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Abstract—Most applications of both type-1 and type-2 fuzzy
logic systems are employing singleton fuzzification due to its
simplicity and reduction in its computational speed. However,
using singleton fuzzification assumes that the input data (i.e.,
measurements) are precise with no uncertainty associated with
them. This paper explores the potential of combining the uncer-
tainty modelling capacity of interval type-2 fuzzy sets with the
simplicity of type-1 fuzzy logic systems (FLSs) by using interval
type-2 fuzzy sets solely as part of the non-singleton input fuzzifier.
This paper builds on previous work and uses the methodological
design of the footprint of uncertainty (FOU) of interval type-2
fuzzy sets for given levels of uncertainty. We provide a detailed
investigation into the ability of both types of fuzzy sets (type-
1 and interval type-2) to capture and model different levels of
uncertainty/noise through varying the size of the FOU of the
underlying input fuzzy sets from type-1 fuzzy sets to very “wide”
interval type-2 fuzzy sets as part of type-1 non-singleton FLSs
using interval type-2 input fuzzy sets. By applying the study in
the context of chaotic time-series prediction, we show how, as
uncertainty/noise increases, interval type-2 input fuzzy sets with
FOUs of increasing size become more and more viable.

I. INTRODUCTION

Uncertainty exists in almost all real life applications and
their performance can be affected when facing high level
of uncertainties. Therefore, it is crucial for these application
systems to have the ability to handle these uncertainties. Fuzzy
sets (FSs) and fuzzy logic systems (FLSs) are established con-
cepts and techniques that have been accepted as methodologies
for building systems that can deliver excellent performance
in the face of uncertainty and imprecision [1]–[4]. There
are many sources of uncertainty facing FLSs such as the
presence of noise in the training data, the noise affecting inputs
and outputs and the linguistic uncertainty associated with the
linguistic terms in the antecedents of the rule base [5] [6].

Non-singleton fuzzy logic systems (NSFLSs) [7] [8] were
introduced to model the uncertainty of input signals as an
extension to singleton fuzzy logic systems (SFLSs) which are
not adequate when input data is corrupted by measurement
noise [9]. In NSFLSs, the inputs are modelled as fuzzy sets
and are no longer as crisp values. NSFLSs have been used
successfully in a variety of applications [10]–[23] and new
advancements in developing new types of NSFLS have shown
superior results (e.g., in [24]).
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The modelling processes of various sources of uncertainties
in NSFLSs can be systematically achieved as follows:
• The input uncertainties of an FLS are modelled using

input FSs, for example the uncertainties from the sensor
readings that provide the inputs to an FLS.

• The control output uncertainties of an FLS are modelled
using output FSs. These result for example from the
changes in the actuators or motor characteristics due to
environmental conditions.

• The uncertainties in linguistic labels which are the am-
biguity in the meanings of the words used to label the
antecedents and the consequent FSs used in fuzzy logic
rules, for example the labels ‘left’ or ‘fast’.

From the above step-by-step uncertainty modelling ap-
proach, it can be recognised that, the input uncertainties are
modelled using input FSs (in case of NSFLSs) then they are
combined with antecedent FSs that are used to model the
uncertainties of the linguistic labels for the inputs in the fuzzy
rules. In this process, the input uncertainties are modelled
separately from the uncertainties of antecedent terms and then
combined afterwards.

However, in our previous works [25], [26], the modelling of
uncertainty affecting the FLS inputs is conducted as part of the
antecedent FSs. In principle however, established FLS method-
ology foresees the use of the input FSs for the modelling
of input uncertainty while antecedent FSs model uncertainty
in the linguistic antecedent terms. While in most singleton
FLS applications, uncertainty in input and antecedent terms is
“mixed” in the antecedent FSs, for the step-by-step modelling
approach put forward in [25], exploring the application with a
non-singleton fuzzification approach would be highly valuable.
In such an approach, the proposed methodology in [25] to
determine an appropriate footprint of uncertainty (FOU) for
the antecedent FSs would be adjusted in this paper to generate
appropriate FOUs for the input FSs based on input uncertain-
ties, achieving potentially a more efficient FLS design.

In this paper, we use the application domain of time series
prediction (TSP) to investigate the performance of the different
generated type-1 fuzzy logic systems (T1 FLSs) with different
input fuzzy sets by transitioning from inputs employing type-
1 fuzzy sets (T1 FSs) to inputs employing interval type-2
fuzzy sets (IT2 FSs) with varying sizes of FOU in the face of
different inputs with varying signal-to-noise ratios (SNRs).

In summary, in this paper, an FOU creation method is
adopted here to model input uncertainties of T1 FLSs as part
of their non-singleton fuzzification process. This approach is
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Fig. 1. The structure of the singleton and the type-1/interval type-2 non-
singleton type-1 FLS

used to obtain an input IT2 FS of a given size around an input
T1 FS with a constant FOU size over the ‘core’ of the input
FS. This approach enables the transition from input T1 FSs to
input IT2 FSs while maintaining a desired level of uncertainty
in the primary memberships of the resulting input IT2 FSs
over the domain of the lower MF of the input IT2 FS. It is
worth noting that the main objective of this paper is not to
achieve optimal performance in a given application such as
TSP, but to explore the transitioning from input T1 to input
IT2 FSs by selecting the optimal FOU size for given levels of
uncertainty/noise.

The rest of the paper is structured as follows. In Section II,
a review of Non-singleton fuzzy logic system (NSFLS) and
FOU creation method are provided. The proposed approach is
applied to Mackey-Glass time series prediction and presented
in Section III. The results of the study are presented and
discussed in Section IV. The conclusion and future work
appear in Section V.

II. BACKGROUND

This section provides a brief overview of the concepts used
later in the paper. These concepts include singleton and non-
singleton FLS and the FOU creation method with their use in
different fuzzification types.

A. Singleton and Non-singleton Type-1 Fuzzy Logic System

According to the type of fuzzification [14], T1 FLSs can
be divided into singleton fuzzy logic system (SFLS) and non-
singleton fuzzy logic system (NSFLS), which are presented
below. T1 FLS (as shown in Fig. 1) is described by T1 FSs
and consists of four components, which are the fuzzifier, the
rule base, the inference engine and the defuzzifier [14].

In singleton T1 FLS, crisp inputs are first fuzzified, usually
into input T1 FSs. These activate the inference engine and the
rule base to produce output T1 FSs which are then combined to
produce an aggregated T1 output FSs. The defuzzifier finally
defuzzifies the aggregated T1 fuzzy outputs to produce crisp
outputs. Further detail on SFLSs can be found for example in
[12] [14].

A T1 FLS whose inputs are modelled as T1/IT2 FSs is
referred to as ‘T1/IT2 non-singleton T1 FLS’. A T1/IT2 non-
singleton T1 FLS has the same structure as a singleton T1
FLS, see Fig. 1, and they share the same type of rules; the
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Fig. 2. Illustration example of the FOU creation of IT2 MF by transitioning
from (a) initial T1 FS to (b) IT2 FS obtained using FOU size parameter
c = 0.5.

major difference is the type of fuzzification. The majority of
FLSs are using SFLS because the singleton fuzzification is
simpler and faster to compute. In singleton fuzzification, inputs
are considered to be singleton FSs, while the non-singleton
fuzzification models the FLS inputs as FSs. More details on
NSFLSs can be found for example in [12], [14], [20].

B. FOU Creation Method to represent the Input Value

As previously introduced in [25], this method is used to
obtain an IT2 FSs with a uniform (constant) FOU over the
‘core’ of the FS. This method based on a fixed parameter c that
is used to create an FOU of a given size around a principal (T1)
MF. In order to create the IT2 FSs based on the uncertainty
parameter c and the T1 MF, we employ (1) and (2) shown
below to create the resulting upper membership function
(UMF) and lower membership function (LMF) respectively.

µxi
(xi) = min

(
µxi(xi) +

c

2
, 1.0

)
(1)

µ
xi
(xi) = min

(
max

(
µxi

(xi)−
c

2
, 0
)
, 1.0− c

)
, (2)

where µxi
(xi) relates to the T1 MFs such as the triangular FS

shown in (4) and c is the FOU size parameter. For more details
on this method we refer the reader to [25]. A more detailed
illustration of the FOU design of the IT2 FS is depicted in
Fig. 2. In Fig. 2(a) the possible range which the triangular T1
MF center (mean) can vary is considered to be ±δ (will be
detailed in II-B2)

1) Singleton Type-1 FLS with Singleton Fuzzy Sets to
Represent the Input Value: In singleton T1 FLS, the fuzzifier
converts the crisp inputs into linguistic terms with given
membership value to activate the rule base and inference
engine. The fuzzification between singleton fuzzy input and
antecedent T1 FS to obtain the membership values of input i
within rule r can be found as follows:

µri (xi) = µ
Fi
r
(xi), (3)

where xi is the ith input value and µ
Fi
r
(xi) is the membership

value of the antecedent T1 FS.



2) Type-1 Non-Singleton Type-1 FLS with Triangular Fuzzy
Sets to Represent the Input Value: In type-1 non-singleton
type-1 FLSs, the fuzzy inputs can be modelled using triangular,
Gaussian or any other MF shape. The considered non-singleton
fuzzy inputs employ triangular MF, and are centred at the given
input value. The spread of the FS is related to the amount of
uncertainty facing the FLS (e.g., the additive noise standard
deviation). In our case the possible range which each triangular
center (mean) can vary is considered to be ±δ, where δ is
related to the additive noise standard deviation.

The membership value of the triangular T1 fuzzy inputs in
a T1 non-singleton type-1 FLS can be written as:

µxi
(xi) =


0 xi ≤ a
xi−a
x′
i
−a a ≤ xi ≤ x′i

b−xi

b−x′
i
x′i ≤ xi ≤ b

0 xi ≥ b

, (4)

where, xi is the ith input value, x′i is the input value, a =
(x′i − δ) is the left endpoint, and b = (x′i + δ) is the right
endpoint.

The fuzzifier converts the fuzzy input into linguistic terms
with given membership value to activate the rule base and
inference engine. The composition between type-1 fuzzy input
and antecedent T1 FS to obtain the membership values of input
i within rule r can be found as follows:

µri (xi) = sup
xi∈Xi

(µxi(xi) ∗ µFi
r
(xi)), (5)

where µxi
(xi) is the membership value of the T1 fuzzy input

and µ
Fi
r
(xi) is the membership value of the antecedent T1 FS.

In this paper, the ‘sup’ operation is considered to be maximum
t-conorm and the * operation is considered to be the product.
The antecedent/consequent type-1 fuzzy sets are shown in Fig.
3 whereas the triangular type-1 fuzzy input when x′i is the ith

input value is shown in Fig. 2 (a).
3) Interval Type-2 Non-Singleton Type-1 FLS with Triangu-

lar Fuzzy Sets to Represent the Input Value: In the literature
considering the application of IT2 FLSs, the mostly considered
are the use of singleton T2 FLSs in which the inputs are
crisp values. Also, few papers considered the use of T2 non-
singleton T2 FLSs [14]–[17] where the uncertainty in inputs
are modelled using type-2 fuzzy inputs. However, to the best
of our knowledge, no work presented so far considering the
use of IT2 non-singleton T1 FLSs where the uncertainty in
inputs to a T1 FLS are modelled using IT2 fuzzy inputs. The
later approach as well as the previous two (in subsections II-B1
and II-B2) will be adopted in this paper.

Our previous work in [25] (summarised above in Section
II-B) is adjusted to be used here to generate appropriate FOUs
for the input FSs based on input uncertainty. In order to create
the IT2 version of each initial T1 set, the FOU size is specified
using the parameter c ∈ [0, 1]. Note that c = 0 results in an
input T1 FS with the original MF while c = 1.0 results in an
input IT2 set with a very wide FOU.
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Fig. 3. The antecedent/consequent type-1 fuzzy sets

The upper membership value of the IT2 fuzzy input µxi
(xi)

and the lower membership value of the IT2 fuzzy input µ
xi
(xi)

can be obtained from (1) and (2) respectively.
The composition between IT2 fuzzy input and the an-

tecedent T1 FS for finding the upper and lower membership
values of input i within rule r can be obtained using the
following equations, (6) and (7) respectively.

µri (xi) = sup
xi∈Xi

(µxi
(xi) ∗ µ

Fi
r
(xi)), (6)

µr
i
(xi) = sup

xi∈Xi

(µ
xi
(xi) ∗ µ

Fi
r
(xi)), (7)

where µri (xi) and µr
i
(xi) are the upper and lower membership

values of fuzzy input, and µ
Fi
r
(xi) is the membership value

of the antecedent T1 FS. In this paper, the ‘sup’ operation is
considered to be maximum t-conorm and the * operation is
considered to be the product. The antecedent/consequent type-
1 fuzzy sets are shown in Fig. 3 whereas the IT2 fuzzy input
when x′i is the ith input value is shown in Fig. 2(b).

After considering the proposed FOU creation technique for
input fuzzy sets and their fuzzification process, we proceed
to an experimental exploration of the different behaviour of
IT2 input FSs created using FOU creation method when
transitioning from an input T1 to an input IT2 FS.

III. EXPERIMENTS METHODOLOGY AND RESULTS

A. Experimental Data

1) Mackey-Glass Time Series: FLSs have been successfully
used in forecasting of time series [14], [27]–[29]. As the level
of noise/uncertainty is easily controllable, we use time-series
prediction here as a testbed to explore the different approaches
to IT2 FLS generation. We use the Mackey-Glass (MG) time
series which is a chaotic time series proposed in [30]. It is a
first-order differential-delay equation originally used to model
physiological systems. It is generated from the following non-
linear differential equation:

dx(t)

dt
=

a ∗ x(t− τ)
1 + xn(t− τ)

− b ∗ x(t) (8)

where a, b and n are constant real numbers, t is the current
time and τ is the delay time. For τ ≤ 17, the system is
known to exhibit a deterministic/periodic behaviour which
turns chaotic with τ >17. To obtain simulation data, (8) is



used in this paper with the following parameters: a = 0.2,
b = 0.1, τ = 30 and n = 10 and solved using Euler’s method
[31] with a step size equal to 1.0. The initial values of x(t)
for all values of t ≤ τ are set to 0.9.

2) Additive Noise: To make the prediction more challeng-
ing, noise can be added to the time series. The level of noise
is commonly measured by the SNR where a high SNR refers
to a more clear signal (low noise) and a low SNR refers to
a more noisy signal (high amount of noise). The formula for
the SNR (in dBs) [14] is:

SNR (in dBs) = 10∗log10 (
σ2

signal

σ2
noise

), (9)

where σ2
signal is the variance of the signal and σ2

noise is the
variance of the noise. To find σnoise, we solve (9) for σnoise
as, i.e.:

σnoise =
σsignal

10(
SNR
20 )

(10)

Then, the additive noise can be generated, for example from
a uniform distribution by using a uniform random variable with
zero-mean in the interval [−δ, δ], where δ =

√
3σnoise. (Note

that the variance σ2 of a uniform random variable in [−δ, δ]
is δ2

3 ) [28].
In order to explore the non-singleton fuzzification of T1

FLSs by transitioning from T1 to IT2 non-singleton input FSs
subjected to various levels of uncertainty/noise, we conduct a
series of experiments for forecasting of the noisy MG time
series.

The steps that describe the initial design of the T1 non-
singleton T1 FLSs for a given application and its subsequent
transformation into one or more non-singleton IT2 T1 FLSs
under different levels of uncertainty/noise can be summarized
as follows.

1) Time series data generation.
2) T1 and IT2 non-singleton FSs creation.
3) Non-singleton T1 FLSs design and rule base creation.
4) T1/IT2 non-singleton T1 FLSs evaluation.

As discussed, we generate a data set (both training and
testing data) from MG time series corrupted with different
levels of noise as sources of uncertainty. Next, we start the
design of input non-singleton T1 FS and a series of non-
singleton IT2 input FSs by generating IT2 FSs using the
FOU size parameter c to form the IT2 MFs of the input FSs.
Then, we design T1 FLS employing evenly distributed T1
FSs and create the rule base by applying the Wang-Mendel
(WM) method [32] using the noise free training data set. The
actual number of FSs and the rules are maintained from the T1
system designed based on the NF training data. Finally, the
performance of each of the T1 FLSs (with different T1/IT2
non-singleton input FSs) is evaluated for each of the testing
data sets to determine the best mapping between the FLSs
(with different input FOU sizes) and the noise levels.

B. Time Series Data Generation

Assume a time series x(t), where t = 1, 2, 3, . . . , N . For
a single stage prediction for x, we consider p past known
data points of x(t) to predict the future value x(t + 1) . So,
the past data of x(t) time series: x(t − p + 1), x(t − p +
2), x(t− p+ 3), . . . , x(t) are used to predict the future value
x(t+1). Further, if these points contain noise/uncertainty, we
refer to the given value of the time series x(t) as s(t), where
s(t) = x(t) + n(t) and n(t) is the noise [14]. The N given
time series data samples are commonly split into D training
points and (N −D) testing points where one usually obtains
the training data points as (x(1), x(2), x(3), . . . , x(D)) and
testing data as (x(D + 1), x(D + 2), x(D + 3), . . . , x(N)).

In this paper, a single-stage prediction for the MG chaotic
time series is used (i.e. to predict the future value x(t + 1)).
We have considered a uniform noise generated from a uniform
random variable as discussed in Section (III-A2).

In this step, Noise-free (NF) data is generated using (8) for
the MG time series with the parameters and the numerical
solutions of the differential equations stated above.

Based on these data we proceed to design a four-input, one-
output T1 FLS for the MG time series. Specifically, we extract
700 input-output data pairs as described above. The first 500
pairs (the training dataset) were used for training the FLSs
by generating the rules and finding the values of δ at each
noise level (i.e., δ =

√
3σnoise) using x(1001) to x(1504).

The remaining 200 pairs (the data testing set) using x(1505)
to x(1708) were used as basis for testing the systems.

In this work, different versions of the training and the testing
data are generated, i.e. the data is corrupted with a zero-mean
uniform noise for different SNRs. We use 12 noise levels
in training and testing data. Specifically, we use discretized
levels from 0dB to 20dB with increments of 2, as well as the
original NF data set (noise-free). Fig. 4 shows examples of
the training and the testing data of the the MG time series at
NF data and two different SNR level (10 and 0 dBs). Table I
shows the delta (δ) values for different noise levels from MG
time series training data corrupted by different levels of noise.
These values are used to design the T1 non-singleton inputs
and will be detailed in the next subsection.

C. Type-1 and Interval Type-2 Non-singleton Fuzzy Sets Cre-
ation

In this step, first, the T1 non-singleton FS is initially de-
signed by incorporating the information from the noise levels
in each training data sets at different SNR level. From Table
I, we can see that in NF data, the (δ) value is 0 by assuming
that there is a relatively very small or no uncertainty/noise is
present in the NF data. In this case the input is crisp value and
modelled as a singleton FS as shown in Table II. Whereas, in
the case shown in Table III, where value of delta (δ)= 0.159 at
SNR = 10 dB, the input value is modelled as T1 non-singleton
FS (see column 4). Note that the FOU size c in this case is
equal to zero.

Then, we extend the non-singleton T1 FS into a series
of non-singleton IT2 FSs using the FOU creation approach



TABLE I
DELTA VALUES FOR DIFFERENT NOISE LEVELS FROM MG TIME SERIES CORRUPTED BY DIFFERENT LEVELS OF NOISE

SNR (dB) NF 20 18 16 14 12 10 8 6 4 2 0

Delta (δ) 0 0.05 0.063 0.08 0.1 0.126 0.159 0.20 0.252 0.317 0.399 0.502
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Fig. 4. Examples of the training and the testing data of the the MG time
series. (a) NF data, where training is performed with 500 input-output pairs
in x(1001), x(1002), . . . , x(1504) and testing is done with 200 input-output
pairs in x(1505), x(1506), . . . , x(1708). (b) Training and testing data are
corrupted with noise at SNR level 10dB and (c) at SNR level 0dB.

presented in Section II-B. First, the FOU size parameter
c ∈ [0, 1] is discretized to a set of 11 values starting at 0
(T1 FS) and increasing to a maximum of 1.0 in increments
of 0.1. For the FOU size parameter c = 0.0, the IT2 FSs
reduce to the original T1 FSs, whereas for c = 1.0, the IT2
FS reachs the maximum amount of their width (i.e. the FOU
covers the entire primary membership). Thus, we design 11
IT2 FSs, where each T1 FLS was designed using specific

TABLE II
ILLUSTRATION OF INPUT AT GIVEN x′ WITH NF DATA

input δ singleton FS

NF x′ 0

0
.0

1
.0

x'

modelled input FS with non-singleton T1/IT2 FSs with the
given FOU size parameter c.

To construct the UMF and LMF of the input IT2 FSs, we
use the FOU creation method detailed in Section II-B and
apply equations (1) and (2) respectively by combining the
T1 FSs with the chosen FOU size represented by the FOU
size parameter c. An example of input FSs design using the
FOU creation method at given x′ with MG time series data
corrupted with 10db SNR level are shown in Table III.

D. Non-singleton Type-1 FLS Design and Rule Base Creation

In this step, the number of triangular MFs assigned to each
input and output of the T1 FLS was chosen to be seven (see
Fig. 3). While a higher number of MFs would enable a better
performance, seven proved a good compromise for readability
(in figures) and reasonable performance – in particular as
optimal prediction performance is not a primary aim in this
paper. First, we defined the FSs to evenly cover the input and
output spaces. Then, we apply the WM method [32] in order
to generate the rules from the given input-output pairs (noise-
free training data).

The actual number of FSs and the rules are maintained from
the T1 system designed based on the NF training data. All the
common parameters of the SFLSs and NSFLSs are the same.
For all experiments, σx in the NSFLS case is set equal to
the standard deviation of the additive noise. In a noise free
situation for which σx = 0, the performance of the NSFLS is
identical to that of the SFLS.

In the current paper, it is the input FSs only that are later
modified to generate different T1 FLSs. The same rule base is
employed for all FLSs in order to enable the comparison of all
FLSs with a sole focus on their input FSs (rather than having
differences differences in the rules). The resulting rules are
used for all FLSs used in our experiments in order to enable
a comparison which focuses on the inputs FSs.

E. T1/IT2 Non-Singleton T1 Fuzzy Logic Systems Evaluation

After finishing the design of the T1/IT2 non-singleton T1
FLSs with the chosen FOU sizes, in this step, the testing data



TABLE III
AN EXAMPLE OF INPUT FS DESIGN AT GIVEN x′ WITH MG TIME SERIES DATA CORRUPTED WITH 10DB SNR LEVEL

input IT2 FSs at different FOU size c

SNR
(dB) input δ c = 0 c = 0.5 c = 1.0

10 x′ 0.159

0
.0

1
.0

δδ x'

0
.0

1
.0

c =0.5 T1 FS

δδ x'

UMF

LMF

0
.0

1
.0

T1 FS

δδ x'

c =1.0

UMF

LMF

sets are used to test the performance of the individual non-
singleton T1 FLSs when faced the different uncertainty/noise
levels. Now that we have 11 T1 FLSs, each using different
FOU sizes determined by the given c, we test each of the
FLSs against 12 levels of noise in order to determine which
input FOU size results in the best performance for each given
noise level. Each test is repeated 30 times to account for the
random generation of the noise.

The performances of all the designs are evaluated using their
root mean square error (RMSE) [14] based on (11), i.e.,

RMSE =

√√√√ 1

200

1707∑
k=1508

[
s (k + 1)− f

(
s(k)
)]2

(11)

where, s(k + 1) is the output of the noisy testing data
and f(s(k)) is the crisp output of the FLS, and, s(k) =
[s(k − 3), s(k − 2), s(k − 1), s(k)]

T .
The RMSE results are averaged over 30 runs and are

depicted in Table IV showing the results of the MG time
series. Each column (except the 1st one that is showing
singleton results) represents FLS design with a given FOU
size parameter c whereas the rows show the average RMSE
values for uniform noise at the different SNR values for all
FOU sizes/FLSs. The bold values are the minimum of each
average RMSE representing the best T1 FLS (based on the
respective FOU size) at a particular SNR level.

IV. ANALYSIS AND DISCUSSION

In this section, the experiment results are analysed and
discussed. The presented experiments investigate modelling
uncertainty in the input FSs using non-singleton fuzzification
applied to the MG time series prediction.

The average RMSE values for the MG TSP using singleton
and T1/IT2 (with different FOU sizes) non-singleton T1 FLS
at different noise levels are depicted in Table IV. For a better
illustration of the results in Table IV, we show a visual repre-
sentation of the results in Fig. 5. This figure shows the RMSE
values of SFLSs and NSFLSs using different noise levels
(different SNR values) of testing data corrupted with different
levels of noise for the MG time series. Fig. 5 illustrates the
RMSE value of one singleton and 11 T1/IT2 non-singleton
T1 FLSs using different noise levels at different SNR values

starting from noise free data (NF) and ending with the highest
noise level (0dB) of the MG time series testing data. The
eleven chosen FOU sizes in these experiments appear in the
graph x axis and each is tested at different noise level from
NF to 0 dB. From Fig. 5, it is clear that there is a direct
relationship between the input FOU size and the noise level in
relation to the achieved performance. As the uncertainty/noise
level increases (SNR decreases), the FOU size of the input
FSs with best performance (i.e. giving the minimum RMSE
value) increases.

The first column of Table IV contains the performance
results of the singleton T1 FLS. The second column contains
the results of T1 non-singleton T1 FLSs (designed using FOU
size parameter c = 0.0 which reduces to the original T1 FS)
tested at different noise levels. From these results, we can see
that T1 non-singleton is outperforming singleton T1 FLS at
all noise levels.

Moving to the right in Table IV, the FOU size parameter c
is increasing and the inputs modelling are transitioning from
T1 (c = 0) to IT2 FSs that designed using the proposed
FOU creation method with constant FOU size over the core
of the primary membership domain. The performance clearly
increases with the increased FOU size at each noise level.
The reduction of the performance is started at c = 1.0 where
the FOU covers the entire primary membership (i.e., LMF is
entirely on the primary variable x–axis) [33], and only the
UMF of the IT2 input FS is used in the fuzzification and
accordingly is considered as T1 non-singleton fuzzification
case (see the last column of Table III).

Finally, Fig. 6 shows a sample output of MG TSP using
singleton T1 FLS and T1 non-singleton / IT2 non-singleton
T1 FLSs with two different FOU sizes tested at three different
chosen SNR levels: 20, 10 and 0 dBs. From the figure,
we can note that the non-singleton T1 FLSs are performing
better than singleton FLS especially at the higher level of
uncertainty/noise such as 0dB. As the the FOU size of the IT2
FS increase the performance of IT2 non-singleton increases as
well.

V. CONCLUSION

As part of this paper, we presented an empirical approach
for transitioning from T1 input FS to non-singleton IT2 input
FSs for different levels of uncertainty (noise) in the context



TABLE IV
THE AVERAGE RMSE VALUES FOR THE MG TSP USING SINGLETON AND T1/IT2 (WITH DIFFERENT FOU SIZES) NON-SINGLETON T1 FLSS AT

DIFFERENT NOISE LEVELS. THE VALUES IN BOLD INDICATE THE MINIMUM OF EACH AVERAGE RMSE REPRESENTING THE BEST FLS (BASED ON THE
RESPECTIVE FOU SIZE) AT A PARTICULAR SNR LEVEL

Input FSs type and FOU size c

T1 FS IT2 FSs

SNR(dB)
singleton

NF∗ 0.031
c = 0 c = 0.1 c = 0.2 c = 0.3 c = 0.4 c = 0.5 c = 0.6 c = 0.7 c = 0.8 c = 0.9 c = 1.0

20 0.042 0.042 0.042 0.042 0.042 0.043 0.044 0.046 0.049 0.053 0.058 0.068

18 0.048 0.048 0.048 0.048 0.048 0.048 0.049 0.051 0.053 0.056 0.061 0.076

16 0.055 0.055 0.055 0.055 0.055 0.055 0.056 0.056 0.058 0.060 0.065 0.078

14 0.065 0.064 0.064 0.063 0.063 0.063 0.063 0.063 0.063 0.065 0.070 0.081

12 0.078 0.075 0.075 0.074 0.074 0.073 0.073 0.072 0.071 0.071 0.075 0.094

10 0.100 0.088 0.088 0.088 0.087 0.085 0.084 0.081 0.079 0.079 0.082 0.105

8 0.151 0.105 0.104 0.103 0.101 0.099 0.096 0.093 0.090 0.089 0.091 0.111

6 0.233 0.122 0.121 0.120 0.118 0.115 0.111 0.107 0.104 0.101 0.102 0.126

4 0.335 0.141 0.140 0.138 0.136 0.132 0.128 0.123 0.119 0.115 0.114 0.136

2 0.430 0.164 0.163 0.161 0.157 0.153 0.148 0.143 0.138 0.134 0.129 0.151

0 0.515 0.192 0.191 0.188 0.184 0.179 0.173 0.167 0.161 0.156 0.151 0.168

*NF: Noise Free Data

of a non-singleton FLS. The goal of this work is not to
achieve the best performance in applications such as in time
series prediction, but to study and present approaches for the
modelling of uncertainty in FLS inputs using solely interval
type-2 non-singleton fuzzification. The latter is valuable as
the uncertainty in system inputs can directly be related to the
FOU of the input FSs, while the rest of the FLS (antecedent
and consequent FSs) can remain T1 FSs unless information on
their respective uncertainty characteristics are known. This ap-
proach is adopting an FOU creation method initially designed
to determine an appropriate antecedent FS FOU and adjusted
in this paper to generate appropriate FOUs for the input FSs
based on input uncertainty, achieving potentially more efficient
FLS design.

The proposed approach enables both the adaptation of
the non-singleton IT2 FS for known levels of uncertainty
(i.e. by increasing FOU size with increasing uncertainty) and
the systematic comparison of the original T1 non-singleton
T1 FLS to the resulting new IT2 non-singleton T1 FLS(s).
This method shows the transitioning between different non-
singleton FSs employed in different T1 FLSs showing best
performance as the FOU size of employed IT2 FSs increases
in relation to the increase of uncertainty/noise levels.

In order to explore the behaviour of the proposed approach,
we conducted detailed performance comparison and evaluation
in the context of time series analysis. The results indicate
in general that T1 FLSs based on IT2 non-singleton FSs
outperform those based on non-singleton T1 FS and singleton
fuzzification. However, as the FOU size of the employed IT2
FS reached c = 1.0 the fuzzification process is converted
into T1 non-singleton case because the FOU covers the entire
primary membership. Only the UMF of the IT2 input FS is
used in the fuzzification and accordingly is considered as T1
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Fig. 5. RMSE value of one singleton and 11 T1/IT2 non-singleton T1 FLSs
using different noise levels at different SNR values of the MG time series
testing data

non-singleton fuzzification case resulting to reduction in the
T1 FLS performance.

As part of future work, we will explore the methodological
generation of both input FSs and the antecedents FSs of the
system as an IT2 FSs to model both types of the uncertainties:
uncertainty of the input data and the uncertainty associated
with the linguistic terms of the FLS.
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