Chemistry of Metals and Alloys

Chem. Met. Alloys 5 (2012) 33-36 Ivan Franko National University of Lviv www.chemetal-journal.org

Phase diagrams of the AgIn₅Se₈–AgGaSe₂ and AgIn₅Se₈–Ga₂Se₃ systems of the quasi-ternary system Ag₂Se–Ga₂Se₃–In₂Se₃

Inna IVASHCHENKO¹, Iryna DANYLYUK¹*, Ivan OLEKSEYUK¹

Received February 2, 2012; accepted June 27, 2012; available on-line November 5, 2012

Using X-ray diffraction, differential-thermal and microstructural analyses and microhardness measurements, the quasi-binary systems $AgIn_5Se_8-AgGaSe_2$ and $AgIn_5Se_8-Ga_2Se_3$ were investigated. Based on the results of the research, their phase diagrams were constructed.

X-ray phase analysis / Differential-thermal analysis / Microstructural analysis / Microhardness / Phase diagram

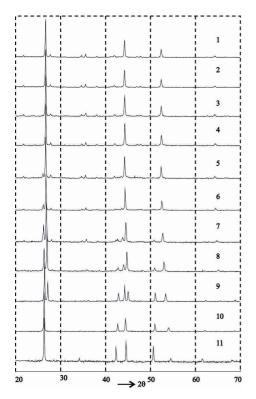
Introduction

Investigation of the $AgIn_5Se_8-AgGaSe_2$ and $AgIn_5Se_8-Ga_2Se_3$ systems is a necessary step in the study of the quasiternary system $Ag_2Se-Ga_2Se_3-In_2Se_3$. These systems may form large areas of solid solutions based on binary and ternary compounds, which can be used in semiconductor devices.

The Ag₂Se-In₂Se₃ system features one compound, AgIn₅Se₈, which melts congruently at 1088 K. Its high-temperature modification crystallizes tetragonal symmetry, space group P-42m, lattice parameters a =0.57934(4) nm, 1.16223(2) nm [1]. The microhardness of $AgIn_5Se_8$ is 3.5 ± 0.01 GPa [2]. The $Ag_2Se_-Ga_2Se_3$ system also features one compound, AgGaSe2, which melts congruently at 1123 K and crystallizes with tetragonal symmetry, S.G. I-42m, lattice parameters 0.5992(5) nm, 1.0886(1) nm [3]. c =The microhardness of AgIn₅Se₈ is 4.4±0.01 GPa [4]. The Ga-Se system features a compound, Ga₂Se₃, that melts congruently at 1293 K and crystallizes with cubic symmetry, S.G. F-43m, unit cell parameter a = 0.5429(4) nm [5]. The microhardness of Ga₂Se₃ is 3.5±0.01 GPa [6]. According to the literature data, all these compounds melt congruently, crystallize in the tetragonal or cubic system, and form solid solution ranges.

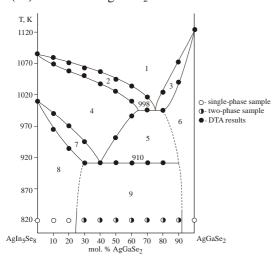
Experimental

Using the direct single-temperature method, 21 alloys of the $AgIn_5Se_8$ – $AgGaSe_2$ and $AgIn_5Se_8$ – Ga_2Se_3 systems were synthesized in evacuated quartz ampoules at 1150 K or 1290 K (depending on the


composition) from high-purity elements: Ag -99.99~wt.%, Ga, In -99.999~wt.% and Se -99.9999~wt.%. The alloys were investigated by X-ray diffraction analysis (XRD), which was performed using a DRON 4-13 diffractometer with Cu K_α -radiation (scan step 0.05° , exposure time 2 s), microstructure analysis (MSA) and microhardness measurements, using a Leica VMHT Auto microhardness tester. Differential thermal analysis (DTA) was performed using a device composed of a THERMODENT regulated heating furnace, an H-207 XY-recorder and a Pt-Pt/Rh thermocouple.

Results

Based on the XRD (Fig. 1) and DTA results, the phase diagram of the AgIn₅Se₈-AgGaSe₂ system was constructed. It belongs to the Roozeboom type V (Fig. 2). It contains an α -solid solution range of the high-temperature modification (HTM) of AgIn₅Se₈ and a β-solid solution range of AgGaSe₂. The lattice parameters (Fig. 3) in the AgIn₅Se₈ homogeneity region change from a =0.57994(2) nm, c = 1.1622(1) nm for the compound AgIn₅Se₈ to a = 0.57767(2) nm, c = 1.1563(1) nm for the sample of composition 30 mol.% AgGaSe₂ - 70 mol.% AgIn₅Se₈. The lattice parameter a in the AgGaSe₂ homogeneity region decreases from 0.59807(4) nm to 0.57789(3) nm, and the lattice parameter c increases from 1.0804(3) nm to 1.1427(1) nm, while the tetrahedral distortion of the unit cell, $\delta = 2-c/a$, decreases from 0.194 to 0.023. This is due to the replacement of Ga^{3+} ($r(Ga^{3+}) = 0.062 \text{ nm}$ [6]) by larger In^{3+} ($r(In^{3+})=0.076$ nm [6]), which leads to cell lengthening along the direction c. The XRD results


¹ Department of Inorganic and Physical Chemistry, Lesya Ukrainka Volyn National University, Voli Ave. 13, 43000 Lutsk, Ukraine

^{*} Corresponding author. Tel.: +380 966 553696; e-mail: danylyuk.iryna@gmail.com

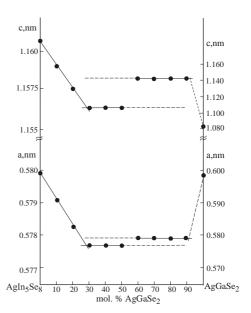


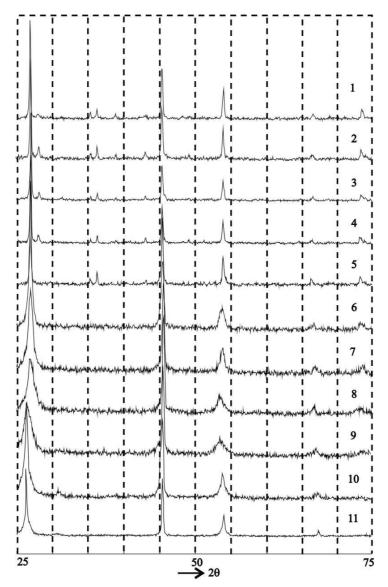
Fig. 1 X-ray powder diffraction diagrams of the samples of the $AgIn_5Se_8$ - $AgGaSe_2$ system annealed at 820 K:

- (1) 100 mol.% AgIn₅Se₈;
- (2) 90 mol.% AgIn₅Se₈-10 mol.% AgGaSe₂;
- (3) 80 mol.% AgIn₅Se₈–20 mol.% AgGaSe₂;
- (4) 70 mol.% AgIn₅Se₈–30 mol.% AgGaSe₂;
- $(5)~60~mol.\%~AgIn_5Se_8\!\!-\!\!40~mol.\%~AgGaSe_2;$
- (6) 50 mol.% AgIn₅Se₈–50 mol.% AgGaSe₂;
- $(7)~40~mol.\%~AgIn_5Se_8-60~mol.\%~AgGaSe_2;$
- (8) 30 mol.% AgIn₅Se₈-70 mol.% AgGaSe₂;
- $(9)\ 20\ mol.\%\ AgIn_5Se_8\!\!-\!80\ mol.\%\ AgGaSe_2;$
- (10) 10 mol.% AgIn₅Se₈–90 mol.% AgGaSe₂;
- (11) 100 mol.% AgGaSe₂.

Fig. 2 Phase diagram of the AgIn₅Se₈–AgGaSe₂ system: (1) L; (2) L+α; (3) L+β; (4) α; (5) α+β; (6) β; (7) α+α'; (8) α'; (9) α'+β.

Fig. 3 Lattice parameters of the samples of the $AgIn_5Se_8$ – $AgGaSe_2$ system.

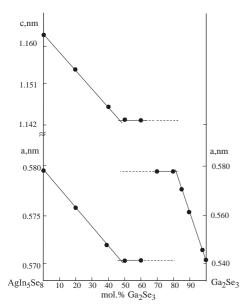
were confirmed by MSA and microhardness measurements (Table 1).


There is a eutectic point $L \leftrightarrow \alpha + \beta$ in the system with the coordinates 75 mol.% $AgGaSe_2 - 25$ mol.% $HT-AgIn_5Se_8$, 998 K. The extent of the α -solid solution range at the eutectic temperature is 64 mol.% $AgGaSe_2$, that of the β -solid solution range is 20 mol.% $AgIn_5Se_8$. There is eutectoid dissolution of the α -solid solution, $\alpha \leftrightarrow \alpha' + \beta$ at 910 K, where α' is the solid solution of the low-temperature modification (LTM) of $AgIn_5Se_8$; the eutectoid point corresponds to a composition of 60 mol.% $AgIn_5Se_8 - 40$ mol.% $AgGaSe_2$. The extent of the α' -solid solution range decreases from 30 mol.% $AgGaSe_2$ at the eutectoid temperature to 25 mol.% $AgGaSe_2$ at the eutectoid temperature to 25 mol.% $AgGaSe_2$ at 820 K. The extent of the β -solid solution range varies from 10 to 8 mol.% $AgIn_5Se_8$ with decreasing temperature.

Diffraction patterns of the alloys in the $AgIn_5Se_8$ — Ga_2Se_3 system are plotted in Fig. 4. An α '-solid solution range of HT- $AgIn_5Se_8$ and a γ -solid solution range of Ga_2Se_3 form in this system. The lattice parameters in the α '-solid solution range change from a=0.57994(2) nm, c=1.1622(1) nm for $AgIn_5Se_8$ to a=0.56922(3) nm, c=1.1421(2) nm for the sample of composition 50 mol.% $AgIn_5Se_8-50$ mol.% Ga_2Se_3 . The lattice parameters in the γ -solid solution range change from a=0.5423(4) nm for Ga_2Se_3 to a=0.55793(2) nm for the sample of composition SOmol.% $Ga_2Se_3-2Omol.\%$ $AgIn_5Se_8$ (Fig. 5). The XRD results were confirmed by MSA and microhardness measurements (Table 2).

Based on the XRD and DTA results, the phase diagram of the $AgIn_5Se_8$ – Ga_2Se_3 system, which belongs to type IV of Roozeboom's classification, was constructed (Fig. 6). There is a peritectic process $L+\gamma\leftrightarrow\alpha$ at 1115 K. The coordinates of the peritectic

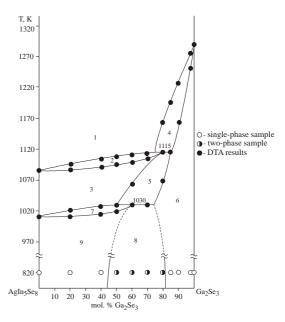
Table 1 Microhardness and phase composition of the alloys of the AgIn₅Se₈-AgGaSe₂ system.


No.	Nominal composition of the sample	Phase composition	Microhardness, GPa±0.01	
1	100 mol.% AgIn ₅ Se ₈	α	3.20	_
2	90 mol.% AgIn ₅ Se ₈ –10 mol.% AgGaSe ₂	α	3.25	_
3	80 mol.% AgIn ₅ Se ₈ –20 mol.% AgGaSe ₂	α	3.35	_
4	70 mol.% AgIn ₅ Se ₈ –30 mol.% AgGaSe ₂	$\alpha+\beta$	$(\alpha) \ 3.48$	(β) 3.88
5	60 mol.% AgIn ₅ Se ₈ –40 mol.% AgGaSe ₂	$\alpha+\beta$	$(\alpha) \ 3.49$	$(\beta) \ 3.89$
6	50 mol.% AgIn ₅ Se ₈ –50 mol.% AgGaSe ₂	$\alpha+\beta$	$(\alpha) \ 3.49$	$(\beta) \ 3.89$
7	40 mol.% AgIn ₅ Se ₈ –60 mol.% AgGaSe ₂	$\alpha+\beta$	$(\alpha) \ 3.50$	$(\beta) \ 3.90$
8	30 mol.% AgIn ₅ Se ₈ –70 mol.% AgGaSe ₂	$\alpha+\beta$	$(\alpha) \ 3.49$	$(\beta) \ 3.92$
9	20 mol.% AgIn ₅ Se ₈ –80 mol.% AgGaSe ₂	$\alpha+\beta$	$(\alpha) \ 3.49$	(β) 3.95
10	10 mol.% AgIn ₅ Se ₈ –90 mol.% AgGaSe ₂	$\alpha+\beta$	$(\alpha) \ 3.51$	4.15
11	100 mol.% AgGaSe ₂	β	-	4.40

 $\begin{array}{l} \textbf{Fig. 4} \ X \text{-ray powder diffraction diagrams of the samples in the } \ AgIn_5Se_8 - Ga_2Se_3 \ \text{system annealed at } 820 \ K: \\ (1) \ 100 \ \text{mol.\%} \ AgIn_5Se_8; \ (2) \ 80 \ \text{mol.\%} \ AgIn_5Se_8 - 20 \ \text{mol.\%} \ Ga_2Se_3; \ (3) \ 60 \ \text{mol.\%} \ AgIn_5Se_8 - 40 \ \text{mol.\%} \\ Ga_2Se_3; \ (4) \ 50 \ \text{mol.\%} \ AgIn_5Se_8 - 50 \ \text{mol.\%} \ Ga_2Se_3; \ (5) \ 40 \ \text{mol.\%} \ AgIn_5Se_8 - 60 \ \text{mol.\%} \ Ga_2Se_3; \ (6) \ 30 \ \text{mol.\%} \\ AgIn_5Se_8 - 70 \ \text{mol.\%} \ Ga_2Se_3; \ (7) \ 20 \ \text{mol.\%} \ AgIn_5Se_8 - 80 \ \text{mol.\%} \ Ga_2Se_3; \ (8) \ 15 \ \text{mol.\%} \ AgIn_5Se_8 - 85 \ \text{mol.\%} \\ Ga_2Se_3; \ (9) \ 10 \ \text{mol.\%} \ AgIn_5Se_8 - 90 \ \text{mol.\%} \ Ga_2Se_3; \ (10) \ 2 \ \text{mol.\%} \ AgIn_5Se_8 - 98 \ \text{mol.\%} \ Ga_2Se_3; \ (11) \ 100 \ \% \\ Ga_2Se_3. \end{array}$

No.	Nominal composition of the sample	Phase composition	Microhardness, GPa±0.01	
1	100 mol.% AgIn ₅ Se ₈	α	3.20	-
2	80 mol.% AgIn ₅ Se ₈ –20 mol.% Ga ₂ Se ₃	α	2.40	_
3	60 mol.% AgIn ₅ Se ₈ –40 mol.% Ga ₂ Se ₃	α	1.70	_
4	50 mol.% AgIn ₅ Se ₈ –50 mol.% Ga ₂ Se ₃	α+γ	$(\alpha) \ 1.44$	(γ) 2.29
5	40 mol.% AgIn ₅ Se ₈ –60 mol.% Ga ₂ Se ₃	α+ γ	(α) 1.46	(γ) 2.31
6	30 mol.% AgIn ₅ Se ₈ –70 mol.% Ga ₂ Se ₃	α+ γ	$(\alpha) \ 1.45$	(γ) 2.28
7	20 мол. % AgIn ₅ Se ₈ –80 mol.% Ga ₂ Se ₃	α+ γ	$(\alpha) \ 1.48$	(γ) 2.27
8	15 mol.% AgIn ₅ Se ₈ –85mol.% Ga ₂ Se ₃	γ	_	2.35
9	10 mol.% AgIn ₅ Se ₈ –90 mol.% Ga ₂ Se ₃	γ	_	2.45
10	2 mol.% AgIn ₅ Se ₈ –98 mol.% Ga ₂ Se ₃	γ	_	2.55

Table 2 Microhardness and phase composition of the alloys of the AgIn₅Se₈–Ga₂Se₃ system.


100 mol.% Ga₂Se₃

11

Fig. 5 Lattice parameters of the samples of the AgIn₅Se₈–Ga₂Se₃ system.

point are 75 mol.% Ga_2Se_3 , 1115 K. At this temperature the extent of the α -solid solution range is 80 mol.% $AgGaSe_2$, that of the γ -solid solution range is 15 mol.% $AgIn_5Se_8$. The peritectoid interaction of the α - and γ -solid solutions α + γ + \leftrightarrow α' takes place at 1030 K, with a coordinate of 50 mol.% Ga_2Se_3 for the peritectoid point. The extent of the α' -solid solution range is 45 mol.% Ga_2Se_3 at 820 K. At the same temperature the γ -solid solution extends to 18 mol.% $AgIn_5Se_8$.

The phase diagrams of the $AgIn_5Se_8$ – $AgGaSe_2$ and $AgIn_5Se_8$ – Ga_2Se_3 systems were constructed. They belong to type V and type IV of Roozeboom's classification, respectively, and reveal the formation of large solid solutions ranges, which may serve as new semiconductor materials.

3.00

Fig. 6 Phase diagram of the AgIn₅Se₈–Ga₂Se₃ system: (1) L; (2) L+ α ; (3) α ; (4) L+ γ ; (5) α + γ ; (6) γ ; (7) α + α '; (8) α '+ γ ; (9) α '.

References

- [1] P. Benoit, P. Charpin, C. Djega-Mariadassou, *Mater. Res. Bull.* 18 (1983) 1047-1057.
- [2] L.S. Palatnyk, E.I. Rogachyova, *Inorg. Mater.* 2(3) (1966) 478-484.
- [3] P. Lottici, G. Antonidi, C. Rozzetti, *J. Phys. Chem. Solids* 50(9) (1989) 967-973.
- [4] L.Y. Berger, V.D. Prochuhan, *Triple Diamond Semiconductors*, Metallurgy, Moscow, 1968, 151 p. (in Russian).
- [5] H. Hahn, W.O. Klingler, Z. Anorg. Allg. Chem. 259 (1949) 135-142.
- [6] V.A. Rabinovich, Z.Ya. Havin, *Short Chemical Handbook*, Khimiya, Leningrad, 1978, 432 p. (in Russian).