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1 Introduction
Design optimisation using Computational Fluid Dynamics (CFD) often requires extremising multiple (and
often conflicting) objectives simultaneously. For instance, a heat exchanger design will require maximising
the heat transfer across the media, while minimising the pressure drop across the apparatus. In such
cases, usually there is no unique solution, but a range of solutions trading off between the objectives. The
set of solutions optimally trading off the objectives are known as the Pareto set, and in practice only an
approximation of the set may be achieved. Multi-Objective Evolutionary Algorithms (MOEAs) are known to
perform well in estimating the optimal Pareto set. However, they require thousands of function evaluations,
which is impractical with computationally expensive simulations. An alternative is to use Multi-Objective
Bayesian Optimisation (MOBO) method that has been proved to be an effective approach with limited
budget on function evaluations [1]. In this work, we illustrate a newly developed MOBO framework in [1]
with OpenFOAM 2.3.1 to locate a good estimation of the optimal Pareto set for a range of industrial cases.

2 Methodology
MOBO is a model-based global search strategy that sequentially samples the design space at likely loca-
tions of the optimal Pareto set solutions. It starts with a filling the design space (e.g. by Latin Hypercube
Sampling). The initial set of shapes are then expensively evaluated with appropriate CFD simulations. An
aggregation (or scalarisation) function may then be used to combine the multiple objective functions into a
single objective function. Here we used hypervolume (i.e. the volume dominated by the trade-off solutions)
based improvement function (c.f. HypI in [1]) to aggregate the objective functions. This aggregation function
is Pareto compliant: any solution that improves the aggregation function implies it will improve the current
estimated Pareto set. Using the set of the initial shapes and the associated aggregated function values as
data a stochastic regression model is trained with a Gaussian process (GP). The benefit of using GPs for
regression is that they provide a posterior predictive distribution given the training data, and thus querying
the surrogate model for any shape results in both a mean prediction and the uncertainty associated with the
prediction. This often enables the closed form calculation of a utility function: the expected improvement
in (aggregation) function value (with respect to the best function value observed so far) to be obtained by
querying a solution. Therefore, a strategy for (expensively) evaluating the next solution is to select the
shape that maximises the expected improvement. The newly evaluated shape is then added to the training
database, and a retraining of the GP model ensues. The process is repeated until the budget on the number
of expensive evaluations are exhausted.

In MOBO, given a shape representation x and an initial set of M shapes, we expensively evaluate all shapes
for D objective functions f1(x), . . . , fD(x). An aggregation function g(x) ≡ g(f1(x), . . . , fD(x)), is then
used to generate the initial data set D = {(xm, g(xm))}Mm=1. With this, a GP model may be trained. Once
trained, the predictive density from the model for a shape x is: p(ĝ(x)|D). Given the best evaluated shape
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x∗ = argmaxxm∈D g(x
m), the expected improvement of an arbitrary feasible shape x is defined as:

α(x,x∗) =

∫ ∞
−∞

max(ĝ(x)− g(x∗), 0) p(ĝ(x)|D) dĝ(x). (1)

As the predictive distribution is Gaussian, this integral can be calculated in closed form. Thus, selecting the
next shape to evaluate is the solution of the following sub-problem: xM+1 = argmaxx α(x,x

∗). The training
data set was augmented with the newly evaluated shape D ← D ∪ {(xM+1, g(xM+1))}, and the model is
retrained. In this process, when the limit on the number of expensive function evaluations is reached, the
current mutually non-dominated (Pareto) set of solutions are returned. The designer (or decision maker)
may then choose a design from this set.

Figure 1: Left - Base geometry (top) and optimised design of the cross-flow heat exchanger (bottom). Right
- Pareto front of the two objectives; the black arrow corresponds to the optimised design, the red arrow
corresponds to the base design, and the green squares indicate the Pareto front.

As a brief demonstration of the proposed framework and use of MOBO, preliminary results are presented
here on a cross-flow tube-bundle heat exchanger. The positions, number of, and diameters of the cross-flow
tubes in the domain were chosen to be optimised. MOBO was conducted minimising the pressure and heat
transfer across the domain. Figure 1 shows the resulting Pareto front of the two objectives. A number of
better heat exchanger designs were achieved (relative to the base case) within 100 CFD simulations; one
of these cases (indicated by the black arrow) is shown in Figure 1(left, bottom). It should be noted that
for a more realistic industrial application, constraints would be applied to tube positions and diameters for
manufacturability. To allow for a comprehensive investigation of the efficacy of the proposed framework and
the performance of MOBO in shape optimisation, we plan to present a number of test problems similar to
those commonly observed in industry, such as a turbine draft tube and the aforementioned heat exchanger.
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