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Cellular mechano-environment regulates the
mammary circadian clock
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Nicole Gossan1, Alun Hughes1, Julia Cheung1,2, Charles H. Streuli1,2,* & Qing-Jun Meng1,2,*

Circadian clocks drive B24 h rhythms in tissue physiology. They rely on transcriptional/

translational feedback loops driven by interacting networks of clock complexes. However,

little is known about how cell-intrinsic circadian clocks sense and respond to their

microenvironment. Here, we reveal that the breast epithelial clock is regulated by the

mechano-chemical stiffness of the cellular microenvironment in primary cell culture. More-

over, the mammary clock is controlled by the periductal extracellular matrix in vivo, which

contributes to a dampened circadian rhythm during ageing. Mechanistically, the tension

sensing cell-matrix adhesion molecule, vinculin, and the Rho/ROCK pathway, which

transduces signals provided by extracellular stiffness into cells, regulate the activity of the

core circadian clock complex. We also show that genetic perturbation, or age-associated

disruption of self-sustained clocks, compromises the self-renewal capacity of mammary

epithelia. Thus, circadian clocks are mechano-sensitive, providing a potential mechanism to

explain how ageing influences their amplitude and function.
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C
ell-autonomous circadian clocks in the brain and periph-
ery drive B24 h rhythms in fundamental biological
processes that control tissue physiology, including meta-

bolism, cell proliferation, differentiation, cell cycle and stem cell
function1,2. At the molecular level, circadian oscillations rely on a
transcription–translation feedback loop driven by a core clock
mechanism. This clock consists of the BMAL1/CLOCK trans-
activation complex, the Period (PER)/Cryptochrome (CRY)
repressive complex, and the auxiliary REV-ERB/ROR-stabilising
loop1–5. The robustness of circadian rhythms in multiple tissues
deteriorates with ageing, compromising the temporal control
of physiology6–10. Age-associated clock suppression may be a
predisposing factor for various human diseases.

However, our understanding of how young cellular clocks
maintain robust circadian outputs, and how this robustness is lost
during ageing, remain largely unknown. Previous studies have
revealed the paramount importance of maintaining a robust 24 h
circadian rhythm that is synchronized with daily environmental
changes1,5. Not surprisingly, the intricate molecular oscillator is
built with the capacity to respond to multiple environmental
and metabolic time cues, such as the light/dark cycle, feeding/
fasting rhythm, body temperature fluctuations and daily surges of
hormones.

Here, we have systemically characterized circadian clock
mechanisms in mammary gland biology. Our data reveal a
novel link between circadian clock genes and mammary stem
cell function. Moreover, we have identified a new regulatory
mechanism for the mammary epithelial clock, which occurs
through the mechano-stiffness of the cellular microenvironment.
In summary, our work first reveals a new function for cell-matrix
interactions, which is that it regulates circadian biology. Second, it
shows that tissue stiffening suppresses the mammary circadian
clock activity in vivo, which could contribute to an increased risk
for breast diseases and even cancer.

Results
The mammary clock controls tissue-specific rhythmic genes.
The mammary gland consists of a branching network of epithelia,
ensheathed in a basement membrane and surrounded by
stroma11. Real-time bioluminescent imaging of mammary tissue
explants from PER2::Luc clock reporter mice12 revealed daily
rhythmic variations, where for example PER2::Luc was expressed
strongly at 24 h but very weakly 12 h later (Fig. 1a). This is
consistent with the strong expression of core clock proteins
BMAL1 and PER2 in mammary ducts (Fig. 1b).

To gain insights into the role of the mammary clock, circadian
time-series microarrays were performed to identify rhythmic
genes in vivo. Mammary tissues were isolated at 4 h intervals for
two circadian (24 hourly) cycles, from mice kept under constant
darkness to avoid any light- or dark-driven genes. Remarkably,
594 genes were under circadian control. A subset of clock-
controlled genes included those linked to progenitor/epithelial
cell function, for example, a6-integrin, Prkce, P21 or Bcar313–16,
whose rhythmic expression was validated by qRT-PCR (Fig. 1d).
Many rhythmic genes peaked around the day/night transition
(Figs 1c and 2a, Supplementary Table 1). Significant GO-term
clusters include ‘Metal ion binding/transcription factors’, ‘Nuclear
Hormone Receptors’, ‘Src homology-3 domain’, ‘Positive regu-
lation of macromolecule biosynthetic process’ and ‘Lysosome’
(Fig. 2b). We have previously reported rhythmic transcriptomes
in cartilage and tendons, using identical tissue harvesting
protocols and analysis algorithms, thus allowing cross tissue
comparisons of the rhythmic transcriptomes9,10. This revealed a
striking tissue specificity of rhythmic genes, with only 28 genes
common to all three tissues (Fig. 2c; Supplementary Table 2).

These results show that breast tissue has an autonomous
circadian clock, with a wide set of genes under circadian control.

Mammary clocks are required for stem cell function. To
investigate the functional role of circadian clock genes, we chose
the ClockD19 mutant mouse model, which has an inactive
BMAL1/CLOCK complex and problems feeding pups owing
to insufficient milk production17,18. This lactation phenotype
becomes more apparent in the second litter (litter sizes of 2–3
pups in the mutant compared with B10 in WT). Compromised
stem cell function is responsible for this phenotype, which
becomes more pronounced in the second, third or fourth litter19.
As a6-integrin and Prkce are rhythmic genes (Fig. 1d) and both
are important for mammary stem cell function, we determined
the role of the clock in breast biology by examining its effect
on stem cell behaviour. The ClockD19 mouse has a severely
suppressed mammary clock in vivo (Supplementary Fig. 1), which
we hypothesized might compromise the capacity of progenitor
cells to self-renew and generate functional mammary tissue.

Individual wild-type (WT) progenitor cells formed CD44-
positive mammospheres in suspension culture, indicating that
they have stem cell characteristics (Supplementary Fig. 2).
Mammospheres arising from WT individual stem cells demon-
strated rhythmic PER2::Luc oscillations, revealing the existence of
autonomous clocks. In contrast, similar cells from ClockD19
mice had suppressed rhythmic oscillations (Fig. 3a,b). Although
individual ClockD19 cells could form some primary mammo-
spheres, their ability to do this was considerably reduced as
revealed by Limiting Serial Dilution Assay (Fig. 3c). Furthermore
in contrast with WT stem cells, almost no ClockD19 primary cells
could form secondary mammospheres (Fig. 3d). These results
show that circadian clock disruption compromised mammary
stem cell, and that clocks are important for maintaining the
biology of the mammary gland. Mammary gland phenotype has
not been studied in other mouse models carrying mutations in
different clock genes, which may be warranted in future studies.

Aged mammary gland has a dampened clock. Stem cell
function deteriorates during the ageing of tissues20–22 including
the mammary gland. We therefore determined whether the
mammary clock became dysregulated during ageing, as has been
shown in other tissues5–7. We measured the amplitude of
mammary circadian clocks in young and old mice. Long-term
photon counting of PER2::Luc tissue explants using photon-
multiplier tubes, revealed strong B24 h rhythms in 3-month mice
(Fig. 4a). In contrast, the robustness of PER2::Luc rhythms was
markedly reduced in 24-month-old tissue. This occurred
gradually, because the clocks were also suppressed twofold in
glands from 12-month-old mice in comparison with those from
3-month-old animals (Supplementary Fig. 3). These results show
that the mammary clock is suppressed during animal ageing.

Despite dampened clocks within whole tissues, primary
mammary epithelial cells (MECs) isolated from 12-month-old
mice retained robust clocks when individual cells were placed in
tissue culture (Supplementary Fig. 4). Moreover, they displayed
similar amplitudes to the MECs isolated from 3-month-old mice.
These results show that there are comparable circadian oscilla-
tions within individual cells isolated from young and old
mice. Thus, the effect of ageing on the mammary clock is not
due to cell-intrinsic differences. Other tissues such as skin have a
stiffer mechano-environment in old animals than young ones23.
This suggests that the age-dependent dampening of mammary
epithelial clocks might be caused by changes in the tissue
mechano-environment.
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To assess whether the mammary extracellular matrix (ECM)
became more rigid with ageing, we measured the stiffness of the
periductal stroma at the nano-length scale using Atomic Force
Microscopy. Aged mammary tissue had a significantly stiffer
periductal stroma than that of young mice (Fig. 4b, Supple-
mentary Fig. 5). Moreover, Picrosirius Red staining showed that
fibrillar collagen within aged stroma was more highly organised
than that in young tissue (Fig. 4c,d), similar to changes in aged
skin (Supplementary Fig. 6). These results show that the ECM
adjacent to mammary ducts in vivo becomes stiffer during ageing,
correlating with suppressed mammary circadian rhythms that
occur at this time.

Extracellular microenvironment regulates the circadian clock.
Whether tissue stiffness controls circadian clocks has not
previously been examined. To address this, we cultured purified
MECs, which were isolated from PER2::Luc mice, under different
mechano-chemical environments. This strategy avoids any
complications that might arise from altered clock expression in
other mammary cell types. Cells plated at high density in 3D
culture form lumen-like acini24, whereas those on 2D substrata

form monolayers (Fig. 5a). To determine whether the extra-
cellular mechano-environment regulates the epithelial clock,
we used bioluminescence photon counting and video imaging
(Supplementary Fig. 7). There was more than sevenfold stronger
circadian PER2::Luc amplitude in 3D cells compared with same
number of cells cultured in 2D (Fig. 5b, Supplementary Movie 1,
Supplementary Movie 2, Supplementary Movie 3). Moreover, the
rhythmic mRNA levels of endogenous E-box containing clock
genes (Per2 and Nr1d1), and clock target gene (for example,
a6-integrin) were stronger in 3D acini than 2D monolayer
(Fig. 5c). Rhythmic expression of a6-integrin protein was also
confirmed by immunofluorescence (IF) (Fig. 5d,e). Individual
cells seeded at low density in 3D culture (stiffness of 30 Pa)
showed robust circadian rhythms in PER2::Luc activity at the
single cell level (Fig. 6a). However, those on 2D plastic dishes
(stiffness of 4100 MPa) had lower clock amplitude. These results
show that the extracellular environment contributes to the
strength of circadian activity.

To confirm a role for mechano-environmental stiffness on
clock amplitude, MECs were cultured in a 3D alginate model in
which we were able to control stiffness only25. Cells suspended
inside similar hydrogels, which had either soft or stiff conditions
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mammary tissue explants at peak and trough expression levels. N¼ 3 animals. Scale bar¼ 200mm. (b) IHC and IF staining of clock transcription factors

BMAL1 (brown) and PER2 (white). N¼ 3 animals. Scale bar¼ 50mm. (c) Heat map of rhythmic mammary genes based on the circadian time-series

microarrays. Genes are clustered according to timing of peak expression in circadian time (CT). Red, low expression; Green, high expression. (d) qRT-PCR

validation of time-dependent expression of clock genes or clock-controlled genes, which are associated with progenitor/epithelial cell function (Integrin-a6,

Prkce, P21 and Bcar3) in mouse mammary gland. N¼ 3 animals.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14287 ARTICLE

NATURE COMMUNICATIONS | 8:14287 | DOI: 10.1038/ncomms14287 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


(as measured by pMLC levels and atomic force microscopy
(AFM), Supplementary Fig. 8), showed a significantly suppressed
circadian rhythm in the stiffer gels (Fig. 6b). Moreover, MECs
cultured on 2D-substrata coated with different ECM proteins,
such as laminin, collagen or fibronectin showed no difference
in their clock activities, further supporting our hypothesis
that the stiffness, rather than the composition, of the extra-
cellular microenvironment controls clock activity (Fig. 6c). In
addition to mammary epithelia, the circadian clocks of lung
epithelial cells were also under mechano-dependent control,
revealing that this mechanism of circadian control is not confined
to mammary gland tissue (Supplementary Fig. 9). These results
show that the cellular mechano-environment has a critical role in
regulating circadian clocks in epithelia from both the mammary
gland and lung, with increased clock strength in a softer
microenvironment.

Adhesion and cytoskeletal signals control the clock. Mechanical
forces of the extracellular microenvironment would have to be
transduced through adhesion signalling systems and the
cytoskeleton in order to impact on nuclear clock mechanisms.
We therefore tested the role of integrin signalling by treating
cells with shRNAs to the integrin-signalling protein vinculin, a
major player in transducing mechanical cues into cells26,27.
Cells with vinculin knockdown showed suppressed circadian
rhythms, indicating the involvement of the mechano-sensing
machinery in the regulation of cellular pace making (Fig. 7).
In addition, we analysed whether disrupting the cytoskeleton
with latrunculin B or cytochalasin D influenced the MEC clock in
cells on the soft 3D matrix. Both of these compounds caused
severe dampening of circadian oscillations (Supplementary
Fig. 10A). These results show that cell–matrix interactions
couple with the circadian clock directly via integrin signalling
components such as vinculin, and that they require an intact
cytoskeleton.

To further explore the role of the cytoskeleton, we determined
whether intracellular tension driven by Rho/ROCK-mediated
activation of actomyosin contractility controlled core clock
transcription factors. Immunoblotting revealed that there were
much higher levels of MLC phosphorylation in cells cultured on
stiffer 2D ECM (Supplementary Fig. 8). Under these conditions,
relaxing intracellular tension with the ROCK inhibitor Y-27632
reduced the levels of pMLC and the Young’s modulus (Fig. 8a,
Supplementary Fig. 8). Moreover, this treatment improved the
circadian rhythm strength of PER2::Luc in MECs cultured within
a stiff environment in a dose-dependent manner (Fig. 8b). Similar
data were also obtained with another ROCK inhibitor, SR3677
(Supplementary Fig. 10). Mechanistically, ROCK inhibition
significantly increased the ability of the CLOCK/BMAL1 complex
to transactivate the E-box containing Avp::luc clock target gene
reporter, but not the E-box mutant form Avp::luc reporter
(Fig. 8c). These results show that inhibiting ROCK has marked
effects on the circadian clock, arguing a role for the Rho signalling
pathway.

To ratify further the involvement of Rho signalling, we
expressed constitutive-active (Q63L-RhoA) and dominant-nega-
tive RhoA (T19N-RhoA) mutant constructs within MECs.
Altered RhoA vectors caused a decrease (Q63L-RhoA) or an
increase (T19N-RhoA) in circadian oscillations of PER2::luc in
MECs (Fig. 9a,b). Also, knocking down endogenous RhoA in
MECs significantly elevated the PER2::luc circadian amplitude
(Fig. 9c,d). Finally, the activated form of RhoA (Q63L-RhoA)
reduced transactivation of an E-box-containing reporter by
CLOCK and BMAL1 when MECs were cultured in 3D, whereas
dominant-negative RhoA (T19N-RhoA) enhanced expression of
this E-box reporter in cells cultured on 2D ECM (Fig. 9e,f). These
genetic manipulation studies show that the Rho signalling
pathway has a critical role in regulating circadian clock amplitude
in mammary epithelia, with reduced Rho levels or activity
increasing the clock. The results support the suggestion that
circadian clocks are mechano-sensitive.

The mechano-sensing pathway influences mammary clocks in vivo.
Our experiments reveal that mammary clocks are sensitive
to the stiffness of the cellular environment, and that they
become suppressed during ageing. In old mice, intracellular
proteins such as MLC, which sense tension provided by the
extracellular environment, were phosphorylated at higher levels
(Fig. 10a). To establish the contribution of the mechano-envir-
onment to the dampened circadian clock during ageing in vivo,
we determined whether releasing intracellular tension could
rescue the dampened clock of aged tissues. Fresh 3-month- and
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24-month-old mammary glands were treated with Y-27632, and
their circadian rhythms were measured. We found that the
ROCK inhibitor increased clock amplitude in older mammary
tissue (Fig. 10b). This increase occurred to a small extent in
tissues isolated from young mice, though the aged mammary
gland showed an approximately twofold stronger induction.
These results show that increased tissue stiffness contributes to
the dampening of the circadian clock in vivo, providing a novel
mechanism to explain how mammary clocks become altered
during ageing.

Discussion
Previous studies have reported that robust 24 h circadian rhythms
are synchronized with daily environmental or metabolic
changes1–5, such as the light, feeding, temperature and
hormones4,5. Our study now reveals that circadian clocks are
also regulated by the stiffness of the extracellular micro-
environment. Mechanistically we found that integrin signalling,
actomyosin contractility and the Rho/ROCK pathway regulate the
overall activity of the core circadian clock complex, CLOCK and
BMAL1. Such tension-dependent transducers may, for example,
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control the activity of the clock transcription machinery via the
YAP/TAZ or MRTF/SRF pathways, or possibly via cytoskeletal
links to Nesprins and SUN proteins28–32. Indeed, in liver tissue
and cultured fibroblasts, intracellular actin dynamics interact
with the serum response factor to regulate circadian rhythms,
whereas mechanical stimuli entrain Drosophila circadian
locomotion behaviour via sensory receptors33,34. Given the links
between ECM adhesion and intracellular signalling, our study
reveals a novel pathway that controls the activity of molecular
clock factors in epithelia.

Our transcriptome studies show that B600 rhythmic genes are
under circadian control in the mammary gland, suggesting that
circadian rhythms may have a fundamentally important role in
this tissue. Of particular interest are the genes that have

previously been implicated in mammary stem cell function.
Indeed, we showed that mice carrying mutations in the Clock
gene have compromised the ability for stem cell renewal.
Moreover, the size and number of mammospheres forming from
MECs isolated from 24-month-old tissue was significantly lower
than those from 3-month-old mice (Supplementary Fig. 11).
Although ageing may simply reduce the numbers of stem cells35,
there might also be a link between age-related clock dampening
and compromised stem cell function. Thus, disturbance of clock
rhythms during ageing or in shift work may predispose breast
tissue to diseases, and even cancer, as suggested by
epidemiological evidence and GWAS studies36–38.

In conclusion, we have established that extracellular stiffness
and intracellular tension signalling provide a key pathway to
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regulate the activity of circadian clocks in mammary epithelia.
The downstream rhythmic genes identified in our study suggest
that the clock may be involved in breast biology, for example, in

tissue regeneration following involution or in tumorigenesis.
Indeed, the compromised self-renewal capacity of mammary
progenitor cells in ClockD19 mutant mice may contribute to
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MECs cultured either on 2D or 3D. Student’s t-test, mean±s.e.m., ***Po0.001, n¼6 animals. The fold amplitude in difference in activity is shown on the

right. (c) The expression patterns of endogenous clock genes (Per2 and Nr1d1), and clock target gene (for example, a6-integrin) in MECs cultured on either

2D or 3D, n¼4 animals. The mRNA levels were normalized to GAPDH and then to the 2D condition at 24 h. (d) Representative IF staining (blue, DAPI;

green, integrin-a6) and (e) semi-quantification of integrin-a6 levels in MECs from WT mice cultured in 3D on Matrigel. Scale bar¼ 20mm. **Po0.01 for

time-dependent expression, one-way ANOVA, n¼ 3 animals.
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nursing defects. Stiffening of the mechano-environment may also
have a part in age-related dampening of clock rhythm, which
could impact on a spectrum of downstream target genes that are
involved in tissue homoeostasis and function.

Methods
Reagents and antibodies. Dexamethasone (Dex) and Y-27632 were purchased
from Sigma. The following antibodies were used in this study, BMAL1 (mouse
monoclonal9), PER2 (rabbit polyclonal39), Phospho-Myosin Light Chain 2 (Ser19)
(Cell Signaling #3675), Tubulin (Sigma), b-actin, CD44 Antibody (8E2F3) and
Integrin alpha 6/CD49f antibody (from R&D systems). Alexa Flour 488 goat
anti-rat was from Invitrogen; secondary antibodies conjugated to Cy5 were from
Jackson Immunoresearch. mCLOCK and hBMAL1 expression plasmids were kind
gifts from Dr Kazuhiro Yagita (Kyoto Prefectural University of Medicine, Japan).
Antibodies used are cited in Supplementary Table. 3. Blots showing un-cropped
scans used for the western blot figures are shown in Supplementary Fig. 12.

Animal maintenance and tissue collection. All experiments were conducted
under the aegis of the 1986 Home Office Animal Procedures Act (UK). Mice were
maintained on a standard maintenance chow under a 12-h light/12-h dark (12:12

LD) regimen. PER2::Luc and ClockD19 mice on a C57BL/6 J background were
generated by Professor Joseph Takahashi. ClockD19 mice were subsequently
bred with PER::LUC mice. For circadian tissue collections, 2-month-old female
C57BL/6 J mice (Harlan Laboratories) were placed under 12:12 LD cycles for 2
weeks. before their release into DD. Animals were killed by cervical dislocation in
complete darkness using an infrared viewer, and mammary gland tissues were
harvested at 4-h intervals, beginning at 39 h after the start of DD. All tissues were
either freshly used or snap-frozen in liquid nitrogen and kept at � 80 �C until use.
Circadian time (CT) corresponds to administration of light in the animal room.
CT 0 indicates light-on, whereas CT12 indicates light-off.

Mammary gland tissue explant cultures and bioluminescence recording.
Mammary gland tissues were dissected from either 10–12 weeks, or 22–24-month-
old mice. The tissue explant was cultured on 0.4 mm cell culture inserts (Millipore),
and bioluminescence was recorded in real time using photomultiplier tube (PMT)
devices or a LumiCycle apparatus (Actimetrics)39. Baseline subtraction was carried
out using a 24-h moving average. Cultures were also visualized using a self-
contained Olympus Luminoview LV200 microscope and recorded using a cooled
Hamamatsu Image EM C9100-13 EM-CCD camera. Images were obtained either
once every hour for cells, or every 30 min for tissues, and results were combined in
ImageJ. For Y-27632 treatment, mammary gland tissues were cultured under PMT
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recorders. After 2–3 days Y-27632 was applied, and the treatment agent was left
continuously with the samples thereafter while the luminescence patterns were
recorded for 2–4 days.

Circadian time-series microarrays. Frozen tissue was disrupted using FastPrep-
24 lysing matrix tubes (MP Biomedicals). Extraction of RNA was carried out using
RNeasy Mini Kit (Qiagen). Affymetrix Mouse430_2 GeneChips were run according
to the manufacturer’s instructions, and further analysis was performed as described
previously9. In brief, CircWave Batch version 5 (provided by Dr Roelof Hut,
University of Groningen) was used to fit a sine-wave with 24-h periodicity to each
gene expression data set. Using known clock genes as a guide, a cutoff point of
Rsq-value40.63 was arbitrarily assigned to determine circadian gene expression.
JTKCycle (provided by Dr Michal Hughes, University of Missouri, St Louis) was
also used to identify circadian transcripts. A Bonferroni-adjusted P value of 0.01
was arbitrarily set as the cutoff for significance. To be stringent, genes identified
using both methods were counted as positive. Validation of time-series arrays was
carried out using TaqMan-based real-time PCR.

IF and IHC. Expression and distribution of proteins were visualized by indirect IF
or immunohistochemistry (IHC). After 48 h of plating, cells were fixed for 10 min
in PBS/4% (wt/vol) paraformaldehyde and permeabilized for 7 min using PBS/0.2%
(vol/vol) Triton X-100. Non-specific sites were blocked with PBS/10% goat serum
(for 1 h at room temperature) before incubation with antibodies diluted in PBS/2%
goat serum (for 1 h at room temperature each). Cells were washed in PBS before
mounting in either DAKO (DakoCytomation) for monolayers or prolong antifade
(Invitrogen) for 3D acini24. Acini were visualized by confocal imaging. Images were
collected on a Leica TCS SP5 AOBS inverted confocal microscope using a x63 Plan
Fluotar objective. IF was performed on paraffin-embedded tissue and the luminal
surface was detected with Cy5 (Jackson Immunoresearch) and imaged using
confocal microscopy. IHC was performed on cryosections (10 mm), which were
fixed with 4% formaldehyde. The standard avidin-biotin method was used, with

diaminobenzidine as the chromogen (Vector Laboratories). To confirm the
antibody specificity, IHC was performed by skipping the specific primary antibody.

Primary mammary cell culture and mammosphere assay. Primary MECs were
collected from 2–3-month-old virgin mice and cultured as described40. In brief,
inguinal mammary glands were dissected and then digested via mechanical
dissociation and enzymatic digestion with Collagenase A (30 mg ml� 1). Primary
MECs were then sequentially centrifuged to enrich for and purify a mammary
epithelial population. Cells were plated onto collagen I coated plastic petri-dishes for
2D monolayer cultures, basement membrane-matrix (Matrigel; BD Biosciences) to
form 3D acini. Cells were cultured in growth media (Ham’s F12 medium (Sigma)
containing 5mg ml� 1 insulin, 1mg ml� 1 hy-drocortisone (Sigma), 3 ng ml� 1

epidermal growth factor, 10% fetal calf serum (Biowittaker), 50 U ml� 1 penicillin/
streptomycin, 0.25mg ml� 1 fungizone and 50mg ml� 1 gentamycin). Mammosphere
assay was performed as described41. In brief, dissociated primary MECs were seeded
at a density of 500, 1,000, 2,000, 5,000, 10,000 or 20,000 cells cm� 2 in 12-well plates
covered with 50 mg ml� 1 Poly-HEMA (Sigma) to prevent cell attachment. The cells
were cultured with EpiCult-B Mouse Medium Kit (Stemcell technology),
supplemented with 5% fetal calf serum (Biowittaker), 4mg ml� 1 heparin (Stemcell
technology), 10 ng ml� 1 epidermal growth factor, 20 ng ml� 1 bFGF (Sigma -F0291),
50 U ml� 1 penicillin/streptomycin, 0.25mg ml� 1 fungizone, 50mg ml� 1 genta-
mycin. To prevent cell aggregation, 5% basement membrane-matrix (Matrigel; BD
Biosciences) was also added to be semi-solid. After 10 days in culture, mammo-
spheres were collected and dissociated using 1:1 trypsin/DMEM solution following
by passing through a 70mm cell strainer. Single cells were then re-plated for second
mammosphere assay at a density of 2,000 cells cm� 2.

Alginate gels. The 3D alginate gel system used in these experiments is described
as before25. In brief, Alginate (Novamatrix, Norway) is mixed with BD Matrigel
Reduced Basement Membrane (Corning, NY, USA) and freshly isolated, highly
concentrated primary MECs from the PER2::Luc transgenic mouse. This mixture is
then placed into a syringe, which is coupled to another syringe using a Luer lock
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coupler (ValuePlastics). The second syringe is filled with a mixture of blank
DMEM and calcium sulphate solution. The concentration of calcium sulphate
solution determines the stiffness of the gel, as it catalyses cross-linking between the
polymers. The two solutions are then mixed together by rapidly depressing the
syringes, and then expelled into 35 mm dishes that were pre-coated with Matrigel.
Gels were then left to set in an incubator. After 30 min, normal growth media was
added and gels were returned to the incubator. Two days later, cells were treated
with Dexamethasone (a known clock synchronising agent acting on the GRE
elements in the promoters of Period genes) for 1 h, then changed to recording
medium and placed in the Lumicycle.

Lentivirus delivery of shRNAs in primary MECs. The lentiviral shRNA vector,
pVenus, was provided by Didier Trono (University of Geneva, Geneva, Switzer-
land).shRNA for mouse vinculin was designed with shRNA design tool (Open
Biosystems). The target sequence for mouse vinculin is 50-CGAGATCATTC
GTGTGTTA-30 . A BLAST search did not reveal any other target sequences in
mouse. Doubled-stranded oligonucleotides were cloned into the lentiviral transfer
vectors pVenus. For lentivirus production, the transfer vectors were co-transfected
with the envelope plasmid pMD2G and the packaging plasmid psPAX2 into HEK
293 T cells using PEI reagent. Media were replaced after 8–10 h. In total, 10 ml viral
supernatant was harvested 48–60 h after transfection, passed through a 0.45-mm

filter, and further concentrated by centrifugation at 25,000 r.p.m. at 4 �C for
2.5 h. Viral pellets were re-suspended in 0.1 ml fresh DF12 medium. For lentiviral
transduction, primary MEC cells from PER2::Luc mice were grown to 80%
confluency in 35 mm dishes. Lentiviral infection was performed by adding
lentiviral particles directly to cells and incubating for 8 h. The infected cells
were cultured for 48 h to ensure turnover of pre-existing vinculin. Pure population
of infected cells was enriched by FACS sorting the Venus positive cells, followed
by real-time recording of bioluminescent activity using Photomultiplier. Knock-
down of vinculin was confirmed by IF (before sorting) and western blotting
(after GFP sorting) using an anti-Vinculin antibody (clone VIN-11-5, Sigma-
Aldrich).

Primary lung epithelial cell isolation. The cells were isolated as described in
previously published method42. In brief lungs from PER2::Luc mice were perfused
with PBS and digested using Elastase solution (Sigma-Aldrich, 4 U ml� 1 in HBSS).
Then lung lobes were minced and incubated with DNase I solution for 15 min at
37 �C. The cells were passed through a 70 mm cell strainer (BD#352350), and then
resuspended in cold RBC lysis buffer (eBioscience #00-4333-57) to remove the red
blood cells. Live cells were counted based on trypan blue exclusion. These cells were
then plated into 3D basement membrane-matrix (Matrigel; BD Biosciences) before
real-time recording of bioluminescent activity.
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Functional luc assay. mAvp::luc plasmid and its E-box mutant form, and luc assay
were described previously39. In brief, EpH4 cells were seeded at 50% confluency in
12-well plates. Cells were transfected with mixtures containing 0.5 mg reporter
construct, 0.5 mg b-Galactosidase expression vector, 0.5 mg of BMAL1 and CLOCK
expression vectors, 0.5 mg carrier pcDNA or a variation whereby some of the
vectors are excluded, using PolyFect Transfection Reagent(Qiagen). The following
day, cells were treated with 30 mM Y-27632 at 3, 6 and 24 h. Luciferase activity was

recorded using the Promega Luciferase Assay System, on an Orion L Microplate
Luminometer with Simplicity 4.2 Software. Data were analysed using a Student’s
t-test in GraphPad Prism 6.

Real-time qRT-PCR. RNA was extracted from either tissues or cells using the
Qiagen RNeasy purification system. cDNA was prepared using a High Capacity
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RNA-to-cDNA Kit and analysed for gene expression using quantitative real-time
PCR with TaqMan (Applied Biosystems) chemistry. Primer/probe mixes were
ordered from Applied Biosystems. For clock genes, the primers are as follows, Per2:
Mm00478113_m1; Bmal1/Arntl: Mm00500226_m1; Per3: Mm00478120_m1;
Nr1d1/Rev-erba: Mm00520708_m1. For the mammary specific rhythmic genes, the
primers are as follows, Bcar3: Mm00600213_m1; P21: Mm04205640_g1; Itga6:
Mm00434375_m1; Prkce: Mm00440894_m1. Results were normalized to the values
for Gapdh expression, using the 2�DDCt method.

Picrosirius red staining and analysis. Wax sections were stained with Picrosirius
Red. By incorporating the birefringent properties of fibrillar collagen, we were able
to devise a semi-quantitative method of analysing the organisation of collagen
molecules in the ECM. Using ImageJ 1.48, areas of interest were isolated using the
freehand tool. The basement membrane that surrounds the mammary ducts and
the dermoepidermal junction (DEJ) in the skin were chosen as the primary region
for analysis43. In the brightfield image, a trace was drawn around the specified
areas, and the area of this trace was recorded. The trace outline was then copied
onto the corresponding polarised image. The selection was then inversed and
cleared. This resulted in the deletion of the remainder of the image, leaving only the
collagenous region desired. Finally, a red colour threshold was applied and the area
of the image that passed the threshold was selected. The area captured by these
selections was measured, and the value divided by the total area initially captured
from the brightfield trace. This analysis was performed over serial paraffin sections.
Statistical analyses of the percentage values obtained were performed using a
one-way ANOVA in GraphPad Prism 6 analysis package.

AFM. AFM on frozen sections were performed using 5 mm thick cryosections as
previously described44,45. The reduced modulus was calculated which is related to
the Young’s modulus, but includes corrections for the compliance of the indenter
and is more commonly used when indenting biological substrates with soft tips.
In brief, the periductal stroma and the DEJ were identified by comparing the
unstained tissue with serial sections stained for Picrosirius Red. A Bioscope
Catalyst (Bruker, Coventry, UK) was used, mounted onto an Eclipse T1 inverted
optical microscope (Nikon, Kingston, UK) that was fitted with a spherically tipped
cantilever (nominal radius and spring constant of 1 mm and 3 Nm� 1, respectively:
Windsor Scientific Ltd., Slough, UK). The local reduced modulus was determined
for each of 400 points in a 25� 25 mm region, indented at a frequency of 1 Hz with
lateral spacing of 1.25 mm. The extend curve was used in conjunction with a
contact-point-based model to calculate the reduced modulus for each indentation.
For each biological sample, three 25 mm2 regions, and hence 1,200 force curves,
were collected. Post hoc analyses of force curves were performed using Nanoscope
Analysis v 1.40 (Bruker), whereby a baseline correction was applied to each curve
before a force fit was applied using the Herzian (spherical) model and a maximum
force fit of 70%. Once all 400 force curves had been generated, quality control was

applied, whereby any force values falling more than two s.d.s away from the mean
value were discarded in order to account for failed indents. In general fewer than
10% of force curves were excluded. For each mammary section, three ducts were
isolated, and within each duct, three areas of periductal stroma were scanned.
In the skin sections, three areas along the length of the DEJ were examined
per section. Three mice per group were evaluated for both skin and mammary
tissues. The data were analysed using GraphPad Prism 6 analysis software.

Statistical analysis. Data were evaluated using Student’s t-test, Mann–Whitney
U-test, or one-way ANOVA with Tukey test as indicated. Results were from at least
three independent experiments, and shown as mean±s.e.m. Differences were
considered significant at the values of *Po0.05, **Po0.01 and ***Po0.001.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information files and
from the corresponding author upon request. Microarray data have been deposited
in Array Express under Accession code E-MTAB-5330.
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