNA processing. The CNA with the highest frequency 
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was amplification of a region of chromosome 8q24.3 that contained the PLEC1 gene. We did 

not find an important role for c-MYC amplification reported in some earlier studies.  

An inflammatory phenotype characterized by the increased presence of lymphocytes 

and macrophages is associated with a worse prognosis in UM 29. RIPK2 on 8q21.3 which 

plays an important role in modulating the immune response by activation of the NF-kappaB 

pathway is amplified in 70% of UMs. This candidate gene could provide a potential link to 

recruitment of leukocytes in UMs. Altered components of the WNT signalling pathway 

include VANGL1, WNT4, SIAH1, AXIN1, RAC3, CTBP1 and WNT7B. In addition, while 

recurrent somatic mutations of the splicing factor gene SF3B1 has been well established in 

UM 242, the current study defined an alternative copy number-dependent mechanism of 

deregulating mRNA processing pathways.  

Another interesting theme that emerged from the current analysis included the 

identification of novel candidates in the chromatin remodeling complexes (ARID1A, ARID1B 

and PHF10). The systematic identification of these genes in a large cohort (N=182) as 

examined here, have previously not been shown in UM. These alterations included 

homozygous deletions seen in 1% and 4.39% of samples for ARID1A and ARID1B 

respectively in a mutually exclusive pattern and 4.39% of samples for PHF10 that are 

associated with change in gene expression (cis-signature genes). ARID1A and ARID1B 

encode for mutually exclusive subunits of the BAP complex (human SWI/SNF) chromatin 

remodeling complex and PHF10 is a component of the PBAF complex that is frequently 

inactivated in cancers. 342 It has a diverse function in the regulation of transcription. Loss of 

PHF10 has been shown to lead to loss of cell proliferation in normal fibroblast cells 342 and 

knockdown of PHF10 in gastric cancer cells led to significant induction of caspase-3 

expression at both the RNA and protein levels 362. Thus, PHF10, in addition to ARID1B 

presents a candidate gene for a subset of tumours with loss of 6q. 

In summary, this chapter presents a comprehensive investigation of copy number 

profiling in UMs using three independent cohorts and requiring an analysis of data generated 

on different independent platforms. Previous studies, including one recently published on the 

TCGA cohort46, mainly reported broad copy number alterations, and those findings were 

replicated here. An analysis of SNP arrays in the current study permitted the identification of 

smaller genomic alterations than have previously been identified with chromosomal methods. 

This included the identification of focal deletions at a genome wide level that could be 

replicated in the different studies. This study also presents the first instance where copy 

number data have been integrated with gene expression data. This revealed changes in a 



! 111!

number of biological processes such as chromatin organization, RNA processing and WNT 

signalling. These require experimental follow up.   
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Chapter 4. Mutational landscape in uveal 
melanoma 

4.1 Results 
!
4.1.1 Landscape of somatic mutation in coding regions in uveal melanoma 

 

In total, exome sequencing data from 120 patients (104 paired and 16 unpaired tumour 

samples) were used in the current study. Exome data was compiled from two different 

sources: The Cancer Genome Atlas (TCGA, 80 cases) and samples recruited at Washington 

University in St Louis (WASH-U, 40 cases). Exome sequencing of 120 samples resulted in 

an average of 3.94 Gb of sequence per tumour sample. Mean coverage of the exome captured 

region was 64x per tumour sample, with 97% covered with at least 30X coverage.  

Coding regions of the genomes of 120 UMs contained 19,467 somatic variants 

after filtering all the non-coding and population level polymorphic variants (Figure 4.1), of 

which 1200 (~6%) were insertions/deletions (INDELs) and 18267 (~94%) were single 

nucleotide variants (SNVs). Of the SNVs, 5075 (26%) were predicted to be synonymous; 

11810 (61%), missense; 1290 (7%), nonsense and 194 (1%) splice site. Among the INDELs, 

the most common variants were 439 frameshift deletions (2%), followed by 373 frameshift 

insertions (2%), 174 non-frameshift insertions (1%) and 112 non-frameshift deletions (1%). 

A subset of the samples (n=3), underwent low depth of coverage whole exome sequencing. 

The transition/transversion (Ti/Tv) ratio for the cohort (N=120) was 2.06. The lower than 

expected value of 2.8 for whole exome sequencing indicates a mix of non-exonic and exonic 

data. The transition and transversions, revealed the presence of a high degree of C>A 

transversions in the hypermutated sample (MM049) (Figure 4.2). Excluding hypermutated 

(n=1) and poor coverage samples, the average number of all types of somatic variants per 

samples for SNVs and INDELs, were 117.70 (range 45-1302) and 10.52 (range 1-286) 

respectively (Figure 4.3). A comparison of somatic mutations across all the samples with the 

COSMIC database 363 yielded 749 mutations across 685 mutated genes reported previously. 

Of the 11,810 missense mutations, 7972 had a CADD score > 20, indicating they have a high 

probability of being deleterious.  

The six classes of base substitutions were extracted, showing increased C>T 

transitions (Figure 4.4). A mutational signature analysis revealed three mutational signatures 

enriched in UM and similar to signatures reported by Alexandrov et al 203 (Figure 4.5). 
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Signature 1 & 3 was enriched in cytosine to adenine (C>A) transversion and was similar to 

validated signature 4 by Alexandrov et al 203 . Signature 2 (from the current study) was the 

cytosine to thymine transition (C>T) at the CpG dinucleotide, which is found in all cancer 

types and is related to ageing 203. Consistent with previous reports 180,198, no UVR signatures 

were found in UM. Comparing the number of somatic mutations (SNV and INDELs) 

between the gene expression (GEP) based class 1 and class 2 tumours revealed no statistical 

difference between the two classes of tumors (p-value 0.4167). The top 10 most frequently 

mutated genes include RGPD3, GNAQ, GNA11, BAP1, TTN, SF3B1, WHAMM, HYDIN, 

EIF1AX and NUP50 (Figure 4.6).  

 

Figure 4.1: Filtered variants in MutSigCV analysis.  

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure showing the number of variants at each stage of the filtering steps prior to running MutSigCV 

analysis. 
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Figure 4.2: Transitions and transversions for the cohort of samples in the current study.  

Hypermutated sample (MM049, an SF3B1 mutant (p. R625L) sample) showed an increased C>A transversion rate.  
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Figure 4.3: Histogram of SNV and INDELS across all the samples.  

 

 

Here, the low coverage and hypermutated samples (n=4) were excluded. 
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Figure 4.4. Distribution of SNV substitutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Boxplots showing overall distribution of six different classes of SNV substitutions showing increased 

C>T transitions. 
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Figure 4.5: Mutational signatures in UM.  

 
 

 

 

 

 
 
 

 

 
 
 
 
 
SNVs were extracted from exome sequencing data and subjected to A mutational signature analysis 

with NMF. This decomposes the bases into 96 different combination of substitutions. It then takes the 

base change and the nucleotide context (flanking bases) to look for enrichment of a signature. Three 

signature were found to be enriched in UM. These signatures were enriched in C>T transitions and 

C>A transversions. 

 
 
 
 
 

0

0.05

0.1

0.15

0.2

C>A C>G C>T T>A T>C T>G

0

0.05

0.1

0.15

0.2

C>A C>G C>T T>A T>C T>G

0

0.05

0.1

0.15

0.2

C>A C>G C>T T>A T>C T>G



! 118!

Figure 4.6: Highly frequently mutated genes.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The top ten most frequently mutated genes identified in the current whole exome sequencing data 

(N116) prior to applying MutSigCV analysis.  

 
4.1.2 Significantly mutated genes in uveal melanoma 

 

The genes reported above were purely based on mutation frequency. To perform a more 

refined analysis and to see what is truly significantly mutated at a higher rate an analysis was 

performed with MutSigCV 325. This identifies mutations that are significantly higher than the 

background mutation rate after adjusting for gene length and base composition. MutSigCV 

analysis of 116 Primary UMs revealed 18 significantly mutated genes (after FDR correction 

q-value < 0.1) occurring in 100% of cases (Table 4.1) and included, in the order of FDR 

corrected significant p-value (percent of patients with alterations): BAP1 (29%), GNA11 

(44%), RGPD3 (54%), SF3B1 (19%), EIF1AX (14%), GNAQ (48%), HAUS6 (13%), NUP50 

(14%), WHAMM (16%), AOC3 (9%), LCE2A (4%), MFF (5%), HDGFRP3 (5%), RBMX2 

(4%), KIAA2013 (12%), FAM133B (3%), DNAJB7 (5%) and C7orf49 (3%) (Figure 4.7 and 

Table 4.1). Although, such an analysis has not been performed for UM before, the 

identification of established known UM drivers (GNAQ, GNA11, BAP1, SF3B1 and EIF1AX) 

with such an approach, validated it for the identification of significant mutations. Other UM 

driver genes recently reported did not reach an FDR cut-off level of significance and these 
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includes the CYSLTR2 (p-value 0.0005) and PLCB4 genes (p-value 0.08). Other novel 

recurrent mutations (>5%) were further evaluated to assess their role as drivers or technical 

artefacts. Manual inspection of variants from the novel significant genes (RGPD3, NUP50, 

WHAMM, AOC3, LCE2A, MFF, HDGFRP3, RBMX2, KIAA2013, FAM133B, DNAJB7 and 

C7orf49) lead to discarding all but one, an augmin complex gene called HAUS6 (all 

discarded variants and reasons for not considering them further are listed in the Appendix 3). 

The most recurrent and significantly mutated gene RGPD3, was discarded based on low 

percentage of identical read counts (~5%, likely artefact) and low CADD score (less than 10). 

These variants were not deleterious and less likely to affect the protein function in a 

detrimental manner. Other variants (from genes AOC3, C7orf49, DNAJB7, FAM133B, 

HDGFRP3,!KIAA2013, LCE2A and RBMX2) were discarded since they were present in only 

one of the two cohorts (either WASH-U or TCGA, but not both). These variants are likely to 

represent sequencing error artefacts due to batch effects. HAUS6, which harboured 

deleterious mutations in 14 out of 120 (11.66%) exomed samples was found to be a good 

candidate gene for follow up. Two HAUS6 mutations with a CADD score greater than 10 

were found, including p.E743D and a hotspot p.L553F alterations. However, both the hotspot 

mutations did not lie within the HAUS_6 domain of the protein (Figure 4.8) and majority of 

the HAUS6 variants were present at a low allele frequency (<15%) so it is not clear what the 

implications of these alterations are. 

To get an accurate frequency estimate of mutations in the five previously reported 

driver genes of UM (GNAQ, GNA11, CYSLTR2, SF3B1, BAP1 and EIF1AX), 133 primary 

UM samples which had been subjected to exome (including low coverage and hypermutated 

samples) and RNA sequencing were pooled together. Overall, the mutation frequencies for 

the reported drivers were: GNAQ (48.09%), GNA11 (46.56%), CYSLTR2 (4.58%), SF3B1 

(24.42%), BAP1 (40.45%) and EIF1AX (16.03%). Recurrent mutations affecting codon 630 

(D630N, D630Y) were found in the PLCB4 gene in two samples (A985, A8KD), consistent 

with a previously report from another study 198. Additionally, three novel deleterious PLCB4 

mutations (CADD score > 20) (p.G517V, p.M315V and p.V357A) were identified bringing 

the total frequency of PLCB4 mutations to  3.18% (Figure 4.9) (Table 4.3). These mutations 

were not mutually exclusive to GNAQ/GNA11 mutation, except in one case (A8KD). A novel 

non-Q209 hotspot mutation (p.G48V) in the GNAQ gene, was identified in one sample 

(A8KI) which did not have any other oncogenic driver (Table 4.3). Two previously 

unreported non-Arg625 mutations (p.T663P and p.H662R) in the SF3B1 gene were identified 
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in samples (A9EH and A881) which did not harbour mutations in other secondary driver 

genes (R625- SF3B1, EIFIAX or BAP1). While hotspot mutations affecting codon 209 in 

either a GNAQ or GNA11 gene were present at an expected frequency of nearly ~90% of 

tumours in a mutually exclusive manner (Figure 4.6) and the frequency of SF3B1 and 

EIF1AX mutations were close to those reported in the literature 198,218 , closer examination 

revealed four false negative cases where BAP1 mutations had been identified by us earlier 

with Sanger sequencing 115,218, but which were not identified in the current analysis 

(indicated in Table 4.3). Thus, to get a more accurate estimate of the frequency of BAP1 

mutations and other potentially missed mutations in SF3B1 and EIF1AX, additional 

complementary analyses were performed to account for samples with these missing drivers.  

First, the variant filtered bin of germline variant and low confident (spurious) variants 

were queried to find these missing drivers. This resulted in rescuing a BAP1 mutation in one 

sample (MM127). This variant was below the Mutect2 tumour LOD score (log ratio of 

likelihood of an event occurring in a tumour versus sequencing error). However, the mutant 

allele was supported by three reads (out of 115 reads). Additionally, a mutation in EIF1AX 

(p.E128) was identified by looking through a low confident mutation bin in one sample 

without secondary driver (A8KG). Secondly, the tier-1 mutation data generated using 4 

different callers by the Broad Institute TCGA Genome Data Analysis Center (GDAC) 

Firehose analysis were downloaded and queried. This revealed additional BAP1 mutations in 

two samples (A8K8 and A9EL) that were not picked up in the current analysis. Additionally, 

another novel non-625Arg SF3B1 (p.R614S) was identified in one sample without a 

secondary drivers (A9EH). However, this variant was listed as a low confident variant (Table 

4.2). As a third approach, the ExomeSeq and RNAseq data on selected BAP1-wildtype 

samples were manually queried using the Integrative genome viewer 364 (version 2.3.92) 

visualizer tool. This helped to identify intronic deletions in two samples (AA8P and A9EQ) 

(Figure 4.10 A & B).  

Finally, examining copy number data revealed identification of a deep 

homozygous deletion in one sample (AA8O) that had been missed by other mutation callers 

(Figure 4.11). This added three more BAP1 variants not previously reported (Table 4.3). 

Thus, the use of different mutational callers, complementary RNAseq data, copy number data 

and manually curating the data using visualization tools improved the detection of mutations 

in BAP1 and other driver genes. Germline BAP1 mutations were identified in two samples 

(MM066 and A8KN). After accounting for the newly identified variants, the mutational 

frequency of BAP1 increased from 40.45% to 44.27%, of SF3B1 from 22.13% to 24.42% and 
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of EIF1AX from 16.03% to 16.79%. This also helped to identify a subset of UM samples 

(~20%) without any known secondary driver mutations (Figure 4.12). Interestingly, HAUS6 

gene mutations were statistically significantly associated with this subgroup of tumors, where 

a secondary driver events had been absent (p-value 0.009). However, there was no statistical 

difference between the presence of HAUS6 mutations in class 1 and class 2 tumours (P-value 

0.2558).  
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Figure 4.7: Significant mutations identified with the MutSigCV algorithm. 
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Table 4.1: MutSigCV results for the top 25 genes ranked according to p-value.  

 
 
 

Columns after gene indicate the covariate used to calculate the background mutation rate for 

a given gene and include, nnei, the number of neighboring genes pooled together for each 

gene, x, number of silent or non-coding mutated base in the neighboring genes and X, total 

number of bases related to these neighboring genes. 

 

gene nnei x X p(value FDR0q0value Significant0at0
FDR0<00.1

BAP1 40 8 4590261 0 0 Yes
GNA11 50 14 6851052 0 0 Yes
RGPD3 44 25 11971323 0 0 Yes
SF3B1 50 4 7429734 0 0 Yes
EIF1AX 50 5 6358599 2.55E;15 9.63E;12 Yes
GNAQ 20 3 2587923 4.11E;15 1.29E;11 Yes
HAUS6 50 8 7386444 1.97E;14 5.30E;11 Yes
NUP50 50 4 6570954 6.63E;10 1.56E;06 Yes
WHAMM 50 5 5707728 1.04E;09 2.18E;06 Yes
AOC3 50 7 7796529 1.37E;09 2.58E;06 Yes
LCE2A 38 6 4590027 5.41E;08 9.28E;05 Yes
MFF 50 5 6931548 9.23E;08 1.45E;04 Yes
HDGFRP3 50 17 7662447 1.63E;07 2.37E;04 Yes
RBMX2 50 5 6217146 8.23E;07 1.11E;03 Yes
KIAA2013 50 9 6147648 1.51E;06 1.90E;03 Yes
FAM133B 50 9 9042228 1.00E;05 1.18E;02 Yes
DNAJB7 50 31 13094640 2.35E;05 2.61E;02 Yes
C7orf49 50 6 4945005 5.77E;05 6.04E;02 Yes
TPTE 50 5 4364100 3.50E;04 3.23E;01 No
FGFR1OP 50 4 6118164 3.55E;04 3.23E;01 No
PLEKHF2 50 4 6176898 3.59E;04 3.23E;01 No
HNRNPA3 50 14 7005726 5.08E;04 4.23E;01 No
CYSLTR2 50 5 7726797 5.15E;04 4.23E;01 No
GATA3 50 8 6936345 6.55E;04 5.15E;01 No
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Table 4.2: Variants from novel genes identified by MutsigCV.  

Table showing variants from novel genes (excluding the known secondary drivers in UMs) that were significantly mutated genes identified from the 

MutsigCV analysis.  
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Table 4.3: UM driver genes.  

List of all mutations in all previously reported driver genes in uveal melanoma across 131 primary tumor samples subjected to Exome and RNA sequencing. 

Asterisk indicate where the mutations were identified from: * - was identified from Sanger sequencing, * identified from RNAseq and ** novel variants 

identified using complementary approaches.  

Sample Sample'SourceGEP'class Data'type GNAQ GNA11 CYSLTR2 PCLB4 BAP1 SF3B1 EIF1AX Missing'known'oncogenic'
driver'

Missing'known'secondary'
driver'

BAP1'identification'by'current'pipeline'+'
complementary'analysis'

MM137 WASHU class.2 RNA.sequencing p.Q209L c.82?121del,.g.chr3:52443889?
52443927delATTCATCTTCCCGCGGGGCGGCCCCTCAGCGCCATGTCC*

Yes

MM175 WASHU class.2 RNA.sequencing p.Q209L c.867_887del* No.(Sanger)
A9ED TCGA class.2 Exome.sequencing p.L129Q del.g.chr3:52443758.GCCTGGGTGGGGCGACAAGAGGAGGGGGTGATGGTCA

GGCAGGCGCGTCCCGGGCCCATCCGGCCTCCCCAGCC
Yes

A8KD TCGA class.2 Exome.sequencing p.D630N del.g.chr3:52443788.ATGGTCAGGCAGGCGCGTCCCGGGCCCATCCGGCCTCC
CCAGCCCCTGGCCCTCCCGGTCCCC

Yes

AA8O TCGA class.2 Exome.sequencing p.L129Q Homozygous.deletion.of.exon.1 Yes.(IGV?SNP.array)
A9EE TCGA class.2 Exome.sequencing p.Q209L p.?145fs Yes
MM103 WASHU class.2 Exome.sequencing p.Q209L p.*730R Yes
A9E7 TCGA class.2 Exome.sequencing p.Q209L p.146_147del Yes
A9E8 TCGA class.2 Exome.sequencing p.Q209L p.485_486del Yes
MM070 WASHU class.2 Exome.sequencing p.Q209L p.APSH323fs Yes
MM100 WASHU class.2 Exome.sequencing p.Q209L p.ASSCR13fs Yes
MM135 WASHU class.2 RNA.sequencing p.R183C p.C91W p.R625C Yes
A9F8 TCGA class.2 Exome.sequencing p.Q209L p.D68G Yes
A9EI TCGA class.2 Exome.sequencing p.Q209L p.DEFI672fs Yes
A9ZX TCGA class.2 Exome.sequencing p.Q209L p.E136fs Yes
AA8T TCGA class.2 Exome.sequencing p.Q209L p.E498fs Yes
A9EO TCGA class.2 Exome.sequencing p.Q209L p.E685V Yes
MM179 WASHU class.2 Exome.sequencing p.Q209L p.E7* Yes
MM151 WASHU class.2 Exome.sequencing p.L129Q p.EGP194del Yes
MM116 WASHU class.2 Exome.sequencing p.Q209L p.F118fs Yes
MM141 WASHU class.1 RNA.sequencing p.Q209L p.F50fs Yes
MM144 WASHU class.2 RNA.sequencing p.Q209L p.F50LfsX22* p.R625H No.(Sanger)
AB0B TCGA class.2 Exome.sequencing p.Q209L p.F81fs Yes
MM121 WASHU class.2 Exome.sequencing p.L129Q p.G128R Yes
AA9A TCGA class.2 Exome.sequencing p.Q209L p.G185R Yes
MM066 WASHU class.2 Exome.sequencing p.Q209L p.H169Q Yes
MM055 WASHU class.2 Exome.sequencing p.Q209L* p.H169Q* No.(Sanger)
MM127 WASHU class'2 Exome'sequencing p.Q209L* p.K25N Yes
A984 TCGA class.2 Exome.sequencing p.K421fs Yes Yes
A8KN TCGA class.2 Exome.sequencing p.Q209L p.K453fs Yes
A8K8 TCGA class.2 Exome.sequencing p.Q209L p.K61E No.(GDAC.pipeline)
MM046 WASHU class.2 Exome.sequencing p.Q209L p.KC637fs Yes
MM120 WASHU class.2 Exome.sequencing p.Q209L p.L49fs Yes
A9EV TCGA class.2 Exome.sequencing p.Q209L p.LMAVVPDRRIKYEA230fs Yes
AA8N TCGA class.2 Exome.sequencing p.Q209L p.N78S Yes
A8KK TCGA class.2 Exome.sequencing p.Q209L p.P124fs Yes
A980 TCGA class.2 Exome.sequencing p.Q209L p.P339fs Yes
A9EL TCGA class.2 Exome.sequencing p.Q209L p.P391Afs*5 No.(GDAC.pipeline)
MM091 WASHU class.2 RNA.sequencing p.Q209P p.Q253fs Yes
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MM091 WASHU class.2 RNA.sequencing p.Q209P p.Q253fs Yes
A9EX TCGA class.2 Exome.sequencing p.Q209L p.Q40* Yes
A9EU TCGA class.2 Exome.sequencing p.Q209L p.Q441* Yes
A9F0 TCGA class.2 Exome.sequencing p.Q209L p.Q456fs Yes
MM173 WASHU class.2 RNA.sequencing p.Q209L p.R146M* No.(Sanger)
MM161 WASHU class.2 Exome.sequencing p.Q209L p.R300fs Yes
A88A TCGA class.2 Exome.sequencing p.Q209L p.RRSRRKVSTLV56fs Yes
A9F3 TCGA class.2 Exome.sequencing p.Q209L p.S98Rfs*28 Yes
A985 TCGA class.2 Exome.sequencing p.R183Q p.R183C p.D630N p.SREKTGMVRPG609fs p.R625C Yes
A8KL TCGA class.2 Exome.sequencing p.Q209L p.V27fs Yes
MM056 WASHU class.2 Exome.sequencing p.Q209L p.W196* Yes
A8KF TCGA class.2 Exome.sequencing p.Q209L p.W196* Yes
A8KI TCGA class.2 Exome.sequencing p.G48V** p.X571_splice Yes
A888 TCGA class.2 Exome.sequencing p.Q209L p.Y173C Yes
A9EF TCGA class.2 Exome.sequencing p.Q209L p.V357A p.Y223* Yes
A9F1 TCGA class.2 Exome.sequencing p.Q209L p.Y33* Yes
AA8P TCGA class.2 Exome.sequencing p.Q209L Putative.intronic.deletion.(exon.4Z5) Yes.(IGVZDNAseq)
A9EQ TCGA class.2 Exome.sequencing p.Q209L Putative.intronic.deletion.(exon.7Z8) Yes.(IGVZRNAseq)
MM162 WASHU class.2 Exome.sequencing p.Q209L splice_c.e13+1 Yes
MM098 WASHU class.2 Exome.sequencing p.Q209L splice_c.e16+1 Yes
A881 TCGA class.1 Exome.sequencing p.Q209L p.H662R** Yes
A9E5 TCGA class.1 Exome.sequencing p.Q209L p.K666T Yes
MM089 WASHU class.1 Exome.sequencing p.Q209L p.K666T* Yes
A9EH TCGA class.1 Exome.sequencing p.Q209L p.R614S** No.(GDAC.pipeline)
MM134 WASHU class.2 Exome.sequencing p.Q209L p.Q209L p.R625C Yes
A9EA TCGA class.1 Exome.sequencing p.Q209L p.R625C Yes
A9EW TCGA class.1 Exome.sequencing p.Q209L p.R625C Yes
A8K9 TCGA class.1 Exome.sequencing p.Q209L p.R625C Yes
A8KB TCGA class.1 Exome.sequencing p.Q209L p.R625C Yes
MM065 WASHU class.1 Exome.sequencing p.Q209L p.R625C Yes
MM133 WASHU class.2 Exome.sequencing p.Q209L p.R625C Yes
MM032 WASHU class.1 Exome.sequencing p.Q209R p.R625C Yes
A8KA TCGA class.1 Exome.sequencing p.Q209L p.R625C Yes
MM010 WASHU class.1 Exome.sequencing p.L129Q p.R625C Yes
MM176 WASHU class.1 RNA.sequencing p.R625C Yes
MM064 WASHU class.1 RNA.sequencing p.Q209L p.R625H Yes
MM028 WASHU class.1 Exome.sequencing p.Q209L* p.R625H* No
MM131 WASHU class.1 Exome.sequencing p.Q209L p.R625L p.G9D* Yes
A9E9 TCGA class.1 Exome.sequencing p.Q209L p.R625L Yes
A9EZ TCGA class.1 Exome.sequencing p.Q209L p.R625L Yes
AA9E TCGA class.1 Exome.sequencing p.Q209L p.R625L Yes
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AA9E TCGA class+1 Exome+sequencing p.Q209L p.R625L Yes

A9F4 TCGA class+1 Exome+sequencing p.Q209L p.R625L Yes

A885 TCGA class+1 Exome+sequencing p.Q209L p.R625L Yes

MM101 WASHU class+1 Exome+sequencing p.Q209L p.R625L Yes

A9ES TCGA class+2 Exome+sequencing p.R183Q p.R625L Yes

A9EJ TCGA class+1 Exome+sequencing p.Q209L p.R625L Yes

A8KH TCGA class+1 Exome+sequencing p.Q209L p.R625L Yes

MM049 WASHU class+1 Exome+sequencing p.Q209L p.R625L Yes

A9EC TCGA class+1 Exome+sequencing p.Q209L p.T663P** p.G9V Yes

A8KO TCGA class+1 Exome+sequencing p.Q209L p.7_8KG>R Yes

A8KG TCGA class,1 Exome,sequencing p.Q209L p.E128** Yes
A87U TCGA class+1 Exome+sequencing p.Q209L p.G15D Yes

MM132 WASHU class+1 RNA+sequencing p.Q209L p.G15D Yes

A9F7 TCGA class+1 Exome+sequencing p.Q209L p.G15D Yes

MM086 WASHU class+1 Exome+sequencing p.Q209L p.G517V p.G6D Yes

A880 TCGA class+1 Exome+sequencing p.Q209L p.G6D Yes

AA8R TCGA class+1 Exome+sequencing p.Q209L p.G6D Yes

A9EY TCGA class+1 Exome+sequencing p.Q209L p.G8R Yes

A884 TCGA class+1 Exome+sequencing p.Q209L p.G8R Yes

MM159 WASHU class+1 Exome+sequencing p.Q209L p.G9A Yes

A8KE TCGA class+1 Exome+sequencing p.Q209L p.G9R Yes

MM082 WASHU class+1 RNA+sequencing p.Q209L p.G9V Yes

MM078 WASHU class+2 Exome+sequencing p.Q209L p.G9V Yes

MM050 WASHU class+1 Exome+sequencing p.Q209L p.K3E Yes

MM094 WASHU class+2 RNA+sequencing p.Q209L p.K7R Yes

MM018 WASHU class+1 Exome+sequencing p.Q209P* p.N4Y No

A9ZY TCGA class+1 Exome+sequencing p.Q209L p.W70R Yes

MM038 WASHU class+1 Exome+sequencing p.Q209L spice_c.e2T1 Yes

MM105 WASHU class+1 Exome+sequencing p.Q209L splice_c.e2T2 Yes

A8K7 TCGA class+1 Exome+sequencing p.Q209L Yes No

A983 TCGA class+1 Exome+sequencing p.Q209L Yes No

AA8Q TCGA class+1 Exome+sequencing p.Q209L Yes No

AA8S TCGA class+1 Exome+sequencing p.Q209L Yes No

A87T TCGA class+1 Exome+sequencing p.Q209L Yes No

AA8M TCGA class+1 Exome+sequencing p.Q209L Yes No

A9F2 TCGA class+1 Exome+sequencing p.Q209L Yes No

A9EK TCGA class+1 Exome+sequencing p.Q209L Yes No

A9EM TCGA class+1 Exome+sequencing p.Q209L Yes No

MM016 WASHU class,1 Exome,sequencing p.Q209L Yes No

MM171 WASHU class,1 RNA,sequencing p.Q209L Yes No

A8KM TCGA class+2 Exome+sequencing p.Q209L Yes No

A883 TCGA class+2 Exome+sequencing p.Q209L Yes No

MM080 WASHU class,2 Exome,sequencing p.Q209L Yes No

MM150 WASHU class,2 Exome,sequencing p.Q209L Yes No

A9F5 TCGA class+2 Exome+sequencing p.Q209L Yes No

A882 TCGA class+2 Exome+sequencing p.Q209L Yes No

MM113 WASHU class,1 Exome,sequencing p.Q209L p.M315V Yes No

A9ET TCGA class+1 Exome+sequencing p.Q209L Yes No

A87W TCGA class+1 Exome+sequencing p.Q209L Yes No

MM085 WASHU class,1 Exome,sequencing p.Q209L Yes No

MM048 WASHU class,1 Exome,sequencing p.Q209L Yes No

A87Y TCGA class+2 Exome+sequencing p.Q209L Yes No

MM138 WASHU class,2 Exome,sequencing p.R183C Yes No

A982 TCGA class+1 Exome+sequencing p.L129Q Yes No

A8KJ TCGA class+1 Exome+sequencing Yes Yes No
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Figure 4.8: Mutations in the HAUS6 gene.  

 

Hotspot mutations identified in the HAUS6 gene in ~12% of uveal melanomas. These mutations 

(p.L553F & p.E743D) do not lie within the HAUS6_N terminal domain of the protein. 

 

Figure 4.9: Reported missense mutations identified in the PLCB4 gene  
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Figure 4.10 (A & B): IGV images of BAP1 mutations.  

 

 

(A)!BAP1 mutations identified by manually curating the RNASeq and Exome BAM files in IGV. (A) A splice deletion mutation identified between exon 

4 and exon 5 in sample AA8P  
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(B)  Intronic BAP1 deletion identified between exon 7 and exon 8 in sample A9EQ using the exome BAM file. 
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Figure 4.11: IGV images of PHF10 homozygous deletion 

 

 

 

 

 

  

 

 

 

 

 

Screenshot from IGV showing deep homozygous deletion was identified in the exon 1 of the BAP1 gene using copy number segmentation data. The normal 

sample showed no copy number change. 
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Figure 4.12: Summary of UM driver mutations.  

 

 

 

 

 

 

 

 

All the UM driver mutations identified across 131 primary uveal melanomas. The mutations identified are identified by the current analysis and other sources 

are indicated below. A subset of tumors do not harbor any mutation in the known secondary driver (BAP1, SF3B1 and EIF1AX) is zoomed bel
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Table 4.4: RNA splicing and processing pathways gene mutations 

  

Mutations targeting RNA splicing and processing pathways identified from exome analysis of 131 

primary uveal melanomas. 

 

Table 4.5: Chromatin remodeling complex gene mutations.  

Mutations targeting genes which are components of the chromatin remodeling complex identified 

from an analysis of exome or RNA-data from 131 primary uveal melanomas 

Gene Cytoband Sample hg193coodinates Variant_Classificati
on

Protein_Change CADD3
score

Matching3
SNP3array3

Copy3number3
Alteration

DNAJC8 1p35 A9EY chr1:28555506528555506 Missense_Mutation p.V36A 18.46 Yes No
EIF4G3 1p36.12 MM049 chr1:21188801521188801 Missense_Mutation p.Q961K 28.6 No
HNRNPR 1p36.12 MM049 chr1:23648134523648134 Missense_Mutation p.P233H 26.5 No
HNRNPR 1p36.12 MM049 chr1:23648135523648135 Missense_Mutation p.P233T 16.19 No
RBM10 Xp11.3 A9EC chrX:47039307547039312 In_Frame_Del p.ST311del Yes NoS(Female)
RBM10S Xp11.3 A87W chrX:47039363547039393 Frame_Shift_Del p.SNVRVIKDKQT329fs Yes NoS(Male)
SF3A1 22q12.2 MM010 chr22:30737701530737701 Missense_Mutation p.Q351K 23.7 Yes No

SF3A1 22q12.2 MM049 chr22:30737821530737821 Missense_Mutation p.Q311K 24.3 No

SF3A2 19p13.3 A985 chr19:224342652243426 Frame_Shift_Del p.F3fs Yes No
SF3A2 19p13.3 A9EF chr19:224781252247813 Frame_Shift_Ins p.S222fs Yes No
SNRNP40 1p35.2 A9ZX chr1:31769472531769472 Missense_Mutation p.A43T 16.1 Yes No
SRRM1 1p36 A9EQ chr1:24987276524987276 Missense_Mutation p.E461G 25.4 Yes No
SRRM1 1p36 MM049 chr1:24996760524996760 Missense_Mutation p.P785Q 20.4 No
SRRM1 1p36 MM049 chr1:24996760524996760 Missense_Mutation p.P785L 20.5 No
SRRM1 1p36 MM055 chr1:24996760524996760 Missense_Mutation p.P785Q 20.4 No
SRRM1 1p36 MM055 chr1:24996760524996760 Missense_Mutation p.P785L 20.5 No
SRSF2 17q25.2 A888 chr17:74732373574732390 In_Frame_Del p.173_179SSSVSRS>S Yes No
SRSF5 14q24 MM010 chr14:70235391570235391 Splice_Site p.R63M 22.1 Yes No
SRSF5 14q24 MM101 chr14:70235572570235572 Nonsense_Mutation p.Y82* 18.44 No
SRSF7 2p22.1 MM049 chr2:38977329538977329 Missense_Mutation p.K12N 17.5 No
SRSF9 12q24.31 MM010 chr12:1209018725120901872Missense_Mutation p.G135W 22.2 Yes No

Chromatin*remodeling*complex Gene Coordinates Mutation Sample Mutation*type CADD*score
actin&like*6A ACTL6A chr3:179294664&179294664 p.P244H MM055 Missense_Mutation 28.3
actin&like*6A ACTL6A chr3:179305718&179305718 p.G404C MM049 Splice_Site 24.5
AT*rich*interactive*domain*1A*(SWI&like) ARID1A chr1:27056330&27056331 p.G443fs MM049 Inframe*insertion
AT*rich*interactive*domain*1A*(SWI&like) ARID1A chr1:27087515&27087515 p.P697T MM010 Missense_Mutation 32
AT*rich*interactive*domain*1A*(SWI&like) ARID1A chr16:27087885&27087885 p.M724I MM176 Missense_Mutation 17.87
AT*rich*interactive*domain*1B*(SWI1&like) ARID1B chr6:157222625&157222625 p.P631Q A8K9 Missense_Mutation 13.16
AT*rich*interactive*domain*1B*(SWI1&like) ARID1B chr6:157488218&157488218 p.S975F MM105 Missense_Mutation 27.7
AT*rich*interactive*domain*1B*(SWI1&like) ARID1B chr6:157522220&157522220 p.D1498Y MM049 Missense_Mutation 18.09
AT*rich*interactive*domain*1B*(SWI1&like) ARID1B chr6:157528337&157528337 p.R2021M MM010 Missense_Mutation 18.46
AT*rich*interactive*domain*2*(ARID,*RFX&like) ARID2 chr12:46205245&46205245 p.D110V A8K7 Missense_Mutation 23.1|23.1
AT*rich*interactive*domain*2*(ARID,*RFX&like) ARID2 chr12:46230757&46230757 p.G336* MM049 Nonsense_Mutation 40
B&cell*CLL/lymphoma*7A BCL7A chr12:122481864&122481864 p.P115L MM127 Missense_Mutation 28.8
B&cell*CLL/lymphoma*7C BCL7C chr16:30904269&30904269 p.E58* MM049 Splice_Site 44
bromodomain*containing*7 BRD7 chr16:50357574&50357574 p.P456Q MM049 Missense_Mutation 18.45
bromodomain*containing*7 BRD7 chr16:50359708&50359708 p.L428I MM049 Missense_Mutation 22.1
bromodomain*containing*7 BRD7 chr16:50388781&50388781 p.D104V A9ZY Missense_Mutation 20.2
bromodomain*containing*7 BRD7 chr16:50388781&50388781 p.D104V A9EH Missense_Mutation 20.2
bromodomain*containing*7 BRD7 chr16:50388781&50388781 p.D104V AA8N Missense_Mutation 20.2
bromodomain*containing*7 BRD7 chr16:50388781&50388781 p.D104V A88A Missense_Mutation 20.2
bromodomain*containing*7 BRD7 chr16:50388781&50388781 p.D104V A984 Missense_Mutation 20.2
bromodomain*containing*7 BRD7 chr16:50359707&50359707 p.L428* MM049 Nonsense_Mutation 39
PHD*finger*protein*10 PHF10 chr6:170115819&170115819 p.F226fs MM133 Frameshift*deletion
SWI/SNF*related SMARCA2 chr9:2081837&2081837 p.Q730H A884 Missense_Mutation 16.11
SWI/SNF*related SMARCA2 chr9:2123881&2123881 p.R1309S MM049 Missense_Mutation 23.2
SWI/SNF*related SMARCA2 chr9:2182199&2182199 p.L1455H MM050 Missense_Mutation 17.06
SWI/SNF*related SMARCA4 chr19:11152089&11152089 p.T1396I MM032 Missense_Mutation 23.3
SWI/SNF*related SMARCA4 chr19:11152169&11152169 p.P1423T MM010 Missense_Mutation 23.7
SWI/SNF*related SMARCA4 chr19:11141465&11141465 p.E1148X MM098 stopgain 41
SWI/SNF*related SMARCA4 chr19:11132513&11132513 p.T910M A985 Missense_Mutation 16.22
SWI/SNF*related SMARCC1 chr3:47651677&47651678 p.974_974S>SQQAHQHS A984 Inframe*insertion
SWI/SNF*related SMARCC2 chr12:56575537&56575537 p.N264T MM105 Missense_Mutation 12.87
SWI/SNF*related SMARCD1 chr12:50492504&50492504 p.T467S A9ET Missense_Mutation 22.5
SWI/SNF*related SMARCD3 chr7:150945590&150945590 p.E20A A881 Missense_Mutation 15.07
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4.1.3 Integration of copy number and exome data 

 

GISTIC analysis refined the recurrent broad arm level alteration and defined significant 

common regions of gains and deletions that harbour multiple candidate cancer genes such as 

PLEC1 (8q24.3 amplification), ARID1A (1p35.3 deletion) and NCAPD3 (11q25 deletion). 

Alterations involving chromosomal loss of 3p, 3q, 6q, 8p, 11p and gain of 8q are significantly 

associated with metastasis and other alterations associated with PRAME positive tumours 

(independent marker of metastasis) include gain of 1q and loss of 6q and 16q 46. Interrogation 

of amplified and deleted focal peaks on these chromosomes for candidate genes, revealed 

significant enrichment of cis signature genes associated with MAPK, WNT signalling, NF-

kappa B and RNA processing and splicing pathways (described in Chapter 1). Genes from 

these regions were then queried for mutations identified through exome sequencing in an 

attempt to identify novel drivers.  

Protein damaging mutations affecting PLEC1 were found in four samples (MM049, 

MM089, A982 and A983). To further refine the mechanism of tumorigeneisis in UM, 

mutations in genes altered by copy number changes and other related genes in the same 

pathway were examined. Protein damaging genes that mapped to genes underlying these 

pathways and highly recurrent copy number altered regions (identified in chapter 3) were 

examined. This lead to the identification of additional novel mutations relating to RNA 

processing pathways including, mutations in SNRNP40, SRRM1, DNAJC8, EIF4G3, 

HNRNPR, SRSF4, SRSF5, SYF2, SF3A1, SRSF7 and RBM10 genes (Figure 4.13). These 

mutations were present in tumours with secondary drivers and none of the samples 

harbouring mutations exhibited changes in copy number (Table 4.4). 

Following up on findings from copy number analysis, and using a conservative 

criterion that at least one of the genomic aberrations should be unequivocally focal 

(homozygous deletion), the human SWI/SNF genes, ARID1A (1p36.11) and ARID1B 

(6q24.3), identified from the GISTIC analysis (results - chapter 1) were investigated for 

additional mutations. ARID1A and ARID1B were deleted homozygously in 2/182 and 8/182 

of samples interrogated on a global SNP array. Additionally, PHF10, part of the PBAF 

complex was also found to be deleted homozygously in 8/182 of SNP arrayed samples. 

Mining the exome sequencing data on 120 primary UMs to identify additional mutations  
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Figure 4.13: Mutations targeting RNA splicing and processing machinery in UM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure showing all the Protein damaging mutations targeting RNA splicing and processing machinery 

in UM 

Figure 4.14: Whole genome copy number segmented profile for MM010.  

 

The mutations in ARID1B located in the region of shallow deletion., is indicated by the black dot.  
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Figure 4.15: Tumours with mutations in components of the mammalian chromatin 

remodeling BAF/PBAF complex.  

 

  

 

 

 

 

 

 In total 131 primary uveal melanomas, originally interrogated were following by 

integration of exome, RNAseq and copy number data affecting these three genes, revealed six 

samples with DNA mutations (six missense mutations and two INDELs) (Table 4.5). One of 

the samples with a homozygous deletion in ARID1B (MM010) also harboured a mutation 

(Figure 4.14) indicating presence of potential tumour heterogeneity. Using RNA-seq data, 

one additional mutation in ARID1B (p.M724I) in MM176) was identified. Based on the 

combined mutation and copy number data, 9% of samples harbour a deleterious mutations or 

homozygous deletion in ARID1A, ARID1B or PHF10 genes (Figure 4.15). These mutations 

were nearly always present in tumours with a secondary driver mutations (BAP1, SF3B1 and 
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EIF1AX) and there was no statistical association between the ARID1A/B/PHF10 mutants and 

the secondary drivers (p-value 0.059). However, when class 1 and class 2 tumors, were 

compared there was statistical evidence for the ARID1A/B/PHF10 mutants to be associated 

with class 1 tumors (p-value 0.01). In addition to ARID1A, ARID1B, other enzymatic subunits 

of the SWI/SNF complex were mined in the exome sequencing data. This resulted in the 

identification of 25 deleterious mutations encompassing the subunits of the PBAF and BAF 

complex 342, including: the enzymatic ATPase subunits, SMARCA2 and SMARCA4; and other 

components ACTL6A, ARID2, BCL7A/C, BRD7, SMARCC1, SMARCC2, SMARCD1and 

SMARCD3 (Table 4.6). A recurrent mutation in BRD7 (p. D104V) was identified in six 

samples, however it was not found to be significantly mutated by the MutsigCV analysis, and 

was found exclusively in the TCGA cohort, thus weaking confidence in this variant. 

Although, other components of the complex carried a small burden of mutation, determining 

the significance of these low frequency aberrations will require a larger sample size.  

 

4.2 Discussion 
 

Here a comprehensive analysis of whole exome sequencing data from of 120 uveal 

melanomas from two different cohorts (WASH-U and TCGA) is described. The mutational 

signature analysis revealed the absence of a UV radiation induced damage related signature 

and DNA break strand repair or BRCA signature, contrary to a previous report 198. 19,467 

somatic SNV and INDEL mutations were identified and 10,014 genes were mutated in at 

least one of the tumours. This number could be relatively large because 40% of the samples 

from the WASH-U cohort did not have matched normal samples (there were 16 unpaired 

tumours), and although in the current pipeline, Mutect2 caller was run with “panel of normal 

option”, there could be many potential private germline mutations that were not filtered. A 

frequency based statistical method (the MutSigCV algorithm) was applied to this initial list of 

variants to identify significantly mutated genes (SMGs) which were mutated at a much higher 

rate than the calculated background mutation rate (BMR) 325. Controlling for false positives is 

a challenge owing to a heterogenous BMR across samples. Since mutation rates have been 

shown to correlate with levels of histone H3K9me3 modification, gene expression due to 

transcription coupled repair and size of genomic footprint for a gene, these factors are 

accounted as covariates in the MutSigCV model 325. However, as tools keep improving, a 

major challenge still lies in distinguishing drivers from passenger events, and to assess if the 
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identified SMG truly have functional roles in tumorigenesis. In a sequencing study, the 

identified SMG can either be technical artefacts. For example, they could lie in a hypermuted 

gene locus or they could harbour driver mutations that confer a functional advantage to the 

tumour cell. A total of 18 genes reach statistical significance at a FDR<0.05, however, on 

closer examination of the variants based on criteria such as, known driver, deleteriousness 

and potential artefact based on sequencing error, read depth/quality that were missed during 

filtering most of these genes (11 out of 18) were discarded as artefacts. Six of the top 10 

highly significant genes include all the known UM drivers (GNAQ, GNA11, BAP1, SF3B1 

and EIF1AX) 18–20,22,228.  

The identification of these established known UM driver genes in the current analysis 

has validated this approach for the identification of significant mutations. The only other high 

frequent event involved a gene known as HAUS Augmin like Complex Subunit 6 (HAUS6). 

This maps to chromosome 9p22.1 and has not previously been reported in UM.  Two hotspot 

mutations (p.L553F and p.E743D) were identified in ~12% of samples. HAUS6 mutations 

were found to be significantly associated with the subgroup of tumours (20%) which did not 

harbour any known secondary driver mutations (BAP1, SF3B1 or EIF1AX) and mutations 

were found in 14 out 131 samples. HAUS6 is a subunit of augmin protein complex, which 

plays a role in maintenance of chromosome integrity, microtubule attachment to the 

kinetochore and central mitotic spindle assembly formation 366. The N terminal domain of 

HAUS6 is involved in the mitotic spindle assembly, which interacts with microtubule 

polymerisation promoting, NEDD1-gamma-tubulin complex and recruits the complex to the 

spindle 367. However, these hotspot mutations were present at low allelic frequency and 

additionally do not lie in the N-terminal domain of the subunit 6 (HAUS_6_N) and its effect 

on the protein function will have to be functionally followed up.  

The current analysis has validated and established the mutational frequencies of the 

known driver mutations in UM (GNAQ, GNA11, CYSLTR2, SF3B1, BAP1 and EIF1AX). 

Further, examining the PCLB4 gene mutations revealed previously described hotspot 

mutations, affecting residue codon 630 and additional non-hotspot mutations (p.G517V, 

p.M315V and p.V357A). Although these mutations were previously shown to occur in 

tumours that did not harbour GNAQ and GNA11 mutations, in the current study, this was not 

found to be the case in the current study. Four out of five samples with PLCB4 mutation 

(including one with the recurrent hotspot mutation) also harboured either a GNAQ or a 

GNA11 mutation. While the D630Y alteration affects the Y-domain of the conserved 

catalytic core of the PLBC4 controlling signal transduction 198, the novel p.M315V and 
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p.V357A mutations targeting the PLC-beta domain is also part of the catalytic core of the 

enzyme 368. PLCB4 is one of the canonical downstream targets of Gq subfamily of G-protein 

coupled receptors, and could potentially play a role either independently or in tandem with 

GNAQ /GNA11 mutations to mediate constitutive activation of downstream pathways of G!q 

and G!11 proteins. 

The current pipeline could identify 19 out of 23 true BAP1 mutations verified with 

Sanger sequencing (published). One of these variants that was not picked up by the callers 

suffered from coverage issue. The other three BAP1 mutations that were not picked up by the 

mutation calling pipeline were from samples (MM144 (p.F50LfsX22*), MM173 (p.R146M*) 

and MM175 (c.867_887del*) where only RNA-sequencing data were available. This may not 

be surprising since loss of function mutations in BAP1 in the form of nonsense or frameshift 

mutations will very likely lead to nonsense mediated decay and loss of the transcript. To 

account for additional the GEP based class 2 samples with a missing BAP1 mutation, a 

complementary approach was used by querying through filtered bins and integrating matched 

copy number and RNAseq data and integrating calls from different variant callers. This led to 

the identification of five additional novel BAP1 mutations that were missed by most variant 

callers due to poor coverage or due to design of the exome target baits which can miss out on 

large deletions that span the intron (list here). In addition, three novel mutations in SF3B1 

(A881, A9EC and A9EH) and one in EIF1AX (A8KG) were identified. Final frequency 

estimates of the established UM drivers were thus calculated in the current study of 131 

samples as: GNAQ (48.09%), GNA11 (46.56%), CYSLTR2 (4.58%), SF3B1 (24.42%), BAP1 

(40.45%) and EIF1AX (16.03%).  

 Integrating mutation calls and copy number data, helped in the identification of 

several novel alterations that are part of RNA splicing and processing pathways. Mutation 

data was also queried for ‘cis-genes’ (as previously describe in results - chapter 1) identified 

by integrating copy number and gene expression data in chapter 2. In addition, other 

components of the spliceosome were also mined in the exome data.  This led to the 

identification of mutations in SNRNP40, SRRM1, DNAJC8, EIF4G3, HNRNPR, SRSF4, 

SRSF5, SYF2, SF3A1, SRSF7 and RBM10. Interestingly, these mutations do not lie in 

samples with hemizygous loss of the gene locus, and were present in samples which already 

had a mutation in the SF3B1, gene.  This suggests either that the tumour environment is 

selecting for splicing defects, or the activity of the mutant SF3B1 requires mutations in 

additional members of the spliceosome complex.  
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The mammalian SWI/SNF chromatin remodelling complex has been described 

previously in pancreatic 369 and gastric cancers  362. They have been proposed to affect 

expression of RB1, thereby affecting regulation of the cell cycle and in this way can be 

thought of as tumour suppressors 370. In this study, by integrating SNP array based copy 

number data, exome sequencing and RNA-sequencing, additional genetic alterations 

targeting the SWI/SNF complex genes have been identified. These mutations were nearly 

always present in tumours with a secondary driver mutations (BAP1, SF3B1 and EIF1AX), 

however are more likely to be found in class 1 compared to class 2 tumours. Overall, loss of 

components of the SWI/SNF complex through focal homozygous deletion and damaging 

mutations accounted for only 0.8-7% of tumours. However, when taken together, genomic 

aberrations targeting this complex account were found in 19% of tumours. 

Previous studies 46,222 on the TCGA cohort did not report the novel mutations 

described in the current study. This includes mutations in HAUS6, and mutations in genes 

encoding components of the chromatin remodeling complex and RNA processing. Although 

the two studies had comparable number of exome sequenced samples, the pipeline used in the 

current study differed with respect to the alignment and variant calling tools. One of the 

novel aspects of the method employed in the current study involved the integrated approach 

that was used where copy number, gene expression and mutation were combined to identify 

novel genes. 

While the major high frequency mutations in GNAQ, GNA11, BAP1, SF3B1, and 

EIF1AX constitute “mountains” in the landscape of cancer genome, the identification of 

additional infrequent mutations and copy number alterations of epigenetic regulators and pre-

mRNA splicing and processing could constitute the “hills” in the cancer genome. Further 

evaluation of these events with functional work will help to elucidate their importance in 

tumour pathogenesis. 

!  
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Chapter 5. Transcriptomic investigation of 
gene fusions in uveal melanoma 

 

5.1 Results 
!

5.1.1 Fusion events detected across all the samples 

!

Twenty-two primary UM tumour samples were used in this study. Paired end RNA-seq data 

consisted of two different types of libraries: Those prepared from PolyA+ mRNA (12 

samples) and those prepared from total RNA (10 samples) (Table 2.3). A total of 

495,750,223 reads (~495.8 million) were available with an average of 13.80 million reads per 

sample for the PolyA+ selected data and an average of 33 million reads per samples for the 

total RNA data. In the current study the JAFFA 330 gene fusion detection pipeline was then 

used to analyze paired end RNA-seq data to identify all the fusion transcripts. After filtering 

of chimeric RNAs supported by less than 2 spanning reads and filtering of non-protein 

coding or ribosomal RNAs, 191 chimeric RNAs with a unique fusion junction were 

identified. There were 80 inter-chromosomal fusions, involving two different chromosomes 

and 111 intra-chromosomal fusions. These fusion transcripts were further categorized as 

polygamous, if either the 3’ or 5’ gene were detected in more than 1 sample and as private 

fusions if the fusion transcript was only detected in one tumour sample. Approximately 70% 

of all tumours expressed at least a single polygamous transcript, with a range of 1-8 

polygamous transcript per tumour (Table 5.1). Among the polygamous fusions transcripts, 

twelve were uniquely present in gene expression profile (GEP) based class 1 tumours and 8 

were present in only class 2 tumours (Figure 5.1).  

Chromosomal mapping of genes that were part of the private and polygamous fusions 

revealed a non-random distribution with the largest number of fusion transcripts being 

derived from chromosomes 1, 3 and 5 and the fewest number of partner genes being derived 

chromosomes 22, X and Y (Figure 5.2). Due to the small numbers of samples, it is difficult 

to infer any thorough conclusion regarding the tumour subclass specific distribution of fusion 

transcripts. However, a circos plot of GEP based class 1-specific and class 2-specific 

polygamous fusion gene partners indicated few class specific chromosomal differences with 

class 2 tumours tending to exhibit a wider range of fusion transcripts involving more 

chromosomes (Figure 5.3). There is also a chromosome 5-1 fusion involving a CANX- 
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TMED5 fusion in a class 1 tumour (MM171) an additional CANX-NDUFAF1 fusion in a 

class 2 tumour (MM135). Other fusions with recurrent 5’ transcripts include 

TTC3:CTNNBL1 and TTC3:SUPT20H in class 1 tumours MM082 and MM094 respectively; 

RCC1 fused to two different genes (CSE1L and HMGB1) in MM094 and ABCB5 fused to 

ATP6V0A2 in MM171 and EPS15 in MM173.  

 

Table 5.1: Summary of gene fusion transcripts in UM.  

 

 

Distribution of fusion transcripts among all primary uveal melanoma samples by tumour class and 

mutation status of known driver genes.  

 

All the gene fusions were then queried against previously identified gene fusions in 

the TCGA Fusion gene Data Portal (http://54.84.12.177/PanCanFusV2/). This revealed only 

a single overlapping gene fusion between the current study and those reported in TCGA. This 

is the TFG-GPR128 fusion which has been reported in patients with atypical 

myeloproliferative neoplasm and has been identified in the healthy population at a frequency 

of 0.02 371. This fusion was observed in the MM080 tumour sample. Other polygamous gene 

fusions predicted by Oncofuse, to have a high probability of being drivers were seen as 

private fusions in the current set include:! PQLC1-SMAD2 (sample: MM179), RABL3-

STXBP5L (sample: MM171), SASH1-APP (MM144), TRPM7-MYO5A (MM179), UBA2-

DLC1 (MM171) and YWHAE-CRK (MM173). 

 

 

 

Tumours Private-
fusions

Private-fusions-
range-/tumour

Redundant-
fusions

Redundant-fusions-
range/tumour

All-(N=22) 152 1$25 39 1$6
Class-1 86 1$25 23 1$6
Class-2 66 1$13 16 1$5
BAP1-mutant-tumours* 83 2$19 22 1$5
SF3B1-mutant-tumours* 10 1$5 3 1$2
EIFIAX-mutant-tumours 17 1$11 7 2$5
Wildtype-tumours 32 2$25 6 1$6

*-excluded-sample-with-both-BAP1-and-SF3B1-mutation
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Figure 5.1: Polygamous fusion transcripts identified in primary uveal melanomas. !
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The GEP based tumour class is indicated on top and the grey shaded boxes show distribution 

of the fusion event across all samples. !
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Figure 5.2: Circos plot showing chromosomal connections for all the fusion transcripts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The intra-chromosomal fusions are shown in red and the inter-chromosomal fusions are indicated in 

blue. Chromosomes are shown outside the circle and the genes that make up the fusions are indicated 

within the circle. Chromosomal distributions of fusion genes are shown above the plot. The thickness 

of the lines corresponds to number of reads supporting the event. 

 

 

  

Chromosomes chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY
Number8of8Genes 32 19 28 16 30 16 15 19 9 16 12 20 11 9 18 12 12 10 9 11 6 4 2 1
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Figure 5.3: Circos plots of GEP class specific polygamous fusion events.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Upper: Class 1 tumours; Lower: Class 2 tumours.  
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5.1.2 Recurrent polymorphic gene fusion in uveal melanoma 

 

After performing all the filtering steps (described under chapter 2, Gene Fusion analysis 

section) to remove the polymorphic and low confident fusion events, no recurrent fusion 

(present in more than one sample) was found. Thus, to prevent missing relevant fusions that 

might be filtered out due to the stringent filtering criteria some of the filtered candidates were 

screened. This led to the identification of a single recurrent fusion occurring at high 

frequency in our primary UM RNA-seq samples and involved the KAT8 Regulatory NSL 

Complex Subunit 1 (KANSL1) gene which binds to its 3’ partner gene ADP Ribosylation 

Factor Like GTPase 17A (ARL17A) to form the KANSL1-ARL17A gene fusion.  

KANSL1-ARL17A gene fusion was seen in 36% (8/22) of samples. Both 

KANSL1 and ARL17A are located on the minus (reverse) strand of chromosome 17q21.31 

with a gap of 476 kilobases between them. The KANSL1 and ARL17A genes encode 15 and 4 

exons respectively and the breaks occur downstream of the second coding exon in the 

KANSL1 gene (the last base of this exon maps to chr17:44171926 (hg19)) and upstream of 

exon3 of ARL17A so that its spliced transcript starts at chr17:44648235 (hg19) (Figure 5.4, 

Table 5.2). In the normal genomic structure, the order of the genes with respect to the 

directionality of the mRNA is ARL17A ! KANSL1, however the KANSL1-ARL17A gene 

fusion shows an inverted gene order indicating involvement of a potential chromosomal 

inversion event at play (Figure 5.4). The resulting KANSL1-ARL17A gene fusion transcript 

encodes a putative peptide with 483 amino acids where majority of the peptide sequences are 

derived from KANSL1 gene (Figure 5.5). The putative fusion peptide retains the coiled coil 

domain of the KANSL1 gene while losing the WDR5 interacting motif, zinc finger domain 

and the PEHE domain 372. Univariate analysis of KANSL1-ARL17A fusion with other UM 

specific genetic mutations (GNAQ, GNA11, BAP1, SF3B1 and EIFIAX), copy number 

alterations (monosomy 3, 6p gain, 6q loss, 8p/q gain, 8p loss and 16q loss) and gene 

expression profile class status, indicated no statistically significant association with any other 

UM specific genetic event, suggesting they are independent events. This fusion is a common 

inversion polymorphism at chromosome 17q21.31 where one allele is an  inverted haplotype 

(termed H2) 373. This H2 haplotype is common in Europeans, occurring at a frequency of 

~20% and predisposes to a deletion which causes a rare congenital disorder (Koolen-deVries 

syndrome)372. Its possible relevance to UM is unclear, however UMs are found 

predominantly in individuals of European ancestry and the role of KANSL1-ARL17A fusion 

as a predisposing event could be explored.  
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Table 5.2: Recurrent gene fusions in UM  
 

 

 

 

Figure 5.4: KANSL1-ARL17A gene fusion. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Schematic diagram showing the normal and potential rearranged genomic structure of the KANSL1-

ARL17A gene fusion on chromosomal band 17q21.31 and the fusion transcript that was identified. 

 

  

ARL17A KANSL1

LRRC37ANSFP1
MAPT

STH

Normal	genomic	order

Gene	Fusion	order

Potential	
chromosomal	
inversion

Exon	2 Exon	3 Exon	3 Exon	4

ARL17A KANSL1 ARL17A KANSL1

Fusion	transcript
Exon	1

C----42bp---TTTACAAACAGATACGTGCTAATAAg---gTTTCTGTGTGGAGACAGTAGAATATAAAAA

Sample GEP*
class

fusion*genes chrom1 base1 strand1 chrom2 base2 strand2 gap*(kb) spanning*
pairs

spanning*
reads

MM010 1 KANSL1:ARL17A chr17 44171926 3 chr17 44648235 3 476.305 2 7
MM065 1 KANSL1:ARL17A chr17 44171926 3 chr17 44648235 3 476.305 2 6
MM091 2 KANSL1:ARL17A chr17 44171926 3 chr17 44648235 3 476.305 0 7
MM097 2 KANSL1:ARL17A chr17 44171926 3 chr17 44648235 3 476.305 1 2
MM144 1 KANSL1:ARL17A chr17 44171926 3 chr17 44648235 3 476.305 0 4
MM171 1 KANSL1:ARL17A chr17 44171926 3 chr17 44648235 3 476.305 0 10
MM175 2 KANSL1:ARL17A chr17 44171926 3 chr17 44648235 3 476.305 1 2
MM179 2 KANSL1:ARL17A chr17 44171926 3 chr17 44648235 3 476.305 1 1
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Figure 5.5: Putative truncated protein sequence of the KANSL1-ARL17A gene fusion.  

 

 

 

 

 

 

 
 
The codons are highlighted in yellow and blue and the amino acid corresponding to each codon is 

indicated below. 

 
  

GACTTGGAATATCGAATTCGTCAGCAAACAGACATTTACAAACAGATACGTGCTAAT	
	
D						L						E						Y						R						I					R					Q				Q					T						D				I						Y					K					Q					I						R					A					N	
	
AAggTTTCTGTGTGGAGACAGTAGAATATAAAAATAACAC	
	
	K						V				S					V						W				R					Q				X	
	
	

ARL17A&gene&amino&acid&sequence
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5.1.3 Other potential candidates of unknown significance 

 

Although most UMs had at least one gene fusion event, there were some polygamous fusions 

involving genes encoding proteins involved in chromatin modification that were filtered due 

to low read counts (1 spanning reads). These fusions were predicted by JAFFA as medium 

confident calls and were found to have a high probability of being a driver. They included 

ARID1B-SASH1 and ARID1B-RNF149 fusions (Table 5.3). In previous chapters, mutation 

and copy number aberrations affecting the ARID1B gene was reported (Table 5.4). 

Additionally, another ARID1B-SASH1 gene fusion transcript, involving a putative breakpoint 

located downstream from exon 3 or 4 depending on the isoform of ARID1B and upstream of 

exon 2 of the SASHI gene was identified. This would result in a putative fusion peptide of 

1837 amino acids (Figure 5.6). This putative peptide was predicted by Oncofuse to have a 

high probability of being a driver event. For the ARID1B-RNF149 fusion transcripts, the 5’ 

ARID1B region is retained on chromosome 6q with breakpoints located downstream from 

exon 4 or 5 depending on the isoform, with a second breakpoint before exon 2 within the 

RNF149 gene on chromosome 2. However, this leads to an out of frame partial transcript of 

RNF149, ultimately resulting in a fusion peptide where RNF149 is truncated and where the 

mRNA is likely to undergo nonsense mediated decay (Figure 5.7). Hence, this fusion could 

inactivate ARID1B. Functional domains of the wild type ARID1B, which would be potentially 

disrupted in the putative peptide include the Zinc finger, RING-type domain (ARID1B-

RNF149) and variant SH3 domain (ARID1B-SASH1). 

ARID1B is a member of the human SWI/SNF transcriptional complex (or BAF 

complex) which is involved in regulating chromatin structure 341. It has been implicated as a 

driver of tumourigenesis in a subset of hepatocellular carcinomas, breast cancers, ovarian 

cancers, medulloblastomas and pancreatic cancers 369,374–377. Two known functional domains 

in ARID1B comprise an “AT-rich Interactive Domain” (ARID) and a “Domain of Unknown 

function” (DUF3518). The ARID domain (~100 amino acid residues) binds to DNA without 

sequence specificity 341 and the DUF3518 domain interacts with the helicase subunits BRG1 

and BRM which are also members of the BAF complex, 342. In both the ARID1B fusions with 

the different 3’ partners reported here, both the ARID and DUF3518 functional domains of 

ARID1B including are likely to be lost (Figure 5.8). SASH1 has also been described as a 

potential tumor suppressor that may negatively regulate proliferation, apoptosis, and invasion 

of cancer cells, and reduced expression of this gene has been observed in multiple human 

cancers378,379.  
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Figure 5.6: Potential chromosomal rearrangement of ARID1B-SASH1 gene fusion.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Schematic diagram showing the normal and potential rearranged genomic structure of the ARID1B-

SASH1 gene fusion on chromosome 6 and the fusion transcript that was identified 
 

Figure 5.7: ARID1B fusions in uveal melanoma.  

 

 
 
 
 
 

 
 
 
 
 
 

Shown above are the two fusion events where a recurrent 5’ partner gene ARID1B is fused to different 

3’ partners (SASHI and RNF149 genes) and the resulting fused putative peptide sequence at the break. 

 

ARID1B'SASH1!Fusion!transcript 

                      ARID1B exon 4          SASH1 exon 2	
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Figure 5.8: Structure of the ARID1B protein.  

!

 

 

 

 

 
 
 
Schematic structure of the ARID1B protein showing the functional domains which are lost in the 

putative gene fusion peptides. 

 
 
Table 5.3: Gene fusions with ARID1B partner 

 

 

Potentially relevant gene fusions with low spanning reads (=1). MM179 is class 2 and MM016 is 

class 1 sample, both of these tumours had metastatic disease.  

 
 
Table 5.4: List of ARID1B mutations identified by exome and copy number analysis 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
  

Sample 5'	Partner	Gene 5'	chromosome 5'	location 3'	Partner	Gene 3'	chromosome 3'	location
MM179 ARID1B chr6 157222659 SASH1 chr6 148711270
MM016 ARID1B chr6 157256710 RNF149 chr2 101911643

Datatype Samples Alteration
Exome&analysis MM105 Missense_Mutation
Exome&analysis MM049 Missense_Mutation
Exome&analysis MM010* Missense_Mutation&+&Homozygous&deletion
Copy&number MM032 Homozygous&deletions
Copy&number A9EH Homozygous&deletions
Copy&number A9F4 Homozygous&deletions
Copy&number A8KB Homozygous&deletions
Copy&number A8K9 Homozygous&deletions

1 250 500 750 1000 1250 1500 1750 2000 2249

ARID DUF3518

Recurrent/Gene/
Fusion/breakpoint/

N C

ARID1B
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5.2 Discussion 
 

Gene fusions leading to chimeric transcripts are frequently observed in blood born cancers 

and are often a result of chromosomal level structural alterations, including translocations, 

inversions and other complex rearrangements. With the advent of the new sequencing 

technology the landscape of structural alterations in solid tumours is beginning to emerge. 

This has led to the discovery of fusions between EWSR1 and the ETS family of transcription 

factors in bone sarcomas 380, fusions between TMPRSS2 and ETS transcription factor ERG, 

ETS and ETV4 in prostate cancers 174,175, an FGFR3-TACC3 fusion in bladder cancer 381, an 

EML4-ALK fusion in lung adenocarcinomas 382, PAX8-PPARG fusions in follicular thyroid 

cancers 383 and many more. This study has attempted to identify novel gene fusions events in 

UM. These were detected using RNA-seq data, and comprised both canonical and non-

canonical chimeras, resulting from read-through or trans-splicing events. While it is a 

challenge to identify, chimeric transcripts produced solely due to rearrangements at the DNA 

level without the availability of whole genome sequencing data, some of the non-canonical 

chimeric RNAs due to read-through (cis-splicing) events were eliminated by using the 

minimum gap criteria between two fused genes.  

 Overall, examining the chimeric transcripts, revealed more intra-chromosomal 

gene fusions compared to inter-chromosomal events. Of the 191 fusions events identified, 

152 were private fusions restricted to a single sample and 39 were polygamous fusions, 

where a recurrent gene partner was found in multiple samples. Among the polygamous 

fusions, 12 were unique to the GEP based class 1 tumours and 8 were found in the class 2 

tumours. Recurrent polymorphic KANSL1-ARL17A fusions were found across both class 1 

and class 2 samples. Although KANSL1-ARL17A fusion on chromosome 17q21.3 has been 

reported previously (called KANSARL) as a cancer predisposition fusion in the European 

population 384, this study focusses on fusions that are unlikely polymorphisms. In whole, 

somatic fusions events in UM were not as common as in case of other solid tumors such as 

prostate cancer and lung cancers 174,382. Hence, gene fusions are unlikely to be a major driver 

of UM. However, the identification of low frequency fusions involving chromatin modifiers 

such as ARID1A is of interest. In one instance the downstream partner (SASH1) has already 

been implicated as a tumour suppressor. A change in its structure could affect its activity and 

could increase risk of metastasis and that it will be interesting to look at the frequency of such 

fusions in metastasizing samples, to see if they could have played a role in metastasis.  
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Interestingly ARID1B fusions involving breakpoints located on either downstream from exon 

4 or 5 and leading to fusions with the ZNF384 gene have been reported in pediatric acute 

lymphoblastic leukemia 385. Additionally, recurrent genome-wide rearrangement of ARID1B 

have been reported in neuroblastoma 386. Further, gene fusions event involving ARID1B as 

the 5’ partner have been reported in the TCGA fusion database from breast cancer, 

glioblastoma multiforme, brain lower grade glioma and lung adenocarcinoma 182. This 

suggests that the two fusions reported here in UM are less likely to be random events, despite 

their low abundance.  

 Although one of the key drawbacks in the current study is the lack of orthogonal 

validation of the reported gene fusion events with Sanger sequencing of cDNA due to the 

unavailability of samples for experimental follow up, the gene fusions identified in this study 

can still be considered plausible candidates, based on their recurrence and biological 

significance. To gather further support to establish the occurrence of these events, additional 

RNA-seq data could be screened for the reported fusions such as the one involving the 

ARID1B gene, on a larger number of samples. Ideally such recurrent fusions should then be 

validated with qRT-PCR and Sanger sequencing. The effects of such possibly pathogenic 

fusions on gene expression can then be evaluated by transfection into human cells, followed 

by an investigation of their effect cell signaling, transcriptional activation, proliferation, 

invasion and migration. Some of these fusions could be therapeutic targets and could help in 

understanding the underlying mechanism of tumourigenesis or metastasis.  
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Chapter 6. Conclusion 
 
Uveal melanomas (UM) is the most common eye cancer which manifests into a highly 

aggressive form affecting nearly half the patients with the tumour. This study describes the 

first integrated genomic and transcriptomic investigation performed using different high-

throughput datasets in UM. To understand the genomic architecture of these tumours, a 

comprehensive investigation was performed with whole genome SNP-arrays, whole exome 

sequencing and RNA-sequencing technologies on a total of 207 primary tumour samples 

(including samples with matched data across different platforms) spanning across three 

different cohorts (WASH-U, TCGA and CC). Analysis of the data revealed that UM exhibits 

a less complex pattern of genomic aberrations, characterized by recurrent chromosomal 

alterations and low mutational burden, compared to most solid tumours 200,387. With the 

exception of few samples, the tumour genomes displayed a homogeneous low burden of 

single nucleotide variants and notable there was absence of the canonical ultra-violet 

radiation (UVR) signature, related to DNA damage at pyrimidine dinucleotides, thus, 

negating the role of UVR in the etiology of UMs. 

 

Landscape of copy number and structural aberrations in uveal melanoma 

 

UMs exhibit unique characteristic highly recurrent aneuploidy of few selected 

chromosomes, including chromosomes 1, 3, 6, 8, 11 and 16. Chromosomal alterations that 

are associated with metastasis include monosomy 3, loss of 6q, loss of 8p and gain of 8q, this 

is consistent with previous studies 32–34. Recurrent chromosomal loss of 1p, was previously 

shown to be associated with decreased disease-free survival 37,155, however in the current 

study it was not found to be associated with metastatic outcome. Somatic polyploidy is a 

characteristic of human tumours and are frequently in the form of aneuploidy, a key feature 

in UMs. Majority of UMs have ploidy close to 2n, with a few cases exhibiting tetraploid state 

which tends to occur more in the gene expression based highly aggressive class 2 tumour 

compared to low metastatic competent class 1 subgroup. Monosomy 3 is found exclusively in 

the class 2 tumours is suggested to lead to increased genomic stability 38. However, there was 

no statistical difference in the ploidy estimates between these two groups based on a limited 

sample size (N=45; where we had information on class status). The percentage of non-

aberrant cell fraction was higher in the class 2 compared to class 1 tumours and could be due 

to the presence of immune related cells (macrophages or lymphocytes) surrounding the 
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tumour tissue previously shown to be associated with poor prognosis in UMs 295,361. The 

potential role of these immune cells in the tumorigenic processes could help in developing 

new treatments and requires exploration. 

Unsupervised clustering of broad copy number alterations revealed four distinct 

groups, each characterized by a combination of gain and losses involving 1p loss, 1q gain, 

monosomy 3, 6p gain, 6q loss, 8p gain/loss 8q gain and 16q loss. Previously Harbour et al. 38 

had established a prognostically relevant molecular classification based on the copy number 

status of chromosomes 3 and 6p gain using statistical pattern recognition analysis, where they 

identified three main subgroups: Tumors with normal copies of chromosome 3 and 6p; 

tumors with gain of 6p and normal copy of chromosome 3; and tumors with monosomy 3 and 

normal copy of 6p. The latter has the worse prognosis. Based on their study they concluded 

that monosomy 3 and 6p gain are mutually exclusive and represented a bifurcation in tumour 

progression 129. In the current larger study, monosomy 3 and 6p gain were mutually exclusive 

most of the time, however a subset of tumours (11%) harbored both alterations. This could be 

due to inter-tumoural heterogeneity and suggests potential ongoing tumor evolution. The 

genesis and the sequence of these events arising during tumour evolution will require further 

exploration.  

The gene expression based classification of tumours into low metastatic competent 

class 1 tumours and the highly aggressive class 2 tumors is established and this classification 

perform far superior in predicting metastatic risk compared to monosomy 3 and other 

clinicopathological prognostic factors, in addition to revealing the pathobiology of these 

tumours 42,114. Incorporating this information can thus shed more light in understanding the 

underlying biological mechanisms. Recently, PRAME expression was identified as an 

independent marker of metastasis and found to be associated with 1q gain (specific to class 1 

tumours), 6p gain and 16q loss, in addition to 6q loss, 8p loss (specific to class 2 tumours) 

and 8q gain 46. However, these alterations (1q gain, 6p gain and 16q loss) did not reach 

statistical significance for association with metastasis independent of PRAME status in the 

current study. Taken together these observations, identification of candidate events on these 

chromosomes would be of high relevance to uncover the mechanism of tumour progression.   

The underlying hypothesis explored here was that some copy number and structural 

alterations which harbor genes that are highly selected for and are instrumental in causing 

defects in pathways that lead to UM pathogenesis. To uncover the candidate genes that lie in 

the recurrent region of chromosomal gains and losses, segmented copy number data were 

subject to analysis with the GISTIC algorithm which identifies focal chromosomal alterations 
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that are significantly higher than the background rate 301. Systematic evaluation of each 

GISTIC peak revealed a total of 203 independent focal regions of gains and losses spanning 

chromosomes 1, 2, 3, 4, 6, 7, 8, 9, 11, 15, 16, 17, identified across three independent GISTIC 

analysis performed on data from three different cohorts. To further increase the confidence 

for identifying candidate events, overlapping peaks boundaries and adjacent peaks within a 

one megabase distance, across three independent analysis were selected. Ten overlapping 

peaks were found. These included four deletion peaks at chromosomes 1p35, 2q37.2, 6q27 

and 11q24.3 and six amplification peaks at chromosomes 6p25.2, 6p22.1, 6q26, 8q24.3, 

16p13.3 and 19p13.3. Alterations in copy number of some of the chromosomes harboring 

these CNAs has been previously described (e.g. chromosomes 1, 6, 11, 16 and 19), and this 

study has identified candidate regions and sometimes genes within these chromosomes that 

could be responsible for the copy number changes. Alterations in chromosome 2q have not 

previously been described, but deletion of 2q37.2 implicates a novel noncoding RNA, 

LOC200772. While some of the peaks identified in the current analysis agreed with previous 

studies performed with lower resolution technology 156,157, a few regions were not replicated. 

Such as a small region of loss of heterozygosity (LOH) on 1p31, previously refined with 

microsatellite analysis 155. The closest peak to 1p31 identified in the current analysis was on 

1p32.2 (chr1:57450404-58743937). The SNP markers interrogated here are denser compared 

to microsatellites and the refinement with the current study is expected to be greater.  

RNA-sequencing data generated on a subset of tumours from our cohort was used to 

explore potential candidate gene fusions resulting from structural events in UM. Although, 

191 fusion events (both intra-chromosomal and inter-chromosomal) were identified, after 

applying stringer criteria, none of the events filtered out (Appendix 5) were reasoned to be 

promising for further follow-up. However, screening through the filtered low fusion spanning 

read bin (fusions candidates supported by 1 read), two candidate fusions events with 

ARID1B as the 5’ partner was rescued. These included candidates, ARID1B-RNF149 and 

ARID1B-SASH1 in two metastasizing tumours.  

To understand how these identified copy number alterations compared with other 

cancers and to identify those critical regions that are unique to UMs and those that are shared 

across different cancer types, all the focal CNAs were compared to the pan cancer findings 
338. This analysis revealed three important candidate cancer genes, including PLEC1 (8q24.3 

amplification peak), NCAPD3 (11q25 deletion peak) and ARID1A (1p35.3 deletion peak) 

which lie on chromosomes 8q and chromosome 1p respectively. To further prioritize genes 

from the CNAs that are most likely to have a functional effect, those exhibiting a change in 
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gene expression in UMs were identified. This approach revealed a large complementary set 

of genes, that lie within the refined focal regions of copy number change and affect many 

overlapping pathways, including NF-kappa B and MAPK signaling, WNT signaling and 

mRNA splicing/RNA processing. Exome and transcriptomic fusions were the mined to add 

more value to these novel individual candidates and those that were present in pathways, 

previously not described in UMs. These revealed mutations in 19 genes in regions of deletion 

and only two genes with recurrent mutations in regions of amplification (AXIN1 and RAC3) 

these mutations could render effect due to haploinsufficiency or over-expression.  

 

Dominant drivers in uveal melanoma 

 

The driver landscape in UMs is dominated by previously identified genes, including GNAQ, 

GNA11, CYSLTR2, SF3B1, BAP1 and EIF1AX. The current study demonstrated the use of a 

complementary approach employing different bioinformatics tools and datatypes to help 

identify mutations that were missed by either by the inherent drawback of using a single tool 

or due to poor quality data. This helped to get an accurate estimate the frequency of all the 

known drivers using a cohort of 131 samples: GNAQ (48.09%), GNA11 (46.56%), CYSLTR2 

(4.58%), SF3B1 (24.42%), BAP1 (44.27%) and EIF1AX (16.79%).  

Additionally, novel mutations in these known UM driver genes were identified 

and improved to get a clearer picture of the driver landscape in UMs. After accounting for all 

the mutations identified in the current analysis, ~98% of all samples harbor mutations in at 

least one of these genes. In addition, five mutations in PLCB4 gene were identified, including 

three novel and two previously reported D630 hotspot mutations, which tend to co-occur with 

the GNAQ and GNA11 genes. One important theme that emerged was the identification of 

additional BAP1 mutations in three samples, which had been classified within the class 2 

subgroup based on their GEP. After accounting for these secondary driver events, nearly 20% 

of samples did not harbor a mutation in at least one of these genes, suggesting that either the 

known driver was missed due to experimental error, because mutations lay in regions that had 

not been assayed (e.g. introns in the case of BAP1) or because there are additional secondary 

drivers to identify.  

In summary, this study has confirmed the occurrence of mutations in all the 

previously reported known driver genes in UM and report robust estimates of the mutation 

frequencies for these genes, using a large sample size and complementary bioinformatics 

approach.  
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Novel candidates identified in uveal melanoma 

 

Gain of 8q has been long implicated in UM and is associated with metastasis. Previous 

studies have reported a common region of amplification at 8q24.1 to 8q24.3 134,388. The CNA 

with the highest frequency identified in this study was amplification of a region of 

chromosome 8q24.3 that contained the Plectin 1 (PLEC1) gene (74%). Based on the current 

data, no important role for c-MYC amplification was found in UM, which agrees with earlier 

studies. There were no mutations found in PLEC or plectin gene, however it was associated 

with a significant increase in gene expression in tumors with amplification compared to the 

non-amplified group. Overexpression of Plectin has been identified as biomarker of 

pancreatic ductal adenocarcinoma (PDAC) and abnormal detection on the surface of PDAC 

cells, whereas in normal cell it is restricted to cytoplasm 389. Plectin is an intermediate 

filament (IF)-associated protein that belongs to the family of plakins or cytolinkers which are 

crucial for cross-linking and act as a signaling scaffold for cytoskeletal proteins. It is found in 

widely different cell types including epithelial cells389. It is implicated in regulating the 

MAPK and the PKC signaling pathways and leads to Erk1/2 activation and cell migration 389. 

Interestingly, one study has shown that aberrant expression and mislocalization of plectins in 

PDAC cells promotes proliferation, migration and invasion in these cells 389. This could be 

relevant in the context of UMs, where plectins could be implicated in promoting the 

metastatic phenotype. Immunostaining of plectin in uveal melanoma has previously not been 

described and determining its localization and function in UMs will be important in the 

future.  

 Exome analysis of 120 primary tumours revealed another novel candidate gene, 

HAUS6 that was significantly mutated in ~11% of samples. Interestingly, HAUS6 was 

enriched in the subset of tumours that did not harbor any secondary driver event (SF3B1, 

BAP1 and EIF1AX). This group was comprised of a higher percentage of class 1 tumours. 

HAUS6 encodes a protein which is a subunit of the augmin complex and is involved in 

microtubule attachment to the kinetochore and spindle formation. HAUS6 binds to gamma 

tubulin ring factor, a major microtubule nucleator via NEDD1 and promotes nucleation of 

microtubules 390. The functional impact of this gene requires further assessment for its role in 

mediating chromosomal instability in UMs.   
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Alternative mechanistic pathway  

 

As an alternate to the candidate gene approach, where a single altered gene carries a high 

burden with respect to cellular pathology, several genes affecting a common pathway could 

be also be at play in mediating the tumorigenic process. To this effect examine the mutations 

in enriched genes that lie in copy number regions associated with significantly altered 

expression revealed a subset of samples (10%) harboring mutations in genes encoding 

components of the eukaryotic splicing and translational machinery: SNRNP40, SRRM1, 

DNAJC8, EIF4G3, HNRNPR, SRSF4, SRSF5, SYF2, SF3A1, SRSF7 and RBM10. These 

mutations were present in samples with known driver mutation, including SF3B1. However, 

these genes did not lie in regions with copy number change. The role of splicing defects in 

UMs require further investigation to determine how these alterations leading to tumorigenesis  

 

Emerging role of epigenetic modifiers in uveal melanoma  

 

Another theme that emerged by following up on the candidate gene ARID1A 

identified from the pan cancer analysis, was the identification of genetic alterations from 

additional genes that form a subunit of the human SWI/SNF complexes, Brahma-associated 

proteins  (BAF complex) and polybromo-associated BAP (PBAF) complex 342. The BAF and 

the PBAF complexes subunits share homology and exhibit differences with respect to a few 

subunits, however they are frequently found to be disrupted in cancer 342.  Integrated genomic 

profiling using mutational data, gene fusion event and copy number alterations, revealed the 

involvement of the BAF and PBAF chromatin remodelling complex in ~17% of UMs. These 

genes include: ARID1A, ARID1B, SMARCA2, SMARCA4, ACTL6A, PHF10, ARID2, BCL7A, 

BCL7C, SMARCC1, SMARCC2, SMARCD1 and SMARCD3, with ARID1B showing highest 

burden of genetic alterations (~7%). ARID1B has been found to be frequently mutated in 

several cancers 377,385,386 and is thought to regulate chromatin structure 341. Previous cancer 

sequencing studies have shown that genes encoding the SWI/SNF chromatin remodelling 

complex are common targets of mutations. Although when considered individually, these 

mutations represent “hills”, when all the components are taken together these alterations 

represent “mountains” and provide an additional pathway to the development of UM.  
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Technical challenges in the current project 

 

There were a few technical challenges while analyzing these high-throughput data. Due to the 

heterogeneous nature of SNP data generated across different platforms across three different 

cohorts, not processing them uniformly increases the inherent noise when combined across 

different platforms. Further, classification of focal and broad events by GISTIC requires a 

threshold to select the focal events that exceed the specified threshold to calculate the G-

score statistics. This threshold was picked up by examining the histograms of the copy 

number from the samples. Due to noise in the data, determining accurate threshold level was 

a challenge and thus a judgment call rather than any empirical method was used to estimate 

the threshold. The results from GISTIC results cannot be easily integrated across different 

platforms and this posed an analytical challenge. This was overcome by combining the 

platform independent segmentation profiles across all the samples and querying the 

boundaries of the focal copy number peaks identified by GISTIC analysis in each 

independent analysis. This list was further pruned to select high confident peaks less affected 

by technical variation based on high frequency across multiple cohorts. The other larger 

theme that came from the analysis is that the choice of tool and the parameters vary from 

study to study and require careful curation of the data to infer biologically meaningful 

findings. Another challenge is that different tools are written in different computing 

environments and come with their own set of dependencies which can be a problem to 

perform and compare analysis with different tools, although this scenario is changing with 

more help from the online bioinformatics community.  

 

Conclusion and future directions  

 

UMs present as unique type of solid tumours with a low mutation burden and a very specific 

set of recurrent genetic events in tumour subtypes. This study performed a comprehensive 

investigation into the landscape of genome-wide genetic alterations that encompasses 

majority of UMs. The novel candidates and pathways require further exploration. The current 

disease model, involves oncogenic inactivating mutations in genes GNAQ, GNA11, CYSLTR2 

and potentially PLCB4 which lead to inappropriate re-entry to cell cycle pathways. As the 

tumour progresses additional genetic alterations are accumulated, although the exact 

evolutionary process of how and when these sequences of events arise is unknown.  

However, copy number and mutational changes help define the molecular classes of these 



! 161!

tumours. Based on the gene expression profile, copy number and mutation in secondary 

drivers (BAP1, SF3B1 and EIF1AX), four subgroups can be identified. These are described 

as: Group 1: Class 1 expression profile, EIF1AX mutation and gain of 6p; Group 2: Class 1 

expression profile with PRAME over expression, SF3B1 mutation, gain of 6p, gain of 8q and 

loss of 6q; Group 3 & 4: have similar profiles that include class 2 expression profiles, 

PRAME over expression, monosomy 3, BAP1 mutation, 8q gain, 8p loss and 16q loss. 

PLECTIN could potentially be the candidate gene on 8q helping tumour with 8q gain to 

metastasize along with BAP1 loss. Mutations in HAUS6, a potential novel driver gene 

identified in the current study was largely be found in group 1 tumours. 

In summary, the current project has helped to refine previously described 

chromosomal alterations and to identify novel candidate gene and/or genes in candidate 

pathways, including chromatin remodelling and RNA processing. The genes targeting the 

human SWI/SNF and spliceosome complexes could not have been identified if only the 

mutation or copy number data had been examined separately because of low power. Here, by 

using an integrated approach that included high resolution SNP arrays, and transcriptomic 

and exome sequencing, structural alterations and single nucleotide mutations were identified 

in the ATPase and putative DNA binding domains of components of the SWI/SNF complex.    

In addition to reporting robust estimates of mutation frequency of known UM driver 

genes, mutations in a potential novel driver gene, HAUS6 were described. HAUS6 is part of 

the HAUS augment complex which is involved in mitotic spindle assembly and maintenance 

of centrosome integrity. Centrosome dysfunction is linked to aneuploidy and chromosome 

instability and the role of HAUS6 in the context of genomic instability in UM could be 

relevant. Although, one drawback of the current analysis was the lack of orthogonal 

validation such as Sanger sequencing of the identified mutations, the identification of HAUS6 

variants across multiple samples spanning both the TCGA and WASH-U cohort indicates 

these are less likely to be due to sequencing artefact. These SNVs are present at low allele 

frequencies and only could be picked up by a sensitive mutational caller such as Mutect2. 

The low frequency could reflect genetic heterogeneity due to sub clonal events and can be 

validated experimentally with approaches such as digital PCR. Once validated, the HAUS6 

gene could be further functionally explored to test the link between mutation and 

chromosomal defects that are wide spread in UM. 

While the current knowledge dictates that the dominant driver mutations are the key 

players in UM pathogenesis, other new events such as mutations in novel genes or altered 

pathways contributed by the accompanying copy number alteration identified here, could 
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play a role in tumourigenesis or metastasis. The roles of the newly identified amplification of 

PLECTIN and mutations in the HAUS6 gene warrant further investigation. With respect to 

PLECTIN, that was found to be overexpressed in UMs, the localization of this protein could 

be examined with immunostaining to explore its role as a potential biomarker as previously 

describe in PDACs. PLECTIN are found on chromosome 8q which are associated with 

metastatic outcome, thus the role of PLECTIN in the context of UM progression can also be 

investigated. Functional work elucidating the expression of the protein with Western blots 

followed up with invasion and migration assays will help to demonstrate if there is any link 

with tumour progression. 

The role of chromatin modifier in cancer is beginning to emerge and the role of the 

SWI/SNF complex genes will help uncover new insights into the dysregulation of gene and 

pathways in UMs. SWI/SNF subunits utilize energy from ATP to change the configuration of 

the chromatin by shuffling nucleosomes along DNA which regulates the accessibility of 

DNA to other proteins 391. Mutations affecting the components of the complex can thus 

impair a wide range of effects. In addition, the relationship between BAP1, a component of 

the PRC1 complex and the chromatin remodelling complex could present an interesting area 

of research. Functional work to understand the effect of these mutations can be performed 

with CRISPR gene editing technology to observe the effects of these mutations. Finally, 

studying the role of small non-coding RNA and methylation in UM could further add 

knowledge in understanding the mechanistic insights of UM pathogenesis. Understanding the 

mechanistic basis of these genetic factors will help develop new range of therapeutics and 

help improve patient outcomes. 
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Appendices 
!

Appendix 1 – Listed code used to perform analysis 
!

Code 2.1: ASCAT code for generating allele specific copy number calls for paired and 
unpaired LRR and BAF data. Code adapter from Peter Van Loo et al 298  
(https://www.crick.ac.uk/petervanloo/software/ASCAT) 

 
Code 2.2: Code to run the BWA alignment and the SAM file clean up step. 
 

#ASCAT&steps&for&paired&and&unpaired&data&

#Load&LRR&and&BAF&data

#unpaired&data
ascat.bc =&ascat.loadData("UM=LRR.txt","UM=BAF.txt")&

#paired&data
ascat.bc =&ascat.loadData("UM=Tumor=LRR.txt","UM=Tumor=BAF.txt","UM=Normal.txt",&"UM=Normal=BAF.txt")

#GC&correction
ascat.bc =&ascat.GCcorrect(ascat.bc,&"GC_IlluminaOmniexpress.txt")&

#infer&the&necessary&germline&genotypes& from&the&tumour data&for&unpaired&data
ascat.gg =&ascat.predictGermlineGenotypes(ascat.bc,& "IlluminaCytoSNP")&

#ascat function& to&call&allele&specific&copy&numbers
ascat.bc =&ascat.aspcf(ascat.bc,ascat.gg=ascat.gg)&
ascat.plotSegmentedData(ascat.bc)
ascat.output =&ascat.runAscat(ascat.bc,&pdfPlot =&T)&

#BWA%alignment%%

#"Script"Usage:
if"[""$#""!=""3""];"then
echo";e""Usage"of"the"script:"bash"nga_step1.sh"<read;file1>"<read;file2>"<output;file>"
exit"1

fi

File1=${1}
File2=${2}
File3=${3}"

REF=/data/volume1/bin/reference/hg19m.fa
PICARD=/usr/local/picard.jar

bwa aln ;t"4"$REF"$File1">"${File1}.sai
bwa aln ;t"4"$REF"$File2">"${File2}.sai
bwa sampe ;a"400"$REF"${File1}.sai ${File2}.sai $File1"$File2">"${File3}.sam

java";jar"$PICARD"CleanSam INPUT=${File3}.samOUTPUT=${File3}_c.samVALIDATION_STRINGENCY=LENIENT
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Code 2.3: Post-alignment processing steps on the aligned SAM format file 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#Post&alignment.processing

#"Script"Usage:
if"[""$#""!="”6""];"then
echo"<e""Usage"of"the"script:"bash"nga_step2.sh"<aligned"BAM"file>"<RGID>"<RGLB>"<RGPL>"<RGPU>"<RGSM>""
exit"1

fi

File1=${1}
RGID"="${2}
RGLB"="${3}
RGPL"="${4}"
RGPU"="${5}
RGSM"="${6}"

REF=/data/volume1/bin/reference/hg19m.fa
DB132=/data/volume1/bin/reference/dbsnp_132_reordered.vcf
PICARD=/usr/local/picard.jar
GATK=/home/volume1/bin/GenomeAnalysisTK.jar

java"<jar"$PICARD"SamFormatConverter INPUT=${File1}"OUTPUT=${File1}.bam"

java"<jar"$PICARD"AddOrReplaceReadGroups INPUT=${File1}.bam"OUTPUT=${File1}_nfo.bam RGID=$RGID"RGLB=$RGLB"RGPL=$RGPL"
RGPU=$RGPU"RGSM=$RGSM"

java"<jar"$PICARD"SortSam INPUT=${File1}_nfo.bam OUTPUT=${File1}_nfo_srt.bam SORT_ORDER=coordinate

java"<jar"$PICARD"FixMateInformation INPUT=${File1}_nfo_srt.bam OUTPUT=${File1}_nfo_srt_fix.bam SORT_ORDER=coordinate

java"<jar"$PICARD"MarkDuplicates INPUT=${File1}_nfo_srt_fix.bam OUTPUT=${File1}_nfo_srt_fix_nodup.bam
METRICS_FILE=${File1}_duplicate.txt REMOVE_DUPLICATES=true

java"<jar"$PICARD"BuildBamIndex INPUT=${File1}"OUTPUT=${File1}.bai

java"<jar"$GATK"<T"BaseRecalibrator <I"${File1}_nfo_srt_fix_nodup.bam <R"$REF"<knownSites $DB132"<o"${File1}_recalibration_report.grp

java"<jar"$GATK"<T"PrintReads <R"$REF"<I"${File1}_nfo_srt_fix_nodup.bam –BQSR"${File1}_recalibration_report.grp <o"
${File1}_realn_recal.bam
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Code 2.4: Variant calling with MuTect2: (1) creation of panel of normal; (2) somatic variant 

calling on all tumor samples  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

#MuTect2)variant)calling)– (1)%Creation%of%panel%of%normal

REF=/data/volume1/bin/reference/hg19m.fa
DB132=/data/volume1/bin/reference/dbsnp_132_reordered.vcf
GATK=/home/volume1/bin/GenomeAnalysisTK.jar
interval=/data/volume1/bin/SeqCap_ver2_primary_targets_modified.intervals
filename1="/data/volume4/ocular_melanoma/normalPsamples.txt"

cat%$filename1%|%while%read%Pr%line
do
java%Pjar%$GATK%PT%MuTect2%PR%$REF%Pnct 30%PPartifact_detection_mode PL%$interval%PPdbsnp $DB132%PI:tumor

${line}.bam%Po%${line}.mutect2.output.vcf
done

ls%>%temp
grep%–v%“sample”%temp%>%input_vcf.list
rm temp

java%Pjar%$ GATK%PT%CombineVariants PR%$REF%PV%input_vcf.list PminN 2%PPsetKey "null"% PPfilteredAreUncalled PP
filteredrecordsmergetype KEEP_IF_ANY_UNFILTERED%PL%$interval%Po%MuTect2_PON.vcf

#MuTect2)variant)calling)– (2)$Somatic$variant$calling

REF=/data/volume1/bin/reference/hg19m.fa
DB132=/data/volume1/bin/reference/dbsnp_132_reordered.vcf
GATK=/home/volume1/bin/GenomeAnalysisTK.jar
interval=/data/volume1/bin/SeqCap_ver2_primary_targets_modified.intervals
cosmic=/data/volume1/bin/hg19_cosmic.vcf
pon=/data/volume4/ocular_melanoma/MuTect2_PON.vcf

filename="/data/volume4/ocular_melanoma/tumorSsamples.txt"

cat$$filename$|$while$read$Sr$line
do
java$Sjar$$GATK$ST$MuTect2$SR$$REF$SI:tumor ${line}.bam$SSnormal_panel $pon SSdbsnp $DB132$SScosmic$$cosmic$SL$
$interval$So$${line}.mutect2.tumor.output.vcf
done
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Code 2.5: Variant calling with HaplotypeCaller 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

#HaplotypeCaller variant/calling

REF=/data/volume1/bin/reference/hg19m.fa
DB132=/data/volume1/bin/reference/dbsnp_132_reordered.vcf
GATK=/home/volume1/bin/GenomeAnalysisTK.jar
interval=/data/volume1/bin/SeqCap_ver2_primary_targets_modified.intervals
filename="/data/volume4/ocular_melanoma/tumorLandLnormalLsamples.txt"

catN$filenameN|NwhileNreadNLrNline
do
javaNLjarN$GATKNLIN${File1}.bamNLRN$REFNLTNHaplotypeCaller LLN$intervalNLLdbsnp $DB132NLLemitRefConfidence GVCFNLL
variant_index_type LINEARNLLvariant_index_parameter 128000NLoN${File1}.raw.snps.indels.g.vcf
done

lsN>Ntemp
grepN–vN“sample”NtempN>Ninput_vcf.list
rm temp

#NAfterNgeneratingNallNtheNgVCFs
javaNLjarN$GATKNLRN$REFNLTNGenotypeGVCFs LVNinput_gvcf.list LLdbsnp $DB132NLoNHC_output.vcf
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Code 2.6: RNA-seq variant calling steps; variant calling performed with HaplotypeCaller 
(ref code 2.5) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#RNA%seq variant/calling

GATK=/home/volume1/bin/GenomeAnalysisTK.jar
STAR1=/home/volume1/bin/STAR:STAR_2.4.1d/source/STAR
REF=/data/volume1/bin/reference/hg19m.fa
GENOMEDIR=/data/volume1/UM:RNA:Seq:expression/STAR:reference:index/GRCh37:reference/
REFERENCE=/data/volume1/bin/STAR:reference:index/GRCh37:reference/Homo_sapiens.GRCh37.75.dna.fa
GENECODE_ANNO=/data/volume1/bin/STAR:reference:index/GRCh37:reference/Homo_sapiens.GRCh37.75.gtf
SJDBFILE=/data/volume1/bin/STAR:reference:index/ucsc_intron_coordinate_modified.txt

#XScriptXUsage:
ifX[X"$#"X!=X"3"X];Xthen
echoX:eX"UsageXofXtheXscript:XbashXnga_step5.shX<read:file1>X<read:file2>X<output:file>"
exitX1

fi

File1=${1}
File2=${2}
File3=${3}X

$STAR1X::runThreadN 4X::genomeDir $GENOMEDIRX::readFilesIn $File1X$File2X::sjdbGTFfile $GENECODE_ANNOX:sjdbOverhang 75X::
outSAMtype BAMXSortedByCoordinate ::outFileNamePrefix ${File3}

$STAR1X::runThreadN 4X::runMode genomeGenerate ::genomeDir $GENOMEDIRX::genomeFastaFiles $REFERENCEX::sjdbFileChrStartEnd
$SJDBFILEX${File3}SJ.out.tab ::sjdbOverhang 75X::outFileNamePrefix ${File3}_2_pass_step1

$STAR1X::runThreadN 4X::genomeDir $GENOMEDIRX::readFilesIn $File1X$File2X::outSAMtype BAMXSortedByCoordinate ::
outFileNamePrefix ${File3}_2_pass_step2

javaX:jarX$PICARDXAddOrReplaceReadGroups INPUT=${File3}_2_pass_step2.bamXOUTPUT= ${File3}_2_pass_step2_nfo.bamXRGID=$RGIDX
RGLB=$RGLBXRGPL=$RGPLXRGPU=$RGPUXRGSM=$RGSMX

javaX:jarX$PICARDXSortSam INPUT=${File1}_2_pass_step2_nfo.bam OUTPUT=${File1}_2_pass_step2_nfo_srt.bam
SORT_ORDER=coordinate

javaX:jarX$PICARDXMarkDuplicates INPUT=${File1}_2_pass_step2_nfo_srt.bam OUTPUT=${File1} _2_pass_step2_nfo_srt_fix_nodup.bam
METRICS_FILE=${File1}_duplicate.txt REMOVE_DUPLICATES=true

javaX:jarX$GATK :TXSplitNCigarReads :RX$REFX:IX${File1} _2_pass_step2_nfo_srt_fix_nodup.bam :oX${File1}_split.bam :rf
ReassignOneMappingQuality :RMQFX255X:RMQTX60X:UXALLOW_N_CIGAR_READS

javaX:jarX$GATKX:TXBaseRecalibrator :IX${File1}_split.bam :RX$REFX:knownSites $DB132X:oX${File1}_split_recalibration_report.grp

javaX:jarX$GATKX:TXPrintReads :RX$REFX:IX${File1}_split.bam –BQSRX${File1}_split_recalibration_report.grp :oX${File1}_split_recal.bam
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Code 2.7: Variant annotation  
!

!

Appendix 2 - GISTIC analysis re-run with q-value threshold of 

0.05  
!
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Comparison of peaks between three independent analysis with q-value of 0.05. The number 

of amplification and deletion peaks     were higher for CC and WASHU cohorts compared to 

TCGA. This difference could be due to platform specific effects since data for each of the 

cohorts were   generated using different array platforms.

#Variant(annotation

DB=/data/volume1/bin/resources/oncotator_v1_ds_Jan262014
oncotator ;v<;;input_format=VCF<;;output_format=TCGAMAF<;;db;dir $DB<input.vcf output.maf.annotatedhg19<

#ANNOVAR
perl convert2annovar.pl<;format<vcf4old<HC_output.vcf ;outfile HC_output.vcf.avinput
perl annotate_variation.pl ;geneanno;buildver hg19<HC_output.vcf.avinput humandb/
perl annotate_variation.pl ;regionanno;dbtype cytoBand ;buildver hg19<HC_output.vcf.avinput humandb/
perl annotate_variation.pl ;filter<;dbtype exac03<;buildver hg19<HC_output.vcf.avinput humandb/
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Appendix 3 - GISTIC defined recurrent copy number 

amplification and deletions shared between UM and other solid 

cancers shown in the image from UCSC genome browser.  
 

Figure 1A-E showing partial overlapping amplification peaks. The amplification peaks and 

frequency of alteration in our cohort are as follows: 1q44 (16%), 6q25.2 peak 1 (52%), 

6q25.2 peak2 (50%) and 8q24.3 peak 1 & 2 (74%). UM amplification peaks indicated in Red 

and peaks from other pan cancers indicated in brown. Figure 2A-J showing partial 

overlapping deletion peaks. The deletion peaks and frequency of alteration in our cohort are 

as follows: 6q16.2 peak 1 & 2 (37% & 35%), 1p13.1 (20%), 1p35.3 (34%), 4q35.1 (23%), 

7q35 (19%), 8p11.2 peak 1, 2 & 3 (27%, 28% & 30%), 8p21.2 (35%), 11q24.3 peaks 1, 2 & 

3 (16%, 11% & 10%) and 16q24.3 (24%). Deletion peaks are indicated in blue and peaks 

from other solid cancers indicated in purple. 
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1A) Amplification Peak: Chromosome 1q44 

1B) Amplification Peak: 6q25.2-peak1 

 
1C) Amplification Peak: 6q25.2 –peak2 

 
1D) Amplification Peak: 8q24.3 - peak1 

1E) Amplification Peak: 8q24.3 – peak2 
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2A) Deletion Peak: Chromosome 6q16.2 – peak1 & peak2 

 
2B) Deletion Peak: Chromosome 1p13.1 
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2C) Deletion Peak: Chromosome 1p35.3 

2D) Deletion Peak: Chromosome 4q35.1 
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2E) Deletion Peak: Chromosome 6q22.1 
 

 
2F) Deletion Peak: Chromosome 7q35 
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2G) Deletion Peak: Chromosome 8p11.2 
 

 
2H) Deletion Peak: Chromosome 8p21.2 
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2I) Deletion Peak: Chromosome 11q24.3 
 

 
2J) Deletion Peak: Chromosome 16q24.3 
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Appendix 4 – Variant table for all significant genes from MutSigCV analysis  

 
Gene! Sampl

e!with!
mutati
on!

Cohort! Chr
om
oso
me!

Start! End! Variant_Classific
ation!

Var
iant
_Ty
pe!

Referen
ce!allele!

Mu
tan
t!
alle
le!

Muta
nt!
allele!
frequ
ency!!

Protein!
change!

CADD!
score!

Keep/Discard!variants!
with!reason!for!
discarding!variant!!

AOC3! A9EL! TCGA! 17! 41003601! 41003603! In_Frame_Del! DEL! CCA! <! 0.030! p.P81del! ! Discard,!recurrent!Indel!in!
single!cohort!<!likely!artefact!

AOC3! A87Y! TCGA! 17! 41003602! 41003603! Frame_Shift_Del! DEL! CA! <! 0.047! p.P81fs! ! Discard,!recurrent!Indel!in!
single!cohort!<!likely!artefact!

AOC3! A880! TCGA! 17! 41003602! 41003603! Frame_Shift_Del! DEL! CA! <! 0.090! p.P81fs! ! Discard,!recurrent!Indel!in!
single!cohort!<!likely!artefact!

AOC3! A9E5! TCGA! 17! 41003602! 41003603! Frame_Shift_Del! DEL! CA! <! 0.116! p.P81fs! ! Discard,!recurrent!Indel!in!
single!cohort!<!likely!artefact!

AOC3! A9EO! TCGA! 17! 41003602! 41003603! Frame_Shift_Del! DEL! CA! <! 0.064! p.P81fs! ! Discard,!recurrent!Indel!in!
single!cohort!<!likely!artefact!

AOC3! A9EX! TCGA! 17! 41003602! 41003603! Frame_Shift_Del! DEL! CA! <! 0.064! p.P81fs! ! Discard,!recurrent!Indel!in!
single!cohort!<!likely!artefact!

AOC3! AA8Q! TCGA! 17! 41003602! 41003603! Frame_Shift_Del! DEL! CA! <! 0.070! p.P81fs! ! Discard,!recurrent!Indel!in!
single!cohort!<!likely!artefact!

AOC3! AA8S! TCGA! 17! 41003602! 41003603! Frame_Shift_Del! DEL! CA! <! 0.039! p.P81fs! ! Discard,!recurrent!Indel!in!
single!cohort!<!likely!artefact!

AOC3! A9EW! TCGA! 17! 41003704! 41003704! Missense_Mutation! SNP! G! C! 0.500! p.R115T! 8.491! Discard,!CADD!<!10!
AOC3! MM127! WASH<U! 17! 41008337! 41008337! Missense_Mutation! SNP! G! A! 0.480! p.A688T! 19.14! Keep!
BAP1! MM103! WASH<U! 3! 52436306! 52436306! Nonstop_Mutation! SNP! A! T! 0.867! p.*730R! 17.92! Keep!,!Known!driver!
BAP1! MM098! WASH<U! 3! 52436617! 52436617! Splice_Site! SNP! C! T! 0.492! 0.000! 16.16! Keep!,!Known!driver!
BAP1! A9EO! TCGA! 3! 52436620! 52436620! Missense_Mutation! SNP! T! A! 0.977! p.E685V! 20.9! Keep!,!Known!driver!
BAP1! A9EI! TCGA! 3! 52436650! 52436659! Frame_Shift_Del! DEL! ATGAACTCAT! <! 0.767! p.DEFI672fs! ! Keep!,!Known!driver!
BAP1! MM046! WASH<U! 3! 52436865! 52436868! Frame_Shift_Del! DEL! CACT! <! 0.857! p.KC637fs! ! Keep!,!Known!driver!
BAP1! A985! TCGA! 3! 52437189! 52437217! Frame_Shift_Del! DEL! CAGGCCTCAC

CATCCCCGTCT
TCTCTCTG!

<! 0.800! p.SREKTGMVR
PG609fs!

! Keep!,!Known!driver!

BAP1! MM162! WASH<U! 3! 52437431! 52437431! Splice_Site! SNP! C! G! 0.855! 0.000! 17.27! Keep!,!Known!driver!
BAP1! AA8T! TCGA! 3! 52437669! 52437670! Frame_Shift_Ins! INS! <! A! 0.909! p.E498fs! ! Keep!,!Known!driver!
BAP1! A8KN! TCGA! 3! 52437802! 52437803! Frame_Shift_Del! DEL! TT! <! 0.875! p.K453fs! ! Keep!,!Known!driver!
BAP1! A9EU! TCGA! 3! 52437840! 52437840! Nonsense_Mutation! SNP! G! A! 0.875! p.Q441*! 16.83! Keep!,!Known!driver!
BAP1! A984! TCGA! 3! 52437899! 52437899! Frame_Shift_Del! DEL! T! <! 0.783! p.K421fs! ! Keep!,!Known!driver!



! 197!

BAP1! A980! TCGA! 3! 52439229! 52439229! Frame_Shift_Del! DEL! G! <! 0.286! p.P339fs! ! Keep!,!Known!driver!
BAP1! MM070! WASH<U! 3! 52439264! 52439274! Frame_Shift_Del! DEL! GTGGGA

TGGGG!
<! 0.900! p.APSH323fs! ! Keep!,!Known!driver!

BAP1! MM161! WASH<U! 3! 52439813! 52439814! Frame_Shift_Del! DEL! CT! <! 0.667! p.R300fs! ! Keep!,!Known!driver!
BAP1! A9EV! TCGA! 3! 52440323! 52440363! Frame_Shift_Del! DEL! GGCCTCATA

CTTGATCCTG
CGGTCGGGC
ACCACTGCCA
TCA!

<! 0.423! p.LMAVVPDRRI
KYEA230fs!

! Keep!,!Known!driver!

BAP1! A9EF! TCGA! 3! 52440383! 52440383! Nonsense_Mutation! SNP! G! C! 0.975! p.Y223*! 39! Keep!,!Known!driver!
BAP1! MM056! WASH<U! 3! 52440916! 52440916! Nonsense_Mutation! SNP! C! T! 1.000! p.W196*! 39! Keep!,!Known!driver!
BAP1! MM151! WASH<U! 3! 52440917! 52440925! Splice_Site! DEL! CAGGGC

CCT!
<! 0.933! p.EGP194del! ! Keep!,!Known!driver!

BAP1! AA9A! TCGA! 3! 52441217! 52441217! Missense_Mutation! SNP! C! G! 1.000! p.G185R! 33! Keep!,!Known!driver!
BAP1! A888! TCGA! 3! 52441252! 52441252! Missense_Mutation! SNP! T! C! 0.160! p.Y173C! 24.1! Keep!,!Known!driver!
BAP1! MM066! WASH<U! 3! 52441263! 52441263! Missense_Mutation! SNP! G! C! 0.500! p.H169Q! 18.26! Keep!,!Known!driver!
BAP1! A9EE! TCGA! 3! 52441417! 52441418! Frame_Shift_Ins! INS! <! AAGGC

AAAGC
TTCA!

0.222! p.<145fs! ! Keep!,!Known!driver!

BAP1! MM121! WASH<U! 3! 52441470! 52441470! Missense_Mutation! SNP! C! G! 0.310! p.G128R! 27.6! Keep!,!Known!driver!

BAP1! A8KK! TCGA! 3! 52441978! 52441978! Frame_Shift_Del! DEL! G! <! 0.850! p.P124fs! ! Keep!,!Known!driver!
BAP1! MM116! WASH<U! 3! 52441995! 52441995! Frame_Shift_Del! DEL! G! <! 0.900! p.F118fs! ! Keep!,!Known!driver!
BAP1! AA8N! TCGA! 3! 52442512! 52442512! Missense_Mutation! SNP! T! C! 0.778! p.N78S! 20! Keep!,!Known!driver!
BAP1! A9F8! TCGA! 3! 52442542! 52442542! Missense_Mutation! SNP! T! C! 0.923! p.D68G! 19.57! Keep!,!Known!driver!
BAP1! A88A! TCGA! 3! 52442548! 52442579! Frame_Shift_Del! DEL! ACCAAGGTA

GAGACCTTTC
GCCGGGACC
GGCG!

<! 1.000! p.RRSRRKVSTL
V56fs!

! Keep!,!Known!driver!

BAP1! MM120! WASH<U! 3! 52442600! 52442600! Frame_Shift_Del! DEL! G! <! 0.810! p.L49fs! ! Keep,!Known!driver!
BAP1! A9EX! TCGA! 3! 52443574! 52443574! Nonsense_Mutation! SNP! G! A! 0.809! p.Q40*! 34! Keep!,!Known!driver!
BAP1! A9F1! TCGA! 3! 52443593! 52443593! Nonsense_Mutation! SNP! G! C! 0.743! p.Y33*! 28.4! Keep!,!Known!driver!
BAP1! A8KL! TCGA! 3! 52443612! 52443613! Frame_Shift_Ins! INS! <! C! 0.928! p.V27fs! ! Keep!,!Known!driver!
BAP1! MM100! WASH<U! 3! 52443748! 52443782! Splice_Site! DEL! GGGTGAAGA

GGCCTGGGT
GGGGCGACA
AGAGGAGG!

<! 0.500! p.ASSCR13fs! ! Keep!,!Known!driver!

BAP1! MM179! WASH<U! 3! 52443876! 52443876! Nonsense_Mutation! SNP! C! A! 1.000! p.E7*! 37! Keep!,!Known!driver!
BAP1! MM179! WASH<U! 3! 52443877! 52443877! Silent! SNP! C! A! 1.000! p.L6L! ! Discard!<!Silent!variant!
C7orf49! A8KD! TCGA! 7! 134851406! 134851408! In_Frame_Del! DEL! TCC! <! 0.032! p.143_144EE>E! ! Discard,!recurrent!Indel!<!likely!

artefact!
C7orf49! A9EH! TCGA! 7! 134851406! 134851408! In_Frame_Del! DEL! TCC! <! 0.032! p.143_144EE>E! ! Discard,!recurrent!Indel!<!likely!

artefact!
C7orf49! A983! TCGA! 7! 134851408! 134851409! In_Frame_Ins! INS! <! TCC! 0.537! p.143_143E>EE! ! Discard,!recurrent!Indel!<!likely!

artefact!
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DNAJB7! MM038! WASH<U! 22! 41257836! 41257836! Missense_Mutation! SNP! C! T! 0.042! p.V55I! 24.5! Discard,!same!cohort!<!
recurrent!SNP!

DNAJB7! MM038! WASH<U! 22! 41257836! 41257836! Missense_Mutation! SNP! C! G! 0.042! p.V55L! 27.4! Discard,!same!cohort!<!
recurrent!SNP!

DNAJB7! MM050! WASH<U! 22! 41257836! 41257836! Missense_Mutation! SNP! C! G! 0.048! p.V55L! 27.4! Discard,!same!cohort!<!
recurrent!SNP!

DNAJB7! MM070! WASH<U! 22! 41257836! 41257836! Missense_Mutation! SNP! C! T! 0.056! p.V55I! 24.5! Discard,!same!cohort!<!
recurrent!SNP!

DNAJB7! MM080! WASH<U! 22! 41257836! 41257836! Missense_Mutation! SNP! C! T! 0.041! p.V55I! 24.5! Discard,!same!cohort!<!
recurrent!SNP!

DNAJB7! MM134! WASH<U! 22! 41257836! 41257836! Missense_Mutation! SNP! C! T! 0.045! p.V55I! 24.5! Discard,!same!cohort!<!
recurrent!SNP!

DNAJB7! AA8S! TCGA! 22! 41257997! 41257997! Start_Codon_SNP! SNP! A! G! 0.543! p.M1T! 13.65! Keep!
EIF1AX! A9ZY! TCGA! X! 20152122! 20152122! Missense_Mutation! SNP! A! T! 0.923! p.W70R! 22.5! Keep!,!Known!driver!
EIF1AX! A87U! TCGA! X! 20156713! 20156713! Missense_Mutation! SNP! C! T! 1.000! p.G15D! 18.11! Keep!,!Known!driver!
EIF1AX! A9F7! TCGA! X! 20156713! 20156713! Missense_Mutation! SNP! C! T! 0.225! p.G15D! 18.11! Keep!,!Known!driver!
EIF1AX! A9EC! TCGA! X! 20156731! 20156731! Missense_Mutation! SNP! C! T! 0.558! p.G9D! 18.41! Keep!,!Known!driver!
EIF1AX! MM078! WASH<U! X! 20156731! 20156731! Missense_Mutation! SNP! C! A! 1.000! p.G9V! 17.25! Keep!,!Known!driver!
EIF1AX! MM159! WASH<U! X! 20156731! 20156731! Missense_Mutation! SNP! C! G! 1.000! p.G9A! 16.97! Keep!,!Known!driver!
EIF1AX! A8KE! TCGA! X! 20156732! 20156732! Missense_Mutation! SNP! C! G! 0.879! p.G9R! 17.8! Keep!,!Known!driver!
EIF1AX! A884! TCGA! X! 20156735! 20156735! Missense_Mutation! SNP! C! G! 0.530! p.G8R! 18.33! Keep!,!Known!driver!
EIF1AX! A8KO! TCGA! X! 20156735! 20156737! In_Frame_Del! DEL! CTT! <! 1.000! p.7_8KG>R! ! Keep!,!Known!driver!
EIF1AX! A9EY! TCGA! X! 20156735! 20156735! Missense_Mutation! SNP! C! T! 0.417! p.G8R! 18.91! Keep!,!Known!driver!
EIF1AX! A880! TCGA! X! 20156740! 20156740! Splice_Site! SNP! C! T! 0.931! p.G6D! 18.74! Keep!,!Known!driver!
EIF1AX! AA8R! TCGA! X! 20156740! 20156740! Splice_Site! SNP! C! T! 0.900! p.G6D! 18.74! Keep!,!Known!driver!
EIF1AX! MM086! WASH<U! X! 20156740! 20156740! Splice_Site! SNP! C! T! 1.000! p.G6D! 18.74! Keep!,!Known!driver!
EIF1AX! MM038! WASH<U! X! 20156741! 20156741! Splice_Site! SNP! C! T! 0.836! 0.000! 19.87! Keep!,!Known!driver!
EIF1AX! MM105! WASH<U! X! 20156742! 20156742! Splice_Site! SNP! T! C! 0.800! 0.000! 18.5! Keep!,!Known!driver!
EIF1AX! MM018! WASH<U! X! 20159749! 20159749! Missense_Mutation! SNP! T! A! 1.000! p.N4Y! 16.34! Keep!,!Known!driver!
EIF1AX! MM050! WASH<U! X! 20159752! 20159752! Missense_Mutation! SNP! T! C! 0.333! p.K3E! 18.92! Keep!,!Known!driver!
FAM133B! MM016! WASH<U! 7! 92195326! 92195326! Splice_Site! SNP! G! T! 0.994! 0.000! 18.93|18

.93!
Keep!

FAM133B! MM055! WASH<U! 7! 92195342! 92195342! Nonsense_Mutation! SNP! G! A! 0.023! p.R215*! 19.59! Discard,!same!cohort!<!
recurrent!SNP!

FAM133B! MM065! WASH<U! 7! 92195342! 92195342! Nonsense_Mutation! SNP! G! A! 0.015! p.R215*! 19.59! Discard,!same!cohort!<!
recurrent!SNP!

FAM133B! MM080! WASH<U! 7! 92195342! 92195342! Nonsense_Mutation! SNP! G! A! 1.000! p.R215*! 19.59! Discard,!same!cohort!<!
recurrent!SNP,!read!depth!=1!

GNA11! A985! TCGA! 19! 3115012! 3115012! Missense_Mutation! SNP! C! T! 0.451! p.R183C! 20.4! Keep!,!Known!driver!
GNA11! MM138! WASH<U! 19! 3115012! 3115012! Missense_Mutation! SNP! C! T! 0.509! p.R183C! 20.4! Keep!,!Known!driver!
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GNA11! A87W! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.370! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A87Y! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.269! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A881! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.465! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A882! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.385! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A884! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.483! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A888! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.340! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A88A! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.391! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A8K8! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.479! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A8KA! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.389! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A8KF! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.465! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A8KG! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.457! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A8KH! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.517! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A8KL! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.364! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A980! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.219! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A9E8! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.341! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A9EF! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.525! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A9EH! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.563! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A9EI! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.365! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A9EJ! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.491! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A9EQ! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.339! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A9ET! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.429! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A9EU! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.267! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A9EV! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.278! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A9F3! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.393! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A9F5! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.455! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A9F7! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.525! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A9ZX! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.407! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! A9ZY! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.441! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! AA8N! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.378! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! AA8P! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.440! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! AA8R! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.492! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! AA8T! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.383! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! AA9A! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.333! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! AB0B! TCGA! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.384! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! MM048! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.333! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! MM049! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.517! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! MM066! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.400! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! MM085! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.461! p.Q209L! 15.05! Keep!,!Known!driver!
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GNA11! MM098! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.384! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! MM100! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.324! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! MM103! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.471! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! MM105! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.450! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! MM113! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.758! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! MM120! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.506! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! MM131! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.417! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! MM134! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.459! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! MM159! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.493! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! MM161! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.303! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! MM162! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.532! p.Q209L! 15.05! Keep!,!Known!driver!
GNA11! MM179! WASH<U! 19! 3118942! 3118942! Missense_Mutation! SNP! A! T! 0.608! p.Q209L! 15.05! Keep!,!Known!driver!
GNAQ! A87T! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.485! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A87U! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.473! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A880! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.522! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! A883! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.381! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A885! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.444! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A8K7! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.409! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! A8K9! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.435! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A8KB! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.533! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A8KE! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.636! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A8KK! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.336! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A8KM! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.231! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A8KN! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.351! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A8KO! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.456! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! A983! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.417! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A9E5! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.316! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A9E7! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.537! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! A9E9! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.450! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A9EA! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.513! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! A9EC! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.488! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A9EE! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.542! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A9EK! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.432! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A9EL! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.422! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! A9EM! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.291! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! A9EO! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.323! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A9EW! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.4! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A9EX! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.441! p.Q209P! 25.2! Keep!,!Known!driver!
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GNAQ! A9EY! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.532! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A9EZ! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.575! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A9F0! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.429! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! A9F1! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.405! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A9F2! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.463! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! A9F4! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.459! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A9F8! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.459! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! AA8M! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.481! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! AA8Q! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.301! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! AA8S! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.644! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! AA9E! TCGA! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.435! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! MM016! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.542! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! MM032! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! C! 0.556! p.Q209R! 28! Keep!,!Known!driver!
GNAQ! MM038! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.407! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! MM046! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.488! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! MM050! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.286! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! MM056! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.548! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! MM065! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.652! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! MM070! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.337! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! MM078! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.462! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! MM080! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.559! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! MM086! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.667! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! MM089! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.214! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! MM101! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.5! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! MM116! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.273! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! MM133! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! A! 0.654! p.Q209L! 29.2! Keep!,!Known!driver!
GNAQ! MM134! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.018! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! MM150! WASH<U! 9! 80409488! 80409488! Missense_Mutation! SNP! T! G! 0.359! p.Q209P! 25.2! Keep!,!Known!driver!
GNAQ! A985! TCGA! 9! 80412493! 80412493! Missense_Mutation! SNP! C! T! 0.065! p.R183Q! 37! Keep!,!Known!driver!
GNAQ! A9ES! TCGA! 9! 80412493! 80412493! Missense_Mutation! SNP! C! T! 0.578! p.R183Q! 37! Keep!,!Known!driver!
GNAQ! A8KI! TCGA! 9! 80537255! 80537255! Missense_Mutation! SNP! C! A! 0.380! p.G48V! 26.8! Keep!,!Known!driver!
GNAQ! A8KI! TCGA! 9! 80537256! 80537256! Nonsense_Mutation! SNP! C! A! 0.372! p.G48*! 39! Keep!,!Known!driver!
HAUS6! A8K7! TCGA! 9! 19058431! 19058431! Missense_Mutation! SNP! T! G! 0.500! p.E778D! 14.52! Keep!
HAUS6! A884! TCGA! 9! 19060087! 19060087! Missense_Mutation! SNP! C! G! 0.070! p.L588F! 16.52! Keep!
HAUS6! A8KJ! TCGA! 9! 19060087! 19060087! Missense_Mutation! SNP! C! G! 0.065! p.L588F! 16.52! Keep!
HAUS6! A982! TCGA! 9! 19060087! 19060087! Missense_Mutation! SNP! C! G! 0.056! p.L588F! 16.52! Keep!
HAUS6! A985! TCGA! 9! 19060087! 19060087! Missense_Mutation! SNP! C! G! 0.103! p.L588F! 16.52! Keep!
HAUS6! A9E5! TCGA! 9! 19060087! 19060087! Missense_Mutation! SNP! C! G! 0.048! p.L588F! 16.52! Keep!
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HAUS6! A9E8! TCGA! 9! 19060087! 19060087! Missense_Mutation! SNP! C! G! 0.130! p.L588F! 16.52! Keep!
HAUS6! A9E9! TCGA! 9! 19060087! 19060087! Missense_Mutation! SNP! C! G! 0.044! p.L588F! 16.52! Keep!
HAUS6! A9EH! TCGA! 9! 19060087! 19060087! Missense_Mutation! SNP! C! G! 0.125! p.L588F! 16.52! Keep!
HAUS6! A9EM! TCGA! 9! 19060087! 19060087! Missense_Mutation! SNP! C! G! 0.071! p.L588F! 16.52! Keep!
HAUS6! AA8O! TCGA! 9! 19060087! 19060087! Missense_Mutation! SNP! C! G! 0.111! p.L588F! 16.52! Keep!
HAUS6! MM080! WASH<U! 9! 19060087! 19060087! Missense_Mutation! SNP! C! G! 0.029! p.L588F! 16.52! Keep!
HAUS6! MM113! WASH<U! 9! 19060087! 19060087! Missense_Mutation! SNP! C! G! 0.111! p.L588F! 16.52! Keep!
HAUS6! MM138! WASH<U! 9! 19060087! 19060087! Missense_Mutation! SNP! C! G! 0.091! p.L588F! 16.52! Keep!

HAUS6! MM101! WASH<U! 9! 19102559! 19102559! Missense_Mutation! SNP! C! A! 0.115! p.A31S! 2.492! Discard,!CADD!<!10!
HDGFRP3! A884! TCGA! 15! 83819992! 83819993! Frame_Shift_Ins! INS! <! AAAA

AAA!
0.026! p.S194fs! ! Discard,!recurrent!Indel!in!

single!cohort!<!likely!artefact!
HDGFRP3! A8KI! TCGA! 15! 83819992! 83819993! Frame_Shift_Ins! INS! <! AAAA

AAAA!
0.023! p.S194fs! ! Discard,!recurrent!Indel!in!

single!cohort!<!likely!artefact!
HDGFRP3! A8KM! TCGA! 15! 83819992! 83819993! Frame_Shift_Ins! INS! <! AAAA

AAAA!
0.037! p.S194fs! ! Discard,!recurrent!Indel!in!

single!cohort!<!likely!artefact!
HDGFRP3! A9EX! TCGA! 15! 83819992! 83819993! Frame_Shift_Ins! INS! <! AAAA

AAA!
0.021! p.S194fs! ! Discard,!recurrent!Indel!in!

single!cohort!<!likely!artefact!
HDGFRP3! A9F0! TCGA! 15! 83819992! 83819993! Frame_Shift_Ins! INS! <! AAAA

AAAA!
0.043! p.S194fs! ! Discard,!recurrent!Indel!in!

single!cohort!<!likely!artefact!
HDGFRP3! A9EQ! TCGA! 15! 83819996! 83819996! Missense_Mutation! SNP! T! C! 0.384! p.T193A! 7.809! Discard,!CADD!<!10!
KIAA2013! A8KF! TCGA! 1! 11983371! 11983371! Silent! SNP! C! A! 0.103! p.G403G! ! Discard!<!Silent!variant!
KIAA2013! A87T! TCGA! 1! 11985396! 11985396! Missense_Mutation! SNP! A! G! 0.040! p.L300P! 11.11! Discard,!recurrent!SNP!in!single!

cohort!!<likely!artefact!
KIAA2013! A87Y! TCGA! 1! 11985396! 11985396! Missense_Mutation! SNP! A! G! 0.036! p.L300P! 11.11! Discard,!recurrent!SNP!in!single!

cohort!!<likely!artefact!
KIAA2013! A8K8! TCGA! 1! 11985396! 11985396! Missense_Mutation! SNP! A! G! 0.060! p.L300P! 11.11! Discard,!recurrent!SNP!in!single!

cohort!!<likely!artefact!
KIAA2013! A8KH! TCGA! 1! 11985396! 11985396! Missense_Mutation! SNP! A! G! 0.106! p.L300P! 11.11! Discard,!recurrent!SNP!in!single!

cohort!!<likely!artefact!
KIAA2013! A8KI! TCGA! 1! 11985396! 11985396! Missense_Mutation! SNP! A! G! 0.054! p.L300P! 11.11! Discard,!recurrent!SNP!in!single!

cohort!!<likely!artefact!
KIAA2013! A8KO! TCGA! 1! 11985396! 11985396! Missense_Mutation! SNP! A! G! 0.041! p.L300P! 11.11! Discard,!recurrent!SNP!in!single!

cohort!!<likely!artefact!
KIAA2013! A983! TCGA! 1! 11985396! 11985396! Missense_Mutation! SNP! A! G! 0.046! p.L300P! 11.11! Discard,!recurrent!SNP!in!single!

cohort!!<likely!artefact!
KIAA2013! A9EL! TCGA! 1! 11985396! 11985396! Missense_Mutation! SNP! A! G! 0.056! p.L300P! 11.11! Discard,!recurrent!SNP!in!single!

cohort!!<likely!artefact!
KIAA2013! A9ES! TCGA! 1! 11985396! 11985396! Missense_Mutation! SNP! A! G! 0.098! p.L300P! 11.11! Discard,!recurrent!SNP!in!single!

cohort!!<likely!artefact!
KIAA2013! A9EZ! TCGA! 1! 11985396! 11985396! Missense_Mutation! SNP! A! G! 0.073! p.L300P! 11.11! Discard,!recurrent!SNP!in!single!

cohort!!<likely!artefact!



! 203!

KIAA2013! A9F5! TCGA! 1! 11985396! 11985396! Missense_Mutation! SNP! A! G! 0.079! p.L300P! 11.11! Discard,!recurrent!SNP!in!single!
cohort!!<likely!artefact!

KIAA2013! A9ZX! TCGA! 1! 11985396! 11985396! Missense_Mutation! SNP! A! G! 0.054! p.L300P! 11.11! Discard,!recurrent!SNP!in!single!
cohort!!<likely!artefact!

KIAA2013! AA8T! TCGA! 1! 11985396! 11985396! Missense_Mutation! SNP! A! G! 0.143! p.L300P! 11.11! Discard,!recurrent!SNP!in!single!
cohort!!<likely!artefact!

KIAA2013! AA9E! TCGA! 1! 11985396! 11985396! Missense_Mutation! SNP! A! G! 0.118! p.L300P! 11.11! Discard,!recurrent!SNP!in!single!
cohort!!<likely!artefact!

LCE2A! A888! TCGA! 1! 152671515! 152671556! In_Frame_Del! DEL! CAGCTCTGG
GGGCTGCTG
CGGCTCCAG
CTCTGGGGG
CTGCTG!

<! 0.021! p.SSGGCCGSSS
GGCC47del!

! Discard,!recurrent!Indel!<!likely!
artefact,!seen!in!only!single!
cohort!

LCE2A! A8K7! TCGA! 1! 152671515! 152671556! In_Frame_Del! DEL! CAGCTCTGG
GGGCTGCTG
CGGCTCCAG
CTCTGGGGG
CTGCTG!

<! 0.023! p.SSGGCCGSSS
GGCC47del!

! Discard,!recurrent!Indel!<!likely!
artefact,!seen!in!only!single!
cohort!

LCE2A! A8KB! TCGA! 1! 152671515! 152671556! In_Frame_Del! DEL! CAGCTCTGG
GGGCTGCTG
CGGCTCCAG
CTCTGGGGG
CTGCTG!

<! 0.013! p.SSGGCCGSSS
GGCC47del!

! Discard,!recurrent!Indel!<!likely!
artefact,!seen!in!only!single!
cohort!

LCE2A! A8KD! TCGA! 1! 152671515! 152671556! In_Frame_Del! DEL! CAGCTCTGG
GGGCTGCTG
CGGCTCCAG
CTCTGGGGG
CTGCTG!

<! 0.011! p.SSGGCCGSSS
GGCC47del!

! Discard,!recurrent!Indel!<!likely!
artefact,!seen!in!only!single!
cohort!

LCE2A! AB0B! TCGA! 1! 152671515! 152671556! In_Frame_Del! DEL! CAGCTCTGG
GGGCTGCTG
CGGCTCCAG
CTCTGGGGG
CTGCTG!

<! 0.016! p.SSGGCCGSSS
GGCC47del!

! Discard,!recurrent!Indel!<!likely!
artefact,!seen!in!only!single!
cohort!

MFF! A8KD! TCGA! 2! 228197195! 228197195! Missense_Mutation! SNP! C! T! 0.466! p.P81L! 22.5! Keep!
MFF! A885! TCGA! 2! 228197303! 228197304! Splice_Site! INS! <! AATC

CG!
1.000! p.118_119insR

I!
! Discard,!recurrent!Indel!<!likely!

artefact!

MFF! MM089! WASH<U! 2! 228197303! 228197304! Splice_Site! INS! <! AATC
CG!

0.037! p.118_119insR
I!

! Discard,!recurrent!Indel!<!likely!
artefact!

MFF! MM133! WASH<U! 2! 228197303! 228197304! Splice_Site! INS! <! AATC
CGAG
C!

1.000! p.118_119insR
AI!

! Discard,!recurrent!Indel!<!likely!
artefact!

MFF! A9EA! TCGA! 2! 228205096! 228205097! Splice_Site! INS! <! ACCT
GTGT
TGCG
TGGT
GGGT
CTGCT
GCC!

1.000! p.L147fs! ! Discard,!recurrent!Indel!<!likely!
artefact!

MFF! MM127! WASH<U! 2! 228205096! 228205097! Splice_Site! INS! <! ACCT
GTGT
TGC!

1.000! p.L147fs! ! Discard,!recurrent!Indel!<!likely!
artefact!
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NUP50! A8KA! TCGA! 22! 45574145! 45574145! Missense_Mutation! SNP! A! G! 0.037! p.T123A! 0.204! Discard,!CADD!<!10!
NUP50! A8KB! TCGA! 22! 45574145! 45574145! Missense_Mutation! SNP! A! G! 0.062! p.T123A! 0.204! Discard,!CADD!<!10!
NUP50! A8KI! TCGA! 22! 45574145! 45574145! Missense_Mutation! SNP! A! G! 0.043! p.T123A! 0.204! Discard,!CADD!<!10!
NUP50! A8KO! TCGA! 22! 45574145! 45574145! Missense_Mutation! SNP! A! G! 0.031! p.T123A! 0.204! Discard,!CADD!<!10!
NUP50! A982! TCGA! 22! 45574145! 45574145! Missense_Mutation! SNP! A! G! 0.029! p.T123A! 0.204! Discard,!CADD!<!10!
NUP50! A9E5! TCGA! 22! 45574145! 45574145! Missense_Mutation! SNP! A! G! 0.067! p.T123A! 0.204! Discard,!CADD!<!10!
NUP50! A9EK! TCGA! 22! 45574145! 45574145! Missense_Mutation! SNP! A! G! 0.070! p.T123A! 0.204! Discard,!CADD!<!10!
NUP50! A9EW! TCGA! 22! 45574145! 45574145! Missense_Mutation! SNP! A! G! 0.049! p.T123A! 0.204! Discard,!CADD!<!10!
NUP50! A9EY! TCGA! 22! 45574145! 45574145! Missense_Mutation! SNP! A! G! 0.055! p.T123A! 0.204! Discard,!CADD!<!10!
NUP50! A9ZY! TCGA! 22! 45574145! 45574145! Missense_Mutation! SNP! A! G! 0.056! p.T123A! 0.204! Discard,!CADD!<!10!
NUP50! AA8N! TCGA! 22! 45574145! 45574145! Missense_Mutation! SNP! A! G! 0.046! p.T123A! 0.204! Discard,!CADD!<!10!
NUP50! AA8S! TCGA! 22! 45574145! 45574145! Missense_Mutation! SNP! A! G! 0.095! p.T123A! 0.204! Discard,!CADD!<!10!
NUP50! MM050! WASH<U! 22! 45574145! 45574145! Missense_Mutation! SNP! A! G! 0.056! p.T123A! 0.204! Discard,!CADD!<!10!
NUP50! MM085! WASH<U! 22! 45574145! 45574145! Missense_Mutation! SNP! A! G! 0.042! p.T123A! 0.204! Discard,!CADD!<!10!
NUP50! A880! TCGA! 22! 45574520! 45574520! Missense_Mutation! SNP! G! A! 0.444! p.D248N! 14.01! Keep!
NUP50! MM056! WASH<U! 22! 45580363! 45580363! Missense_Mutation! SNP! C! T! 0.423! p.P412S! 16.83! Keep!
NUP50! A9EQ! TCGA! 22! 45580380! 45580380! Silent! SNP! G! A! 0.413! p.T417T! ! Discard,!CADD!<!10!
RBMX2! A885! TCGA! X! 129545492! 129545493! Frame_Shift_Ins! INS! <! AAAA

AGGA!
0.16! p.<159fs! ! Discard,!Likely!Artefact!

RBMX2! A983! TCGA! X! 129545492! 129545493! Frame_Shift_Ins! INS! <! AAAA
AGGA!

0.250! p.<159fs! ! Discard,!Likely!Artefact!

RBMX2! A9EW! TCGA! X! 129545492! 129545493! Frame_Shift_Ins! INS! <! AAAA
AGGA!

0.111! p.<159fs! ! Discard,!Likely!Artefact!

RBMX2! A9F3! TCGA! X! 129545492! 129545493! Frame_Shift_Ins! INS! <! AAAA
AGGA!

0.094! p.<159fs! ! Discard,!Likely!Artefact!

RBMX2! AA9A! TCGA! X! 129545492! 129545493! Frame_Shift_Ins! INS! <! A! 0.111! p.K159fs! ! Discard,!Likely!Artefact!
RGPD3! A8KJ! TCGA! 2! 107039738! 107039738! Missense_Mutation! SNP! T! C! 0.146! p.N1562S! 5.547! Discard,!CADD!<!10!
RGPD3! A87U! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.028! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A87W! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.031! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A87Y! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.041! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A881! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.059! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A883! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.057! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A888! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.045! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A88A! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.020! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A8K7! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.033! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A8K8! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.033! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A8K9! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.053! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A8KA! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.069! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A8KD! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.018! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A8KE! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.035! p.S937R! 5.022! Discard,!CADD!<!10!
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RGPD3! A8KF! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.021! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A8KG! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.058! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A8KI! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.054! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A8KJ! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.054! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A8KL! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.013! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A8KM! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.040! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A8KN! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.033! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A8KO! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.031! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A983! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.030! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A984! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.025! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A985! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.028! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9E7! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.053! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9E9! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.018! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9EA! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.031! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9ED! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.035! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9EE! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.057! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9EF! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.023! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9EH! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.026! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9EI! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.019! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9EJ! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.024! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9EK! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.058! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9EL! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.035! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9EO! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.084! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9ET! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.032! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9EV! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.107! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9EW! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.035! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9EX! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.034! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9EY! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.033! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9EZ! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.051! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9F0! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.038! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9F1! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.040! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9F2! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.029! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9F4! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.033! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9F5! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.059! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9F8! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.076! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9ZX! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.038! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9ZY! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.037! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! AA8M! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.047! p.S937R! 5.022! Discard,!CADD!<!10!
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RGPD3! AA8N! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.067! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! AA8O! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.034! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! AA8P! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.020! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! AA8Q! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.065! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! AA8R! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.040! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! AA8T! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.057! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! AA9E! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.033! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! AB0B! TCGA! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.025! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! MM113! WASH<U! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.019! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! MM121! WASH<U! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.033! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! MM138! WASH<U! 2! 107041612! 107041612! Missense_Mutation! SNP! A! C! 0.100! p.S937R! 5.022! Discard,!CADD!<!10!
RGPD3! A9E5! TCGA! 2! 107042530! 107042530! Missense_Mutation! SNP! G! C! 0.040! p.P874A! 9.375! Discard,!CADD!<!10!
RGPD3! AA8R! TCGA! 2! 107042546! 107042547! Splice_Site! INS! <! GA! 0.035! 0.000! ! Discard,!recurrent!Indel!<!likely!

artefact!
RGPD3! MM113! WASH<U! 2! 107042546! 107042547! Splice_Site! INS! <! AAA! 0.017! 0.000! ! Discard,!recurrent!Indel!<!likely!

artefact!
SF3B1! A9EC! TCGA! 2! 198267370! 198267370! Missense_Mutation! SNP! T! G! 0.438! p.T663P! 26.8! Keep!,!Known!driver!
SF3B1! A881! TCGA! 2! 198267372! 198267372! Missense_Mutation! SNP! T! C! 0.493! p.H662R! 25.2! Keep!,!Known!driver!
SF3B1! A885! TCGA! 2! 198267483! 198267483! Missense_Mutation! SNP! C! T! 0.435! p.R625H! 35! Keep!,!Known!driver!
SF3B1! A8KH! TCGA! 2! 198267483! 198267483! Missense_Mutation! SNP! C! T! 0.411! p.R625H! 35! Keep!,!Known!driver!
SF3B1! A9E9! TCGA! 2! 198267483! 198267483! Missense_Mutation! SNP! C! T! 0.386! p.R625H! 35! Keep!,!Known!driver!
SF3B1! A9EJ! TCGA! 2! 198267483! 198267483! Missense_Mutation! SNP! C! T! 0.415! p.R625H! 35! Keep!,!Known!driver!
SF3B1! A9ES! TCGA! 2! 198267483! 198267483! Missense_Mutation! SNP! C! T! 0.341! p.R625H! 35! Keep!,!Known!driver!
SF3B1! A9EZ! TCGA! 2! 198267483! 198267483! Missense_Mutation! SNP! C! T! 0.429! p.R625H! 35! Keep!,!Known!driver!
SF3B1! A9F4! TCGA! 2! 198267483! 198267483! Missense_Mutation! SNP! C! T! 0.426! p.R625H! 35! Keep!,!Known!driver!
SF3B1! AA9E! TCGA! 2! 198267483! 198267483! Missense_Mutation! SNP! C! T! 0.468! p.R625H! 35! Keep!,!Known!driver!
SF3B1! MM049! WASH<U! 2! 198267483! 198267483! Missense_Mutation! SNP! C! T! 0.459! p.R625H! 35! Keep!,!Known!driver!
SF3B1! MM101! WASH<U! 2! 198267483! 198267483! Missense_Mutation! SNP! C! T! 0.56! p.R625H! 35! Keep!,!Known!driver!
SF3B1! MM131! WASH<U! 2! 198267483! 198267483! Missense_Mutation! SNP! C! A! 0.412! p.R625L! 35! Keep!,!Known!driver!
SF3B1! A8K9! TCGA! 2! 198267484! 198267484! Missense_Mutation! SNP! G! A! 0.514! p.R625C! 19.68! Keep!,!Known!driver!
SF3B1! A8KA! TCGA! 2! 198267484! 198267484! Missense_Mutation! SNP! G! A! 0.547! p.R625C! 19.68! Keep!,!Known!driver!
SF3B1! A8KB! TCGA! 2! 198267484! 198267484! Missense_Mutation! SNP! G! A! 0.377! p.R625C! 19.68! Keep!,!Known!driver!
SF3B1! A985! TCGA! 2! 198267484! 198267484! Missense_Mutation! SNP! G! A! 0.500! p.R625C! 19.68! Keep!,!Known!driver!
SF3B1! A9EA! TCGA! 2! 198267484! 198267484! Missense_Mutation! SNP! G! A! 0.429! p.R625C! 19.68! Keep!,!Known!driver!
SF3B1! A9EW! TCGA! 2! 198267484! 198267484! Missense_Mutation! SNP! G! A! 0.421! p.R625C! 19.68! Keep!,!Known!driver!
SF3B1! MM010! WASH<U! 2! 198267484! 198267484! Missense_Mutation! SNP! G! A! 0.425! p.R625C! 19.68! Keep!,!Known!driver!
SF3B1! MM032! WASH<U! 2! 198267484! 198267484! Missense_Mutation! SNP! G! C! 0.400! p.R625G! 18.65! Keep!,!Known!driver!
SF3B1! MM065! WASH<U! 2! 198267484! 198267484! Missense_Mutation! SNP! G! A! 0.414! p.R625C! 19.68! Keep!,!Known!driver!
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SF3B1! MM133! WASH<U! 2! 198267484! 198267484! Missense_Mutation! SNP! G! A! 0.481! p.R625C! 19.68! Keep!,!Known!driver!
SF3B1! MM134! WASH<U! 2! 198267484! 198267484! Missense_Mutation! SNP! G! A! 0.515! p.R625C! 19.68! Keep!,!Known!driver!
WHAMM! A883! TCGA! 15! 83481955! 83481955! Missense_Mutation! SNP! T! C! 0.080! p.M237T! 0.01! Discard,!CADD!<!10!
WHAMM! A8KF! TCGA! 15! 83481955! 83481955! Missense_Mutation! SNP! T! C! 0.069! p.M237T! 0.01! Discard,!CADD!<!10!
WHAMM! A8KI! TCGA! 15! 83481955! 83481955! Missense_Mutation! SNP! T! C! 0.064! p.M237T! 0.01! Discard,!CADD!<!10!
WHAMM! A8KL! TCGA! 15! 83481955! 83481955! Missense_Mutation! SNP! T! C! 0.111! p.M237T! 0.01! Discard,!CADD!<!10!
WHAMM! A8KN! TCGA! 15! 83481955! 83481955! Missense_Mutation! SNP! T! C! 0.100! p.M237T! 0.01! Discard,!CADD!<!10!
WHAMM! A982! TCGA! 15! 83481955! 83481955! Missense_Mutation! SNP! T! C! 0.057! p.M237T! 0.01! Discard,!CADD!<!10!
WHAMM! A9EJ! TCGA! 15! 83481955! 83481955! Missense_Mutation! SNP! T! C! 0.111! p.M237T! 0.01! Discard,!CADD!<!10!
WHAMM! A9EQ! TCGA! 15! 83481955! 83481955! Missense_Mutation! SNP! T! C! 0.069! p.M237T! 0.01! Discard,!CADD!<!10!
WHAMM! MM050! WASH<U! 15! 83481955! 83481955! Missense_Mutation! SNP! T! C! 0.091! p.M237T! 0.01! Discard,!CADD!<!10!
WHAMM! MM101! WASH<U! 15! 83481955! 83481955! Missense_Mutation! SNP! T! C! 0.133! p.M237T! 0.01! Discard,!CADD!<!10!
WHAMM! MM103! WASH<U! 15! 83481955! 83481955! Missense_Mutation! SNP! T! C! 0.136! p.M237T! 0.01! Discard,!CADD!<!10!

WHAMM! MM161! WASH<U! 15! 83481955! 83481955! Missense_Mutation! SNP! T! C! 0.125! p.M237T! 0.01! Discard,!CADD!<!10!
WHAMM! MM179! WASH<U! 15! 83481955! 83481955! Missense_Mutation! SNP! T! C! 0.031! p.M237T! 0.01! Discard,!CADD!<!10!
WHAMM! MM010! WASH<U! 15! 83482024! 83482024! Missense_Mutation! SNP! T! A! 0.063! p.I260N! 20.8! Keep!
WHAMM! MM050! WASH<U! 15! 83482024! 83482024! Missense_Mutation! SNP! T! A! 0.139! p.I260N! 20.8! Keep!
WHAMM! MM055! WASH<U! 15! 83482024! 83482024! Missense_Mutation! SNP! T! A! 0.058! p.I260N! 20.8! Keep!
WHAMM! MM065! WASH<U! 15! 83482024! 83482024! Missense_Mutation! SNP! T! A! 0.052! p.I260N! 20.8! Keep!
WHAMM! MM100! WASH<U! 15! 83482024! 83482024! Missense_Mutation! SNP! T! A! 0.108! p.I260N! 20.8! Keep!
WHAMM! MM113! WASH<U! 15! 83482024! 83482024! Missense_Mutation! SNP! T! A! 0.117! p.I260N! 20.8! Keep!
WHAMM! MM032! WASH<U! 15! 83495511! 83495511! Missense_Mutation! SNP! C! A! 0.688! p.D518E! 17.39! Keep!
WHAMM! AA8P! TCGA! 15! 83499532! 83499532! Missense_Mutation! SNP! A! G! 0.500! p.K608R! 6.165! Discard,!CADD!<!10!



! ! !

Appendix 5 - Candidate gene fusions after filtering steps 
!

!
!
!

sample fusion,genes chrom1 base1 strand1 chrom2 base2 strand2 gap,(kb) spanning,
pairs

spanning,
reads

inframe aligns rearrange
ment

contig contig,
break

classification known,
(polymorphism)

MM0171 KANSL1:ARL17A chr17 44171926 3 chr17 44648235 3 476.305 0 10 FALSE TRUE TRUE HWI3D00467:105:C6V7RANXX:8:1104:15327:49162/236 MediumConfidence Yes
MM010 KANSL1:ARL17A chr17 44171926 3 chr17 44648235 3 476.305 2 7 FALSE TRUE TRUE HW3ST997_0199:2:1116:19189:90809#CGATGTA/1/142 HighConfidence Yes
MM091 KANSL1:ARL17A chr17 44171926 3 chr17 44648235 3 476.305 0 7 FALSE TRUE TRUE HWI3D00467:105:C6V7RANXX:7:1102:8524:11749/149 MediumConfidence Yes
MM065 KANSL1:ARL17A chr17 44171926 3 chr17 44648235 3 476.305 2 6 FALSE TRUE TRUE HW3ST997_0199:2:1111:17411:43867#ACAGTGA/3/229 HighConfidence Yes
MM0144 KANSL1:ARL17A chr17 44171926 3 chr17 44648235 3 476.305 0 4 FALSE TRUE TRUE HWI3D00467:105:C6V7RANXX:7:1213:11845:17637/250 MediumConfidence Yes
MM0171 TRIO:DNAJC21 chr5 14143991 + chr5 34950275 + 20806.29 0 5 FALSE TRUE FALSE HWI3D00467:105:C6V7RANXX:8:1315:15914:24670/242 MediumConfidence
MM0171 MYO10:DST chr5 16783444 3 chr6 56600087 3 Inf 3 53 FALSE TRUE TRUE HWI3D00467:105:C6V7RANXX:8:1102:5139:7228/162 HighConfidence 3
MM0171 MYO10:DST chr5 16794755 3 chr6 56600087 3 Inf 3 11 FALSE TRUE TRUE HWI3D00467:105:C6V7RANXX:8:1101:19029:32016/158 HighConfidence 3
MM080 TFG:GPR128 chr3 1E+08 + chr3 1E+08 + 90.458 1 5 TRUE TRUE TRUE HW3ST997_0199:2:1103:7761:73167#ATGTCAG/3/253 HighConfidence Yes
MM082 RP113680G10.1:GSE1 chr16 85391249 + chr16 85682158 + 290.914 5 3 TRUE TRUE FALSE HW3ST997_0199:2:1103:3020:25565#CCGTCCC/3/265 HighConfidence 3
MM0173 RP113680G10.1:GSE1 chr16 85391249 + chr16 85667520 + 276.274 1 3 TRUE TRUE FALSE HWI3D00467:105:C6V7RANXX:8:2110:9615:62232/147 HighConfidence 3
MM0171 KPNA1:QRICH1 chr3 1.22E+08 3 chr3 49070661 3 73085.36 0 4 FALSE TRUE FALSE HWI3D00467:105:C6V7RANXX:8:1110:15545:42971/144 MediumConfidence 3


