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Abstract

Solar magnetoseismology is an indirect method to approximate plasma parameters that are traditionally difficult to
measure in the solar atmosphere using observations of magnetohydrodynamic waves. A magnetic slab can act as
waveguide for magnetoacoustic waves that approximates magnetic structures in the solar atmosphere. The
asymmetry of the slab caused by different plasma parameters in each external region affects both the
eigenfrequencies and eigenfunctions differently at each side of the slab, that is, both the temporal and spatial
profiles of the eigenmodes of propagation along the slab are influenced by the equilibrium asymmetry. We present
two novel diagnostic tools for solar magnetoseismology that use this distortion to estimate the slab magnetic field
strength using the spatial distribution of magnetoacoustic surface waves: the amplitude ratio and the minimum
perturbation shift techniques. They have the potential to estimate background equilibrium parameters in
inhomogeneous solar structures such as elongated magnetic bright points, prominences, and the clusters of
magnetic brightenings rooted in sunspot light bridges known as light bridge surges or light walls, which may be
locally approximated as slabs.
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1. Introduction

The emerging field of solar magnetoseismology (SMS) has

become a crucial tool in developing our understanding of
structures in the solar atmosphere. By comparing observational

measurements of magnetohydrodynamic (MHD) waves to the
wave solutions of inhomogeneous plasma modeling of the

medium in which the waves propagate, we can make

approximations of traditionally difficult-to-measure plasma
parameters such as the magnetic field strength and heat

transport coefficient (Andries et al. 2009; Arregui 2012; De
Moortel & Nakariakov 2012). This in turn equips us with more

realistic parameters for numerical simulations and gives us a
better understanding of the conditions that lead to, for example,

wave energy dissipation, instability, magnetic reconnection,
and heating.

SMS techniques can be categorized as either temporal or
spatial seismology. By temporal seismology we refer to

methods that estimate a plasma parameter using the observed
frequency, or equivalently the period, of waves. By spatial

seismology we refer to methods that estimate a plasma

parameter by comparing the observed spatial and/or temporal
wave power distribution with the eigenfunctions from a

theoretical model.
Several temporal seismology methods have been employed

successfully. Rosenberg (1970) first suggested that the
frequency of oscillations, observed through the fluctuation of

synchrotron radiation due to the presence of MHD waves,
could be used to diagnose background parameters. Further

theoretical development has led to more sophisticated temporal
methods including local coronal magnetic field strength

estimates using standing kink modes in coronal loops by
Nakariakov & Ofman (2001), and using slow sausage and kink
modes by Erdélyi & Taroyan (2008). The ratio of periods of the
fundamental and the first harmonic standing kink mode and its
dependence on density stratification has also been well studied
(Banerjee et al. 2007; Erdélyi et al. 2014; Yu et al. 2016).
Spatial seismology techniques have more recently started

demonstrating their efficacy in estimating solar parameters.
Uchida (1970) estimated the coronal magnetic structure by
comparing Moreton wave observations with the theoretical
influence that the coronal magnetic field has on the shape of the
Moreton wavefront. More recent eigenfunction methods
include utilizing the anti-node shift of standing modes in a
magnetic flux tube to diagnose its inhomogeneous density
stratification (Erdélyi & Verth 2007; Verth et al. 2007; Erdélyi
et al. 2014).
In the present work, we derive two novel analytical tools for

spatial seismology that use an asymmetric slab waveguide to
approximate background parameters. This has applications to
solar atmospheric structures that are locally slab-like, which
have been observed to guide MHD oscillations, such as
elongated magnetic bright points (MBPs; Yuan et al. 2014),
prominences (Arregui et al. 2012), and light bridge surges
(Roy 1973; Shimizu et al. 2009; which have also been named
light walls by, e.g., Yang et al. 2015, 2017; Zhang et al. 2017).
This work provides an application of the linear wave

analysis of asymmetric magnetic slabs completed by Allcock &
Erdélyi (2017). A magnetic slab, with non-magnetic, but
asymmetric density and temperatures outside the slab, has
eigenmodes which can be described as either quasi-sausage or
quasi-kink. For quasi-sausage (quasi-kink) modes, the oscilla-
tions on each slab interface are in anti-phase (phase). They
differ in character from traditional (symmetric) sausage and
kink modes by their asymmetry about the center of the slab due
to the amplitude of oscillation on each interface being unequal
caused by the asymmetric external environment. This results in
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quasi-kink modes not necessarily retaining their cross-sectional
area and quasi-sausage modes not necessarily having reflection
symmetric about the center line of the slab. The spatial
distribution of these waves across the slab, and therefore the
extent to which they are modified from the traditional sausage
and kink modes, is dependent on the asymmetric background
plasma parameters. Consequently, we can use the spatial
distribution of these waves to diagnose the waveguide. This is
the focus of the present paper: to derive expressions for proxy
parameters that encapsulate this asymmetric spatial distribution
and discuss the application to SMS.

Section 2 introduces the amplitude ratio diagnostic para-
meter, Section 3 introduces the minimum perturbation shift
diagnostic parameter, and Section 4 discusses the application of
these parameters to SMS.

2. Amplitude Ratio

The aim of this section is to derive an expression for the ratio
of the oscillation on each interface of an asymmetric magnetic
slab in terms of the wave and plasma parameters of the system.

Consider an inviscid plasma structured by two parallel
interfaces separating the plasma into three regions along the
x-direction. In each region the plasma is uniform and the
central region, known as the slab, has a uniform magnetic field,
= B zB0 . The plasma adjacent to the slab on each side is non-

magnetic. The density, pressure, and sound speed within the
slab are denoted by ρ0, p0, and c0, respectively, and in the
external plasma they are subscripted by 1 and 2, respectively.
The same equilibrium conditions were used, with more
information given, by Allcock & Erdélyi (2017).

In the aforementioned work, it was shown that trapped
magnetoacoustic modes propagating along an asymmetric
magnetic slab have velocity perturbation in the x-direction
given by = w-( ) ( ) ( )v x y z t v x e, , ,x x

i kz t , where ω and k are the
angular frequency and wavenumber, and
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and A, B, C, and D are arbitrary constants (with respect to x).

These constants can be determined, to within one degree of

freedom, using the boundary conditions of continuity in total

(kinetic plus magnetic) pressure and transversal velocity

component across the slab boundaries at x=±x0. Applying
these four boundary conditions retrieves four coupled linear

homogeneous algebraic equations in the four unknowns:
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and =c m xcoshi i 0 and =s m xsinhi i i for i=0, 1, 2. Ensuring
that this matrix has a vanishing determinant gives us the

dispersion relation:

L + L L + L + L + L
L + L =

( )( ) ( )

( ) ( )

c s s c c s

s c 0. 2.6

0 0 2 0 0 0 1 0 0 0 1 0

0 0 2 0

More information regarding the above derivation can be found

in Allcock & Erdélyi (2017). By satisfying this relation, we

gain one degree of freedom in the system of Equations (2.4),

which leaves one of the constants B or C arbitrary. This gives

us two types of solution: quasi-sausage and quasi-kink modes.
First, for quasi-sausage modes, by letting C be arbitrary the

other constants A, B, and D can be determined as
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The second formulation of B in Equation (2.9) is found by

utilizing the dispersion relation. A substitution of these values,

using the first form of B in Equation (2.9), into the velocity

solution, Equation (2.1), evaluated at the slab boundaries,

yields

t
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where t = m xtanh0 0 0. similarly, using the second form of B in

Equation (2.9) yields
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These forms are equivalent. The horizontal velocity perturba-

tion amplitude, vx, is the signed amplitude, where a positive

(negative) value indicates perturbation in the positive (nega-

tive) x-direction.
Second, for quasi-kink modes, by letting B be arbitrary, the

other constants A, C, and D can be determined in terms of B as

=
-
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c s

Bc Cs
1

, 2.14
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2
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A substitution of these values, using the first form of C in

Equation (2.16), into (2.1), evaluated at the slab boundaries

( = x x0), yields

t

t
=

L + L +

L + L
t

( )
( ) ( )v x Bs

2

, 2.17x 0

1 0 0
1

0 1 0

0
0

t
- =

L
L + L

 ( ) ( )v x B c . 2.18x 0
0

0 1 0

0

Using the second form of C in Equation (2.16) yields
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We now define the amplitude ratio, x x - ≔ ( ) ( )R x xx xA 0 0 , as
the ratio of the amplitude of oscillation of the left interface (x=x0)
to that of the right interface (x=−x0) (see Figure 1). Given that

x w= ( ) ( )x iv xx x , we also have = - ( ) ( )R v x v xx xA 0 0 . First,
using Equations (2.11) and (2.12), the amplitude ratio for quasi-
sausage modes is
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Using Equations (2.18) and(2.19), the corresponding expression
for quasi-kink modes can be obtained, namely
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As expected, Equations (2.21) and (2.22) reduce to = -R 1A

and =R 1A for sausage and kink modes, respectively, when the

slab is symmetric.
The following subsections give the analytical solution for the

Alfvén speed, vA, of Equations (2.21) and(2.22) under the thin
slab, wide slab, incompressible plasma, and low-beta approx-
imations. To obtain an approximation for the Alfvén speed
analytically, an approximation such as these must be applied.
Note that we restrict the analysis to surface modes only,
thereby omitting body modes, because the eigenfrequencies
and eigenfunctions of body modes are not significantly affected
by asymmetry in the external plasma (Allcock & Erdélyi 2017).

2.1. Thin Slab Approximation

In the thin slab approximation, kx 10 , it has been shown
that m x 10 0 for surface modes (Roberts 1981b). Therefore,

»m x m xtanh ,0 0 0 0 and the amplitude ratio for a quasi-sausage
surface mode in a thin slab reduces to
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which yields the analytical expression
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Figure 1. Illustration of the difference in amplitude of oscillation on each boundary of the slab for(a)quasi-sausage and(b)quasi-kink modes.
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which yields the analytical expression
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In a thin asymmetric slab, the fast quasi-kink surface mode
degenerates due to a cutoff by the external sound speeds
becoming distinct (Allcock & Erdélyi 2017) and the slow
quasi-kink surface mode has a phase speed that approaches
zero in the thin slab limit. Therefore, to a good approximation,
the phase speed is much less than the internal sound speed
(w k c0); therefore Equation (2.26) simplifies to
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2.2. Wide Slab Approximation

The wide slab approximation applies when the slab width is
much larger than the wavelength, that is when kx 10 . To
understand the properties of the eigenfunctions of the
asymmetric slab system in the wide slab approximation, we
must return to the dispersion relation, Equation (2.6). For
surface modes in the slab, the wide slab approximation
implies that m x 10 0 , therefore » »m x m xsinh cosh 10 0 0 0

(Roberts 1981b). Under this approximation, the dispersion
relation, Equation (2.6), becomes

L + L L + L =( )( ) ( )0, 2.280 1 0 2

which gives us two families of solutions, one satisfying

L + L = 00 1 and the other satisfying L + L = 00 2 . These are

equivalent to

w
r
r

w- - =( ) ( )k v m m 0, 2.29j

j

2
A
2 2 0 2

0

for j=1, 2, respectively. This equation is the same as the

dispersion relation governing surface waves along a single

interface between a magnetized and a non-magnetized plasma

(Roberts 1981a). Hence, the surface mode solutions of a wide

asymmetric slab are just the surface modes that propagate along

each interface independently. This again makes intuitive sense

considering that as the slab is widened the interfaces will have

diminishing influence on each other, until each interface

oscillates independently with its own characteristic frequency.
This is analogous to the mechanical example introduced by

Allcock & Erdélyi (2017). Consider two masses connected by a
spring, with spring constant k0, and each mass is also connected to
a fixed wall on each side by springs with spring constants k1 and k2,
respectively (see Figure 2). When the middle spring has a spring
constant ¹k 00 , there are two modes, an in-phase mode
(analogous to kink modes in a slab) and an in-anti-phase mode
(analogous to sausage modes in a slab). When the two masses are
decoupled by removing the middle spring, equivalently setting
k0=0, each mass oscillates independently at the natural frequency
of that side of the spring-mass system. This decoupling provides a
good analogy to the wide slab limit for the magnetic slab. Each
interface can oscillate at its own natural frequency, independent of
the other interface. Given that we are considering magnetoacoustic
waves, there are two restoring forces, the magnetic tension force
and the pressure gradient force, which means that each independent
interface has two natural frequencies (depending on the parameters
of the system, there can be 0, 1, or 2 frequencies), corresponding to
the fast and slow magnetoacoustic modes. With this understanding
of the modes in the wide slab limit, the amplitude ratio, RA, is either
0 or undefined, depending on which interface the wave is
propagating and is therefore not useful for magnetoseismology.

2.3. Incompressible Approximation

If the plasma is incompressible, the sound speeds become
unbounded, so that mj≈k for j=0, 1, 2. Under this
approximation, the amplitude ratio for quasi-sausage modes
(top) and quasi-kink modes (bottom) reduces to
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Figure 2. Mechanical example showing weak and zero coupling between the masses. This provides an analogy to the wide slab approximation of an asymmetric
magnetic slab, in which case the interfaces on each side of the slab oscillate independently.
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These equations have solutions for vA given by
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2.4. Low-beta Approximation

For a low-beta plasma (b m= p B2 10 0 0
2 ), where the

magnetic pressure dominates the kinetic plasma pressure, the
Alfvén speed, vA, dominates the internal sound speed, c0, so
that w» -m k v0

2 2 2
A
2. For waves with phase speeds much

less than the Alfvén speed, a further approximation of »m k0
2 2

can be made, in which case the amplitude ratio for quasi-
sausage modes (top) and quasi-kink modes (bottom) reduces to
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These equations will provide for vA to give

w
= +

r
r

r
r

+
-

+
-
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coth
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A
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A

A

0

1
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2

0 2

We will return to a discussion of the inversion of the amplitude

ratio in Section 4.

3. Minimum Perturbation Shift

A second spatial seismology technique uses the shift in the
position of minimum wave power from the center of the slab
due to the asymmetry in the external plasma regions as a
diagnostic parameter for the slab Alfvén speed.

The position of minimum wave power for a symmetric
sausage or kink mode is at the central line of the slab, at x=0.
We define Δmin to be the displacement (from the central line) of
the position of minimum wave power inside an asymmetric
magnetic slab (see Figure 3). For quasi-sausage modes, Δmin is
the solution to = ( )v x 0x under the constraint <∣ ∣x x0, and for
quasi-kink modes, Δmin is the solution to = ( )dv x dx 0x under

the same constraint <∣ ∣x x0. The constraint restricts the solutions
to being within the slab.
First, for quasi-sausage modes, using the solution for the

transversal velocity amplitude given by Equation (2.1) and the
expressions for the variables within given by Equation (2.9),
the minimum perturbation shift can be calculated as follows.
The solution for the transversal velocity amplitude within the
slab is

= + = ( ) ( )v x B m x C m xcosh sinh 0, 3.1x 0 0

where B is given by Equation (2.9) and C is arbitrary. This

equation is solved for x to give

= -- ⎜ ⎟
⎛

⎝

⎞

⎠
( )x

m

B

C

1
tanh . 3.2

0

1

Therefore, the minimum perturbation shift for quasi-sausage

modes is

w w

w w

D

= -
- -
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r
r
r
r

-

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

( )

( )

( )

m

k v m m m x

k v m m x m

1
tanh

tanh

tanh
.

3.3

min

0

1

2
A
2 2

1
2

0 0 0

2
A
2 2

1 0 0
2

0

0

1

0

1

Similarly, for quasi-kink modes, using Equations (2.1) and

(2.16) we calculate the minimum perturbation shift to be

w w

w w

D

= -
- -

- -

r
r
r
r

-

⎛

⎝

⎜
⎜

⎞

⎠

⎟
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coth
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3.4

min

0

1

2
A
2 2

1
2

0 0 0

2
A
2 2

1 0 0
2

0

0

1

0

1

The dependence of expressions(3.3) and(3.4) for the minimum

perturbation shifts on the external plasma with subscript2 is

implicit in the determination of the eigenfrequency ω when

solving the dispersion relation.
The concept of minimum perturbation shift is exclusive to

surface modes. The eigenfunctions of surface modes in a
magnetic slab are significantly more sensitive to the external
plasma parameters than body modes (Allcock & Erdélyi 2017).
This makes intuitive sense given that the energy in a surface
mode is localized to the boundaries of the slab, whereas the
energy in a body mode is largely isolated within the slab. There
is a shift in the spatial nodes and anti-nodes in body mode

Figure 3. Illustration of the minimum perturbation shift, Δmin, within the slab (shaded) for(a)quasi-sausage and(b)quasi-kink modes.
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perturbations within a slab due to changing external plasma
parameters, however, it is too small to be an effective
observational tool.

Akin to the amplitude ratio method for solar magnetoseis-
mology prescribed in Section 2, we can determine from
Equation (3.3) or(3.4) the Alfvén speed, vA, to estimate the
magnetic field strength of inhomogeneous solar magnetic
structures. This can be done either numerically, using an
iterative root finding method, or analytically, under an
appropriate approximation. In each of the following subsec-
tions, we carry out an inversion for the Alfvén speed, vA, under
a specific approximation.

3.1. Thin Slab Approximation

In Section 2.1, we addressed that under the thin slab
approximation, that is kx 10 , we have m x 10 0 for surface
modes. This means that by definition D <∣ ∣ xmin 0, therefore
D ∣ ∣m 10 min , so D » Dm mtanh 0 min 0 min. First, for quasi-

sausage modes, Equation (3.3) can be solved for vA to give

w r
r w

= + D +
+

+ D
⎡

⎣
⎢

⎤

⎦
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k m
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k x
1

1
.

3.5

A
2

2

2

1

0 1

0 min

0
2

2
0 min

For quasi-kink modes in a thin slab, Equation (3.4) can be

solved for vA to give

w
=

-  -⎡
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⎢
⎢

⎤

⎦
⎥
⎥

( )v
k

b b ac

a
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2
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2
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r
r

w= - + D( )( ) ( )a m k c x , 3.71
0

1

2
0
2 2
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r
r

w w= - - + D - -( )( ) ( ) ( )b m k c x k c2 , 3.81
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2
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2 2
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2

0
2 2

r
r

w= + D + + D( ) ( )c c m x c x . 3.90
2

1
0

1

0 min 0
2 2
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3.2. Wide Slab Approximation

The concept of minimum perturbation shift is ill-defined
under the wide slab approximation, that is, when kx 10 . In
this case, each interface oscillates independently at its own
eigenfrequency. Therefore, the nomenclature of quasi-sausage
and quasi-kink mode breaks down. In the wide slab limit, the
eigenfunctions have no local minimum in the slab; instead the
perturbations are evanescent away from the oscillating inter-
face, therefore there is no local minimum of wave power within
the slab.

3.3. Incompressible Approximation

When the plasma is incompressible, the sound speeds are
unbounded, so that =m kj , for j=0, 1, 2. The minimum
perturbation shift for a quasi-sausage mode (top) and

quasi-kink (bottom) in an incompressible slab is

w w

w w
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which yields for vA the expression
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3.4. Low-beta Approximation

In a low-beta plasma, the minimum perturbation shift for a
quasi-sausage mode (top) and quasi-kink (bottom) is given by

w w
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which provides for vA to give

w r
r
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⎡
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⎢
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k
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coth
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4. Discussion

We have introduced the amplitude ratio and the minimum
perturbation shift, which quantify the spatial asymmetry in
magnetic slab eigenmodes. These expressions can be applied to
determine the Alfvén speed, for a given set of observed
equilibrium parameters, providing us a novel method to
diagnose information about the background plasma, thus
advancing the field of spatial magnetoseismology.
A summary of the analytical expressions for estimating the

Alfvén speed, vA, within an asymmetric magnetic slab, is given
in Tables 1 and 2, utilizing the amplitude method and the
minimum perturbation shift methods, respectively. In practice,
a numerical procedure could be made relatively simple and
computationally inexpensive by making use of a standard root
finding method once the observed parameters have been
prescribed, but in some cases it might be valid to use an
analytical solution from Tables 1 and 2 under the necessary
approximation.
Figure 4 illustrates the dependency of the amplitude ratio and

minimum perturbation shift on the (non-dimensionalized) slab
width, kx0, and the density ratio, ρ1/ρ0, of one external plasma
density to the slab density, holding the other external density
fixed. Varying one density ratio in this way is equivalent to
changing the asymmetry of the system. The amplitude ratio is
positive (negative) for quasi-kink (quasi-sausage) modes,
because the oscillations on each boundary are in-phase
(anti-phase). Figures 4(a) and (b) further show that, for a
given background parameter regime, the boundary with the
highest amplitude is different for quasi-kink and quasi-sausage
modes. This is demonstrated by the absolute value of the
amplitude ratio being greater than 1 for quasi-sausage modes
when it is less than 1 for quasi-kink modes, and vice versa. This
is in agreement with the properties of the eigenmodes of the
analogous spring-mass system introduced by Allcock &
Erdélyi (2017). Figures 4(c) and (d) demonstrate that the
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Figure 4. (a), (b) The amplitude ratio, RA, and (c), (d) the minimum perturbation shift, Δmin, as a function of the slab width, non-dimensionalized to kx0, and the
density ratio, ρ1/ρ0, for slow (a), (c) quasi-kink and (b), (d) quasi-sausage surface modes. The other density ratio is set to ρ2/ρ0=2, the characteristic speed ordering
inside the slab is vA=1.3c0, and the sound speed outside the slab is determined to ensure equilibrium pressure balance.

Table 1

Magnetoseismology Application Using the Amplitude Ratio, RA, to Approximate the Alfvén Speed, vA

Mode
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Table 2

Magnetoseismology Application Using the Minimum Perturbation Shift, Δmin, to Approximate the Alfvén Speed, vA

Mode
Approximation of wk v2 A

2 2 Using the Minimum Perturbation Shift, Δmin
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, defined in Section 3.1 + + Dr
r
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1

0
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r
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k
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1

1 0
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position of minimum perturbation for quasi-kink modes is
shifted in the opposite direction to that of quasi-sausage modes.

There are a number of ways that the amplitude ratio or
minimum perturbation shift can be used for spatial seismology.
For a given observed wave event in a slab-like solar atmospheric
structure, the most simple procedure is as follows. Take
measurements for the wave parameters (period and wavelength),
and the background parameters (width of structure, plasma
density in each region). Determine the sound speeds by assuming
equilibrium pressure balance across the slab boundaries. Take a
measurement of either the amplitude ratio or minimum
perturbation shift. Then invert the corresponding expression for
the spatial wave distribution parameter, Equations (2.21), (2.22),
(3.3), or(3.4), to estimate the Alfvén speed.

However, it is often the case that not all the non-magnetic
parameters characterizing a waveguide are well-observable. In
this case, the dispersion relation can be solved simultaneously
with the equation for the amplitude ratio or the minimum
perturbation shift to approximate the Alfvén speed and another
unknown parameter. For example, Figure 5 shows the inversion
curves for a particular parameter regime typical of a slow surface
mode. It is plotted by prescribing (as if they were observed
quantities) all plasma parameters except the Alfvén speed, vA,
and one of the density ratios, ρ1/ρ0, then simultaneously solving
the dispersion relation, Equation (2.6), with the expressions for
the amplitude ratio, Equation (2.21) or(2.22), or the minimum
perturbation shift, Equation (3.3) or(3.4). The solution curves
were found numerically.

Plasma density measurements often have low accuracy and
large uncertainty. These uncertainties will propagate through
the inversion of the amplitude ratio or minimum perturbation
shift to lead to uncertainties in the diagnosis of the Alfvén
speed. Measuring the density ratio is likely to be the source of
the largest uncertainty in the estimation, since errors in spatial
parameters such as the half slab width, x0, and temporal
parameters, such as the angular frequency, ω, are generally
much smaller. The propagation of the error in the density ratios
is reduced by a factor of two by the square root that is
introduced when inverting vA from k2vA

2 /ω2
(in a similar way to

Nakariakov & Ofman 2001). Furthermore, by following the
numerical approach described in the previous paragraph,
measurement of only one of the density ratios is necessary to
estimate the Alfvén speed. Therefore, combined with high-
precision methods using density-sensitive emission lines
(Young et al. 2009), the propagation of density measurement
errors can be reduced.
The amplitude ratio has a strong sensitivity to the changes in

the external densities, and therefore the external asymmetry,
whereas the minimum perturbation shift has a weaker
dependency. Therefore, the amplitude ratio is likely to be a
more effective parameter for diagnosing background para-
meters. Furthermore, observations of the location of the
minimum wave power within a solar magnetic slab will be
fraught with noise, potentially causing the detection of a false
minimum. Noise in amplitude ratio measurements is less likely
to introduce large errors because the locations of the slab
boundaries are a more obvious features and can be identified by
the steep gradients in the wavelength of observed light, for
example, and is stable to larger noise signals.
Both the amplitude ratio and minimum perturbation shift are

more sensitive to small changes in the background equilibrium
parameters, i.e., the asymmetry in the background plasma, than
the eigenfrequencies are. On a theoretical level, this corroborates
with the result that eigenfunctions of linear operators on a
Hilbert space are often more sensitive to small perturbations of
the operator than their corresponding eigenvalues (Kato 1995).
The amplitude ratio and minimum perturbation shift both depend
on the eigenfunctions,  ( )v xx , and their eigenvalues, ω2. This
means that spatial seismology techniques can be theoretically
more effective than temporal techniques for many solar
structures. Therefore, we are excited to see a push for increased
spatial resolution with next-generational observational instru-
mentation such as the Daniel K. Inouye Solar Telescope
(DKIST). Upon completion, this will equip us to be able to
use the magnetoseismology techniques developed here to better
understand the diagnostic properties of asymmetric slab-like
solar atmospheric structures such as elongated MBPs, promi-
nences, and sunspot light walls.

Figure 5. Using prescribed values for(a)the amplitude ratio, RA, or(b)the minimum perturbation shift, Δmin, a numerical inversion is used to approximate the
background equilibrium parameters, in this case the Alfvén speed, vA, and one of the density ratios, ρ1/ρ0, for slow magnetoacoustic modes. The dashed (solid) lines
correspond to the inversion curves for slow quasi-kink (quasi-sausage) surface modes. The dotted lines indicate the inversion for symmetric kink and sausage modes.
The light-shaded area indicates the values of the Alfvén speed, which correspond to body modes rather than surface modes, and so are not important for SMS
application. The dark shaded region in Figure (b) illustrates the region outside the slab, outside the bounds of the minimum perturbation shift.
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Large MBPs, with characteristic length L>500 km, along

intergranular lanes are often rather elongated (Crockett et
al. 2010). The application of SMS techniques to MBPs is

limited by the low spatial resolution of current observations.

DKIST is going to have a spatial resolution of 19 km for

structures on the solar surface (Tritschler et al. 2015), sufficient

enough to resolve oscillations in MBPs. This unprecedented

resolution will hopefully give the sufficient number of pixels

(5–10) across an MBP to determine whether their oscillations

have maximum power at the boundaries of or within the

waveguide, that is, to differentiate between the transverse

eigenfunctions of surface and body MHD modes, respectively.

This is crucial for the accurate employment of these SMS

techniques, and would build upon previous work on mode
identification such as the surface modes that were identified in

photospheric pores (Moreels et al. 2015).
Quiescent prominences, which are large long-lived magnetic

formations of cool dense plasma elevated into the hot and

rarefied coronal atmosphere, can be approximated by magnetic
slabs and have been regularly observed to guide MHD waves

(Arregui et al. 2012). The basic slab model of prominences, as

illustrated by, e.g., Joarder & Roberts (1992a, 1992b), is of a

symmetric slab; however, a small asymmetry could easily be

caused by adjacent inhomogeneities. Even a small asymmetry in

density ( r r- <∣ ∣1 0.11 2 ) can cause a significant (factor of 2

or more) asymmetry in the eigenmode (Figure 4), except for in

thin slabs. This makes prominences a good candidate for

applying the SMS techniques developed here. One issue that one

has to bear in mind for the employment of these techniques is

that the approximation of simple asymmetric magnetic slab may
be insufficient to capture some important aspects of prominence

oscillations, in particular, prominences are likely to have a

sheared magnetic field and may have significant flows, which are

neglected in the asymmetric slab model (van Ballegooijen &

Martens 1989; Zirker et al. 1994; Ballester 2005; Oliver 2009;

Arregui et al. 2012).
Light bridge surges also present a possible application for the

SMS techniques developed here. Rooted in sunspot light

bridges, these clusters of recurrent chromospheric surges

(observed as bright structures in, e.g., IRIS 1330Å line, as

observed by Yang et al. 2016) are formed by either magnetic

reconnection just above the light bridge (Toriumi et al. 2015;

Robustini et al. 2016) or by leakage of p-modes from beneath

the underlying photosphere (Yang et al. 2015; Zhang et

al. 2017). They have been demonstrated to guide MHD waves

driven by nearby disturbances (Yang et al. 2016, 2017). While
the asymmetric magnetic slab could be a valid approximation

for the actual geometry of light walls, the strong magnetic field

in the low solar atmosphere above a sunspot umbra (the plasma

on each side of the light bridge) may put into question the full

validity of the non-magnetic external plasma in the current

model. However, what matters is the relative strength of the

magnetic force compared to the pressure gradient force, that is,

the value of plasma-beta. The value of beta above magnetic

pores and sunspots is uncertain, but has been shown to be

rather high in some cases (Bourdin 2017), and has therefore

been used in models of the low atmosphere (Mumford et

al. 2015). With improved observations, it may turn out that the
plasma surrounding light walls has a low-beta, in which case

we suggest a future generalization of the methods described

here that involves an asymmetric magnetic plasma outside the

slab will be a more appropriate method for the first
magnetoseismology diagnosis of sunspot light walls.
Of course, these methods have limited applications due to

the fact that we have modeled the slab as infinitely long and
there do not exist any infinitely long waveguides in the solar
atmosphere. However, if the length, L, of the cross section of
an observed solar waveguide is much greater than its width, x0,
say L/x0=5–10, then this model of an infinitely long slab
may be a valid approximation. Furthermore, if the wavelength
of the observed wave, λ, is such that l L x0, then the
thin slab approximation holds (Sections 2.1 and 3.1), therefore
an analytical diagnosis of the Alfvén speed within the
waveguide can be made using Table 1 or 2.
This paper introduces two novel SMS methods that, for the

first time, explore the asymmetry of solar magnetic waveguides
to diagnose background parameters. While the simplicity of the
current model of an infinitely long slab in a non-magnetic
environment introduces several problems for applying the
methods, the focus is on the novel concept of waveguide
asymmetry. Future advancements of these methods involving
more complex equilibrium conditions will be valuable in the
coming age of high-resolution solar observations. We propose
to determine whether asymmetric magnetoacoustic surface
waves can be excited within the characteristic lifetime of an
asymmetric waveguide in the solar atmosphere. This task can
be investigated analytically (for linear waves with simple initial
conditions) and numerically (for nonlinear waves with more
sophisticated initial conditions). Furthermore, a more realistic
system, in particular, asymmetric magnetic fields in the external
plasmas (see Zsámberger et al. 2018), or an equilibrium shear
flow, would allow for better application to the solar waveguides
discussed above, at the expense of analytic tractability.
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