РОЗДІЛ І Неорганічна хімія

УДК 748.736.4

І. Д. Олексеюк – доктор хімічних наук, професор, завідувач кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;
А. О. Федорчук – доктор хімічних наук, професор, завідувач кафедри неорганічної і органічної хімії Львівського національного університету ветеринарної медицини та біотехнологій імені С. З. Гжицького;
В. Р. Козер – старший лаборант кафедри загальної та неорганічної хімії Волинського національного університету імені С. О. В. Параецов, ками в старими наук, почант кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки;

О. В. Парасюк – кандидат хімічних наук, доцент кафедри загальної та неорганічної хімії Волинського національного університету імені Лесі Українки

Структура сполук складу Hg₅C₂X₈ (C–Ga, In; X–S, Se, Te) та твердих розчинів на їх основі

Роботу виконано на кафедрі загальної та неорганічної хімії ВНУ ім. Лесі Українки

Використовуючи методи РФА та РСА аналізів, досліджено структуру сполук складу $Hg_5C_2X_8$ (C–Ga, In; X–S, Se, Te) та твердих розчинів на їх основі. Сполуки $Hg_5Ga_2Se_8$, $Hg_5In_2Se_8$, $Hg_5Ga_2Te_8$ та $Hg_5In_2Te_8$ кристалізуються в ПГ $F\overline{4}$ 3*m* із параметрами елементарної комірки a = 1,16876(2) нм; 1,18876(2) нм; 1,24738(2) нм і 1,26723(2) нм відповідно.

Ключові слова: рентгеноструктурний аналіз, кристалічна структура, твердий розчин.

<u>Олексеюк И. Д., Федорчук А. О., Козер В. Р., Парасюк О. В. Структура соединений состава $Hg_5C_2X_8$ </u> (C-Ga, In; X-S, Se, Te) и твердых растворов на их основе. Используя методы РФА та РСА анализов, изучена структура соединений состава $Hg_5C_2X_8$ (C-Ga, In; X-S, Se, Te) и твердых растворов на их основе. Соединения $Hg_5Ga_2Se_8$, $Hg_5In_2Se_8$, $Hg_5Ga_2Te_8$ та $Hg_5In_2Te_8$ кристализируются в ПГ $F\overline{4}$ 3*m* с параметром элементарной ячейки *a* = 1,16876(2) нм, 1,18876(2) нм, 1,24738(2) нм и 1,26723(2) нм соответственно.

Ключевые слова: рентгеноструктурный анализ, кристаллическая структура, твердый раствор.

<u>Olekseyuk I. D., Fedorchuk A. O., Kozer V. R., Parasyuk O. V. Crystall Structure Compounds Type</u> <u>Hg₅C₂X₈ (C–Ga, In; X–S, Se, Te) and Solid Solution.</u> Using X-ray phase and X-ray structure analysis methods, crystal structure compounds type Hg₅C₂X₈ (C–Ga, In; X–S, Se, Te) and solid solution were investigated. Compaunds Hg₅Ga₂Se₈, Hg₅In₂Se₈, Hg₅Ga₂Te₈ and Hg₅In₂Te₈ has crystal structure of the F43m with a = 1,16876(2) nm, 1,18876(2) nm, 1,24738(2) nm and 1,26723(2) nm.

Key words: X-ray structure analysis, crystal structure, solid solution.

Постановка наукової проблеми та її значення. Розвиток напівпровідникової електроніки потребує функціональних матеріалів, властивості яких будуть покращені порівняно з відомими. Пошук таких матеріалів може йти різноманітними шляхами, один із яких – дослідження систем, компонентами яких є сполуки, що вже знайшли своє використання на практиці (вивчення властивостей твердих розчинів). Змінюючи набір компонентів, ми можемо очікувати посилення тих чи інших властивостей матеріалу, тобто може йти мова про цілеспрямоване керування цими характеристиками.

[©] Олексеюк І. Д., Федорчук А. О., Козер В. Р., Парасюк О. В., 2010

Аналіз останніх досліджень із цієї проблеми. Сполуки складу $Hg_5C_2X_8$ (С–Ga, In; Х–Se, Te) відомі відносно давно. Вони утворюються на перерізах HgX–C2X3 при співвідношені компонентів 5:1 як результат упорядкованого розташування атомів у ПСТ у межах існування твердих розчинів на основі бінарних халькогенідів HgSe чи HgTe. Відомості про кристалічну структуру цих фаз різняться. Як правило, автори розглядали цей тип сполук або в тетрагональній (ПГ I4 2m) [1–3], або в кубічній структурі (ПГ F4 3m) з подвоєним періодом комірки HgX [4–6]. Така неузгодженість у літературних відомостях спонукала нас до повторного вивчення їхньої кристалічної структури.

Мета та завдання. Метою та завданням роботи є вивчення кристалічної структури сплавів складу Hg5C2X8 (C–Ga, In; X–S, Se, Te) та твердих розчинів заміщення на їх основі.

Матеріали та методи. Компонування шихти проводили з високочистих металів, попередньо синтезованого HgS (HgSe, HgTe) та відповідного халькогену. Синтез проводили однотемпературним методом у вакуумованих кварцових контейнерах у печі шахтного типу. Максимальна температура нагрівання становила 1073 К, при якій піч витримувалася 6 год. Гомогенізуючий відпал здійснювали при 500 К упродовж 500 год із наступним гартуванням у холодній воді. Рентгенодифракційні спектри відбиттів одержували на дифрактометрі ДРОН 4-13 із використанням СиКа-випромінювання ($10 \le 2\theta \le 100$, крок 0,020). Розрахунок дифрактограми здійснювали із застосуванням комплексу програм WinCSD.

Виклад основного матеріалу й обґрунтування отриманих результатів дослідження. Кристалічна структура сполук досліджувалася методом порошку. Уточнення структури проводили методом Рітвельда – шляхом наближення експериментальних даних до теоретичної моделі.

Під час проведення рентгенофазового аналізу (табл. 1) сплавів складу $Hg_5C_2X_8$ (C–Ga, In; X–S, Se, Te) встановлено утворення тернарних сполук у селенідних і телуридних системах та їх відсутність у сульфідовмісних. Склад зразка $Hg_5Ga_2S_8$ містить дві фази – низькотемпературну модифікацію HgS та $HgGa_2S_4$ зі структурою типу тіогалату (ПГ I4), а склад зразка $Hg_5In_2S_8$ містить фази HgS та $HgIn_2S_4$ зі структурою типу шпінелі (Fd $\overline{3}$ m).

Таблиця 1

D						II
Резупьтяти	M 930B0L0	яня пізу	2093KiB	ск папу	Ησ-(`*	·· . X .
1 CJynDiain	φασοροιο	anauty	Spaskin	складу	11630	

		S	Se	Те
Ца	Ga	$HgS + HgGa_2S_4$	$Hg_5Ga_2Se_8$	Hg ₅ Ga ₂ Te ₈
ng	In	$HgS + HgIn_2S_4$	$Hg_5In_2Se_8$	$Hg_5In_2Te_8$

Методом рентгеноструктурного аналізу проводилося дослідження кристалічної структури виявлених сполук, яку можна описати в припущенні кубічної ґратки (ПГ $F\overline{4}$ 3*m*).

У табл. 2 подано координати атомів і міжатомні віддалі в структурі сполуки Hg₅Ga₂Se₈. Катіони в кристалічній ґратці Hg₅Ga₂Se₈ знаходяться в тетраедричному оточенні з атомів Селену.

Таблиця 2

TA	• •	 • •	•	
Коордицати	9TOMID 1	этомиі ріпрі	гоці ппс	ι Ηα.(<u>-</u> 9.\Δ.
координати	a i umid i	номпі бідсі	гапт длл	1 11250 47008
1- / 1		/1-		85

Атом	X	У	Z	B_{iso} 10 ² , HM^2	КП	Заповненість
Hg1	1/4	0,024(3)	1/4	1,08(3)	24 <i>g</i>	0,833(2)
Ga1	0	0	0	0,72(4)	4 <i>a</i>	1
Ga2	0	0	1/2	0,74(4)	4 <i>b</i>	1
Se1	0,8735(6)	X	Х	0,58(5)	16e	1
Se2	0,3843(7)	Х	Х	1,21(4)	16e	1

Міжатомні відстані, б, нм:

Hg1 (-2Se2 0,24618(9) -2Se1 0,27003(7));

Ga1 (-4Se1 0,25600(7)); Ga2 (-4Se2 0,23413(9));

Se1 (-1Ga1 0,25600(7) -3Hg1 0,27003(7));

Se2 (-1Ga2 0,23413(9) -3Hg1 0,24618(9))

Координаційне оточення всіх атомів у структурі сполуки $Hg_5Ga_2Se_8$ – тетраедри з різним степенем деформації, укладку та міжатомні відстані в межах яких показано на рис. 1.

Рис. 1. Координаційне оточення атомів Hg (а), Se (б) та Ga (в) у структурі сполуки Hg₅Ga₂Se₈ та міжатомні відстані

У структурі сполуки $Hg_5Ga_2Se_8$ можна виділити порожні октаедри з атомів Hg, укладку яких зображено на рис. 2. Найкоротша відстань між октаедрами сягає 0,6443 нм, тоді як їхня висота дорівнює 0,5242 нм. Таке представлення структури $Hg_5Ga_2Se_8$ дає можливість розглядати її як результат зрощення чотирьох порожніх (світлі куби) і чотирьох заповнених (темні куби) фрагментів (гіпотетичної GaSe₄ типу Fe₄C) і гіпотетичної Hg_6GaSe_4 .

Рис. 2. Укладка фрагментів GaSe4 та Hg6GaSe4 в структурі Hg5Ga2Se8

Кристалічні характеристики тернарних сполук $Hg_5Ga_2Se_8$, $Hg_5In_2Se_8$, $Hg_5Ga_2Te_8$ та $Hg_5In_2Te_8$ наведено в табл. 3.

Випромінювання і довжина хвилі	CuK_{α} , $\lambda = 1,54185$ Å						
– Дифрактометр	– ДРОН 4-	-13					
Обрахунок	Повнопрофільн	ий					
Просторова група	$F\overline{4} 3m$						
К-сть атомів у комірці	60,0						
Сполуки	Hg ₅ Ga ₂ Se ₈	$Hg_5In_2Se_8$	Hg ₅ Ga ₂ Te ₈	Hg ₅ In ₂ Te ₈			
а (нм)	1,16876(2)	1,18876(2)	1,24738(2)	1,26723(2)			
Об'єм комірки (нм ³)	1,59651(4)	1,6799(1)	1,9409(1)	2,0350(1)			
Абсорбційний коеф. (1/см)	1180,88	1309,95	1737,70	1840,00			
$2e^{\frac{1}{2}i} \frac{1}{2}i \frac{1}{$	98,57	98,84	98,29	98,82			
$201 \operatorname{SHIO}/\lambda$ (Marc)	0,497	0,489	0,491	0,493			
R(i)	0 ,0406	0,0505	0,0564	0,0459			
<i>R</i> (p)	0,0690	0,0972	0,0921	0,0990			

Кристалографічні характеристики сполук Hg5Ga2Se8, Hg5In2Se8, Hg5Ga2Te8 та Hg5In2Te8

Таблиця З

Ізоструктурність цих тернарних сполук спонукала нас до глибшого вивчення взаємодії між ними з метою можливого утворення твердих розчинів. Перші спроби вивчити подібну взаємодію проведено в роботах [1, 2]. Незважаючи на те, що авторами сполуки цього складу розглядалися в тетрагональній комірці, встановлено існування протяжного твердого розчину на основі $Hg_5In_2Te_8$ в системі CdTe– In_2Te_3 –HgTe при 700 K, а також утворення необмеженого ряду твердих розчинів у межах перерізу $Hg_5Ga_2Te_8$ – $Hg_5In_2Te_8$ в системі In_2Te_3 –HgTe– Ga_2Te_3 при 700 K.

У роботі нами розглядається ряд різноманітних еквівалентних заміщень атомів у кристалічній структурі. При заміщенні Ga — In у селен- та телурвмісних системах отримано фази складу Hg₅GaInSe₈ та Hg₅GaInTe₈, які кристалізуються в кубічній структурі типу Hg₅Ga₂Se₈. Параметри елементарної комірки в обох системах добре корелюють із вихідними сполуками. Зміну параметрів елементарної комірки по перерізах Hg₅Ga₂Se₈–Hg₅In₂Se₈ та Hg₅Ga₂Te₈–Hg₅In₂Te₈ зображено на рис. 3. Кристалографічні характеристики тетрарних фаз подано в табл. 4–5. Експериментальну, розраховану й різницеву дифрактограми Hg₅GaInSe₈ та Hg₅GaInTe₈ показано на рис. 4–5.

Рис. 3. Зміна параметрів елементарної комірки по перерізах $Hg_5Ga_2Se_8 - Hg_5In_2Se_8$ та $Hg_5Ga_2Te_8 - Hg_5In_2Te_8$ Таблиця 4

Атом	x/a	y/b	z/c	B_{iso} ×10 ² , нм ²	ПСТ	Заповненість КП		
Hg1	1/4	0,02385(5)	1/4	1,02(5)	24 <i>g</i>	0,833Hg		
M1	0	0	0	1,03(4)	4a	0,5Ga + 0,5In		
M2	0	0	1/2	0,95(4)	4b	0,5Ga + 0,5In		
Se1	0,8816(1)	Х	Х	1,02(6)	16e	1		
Se2	0,3861(1)	Х	Х	1,35(6)	16e	1		
ПЕК: <i>a</i> =	1,17896 нм; V = 1	,63867 нм ³						
Mixar Hg1 – M1(G Se1 – Se2 –	гомні відстані, δ, н (-2Se2 0,2502(1) - а1+In1) – 4Se1 0,2: (-1M1(Ga1+In1) 0 (-1 M2(Ga2+In2) (м: - 2Se1 0,2767(1)); 509(1); M2(Ga2+Ir ,2509(1) –3Hg1 0,2),2348(1) –3Hg1 0,	n2) – 4Se2 2767(1)); 2502(1))	2 0,2348(1);				

Координати атомів та міжатомні відстані в кристалічній структурі Hg5GaInSe8

Таблиця 5

Координати атомів та міжатомні відстані в кристалічній структурі Hg5GaInTe8

-									
Атом	Х	у	Z	B_{iso} ×10 ² , нм ²	КП	Заповненість КП			
Hg1	1/4	0,0255(7)	1/4	1,01(2)	24g	0,833Hg			
M1	0	0	0	1,00(5)	4a	0,5Ga + 0,5In			
M2	0	0	1/2	1,95(5)	4 <i>b</i>	0,5Ga + 0,5In			
Se1	0,8757(6)	Х	Х	0,75(8)	16e	1			
Se2	0,3862(8)	Х	Х	0,89(8)	16e	1			
$\Pi EK: a = 1$	1,25693 нм; V = 1	l,9858 нм ³							
Міжат Hg1 – M1(Ga	гомні відстані, δ, н (–2Te2 0,2664(1) - a1+In1) – 4Te1 0,2	ім: –2Te1 0,29223(9)); 7062(7); M2(Ga2+	In2) – 4Te	2 0,2477(1);					

 $\begin{array}{l} Te1 - (-1M1(Ga1 + In1) \ 0.27062(7) \ -3Hg1 \ 0.29223(9)); \\ Te2 - (-1 \ M2(Ga2 + In2) \ 0.2477(1) \ -3Hg1 \ 0.2664(1)) \end{array}$

8

Рис. 4. Експериментальна, розрахована та різницева дифрактограми фази Hg₅GaInSe₈

Рис. 5. Експериментальна, розрахована та різницева дифрактограми фази Hg₅GaInTe₈

У системах $Hg_5Ga_2Se_8 - Hg_5Ga_2Te_8$ та $Hg_5In_2Se_8 - Hg_5In_2Te_8$ при заміні половини атомів Селену на еквімолярну кількість атомів Телуру (зразки $Hg_5Ga_2Se_4Te_4$ та $Hg_5In_2Se_4Te_4$) дифрактограми містили декілька наборів дифракційних відбиттів, тобто заміна природи атома аніона негативно впливає на стабілізацію кубічної структури для даних складів. Очевидно, відсутність сульфурвмісних сполук із впорядкованою структурою, а також частково розмінний фактор були причиною того, що синтезовані сплави складу $Hg_5Ga_2S_2Se_6$ та $Hg_5In_2S_2Se_6$, які розміщені на перерізах $Hg_5Ga_2Se_8-Hg_5Ga_2S_8$ та $Hg_5In_2Se_8-Hg_5In_2S_8$, також не кристалізуються у структурі $Hg_5Ga_2Se_8$. Зразок складу $Hg_5Ga_2S_2Se_6$ був багатофазним, а зразок складу $Hg_5In_2S_2Se_6$ – проіндексований у припущенні структури сфалериту й імовірно є твердим розчином на основі HgSe.

Кристалічну структуру фази $Hg_5In_2S_2Se_6$ розглядали в припущенні кубічної сингонії, ПГ $F\overline{4}$ 3m, а за вихідну модель взяли структуру HgSe. У табл. 6 подано координати атомів і міжатомні віддалі в кристалічній структурі $Hg_5In_2S_2Se_6$.

					10 01	0
Атом	x	у	z	B_{iso} ×10 ² , нм ²	КП	Заповненість КП
M1 (Hg1 + In1)	0	0	0	1,54	4 <i>a</i>	0,625 Hg1 + 0,25 In1
M2 (Se1 + S1)	1/4	1/4	1/4	1,37	4 <i>b</i>	0,75 Se1 + 0,25 S1
ПЕК: <i>a</i> = 0,58863(1) нм,	V = 0,2	0395(1)	HM ³			
Міжатомні відстані, б M1 (Hg1 + In1) – 4 M M2 (Se1 + S1) – 4 M1	б, нм: 2 (Se1 + (Hg1 + I	S1) – 0,2 (n1) – 0,2	2549(2); 2549(2)			

Координати атомів і міжатомні відстані у структурі Hg5In 2S2Se6

Кристалографічні позиції 4*a* та 4*b* у структурі сфалериту зайняті статистичними сумішами катіонів та аніонів. У кристалографічній позиції 4*a* містяться атоми Hg та In із заповненістю 0,625 і 0,250 та додатково 0,125 тетраедричних вакансій. Кристалографічна позиція 4*b* зайнята атомами Se та S у відповідних співвідношеннях.

Експериментальну, розраховану та різницеву дифрактограми Hg₅In₂S₂Se₆ показано на рис. 6.

Рис. 6. *Експериментальна, розрахована та різницева дифрактограма* $Hg_5In_2S_2Se_6$

Дослідження зразків складу Hg₄ZnGa₂Te₈ і Hg₄CdGa₂Te₈, які розміщуються на перерізах Hg₅Ga₂Te₈ – Zn(Cd)₅Ga₂Te₈ показало, що обидві фази кристалізуються в структурному типі Hg₅Ga₂Se₈. Параметр елементарної комірки *а* зростає при переході від цинковмісних систем до кадмієвмісних систем, що зумовлено розмірним фактором атомів.

У табл. 7-8 подано кристалографічні дані тетрарних фаз Hg₄ZnGa₂Te₈ і Hg₄CdGa₂Te₈.

Таблиця 7

Таблиця б

Координати атомів та міжатомні відстані в кристалічній структурі Hg₄ZnGa₂Te₈

				•	10	VI 0 *
Атом	X	У	Z	$B_{iso} \times 10^2$, HM^2	КП	Заповненість КП
M1	1/4	0,0231(2)	1/4	0,62(7)	24 <i>g</i>	0,67Hg + $0,17$ Zn
Ga1	0	0	0	0,71(4)	4a	1
Ga2	0	0	1/2	1,04(4)	4b	1
Se1	0,8739(2)	Х	Х	0,70(8)	16e	1
Se2	0,3842(3)	Х	Х	0,99(8)	16e	1
$\Pi \text{EK}: a = 1$	1,23683(5) нм, V =	= 1,8921(2) нм ³				
Міжатомні відстані, δ , нм: M1(Hg1+Zn1) – (–2Te2 0,2612(4) –2Te1 0,2846 (3)); Ga1 – 4Te1 0,2701(2); Ga2– 4Te2 0,2482(3); Te1 – (–1Ga1 0,2701(2) –3M1 0,2846(3)); Te2 – (–1Ga2 0,2482(3) –3M1 0,2612(4))						

Таблиця 8

TA	•	•		• • • • • • • • • • • • • • • • • • • •	
LOODINIOTH	OTOMIN	TO MUMPOTOMU		D IMPLOTO THUIH	
КООПЛИНАТИ	ALUMIK	та міжатомні	вилстант	в кристалични	
.				.	

	•• P			r	F J	F = 84 = <i>m</i> = m ² = -0	
Атом	X	У	Z	$B_{iso} \times 10^2$, HM^2	КП	Заповненість КП	
M1	1/4	0,02510(7)	1/4	0,79(3)	24g	0,67Hg + $0,17$ Zn	
Ga1	0	0	0	1,30(4)	4a	1	
Ga2	0	0	1/2	0,61(4)	4b	1	
Se1	0,87438(6)	Х	Х	0,62(5)	16e	1	
Se2	0,38514(8)	Х	х	1,99(7)	16e	1	
ПЕК: a = 1	1,24790(3) нм, V	= 1,9433(1) нм ³					
Міжат	гомні відстані, б, н	м:					
M1(H	$g_{1}+Zn_{1}) - (-2Te_{2})$),2635(1) –2Te1 0,2	2891(1));				
Ga1 –	Ga1 – 4Te1 0,2753(8); Ga2– 4Te2 0,2483(1);						
Te1 –	Te1 – (–1Ga1 0,2753(8) –3M1 0,2891(1));						
Те? –	$(-1G_{9}2 \ 0 \ 2483(1) -$	3M102635(1))					

Експериментальну, розраховану та різницеву дифрактограми тетрарних фаз Hg₄ZnGa₂Te₈ і Hg₄CdGa₂Te₈ подано на рис. 7–8.

Склади сплавів у селеновмісних системах Hg₄ZnGa₂Se₈ та Hg₄CdGa₂Se₈ були отримані у вигляді багатофазних зразків. Основний вміст даних тетрарних фаз складала структура типу Hg₅Ga₂Se₈.

В індієвмісних системах склади зразків $Hg_4ZnIn_2Te_8$, $Hg_4CdIn_2Se_8$ і $Hg_4CdIn_2Te_8$ кристалізуються у структурі типу сфалериту.

Кристалографічні дані тетрарних фаз $Hg_4ZnIn_2Te_8$, $Hg_4CdIn_2Se_8$ і Hg_4CdIn_2Te представлені в табл. 9–11. *Таблиця* 9

TO	•	• •	• •	• • • • • • • • • • • • • • • • • • • •	• TT 77 T 77	
Кооплицати	9TOMIR TO	а міжатомці	BILCTSUI B	инистя піццій	ernvervni Ho, Znin, L	P.,
поординати	arowid ic		ыдстань в	KphCrash-inin	cipykiypi iigazimiyi	C8
L				A	1, 1, 6, -	

Атом	X	У	Z	B_{iso} ×10 ² , нм ²	КП	Заповненість КП	
M1 (Hg1+Zn1+In1)	0	0	0	1,58(4)	4 <i>a</i>	0,500 Hg 0,125 Zn	
$(\Pi g \Pi + Z \Pi \Pi + \Pi \Pi)$						0,250 In	
Te1	1/4	1/4	1/4	1,02(4)	4b	1	
ПЕК: $a = 0,58667(3)$ нм, $V = 0,20192(3)$ нм ³							
Міжатомні відстані, б M1 – 4 Te1 – 0,2540(1	, нм:)						

Таблиця 10

Координати атомів та міжатомні відстані в кристалічній структурі Hg₄CdIn₂Se₈

-				-		-
Атом	X	У	Z	B_{iso} ×10 ² , нм ²	КП	Заповненість КП
M1						0,500 Hg
(Hg1+Cd1+Ig1)	0	0	0	1,06(4)	4a	0,125 Cd
(Hg1+Cu1+III1)						0,250 In
Se1	1/4	1/4	1/4	1,24(4)	4 <i>b</i>	1
ПЕК: <i>a</i> = 0,59420(4) нм,	V = 0,251	17(2) нм ³	1	•		
Міжатомні відстані, б	, HM:					
M1 = 4 Se1 = 0.25718(1)					

Таблиця 11

Координати атомів та міжатомні відстані в кристалічній структурі Hg₄CdIn₂Te

Атом	X	У	Z	B_{iso} ×10 ² , нм ²	КП	Заповненість КП
M1 (Hg1+Cd1+In1)	0	0	0	2,3(2)	4 <i>a</i>	0,500 Hg 0,125 Cd 0,250 In
Te1	1/4	1/4	1/4	1,6(2)	4b	1
ПЕК: <i>a</i> = 0,63140(5) нм,	V = 1,943	33(1) нм ³				
Міжатомні відстані, б	, нм:					

M1 - 4 Te1 - 0.27340(1)

Експериментальна, розрахована та різницева дифрактограми тетрарних фаз $Hg_4ZnIn_2Te_8$, $Hg_4CdIn_2Se_8$ і $Hg_4CdIn_2Te_8$ зі структурою типу сфалериту подані на рис. 9–11.

Кристалогафічна тетраедрична позиція 4*a* (0, 0, 0) містить статистичну суміш металів Hg + Zn(Cd) + In + \Box у відповідних співвідношеннях.

Склад сплаву Hg₄ZnIn₂Te₈ виявився багатофазним зразком із переважанням структури сфалериту.

При заміні половини атомів Ga на атоми In у структурах $Hg_4Zn(Cd)Ga_2Se_8$ і $Hg_4Zn(Cd)Ga_2Te_8$ отримали фази складу $Hg_4Zn(Cd)GaInSe_8$ та $Hg_4Zn(Cd)InGaTe_8$. У цинковмісних системах склад зразків $Hg_4ZnGaInSe_8$ та $Hg_4ZnInGaTe_8$ виявився багатофазним.

Зразок Hg₄CdGaInSe₈ отримали однофазним, і він був проіндексований у структурі сфалериту (ПГ $F\overline{4}$ 3m). У табл. 12 подано координати атомів і міжатомні відстані в кристалічній структурі Hg₄CdGaInSe₈.

Таблиця 12

TA	•	•	•	•	• •			• 1	T	A 1A	TO
Координати	OTOMID		MINIOTOMII	1 1	DIDOTOILI V	OTD	VI CTVI		H M .	1 41 - 9	
поорлинати			MIAAIUMH		ылстант у	UID	* ^ I * I		112/	UUUT	
		-					J J F		8-		

I ' '					• 1	0. 0		
Атом	Х	У	Z	$B_{iso} \times 10^2$, HM^2	КП	Заповненість КП		
M1 (Hg1 + Cd1 + Ga1 + In1)	0	0	0	1,33	4 <i>a</i>	0,500Hg1 + 0,125Cd1 0,125Ga1 + 0,125In1		
Se1	1/4	1/4	1/4	0,97	4 <i>b</i>	1,000 Se1		
ПЕК: $a = 0,58907(1)$ нм, $V = 0,20441(2)$ нм ³								
Міжатомні відстані, δ , нм: M1 (Hg1 + Cd1 + Ga1 + In1) – 4 Se1 – 0,2551(2); Se1 – 4 M1 (Hg1 + Cd1 + Ga1 + In1) – 0,2551(2)								

Фазу цього складу можна розглядати як частину твердого розчину на основі HgSe зі структурою сфалериту (ПГ $F\overline{4}$ 3m), в якій кристалографічна позиція 4a (0; 0; 0) зайнята статистичною сумішшю різносортних атомів Hg, Cd, In та Ga у відповідних пропорціях.

Експериментальну, розраховану та різницеву дифрактограми Hg₄CdGaInSe₈ зорбражено на рис. 12.

Склад зразка Hg₄CdGaInTe₈, був проіндексований у структурі типу Hg₅Ga₂Se₈. У табл. 13 подано координати атомів і міжатомні відстані в кристалічній структурі Hg₄CdGaInTe₈.

Таблиця 13

Координати атомів і міжатомні відстані у структурі Hg₄CdGaInTe₈

Атом	x	у	z	$B_{iso} \times 10^2$, HM^2	КП	Заповненість КП	
M1(Hg1 + Cd1)	1/4	0,023(8)	1/4	0,87(3)	24g	0,667Hg1 + 0,166Cd1	
M2(Ga1 + In1)	0	0	0	1,60(3)	4a	0,5Ga1 + 0,5In1	
M3(Ga2 + In2)	0	0	1/2	1,50(3)	4 <i>b</i>	0,5Ga2 + 0,5In2	
Te1	0,875(6)	Х	Х	0,69(6)	16e	1	
Te2	0,386(9)	Х	Х	1,21(6)	16e	1	
ПЕК: $a = 1,25782(2)$ нм, $V = 1,99003(7)$ нм ³							
Міжатомні відстані, б, нм:							
M1 $(-3\text{Te}2\ 0.2679(1) - 1\text{Te}1\ 0.2909(1));$							

M2 (-4Te1 0,27060(8)); M2 (-4Te2 0,2471(1))

Експериментальну, розраховану та різницеву дифрактограми Hg₄CdGaInTe₈ подано на рис. 13.

Рис. 13. Експериментальна, розрахована та різницева дифрактограми Hg₄CdGaInTe₈

Подальша заміна атома Hg та атом Cd у структурі Hg₄CdGaInTe₈ дали змогу отримати склад зразка Hg₃Cd₂GaInTe₈, який виявився багатофазним.

Окрім складів типу $Hg_4B^{II}C^{III}_2X_8$, було проведено дослідження сплавів з іншим кількісним заміщенням атомів Hg на атоми B^{II} з метою подальшого вивчення протяжності області гомогенності на основі тернарних сполук $Hg_5C^{III}_2X_8$ уздовж перерізу $Zn(Cd)_5C^{III}_2X_8 - Hg_5C^{III}_2X_8$. Фазовий склад отриманих сплавів представлений у табл. 14.

Таблиця 14

Сплав	Фазовий склад						
селеновмісна система							
$Hg_{4,5}Zn_{0,5}Ga_2Se_8$	Однофазний – СТ Hg ₅ Ga ₂ Se ₈						
$Hg_{4,25}Zn_{0,75}Ga_2Se_8$	Багатофазний зразок						
$Hg_{3,5}Zn_{1,5}Ga_2Se_8$	Багатофазний зразок						
$Hg_3Zn_2Ga_2Se_8$	Багатофазний зразок						
$Hg_{4,75}Cd_{0,25}Ga_2Se_8$	Однофазний – СТ Hg ₅ Ga ₂ Se ₈						
$Hg_{4,5}Cd_{0,5}Ga_2Se_8$	Однофазний – СТ Hg ₅ Ga ₂ Se ₈						
$Hg_{4,25}Cd_{0,75}Ga_2Se_8$	Однофазний – СТ Hg ₅ Ga ₂ Se ₈						
$Hg_{4,75}Zn_{0,25}In_2Se_8$	Однофазний – СТ сфалериту						
$Hg_{4,5}Zn_{0,5}In_2Se_8$	Однофазний – СТ сфалериту						
$Hg_{4,25}Zn_{0,75}In_2Se_8$	Однофазний – СТ сфалериту						
$Hg_{4,75}Cd_{0,25}In_2Se_8$	Однофазний – СТ сфалериту						
$Hg_{4,5}Cd_{0,5}In_2Se_8$	Однофазний – СТ сфалериту						
$Hg_{4,25}Cd_{0,75}In_2Se_8$	Однофазний – СТ сфалериту						
$Hg_{3,5}Cd_{1,5}In_2Se_8$	Багатофазний зразок						
	телуровмісна система						
$Hg_{3,5}Zn_{1,5}Ga_2Te_8$	Багатофазний зразок						
$Hg_3Zn_2Ga_2Te_8$	Однофазний – СТ сфалериту						
Hg _{3,5} Zn _{1,5} Ga ₂ Te ₈	Однофазний – СТ Hg ₅ Ga ₂ Se ₈						
$Hg_3Zn_2Ga_2Te_8$	Однофазний – СТ Нg5Ga2Se8						
$Hg_{4,75}Zn_{0,25}In_{2}Te_{8}$	Однофазний – СТ Hg ₅ Ga ₂ Se ₈						
$Hg_{4,5}Zn_{0,5}In_2Te_8$	Однофазний – СТ Hg ₅ Ga ₂ Se ₈						
$Hg_{4,25}Zn_{0,75}In_{2}Te_{8}$	Однофазний – СТ Hg ₅ Ga ₂ Se ₈						
$Hg_{2,75}Cd_{2,25}Ga_2Te_8$	Багатофазний зразок						
$Hg_{4,75}Cd_{0,25}In_{2}Te_{8}$	Однофазний – СТ Hg ₅ Ga ₂ Se ₈						
$Hg_{4,5}Cd_{0,5}In_2Te_8$	Однофазний – СТ Hg ₅ Ga ₂ Se ₈						
$Hg_{4,25}Cd_{0,75}In_{2}Te_{8}$	Однофазний – СТ сфалериту						
$Hg_{3,5}Cd_{1,5}In_2Te_8$	Багатофазний зразок						

На рис. 14 представлена залежність фазового складу зразків уздовж перерізів $Hg_5C_2^{III}X_8 - Zn(Cd)_5C_2^{III}X_8$

□ – структурний тип сфалериту

– багатофазний зразок

Рис. 14. Залежність фазового складу зразків від вмісту $Zn(Cd)_5 C^{III}_2 X_8$ уздовж перерізів $Hg_5 C^{III}_2 X_8 - Zn(Cd)_5 C^{III}_2 X_8$

Висновки. Таким чином, усі тернарні сполуки $Hg_5Ga_2Se_8$, $Hg_5In_2Se_8$, $Hg_5Ga_2Te_8$ та $Hg_5In_2Te_8$ кристалізуються в кубічній сингонії (ПГ F43m), яку можна розглядати як надструктуру до сфалериту. Параметр елементарної комірки *а* змінюється при переході від галієвмісних до індієвмісних та від селеновмісних до телуровмісних систем.

Утворення тернарних сполук $Hg_5Ga_2S_8$, $Hg_5In_2S_8$ у сульфуровмісних системах не відбувається. Рентгенофазовий аналіз цих сплавів указує на існування суміші двох фаз – бінарного сульфіду HgS та тернарної сполуки складу $HgGa_2S_4$ ($HgIn_2S_4$).

При ускладненні структури тернарних сполук $Hg_5C_2X_8$ шляхом гомогенного заміщення на однотипні атоми дає змогу отримати більш складніші фази зі структурою типу $Hg_5Ga_2Se_8$ або зі структурою типу сфалериту; в інших випадках отримуємо багатофазний зразок.

Спроба отримати фази складу $Hg_5Ga_2S_2Se_6$, $Hg_5In_2S_2Se_6$, $Hg_5Ga_2Se_4Te_4$ та $Hg_5In_2Se_4Te_4$ з різносортних атомів аніонів у структурному типі $Hg_5Ga_2Se_8$ була невдалою. Усі зразки цього складу, за винятком $Hg_5In_2S_2Se_6$, були багатофазними. Склад $Hg_5In_2S_2Se_6$ був однофазним, і його можна вважати частиною твердого розчину на основі HgSe зі структурою сфалериту. Таким чином, можна вважати, що заміна аніонів S, Se та Te в структурі тернарних сполук не сприяють стабілізації твердих розчинів на основі вихідних сполук.

Спроба замінити в кристалічній гратці тернарних сполук атоми металів привела до неоднозначних результатів. Схематичне представлення заміщення атомів металів у кристалічній гратці сполук Hg₅C^{III}₂X₈та отримані результати представлені на рис. 15–16.

У селен- та телуровмісних системах фази складу $Hg_5GaInSe_8$ та $Hg_5GaInTe_8$ виявилися ізоструктурними до вихідних сполук, зміна параметру елементарної комірки вписується в лінійну залежність по перерізах $Hg_5Ga_2Se_8 - Hg_5In_2Se_8$ та $Hg_5Ga_2Te_8 - Hg_5In_2Te_8$. Таким чином, можна припустити, що при заміні атомів галію на атоми індію в даних системах може утворюватися HPTP або значна розчинність на основі вихідних сполук.

Ускладнення структури сполук Hg₅C₂X₈ шляхом заміщення одного атома Hg на атом Zn чи Cd приводить до утворення тетрарних фаз із двома типами кристалічної ґратки.

16

У випадку галієвмісних систем отримані фази складу $Hg_4ZnGa_2Te_8$ та $Hg_4CdGa_2Te_8$ кристалізуються в структурному типі $Hg_5Ga_2Se_8$, і можна стверджувати, що розчинність на основі потрійної сполуки $Hg_5Ga_2Te_8$ по перерізах $Hg_5Ga_2Te_8 - Zn(Cd)_5Ga_2Te_8$ складає не менше 20 мол. % $Zn(Cd)_5Ga_2Te_8$. Склади зразків $Hg_4ZnGa_2Se_8$ і $Hg_4CdGa_2Se_8$ виявилися багатофазними.

В індієвмісних системах склади зразків Hg₄CdIn₂Se₈, Hg₄ZnIn₂Te₈ та Hg₄CdIn₂Te₈ кристалізуються в структурному типі сфалериту, що дає змогу віднести їх до частини твердого розчину на основі бінарного халькогеніду HgSe та HgTe квазіпотрійних систем In₂Se₃ – ZnSe – HgSe i In₂Te₃ – ZnTe – HgTe. Склад зразка Hg₄ZnIn₂Se₈ виявився багатофазним.

При подальшому ускладнені зразків ($Hg_4Zn(Cd)GaInSe(Te)_8$), що утворюються по перерізах типу $Hg_4Zn(Cd)Ga_2Se_8 - Hg_4Zn(Cd)In_2Se_8$ та $Hg_4Zn(Cd)Ga_2Te_8 - Hg_4Zn(Cd)In_2Te_8$ при еквімолярних співвідношеннях, показало, що в цинковмісних системах склади зразків $Hg_4ZnGaInSe_8$ і $Hg_4ZnGaInTe_8$ виявилися багатофазними, а в кадмієвмісних системах отримали склади зразків $Hg_4CdGaInSe_8$ зі структурою типу сфалериту та $Hg_4CdGaInSe_8$ зі структурою типу $Hg_5Ga_2Se_8$.

Систематизуючи всі отримані дані по складах сполук $Hg_4B^{II}C^{III}_2X_8$ можна відмітити, що в галієвмісних системах утворюються фази зі структурним типом $Hg_5Ga_2Se_8$, або відповідно багатофазний склад. В індієвих системах нам вдалося отримати фази цього складу у вигляді структури сфалериту, які можна вважати частиною твердого розчину на основі бінарного халькогеніду $B^{II}X$.

Література

- 1. Wensierski H. Ordering phenomena and demixing in the quasiternary system Ga₂Te₃/Hg₃Te₃/In₂Te₃ / H. Wensierski, H. Bolwin, F. Zeppenfeld // J. Alloys Compds. 1997. Vol. 255. P. 169–177.
- 2. Weitze D. Ordering phenomena and demixing in the quasiternary system HgTe/CdTe/In₂Te₃ / D. Weitze, H. M. Schmidtke, V. Leute // J. Alloys Compds. 1996. Vol. 239. P. 117–123.
- 3. Weitze D. The phase diagrams of the quasibinary sysytems HgTe/In₂Te₃ and CdTe/In₂Te₃ / D. Weitze, V. Leute // J. Alloys Compds. 1996. Vol. 236. P. 229–235.
- 4. Hailing Tu. Elastic behavior under pressure of the vacancy compounds Hg₅Ga₂Te₈, Hg₃In₂Te₆ and HgIn₂Te₄ / Tu. Hailing, G. A. Saunders, W. A. Lambson // Phys. Rev. B. 1982. Vol. 26. P. 5786–5797.
- Saunders G. A. The effect of sited latticies on the elastic constant of Hg₅Ga₂Te₈ / G. A. Saunders, T. Seddon // Phys. Lett. A. – 1971. – Vol. 34. – P. 443–444.
- Papadopoulos D. Ch. Electron microscopic and electron diffraction study of the phases in the In₂Te₃-Hg₃Te₃ system / D. Ch. Papadopoulos, C. Manolikas // Mater. Res. Bull. 2000. Vol. 35. P. 359–367.

Статтю подано до редколегії 24.02.2010 р.