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Abstract—Cardiac magnetic resonance (CMR) is regarded
as the reference examination for cardiac morphology in
tetralogy of Fallot (ToF) patients allowing images of high spa-
tial resolution and high contrast. The detailed knowledge of
the right ventricular anatomy is critical in ToF management.
The segmentation of the right ventricle (RV) in CMR images
from ToF patients is a challenging task due to the high shape
and image quality variability. In this paper we propose a fully
automatic deep learning-based framework to segment the RV
from CMR anatomical images of the whole heart. We adopt a
3D multi-scale deep convolutional neural network to identify
pixels that belong to the RV. Our robust segmentation
framework was tested on 26 ToF patients achieving a Dice
similarity coefficient of 0.8281±0.1010 with reference to
manual annotations performed by expert cardiologists. The
proposed technique is also computationally efficient, which
may further facilitate its adoption in the clinical routine.
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I. INTRODUCTION

Congenital heart defects (CHD) are the most common
type of birth abnormalities [1]. Among the various CHD,
tetralogy of Fallot (ToF) is the most prevalent cyanotic
anomaly, with one baby being born with ToF every five
hours in the United States [2], [3]. ToF is made up of
the following four flaws: a subaortic ventricular septal de-
fect, narrowing of the pulmonary outflow tract, overriding
aorta, and right ventricular hypertrophy. Although pallia-
tive and subsequent reparative surgery have revolutionised
the survival prospects of the ToF population, their care is
extremely challenging due to common complications. The
growing ToF patient group requires lifelong follow-up.

The knowledge of the anatomy of the right ventricle
(RV) is critical in ToF management, as it may support
the entire clinical workflow from diagnosis and risk
stratification to therapy planning and interventions [4].
Cardiovascular magnetic resonance (CMR) is increasingly
being heralded [5] as the imaging modality of choice

for the evaluation of the right ventricular anatomy in
ToF patients. It allows enhanced visualization of cardiac
structures without exposing the body to ionizing radiation.

Currently, the clinical routine to annotate the RV in
CMR images is a manual process performed by an ex-
perienced cardiologist who relies on visual inspection.
However, this process is time-consuming and laborious. In
addition, it is subject to high intra- and inter-observer er-
rors. Alternatively, automatic segmentation methods could
help relieve the cardiologists’ workload, as well as im-
prove the reliability of the outcome. However, the RV
shape in ToF patients eludes any standardization and
may assume various morphologies depending on previous
surgical treatment and/or other patho-physiological condi-
tions [6]. There is also a high variation in CMR image
intensity and quality. All these render the automatic RV
segmentation in ToF patients a challenge.

Deep learning is a rapidly growing trend in general
data analysis that currently drives the artificial intelli-
gence boom. Convolutional neural networks (CNNs) [7],
in particular, have convincingly outperformed the state-
of-the-art in several computer vision applications, raising
expectations that they might be applied in other domains,
such as medical image analysis. Being inspired by the
biological processes in the brain, CNNs consist of a
series of inter-connected layers of artificial neurons. Their
deep architecture allows for extracting a set of highly
discriminating features at multiple levels of abstraction.
Contrary to other traditional supervised machine learning
techniques that rely on human ingenuity to manually de-
vise features, CNNs use an automatic data-driven process
to learn features concurrently with the training of the
classifier.

In this paper, we propose a framework that adopts a
3D multi-scale deep CNN to perform the challenging task
of automatically identifying voxels that belong to the RV
of ToF patients. To the best of our knowledge, this is the
first study to fully automatically segment the RV of ToF
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patients from 3D high spatial resolution CMR images.

II. THE METHOD

We adopt a 3D multi-scale CNN architecture [8] that is
11-layers deep and consists of two pathways to segment
the RV from the whole heart images. Next, we briefly
describe the network’s architecture and its justification.

The proposed network is 3D which, contrary to the
most commonly used 2D CNNs, makes optimal use of
the volumetric image data. The network is implemented
as fully-convolutional using the Parametric Rectified Lin-
ear Unit (PReLU) non-linearity [9]. To tackle the slow
inference associated with 3D CNNs, the network’s input
size (= 253) is designed to be greater than the CNN’s
receptive field (= 173), so that the dense-inference may
be exploited [10]. This strategy allows the simultaneous
prediction of V (= 93) voxels in one pass of the network.
Therefore, the computational load is significantly reduced
through avoiding to repeat convolutional operations on the
same voxels of patches that overlap. At the same time,
the effective training batch size increases by V (without
concurrently increasing the computational load) which is
preferred as it improves the accuracy of the estimation [8].

The intentional use of larger inputs also increases the
flexibility when sampling input segments. This may be
exploited to significantly improve the segmentation per-
formance by using the dense training proposed in [8]. Ac-
cording to this hybrid training scheme, the training batches
are formed from training images with 50% possibility
being centred on a foreground (RV) or background voxel,
thus alleviating the class-imbalance present in the data.

If B segments are used to form a training batch, then
the CNN’s parameters Θ (such as weights and biases) may
be estimated by minimizing the following cross-entropy-
based cost function

J(Θ; Is, cs) = − 1

B · V

B∑
s=1

V∑
v=1

log(pcvs (x
v)) (1)

where Is and cs are the s−th segment of the batch and
the true labels of its predicted voxels, respectively. cvs is
the true label of the v−th voxel, xv is the corresponding
position in the classification feature maps, and pcvs is the
output of the softmax function. The Stochastic Gradient
Descent (SGD) may be used to solve (1), while multiple
optimization steps over the various batches lead to con-
vergence.

The adopted network has a deeper architecture. This
puts it at an advantage over shallower CNNs, as deeper
architectures allow for greater discriminative powers due
to the additional non-linearities. In addition, they escape
more easily from local minima [11]. However, deeper
CNNs are more prone to overfitting. To address this
problem, the employed network makes use of small 33

kernels, which is an implicit way of regularization [12].
The smaller kernels are faster to convolve with as well as
contain less weights.

Combining local and larger contextual information in
the decision process has been shown to improve segmen-
tation results. In order to efficiently achieve this merging,

the selected network uses a dual pathway architecture
that processes the input images at multiple scales si-
multaneously. The first pathway operates on the original
images capturing the finest details, whereas the second
pathway operates on down-sampled images (with a factor
three) learning higher level features. To preserve the dense
inference characteristic of the CNN, the feature maps of
the last convolutional layer of the second pathway are up-
sampled to match the dimensions of the last convolutional
layer of the first pathway. Then, the two feature maps are
concatenated together.

Finally, the employed network includes two more hid-
den layers for combining the multi-scale features before
the final classification layer, resulting in a deep network
of 11 layers in total. The kernel size for the last three
layers is 13. Figure 1 shows an overview of the network
architecture.

III. EVALUATION ON CLINICAL DATA

A. Clinical data

Twenty-six patients with ToF underwent CMR imaging
after admission to Royal Brompton Hospital. The study
was approved by the local (UK) research ethics committee.
Written informed consent from all research participants
was obtained. All data were acquired on a Siemens
Avanto 1.5 Tesla scanner (Siemens Medical Systems,
Erlangen, Germany). The roadmap acquisition consisted
of a navigator-gated non-selective [13] 3D balanced steady
state free precession sequence (TE = 1 ms, TR = 2.3 ms;
GRAPPA ×2 ) acquired in the coronal plane. Data (72
slices at 1.6 × 1.6 × 3.2 mm, reconstructed to 144 slices
at 0.8 × 0.8 × 1.6 mm) were acquired over 100 ms in a
patient-specific mid-diastolic or systolic pause. The imag-
ing sequence incorporated chemical-shift fat-suppression,
T2-preparation and CLAWS [14] (continuously adaptive
windowing strategy) respiratory motion control. The RV
chamber was manually annotated on all roadmaps by CMR
experts.

B. Pre-processing, network configuration and training

The original images were downsampled by a factor of
two on speed grounds, and also based on the reasoning
that this would have minimal influence on the results.
The image intensities were normalized to have zero mean
and unit variance [15]. We applied dense training, with
the image segments being extracted with equal probability
centred on the RV and other background. The training data
was enriched by adding images reflected along the saggital
axis. Ten segments were used to form a training batch.
To refrain the forward (neuron activations) and backwards
(gradients) propagated signal from exploding or vanishing,
the kernel weights were initialized by sampling from the

normal distribution N(0,
√

2/ninput
l ), where ninput

l is the
number of weights through which a neuron of layer l is
connected to its input [9]. To stop the internal covariate
shift from hindering the weight convergence at deeper
layers, the Batch Normalization technique [16] to all
hidden layers was adopted. The network was regularized



Figure 1. The proposed architecture for fully automatic segmentation of the right ventricle. The 3D CNN has two convolutional pathways. The
neurons of the last layers of the two pathways have receptive fields equal to 173 voxels. The inputs of the two pathways are centered at the same
image location, but the second segment is extraced from a down-sampled version of the image (down-sampling factor = 3). The second pathway
processes context in an actual area of size 513 voxels.

using dropout [17] with a 50% rate on the last two layers.
For the training, the RMSProp optimizer [18] and Nesterov
momentum [19] were used. The network was evaluated
with two-fold cross-validation on the 26 subjects. Training
one-fold took approximately 24 hours, and inference can
be done within one minute on an NVIDIA GTX Titan X
GPU.

C. Results

To evaluate the accuracy of the proposed segmentation
technique, the Dice similarity coefficient and the absolute
volume difference (both with reference to the manual
annotations) were used. The results are summarized in
Table I. Examples for qualitative assessment are provided
in Fig. 2.

Table I
EVALUATION OF THE PROPOSED CNN-BASED SEGMENTATION

TECHNIQUE USING THE DICE SIMILARITY COEFFICIENT AND THE
ABSOLUTE VOLUME DIFFERENCE (BOTH WITH REFERENCE TO THE

MANUAL ANNOTATIONS). RESULTS OF THE TWO-FOLD
CROSS-VALIDATION ARE EXPRESSED AS MEAN ± STANDARD

DEVIATION.

Dice similarity coefficient Absolute volume difference (%)
0.8281±0.1010 12.6864±12.9872

IV. DISCUSSION & CONCLUSION

Only recently has the image interpretation process
begun to benefit from artificial intelligence. We have
presented a fully automatic approach for segmenting the
severely abnormal RV of ToF patients from CMR images
using a 3D multi-scale deep CNN. The deep learning-
based method was evaluated with two-fold cross-validation
on 26 subjects. The results we acquired from this pilot
study (Dice score = 0.8281±0.1010) show that the pro-
posed technique has potential for automating the annota-
tion of this peculiar anatomical structure. The achieved
score is superior to the RV segmentation performance
(Dice score = 0.80) reached by other machine learning
techniques [20], even though the latter relied on manual

engineering and were applied to a patient group that is less
variable/challenging than the adult congenital heart disease
cohort of this study. The outcomes of this paper can be
of great value in particular for institutions (such as ours)
that receive great numbers of ToF patients. The proposed
technique is also computationally efficient, which may
further facilitate its adoption in the clinical routine. In
general, the fast and robust evaluation of this widely varied
anatomy may help to develop personalized preventive and
therapeutic regimens for ToF. In addition, it may promote
the establishment of novel anatomical biomarkers.

Future work will involve running the experiments with-
out down-sampling the original images by a factor of two.
In addition, we will use more datasets, the annotation
of which is currently in progress. Another task we plan
to explore is the refinement of the segmentation results
using a 3D fully connected conditional random field (CRF)
[8]. This post-processing step is expected to ”clean-up”
the CNN results and achieve more structured predictions,
though the CRF configuration might be a challenging task.
For this study, the CNN was trained using the whole
images. A future task will be to perform the CNN training
by excluding areas outside the heart that contribute little
to the learning process. To this end, we will initialize
our segmentation framework by performing automatic
anatomical landmark localization [21], [22]. Ultimately,
our goal is to test the proposed framework in a multi-
class classification context [where the task of interest will
be the whole heart segmentation (four chambers)], and,
then, to juxtapose its performance against other state-of-
the-art whole heart segmentaton techniques [23], [24].

ACKNOWLEDGMENT

This work was supported by funds from the NIHR Car-
diovascular Biomedical Research Unit of Royal Brompton
& Harefield NHS Foundation Trust and Imperial College
London. Sonya Babu-Narayan is supported by a British
Heart Foundation Intermediate Clinical Research Fellow-
ship. Konstantinos Kamnitsas is supported by the Imperial
College London PhD Scholarship Programme. The authors



Figure 2. Qualitative evaluation of the proposed RV segmentation technique for one ToF patient. First column: The CMR images. Second column:
The manual annotations super-imposed on the images. Third column: The segmentation masks acquired by the fully automatic CNN-based approach.
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