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Abstract 

 

 

Visual Working Memory (visual WM) is an ability to encode and temporarily 

maintain visual information. There is some evidence that early perceptual 

processes make an important contribution to successful WM performance. 

However, perceptual contributions to WM are not yet fully understood. 

In vision, signals originating from three classes of photoreceptors in the retina (L, 

M and S-cones) are combined into three distinct mechanisms, which form the 

fundamentals of visual perception. These mechanisms are the two opponent 

chromatic mechanisms (L – M and S – (L + M) and an achromatic, luminance 

mechanism (L + M). Vision science has been long concerned with properties of 

these mechanisms and how they contribute to the perception of the world. 

Despite this, there was little interest to date in how these mechanisms contribute 

to creating memory representations, i.e. after the visual stimulus has disappeared 

from the visual field. In a series of experiments presented in this thesis, a 

differential contribution of three post-receptoral mechanisms to visual WM was 

investigated. It was hypothesised that luminance signals will prove to be more 

efficient in their contribution to WM encoding, maintenance and retrieval than 

opponent chromatic signals. This was investigated using a variety of 

methodologies, from psychophysical measurements and behavioural responses to 

recordings of neural activity using electroencephalography (EEG).  

Results of the experiments have shown that indeed, remembering abstract shapes 

designed to excite the luminance mechanism contributed to better WM 

performance comparing to remembering shapes designed to excite the opponent 

chromatic mechanisms. EEG recordings have shown that this luminance benefit 

starts already during WM encoding, although later WM stages are likely to 

benefit as well. The findings demonstrate that luminance signals provide an 

advantage over opponent chromatic mechanisms in working memory processing.   
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Chapter 1 

General Introduction 

 

 

 

The term working memory (WM) became established in the scientific literature in 

the early 1960s (Miller, Galanter, & Pribram, 1960; Pribram, Ahumada, Hartog, & 

Roos, 1964). It refers to a short-term storage system that temporarily maintains 

information for immediate use. The important aspect of the WM definition is its 

emphasis on goal-directed behaviour. Short-term storage of any information that 

may be no longer present in the environment is the basis for carrying out 

complex tasks, such as learning, comprehension, reasoning or operating in a 

visual world (Baddeley & Hitch, 1974; Logie, 2011; Phillips, 1974).  

A decade later, two independent lines of research delivered ideas that still 

influence our current understanding of WM (Postle, 2006). Electrophysiological 

recordings in primates looked at neural activity in the dorsolateral prefrontal 

cortex (dorsolateral PFC) while subjects were engaged in memory task (Fuster, 

1973; Fuster & Alexander, 1971; Niki, 1974). This required primates to remember 

presented stimulus and retain it over time. It was demonstrated that neurons in 

the PFC continued to fire after the stimulus was no longer present in the visual 

field. This was taken as an evidence for sustained memory-related activity. These 

early findings helped to direct the focus of electrophysiological WM research on 

the prefrontal areas in the brain. 

Almost in parallel to the animal research, there was another development in a 

different field that would later prove to be extremely influential across 

disciplines. Baddeley and Hitch (1974) offered a comprehensive WM model based 

on research from the field of human cognitive psychology. The model described 
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WM as a multi-component system. According to it, WM consists of two separate 

and largely independent storage systems. The phonological loop is responsible 

for storing auditory and/or phonological information, while the visuospatial 

sketchpad deals with visual information. Both storage systems were governed by 

a central executive system. Its primary role is to control and manage information 

stored in both buffers. 

Another influential WM model was later developed by Cowan (1995, 2001, 2005, 

2008). He postulated that WM is a system that forms part of long-term memory 

and is not, therefore, a separate construct – a view similar to the one proposed by 

Anders and Kintsch (1995). According to Cowan’s model, what is regarded as WM 

“representation” is simply information held in long-term memory that has been 

temporary re-activated. He proposed that this re-activating, cognitive “force” is 

attention. 

Attention can be defined as the ability to select and focus on a piece of 

information in the environment1. This definition was extended to highlight that 

one can focus attention towards internally (mentally) represented stimuli (Itti, 

Rees & Tsotsos, 2005). Thus, Cowan proposed that the focus of attention can 

reactivate representations stored in long-term memory and thus make them 

available for manipulation and immediate usage. While Cowan postulated that 

there is theoretically no limit to how many long-term memory representations 

one can hold, the focus of attention is a capacity-limited process. In other words, 

an individual can reactivate only a number of such representations at a time, thus 

explaining the limited nature of working memory. Cowan estimated the capacity 

of focus of attention to be around four “chunks of information”.  

An important, although not always spelt-out an aspect of working memory is that 

it involves differed processing stages. Definitions of working memory (e.g. 

                                                 
1 The definition provided here is constrained to this circumstance, while purposefully avoiding being too 
specific. Defining attention might seem to be straightforward at a first glance, however it is problematic 
due to the complex nature of this faculty. This problem was recognised from the field’s earliest days 
(Tsotsos, Itti & Rees, 2005). For example, Groos (1896) recognised that different definitions of attention 
“diverge in the most disturbing manner” (Groos, 1896; Tsotsos, Itti & Rees, 2005), while others simply 
stated that attention was “in disarray” (Pillsbury, 1908) or even “chaotic” (Spearman, 1937). This is in 
stark contrast with the definition provided by the founder of psychology, William James, who famously 
began his definition by stating that “Everyone knows what attention is” (James, 1890). 
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Baddeley & Hitch, 1974; Woodman & Vogel, 2005) implicitly assume that prior to 

retrieval of information, the information that has been remembered (encoded), 

needs to be maintained over a period of time. In other words, working memory 

can be conceptualised as a cognitive ability that is comprised of encoding, 

maintenance and retrieval/recall. The relative importance of each stage has been 

explicitly addressed using task designs that allow to clearly separate them 

temporally (Bays, Marshall, & Husain, 2011; Haenschel, Bittner, Haertling, 

Rotarska-Jagiela, Maurer, Singer, & Linden, 2007; Woodman & Vogel, 2005). For 

example, Woodman & Vogel (2005) used a modified change-detection paradigm. 

In this paradigm, participants are required to encode visual stimuli, followed by a 

maintenance period, and are subsequently presented with a test array. 

Participants retrieve remembered stimuli in order to judge whether the probe is 

the same as or different than the stimuli presented previously. Using a similar 

paradigm, Bays et al. (2011) showed that working memory capacity may depend 

on separate limits imposed during encoding and maintenance. More specifically, 

the encoding limit constraints transfer of information into memory, while the 

maintenance limit affects the precision with which the stimuli can be retained 

over time. Furthermore, another study (Haenschel et al., 2007) showed that 

different WM stages might be selectively affected in conditions with reported 

working memory deficits, such as schizophrenia. These examples highlight the 

importance of defining working memory not as a uniform cognitive ability, but 

rather a construct that can, and should be, divided into separate processing 

stages. These three stages will be referred to throughout this thesis as the 

encoding, maintenance, and retrieval (or recall). 

One of the important, however implicit implications of this model was defining 

WM as an independent cognitive system, separate from other faculties, such as 

perception. This corresponds to a traditional view that perceptual information is 

transferred to memory and is not considered an integrated part of it (Magnussen, 

2000; Squire & Kendell, 1999). 

While already influential in its own field, it was not until the early 1990’s that 

Baddeley and Hitch’ model began to have an impact on neurophysiological 
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research. Goldman-Rakic (1989, 1990) proposed that delay-period activity in PFC 

recorded in behaving animals corresponds to storage buffers described in 

Baddeley and Hitch multi-component model. An interesting and highly 

influential consequence of this idea was that working memory was a general 

phenomenon that could be demonstrated across species. Postle (2006) sees 

Goldman-Rakic’s work as an important milestone that brought cognitive 

psychology and electrophysiological WM research together. Such an integrated 

approach proved to be productive: for example, Goldman-Rakic proposed that 

the division between the object (“what”) and spatial location of the object 

(“where”) seen in the visual system could also hold for visual working memory 

(Wilson, O’Scalaidhe, & Goldman-Rakic, 1993). The neuroscientific, as well as 

cognitive and psychological research that followed, has since supported this 

notion (see Postle, 2006 for references). 

It is interesting that Goldman-Rakic and colleagues’ proposal described above 

(Wilson et al., 1993) was one of the first indications that the rules governing the 

visual system (and thus, visual perception) can be also applied to working 

memory, a supposedly separate construct. Although visual working memory and 

perception have continued to be regarded and researched largely separately from 

visual perception, it seems that such conceptual separation can no longer be 

sustained (Pasternak & Greenlee, 2005). It is now acknowledged that the role of a 

perceptual system extends from “mere” encoding of stimuli to memory storage as 

well (Pasternak & Greenlee, 2005). In neuroscientific terms, this implies that the 

sensory areas that process a given stimuli will be also responsible for its storage 

when the stimuli are no longer available to the senses, a notion that was 

eventually supported by Harrison and Tong (2009). Harrison and Tong showed 

that it is possible to decode the contents of working memory from patterns of 

neural activity recorded from the visual cortex. In terms of factors influencing 

WM performance, this changing view marks a shift from maintenance stage as a 

determinant of successful WM performance to early, encoding stages as well. 

Indeed, researchers now emphasize that working memory research is a dynamic 

field and recent advances have questioned some of the basic assumptions about 

this (supposedly simple) cognitive function (Fallon, Zokaei, & Husain, 2016). 
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Fast-growing research on interactions between perception and WM is a symptom 

of this new approach (D’Esposito & Postle, 2015; Gao, Gao, Li, Sun, & Shen, 2011; 

Harrison & Tong, 2009; Lara & Wallis, 2012; Pasternak & Greenlee, 2005; Postle, 

2006; Yin et al., 2012). 

When talking about interactions between perception and working memory, the 

encoding stage should be given a special consideration. It is at this stage that 

perception and working memory are likely to interact, given that the stimulus is 

still present in the visual field. The general aim of the research presented in this 

thesis is thus to establish the importance of the encoding stage to WM 

performance (Haenschel et al., 2007). Furthermore, another goal is to specify the 

relationship of this early WM stage with perceptual processing, as well as to 

determine whether the later stages of WM can also benefit from these 

interactions and impact task performance. 

In the following sections, I will describe the evidence that established 

dorsolateral PFC as a crucial anatomical structure responsible for WM 

processing. I will then describe how later studies questioned this notion as more 

evidence pointed to the importance of sensory cortices and – as a consequence – 

perceptual processing. I will then discuss implications of these findings, mainly 

how the close interaction between perception and WM affected the way the latter 

is approached (D’Esposito & Postle, 2015; Postle, 2006). 
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1. Working memory and the prefrontal cortex (PFC) 

A good deal of evidence pointing to frontal cortices as the processing and storage 

site for working memory came from animal studies using delayed-discrimination 

tasks (Goldman-Rakic, 1992, 1995; Levy & Goldman-Rakic, 2000; Rodriguez & 

Paule, 2009). In such experiments, animals are instructed to remember a 

location of a presented target that is subsequently occluded. After a short delay, 

primates look for a bait in a number of possible locations. Importantly, this task 

design ensures that the representation has to be updated on a trial-to-trial basis. 

Hence, target’s location cannot be predicted from the stimulus itself or from its 

location on a previous trial but has to depend on the memory representation of 

the target (Goldman-Rakic, 1995). 

One of the earliest studies of this kind using electrophysiological recordings were 

published in the early 70’s (Fuster & Alexander 1971; Kubota & Niki, 1971). These 

showed that during a delay period (i.e. a time when the memory representation 

was stored “in mind” in the absence of the stimulus) a subset of neurons in the 

PFC sustained their activation. 

With time, new paradigms and more accurate techniques became available, 

which led to the further advancement of the field. For instance, Funahashi et al. 

(1989) used an oculomotor paradigm, where monkeys were required to maintain 

fixation on the target during stimulus presentation and retention. This design 

ensured that animals maintained their fixation on the display, and hence ensured 

that the performance depended on the stimulus encoding (successful or not), and 

not on poor fixation or distractibility. 

This paradigm also allowed for more a precise mapping of the neural responses. 

Targets were shown in a number of locations in the visual field, located around 

the fixation point at different degrees. Firstly, a subset of neurons in the PFC with 

response fields matching stimulus locations was identified. Subsequently, their 

firing rates were recorded during the memory maintenance, i.e. after the stimulus 

was no longer present in subject’s visual field. Funahashi found that neurons in 
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the PFC demonstrated a prolonged target-related activity in the absence of the 

target, but only at locations that were earlier identified as preferred by these 

neurons (see Figure 1 for an example). Such delay-period activity associated with 

a target previously presented in a specific location is referred to as the memory 

field. 

 

Figure 1 Example of memory fields in action. The target was presented in one of the eight 
possible locations. In this case, the target appeared at an eccentricity of 270°. On the roster plot 
in the middle of the bottom row, we can observe an increased spiking of a prefrontal neuron in 
the absence of the target, during a maintenance stage. Note that the responses of the same 
neuron do not differ from a baseline if the target was presented at different eccentricities. Figure 
from Goldman-Rakic, 1995. 

Subsequent imaging studies suggested that these findings are applicable to 

human subjects as well. Positron emission tomography (PET) studies (Jonides et 

al., 1993; Paulesu, Frith, & Frackowiak, 1993; Petrides, Alivisatos, Meyer, & Evans, 

1993) demonstrated that frontal areas are engaged during the delay period of 
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spatial working memory tasks. Although generally, all studies reported 

activations in the frontal areas, they were not restricted only to these locations. 

For example, some studies showed activations in Broca’s area (i.e. the brain area 

classically indicated in language processing), in addition to activity in the PFC 

(Paulesu et al., 1993). This location did not correspond to areas that were 

previously associated with working memory in primates. It was thought that the 

differences within human studies and between human and animal studies arise 

because of a verbal component in these tasks. To address that, McCarthy et al. 

s(1994) attempted to provide a more accurate localisation of working memory 

processing in humans using a task that would restrict verbal involvement. Their 

experiments employed magnetic resonance imaging (MRI) rather than PET, 

which also allowed for a more precise localisation of WM processing. Subjects 

performed a variation of the delayed – response task: they were presented with an 

array of stimuli randomly flashed at different locations. Participants had to 

respond (by raising their finger) if a shape appeared in a location occupied by a 

stimulus in the previous run. The shape was irrelevant to the task and shapes 

location would change on every trial, hence minimalizing verbal strategies. The 

results demonstrated an increase in BOLD signal in the middle frontal gyrus, as 

can be seen in Figure 2. This activity was maintained during the experimental 

phase and declined within few seconds after participant’s response. It was 

concluded that these findings are in line with previous human and non-human 

studies, highlighting the special role of dorsolateral PFC in working memory 

(McCarthy et al., 1994) 
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Figure 2 Focus of activation during a WM task located in the PFC. The figure is taken from 
McCarthy et al. (1994). 

Nevertheless, although the prefrontal cortex has been regarded as playing a 

pivotal role in working memory, it was by far not the only area employed during 

WM. It was apparent that a distributed network is responsible for WM 

processing (Goldman-Rakic, 2011; Munk et al., 2002). For example, Linden et al. 

(2003) identified areas in the frontoparietal network that subserved visual 

working memory. Specifically, they observed bilateral activations related to 

storage of a number of items in dorsolateral prefrontal cortex (DLPFC), pre-

supplementary motor area (pre-SMA), frontal eye fields (FEF) and intraparietal 

sulcus. Interestingly, WM-related activations in these particular areas depended 

on the number of items held in memory: frontal eye fields and intraparietal 

sulcus were active during storage of a small number of items (two to three), and 

this activity decreased when a higher number of items were stored. This higher 

WM load was in turn associated with heightened activity in DLPFC and pre-SMA.  

D’Esposito, Postle and Rypma (2000) reviewed fMRI experiments that measured 

brain activation while participants engaged in delayed discrimination tasks where 

they had to remember verbal stimuli. Based on the reviewed findings, they 
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concluded that the activity in the PFC during working memory task is not 

unitary. During WM, activity in PFC reflects activity associated with different 

stages of working memory, as well as any non-mnemonic processes that must be 

employed during these tasks. More specifically, encoding, maintenance and 

retrieval engage differed portions of the PFC to a different extent. For example, 

while encoding is associated predominantly with the activity in the dorsolateral 

PFC, maintenance engages ventrolateral as well as dorsolateral PFC. If a 

manipulation of a stimulus was required in addition to simple maintenance, 

activation in dorsolateral part could be observed on top of the storage-related 

activations. When the memorised information has to be accessed to complete a 

task, dorsolateral PFC is again recruited, although this activation might be 

reflecting preparation of motor response in addition to processes related to 

“scanning” memorized information.  

Another group of researchers (Pessoa, Gutierrez, Bandettini, & Ungerleider, 

2002) took a different approach to show the relevance of activity in different 

parts of the brain to the task. They compared the activity of correct and incorrect 

trials during encoding, maintenance and working memory retrieval during a 

delayed discrimination task. Unlike D’Esposito et al. (2000), a visual rather than 

verbal stimuli were used. Performance-related activity was mostly demonstrated 

in the frontal and parietal cortex. The results showed that activity in frontal eye 

fields and intraparietal sulcus as well as in dorsolateral PFC during memory delay 

strongly predicted behavioural performance on a trial-by-trial basis. However, 

performance-related activation during encoding and recall also correlated with 

performance. Pessoa et al. suggested that variability in behavioural performance 

occurs due to fluctuations in attention, which can occur at any WM stage, thus 

explaining the evident correlation between behavioural performance and BOLD 

activity throughout the task, at encoding, maintenance and retrieval. 

Taken together, these studies highlight the importance of frontoparietal network 

in working memory. It is evident that a big part of the previous research was 

especially dedicated to these higher-order areas. At the same time, although 

sensory areas were activated as well, they were not considered crucial to actively 
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maintain memory representation: activity in these regions was interpreted as 

related to processing of the stimuli, and not of an active WM storage (Munk et 

al., 2002; Pessoa et al., 2002). For example, Munk et al. (2002) showed that 

occipital-temporal areas are recruited predominantly during stimulus encoding. 

Activity in this areas would return to baseline after the initial stimulus-related 

activity and could be observed again only during a presentation of a test probe, 

after the maintenance period. Pessoa et al. (2002) additionally demonstrated that 

successful behavioural performance in a working memory task could not be 

predicted from activity in sensory areas during encoding. At the same time, the 

activation in the frontoparietal network was associated with performance, further 

supporting the idea that sensory cortices are not involved in the storage of 

information per se. 

1.1. Summary: working memory and the 
prefrontal cortex (PFC) 

To sum up, it was generally agreed that the prefrontal cortex is the main brain 

structure responsible for short-term memory storage. While the sensory cortices 

are implicated as well, their role was usually described in the context of 

processing the stimuli before it was “transported” to memory storage. At the same 

time, research had indicated that the PFC and sensory cortices do not work in 

separation. Indeed, recent research recognises that working memory involves 

multiple, coordinated brain areas, with the PFC being only one of them 

(Christophel, Klink, Spitzer, Roelfsema, & Haynes, 2017). Nevertheless, the role of 

PFC is implied to be special: sending inputs from the PFC to visual cortex is an 

important aspect of working memory system (Zanto, Rubens, Thangavel, & 

Gazzaley, 2011). Such feedback signals occurring between the PFC and the visual 

cortex – often referred to as top-down signals – will be described in the next 

section. 
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2. The role of top-down signals in working memory 

The notion of “top-down” processing stems from Gregory’s (1970) theory of 

perception. According to his theory, visual perception is an active process which 

is influenced by prior assumptions and knowledge about the world. This is in 

contrast with Gibson’s (1966) bottom-up account of perception, which states that 

what we perceive is predominantly stimulus-driven. Both accounts are therefore 

attempting to establish to what extent our perception relies on information that 

is present in the environment, versus the information that we already hold. On 

the neural level, bottom-up processing would refer to processing that goes from 

the retina “up” the visual hierarchy, through the LGN to sensory cortex, and from 

there to other brain areas. On the other hand, top-down processing would refer 

to signals originating in higher-order cortices, such as frontal areas, which 

propagate back “down” to the sensory cortex. The dorsolateral prefrontal cortex is 

one candidate for such top-down controller, given its extensive network of 

reciprocal anatomical connections with other cortical and subcortical regions 

(Knudsen, 2007; Miller & Cohen, 2001).One of the top-down factors that can 

influence ongoing perception are predictions, referred to Gregory (1970) as 

hypotheses. These hypotheses are important to cognition, as they can direct and 

constrain the incoming information and facilitate its processing (O’Callaghan, 

Kveraga, Shine, Adams, & Bar, 2017). In terms of perception, it has been shown, 

for example, that predictions can facilitate recognition of objects (Kveraga, 

Boshyan, & Bar, 2007; Martinovic, Mordal, & Wuerger, 2011). 

Today, the distinction between top-down and bottom-up processing is widely 

used and is not constrained solely to perception. It can be successfully applied to 

describe other cognitive functions, such as memory. 

One of the top-down factors that have been implicated in a wide range of 

processes, including memory, is attention. Studies confirmed that attention has a 

direct effect on memory processing. This was demonstrated by experiments 

involving repetitive transcranial magnetic stimulation (rTMS) coupled with 

electroencephalography (EEG) recordings (Zanto et al., 2011). In their study, 
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Zanto et al. asked human subjects to selectively remember the target feature 

(motion or colour) while ignoring the distractor (irrelevant feature). Using rTMS 

over a region in PFC – inferior frontal junction, or IFJ – they hoped to disrupt top-

down, attentional modulation of visual processing and working memory 

encoding. Their results showed that rTMS had an effect on perceptual processing. 

This was reflected in a decreased amplitude of the EEG signal associated with 

visual processing (indexed by an event-related component P1) around 100 ms 

after the stimulus appeared on the screen. Importantly, this decrease in P1 was 

associated with a decrease in behavioural performance. Zanto et al. suggested 

that the decrease in both behavioural performance and neural activity was a 

consequence of disrupted top-down attentional modulation. They hypothesised 

that top-down signalling (which in their case means selective attention) helps to 

create a high-fidelity memory representation of the stimulus. Additionally, they 

speculated that top-down signals from the inferior frontal junction (IFJ) help to 

update task representations (i.e. maintaining the current task requirement). This 

agrees with previous studies that also suggested that the activity in the PFC in 

general, and IFJ in particular, is involved in updating task representations (Brass 

& Von Cramon, 2004). The finding also agrees with the account that the activity 

in the PFC interacts with other areas responsible for stimulus or other task-

relevant processing (Baddeley 2003, Constantinidis & Wang 2004; Knudsen, 

2007). Anatomical connections between the PFC and other brain regions would 

serve as a neural substrate for such interactions, as mention above (Knudsen, 

2007). 

This is not a novel view, however. Previous studies on primates have shown that 

perturbing activity in dorsolateral PFC during a delayed match-to-sample task 

diminished performance (Fuster, Bauer, & Jervey, 1985). Fuster argued that 

mutual influences between prefrontal and inferotemporal cortex are taking place 

through cortico-cortical connections. As a result, both visual discrimination and 

visual short-term memory depend on the functionality of these interactions. 

To date, there are a number of studies suggesting that top-down signals modulate 

visual processing already at early stages. More specifically, they have been shown 
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to contribute to greater efficiency of stimulus encoding (Hawkins et al., 1990; 

Reinitz, 1990). Greater efficiency might also lead to the greater fidelity of mental 

representation of the stimulus, which is crucial for working memory performance 

(Zanto & Gazzaley, 2009) 2. It has also been shown that this top-down control 

predicts WM performance (Rutman, Clapp, Chadick, & Gazzaley, 2009), thus 

highlighting the importance of such signals in working memory processing. 

2.1. Summary: The role of top-down signals in 
working memory 

The previous section established that multiple brain areas are involved in visual 

working memory, with the storage located in the prefrontal cortex. Working 

memory depends on the coordinated activity between these regions, with a 

special role of top-down inputs from the prefrontal cortex to sensory areas 

(Knudsen, 2007; Lara & Wallis, 2012). It is interesting to note that the sensory 

cortex and perception are usually discussed in the context of the PFC and higher 

cognitive processes (such as attention). Coincidently, focusing on higher-order 

cortical areas while “downplaying” the importance of sensory cortices (at least in 

a sense that they cannot sustain memory representations on their own) is in line 

with the tendency to view memory and perception as separate constructs (Squire 

& Kandel, 1999). 

However, recent years have seen a certain shift in the way the visual cortex (and, 

more generally, perception) is viewed in the context of visual working memory. 

The evidence for an active involvement of perceptual systems in WM has been 

accumulating in recent years and is currently enjoying much attention 

(D’Esposito, 2007; D’Esposito & Postle, 2015; E. Ester, Serences, & Awh, 2010; 

Harrison & Tong, 2009; Pasternak & Greenlee, 2005). The view that similar 

                                                 

2 It is important to note that by fidelity, Gazzeley and others mean how well the target can be distinguished 
from irrelevant items. The better the fidelity, it is easier to maintain a goal – relevant information while 
not confusing it with irrelevant information. 
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mechanisms (and, consequently, similar brain areas and networks) are involved 

in both encoding and storage of information over short periods of time became 

known as the sensory recruitment hypothesis (Harrison & Tong, 2009; Pasternak 

& Greenlee, 2005). This is a big departure from a traditional view, in which 

frontal areas are solely responsible for memory storage. More and more studies 

provide evidence in support for the sensory recruitment hypothesis (D’Esposito & 

Postle, 2015). The evidence in its favour spans a range of different methodologies, 

from single-cell recordings, human neuroimaging, electrophysiology, and 

psychophysics (Pasternak & Greenlee, 2005). The next section will outline the 

evidence for the involvement of sensory areas in working memory, with a focus 

on the visual cortex. This will provide the basis for the notion that working 

memory and perception are inherently linked, and that they are supported by 

similar neuro-cognitive mechanisms (Gao et al., 2011; Pasternak & Greenlee, 

2005). This will be followed by an account of the importance of these findings 

and the consequences they have on our approach to visual working memory. 
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3. Beyond the prefrontal cortex 

3.1. Sensory areas and perceptual processing 
contributing to working memory. 

While prefrontal areas were taking most of the spotlight in WM research, reports 

of an active involvement of visual areas and perception in WM started to appear 

relatively early (Fuster & Jervey, 1982; Miyashita and Chang, 1988). 

Fuster and Jervey (1982) recorded the single unit activity of neurons in the 

inferotemporal cortex in monkeys during a visual delayed match-to-sample task. 

Monkeys were presented with a sample colour and, after the delay, required to 

choose the previously presented one from two alternatives. The results showed 

colour – dependent increase in firing rates not only during stimulus encoding but 

also during the retention interval. Fuster and Jervey interpreted this results as 

evidence for the involvement of a subset of inferotemporal neurons in memory. 

Importantly, neurons that exhibited such pattern did not appear to be specialised 

for memory storage. Rather, their participation in memory functions occurred in 

addition to their visual functions. Miyashita & Chang (1988) extended these 

findings by showing that neurons in the temporal lobe of a non-human primate 

are able to sustain the memory of more complex objects as well. After identifying 

sets of neurons responsive to particular shapes, they showed that these neurons 

sustained their firing rates during retention interval after the shapes were 

removed from the visual field. Interestingly, the activity of those neurons, while 

related to the content of the stimuli, were independent of their size or 

orientation.  

Low-level visual areas have also been implicated in working memory using single-

cell recordings in the macaque. For example, one study (Super, Spekreijse, & 

Lamme, 2001) required macaques to remember objects in a delayed-

discrimination task. Remembering objects required subjects to separate them 

from a background in which they were embedded. Activity in the visual cortex 

associated with figure-ground segmentation was recorded during encoding, for 
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both correct and incorrect trials. Super et al. (2001) demonstrated that activity 

related to this figure-ground separation in the visual cortex was sustained during 

the maintenance period. Interestingly, this activity was sustained only for correct 

trials, while it would disappear for incorrect trials. 

These findings were further extended by studies showing that activity of 

populations of neurons, rather than single cells, are also related to working 

memory (Lee, Simpson, Logothetis, & Rainer, 2005). This can be achieved by 

recording local field potentials (LFP) and looking at the task-related oscillatory 

activity. Populations of neurons firing in synchrony create functional networks 

which can be related to the task at hand (Buzsáki & Draguhn, 2004; Buzsáki & 

Wang, 2012; Canolty et al., 2006; Whitman, Ward, & Woodward, 2013). For 

instance, Lee et al. (2005) demonstrated that local field potentials recorded from 

occipital visual cortex during delayed-discrimination task showed an energy 

enhancement in the theta band (4 – 8 Hz) during memory maintenance. This 

pattern was interpreted as an evidence for an active involvement of extrastriate 

visual cortex in working memory. Another study on non-human primates (Liebe, 

Hoerzer, Logothetis, & Rainer, 2012) showed evidence for inter-areal 

communication between prefrontal and sensory areas during a visual short-term 

memory task. This was evidenced by phase synchronisation in the theta range 

(defined in this experiment as 3 – 9 Hz) between the areas, i.e. the oscillatory 

activity in one area was tightly related to activity in the other area. Additionally, 

single unit activity in this areas was also shown to be related to the ongoing theta 

oscillations. 

Human EEG recordings also point to the crucial role that oscillations originating 

in sensory cortices seem to be playing in WM. For example, intracranial 

recordings in humans indicated higher activity in theta frequencies during WM 

over occipital sites, among other regions (Raghavachari et al., 2001). These 

findings match the pattern of results derived from non-human studies described 

above (Lee et al., 2005; Liebe et al., 2012). Other studies also demonstrate a 

recurrent interaction between prefrontal and occipital cortex, driven by 

synchronised activity around the theta band (4 – 7 Hz) as well as upper alpha (10 
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– 12 Hz) between these areas (e.g. Klimesch, Freunberger, Sauseng, & Gruber, 

2008; Sarnthein, Petsche, Rappelsberger, Shaw, & Von Stein, 1998; Sauseng, 

Klimesch, Schabus, & Doppelmayr, 2005). 

Another line of evidence for the involvement of sensory cortices in working 

memory comes from studies using fMRI (Harrison & Tong, 2009). Similarly to 

single-cell recordings from non-human primates or EEG recordings in humans, 

fMRI experiments aim to determine whether activity in early visual areas during 

task performance can be related to WM processing. These experiments would 

usually employ delayed-discrimination tasks (Greenlee et al., 2000, Pessoa et al., 

2002). In particular, results showed that apart from patterns of activity in the 

PFC, memory-related activity was also elevated in the occipital and parietal 

cortex. 

One of the most compelling evidence for the active involvement of sensory areas 

in working memory came from a study by Harrison and Tong (2009). They 

demonstrated that it is possible to decode the contents of working memory from 

the sensory cortices alone using fMRI decoding methods. This notion has been 

previously challenged by findings indicating that early visual areas are showing 

only a weak sustained activity during the maintenance period or none at all 

(Bisley, Zaksas, Droll, & Pasternak, 2003; Offen, Schluppeck, & Heeger, 2009). In 

their task, Harrison & Tong applied fMRI decoding methods to try to decode 

remembered orientation during the maintenance period. They demonstrated that 

it is possible to do so with high accuracy, despite the fact that overall activity in 

visual areas is low. This has been shown to be true not only for orientation (Ester 

et al., 2013, Harrison & Tong, 2009), but contrast as well (Xing, Ledgeway, 

McGraw, & Schluppeck, 2013). This further supports a notion that early visual 

cortex stores memory of visual features, and that this observation is not limited 

to only one specific stimulus features, such as orientation. 

It is apparent that, although imaging generally supports the idea of the 

involvement of sensory cortex in working memory, the results strongly depend 

on the type of working memory paradigm that is employed. N-back tasks tend to 
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produce weaker results than delayed-discrimination tasks; in the former case, the 

activity is observed predominantly in the areas outside the sensory cortices 

(prefrontal or posterior parietal cortex). Pasternak and Greenlee (2005) propose 

that one possible explanation is that the memory representations of the target 

and non-target stimuli are interacting in N-back tasks, making the detection of 

sensory-specific activation more difficult.  

A final line of evidence for the involvement of sensory areas in working memory 

(and thus for an interaction between perception and working memory processes) 

can be derived from psychophysical studies3. Over the years, researchers have 

tested visual memory for single stimulus attributes, such as orientation, contrast, 

frequency, motion and colour (for a review, see Pasternak & Greenlee, 2005). The 

rationale behind these studies is that if such features are important for visual 

perception (being essentially “building blocks of perception”), they should also be 

important for visual memory (Magnussen, 2000; Magnussen & Greenlee, 1999). 

To test this idea, a delayed-discrimination task is usually used. Participants are 

presented with a stimulus and after a delay required to decide whether a 

currently presented probe is the same or different to the previously remembered 

stimulus. Single stimulus dimension (such as orientation) is manipulated to 

probe the memory for this particular feature. It was demonstrated that the 

retention of basic stimulus features in visual memory is remarkably stable, even 

with longer delay periods (Magnussen & Greenlee, 1999). 

Interestingly, however, the memory trace for different visual attributes does not 

decay at the same rate (Pasternak & Greenlee, 2005). For example, attributes 

such as spatial frequency, size, orientation and speed of motion can be retained 

for longer periods without a significant decay in precision. This is not the case for 

luminance contrast, texture or direction of motion, which decay more quickly 

than other attributes (for a review of studies, see Pasternak & Greenlee, 2005). To 

account for these findings, Magnussen (2000) proposed that the storage of visual 

                                                 
3 Interestingly, the idea of probing memory using psychophysics is almost as old as the field itself, as 
pointed out by Magnussen & Greenlee (1999). 
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attributes is achieved by a system consisting of a series of parallel memory stores 

which are narrowly tuned to individual stimulus dimensions. A strong support 

for such parallel, stimulus-selective storage system can be derived from visual 

masking paradigms. In such tasks, an irrelevant stimulus is presented during 

working memory encoding (“memory mask”). If the attributes of the mask 

interfere with the memory of the target, it is concluded that the mask is 

processed by the same system as the target. On the other hand, if a specific 

attribute does not seem to interfere with successful encoding, it is concluded that 

the mask is stored by a different mechanism (Magnussen, Greenlee, Asplund, & 

Dyrnes, 1991). In one such experiment, Magnussen et al. (1991) showed that 

delayed discrimination of spatial frequency can be impaired by introducing a 

mask during a delay period. Importantly, delayed discrimination is most affected 

if the mask has a different spatial frequency than the memory probe. At the same 

time, the orientation of the mask proved to be irrelevant to performance. These 

results suggest that spatial frequency is maintained during the delay period by a 

similar mechanism that was involved in its encoding. 

In summary, it appears that the fidelity of memorised stimulus dimensions 

closely matches the fidelity achieved during “on-line” perception (i.e. when the 

stimulus is still present in the visual field). Furthermore, the system responsible 

for storing these features (Magnussen, 2000) exhibits properties of a narrowly-

tuned, spatially localised filters (Magnussen et al., 1991). These findings are taken 

as an evidence for the contribution of sensory cortical areas to memory storage of 

basic stimulus dimensions (Pasternak & Greenlee, 2005). 

Additional support for the overlap between perception and visual working 

memory comes from studies demonstrating that vision can be “contaminated” by 

the contents of memory. In one notable study (Kang, Hong, Blake, & Woodman, 

2011) participants viewed patterns of dots moving clockwise or counterclockwise 

and were required to remember the direction of motion. Subsequently, they were 

presented with another moving – dot pattern and were required to indicate the 

direction of the movement. Finally, subjects indicated the direction of the 

memorised pattern. These findings mimicked the motion repulsion phenomenon 
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(Hiris & Blake, 1996; Marshak & Sekuler, 1979) which is usually reported only 

when two motion stimuli are presented simultaneously. In this phenomenon, the 

direction of motion of one stimulus is distorted by another stimulus. Remarkably, 

in this study, the memorized motion influenced the appearance of perceived 

motion during the retention period. Later experiments followed this pattern and 

showed that indeed perception can be distorted (or biased) by the contents of 

working memory. For example, it has been shown that working memory can bias 

orientation processing (Scocchia, Cicchini, & Triesch, 2013) and colour 

appearance (Olkkonen, Allred, Shevell, Singer, & Muckli, 2014). Furthermore, 

saccade target selection seems to be also influenced by memory contents 

(Hollingworth et al., 2013). These results suggest that visual features represented 

in WM can interact with perception, further supporting the notion that these 

processes might share a common mechanism. 

3.2. Interactions between perception and visual 
working memory: impact on theoretical 
approaches and significance. 

Findings cited in the previous sections opened up a new approach to WM 

research, one in which working memory and perception share common 

mechanisms, rather than being two separate systems. This had a considerable 

impact on theoretical approaches to visual working memory. 

For example, Zimmer (2008) argues that the visual WM can be thought of as an 

emergent property of perceptual processing performed on visual and spatial 

information. In his view, parts of the environment – such as visual stimuli – are 

represented by networks which stay activated as long as the stimulus is available. 

After it is gone (for instance, when the stimulus is removed from the visual field), 

the activity associated with the stimulus starts to decay, unless it is continuously 

reactivated by triggers of external or internal origin. While attentional processing 

could serve as such trigger, it could be also any operation that needs to be 

performed on the stimulus, such as mental rotation. In Zimmer’s view, what we 

refer to as “working memory” is simply a representation provided by a perceptual 
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system that is being acted upon by any other cognitive process. Naturally, this 

implies that the neural networks responsible for working memory are the same as 

the ones used by perception to represent parts of the environment (in addition to 

any other networks that are needed to perform additional processing on this 

representation). In a similar manner to Zimmer’s, Postle (2006) also argues for 

viewing working memory as an emergent property of perceptual processing. 

According to him, visual working memory functions have evolved from the same 

systems as those dedicated to sensory and action-related functions and are 

achieved by coordinated recruitment of those systems. 

One of the consequences of localising memory storage to the same networks that 

are responsible for perceptual encoding is the need to re-evaluate the role of 

sustained activity in the prefrontal cortex. It is remarkable that the sustained 

activity has been demonstrated during a variety of working memory tasks, using 

different methodologies, at different levels (from single-unit recordings to EEG 

and fMRI) and using human as well as non-human subjects (Lara &Wallis, 2015; 

Postle, 2006). If it is not related to storage, what is its function? 

Perhaps a bit surprisingly, the role of the PFC can be best captured by the classic 

Baddeley and Hitch’ model (1974). As D’Esposito and Postle (2015) point out, the 

multicomponent model actually distinguished between the storage buffers and a 

system dedicated to controlling and manipulation of those representations – the 

central executive. It can be therefore argued that the sustained activity in the 

prefrontal cortex is simply a neural correlate of the central executive. In more 

concrete terms, the interpretation of the sustained activity in the prefrontal 

cortex should not focus on storage per se (Lara &Wallis, 2015), but be considered 

instead as a reflection of top-down processing of sustained perceptual 

representations. An obvious candidate for such top-down signal would be 

attention along with executive functions driving any cognitive processing that 

needs to be performed to meet task demands (Postle, 2006; Zimmer, 2008). 

Indeed, the role of attention in working memory has been long acknowledged 

(for a review, see for example Awh, Vogel, & Oh, 2006 and Lara & Wallis, 2015). 

Furthermore, it has been also suggested that the prefrontal cortex plays a 
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modulatory role, i.e. providing other brain areas with top-down signals that 

shape working memory processing (e.g. Duncan, 2001; Fuster, 2008; Miller & 

Cohen, 2001; Shallice, 1982). However, new findings suggesting that the same 

areas that encode stimuli also serve as a memory storage means that to 

understand working memory, we need to specify the nature of the interactions 

between the “central executive” (i.e. frontal areas) and sensory areas responsible 

for perceptual/memory representations more closely than before (Lara & Wallis, 

2015). Indeed, current research supports the view that the recurrent interactions 

between frontal and visual areas are crucial for visual working memory 

performance (Liebe et al., 2012). 

However, not everyone agrees with the view that the PFC (or frontoparietal 

network in general) is not involved in memory storage at all (Ester, Sprague, & 

Serences, 2015). This view has been challenged by studies showing that it is 

possible to decode stimulus-specific activity from the frontoparietal network, 

suggesting that these areas are indeed involved in working memory storage after 

all (Ester et al., 2015). While the debate is still ongoing, it is nevertheless evident 

that the role of sensory cortices should be viewed as an active player in working 

memory network. Thus, apart from looking at top-down interactions between 

frontal areas and sensory cortex, there is also a need to focus on the activity in 

the sensory cortices itself, especially during perceptual encoding (Lara & Wallis, 

2015). 

One line of research downplays the role of perception-related activity during 

encoding in working memory. For example, an already mentioned study by 

Pessoa et al. (2002) showed that frontoparietal activity during encoding 

predicted correct performance on a working memory task. At the same time, 

activity in the visual cortex was not crucial to working memory processing. This is 

not to say that encoding activity in the sensory areas is not important: after all, 

one would expect that weakly encoded stimuli will lead to worse task 

performance. However, such effect would not be attributable to worse working 

memory per se. More specifically, Pessoa et al. demonstrated that if the events 

were encoded poorly, the subsequent delay activity in the left dorsolateral 
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prefrontal cortex did not predict successful performance. Furthermore, delay 

activity could not be distinguished between correct and incorrect trials. On the 

other hand, for well-encoded trials, activity in the dorsolateral prefrontal cortex 

during maintenance did predict successful performance (Pessoa et al., 2002). At 

the same time, activity in the visual cortex for well-encoded stimuli during 

encoding did not differ between correct and incorrect trials and was not 

predictive of successful performance. This implies that, although accurate 

encoding plays role in task performance in the sense that stimuli need to be well 

perceived to be remembered, it is the frontal (and frontoparietal) activity that can 

be directly related to working memory processing and task performance. 

Therefore, the visual cortex does not appear to extend beyond mere perception. 

Another line of research gives evidence to the contrary: it views perceptual 

processing (subserved by sensory cortex) as an important contributor to visual 

working memory performance in the sense that it is an integrated part of the 

working memory. For example, Haenschel et al. (2009) compared behavioural 

performance and neural activation of healthy controls and in patients with 

schizophrenia using EEG. Schizophrenia negatively affects working memory in 

affected individuals (Lee & Park, 2005; Silver, Feldman, Bilker, & Gur, 2003). 

Haenschel et al. showed that successful working memory performance in a 

delayed match-to-sample task was strongly predicted by evoked theta, alpha and 

beta activity in neurotypical subjects during early encoding. On the other hand, 

patients with schizophrenia showed attenuated activity in these frequency bands 

compared to healthy controls. Another study (Haenschel et al., 2007) recorded 

EEG as well as a BOLD activity using fMRI from extrastriate visual areas during 

working memory encoding. Results showed that the activation in these areas in 

patients was reduced when compared with healthy controls. Furthermore, 

differences between the groups were most pronounced when subjects had to 

remember the higher number of stimuli (i.e. at higher working memory loads). In 

terms of EEG, the early visual component P1 during encoding was reduced for 

patients, while at the same time its amplitude predicted successful performance 

in healthy individuals. Together, these findings suggest that: 1) encoding stage of 
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visual working memory is crucial for working memory and that 2) activity in the 

extrastriate visual areas during this stage contributes to successful performance. 

3.3. Summary: common mechanisms of 
perception and visual working memory 

To summarise, the converging suggests that working memory and perception 

share common mechanisms. This opens up a new approach in WM research, one 

in which perception, subserved by activity in the sensory areas, is crucial to 

working memory performance. 

There are at least two research directions that can be taken from here. Firstly, 

one can investigate in detail the dynamic interactions between frontal and 

sensory (visual) areas to see how the two give rise to working memory (Lara and 

Wallis, 2015). On the other hand, one can also investigate how the memory 

representation is created in the first place – and how top-down signals can 

influence this process. The assumption is that mechanisms involved will most 

likely be the same as perception, and therefore subserved by the visual system. 

These approaches hold a good promise, considering that a good deal is known 

about how perceptual representation is created, from the retina to visual cortex 

and beyond. Therefore, it is sensible to take advantage of the tools used in visual 

psychophysics and visual neuroscience to investigate whether the rules governing 

perception are applicable to visual working memory. 

To begin, I will first outline how the visual system deals with incoming 

information to create a perceptual representation of the environment. 
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4. Chromatic and achromatic shape processing: 
from the retina to the cortex 

One way to approach visual processing is to model it as a series of progressing 

stages along which the visual information is carried over from the retina to the 

cortex. In this chapter, the processing that is carried at each such stage will be 

described. Computations integrating visual information will be provided, along 

with the anatomy and physiology that underlie them. This will be done at a 

single-cell and network level. More specifically, it will be considered how the 

light reaching the retina is carried and processed in the form of neural signals, 

from photoreceptors through various retinal cell types, through the optic nerve, 

lateral geniculate nucleus (LGN) and finally, the cortex. In primates, most of the 

visual information reaches the cortex via this route (Lennie & Movshon, 2005). 

This is certainly not the only route; some visual information reaches the striate 

cortex without the involvement of the LGN, for example via the superior 

colliculus (Adams, Gattas, Webster & Ungerleider, 2000). Additionally, LGN also 

projects to extrastriate cortex (Fries, 1981; Bullier & Kennedy, 1983; Lysakowski, 

Standage & Benevento, 1988). However, such connections are sparse compared to 

the LGN-cortex (geniculo-extrastriate) route; it is also apparent that these 

connections alone are not sufficient to activate the cortex appropriately (Lennie 

& Movshon, 2005; Schiller & Malpeli, 1977; Rodman, Gross & Albright, 1990; 

Collins, Lyon & Kaas, 2003). Therefore, in this thesis, we will focus solely on the 

retinogeniculate-striate pathway. 

While discussing the flow of visual information, special attention will be given to 

the processing of luminance and chromatic signals that arise from combinations 

of cone inputs. The extent to which luminance and chromatic signals are 

separated (or not) will be discussed. This is a relevant issue as the main question 

of this thesis is whether luminance and chromatic signals contribute to working 

memory differently. In the last section of this chapter, I will describe how 

luminance and chromatic signals contribute to building perceptual 

representation. The aim of doing so is to show that their contribution is 

differential, with luminance and chromatic signals being unequally efficient in 
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sustaining different aspects of perception. This will lay the foundation and 

provide a rationale for discussing luminance and chromatic signals in a visual 

working memory, with the assumption that their contribution to memory 

representations can be also differentiated, just as they are differentiated in 

perception. We will thus embark on a short anatomical and functional journey 

through the visual system, starting at the retina, where vision begins. 

4.1. The retina – anatomy and functional 
organisation 

The retina is surprisingly simple yet complex part of the central nervous system. 

The basic framework of neural circuitry and detailed description of the main 

retinal cells have been already described in the classic work of Ramon y Cajal 

(1892; see Figure 3 for retina’s anatomy as illustrated by Cajal) and further 

expanded in the mid-20th century (Polyak, 1941, 1957). 

 

Figure 3 Structure of the mammalian retina by Santiago Ramon y Cajal (1900). Image: public 
domain. 
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As a first step, we briefly describe the general anatomical organisation of the 

human retina, before detailing the intricacies of different cell types, connections 

and computations that they perform. The retina is a layered structure (see Figure 

4 for an illustration using the author’s retina as an example). The most external 

layer contains photoreceptors, which absorb light entering the eye and transform 

them into neural signals. This marks the beginning of visual processing. 

 

Figure 4 Scan of the retina belonging to the author of this thesis, showcasing the layered 
structure. Image: Dr Irene Ctori. 

Typically, there are three types of photoreceptors – cones – tuned to daylight 

(photopic) vision. Another class of photoreceptors, rods, are dedicated to night 

vision. As the focus of this thesis revolves around colour vision and perception 

under daylight conditions, this chapter will be limited only to cone 

photoreceptors. Each cone can be described by its probability to respond and 

absorb light of a specific wavelength. The absorption is determined by opsin, a 

photosensitive protein. Cones can be divided into three types based on the 

wavelength at which the cone’s absorption reaches maximum (peak absorption 

wavelength; Smith & Pokorny, 1975). S-cones, or short-wavelength cones, have 

their absorption peaks in short wavelengths (around 420 nm). M and L cones 

respond to the middle (~531 nm) and long (~558 nm) wavelengths, respectively 

(see Figure 5 for illustration of cone sensitivities and their absorption peaks). The 

probability of absorbing photons by a specific cone, therefore, changes with the 

wavelength. 
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Figure 5 A) Normalised responsitivity spectra of human cone cells: short, medium and long cones 
(Image: Vanessaezekowitz at Wikipedia, modified). B) Approximation of colour spectrum visible 
to the human eye. C) Isaac Newton’s (1642 – 1726/27) description of the colour spectrum, based 
on observation of white light shined through a prism and decomposed as an effect. In Brewster & 
Newton, 1855. 

Absorbed light is converted into electrical signals via photochemical reaction 

(transduction; Jindrova, 1998). The resulting signal is dependent on the amount 

of light (photons) absorbed, but the information about the wavelength of the 
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light is lost at this point. Rushton (1972) referred to this phenomenon as the 

principle of univariance. As a result, the only information that is available at this 

point is the photon count and thus information about the chromaticity is 

ambiguous. For example, a change in photon count in a given cone type could 

mean that the wavelength has changed to its peak wavelength; however, it could 

be also due to an increase in overall light intensity, without the actual wavelength 

change. 

To recompute the wavelength information, additional operations need to be 

performed. Young (1802) and von Helmholtz (1852) already recognised that such 

additional step beyond the photoreceptors would be necessary. It is now clear 

that to achieve this, the visual system takes advantage of differences in 

wavelength sensitivity in different cone type, weighing their excitation against 

each other. Summing excitations of the three cone types, information about the 

(achromatic) light intensity – or luminance – can be computed. Chromatic 

information can be worked out by working out differences between excitations of 

various cell types. 

The way the signals are combined by these cells gives rise to three perceptual 

channels, otherwise referred to as post-receptoral mechanisms. There are two 

opponent-chromatic and one achromatic channel (Lennie & D’Zmura, 1988). The 

first cone-opponent channel, referred to as the red-green channel, computes the 

difference between excitation of L and M cones (and thus can be referred to as [L 

– M] channel). The blue-yellow component, on the other hand, is computed by 

subtracting the difference between L and M signals from the S signal (S – [L+M] 

channel). The intensity of perceived light is computed by adding signals from L 

and M cones (L+M, or luminance channel) (see e.g. Krauskopf et al., 1982)4. 

Interestingly, there was a general agreement in psychophysics that colour vision 

is driven by these three fundamental mechanisms, even though the physiological 

                                                 
4 Note that referencing an end product of the colour processing at this stage is misleading, as colour 
perception requires inputs from all channels (Stockman & Brainard, 2010) and a relationship between 
retinal inputs and the perception of colour is not that simple (Derrington et al., 1984; Valberg, 2001; 
Webster, 2009). Therefore, red-green and blue-yellow terminology is not entirely correct, though such 
naming convention is still widely encountered in the literature. 
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data on the spectral sensitivities of cones was still not available in the 1960s 

(Grindley, 1960; Lennie & Movshon, 2005). Nevertheless, with the advancement 

of physiological recording techniques and insights from single-neuron recordings 

in primates (e.g. Wiesel & Hubel, 1966), researchers could finally tap into the 

physiological basis of mechanisms inferred from psychophysics. I will begin by 

describing the underlying physiology and move to the description of 

psychophysical channels later in this chapter’s section. 

Computations giving rise to the colour-opponent channels are carried out at the 

post-receptoral stages of the visual hierarchy and are mediated by retinal 

intermediate (bipolar, horizontal and amacrine) cells and by ganglion cells 

(Dowling, 1968). The latter are located in the innermost layer of the retina and 

are the last “stop” before the visual information is carried outside the retina 

through their extended axons. Bipolar cells take their input from photoreceptors 

and output to ganglion cells, forming an excitatory pathway. Inhibitory signals 

are provided by the two types of interneurons. Horizontal cells are adding 

inhibitory responses to connections between photoreceptors and bipolar cells. 

Amacrine cells, on the other hand, are dealing with connections between bipolar 

and ganglion cells (Dacey, 2000l; Werblin & Dowling, 1969).  

First insights into colour-opponent computations and a confirmation of the 

existence of three mechanisms/channels were inferred from the recordings of 

neurons in the lateral geniculate nucleus (LGN) of a monkey (De Valois, 

Abramov & Jacobs, 1966; de Valois, Smith, Karoly & Kitai, 1958; Wiesel & Hubel, 

1966). Neurons in the LGN were easier to record at that time; however, it soon 

became apparent that the properties of the LGN neurons correspond to cell 

properties of the ganglion cells. Ganglion cells themselves, in turn, corresponded 

to the properties of bipolar cells (Gouras, 1968). In other words, our 

understanding of the role of the retinal neurons in colour-opponent 

computations was inferred back-to-front. For this reason, the pathway from the 

ganglion cell to the LGN is defined by the LGN layer to which the ganglion cell is 

projecting to. Ganglion midget cells receive inputs from L and M cones and 

connect to the parvocellular layer of the LGN, and is thus called a P-pathway, or 
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parvocellular pathway. The pathway takes its name from the relatively small size 

of cells in that layer (from the Latin parvus, meaning small, little). Parasol 

ganglion cells also receive L and M cone inputs, but project to magnocellular 

layers and is thus referred to as the M-pathway (or magnocellular pathway). Cells 

in this LGN layer are bigger than parvocellular cells, hence the name (from the 

Latin magnus, meaning large, big). Later, the existence of the third pathway was 

confirmed (Henry & Yoshioka, 1994; Martin et al., 1997; Chatterje & Callaway, 

2003; Hendry & Reid, 2000). This third pathway receives inputs from S-cones; 

their signals are processed by a distinct cell type (i.e. not parasol or midget cell 

type), namely small bistratified ganglion cells. These cells would project to 

koniocellular layers of the LGN. 

Opponency of ganglion cells (Gouras 1968; de Monasterio & Gouras, 1975; de 

Monasterio et al., 1975; de Monasterio 1978) and neurons in the LGN to which 

these cells are projecting (DeValois et al., 1966; Derrington & Lennie, 1984) was 

revealed by studying responses of these neurons in monkeys to lights of different 

spectral content. Neurons that were excited by one portion of the spectrum and 

inhibited by another were a direct evidence for this – hence, they were referred to 

as spectrally opponent neurons. Ganglion cells are also referred to more generally 

as ON/OFF cells, as they respond with increased firing rates to an increase in 

activation of a given cone type and decreased firing in response to decrease in 

activation in another cone type (De Monasterio et al., 1975; Dacey & Lee, 1994). 

Central to understanding those mechanisms is the notion of receptive fields and 

their center-surround structure. The receptive field of a cell refers to the retinal 

area that is “covered” by this cell. Projections from a number of cones converge in 

a ganglion cell, and thus that cell is excited or inhibited by the activity of these 

cones. The receptive field of a ganglion cell is usually divided into a center and 

surround. Center and surround of the receptive field have opposite signs; hence, 

there are receptive fields with center-ON/surround-OFF, or center-

OFF/surround-ON. 

Simply demonstrating the opponency in itself tells us little about the underlying 

machinery that enables antagonistic interactions between these neurons. This 
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was revealed by further physiological studies (see Figure 6 for an illustration of 

the circuitry in a primate retina). 

In the intermediate layers, a bipolar cell receives inputs exclusively from S-cone 

photoreceptors. The bipolar cell then projects to the small bistratified ganglion 

cell (recognised by Dacey, 1993), providing an ON signal. The bistratified cell is 

also connected to diffuse bipolar cells, which connect non-selectively to L and M 

cones and thus provide an opponent signal. This allows contrasting the S signal 

with L and M signals, forming the basis of a blue-yellow opponent channel (S – [L 

– M]). Small bistratified ganglion cells project to the koniocellular layers of the 

LGN. 

Another type of ganglion cells – midget cells – receive inputs from L and M cones 

and forms the red-green (L – M) opponent channel. In the intermediate layers, 

midget bipolar cell receives input from a single M or L cone and carries it to a 

single midget ganglion cell (Kolb & Dekorver, 1991; Calkins et al., 1994). 

Therefore, a single midget ganglion cell receives an exclusive single-cone input 

(sometimes referred to as a “private line”); this single input constitutes an 

ON/OFF centre of the receptive field. A consequence of such arrangement is that 

the ganglion cell gets a pure L or M signal. Interestingly, surround inputs are not 

specific. According to a cone type mixed hypothesis (Paulus & Kroger-Paulus, 

1983; Lennie et al., 1991; DeValois & DeValois, 1993; Mullen & Kingdom 1996), the 

receptive field surround receives input from a random arrangement of L and M 

cones. Given the pure, single-cone input to the surround, weak surround inputs 

from a mixture of L and M cones will result in a strong L/M (red-green) 

opponency. 
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Figure 6 Connectivity in the primate retina. Image: Lee (2004). 

Another consequence of this arrangement is that the further away the receptive 

field is from the fovea (i.e. more peripheral), the opponency becomes weaker. 

This notion was first inferred from psychophysical observations and confirmed 

physiologically (Mullen, 1991; Mullen & Kingdom, 1996, Mullen & Kingdom, 

1999). It is now evident that peripheral midget ganglion cells show increasingly 

non-opponent response, essentially summing L and M cone inputs, the way 

parasol ganglion cells do foveally (see next section). Midget ganglion cells project 

to parvocellular layers of the LGN. 

The next type of ganglion cells – parasol ganglion cells – receive summed signals 

from L and M cones (through diffuse bipolar cells) and thus form the achromatic 

luminance channel (L + M). There are two types of parasol ganglion cells: ON and 

OFF, receiving inputs from ON and OFF diffuse bipolar cells, respectively. Diffuse 

bipolar cells themselves receive L and M inputs in a non-specific manner (i.e. the 

input is not cone-specific and can originate from either type). Parasol bipolar 

cells have a non-opponent center-surround receptive field that is relayed to 
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parasol ganglion cells; inhibitory signals are (most likely) derived from horizontal 

cell inputs, which itself connect to both L an M cones. Parasol cells project to the 

magnocellular layers of the LGN. 

4.2. Lateral Geniculate Nucleus (LGN) – 
anatomy and functional organisation 

The next stop along the visual route is the LGN – a bilateral structure located in 

the thalamus, comprised of six primary layers (see Figure 7 for an illustration of 

the LGN). Its function is usually described as a “relay station” between the retina 

and the cortex, which implies it is not a very important structure. One of the 

reasons why it is regarded as a mere relay station is that cells in the LGN respond 

analogically to ganglion cells from which it receives its inputs. It has similar 

receptive fields and exhibits similar colour opponency and achromatic responses 

(Wiesel & Hubel 1966; Derrington & Lennie, 1984). However, LGN receives inputs 

propagating back from the cortex, as well as from the brainstem; for these 

reasons, considering it as a simple relay station is probably a simplification and 

its primary function is still a matter of ongoing research (Sherman, 2005; 

Sherman, 2001; Weyand, 2016). Nevertheless, its anatomy and underlying 

physiology have been extensively studied over the years. 

The LGN forms a direct retinotopic map: adjacent ganglion cells representing a 

portion of the visual field project to a corresponding, adjacent layers in the LGN. 

The retina located on the ipsilateral side of the LGN projects to layers 1, 4 and 6, 

while the contralateral retina to layers 2, 3 and 5. 
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Figure 7 Layering of the lateral geniculate nucleus (LGN) 

As mentioned earlier, there are two main layer types, named after their cell sizes. 

The magnocellular layers, i.e. layers 1 and 2 (comprised of relatively bigger cells) 

receive inputs from parasol ganglion cells (see the previous section). 

Parvocellular neurons (smaller cells) in layers 3, 4, 5 and 6 receive inputs from 

the midget ganglion cells. Later studies (Hendry & Reid, 2000; Szmajda, 

Gröunert & Martin, 2008), revealed the existence of an additional cell type that 

could be distinguished, situated between the main layers, in their lower sub 

levels. These are called koniocellular layers, consisting of even smaller cells. They 

receive input from the small bistratified cells, as described in the previous 

section. 

Magnocellular neurons appear to have larger receptive fields than parvocellular 

neurons (Derrington & Lennie, 1984; Wiesel & Hubel, 1966); they have a typical 

ON or OFF-center structure of the receptive field, with L and M cones inputs to 

both center and surround (Lee, 2008); they do not show a chromatic 

antagonism. Parvocellular neurons have smaller receptive fields and are 

chromatically opponent; they receive excitatory/inhibitory input from L and M 



57 

 

cones; thus, P-cells are referred to as red-green colour opponent cells. It is 

generally assumed that magnocellular cells are a physiological substrate for the 

psychophysical luminance channel (see next section). Earlier research suggested 

that neurons in this layer cannot sustain high spatial resolution due to their 

distribution in the retina and lack of magnocellular cells that would sample from 

the fovea (Drasdo, 1989). Ho wever, later research suggested that the proportion 

of M-cells in the fovea does not show a large decrease (Grunert et al., 1993). 

Because of the single-cone input (Polyak, 1941), P-cells are supposed to have 

higher spatial resolution than M-cells, though experiments suggest that 

resolution of P and M cells is similar (Derrington & Lennie, 1984; Crook et al., 

1988). 

There are other differences between M and P cells. Magnocellular neurons are 

more sensitive to contrast, with a greater contrast gain than P cells at low 

contrast levels (Kaplan & Shapley, 1982). In terms of temporal resolution, M cells 

are responsive to higher frequencies than the P cells (Hawken, Shapley & Grosof, 

1996). They also appear to differ in terms of visual latencies. Maunsell & Gibson 

(1992) demonstrated this by lesioning magnocellular layers of the LGN. As a 

result, response latencies (measured in the striate cortex) were delayed by 7 and 

10 ms; a similar lesion in parvocellular layers did not result in a latency shift, 

suggesting the first few milliseconds can be attributed to inputs incoming from 

the magnocellular LGN layers. 

As mentioned above, in terms of cell responses, neurons in LGN appear to be an 

“extension” of retinal ganglion cells. As a consequence, the two colour-opponent 

and the achromatic pathways are still segregated. Complex interactions start to 

appear only at the cortical level. Contrast sensitivity is however similar for both 

types of cells at higher contrast levels, as M-cell responses saturate at high 

contrast (Derrington & Lennie, 1984). 

The characteristics of spatial and temporal responses of koniocellular neurons are 

less understood (Hendry & Reid, 2000). Nevertheless, they are opponent-

chromatic and they appear to respond to blue-yellow modulations; as with M and 
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P cells, koniocellular layers are the target of the small bistratified ganglion cells 

and thus have analogical response properties, with S-ON centre; opponency is 

achieved by L and M inputs. They demonstrate low-pass frequency responses, 

have large receptive fields and slow response latencies (Smithson, 2014; 

Stockman & Brainard, 2010). 

All three main cell types in the LGN provide inputs to the visual cortex, in 

essence acting as a relay of retinal signals. Since the existence of the third, 

koniocellular pathway was established relatively recently (Hendry & Reid, 2000; 

Szmajda, Gröunert & Martin, 2008), earlier research focuses exclusively on the 

parvo and magnocellular layers. In their classic work, Wiesel and Hubel (1966) 

recognised four neuron types within these layers. Type I and Type II neurons 

were demonstrating a chromatic opponency. While Type 1 cells had a center-

surround receptive field, Type II neurons did not, as a result being unable to 

contribute to spatial processing (note that Type II cells were not identified by 

Derrington & Lennie, 1984). 

4.3. Cortex – anatomy and functional 
organisation 

In humans, most of the LGN output goes to the striate cortex (or visual area V1), 

and in macaque monkey to its equivalent, area 17. V1 consists of different layers; 

LGN inputs mainly to layer 4c and its sublayers (Hubel & Wiesel, 1972. Sublayer 

4cα receives inputs primarily from the magnocellular cells in the LGN and 4cβ 

from parvocellular neurons. Koniocellular LGN cells project to the upper layers of 

the V1, namely to cytochrome blobs (Callaway, 2005; Kaplan, 2012) in layers 1, 2 

and 3 (Casagrande, Yazar, Jones & Ding, 2007). See Figure 8 for an illustration of 

LGN projections to V1 layers. 

There are also small populations of cells that send signals directly to the area V2 

(Bullier & Kennedy, 1983) and V4 (Yukie & Iwai, 1981), completely bypassing the 

V1. Additionally, there is evidence that koniocellular neurons in the LGN also 

bypass the V1, projecting into the middle temporal area of the macaque 
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(Jayakamur et al., 2012). While this is only a small population of neurons, some 

researchers have speculated that they might be responsible for preserving some 

visual functions in blindsight, or cortical blindness (Rodman et al., 2001; 

Vakalopoulos, 2005; Jayakumar, Dreher & Vidyasagar, 2013). 

 

Figure 8 Visual pathways from the retina through the LGN to the V1. Image: Oxford research 
encyclopaedia. 

The fundamentals of what we know about the responses of the striate cortex 

come from experiments by Hubel & Wiesel (1968), who were the first to 

comprehensively probe cell responses from the monkey’s primary visual areas. 

V1 cell responses differ from those of the LGN. They are orientation-selective, are 

characterised by combining information from both eyes (i.e. their responses are 

binocular) and they are selective to directional movement (Hubel & Wiesel, 
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1968). Additionally, depending on the cell, they are selective to particular spatial 

frequencies and stimulus size (Schiller, Finlay & Wolman, 1976; de Valois, 

Albrecht & Thorell, 1982). Cells in the first layer of V1 are still monocular, but 

become binocular in layers 2 – 6 (Hubel & Wiesel, 1977). The upper layers project 

further into extrastriate visual areas: V2, V3 & V4 (Livingstone & Hubel, 1984). 

Receptive fields of the V1 form a topographic map of the visual input. 

It has been assumed that cortical responses can arise simply through feed-

forward, linear connections from the LGN. Related to this is the psychophysical 

work (described in more detail in later chapters) that suggested the existence of 

feature-specific channels; in terms of cortical neuron responses, it was predicted 

that individual neurons will exhibit properties that would correspond to single 

features of a given channel. This was largely confirmed in initial work (see Lennie 

& Movshon, 2005 for references). 

4.4. Separation of visual channels 

As described in the previous section, magno, parvo and koniocellular pathways 

can be traced back to distinct classes of ganglion cells, which in turn project 

mostly in parallel to separate layers of LGN (see review by Kaplan et al., 1990; 

Lee, Sun & Valberg, 2011). 

Visual channels are largely separated at the level of LGN. The additive luminance 

(L+M) and opponent red-green (L – M) channels appear to be cone-specific. In 

particular, these two channels seem to lack considerable input from S-cones 

(Dacey & Lee, 1994; Lee, Martin, & Valberg, 1988; Reid & Shapley, 2002). This 

was however put into question, as some studies have shown that magnocellular 

layers of the LGN were responsive to S-cone signals (Chatterjee & Callaway, 

2002). However, other studies refuted this claim by showing that S-cone inputs 

to magnocellular ganglion cells and to parvocellular cells are minimal and 

negligible (Sun, Smithson, Zaidi, & Lee, 2006a, 2006b). Later studies 

acknowledged that some midget ganglion cells (forming the parvocellular 

pathway) seem to receive detectable S-cone input (Martin & Lee, 2014; Tailby, 
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Szmajda, Buzás, Lee, & Martin, 2008), although the proportion of these signals is 

very low. Overall, the available evidence suggests that S-cone signals are visibly 

separated from parvo and magnocellular cells (Martin & Lee, 2014). 

Earlier studies have postulated that the separation between the achromatic and 

the two chromatic pathways is sustained even in the striate cortex (Bullier & 

Henry, 1980; Livingstone & Hubel, 1988; Casagrande & Norton, 1991; Casagrande 

& Kaas, 1994). It has even been suggested that the segregation is maintained 

beyond primary visual areas (Shipp & Zeki, 1985; Maunsell & Newsome, 1987; 

DeYoe & Van Essen, 1985, 1988; Livingstone & Hubel, 1988; Zeki, 1993; DeYoe et 

al., 1994). These findings are in accord with the two-stream hypothesis (Goodale 

& Milner, 1992), as magno and parvocellular projections seem to feed largely 

separately to dorsal and ventral stream, respectively (Vidyasagar, Kulikowski, 

Lipnicki & Dreher, 2002). While parvo and magnocellular pathways do appear to 

be to some extent segregated, there is also a degree of convergence between the 

pathways in extrastriate cortex (Maunsellet al., 1990; Ferrera et al., 1992, 1994; 

Merigan & Maunsell, 1993; Gegenfurtneret al., 1996; Kiper et al., 1997), and even 

in primary visual areas (Lundet al., 1994; Levitt et al., 1994; Yoshiokaet al., 1994; 

Yabuta & Callaway, 1998). This is derived from physiological studies which 

demonstrated that particular layers of the cortex are receiving inputs from both 

pathways. To give a specific example, Yabuta et al. (2001) showed that neurons in 

area 4B receive excitatory inputs from sublayers 4cα, a layer that receives direct 

inputs from magnocellular layers of the LGN. However, at the same time, 4B also 

receives inputs from layer 4cβ, which is a target of P-cells of the LGN. 

Importantly, 4B has been established earlier as a source of exclusively 

magnocellular inputs into to the dorsal stream. Thus, 4B becomes an anatomical 

substrate for M-P pathway convergence in striate areas. Analogically, area 3B of 

the striate cortex is believed to provide parvocellular inputs to the ventral visual 

stream. However, this layer also has connections with magnocellular 4cα 

(Sawatari & Callaway, 2000). 

The convergence of M and P-inputs has also been investigated functionally. 

Vidyasagar et al. (2002) recorded responses of neurons in the striate cortex of the 

http://onlinelibrary.wiley.com/doi/10.1046/j.1460-9568.2002.02137.x/full
http://onlinelibrary.wiley.com/doi/10.1046/j.1460-9568.2002.02137.x/full
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macaque monkeys. The study looked for a characteristic parvo or magnocellular 

response of a cell in response to a range of stimuli designed to elicit a response 

characteristic to the pathway in question. Cell’s response to chromatic, 

isoluminant stimuli, which also exhibited a preference for the light of specific 

wavelength was taken as an indication of a parvocellular response. To test for the 

typically magnocellular response, low contrast stimuli were used, since 

parvocellular responses are typically absent when a stimulus with less than 10% 

contrast is used (Hicks et al., 1983; Shapley, 1990). Furthermore, conduction 

velocities were also of interest, as M pathway (from the retina to LGN, and also 

from the LGN to the cortex) responses are faster than those of P pathway (see 

Dreher et al., 1976; Schiller & Malpeli, 1978 and Bullier & Henry, 1980). 

Vidyasagar et al. (2002) found that the majority of cells in the striate cortex 

demonstrate responses characteristic to either M or P-pathway, suggesting a 

functional separation between the pathways. However, a large proportion of 

recorded neurons (26%) exhibited responses consistent with both P and M 

pathways characteristics. Some of these neurons were located in layer 4 of the 

striate cortex, which is consistent with anatomical P and M pathways convergent 

connections with sublayers 4cα and 4cβ (see above). It appears then that 

although parallel nature of the P and M pathway is maintained to some extent in 

the striate cortex, a convergence is nevertheless present. Vidyasagar et al. (2002) 

do not exclude the possibility of additional convergence of P and M pathways 

with koniocellular inputs, though they did not test for this directly. Available 

evidence seems to be suggesting nevertheless that there is a degree of 

convergence of P and M pathways with the S-cone pathway (Vidyasagar et al., 

2002). 
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5. Chromatic and achromatic visual channels in 
perception 

As outlined in the previous section, different combinations of cone signals form 

the basis for colour perception. However, colour is only one of the many 

attributes of a visual scene. To perceive the world, the higher stages of the visual 

hierarchy use cone signals – organised into three channels – to compute other 

aspects of the visual scene, such as lines, edges, depth, motion or texture5. 

Generally speaking, visual streams appear to be (at least to some extent) 

separated functionally, i.e. they contribute to perception differently. To 

investigate their differential contributions to perception, researchers used stimuli 

that were designed to bias visual processing towards the pathway of interest to 

see to what extent given pathway contributes to the task at hand and how well it 

can sustain visual perception on its own (De Valois & Kooi, 1991; Livingstone & 

Hubel, 1987). Thanks to this approach, it was possible to determine that the three 

channels have different spatial and temporal resolutions. The former is due to a 

different distribution of cones in the retina: L – M channel is characterised by 

greater resolution and as L and M cones they are the most numerous types of 

cones in the retina. However, its response latencies are slower. The S – (L+M) 

channel is on the other hand characterised by large receptive field and slow 

latencies (Smithson, 2014; Stockman & Brainard, 2010). The L+M luminance 

channel is particularly fast in its conductance speeds. The three channels also 

differ in their sensitivity to contrast levels and spatial frequencies. The 

magnocellular pathway (which receives predominantly luminance inputs) is most 

sensitive to low-frequency stimuli and it saturates at higher contrast levels; on 

the other hand, the parvocellular pathway is sensitive to high-spatial frequencies 

and does not saturate with increasing contrast (Tootell, Hamilton, & Switkes, 

1988; Tootell, Silverman, Hamilton, Switkes, & De Valois, 1988). 

                                                 
5 It should be noted that, when talking about perception in this thesis, it is usually implied that we are 
focusing here on spatial vision specifically. This is due to the fact that the interest of this thesis lies in the 
memory for visual shapes. Other aspects of perception, such as depth or motion, are not the focus of 
this thesis. 



64 

 

Neurons in the early visual areas are tuned to respond to particular features of 

visual input, such as orientation, size, spatial frequency or colour. On the neural 

level, all these features are represented by different sets of neurons, distributed 

over visual areas. It is a challenge of the visual system to bring the activity of 

these neurons together, so objects in the environment are perceived as a whole, 

rather than a collection of unrelated features. The exact nature of the 

mechanisms responsible for bringing these features together (or bounding the 

activity of neurons coding these features) has been a subject of extensive research 

and is referred to as “the binding problem” (von der Malsburg, 1981, Treisman, 

1996). One of the most important information about the visual image comes from 

edges and contours. This property is derived from low-level aspects of the image, 

like their luminance and chromaticity, as well as from higher-level properties, 

such as contrast or texture (Hesse & Georgeson, 2005). Edges are essential to the 

perception of shapes and it has been long thought that luminance has a special 

role in edge extraction and – consequently – perception of form (Mullen, 

Beaudot, & McIlhagga, 2000). This was due to the early studies which showed 

that colour information is of limited importance in spatial vision (Lu & Fender, 

1972; Gregory, 1977; Livingstone & Hubel, 1987, 1988; Gregory & Heard, 1989). 

Chromatic channels would mainly contribute to the recognition of natural scenes 

by segregating differently coloured surfaces (Gegenfurtner & Rieger, 2000), or 

simply act as a “filler” for contours derived from luminance signals (Livingstone & 

Hubel, 1987, 1988). However, later studies have shown that chromatic channels 

are able to detect edges as well. This would be subserved by double-opponent 

cells in V1 (Shapley & Hawken, 2011). These neurons’ receptive field would have a 

small response to a unified colour shape, but they would produce a larger 

response at the edge of the figure. 

Still, differences in shape processing (in particular, integrating contours) between 

chromatic and achromatic channels are apparent. For example, although both 

chromatic and luminance channels appear to be selective for orientation, there 

are some constraints imposed on the chromatic channels. In particular, 

chromatic channels appear to be more broadly tuned for orientation than 

luminance channel (Beaudot & Mullen, 2005). Although the difference between 
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the channels is not dramatic, Beaudot and Mullen hypothesised that this might 

be of importance for later stages of perception. This is because form perception 

relies heavily on orientation discrimination – hence, even small differences in 

orientation selectivity might translate into impaired form perception at higher 

stages. Indeed, this was shown to be the case. In their study, Mullen and Beaudot 

(2002) tested how luminance and chromatic channels perform in a global shape 

discrimination task. They used stimuli that isolated red green or blue-yellow 

chromatic mechanisms or achromatic mechanism. In the task, participants were 

shown two stimuli and asked to discriminate between them, i.e. respond whether 

they were same or different. The authors showed that the performance was best 

for the achromatic stimuli, followed by red-green and blue-yellow, which was 

associated with the worst performance. The authors concluded that the 

performance for chromatic shapes has shown a mild impairment relative to 

achromatic shapes; thought it was mild, it was evident that chromatic and 

luminance channels contribute to form perception differently. In terms of 

contour integration, the performance drops steeply for chromatic channels with 

the increase of space between figure’s elements (Beaudot & Mullen, 2003). 

Additionally, due to differences in their edge detectors (Mullen et al., 2000), 

chromatic channels seem to perform worse in contour integration. Therefore, 

even though colour can support contour extraction on its own and in 

combination with luminance, it is more restricted in some respects than 

achromatic channels. 

Another line of research suggests that luminance information propagated via 

magnocellular pathway may significantly contribute to successful binding. Lehky 

(2000) investigated the amount of feature binding errors subjects produce when 

viewing isoluminant or non-isoluminant stimuli. Feature binding errors can be 

produced by a short, simultaneous presentation of two stimuli. An error is 

produced if a feature of one stimulus is assigned (bound) to the second stimulus. 

For example, after presenting a yellow letter A with a black letter M, reporting a 

black letter A is a demonstration of a binding error. Lehky found that, if the 

stimuli are isoluminant, subjects produce more errors than when the stimuli are 

non-isoluminant. One of the possible explanations for this observation is the 
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effect of attention. Why would non-isoluminant inputs be related to attention? 

Magnocellular input dominates in the dorsal stream (Vidyasagar, Kulikowski, 

Lipnicki, & Dreher, 2002); dorsal stream leads to the posterior parietal cortex, 

which was implicated to be involved in attention (Behrmann, Geng, & Shomstein, 

2004; Corbetta & Shulman, 2002; Han et al., 2003; Malhotra, Coulthard, & 

Husain, 2009). Hence, presenting stimuli that provide mostly magnocellular 

inputs could be a trigger for attention to bind image features. Using isoluminant 

stimuli might impair the attentional effect, however, leading to more errors. 

However, Lehky refutes this interpretation by biasing attention towards both 

classes of stimuli. In these conditions, there were still more errors for the 

isoluminant stimuli. Lehky concludes that the errors therefore due to 

abnormalities in form processing and attributes them to processing taking place 

in the ventral pathway. In particular, Lehky suggests that isoluminant stimuli are 

poorly defined in the feature map and that it takes time for the system to localise 

them. Feature binding is a dynamic process that needs to be accomplished before 

the stimulus disappears from the visual field. It is possible that under isoluminant 

conditions, this process is less efficient and requires more time, a suggestion that 

agrees with slow dynamics of feature integration using isoluminant stimuli 

(Leonards & Singer, 1998). 

Another line of research compared performance of luminance and chromatic 

signals in high-level perception, i.e. object recognition (Martinovic et al., 2011). In 

their study, Martinovic et al. presented participants with line drawings of either 

meaningful objects, or non-objects (i.e. scrambled versions of object drawings). 

The task was to respond which category (object or non-object) the presented 

image belonged to. The stimuli where designed so that they would contain both 

chromatic and luminance information, or were impoverished, i.e. the luminance 

information was absent. The results showed that the inclusion of luminance 

information resulted in more accurate as well as faster classification of the images 

as belonging to object category. Interestingly, however, the inclusion of 

luminance information had no effect on non-object classification speed and 

accuracy. The authors suggested that luminance information is more efficient in 

object recognition and is of greater importance for this process than chromatic 
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information. Later experiments confirmed these findings, showing that object 

processing benefits from luminance inputs, which may trigger early exploratory 

eye movements, possibly enhancing the recognition process (Kosilo et al., 2013) 

In summary, although luminance and chromatic pathways are capable of coding 

form and shapes, there are some differences in how they contribute to 

perception. Aside from such bottom-up contributions, it has been demonstrated 

that luminance signals can influence top-down processing. The next section will 

outline how luminance signals contribute to perception via interactions with 

higher-order cognition.  

5.1. The role of luminance in facilitating 
perception via top-down signalling 

Traditionally, visual processing has been regarded as hierarchical, bottom-up 

process (Hubel & Wiesel, 1959; Kandel, 2014). It has become increasingly clear 

that vision cannot be seen as a strictly serial (Bullier & Nowak, 1995). 

Interestingly, as Bar (2003) points out, anatomical studies have shown that 

connections between visual areas are not restricted to isolated, bottom-up 

(ascending) routes. However, these findings were not immediately applied to 

models of perception (Bar, 2003; Bullier & Nowak, 1995) and researchers largely 

focused on bottom-up processing. Today, however, top-down influences on 

visual processing as well as simultaneous horizontal connections within visual 

areas (Petro, Vizioli, & Muckli, 2014) are acknowledged.  

More recent models are looking into the functional role of bottom-up, as well as 

top-down and horizontal projections (Kafaligonul et al., 2015). Most recent 

studies focus on the role of these projections in different aspects of object 

recognition (for example, Wyatte, Jilk, & O’Reilly, 2014), visual attention 

(Khorsand, Moore, & Soltani, 2015) and various visual phenomena, like masking 

(Silverstein, 2015). 

The important assumption in most of these investigations is that high-level 

information can be activated rapidly enough to interact with bottom-up 
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processing. The question remained however how exactly top-down processing 

can be initiated so early. Bar (2003) emphasized a curious problem, namely that, 

at least in object recognition, high-level representations are activated even before 

the sensory input is fully analysed. Object recognition is achieved very rapidly, 

within 150 – 200 ms after the stimulus onset, meaning that top-down processing 

must have an earlier start. 

To resolve this problem, Bar (2003) proposed a cortical mechanism that would 

enable the visual system to achieve just that. Bar suggested that such early 

initiation of top-down processing (and thus its subsequent interactions with 

bottom-up processing) can be triggered by magnocellular information projected 

rapidly from sensory to frontal areas. 

Bar’s (2003) idea was largely inspired by the top-down model of object 

recognition proposed by Ullman (1995). According to this model, the visual 

system actively searches for similarities between stored representations and 

current sensory input. Such process is bi-directional in that both bottom-up and 

top-down streams explore alternatives for matching an object with a 

representation simultaneously. Object recognition is achieved successfully when 

both streams “meet” and a corresponding match is found. 

Bar proposed that the visual system extracts a low resolution, a rough outline of a 

stimulus, which is then projected rapidly to the PFC using “anatomical 

shortcuts”. This low-resolution information is then used in PFC to form 

expectations about what the input is representing. Such initial guesses, as Bar 

calls them, are then projected back to inferior temporal cortex (IT). At this point, 

object representations matching the guesses are activated and integrated with 

bottom-up processes. As a result, the object recognition is facilitated by top-

down processes by limiting the number of possible interpretations of the 

incoming sensory input. 

The candidate for such “anatomical shortcut” would be, according to Bar, the 

achromatic luminance signals. The achromatic, luminance pathway conveys 

information very rapidly (Bullier & Nowak, 1995), is quicker than the chromatic 
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pathways (Laycock, Crewther, & Crewther, 2008) and is sensitive to low contrasts 

and low spatial frequencies (Maunsell, Nealey, & DePriest, 1990; Shapley, 1990).  

Therefore, an anatomical connection that would match this model in terms of 

speed of projection and information content is the magnocellular pathway to 

which luminance signals project. Laycock, Crewther and Crewther (2007) 

reviewed the evidence for higher-order areas providing a sufficiently rapid top-

down signal into lower-order areas, which can facilitate recognition. The 

difference between the arrival of magnocellular and parvocellular inputs into 

primary visual cortex is termed “magnocellular advantage”, and is reported to be 

no smaller than 10 ms, with some studies showing the advantage of 20 ms 

(Laycock et al., 2008). The magnocellular advantage arises from differences in 

conduction velocities between the two pathways. This advantage would allow for 

such early top-down facilitation to occur. According to Laycock (2008) and 

others (Bullier, 2001; Chen et al., 2006), magnocellular projections arrive at V1, 

and project through the dorsal stream to areas such as V5, and are then “injected 

back” into V1. There is also evidence for lateral connections to the ventral stream, 

as well as to frontal cortex. Magnocellular inputs arrive back at V1 before 

parvocellular projections, and the entire feedforward/feedback loop is completed 

within 20 ms. In short, this model of visual processing posits that object 

recognition through the ventral stream is facilitated by feedforward “sweep” 

through the dorsal stream, which activates parietal as well as frontal regions, and 

projects back into the V1. This facilitation is possible because of rapid inputs from 

the magnocellular pathway. 

Kveraga et al. (2007) provided support for Bar’s hypothesis. Using stimuli which 

biased processing towards either magnocellular or parvocellular pathway and 

investigating the activation of visual areas using fMRI, Kveraga et al. have 

demonstrated that M-biased stimuli were recognised faster than P-biased stimuli 

(despite higher recognisability of the P-biased stimuli). Furthermore, M-biased 

stimuli resulted in greater activation of orbitofrontal cortex than P-biased 

stimuli. In addition, M-biased stimuli increased the flow of information between 

middle occipital gyrus to orbitofrontal cortex and fusiform gyrus. Superior object 
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recognition for stimuli that include luminance information was also 

demonstrated in other experiments, described earlier (Kosilo et al., 2013; 

Martinovic, Mordal & Wuerger, 2011). 

5.2. Summary: differential contribution of 
luminance and chromatic signals to perception 

As described in the previous section, there is a long tradition of investigating how 

luminance and chromatic channels contribute to perception, from the lowest to 

the higher stage of the visual hierarchy. It has been shown that, although both 

chromatic and achromatic channels are able to sustain vision, there are some 

differences in the functionality and efficiency of each channel. This is highly 

relevant to the topic of this thesis. 

Visual working memory and perception appear to be sharing common 

mechanisms, and therefore our aim is to establish how different visual channels 

contribute not only to on-line perception but also to building working memory 

representations and sustaining them in the absence of the initial input. Since the 

mechanisms for both perception and visual working memory are common, we 

can expect that the contribution of luminance and chromatic channels to 

working memory will not be the same. Perhaps the relative “luminance 

advantage” will also translate into the working memory domain. 

In the next session, I will return back to visual working memory and speculate 

how the luminance advantage might manifest itself in this domain. This will be 

then wrapped up and used to build the main hypothesis. 

5.3. The potential role of luminance signals in 
working memory: top-down benefits, noise 
reduction  

Interestingly, some authors suggested that for successful working memory 

performance, top-down modulation needs an appropriate “head-start” (Gazzaley, 

2011). Such signal would enable the top-down feedback to start sufficiently early 
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to guide further processing. They also note that without such head-start, WM 

performance can be diminished as a result, because of increased interference 

from irrelevant stimuli. This emphasizes the role of preparation and prediction in 

early stimulus processing. These comments are made in the context of WM tasks 

where subjects must keep relevant features/stimuli in mind while suppressing 

distractions. It is interesting that this line of thinking coincides with Bar’s 

comments that high-level representations must be activated even before the 

stimulus is fully processed on low-level stages of perception. Gazzaley does not 

really go into depth of how such head-start would be achieved on the neural 

level. It is implied, however, that this is achieved merely by holding and updating 

task objectives. It could be argued however that fast signals indicating the 

presence of target feature would be beneficial as well; therefore, one could 

hypothesise that such head-start could be achieved by fast luminance projections. 

This would provide an interesting example of how luminance could benefit WM 

beyond object recognition, as originally proposed by Bar. 

One of the more general mechanisms of how luminance can benefit working 

memory could be based on noise reduction during encoding a memory 

representation. A recent view (Bays, Marshall, & Husain, 2011b) poses that noise 

in neural populations involved in sustaining a memory representation is the 

primary cause behind errors in working memory (Bays, 2014). According to Bays, 

substantial accuracy variability in working memory performance as compared 

with sensory tasks suggests that neural signal must be weak in respect to the 

noise (i.e. low signal-to-noise ratio). This goes in line with the study by Harrison 

and Tong (2009) mentioned in the previous section. Even though in their study, 

Harrison and Tong were able to decode the contents of working memory from 

activity in the visual cortex, the overall signal was weak. While the stimulus is 

still in the visual field, the neural activity associated with its processing is strong, 

while the signal that is decoded from memory is much weaker. Interestingly, the 

delay-period signal is largely independent of memory load; however, the activity 

in the areas that demonstrate a transient response to presented stimuli is load-

dependent, with neural information in these areas being weaker at higher 

working memory load (Emrich, Riggall, LaRocque, & Postle, 2013). 
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6. Conclusion and the main hypothesis 

Research on visual working memory has a long tradition in psychology (Baddeley, 

2003; Baddeley & Hitch, 1974). Psychological and cognitive models of working 

memory facilitated neuroscientific research of sustained perceptual 

representations (Goldman-Rakic, 1995; Levy & Goldman-Rakic, 2000). This led to 

decades of fruitful research which highlighted the importance of prefrontal brain 

areas in working memory and which suggested that the short-lived memories are 

stored in the dorsolateral prefrontal cortex (Levy & Goldman-Rakic, 2000). 

Although the role of other brain regions has been long appreciated, it is only 

recently that the evidence accumulated towards conclusion that the same neural 

mechanisms responsible for encoding and perception of visual stimuli are also 

used to sustain their representation over time (Harrison & Tong, 2009; Pasternak 

& Greenlee, 2005), an account sometimes referred to as sensory-recruitment 

hypothesis (D’Esposito & Postle, 2015; Postle, 2006). As a result, prefrontal 

cortices are now viewed as a host for control mechanisms over other brain areas 

engaged in working memory, while the storage is subserved by sensory areas 

(Lara & Wallis, 2015). 

An important consequence of this new approach is that perception and visual 

working memory can no longer be viewed as separate mechanisms (Gao, Gao, Li, 

Sun, & Shen, 2011; Postle, 2006; Zimmer, 2008).This opens up new avenues of 

research: if visual working memory shares neural architecture with perception, it 

becomes reasonable to investigate whether building a memory representation is 

governed by analogical processes responsible for building a perceptual 

representation of the visual world. Classic visual neuroscience research has 

shown that the building blocks of perception are assembled by three 

anatomically and functionally defined visual channels (e.g. Livingstone & Hubel, 

1988) – two achromatic and one achromatic, luminance channel. Crucially, each 

channel contributes to low, as well as high-level perception differently, due to 

their differing spatiotemporal resolutions and other attributes (Clery, Bloj, & 

Harris, 2013; Cooper, Sun, & Lee, 2012; De Valois, Lakshminarayanan, Nygaard, 

Schlussel, & Sladky, 1990; Lee, Sun, & Valberg, 2011; Livingstone & Hubel, 1988; 
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Mullen & Beaudot, 2002; Shapley, 1990; Tootell, Silverman, Hamilton, Switkes, & 

De Valois, 1988), with luminance being somewhat superior and more efficient 

over chromatic channels (Bar, 2003; Kosilo et al., 2013; Kveraga et al., 2007; 

Martinovic et al., 2011; O’Callaghan et al., 2017). Can this differential contribution 

of visual channels to perception be extended to working memory domain? In the 

remaining chapters of this thesis, I will present a series of experiments that 

attempted to test this idea, and I will argue that the luminance channel has 

special contributions to working memory processing. I will demonstrate that 

luminance inputs lead to a better behavioural performance in visual working 

memory tasks and that this advantage is reflected in neural responses, as 

measured with electroencephalography.  
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Chapter 2 

General methods and colourimetry 

 

 

 

All experiments shared the same experimental setup and were run in the same 

laboratory. The next section describes details on equipment and experimental 

methods that were common for all experiments. Particulars specific for a given 

experiment, if different from the common setup, are detailed in corresponding 

experimental chapters. 

Experiments were implemented in Matlab (Mathworks, Natick, Massachusetts) 

running on a Dell Precision PC on a calibrated cathode ray tube (CRT) monitor 

(NEC MultiSync FP2141SB; refresh rate: 109 Hz; resolution: 1264 x 790; see 

Section 7.4.1 for details on calibration procedure). The use of the CRT monitors is 

common in vision science due to their good temporal and spatial resolution, 

good image rendering independent from the viewing angle and low costs 

(Breinard, 2002). The CRT monitor on which the stimuli were presented was 

located in an electrically – shielded faraday cage. The CRT was the only source of 

light during the experiment. The monitor was kept on for least 15 – 30 minutes 

beforehand to ensure the RGB guns were evenly warmed up before any 

experiments commenced. Subjects responded using a button box (Cedrus RB – 

740, Cedrus Corporation, San Pedro, USA) while seated 57cm from the screen on 

a comfortable hairdresser’s armchair. 

  



76 

 

7. Colour spaces 

Accurate specification of the stimulus’ features, such as chromaticity and 

luminance, requires the use of appropriate colour space. Colour spaces are 

systems used to organise and describe colours quantitatively. A range of colour 

spaces has been developed over the years (Westland, Ripamonti & Cheung, 2012). 

In this section, I will briefly describe the Commission Internationale de 

l’Éclairage (CIE) 1931 system, followed by a description of physiologically-

meaningful colours spaces: LMS and Derrington-Krauskopf-Lennie (DKL). The 

latter two systems were developed as an attempt to relate colour specifications to 

physiological properties of the visual system. In other words, they are meant to 

serve as a model of how the visual system would react to lights of certain 

wavelengths. The DKL colour space is used across experiments presented in this 

thesis and I will describe it in more detail in the following sections. Nevertheless, 

the CIE and LMS systems are important as most of the routines used for monitor 

calibration and stimulus generation require conversions between the computer’s 

RGB system and the CIE, LMS and DKL colour spaces. 

7.1. The CIE 1931 colour space 

The first colour space was developed by the Commission Internationale de 

l’Éclairage (CIE) in 1931 (for a detailed history of the development of the CIE, see 

Broadbent, 2004; Wright, 2007). This space is based on the observation that any 

colour can be matched by a mixture of three primary colours (primaries). The 

amount of each primary used to match a given colour is referred to as tristimulus 

values. Early colour matching experiments by Wright and Guild (Guild, 1932; 

Wright, 1929) used a specially constructed split-field, bipartite colourimeter (also 

called tristimulus colourimeter), designed by Wright (1928). During the 

experiment, observers looked at a field consisting of two parts, one containing 

the test colour, and the other one displaying a mixture of the three primaries. 

Observers were required to adjust the intensities of each primary so that they 

match the test colour. The tristimulus values were then read out by the 

experimenter. 
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Based on these experiments, colour matching functions were described (see 

Figure 9). Colour matching functions are derived by measuring tristimulus values 

separately at each wavelength, in tight intervals, within the visible spectrum of 

light (i.e. 400 – 700 nm). Together, these colour matching functions describe the 

so-called “standard observer”. Knowing how the tristimulus values change as a 

function of wavelength allows for the tristimulus values to be calculated for a 

given light without the need of performing matching by the observers (Westland, 

Ripamonti & Cheung, 2012). 

 

Figure 9 The CIE 1931 RGB colour matching functions. Image by Marco Polo, Wikipedia. 

The widely used CIE 1931 system is based on the averaged colour matching 

functions obtained by Wright and Guild in separate experiments (Guild, 1932; 

Wright, 1929). The primaries are referred to as X, Y and Z. Importantly, these 

primaries are normalised mathematically, and thus do not represent real colours, 

but rather their more saturated versions. Normalising the primaries allows for 

representing colours using only positive values. Once the XYZ values are known, 

they can be transformed into two-dimensional coordinates: x and y. This is done 

by dividing the X and Y by the sum of the tristimulus values. Using this 

conversion, the CIE colour space can be mapped into a 2D plane (see Figure 10). 
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Figure 10 CIE chromaticity diagram (image: BenRG, Wikipedia). 

The CIE 1931 system proved to be useful in science and industry by providing 

means of accurate colour reproduction across devices and displays. However, the 

CIE system has no direct relation to the physiology and neural computations 

performed by the visual system. Some attempts have been made to adapt the CIE 

system in order to improve its formalisation of colour appearance, resulting in 

the development of the CIELAB and CIECAM02 spaces. Still, all spaces based on 

the CIE system use values that have no direct physiological meaning (Westland, 

Ripamonti & Cheung, 2012). For this reason, a different set of physiologically 

meaningful colour spaces have been developed: cone excitation spaces and cone-

opponent spaces (Westland, Ripamonti & Cheung, 2012). 
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7.2. Physiologically meaningful colour spaces 

7.2.1. LMS-cone excitation space 

The cone excitation space describes colours in terms of the excitation (i.e. 

absorption of light quanta) of the three primary retinal photoreceptors. In other 

words, such space provides a description of colours at the first stage of the visual 

system. As described in detail in the introduction, cones differ in terms of the 

probability that a photon of a given wavelength will be absorbed by them. A 

number of approaches have been used to describe the relationship between the 

contrast matching functions (described in the previous subsection) and the 

spectral sensitivities of the cones. One strategy is to use observers who lack some 

cone classes from birth: dichromats and monochromats. While missing some 

cone classes, other photoreceptors are spared in these observers since mono and 

dichromacy are simply a reduction of normal trichromacy. Therefore, instead of 

isolating a given cone class in a trichromatic observer, colour matching may be 

performed by observers who have only specific types of cones spared. Such 

approach has proved to be efficient and has been in use since the 19th century 

(Young, 1807; Helmholtz, 1866; König & Dieterici, 1886, 1893). Using this 

approach, Stockman and Sharpe (2000) measured cone spectral sensitivities, 

otherwise known aS-cone fundamentals. Knowing the cone fundamentals, it is 

possible to calculate cone excitation for a given stimulus by integrating the cone 

fundamentals data with spectral power distribution of the stimulus. In other 

words, published cone fundamentals allow for calculating cone excitation 

without the need to measure it directly. While there is a number of cone 

fundamentals sets to choose from (e.g. DeMarco, Pokorny, & Smith, 1992; Smith 

& Pokorny, 1975), we are using Stockman and Sharpe (2000) cone fundamentals 

measured for 2-degree stimuli for colour space conversions (see further 

subsections). 

One of the drawbacks of the LMS colour space is that it is not meant to go 

beyond the first stage of vision, i.e. light absorption by cones. As mentioned in 

Chapter 1, the signals from all cone types are combined in subsequent stages, 
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creating three mechanisms: two chromatic and one achromatic. To describe 

colours in terms of how they arise from the combined activity of all cone classes, 

cone-opponent colour spaces may be used, such as the DKL space. Because our 

hypotheses concern these three visual channels, the DKL space is thus an 

appropriate choice to define the chromaticity of the stimuli used in our 

experiments. The next section will describe this colour space in more detail. 

7.2.2. Cone-opponent colour space: the 
Derrington-Krauskopf-Lennie (DKL) space 

Derrington-Krauskopf-Lennie colour space (DKL; Derrington, Krauskopf, & 

Lennie, 1984) describes colours in terms of such post-receptoral mechanisms 

(combinations of cone excitations). It was based on Macleod and Boyton’s 

chromaticity diagram (MacLeod & Boynton, 1979) and earlier psychophysical 

research (Krauskopf, Williams, & Heeley, 1982).  

The space was developed based on experiments performed on eight macaque 

monkeys, with the assumption that their spectral sensitivities correspond to 

those of a human. Derrington et al. presented macaques with gratings with 

varying chromaticity and luminance, whose coordinates were varied around a 

three-dimensional space. The responses of the ganglion cells were measured in 

the lateral geniculate nucleus (LGN) – the relay station between the retina and 

the cortex (see Chapter 1 for details). By measuring the responses of the ganglion 

cells, Derrington et al. were able to identify “best response” and “null” planes in 

that three-dimensional space for the measured cell. Stimulus changes along the 

best response plane modulated the response of the cell while modulating 

parameters along the null plane would produce no response. Their results 

confirmed that colour opponency at the level of LGN is served by three cardinal 

mechanisms: two achromatic and one achromatic, luminance mechanism. 

Derrington et al. also identified that the cells responsive to the achromatic 

direction were primarily located in the magnocellular layers, while the chromatic 

modulations produced responses of cells in the parvocellular layers (Derrington 

et al., 1984). 
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In this space, colours are defined as variations along three cardinal axes: 

achromatic and two chromatic. In the achromatic axis, the excitation of the L, M 

and S-cone classes is the same (see Table 1). In the red-green axis, the excitation 

of L and M cones varies while leaving the S-cone constant; hence it is sometimes 

referred to as “constant S-cone axis” (Kaiser & Boyton, 1996) or “red-green 

isoluminant” (Brainard, 1996). Along the third axis, the excitation of the S-cone is 

varied while L and M are held constant. This axis is therefore referred to as 

“constant L and M axis” (Kaiser & Boyton, 1996) or “S-cone isoluminant axis” 

(Brainard, 1996). 

An important feature of the DKL colour space is that it describes stimuli in terms 

of its contrast against the background. The background provides a reference, or 

an adaptation level, against which the stimuli parameters are described. For this 

reason, the DKL colour space uses arbitrary values relative to the used 

background.  

Table 1 The three cardinal axes in DKL colour space. L, M and S refer to long, middle and short 
wavelength cone classes, Δ signifies a difference in excitation between the stimulus and the 
background, BG refers to the background (so that, for example, LBG signifies the L cone excitation 
of the background). 

Cardinal axes in the DKL colour space 

Achromatic axis ΔL/LBG = ΔM/MBG = ΔS/SBG  

Red-green axis ΔS = 0 

S-cone axis ΔL = ΔM = 0 

 

Modulations along the two chromatic axes produce different colour appearances, 

the L & M axis producing colours in the red-green range (hence Brainard’s “red-

green” axis), while the S-cone axis produces colours in the blue-yellow range.  

Any point in the DKL colour space is described using the following coordinates: a 

radius (r), the angle of rotation (ϕ DKL; also referred to as “DKL direction”), and 

angle of elevation (θ DKL; see Figure 11).  



82 

 

 

Figure 11 The DKL colour space. Figure: Jennings & Martinovic (2014). “P” provides an example of 
a point with the chromaticity of both L – M and S – (L+M) (defined by the appropriate angle of 
rotation ϕ) as well as a luminance (L + M) component (defined by the angle of elevation θ). 

7.2.3. Use of DKL colour space to stimulate 
cone-opponent and luminance mechanisms 

It is important to note however that the colour in itself is not of interest in this 

thesis, but rather cone mechanisms that happen to produce these colours. The 

DKL colour space is particularly useful to achieve this goal as it allows to define 

the stimuli not only in terms of the respective L, M and S-cone modulations (as 

described above) but can be easily used to create stimuli that will correspond to 

the hypothetical psychophysical mechanisms. As mentioned in the introduction, 

psychophysical experiments suggested the existence of three such mechanisms: 

two cone-opponent, chromatic mechanisms and luminance, achromatic 

mechanism. 

The first mechanism weights the difference between L and M-cone excitations 

(i.e. “L – M”). The second takes the weighted difference between S-cone and 

summed L and M-cone excitations (“S – (L+M)”). The luminance sums L and M-

cone signals (“L + M”). The luminance elevation must be held constant for the 

chromatic mechanisms in order to make the stimuli isoluminant. The r 

parameter can be thought of as reflecting the intensity of the colour stimulus, as 
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the larger the value, the further away from the white point (background) we 

move, which corresponds to increased contrast. The angle of rotation determines 

which particular chromatic mechanism is stimulated. The L – M mechanism is 

achieved with an angle of 0° (for increment) or 180° (for decrement). The S – (L + 

M) is achieved with an angle of 270° (increment) or 90° (decrement).  

Modulating the elevation stimulates the luminance mechanism (i.e. L + M). In 

our experiments, elevation value is fixed at 90° (for increment) or – 90° (for 

decrement), as at these angles the achromatic mechanism is isolated. Similarly to 

chromatic directions, r is used as an index of intensity (contrast). 

Throughout the thesis, I will refer to the two chromatic mechanisms as L – M and 

S-cone isolating (or S-cone). I will refer to the achromatic, luminance 

mechanisms simply as luminance. 

It is also possible to engage all three mechanisms simultaneously using 

appropriate coordinates in the DKL space. In our experiment, we incorporate 

such a condition where the stimuli are meant to engage both chromatic 

mechanisms as well as the luminance mechanism. This condition is referred to as 

mixed signals condition. It was mainly used as a control condition to characterise 

how responses to isoluminant conditions would be affected if they contained a 

luminance artifact (McIlhagga & Mullen, 1996). Further details and rationale for 

its use are provided in experimental chapters. Table 2 (column 1 and 2) lists labels 

used to describe experimental conditions as well as psychophysical mechanisms 

along with their coordinates in the DKL space. 
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Table 2 Psychophysical mechanisms of interest and their corresponding DKL coordinates. Only 
angle and elevation are provided as r is either fixed at individuals’ discrimination threshold 
(Experiment 1, chapter 3) or serves as the dependent variable in threshold experiments 
(experiment 2 and 3, chapter 4). *The elevation of L – M and S-cone is not 0°, but is determined 
from the HCFP procedure to adjust for individual’s point of isoluminance. Signs in brackets 
corresponds to the polarity of the angle or luminance elevation (+ for increment and – for 
decrement). A rough appearance of the stimuli as it could appear on the display is provided, along 
with a position inside the DKL space (radius r is given only arbitrarily for presentation purposes). 
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Previous studies using DKL colour space tested both increments and decrements 

(e.g. Martinovic et al., 2011), but as they appeared to produce similar responses, 

the data were collapsed across increments and decrements. We did not test both 

increments and decrements of each mechanism to reduce the number of 

conditions in our experiments. We choose either decrement or increment 

arbitrary to make the stimuli appearance different across conditions. 

7.2.4. Summary 

To summarise, the DKL colour space is of particular use to vision scientists 

aiming to investigate the contribution of the post-receptoral mechanisms to 

visual perception. Using an appropriate set of coordinates, it is possible to define 

the chromaticities and luminance of stimuli so that they excite one of the three 

cardinal mechanisms in isolation or some intermediate mixture of the three. 

Because of this feature, all experiments presented in this thesis are using the DKL 

space to define the chromatic and luminance properties of the stimuli. 

7.3. Observer’s isoluminance – 
heterochromatic flicker photometry (HCFP). 

Individuals differ in terms of the luminous efficiency function (Wyszecki & Stiles, 

1982; Wyszecki & Stiles, 2000). As a result, luminance artifact can be present 

alongside chromatic signals, thus violating the isoluminance of the stimuli. 

However, this can be avoided by applying an appropriate correction. 

Heterochromatic flicker photometry method (HCFP; Walsh, 1958) is usually used 

to address this issue by adjusting for individual’s point of isoluminance (e.g. 

Kosilo et al., 2013; Martinovic et al., 2011; Ruppertsberg, Wuerger, & Bertamini, 

2003; Wuerger, Ruppertsberg, Malek, Bertamini, & Martinovic, 2011). 

HCFP takes advantage of the superior temporal resolution of the luminance 

channel over opponent-chromatic channels. Experiments on macaque monkeys 

confirmed that the magnocellular system underlies performance on this task (Lee 

et al., 1988). The luminance system is able to detect fast temporal changes, such 

as flickering at high frequencies. In the HCFP procedure, the observer is adjusting 



86 

 

luminance contrast of a flickering stimulus so that the perception of the flicker is 

minimized. If the perception of the flicker is minimal, so is the luminance 

difference. Corresponding value provides an isoluminant correction for a given 

individual. 

This technique can be applied to the DKL colour space. The procedure used in 

our experiments is based on previous studies, with modification (Ruppertsberg, 

Wuerger, & Bertamini, 2003; Martinovic, Mordal, & Wuerger, 2011; Kosilo et al., 

2013; Jennings & Martinovic, 2014). Participant adjusts the luminance elevation 

for each chromatic direction (L – M and S-cone) using a response pad (CEDRUS 

RB-740, San Pedro, CA) for a stimulus presented at a fixed radius (r) until the 

perception of flicker was minimal. In all our experiments, the stimulus is 

presented in the middle of the screen, flickering at 20Hz against a grey 

background. Participants did in total 8 to 10 adjustments reliably (after the 

removal of the outliers) and the average was taken and used as a luminance angle 

value for the corresponding DKL condition.  

7.4. Display calibration & gamma correction 
procedures 

This section provides details on display calibration and further procedures that 

helped to verify the calibration. An overview of the steps is provided in Figure 12 

below. 

7.4.1. Calibration 

In CRT displays, the voltage is delivered to the cathode ray tube which emits light 

via red-green-blue (RGB) electron guns. The relationship between the input 

voltage to the monitor and the resulting output luminous intensity of the display 

is non-linear. This relationship is described by gamma functions. In order to 

ensure that the input provided by the user (here, the experimenter) produces a 

light intensity that is actually desired, one needs to apply the gamma correction. 

This is done simply by inverting the gamma function so that the input value 

needed to produce any desired output can be found. 
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The calibration of the monitor in our laboratory (Figure 12., I) was done using the 

CRS calibration system (ColourCAL II, Cambridge Research Systems, Ltd., Kent, 

UK). Before commencing the calibration, the monitor was kept on for at least half 

an hour to ensure that the RGB guns were warmed up. Subsequently, a white 

uniform patch was displayed on the screen and the red, green, and blue phosphor 

guns of the CRT were balanced to adjust the intensity of the white display so that 

it corresponded to the CIE standard illuminant D65. The standard illuminant is 

commonly used in colourimetry. It refers to a theoretically defined source of light 

which spectral power distribution is provided by the International Commission 

on Illumination (CIE). It is meant to represent a daylight illumination. Its 

coordinates are defined in the CIE 1931 Colour Space (CIE, 1931; Smith & Guild, 

1932; see section 7.1) and are x=0.31271, y=0.32902. Once the colourimeter 

readings were satisfyingly close to these values, the monitor calibration 

procedure commenced (Figure 12, A).  

Measurements were performed at 256 voltage input levels in evenly-spaced 

intervals for each gun (red, green and blue) to ensure sufficient precision. Lookup 

tables that specify the gamma functions are created based on these 

measurements and are read automatically by the ViSage system before any 

stimulus or colour is displayed (using CRS Toolbox functions). 
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Figure 12 A general outline of calibration and verification procedure steps. Main text provides 
details on each step. 

After calibration was completed, the next step involved specifying the monitor’s 

gamut (the range of chromaticity the monitor is capable of displaying) and 

obtaining the coordinates for the “white point” to be used as the background 

during the experiments. In any colour space, the white point refers to a set of 

coordinates which define the colour “white”. To obtain the white point, the 

spectral power distribution of the display must be known first (Figure 12, B). This 

is done by displaying red, green and blue patches on the screen and measuring 

their emittance using a spectroradiometer (SpectroCal, Cambridge Research 

Systems, Ltd., Kent, UK). Combined readings of these three colours give the 

spectral power distribution (SPD) of the display (see Figure 13 for an example 
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SPD). The monitor’s gamut and the white point was derived using the routines 

from the CRS Colour Toolbox (Figure 12, C). Device SPD and the white point are 

saved in separate files and are loaded during the experiment. This ensures that 

the rendered colours are gamma-corrected, with the background specified by the 

white point coordinates every time the experiment was run. 

 

Figure 13 An example of the spectral power distribution (SPD) of the display used in the 
experiments. Note that the monitor was recalibrated across different experiments. 

7.4.2. Verification procedures 

The next step verified the accuracy of the calibration (Figure 12., II). We use the 

DKL colour space which assumes that any two points on a given axis, at the 

opposing sides of the white point, are symmetrical, i.e. they have the same radius 

at a given angle and elevation. For any point in the DKL (or any other) colour 

space, one can estimate the excitation of the L, M and S-cones of an observer, if 

the observer was looking at a stimulus characterised by the coordinates of that 

point. Our aim was to ensure that this symmetry is true when moving from DKL 

coordinates to cone excitations. This can be done by displaying opposing points 

on the DKL space at a given angle and elevation, measuring their spectra using 
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the spectroradiometer, and calculating the LMS excitations based on these 

measurements. 

A uniform colour patch was displayed for the three cardinal axes at a maximum 

radius (at either side of the white point, i.e. increment and decrement) that could 

be reproduced within the monitor’s gamut, as well as for the background (i.e. the 

white point, with DKL coordinates of 0, 0, 0). Additionally, we have also 

measured out increment and decrement at an angle of 45 and 135, with an 

elevation of 45 for the mixed signals stimuli class.  

Each patch was measured out using the spectroradiometer (Figure 12, D), which 

gave the coordinates in the CIE 1931 xyY colour space. Spectroradiometer 

readings were followed by colour space conversion procedures (Figure 12, E). 

Firstly, CIE coordinates obtained using the spectroradiometer were converted 

into the LMS colour space, based on the Stockman and Sharpe cone 

fundamentals (Stockman & Sharpe, 2000). As described in the previous section, 

LMS space essentially models human colour perception and allows for colours to 

be expressed in terms of excitation of the three cones of the human eye: long (M), 

medium (M) and short (S) cones. A particular LMS model that is used here is one 

based on Stockman & Sharpe's (2000) two-degree cone spectral sensitivities. 

To convert between the two colour spaces, a conversion matrix is required. A 

conversion matrix is calculated based on phosphor spectra of the (calibrated) 

display and cone sensitivities. This was done using a method described in Golz & 

MacLeod (2003). 

After the LMS excitations are calculated for the maximal radius for each DKL 

condition, excitation for each cone is then expressed in Weber contrast values; 

this is done using the following formula: 

𝑊 =  
𝑇𝑐 −  𝐵𝑐

𝐵𝑐
 

where W represents Weber contrast, Tc denotes target cone excitation, and Bc 

denotes the corresponding cone excitation of the background. For example, to 

calculate Weber contrast for the L cone, c is replaced with a specific cone 

excitation, so that 
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𝑊 =  
𝑇𝑙 −  𝐵𝑙

𝐵𝑙
 

where Tl corresponds to L cone excitation of the target and Bl corresponds to the 

L cone excitation of the background. 

Following the calculation of contrast for each cone class, the contrast for each 

mechanism was calculated according to a formula describing that mechanism 

(that is, L – M, S – (L+M) and L+M). At this point, we know the cone excitation of 

each of the three mechanisms, expressed in Weber contrasts, for the maximum 

radius of the particular DKL direction. Having those, we can finally verify the 

calibration by calculating the difference between increment and decrement 

contrasts for each mechanism (Figure 12, F). Contrasts were concluded to be 

symmetrical if the difference was not greater than 5%. If that was not the case, 

the RGB guns were adjusted and the calibration procedure was repeated until 

satisfactory results were obtained. For each calibration used in our experiments, 

the difference did not exceed 1%. 

Note that in the DKL space, the contrasts should scale linearly when moving 

along a line specified by s certain angle of rotation and elevation. Hence, having 

measured the contrast for each DKL direction at a given radius, it is possible to 

work out the contrast of any radius for that direction. We take advantage of this 

while converting individuals’ detection, discrimination and working memory 

thresholds to contrasts (see experimental chapters for details). 

7.5. Re-calibration 

The display was re-calibrated between experiments, and in one instance during 

the experiment due to a technical error. Display use was monitored and the 

calibration was re-checked (using verification procedures described above) after 

the display was used for more than 100 hours in total. 

The following section describes some of the common details of the experiments 

presented in this thesis. The individual experimental chapters specify any 

deviations or additions to procedures described below. 
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7.6. Stimuli & on-line DKL conversions 

102 BORTS (Blurred Outlines of Random Tetris Shapes; Linden et al., 2003) were 

used for stimuli in the study. The shapes are created by randomly distorting 

shapes from a Tetris video game (Pajitnov, 1984) to obtain a set of non-natural, 

abstract objects. They were successfully used in previous experiments using 

similar design (Linden et al., 2003; Haenschel et al., 2007). These formed the 

default stimulus pool for all experiments. Shapes were presented at varying 

orientations to increase the number of stimuli that appeared unique.  

The stimuli were created off-line and were initially monochromatic. Their 

chromaticity and orientation were set on-line, during the experiment, before they 

appeared on the screen. This was done using CRS Toolbox routines, based on 

procedures used previously (e.g. Kosilo et al., 2013; Martinovic et al., 2011). 

Current stimulus parameters are determined by the experimental condition in a 

given trial. 
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8. Psychophysics – overview of methods used to 
estimate threshold. 

Experiments described in this thesis use psychophysical procedures for threshold 

estimation. In this section, I will provide a quick overview of various 

psychophysical methods. I will first define what is meant by detection and 

discrimination thresholds, along with the tasks used to estimate them. 

Subsequently, I will describe different methods of manipulating the stimulus 

magnitude during different tasks. I will primarily focus on the adaptive QUEST 

(Watson & Pelli, 1983) since it was used in all experiments. Additionally, 

experiments described in Chapter 4 also incorporated the method of constant 

stimuli.  

This section is not meant to be an exhaustive overview of all psychophysical 

methods available but is rather provided to give a quick overview of the 

procedures used in this thesis and how they are classified in relation to other 

methods. A detailed description of other methods has been presented elsewhere 

(e.g. Ehrenstein & Ehrenstein, 1999; Kingdom & Prins, 2012; Pelli & Farell, 1995; 

Pelli & Farell, 2010). The exact implementation of the methods will be provided 

in the methods section in the corresponding experimental chapter. 

8.1.1. Detection and discrimination 
thresholds 

Detection threshold refers to stimulus magnitude value required for stimulus 

detection at a given performance level. The threshold is usually defined by the 

experimenter as a certain percentage derived from observer’s performance in a 

task. For example, a threshold of 75% reflects the observer’s ability to detect the 

stimulus at a specific contrast level correctly 75% of the time. 

In other words, the threshold (as well as the associated slope of the psychometric 

function) can be used as a measure of a relative efficiency with which the 

perceptual representation of a stimulus is created. They can also be utilised to 

infer the efficiency of a mechanism responsible for processing certain stimulus. In 
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that sense, lower threshold reflects better efficiency of the system, since less 

physical intensity is required to produce a response. 

One of the widely used paradigms in estimating detection thresholds is a two-

interval forced choice task (2IFC). The observer is presented with two intervals, 

one empty, and one containing a target. The task is to indicate which of the 

intervals contains a target. Experimenter manipulates the magnitude of a given 

stimulus parameter, such as contrast. By doing so, one can describe the 

relationship between the probability of detecting stimulus (i.e. correctly 

indicating which interval contained the target in this case) and the magnitude of 

a parameter of interest (here, contrast). The threshold is defined as stimulus 

magnitude value at which the observer reaches a certain level of proportion 

correct above the chance level (50%), for example, 75%. Detection thresholds 

were used in Experiment 2 (see Chapter 4). 

Other widely estimated thresholds are discrimination thresholds. These are often 

obtained using a standard two-interval forced choice task, or the 2IFC. The 

observer is presented with two temporally-spaced intervals (i.e. presented one 

after another), each one containing a stimulus. For example, one interval could 

contain a Gabor patch oriented to left, while the second one a Gabor oriented to 

the right. After the presentation, the observer is required to respond, for example, 

which of the two stimuli was oriented to the left. In another variation of the task, 

the two-alternative forced choice task (2AFC) the procedures are identical to the 

2IFC, except that in the former the two stimuli are presented simultaneously (e.g. 

on either side of the fixation cross), and not temporally spaced as in the 2IFC 

(where the stimuli are presented in the middle of the display, and hence viewed 

foveally). Similarly, as with detection thresholds, one stimulus feature (here, 

orientation) is adjusted, and the discrimination threshold reflects the magnitude 

of the difference that allows the observer to tell the two stimuli apart with a 

certain probability. 

Notably, the 2IFC/2AFC tasks (as described above) are usually used to estimate 

discrimination thresholds for a single stimulus dimension known to the 

participant (e.g. orientation). There are instances, however, where one wants to 
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measure discrimination from a range of multiple stimulus dimensions. Another 

example is when one wants observers to discriminate between two stimuli 

without specifying what dimension/stimulus feature the observer is supposed to 

use to make a discrimination. This kind of discrimination threshold can be 

referred to as “same/different threshold”. The usual task used to measure such 

thresholds is a same/different task. In this task, participants are presented with 

two stimuli and are required to respond whether they appear to be same or 

different. The stimuli might be presented either simultaneously on either side of 

the fixation cross, or they can be temporally spaced, similarly to the 2IFC task. 

During the task, a certain stimulus dimension is manipulated, for example, the 

contrast of the stimuli. Threshold will thus reflect the certain probability of the 

observer to tell the two stimuli apart at a given contrast level. It is important to 

note that the discrimination is not based on the contrast per se. The underlying 

assumption is that this stimulus dimension will affect the individual’s ability to 

make a same/different judgement. This task is referred to sometimes as a match-

to-sample task. 

The same/different threshold task is used in Experiment 1 as a control measure 

(see Chapter 2, “EEG experiment”). This kind of task is appropriate to our 

experiments: we are using abstract shapes, but we are not interested in which 

stimulus dimension is used to make a discrimination, but rather, how 

manipulating colour or luminance contrast will affect the overall ability to tell 

stimuli apart.  

8.1.2. Adjustment methods 

Adjustment methods assume full control of the stimulus magnitude to the 

observer. The observer adjusts the magnitude of the stimuli manually. For 

example, if the task is measuring contrast detection threshold, the observer is 

presented with stimuli at certain contrast level. The contrast level is adjusted by 

the participant himself until it just becomes visible. The observer can be also 

presented with a standard stimulus and asked to adjust another stimulus so that 

it either matches the standard or becomes just noticeably different than the 
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standard. The value associated with observer’s choice is recorded to provide an 

estimate of the threshold. In these experiments, our HCFP procedure uses this 

method.  

8.1.3. Method of constant stimuli 

The method of constant stimuli (as well as adaptive methods described in the 

next section) does not allow observers to make adjustments themselves. Instead, 

the stimulus magnitude is adjusted from trial to trial. This technique provides a 

more standardized way of measuring the threshold (Ehrenstein & Ehrenstein, 

1999) and is used in designs where observers are “forced” to respond from trial to 

trial. Because of the nature of such tasks, trials must be somehow sequenced. In 

the method of constant stimuli, the experimenter generates a list of stimulus 

intensities. The stimulus intensity on a given trial is randomly chosen from such 

a predefined list. The aim is to cover stimulus intensities that produce responses 

ranging from near-chance to near-100% correct (Kingdom & Prins, 2012). Each 

intensity level is presented multiple times per condition (e.g. 100 times). A 

psychometric function is then fitted to the data to obtain the threshold, i.e. 

stimulus value at which the observer achieves, for example, 75% correct level 

(depending on how the threshold is defined). Psychometric function is simply a 

function that describes the relationship between the stimulus intensity and the 

percentage of correct responses.  

8.1.4. Adaptive procedures 

Another common method of threshold estimation is the adaptive staircase 

procedure. The stimulus level is determined by the programme from trial to trial 

and is dependent on observer’s performance on previous trials. By itself, the 

adaptive procedure is not designed to specifically adjust the stimulus intensity 

downwards by some degree in case of a correct response, and upwards in case of 

incorrect response. However, this is the way the procedure usually ends up 

behaving (it can be thought of as an emergent property of this procedure; 

Kingdom & Prins, 2012).  
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There is a number of methods used to determine the stimulus intensity on 

proceeding trials. In the up/down method (Dixon & Mood, 1948), correct 

response increases stimulus intensity by one step, and in case of an incorrect 

response, the intensity is decreased by one step. Step size is pre-determined by 

the experimenter and requires some pilot testing. There are variations of the 

up/down method. For example, in the transformed up/down method, on the 

other hand, the “decision” to increase or decrease the intensity is based on a few 

preceding trials rather than one. For example, one of the commonly applied rules 

is a 1 up/2 down rule, where the step up is made after one correct response, but to 

make a step-down, two consecutive incorrect responses are required. In a 

weighted up/down method, the size of the upward steps is not equal to the size 

of downward steps. 

The threshold in the up/down method can be estimated by averaging intensity 

levels in the last few trials. Notably, up/down method can be used only to guide 

the flow of the experiment, and the threshold can be estimated by pooling the 

responses and fitting a psychometric function to them, as was the case with the 

method of constant stimuli. Doing so additionally enables to estimate the slope 

of the psychometric function. Such use of this method is referred to as hybrid 

adaptive procedure. 

A more sophisticated set of methods that allow for a considerable reduction of 

trial numbers are running-fit methods, otherwise known as the maximum 

likelihood procedures (Hall, 1968; Taylor & Creelman, 1967). In this family of 

procedures, some of the parameters of the psychometric function (such as 

threshold and slope) are selected by the experimenter before the start of the 

experiment. During the experiment, after every trial, a psychometric function is 

fitted to the data that was collected so far. The fit is updated as the trials proceed. 

Estimated threshold value from such fit is then used to update stimulus intensity 

on proceeding trial. In practice, this means that intensity steps become smaller as 

the trials proceed – the algorithm essentially “homes-in” on the threshold 

(Kingdom & Prins, 2012). 
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The adaptive procedures are considered to be more efficient in comparison to 

other methods, such as the method of constant stimuli. The main reason for that 

is that adaptive methods present stimuli at intensities which are more likely to be 

informative in terms of the threshold value that we try to estimate (or any other 

parameter of interest). In the method of constant stimuli on the other hand, since 

the intensities are fixed, one can potentially waste trials by presenting stimuli 

multiple times at a level which will lead to an incorrect answer 100% of the time. 

There is a number of different methods available within adaptive approaches. In 

The Best PEST method (Pentland, 1980; Taylor & Creelman, 1967), all parameters 

of the psychometric function are assumed before the experiment, apart from the 

threshold, which value is updated based on the preceding trials. Another method, 

called the QUEST procedure (Watson & Pelli, 1979; Watson & Pelli, 1983) is 

similar to the PEST, however, it takes advantage of the Bayesian approach. The 

experimenter decides on all parameters of the psychometric function – including 

the thresholds – before the experiment. This serves as a prior, which is updated as 

the experiment progresses. The prior serves as a guide to select the intensity of 

the upcoming trial. This procedure has been recently extended (Watson et al., 

2017); the classic QUEST procedure allows for the stimulus intensity to be 

adjusted only along one stimulus dimension, such as contrast. The new QUEST 

(QUEST+) procedures have been updated to incorporate more than one stimulus 

dimension to be handled simultaneously, as well as allowing for more than one 

response outcomes (e.g. yes/no, correct/incorrect), among other additions.  

With both of the adaptive methods, the parameters of the psychometric function 

can be derived from the function that was fitted by the programme at the end of 

the experiment. However, this can be also done “off-line”, by pooling the data 

collected during the experiment and making a new fit. In this sense – just like 

with the methods of constant stimuli – staircase procedures might be used to 

guide stimulus selection, rather than being a mean of obtaining parameters of 

interest. 

In all experiments described in this thesis, we use the (original) QUEST 

procedure for selection of stimulus intensity. Threshold and slope are derived off-
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line by fitting the psychometric function to the collected data (Prins & Kingdom, 

2009). In experiments described in Chapter 4, we also use the method of 

constant stimuli to provide some additional control measures. All the details 

about the parameters and exact implementation of the procedures are provided 

in the methods section of the corresponding experimental chapters. 
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Chapter 3 

The contribution of luminance signals to visual 
working memory performance – a study using 
EEG 

 

 

 

As mentioned in the introduction, the main goal of this thesis is to investigate 

interactions between early perceptual processing and WM. We decided to focus 

on the contribution of luminance and chromatic mechanisms to WM 

performance. It was hypothesised that stimuli designed to predominantly engage 

the luminance mechanism would benefit WM performance.  

This was investigated using a well-established paradigm, namely the delayed 

match-to-sample task (Haenschel et al., 2009; Haenschel et al., 2007; Linden et 

al., 2003). In this task, participants remember a number of shapes and are 

subsequently presented with a probe. Participants need to judge whether the 

probe is same or different from the remembered shapes. Unlike the majority of 

tasks probing WM (e.g. Bays et al., 2011b; Luck & Vogel, 1997), we are using a 

design in which stimuli are presented sequentially, one at a time. On each trial, 

WM load was manipulated by presenting one, two, or three stimuli in succession. 

The rationale was to probe WM without adding the complexity of having to 

encode a number of items simultaneously. This has also allowed probing the 

effects of WM load directly – participants were required to encode a new item 

while holding the previous one in memory. Thus, we could investigate how the 

number of items already in memory would affect the neural encoding of a new 

item (Agam & Sekuler, 2007). Such strategy, therefore, maximises the effect of 

prior processing on the processing of the current shape (Haenschel et al., 2007). 
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It was predicted that the luminance advantage would be manifested in a higher 

proportion of correct responses and faster reaction times for the luminance-

defined shapes than for isoluminant stimuli. 

Apart from engaging different post-receptoral mechanisms, there was a number 

of other factors that were manipulated in this study. Firstly, stimuli were 

presented either at low or high contrast levels. Contributions of post-receptoral 

mechanisms to stimulus processing tend to overlap at high contrasts during 

shape processing (Ivanov & Mullen, 2012). Furthermore, with luminance-defined 

stimuli presented at low contrast, the signal is processed largely through the 

magnocellular pathway. As mentioned in the introduction (see Chapter 1, Section 

4.4), the parvocellular responses are typically absent when a stimuli with less 

than 10% contrast are used – this is mostly due to magnocellular cells being more 

sensitive to contrast (Derrington et al., 1984; Hicks, Lee, & Vidyasagar, 1983; 

Kaplan & Shapley, 1982; Shapley, 1990; Vidyasagar et al., 2002). At high contrast, 

luminance-defined stimuli would be therefore processed by both magnocellular 

and parvocellular pathway. To that end, we decided to dissociate between low 

and high contrast levels in our task, with a prediction that luminance effects will 

be more pronounced at low contrast. 

Furthermore, we also differentiated between match/mismatch (same/different) 

judgements, i.e. trials where the probe matched the previously presented stimuli 

or not. The processes behind the comparison between memory representation 

and incoming stimuli in working memory have sparked relatively little interest 

(Hyun, Woodman, & Vogel, 2009), though some authors postulate that the 

memory-percept comparison is a distinct stage that deserves more attention (Yin 

et al., 2012). The distinction between detecting familiarity or novelty (analogical 

to our match and mismatch conditions, respectively) is crucial here: the current 

evidence and theoretical accounts highlight that these two processes are not 

equivalent (Hyun et al., 2009). For example, Bledowski, Kaiser, Wibral, Yildiz-

Erzberger and Rahm (2011) reported that mismatch-dissimilar probes were 

accurately rejected regardless of memory load. On the other hand, rejecting 

match probes or similar probes (probes similar to sample) was worse with 

increasing WM load. For this reason, we decided to investigate how working 
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memory performance in a delayed match-to-sample task is affected by 

match/mismatch comparisons. 

An important aspect of the delayed match-to-sample task used in this experiment 

is that it allows to clearly differentiate between working memory stages: the 

encoding, maintenance and retrieval. Processing at each stage appears to be 

crucial for performance (e.g. Bays et al., 2011; Haenschel et al., 2007; Woodman & 

Vogel, 2005). It is worth noting that, given our design, behavioural data alone 

makes it difficult to determine which working memory stage contributed to task 

performance, or at which point the hypothesised luminance advantage starts to 

take effect. The response made at the end of the trial is a result of processes 

occurring at each stage. Distinguishing between match/mismatch responses is 

helpful in that respect, as it is only at the retrieval stage that participants are 

presented with such judgement and there are no other cues that could allow for 

differentiating between match/mismatch processing at earlier WM stages. Still, 

relying on behavioural data alone is preventing us from making any stage-specific 

conclusions about the mechanisms that are likely to underlie performance in our 

task. In order to investigate WM processing at different stages, we are therefore 

taking advantage of the millisecond temporal resolution of the 

electroencephalogram (EEG). In the section below, I will briefly describe this 

technique and outline studies that used it to investigate visual working memory. 
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9. Investigating visual working memory using EEG 

EEG records electrical potentials of the brain from the scalp and is one of the 

oldest and one of the most widely used techniques in human imaging (Millet, 

2002; La Vaque, 1999). The signal that is recorded by an EEG electrode is a local 

field potential propagated from its cortical source through the tissue, resulting in 

a spatiotemporal distortion and smoothing of the signal recorded at the electrode 

(Buzsáki, Anastassiou, & Koch, 2012). It is generally agreed that the signal 

originates from postsynaptic potentials of populations of cortical neurons (more 

specifically, pyramidal cells), firing in synchrony (da Silva, 2009; Holmes & 

Khazipov, 2007; Jackson & Bolger, 2014; Kandel, Schwartz & Jessell, 2000). 

The EEG signal is very rich in information and there is a number of measures that 

can be derived from it using a variety of signal processing techniques. One of the 

most widely used measures derived from the EEG signal are event-related 

potentials, or ERPs (Luck, 2014). ERPs are obtained by time-locking the EEG 

activity to an event of interest and averaging this activity over a number of trials. 

As a result of this procedure, variation in the EEG signal should be averaged out, 

leaving a task-related activity. Averaging EEG signal to extract ERPs during 

various perceptual and cognitive tasks allows for identifying a specific “signature” 

related to the processes of interest. It was discovered that some of these 

signatures – termed ERP components – occur at a variety of tasks and that their 

amplitudes and latencies (i.e. approximate times at which they appear in the 

waveform) can be experimentally manipulated (Luck, 2014). Research has sought 

to identify factors which modulate strength and latency of various ERP 

components. They span from low-level perceptual, stimulus-dependent factors 

(such as stimulus contrast level) to factors related to higher cognition (such as 

object recognition or attention). 

In this experiment, we will use this technique as a measure of neural processing 

during working memory processing. ERPs have been used in the past to infer 

about neural processing behind cognitive functions, including working memory 

(e.g. Drew, McCollough, & Vogel, 2006; Luria, Balaban, Awh, & Vogel, 2016; 

Woodman & Vogel, 2005). One of the advantages of the ERP technique is that it 
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allows investigating the time course of activations during WM processing (Luu et 

al., 2014). Furthermore, the millisecond resolution is required to fully understand 

how working memory processing unfolds with time (Agam et al., 2009). Various 

labs have shown that event-related potentials sensitive to WM processing are 

found at various latencies after stimulus presentation; Luu et al. divide them 

roughly into early (around 200 ms), mid (390 ms) and late latencies (600 – 900 

ms; Gevins et al., 1996; Luu et al., 2014). ERPs at early and mid-latencies appear 

to be reflecting memory maintenance requirements, memory updates and 

selection of relevant stimuli for maintenance, while later components appear to 

reflect inhibition of distractors or memory updates (Kiss et al., 1998, 2007; 

McColough et al., 2007; Yi & Friedman, 2011). However, ERP components that 

seem to be sensitive to WM are also found earlier than 200 ms (e.g. Agam & 

Sekuler, 2007; Haenschel et al., 2007). 

In our experiment, we aim to identify ERP components that can index the 

interaction between perception and WM. More specifically, we are interested 

how these components will be modulated by stimuli engaging luminance or 

isoluminant mechanisms, and whether any modulation will be also dependent on 

WM load. Since there is a number of different components that we expect to 

observe, I will now describe each separately. I will focus on what factors influence 

their amplitude and latency, with emphasis on perceptual and WM factors. This 

will be followed by a summary of our predictions regarding how the components 

will behave in response to luminance/isoluminant stimuli and WM load. We will 

relate that to specific hypotheses of this thesis. 
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9.1. Use of ERP components to study visual 
working memory 

9.1.1. Visual component P1 

P1 (or P100) is a positive component with an onset of approx. 60 ms – 90 ms after 

presentation of a visual stimulus. The peak reaches its maximum around 100 ms 

and 130 ms (Luck, 2014). The component is largest at lateral occipital and parietal 

sites. This is consistent with studies that attempt to localise the neural generators 

of this component (Di Russo, Martínez, Sereno, Pitzalis, & Hillyard, 2002). 

Studies using mathematical modelling paired with fMRI measures suggest that, 

based on its localisations, the P1 can be divided into two parts. Its early portion 

(80 – 100 ms) appears to be generated in the dorsal extrastriate cortex in the 

middle occipital gyrus and its later part (100 ms – 130 ms) is generated in ventral 

extrastriate cortex of the fusiform gyrus (Di Russo et al., 2002; Martínez et al., 

1999; Martı́nez et al., 2001). However, as Luck (2014) emphasizes, other cortical 

areas – beyond extrastriate areas – are also likely to contribute to the P1 (Luck, 

2014; Foxe & Simpson, 2002). Nevertheless, because of its localisation in the 

cortex, P1 is responsive to changes in various low-level stimulus properties, which 

affect both its latency and amplitude (Luck, 2014). For example, component’s 

latency as well as amplitude is modulated by varying contrast levels (Shawkat & 

Kriss, 2000; Souza, 2007; Ellemberg & Hammarrenger, 2001). Higher luminance 

also elicits higher occipital P1 amplitude (Johannes, Münte, Heinze, & Mangun, 

1995). These effects also appear to vary according to spatial frequency of the 

stimulus. At low contrast, the P1 amplitude in response to low frequency stimuli 

increases and rapidly saturates (Baseler & Sutter, 1997; Ellemberg et al., 2001; 

Klistorner et al., 1997; Souza et al., 2007). Comparing low versus high contrast 

responses also reveals longer latency for the former (Luck, 2014). 

Ellemberg & Hammarrenger (2001) investigated the contribution of the 

magnocellular and parvocellular pathway to the generation of ERPs. These 

studies are relevant to our experiment as post-receptoral mechanisms that our 

stimuli excite map onto those pathways (see Chapter 1 for details). 
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Using sinusoidal gratings of varying spatial frequency and contrast levels, 

Ellemberg & Hammarrenger (2001) demonstrated that P1 component shows a 

characteristic magnocellular response pattern. In particular, P1 appeared at low 

contrasts, increased rapidly in amplitude with increasing contrast and saturated 

at medium contrasts. This corresponds with the findings that magnocellular cells 

respond to low contrasts, have high contrast gain and saturate at medium 

contrasts (Livingstone & Hubel, 1988). With increasing spatial frequency, N1 

component becomes more dominant in the waveform, and exhibits characteristic 

parvocellular response: for intermediate and high frequencies, the contrast-

amplitude function appears to be linear, and increases with increasing contrast 

without saturating (Bach & Ullrich, 1997; Ellemberg et al., 2001; Vassilev et 

al., 1994; Souza, 2007; see next subsection for further description of this 

component). 

Furthermore, Crognale (2002) and Gerth, Delahunt, Crognale, and Werner 

(2003) showed that isoluminant stimuli do not elicit a clear P1, N1 being the first 

component that can be readily observed in the averaged waveform. On the other 

hand, P1 is easily elicited by luminance-defined stimuli and is also followed by N1 

component. The fact that isoluminant stimuli designed to engage chromatic 

pathways do not elicit a P1 supports the notion that P1 reflects magnocellular 

response pattern (Ellemberg & Hammarrenger, 2001). 

Some studies indicate that P1 is not responsive to top-down factors. For example, 

Hillyard & Münte (1984) measured ERP amplitudes in response to target 

categories. Their results indicated that stimuli matching the category could not 

be distinguished from non-matching stimuli. However, other studies make the 

opposite claim, namely that P1 can be modulated by attention and possibly by 

other high-level factors as well (Linkenkaer-Hansen et al., 1998; Rutman, Clapp, 

Chadick, & Gazzaley, 2009). Linkenkaer-Hansen et al. demonstrated for example 

that the P1 amplitude and latency increased for inverted rather than upward and 

visually degraded face stimuli. At the same time, the precise nature of this 

modulation is not clearly defined; in other words, amplitude modulation in such 

tasks could result from low-level factors as well (Rutman et al., 2009) 
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The relationship between attention and P1 component has been studied 

extensively (Hillyard, Vogel, & Luck, 1998; Luck, Woodman, & Vogel, 2000). It 

has been demonstrated that attentional load increases peak latency of this 

component as well as its amplitude (Fu, Fedota, Greenwood, & Parasuraman, 

2010). Furthermore, amplitudes to attended versus unattended locations produce 

increased amplitudes of component P1 and N1 (Fukuda & Vogel, 2009; Hillyard et 

al., 1998; Johannes et al., 1995; Mangun, Hillyard & Luck, 1993). As mentioned 

above, source localisation studies indicated that component P1 has at least two 

distinct cortical sources; based on the timing of their activation, P1 can be 

subdivided into early dorsal (80 – 100 ms) and late ventral (100 – 130 ms) 

portions (Di Russo et al., 2002). This early portion has been suggested to 

correspond to spatial selection taking place in extrastriate areas, while the later 

portion to attention-enhanced processing taking place in the ventral stream in 

object recognition regions (Di Russo, Martínez, & Hillyard, 2003; Martı́nez et al., 

2001). 

Another study (Natale, Marzi, Girelli, Pavone, & Pollmann, 2006) supports the 

notion that the attention effects indexed by the P1 are related to modulation of 

visual occipital areas by attention, which is in line with previous studies as well 

(Luck, Heinze, Mangun, & Hillyard, 1990; Luck, 1995). In their study, Natale et al. 

(2006) presented participants with stimuli that appeared either at a predictable 

location or at a random one. In the predictable condition, attention would be 

focused on one possible location. In the unpredictable condition, attention would 

have to be initially spread over the entire presentation field. When the stimulus 

finally appeared, attention would be shifted towards that stimulus. Therefore, 

this task design allowed to dissociate between focused attention and attentional 

shift. The authors found that the P1 amplitude was larger for stimuli appearing at 

a predictable location. Natale et al. (2006) interpreted these findings as an 

evidence that P1 indexes sustained attention, which probably reflects modulation 

of activity in visual areas achieved via attention (in this sense, this interpretation 

is congruent with earlier studies, e.g. Luck et al., 1990 and Luck, 1995). These 

findings are in line with an earlier study (Barcelo, Suwazono, & Knight, 2000) 

that utilised the P1 component to provide an evidence for the involvement of the 
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prefrontal cortex in modulating the activity in the extrastriate cortex. In their 

study, patients with damage to dorsolateral prefrontal cortex showed a reduction 

in the P1 compared to healthy controls during a visual discrimination task. Since 

the task involved allocation of attention, the authors concluded that the 

reduction of the component reflects a deficit in attention. 

P1 component amplitude appears to be also modulated by the perceptual load 

(Handy & Mangun, 2000). In a spatial cueing paradigm, Handy et al. (2000) 

showed that P1 amplitude (as well as N1) was increased under high perceptual 

load in response to cued targets. The authors propose that higher P1 and N1 

amplitudes, in this case, reflect an increase in selective processing taking place in 

the extrastriate visual cortex. Their results provide support for Lavie and Tsal's 

(1994) model of spatial selection, which states that spatial selection is directly 

related to perceptual load. If the perceptual load is relatively low, attentional 

resources are automatically allocated to task-irrelevant information as well. 

However, under high perceptual load, attentional resources will be focused on 

the attended, task-relevant target, thus showing an increased spatial selection. 

Referring back to P1 and N1 amplitudes in Handy et al.’s (2000) study, high 

perceptual load led to an increase of P1 – N1 amplitude because of such increased 

attentional selection. 

Another study has looked at whether P1, in addition to perceptual load, is also 

modulated by the number of stimuli held in memory (Rose, Schmid, Winzen, 

Sommer, & Büchel, 2004). In their study, Rose et al. (2004) looked at the 

influence of WM load on the processing of irrelevant backgrounds. They showed 

that while the P1 was modulated by the visibility of the backgrounds, WM load 

did not appear to reliably modulate its amplitude. The authors concluded that 

while the P1 is clearly related to early perceptual processing, it is not directly 

affected by WM. 

However, as mentioned earlier, one study (Haenschel et al., 2007) demonstrated 

that WM load modulates the P1 amplitude. The difference between this study and 

the study of Rose et al. (2004) is that Haenschel et al. (2007) used a delayed 

match-to-sample task rather than N-back task; the former allows for more direct, 
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temporal differentiation between WM stages (encoding, maintenance and 

retrieval). Heanschel et al. (2007) report WM load-related modulation when they 

looked at the P1 during WM encoding. In their task, the number of to-be-

remembered stimuli was varied, and the ERPs were time-locked to the onset of 

the last stimulus in the memory array. 

Their results showed that the amplitude of P1 component was modulated by WM 

load: the higher the number of items kept in memory, the greater P1 amplitude. 

Additionally, higher amplitude was correlated with successful performance. In 

the same study, a cohort of participants with early-onset schizophrenia showed 

attenuated P1 amplitude in the same task. One of the core features of 

schizophrenia are cognitive impairments, including working memory (details on 

how working memory is affected in schizophrenia are provided in Chapter 5). 

Haenschel et al. hypothesised that, based on the lack of clear P1 component in 

patients and amplitude modulations in neurotypical population, visual working 

memory performance depends on the early perceptual stages of processing. 

In summary, early component P1 appears to be sensitive to low-level visual 

properties. At the same time, it can also index higher-level cognition, such as 

attention and WM. This is in line with evidence that due to top-down influences 

from parietal and frontal regions, early ERP components, including P1, are likely 

to reflect processing from cortical areas not constrained to the visual cortex (Foxe 

& Simpson, 2002). 

9.1.2. N1 

Component P1 is largely attenuated or absent in response to isoluminant stimuli; 

however, unlike P1, the N1 component can be reliably elicited by isoluminant 

chromatic modulation (Crognale, 2002; Gerth et al., 2003). 

The N1 peak is the first major negative deflection generated after The P1. The N1 

deflection is manifested as a summation of several negative components 

(subcomponents; Luck, 2014). Even though together they form a characteristic N1 

signature, it does not imply that these subcomponents are reflecting the same 

processes (Luck, 2014). The topography and timing appear to be slightly 
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different. For example, anterior subcomponent peaks earlier than other 

subcomponents, around 100 – 150 ms poststimulus. There are also two 

subcomponents are detectable at posterior electrodes, peaking around 150 – 200 

ms, one generated in parietal cortex, and the second in the lateral occipital cortex 

(e.g. electrodes PO7 and PO8 in Hopf et al., 2013). 

The N1 amplitude is significantly reduced in response to a stimulus that was 

preceded by a stimulus presented at the same location (Luck et al., 1990; Luck, 

2014), a phenomenon referred to as sensory refractoriness. However, this effect 

seems to occur only when the stimulus interval is sufficiently short (in Luck et al., 

1990 it ranged from 310 to 450 ms). In studies using longer inter-stimulus 

intervals, any reduction in N1 amplitude is less likely to be explained by refraction 

(Natale et al., 2006). 

As mentioned in the previous section, while the P1 exhibits a typically 

magnocellular response, the N1 is parvocellular, as it becomes pronounced with 

high-frequency stimuli and does not saturate with increasing contrast (Ellemberg 

& Hammarrenger, 2001). The N1 is also reliably elicited by isoluminant stimuli, 

both S-cone and L – M (Gerth et al., 2003). N1 in response to S-cone is slightly 

delayed compared to the L – M, though it is nevertheless clearly detectable. The 

N1 also appears to be smaller in response to luminance, achromatic stimuli. As 

described in the previous section, the N1 has been shown to be related to the 

amount of perceptual load (Handy & Mangun, 2000), with larger N1 amplitude in 

response to cued targets under high perceptual load condition (see the previous 

section on P1 component for more details on this study). 

In addition to the above findings showing the perceptual modulation of the N1, 

there is also evidence that this component is indexing higher-level cognitive 

processing, such as discrimination, attention and WM. More specifically, the 

subcomponent localised to anterior sites is believed to reflect discriminative 

processing (Hopf, Vogel, Woodman, Heinze, & Luck, 2002; Ritter, Simson, 

Vaughan, & Friedman, 1979; Vogel & Luck, 2000). In their study, Vogel and Luck 

(2000) examined N1 component in response to attended locations under two 

conditions. Participants had to either discriminate between two classes of stimuli 
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or to simply respond as quickly as possible without making a discrimination. 

Posterior N1 elicited larger amplitude for the discrimination conditions. 

Interestingly, the amplitude was equally modulated by discrimination in easy and 

hard conditions, which suggests that the anterior component is invariant to task 

demands. Therefore, modulation is not likely to arise from resource-related 

processing. 

This anterior subcomponent also appears to be sensitive to spatial attention 

(similarly to component P1; see the previous section). This is also the case with 

posterior N1 subcomponents (Hillyard et al., 1998; Mangun, 1995). Although 

spatial attention modulated component P1 as well (see the previous section), it 

appears that the two components may reflect different aspects of attention. As 

mentioned in the previous section, the P1 seems to index facilitation of 

perceptual processing achieved via attention sustained at the target stimulus 

(Luck et al., 1990; Luck, 1995; Natale et al., 2006). N1, on the other hand, is more 

likely to reflect shifting (orienting) attention to targets (Luck et al., 1990; Natale 

et al., 2006). In the previous section, I described a study by Natale et al. (2006) 

who used a task that allowed to discriminate between sustained attention and 

stimulus-driven shifts of attention by using stimuli appearing at predictable or 

unpredictable locations. While the P1 component in this task was modulated by 

predictable stimuli, the N1 amplitude was larger for stimuli appearing at random 

location. Since not knowing the location of an upcoming stimuli requires 

participants to shift their attention, Natale et al. (2006) concluded that N1 is 

indexing exogenous attention orienting. According to the authors, this 

component would, therefore, reflect activity in frontoparietal attentional areas.  

There is some evidence that the N1 can be also linked to WM. As already 

mentioned in the previous section, Rose et al. (2004) looked at the modulation of 

P1 and N1 components in response to task-irrelevant backgrounds under varying 

WM load. They were able to show that higher WM load resulted in lower N1 

amplitude.  

Another study has demonstrated that N1 has a reduced amplitude during the 

retrieval stage (Pinal et al., 2015). It is suggested that lower amplitude reflects a 
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reduction of resources allocated to the encoding of a new stimulus since some of 

these resources have to be used to maintain previously seen stimuli. 

In summary, the N1 has been shown to be reliably evoked by isoluminant stimuli. 

While the N1 is modulated by purely perceptual factors, it has been shown that it 

can serve as an index for higher-level cognitive processing as well, including 

attention and, possibly, WM. 

9.1.3. P1 and N1 as gain control mechanism 

Despite differences between P1 and N1 components, it has been suggested that 

both components reflect a gain control mechanism in sensory processing 

(Hillyard et al., 1998). The gain control mechanism refers to filtering process in 

which the irrelevant (unattended) stimuli are suppressed, while the relevant 

(attended) ones are amplified, which is reflected in suppression or enlargement 

of the sensory evoked responses in animals, respectively (Hernandez-Peon et al. 

1956; Hernandez-Peon 1966; Oatman & Anderson 1977). Analogically, the P1 and 

N1 components recorded from human subjects have been shown to increase in 

amplitude in response to attended versus unattended stimuli (Hillyard et al., 

1998). Consequently, this observation provided a support for the “spotlight” 

hypothesis of attention, which poses that attended stimuli are processed with 

increased efficiency (Hawkins et al., 1990; Reinitz, 1990). According to this 

account, a higher amplitude of these components reflects amplification of neural 

response (which occurs automatically), thus optimising signal-to-noise ratio. 

Other researchers have also adopted similar view (Hanslmayr et al., 2007; 

Klimesch et al., 2004). 

9.1.4. P3 component 

P3 component has been associated with memory processes at various stages of 

working memory processing (Bledowski et al., 2006; Kok, 2001). There are two 

apparently different components that can be observed within its time range 

(Luck, 2014): P3a, which appears to originate in frontal areas, while the P3b is 

generated in temporal and parietal areas (Ebmeier et al., 1995; Kirino, Belger, 



114 

 

Goldman-Rakic, & McCarthy, 2000; Polich, 2007). These components may 

reflect different processes, depending on the task during which the component 

was observed. For example, perhaps the best known P3 component associated 

with responses to odd events in a sequence of otherwise repeated tones have 

been demonstrated in classical oddball tasks (Squires, Squires, & Hillyard, 1975). 

This particular odd event component is maximal at frontal electrodes if the odd 

event is not task related. This component is referred to as P3a component, also 

known as orienting P3. On the other hand, task-relevant odd events are also 

associated with changes at the parietal sites. This particular component is known 

as P3b. Confusingly, a lot of papers referring to “component P3” usually mean 

parietal P3b elicited by an odd event in an oddball task. 

An influential theory has been proposed to account for these findings, according 

to which the P3 component reflects context updating (Donchin, 1981; Polich, 

2007). After the stimulus is initially processed and kept in WM, an attention-

based system evaluates this representation and compares it with incoming 

stimuli. First, the incoming stimuli are processed, which evokes the usual sensory 

potentials (e.g. P1, N1). If a change occurs, however, the WM representation is 

updated to accommodate new information, a process which evokes the P36. If 

there is no change, there is no need for a revision of the representation, and the 

P3 is not elicited following the usual sensory evoked potentials. 

Since component P3 consists of two subcomponents, as mentioned above, a 

further refinement has been put forward to outline the differential contribution 

of P3a and P3b to context updating processing and their possible neural 

generators. According to Polich (2003), both subcomponents are driven by 

attention but serve a different purpose. P3a reflects frontal attention mechanism 

during the stimulus processing; it arises when sufficient attentional resources are 

                                                 

6 As Polich (2007) emphasizes, the updating process reflected by the P3 is related to another 
component obtained using an oddball task, namely the mismatch negativity (Näätänen, Gaillard, & 
Mäntysalo, 1978; Näätänen, Paavilainen, Rinne, & Alho, 2007) obtained by subtracting the activity in 
response to a standard events from activity evoked by od events. However, Polich (2007) suggests that 
the underlying process behind the P3 is distinct from the mismatch negativity. 
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dedicated to the stimulus, which is the case with oddball stimuli. Subsequently, a 

memory-related processing takes place in temporal and parietal areas, giving rise 

to the P3b (Polich, 2007). Indeed, the amplitude of the P3b (Bledowski et al., 

2006; Kok, 2001; Verleger, 1997) or P3 (Pinal, Zurrón, & Díaz, 2014) has been 

found to be decreasing with increasing WM load, thus further supporting the 

view that P3, with its subcomponents, is related to WM. 

In addition, Kok (2001) regards the P3, in particular, its subcomponent P3b, as a 

useful measure of processing capacity. Kok (2001) suggested that increased task 

demands, including greater demand for attentional resources, disrupt processes 

underlying the P3b generation, leading to a lower amplitude. This decrease 

reflects interactions between WM and perception. Furthermore, as Haenschel et 

al. (2007) suggested, the P3 may play important role in determining successful 

performance. 

Further, it has been suggested that the P3b component is not related to the 

storage of the information per se, but rather reflects a completion of cognitive 

operations related to a task-relevant stimulus (Desmedt, Bourguet, Huy, & 

Delacuvellerie, 1984; Desmedt & Debecker, 1979; Desmedt, 1980; Tomberg & 

Desmedt, 1998; Verleger, 1988).  

As pointed out by Croizé et al. (2004), during the encoding period in a delayed-

discrimination task, a “closure” of cognitive operations is not yet achieved, which 

would be reflected in the decreased amplitude of this component. During the 

retrieval, however, the P3b component indexes a decision mechanism during 

stimulus comparison, which also marks an end to the cognitive operations 

performed on the stimuli (Croizé et al., 2004). 

To sum up, looking at the amplitude of P3a and P3b in the current experiment 

will be used as an index for WM and attentional demands. We hypothesise that 

the amplitude of this component will decrease with increasing WM load. On the 

other hand, if the encoding of luminance-defined items is more efficient, then 

fewer resources would need to be dedicated for their processing due to increased 

efficiency. Thus, we expect that at higher loads efficient encoding of luminance-

defined shapes will result in lower amplitude than for S-cone and L – M stimuli. If 
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this effect occurs at particular subcomponent (P3a or P3b), it will help to 

elucidate the mechanism responsible for more efficient luminance processing. 

This will be possible since they seem to be generated in different cortical areas 

(more frontal for P3a and temporal/parietal for P3a; see Polich, 2007) and have 

been suggested to reflect different processes (Polich, 2007). 

9.1.5. Slow wave 

Previous studies have observed a sustained activity during WM maintenance 

sensitive to the amount of information stored in WM (Ruchkin, Johnson, 

Canoune, & Ritter, 1990; Ruchkin, Johnson, Grafman, Canoune, & Ritter, 1992). 

Additionally, one study (Klaver, Talsma, Wijers, Heinze, & Mulder, 1999) 

reported that a sustained negative ERP can be observed in a matching to sample 

task at electrodes contralateral to stimulus presentation. Sometime later, Vogel 

and colleagues (Vogel & Machizawa, 2004; Vogel, McCollough, & Machizawa, 

2005) developed a way to isolate sustained activity during WM maintenance 

using a bilateral change-detection paradigm. Similarly to Klaver et al. (1999), they 

observed WM-related activity on the posterior sites contralateral to the presented 

stimuli. However, they were able to isolate activity purely related to WM storage 

by subtracting activity from ipsilateral sites, assumed to reflect visual processing. 

This component was termed contralateral delayed activity, or CDA, and has been 

since validated as a robust measure of WM and widely used in research hence 

after (Luria et al., 2016).  

In the current study, we are using stimuli presented at the centre of the screen, 

and thus our design makes it impossible to isolate the CDA wave. Although it is 

still regarded to reflect some aspects of WM retention-related activity (e.g. Pinal 

et al., 2014), without wave subtraction it is reasonable to expect that the slow, 

sustained activity during WM maintenance in our experiment will likely reflect 

both visual and WM processing. Nevertheless, we expect the slow wave to reflect 

increased WM load. We also predict that, since the slow wave should reflect both 

visual and WM effects, there should be no difference between different DKL 

directions. 
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In general, a negative slow wave occurring during the delay period is usually 

recorded over occipital and parietal sites (Barceló, Martín-Loeches, & Rubia, 1997; 

Bosch, Mecklinger, & Friederici, 2001; Löw et al., 1999; Martin-Loeches, Gomez-

Jarabo, & Rubia, 1994; McEvoy, Smith, & Gevins, 1998; Mecklinger & Pfeifer, 1996; 

Rolke, Heil, Hennighausen, Häussler, & Rösler, 2000; Ruchkin, Johnson, 

Grafman, Canoune, & Ritter, 1997; Ruchkin, Canoune, Johnson, & Ritter, 1995; 

Schubotz & Friederici, 1997; as cited in Croizé et al., 2004). At the same time, a 

negative slow wave recorded at frontal sites is also present, and has been related 

to the maintenance and manipulation of the remembered stimuli, as well as 

increased attentional demands (Bosch et al., 2001; Löw et al., 1999; Rämä et al., 

1997; Ruchkin et al., 1997; Ruchkin, Johnson, Canoune, & Ritter, 1990). Hence, in 

the current study, we will analyse waves recorded at both posterior and anterior 

sites. 

It is important to mention that the processes generating P3 are complex and not 

unitary. Since slow wave can occur during the same time window as the P3, the 

amplitude of P3 itself might be distorted by this wave and difficult to dissociate 

(Kok, 2001).  

9.2. Predicted ERP modulations 

The previous section discussed a number of ERP and their modulation by 

perceptual and cognitive factors, including working memory. Below, I will outline 

our predictions regarding how these components will be modulated in our 

experiment. The general prediction was that EEG responses during WM encoding 

would show a load-related sensitivity in response to luminance-defined stimuli as 

early as component P1. Furthermore, it was also predicted that this activity would 

correlate with accuracy on WM task. We did not expect the P1 to be present in 

response to isoluminant conditions, in accordance with previous findings 

(Crognale, 2002; Gerth et al., 2003); therefore, we used N1 as an index of 

memory-related activity in response to isoluminant stimuli. Unlike with the 

component P1 in response to luminance, we did not expect to find load-

dependent modulation of the N1 for isoluminant conditions  
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Later components were also of interest during the encoding stage, namely the 

family of P3 components. As they have been linked to WM processing (Polich, 

2007), we also expected to see load-dependent modulation. It was predicted that 

the amplitude of P3’s subcomponents (P3a and P3b) will be sensitive to WM load 

for each stimuli class (luminance, L – M, and S-cone). If each mechanism equally 

modulates the P3 amplitude, this would suggest that each mechanism 

contributes to WM to a similar degree. For the maintenance stage, we looked at 

the slow, sustained wave which has also been related to WM maintenance (Vogel, 

Mccollough, & Machizawa, 2005). We expected to see load effects at this stage 

for each post-receptoral mechanism. Similarly to encoding and retrieval, if each 

mechanism equally modulates the slow wave, this would suggest that each 

mechanism contributes to WM maintenance to a similar degree. 

For retrieval, we looked at the same components as during encoding (P1 and N1) 

and also correlated their amplitudes with behavioural performance. This was to 

assess whether the contribution of post-receptoral mechanisms differed 

depending on the current working memory stage. It was expected that the 

luminance benefit will manifest itself as early as during encoding, especially in 

light of findings suggesting that working memory performance depends on 

processing during this stage (Haenschel et al., 2007). 

Notably, there were few studies that addressed the question of the interaction 

between perception and working memory explicitly. These will be summarised in 

the next section. 

9.3. Studies on perception/working memory 
interaction using the ERP technique 

Certain studies investigated the interaction between visual perception and 

working memory at early processing stages directly, rather than looking at these 

two processes separately. In one such study (Agam & Sekuler, 2007) presented 

participants with a yellow disc in the middle of the screen, which moved in a 

quasi-random trajectory after the start of the trial. The trajectory was temporarily 

divided into five segments; after one segment ended, the disc would remain 
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stationary for a certain time, after which the disc continued the trajectory during 

the next segment until the whole trajectory was completed over the five 

segments. Participants’ task was to reproduce the trajectory after a delay. The 

ERPs were time-locked to the onset of each segment. Their results showed that 

the amplitude of the ERP during segment encoding decreased as the number of 

segments increased – this can be thought of as an equivalent to increasing 

working memory load. Importantly, the ERP amplitude correlated with 

behavioural performance on the task – the larger the amplitude, the better the 

performance. The amplitude differences between early and later segments (i.e. 

working memory loads) were significant around the 250 – 370 ms time interval at 

frontal and frontoparietal electrode sites. Notably, the difference between 

waveforms was significant earlier, between 180 – 250 ms for central and occipital 

electrodes. The authors interpret these waveforms as indexing perceptual 

processing and suggest that perception is affected by working memory load. 

These results are similar to the findings described in the preceding section 

(Haenschel et al., 2007; see Section 9.1.1). Haenschel et al. (2007) also found that 

the ERP amplitude of the P1 component (measured in the 80 – 160 ms time 

range) during memory encoding was modulated by increasing working memory 

load. It was demonstrated that the amplitude increased with increasing load and 

that this increase correlated with behavioural performance. 

The studies described above provide evidence for an early interaction between 

working memory and perception that occurs during the encoding stage of visual 

working memory. Furthermore, these studies show that it is possible not only to 

successfully index these early interactions using the ERP has technique, but also 

that they correlate with behavioural performance. Hence, the ERPs appear to be 

an adequate measure of perception and working memory interactions that are 

relevant to performance. 

Other studies have also investigated the relationship between perception and 

working memory, albeit concentrating on later stages of processing. In particular, 

they focused on the processing accruing during the comparison between 

perceptual and memory representations, a step crucial to meet the demands of 
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the match-to-sample tasks (Agam et al., 2009; Yin et al., 2012). Agam et al. 

(2009) looked at how similarity of the memory representation with the test 

probe affected ERP waveforms. Participants were presented sequentially with two 

stimuli, composed of horizontal and vertical gratings, that they were required to 

remember. Memory presentation was followed by a test/probe stimulus. The task 

was to judge whether the probe matched one of the previously presented stimuli 

in terms of gratings’ spatial frequency. Prior to the task, experimenters measured 

spatial frequency discrimination thresholds for each individual, i.e. the 

magnitude of the spatial frequency difference that led to 79% of correct 

same/different judgements. Thanks to this, it was possible to manipulate the 

perceptual similarity of memory stimuli and the probe – probes that were 

dissimilar to memories stimuli were presented at multitudes of the 

discrimination thresholds, relative to the average spatial frequency of memory 

items. The results showed that the difference between the ERPs in response to 

memory-similar and memory-dissimilar probes appeared at 156 ms after the 

onset of the memory probe at the posterior recording sites. In contrast, the 

difference was detectable at anterior recording sites only 50 ms later. The results 

indicate perceptual signals from the posterior areas contribute to successful 

memory-probe comparisons, suggesting that the interaction between perception 

and working memory during later stages starts early after the probe onset. 

Another study also looked at ERPs during memory-probe comparison during a 

delayed match-to-sample task (Yin et al., 2012), in which participants 

remembered a set of stimuli and had to indicate whether the probe set matched 

the previously presented one. Although the study did not find significant 

differences in the behavioural accuracy in responding whether the probe was a 

match or mismatch, they demonstrated that the change in the probe set (task-

relevant or not) produced a distinct negative waveform in the 230 – 340 ms time 

window. The authors suggested that these ERPs reflect a distinct comparison 

stage of working memory. 
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10. General summary and hypothesis 

To summarise, the current study investigated interactions between early visual 

processing and WM. In particular, the aim was to investigate how the three post-

receptoral mechanisms (S-cone, L – M, and L+M/Luminance) contribute to WM 

processing. It was hypothesised that encoding luminance-defined stimuli will 

result in better WM performance over isoluminant stimuli, which would be 

manifested in a higher proportion of correct responses and reaction times for 

these stimuli in a match-to-sample task. Further, the contribution of the three 

mechanisms to each stage of WM processing – encoding, maintenance and 

retrieval – was tested. To that end, the EEG was recorded while the participants 

performed the task to see how the EEG response is modulated by perceptual and 

working memory-related processing performed by the brain during the task. 

We identified a number of early visual ERP components that can be reliably 

elicited by luminance and isoluminant stimuli – these were both P1 and N1 for 

luminance, and N1 for isoluminant stimuli. These components are known to be 

modulated by visual attributes of the stimuli. In our study, we treated them as an 

index of WM processing as well. Therefore, these components were measured 

under three WM load levels during encoding. We reasoned that if a given visual 

component will differ with WM load for a particular class of stimuli (luminance, 

L – M, or S-cone), this would suggest that the corresponding post-receptoral 

mechanism interacts with WM processing. To confirm that such load-dependent 

modulation is indeed related to WM and affects subsequent performance, we 

correlated the amplitude of the component with behavioural performance. 

  



122 

 

11. Methods 

11.1.  Participants 

23 participants were recruited for the study through a SONA recruitment system 

(Sona Systems, Estonia) and word of mouth. One participant had to be excluded 

as scaled stimuli contrast based on individual discrimination threshold were 

outside the monitor’s gamut. Thus, behavioural data from 22 participants were 

analysed (18 women and 4 men, median age: 25). 

Participants were paid for the time. The exclusion criteria included a history of 

psychiatric disorders. All participants reported having normal or corrected-to-

normal vision. Although colour deficiency was exclusion criteria as well, all 

participants were screened using Colour Assessment and Diagnosis test (CAD) to 

confirm this. All individuals passed the test according to the test’s criteria. 

The study was reviewed by and received ethics clearance through the 

Department of Psychology Research Ethics Committee, City, University of 

London. 

11.2. Procedure 

The experiment consisted of three sessions, each completed on a separate day. 

Over three days, participants completed approximately 7.5 – 9 hours of testing in 

total. Table 3 summarises all tests and measurements completed by the 

participants. 
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Table 3 Summary of tests completed by all participants. Section numbers where the tests are 
described in more detail are provided. 

Control and baseline measures Main experiment 

Vision tests 
WM measures 

(see section 
11.2.1) 

Baseline measurements 
(see section 11.2.2 and 

11.2.3) 

WM experiment with EEG 
recording (see section 11.4) 

 – CAD 

 – AcuityPlus 

 – Digit Span 

 – Letter-number 
test 

 – HCFP 

 – Discrimination 
threshold experiment 

 – Delayed match-to-sample 
WM task 

The first session consisted of two parts which took around 1.5 hours to complete. 

In the first part, participants completed a diagnostic colour test (CAD; Barbur, 

Rodriguez-Carmona & Harlow, 2006) to ensure their colour vision was within 

age-appropriate limits. We have also collected data on participant’s acuity and 

functional contrast sensitivity using the AcuityPlus test (Barbur, Rodriguez-

Carmona & Harlow, 2006). We did not reject any participants based on these 

measurements. 

Following the vision tests, participants were invited to the EEG laboratory, where 

further baseline measurements were conducted (for the experimental setup and 

display characteristics, see Chapter 2). First, participants completed the digit 

span and letter-number tests. Later, a same/different discrimination threshold 

experiment was conducted. 

After the experiment, participants were scheduled for further two sessions (on 

two separate days). Each session lasted approximately two to three hours. 

Participants completed a delayed match-to-sample WM task while we recorded 

the EEG (see section 11.3 for details on the task design and section 11.4 for the 

details of the recording procedure). The task itself (and hence, the EEG 

recording) lasted approximately 1 hour and 20 minutes, subject to the amount 

and the length of the breaks. 
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11.2.1. Working memory measurements: digit 
span and letter-number test. 

Participants completed two standardized measures of WM: digit span and letter-

number test. These two tests form part of the Wechsler Intelligence Scale 

(Wechsler, 1949; Wechsler, 1991). In the current experiment, tests originate from 

the 3rd edition of the Wechsler Memory Scale (WMS III). 

The rationale for conducting these tests was to assess whether performance on 

our visual WM tasks correlates with standardized WM measures. This might be 

of importance given that the two tests (administered as part of the full 

Intelligence Scale assessment and on its own) are one of the most commonly 

used WM tests by psychologists (Evers et al., 2012; Richardson, 2007; Woods et 

al., 2011). 

The digit span consists of two tasks. In the first one, the digit-forward task, 

participants are instructed to repeat sequences of numbers after the 

experimenter. In the digit-backward test, participants repeat different sequences 

of numbers in a reversed order. The sequence in both tests begins with two items 

and is further increased as the task progresses until the participant reaches 

maximum (9 items for digit forward and 8 for digit backward), or until the 

participant makes two consecutive errors. The number of correct trials is 

summed across both tests to produce a final score. In the letter-number 

sequencing test, participants are listening to a series of numbers and letters and 

are asked to repeat the sequence, but with numbers arranged from lowest to 

highest and letters in alphabetical order. There are characters per item on the 

first level, with 4 items per level. The length of the sequence increases by one 

character on every level. The test is finished after all 25 items are administered 

across the 6 levels, or if the participant fails to repeat all items at a current level. 

The number of correctly repeated sequences form a final score (Wechsler, 1997). 
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11.2.2.  Observer’s isoluminance: 
Heterochromatic Flicker Photometry test 

We used Heterochromatic Flicker Photometry (HCFP) test to determine 

observer’s individual point of isoluminance. For the design, procedure and 

rationale of this test, see Chapter 2, Section 7.3. 

Participants adjusted the flicker for stimuli chosen randomly from the 

experimental set. In total, 8 – 10 reliable measurements were recorded (after the 

outliers were discarded) and averaged to use as an elevation angle for the next 

task (see next section). 

11.2.3. Same/different shape discrimination 
threshold  

The purpose of the baseline threshold experiment was to equate stimulus 

salience between different directions in DKL colour space. This was done on the 

basis of same/different discrimination thresholds measured for each condition, 

for every participant. Thresholds were measured using a 2-interval forced choice 

task (2IFC), four times for each of the four stimulus types by running four 

interleaved staircases together. Participants saw two shapes in succession, each 

one lasting 650 ms and with a 500 ms fixation period in between and responded 

whether the shapes were same or different with a button press (see Figure 14). 
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Figure 14 Trial outline of the match-to-sample task used to measure discrimination threshold. In 
the presented case, the correct response is “different” (or “mismatch”). 

Stimulus intensities were controlled using an adaptive staircase procedure ran 

with the Palamedes toolbox for Matlab (Prins & Kingdom, 2009). Each staircase 

consisted of 35 trials with auditory feedback. To estimate the colour contrast 

threshold from the relative frequency of a correct response, a Weibull function 

was fitted to obtain the threshold contrast (defined as the 75% correct point on 

the psychometric function). The four threshold measures were averaged to obtain 

a mean threshold for each participant. For some participants and for some 

conditions, the thresholds did not converge in a single run; such run was 

discarded and staircase limits were adjusted for the subsequent runs. As a result, 

thresholds for some conditions were based on three rather than four runs (but 

never less than three). Contrasts were then scaled from the threshold for each 

participant to create equivalent low contrast and high contrast stimuli: the 

luminance stimulus was scaled to a radius of 0.07 (low) and 0.14 (high contrast) 

and then all the other stimuli were scaled using the same scale factor to create a 

set of equivalent suprathreshold contrasts. A radius of 0.14 was chosen on based 

on the results of an unpublished, pilot study in a different laboratory (Haenschel, 

Kosilo & Martinovic, 2012). In their case, the radius of 0.14 enabled to create a 

high contrast stimulus for the majority of observers whilst staying within the 
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monitor gamut. A radius of 0.07 was chosen as the pilot study showed that it 

sustains a still reasonable level of performance in a working memory task. 

11.3. Main WM experiment 

11.3.1. Delayed match-to-sample task 

Participants completed a delayed match-to-sample task with varied working 

memory load. As outlined in the introduction, this task allows to investigate 

directly how increasing working memory load affects WM processing since the 

stimuli are presented sequentially, one at a time (Haenschel et al., 2007; Linden 

et al., 2003). The stimuli design was described in Chapter 2, Section 7.6. 

The WM load was varied by presenting 1, 2 or 3 shapes in succession (see Figure 

15). Individual shapes stayed on the screen for 600 ms, with a fixation cross 

displayed for 800 ms during the inter-stimulus interval in case of load 2 and 3 

(encoding stage). After a 1000 ms delay (maintenance stage), a probe stimulus 

was displayed until a response (retrieval stage). Participants were asked to judge 

whether the probe matched or mismatched one of the shapes presented at the 

encoding stage with a button press (match/mismatch or same/different 

response). All participants completed a practice session before the experiment so 

that they could familiarise themselves with the task. 
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Figure 15 Delayed match-to-sample task. On each trial, WM load was manipulated by presenting 
one, two, or three stimuli in succession (rows 1 – 3). Red and blue boxes are for illustration 
purposes only and did not appear on the screen during the task. Red boxes indicate the ultimate 
shape in the encoding stage – ERP epochs for encoding stage were time-locked to the onset of 
that stimulus. Blue boxes indicate the probe (i.e. the recall/retrieval stage of working memory). 
ERP epochs for the retrieval analysis were time-locked to the onset of this stimulus. 

There were 4 conditions which determined the DKL coordinates of all of the 

stimuli on a given trial. There were 2 isoluminant chromatic conditions designed 

to stimulate the following post-receptoral mechanisms: S – [L+M] (referred to as 

“S-cone”) and L – M. In the achromatic condition, stimuli were luminance-

defined, i.e. they were designed to stimulate the luminance mechanism (L+M, 

referred to as “luminance”). Additionally, a “mixed-signals” condition was 

incorporated, in which all of the above mechanisms were stimulated (L – M and S 

– [L+M] and L+M). As mentioned in Chapter 2 (General Methods), it was mainly 

used as a control condition to characterise how responses to isoluminant 

conditions would be affected if they contained a luminance artifact. Stimuli 

designed to excite chromatic mechanisms with added luminance component 

have been used previously (Kosilo et al., 2013; Martinovic et al., 2011; McIlhagga & 

Mullen, 1996). Since it is problematic to compare responses to stimuli combining 

responses from both chromatic and luminance mechanisms with stimuli that 
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selectively excite chromatic or luminance mechanisms, the mixed signals 

condition was not included in the main analysis. A separate analysis for this 

condition was conducted and is described in Section 12.6. 

Overall, there were 24 conditions. These corresponded to 3 WM loads (1, 2 or 3 

shapes to be remembered), 2 contrast levels (low or high contrast), and 3 DKL 

directions (luminance, L – M and S-cone– see Table 1.). For each participant, a 

randomized condition list was generated beforehand to be loaded during the 

task. 

Behavioural accuracy (i.e. proportion of correct responses) and reaction times 

were analysed using within-subject, repeated measures ANOVA with factors: 

contrast level (2 levels: low and high contrast), DKL direction (3 levels: 

Luminance, isoluminant L – M, isoluminant S-cone), WM load (3 levels: Load 1, 

Load 2, Load 3) and probe type (2 levels: match or mismatch). Greenhouse-

Geisser corrections were applied where necessary. As mentioned above, mixed 

signals condition was not included in the main analysis. 

Participants took part in two EEG sessions recorded on two separate days. Each 

session consisted of 576 trials (1152 trials overall). This resulted in 48 trials per 

each of the 24 conditions. Each session was divided into 4 blocks of 144 trials; 

there were 3 breaks within each block, one after every 36 trials. Each EEG session 

lasted approx. 3 hours (including practice, EEG preparation and washing the hair 

after recording). 
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Table 4 Experimental conditions. Each DKL condition (S-cone, L – M, Mixed signals and 
luminance) was presented at three WM load levels (1, 2, or 3), at two levels of contrast (low and 
high contrast). This resulted in 24 conditions overall. 

 

11.4. EEG data acquisition 

EEG data were acquired using a 64-electrode ActiCap, with an in-built reference 

electrode at location FCz. FP7 electrode was placed below participant’s left eye 

and served as a vertical ocular electrode. Recording and digitization were 

performed using a BrainAmp amplifier and the BrainVision Recorder software 

(Brain Products, Munich, Germany). The EEG was recorded at a 1000Hz 

sampling rate with an on-line bandpass filter between 0.1 and 1000 Hz. 

11.5. Pre-processing and analysis 

Data were pre-processed using custom-written routines as well as functions 

derived from EEGLAB (Delorme & Makeig, 2004) and FieldTrip (Oostenveld, 

Fries, Maris, & Schoffelen, 2011) toolboxes developed for Matlab (Mathworks, 

Natick, Massachusetts), incorporated into custom scripts. 

As there were two separate EEG recording sessions, they were treated separately 

during first pre-processing steps and only after they would be merged to be 
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treated as a single dataset. The following steps are based on the 

recommendations published on EEGLAB wiki page (Miyakoshi, 2017). 

Step 1: Data were filtered with a low-pass filter (0.01 Hz) to remove low-

frequency drifts. 

Step 2: Noisy electrodes were removed. Removal was done based on a visual 

inspection by the experimenter, aided by inspection of spectral activations and 

contrasting the activity of all electrodes to identify electrodes with uncommonly 

large (or low) voltages  

Step 3: The data were re-referenced to an average of all electrodes. 

Step 4: A crude, visual artifact rejection was applied. The experimenter scanned 

through the continuous recording, removing periods of “crazy” artifacts (Luck, 

2016) and break periods. 

Step 5: Independent Component Analysis (ICA; Delorme & Makeig, 2004) using 

EEGLAB routines was applied to the cleaned, continuous data. 

Step 6: Artifact rejection was performed. Experimenter scanned through the ICA 

components detected in Step 5 and rejected ones that reflected various artifacts. 

Judgements were made by the experimenter, but SASICA EEGLAB plugin was 

used to aid the judgement (Chaumon, Bishop, & Busch, 2015). 

Step 7: If the ICA yielded unclean components (so that, for example, eye blink 

components were not readily identifiable), experimenter scanned through 

component activations to detect and remove periods of data where components 

appeared to be dependent (i.e. an artifact was reflected in a number of 

neighbouring components). ICA was performed on these datasets again and step 

4 was repeated. 

Step 8: Cleaned, single-session datasets were merged together with 

corresponding sessions and epoched. 

Epochs ranging from -100 ms before stimulus onset and to 600 ms were used for 

analysis of the encoding stage; longer epochs were used for maintenance stage (-

100 ms to 1700 ms). For the retrieval stage, shorter epochs were again used (-100 

ms to 600 ms). This was done to maximise the number of trials available for 
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analysis. Extracting longer epochs results in the decreased amount of trials due to 

artifacts occurring after 600 ms. Epochs of each WM stage were baselined to 100 

ms prior to stimulus onset. 

Epochs were time-locked to the onset of the last item in the memory array, i.e. 

single item for load 1, second item from the two presented for load 2 and third 

item from the three presented for load 3 (see Figure 15). 

To improve signal-to-noise ratio, the data were again filtered using a 30Hz high-

pass filter for the extraction of peak amplitude measures for the encoding and 

retrieval stage. Since the mean amplitudes were used for analysis of the 

maintenance stage, the high-pass filter was unnecessary here, as the noise would 

be averaged out. 

Time intervals and electrodes of interest were based on intervals defined in the 

previous study by Haenschel et al. (2007). Grand averages plotted against 

individual participant averages were inspected visually to confirm that the 

intervals used covered latencies when the peaks could be observed. 

Upon inspection of grand average waveforms, it was evident that for the P3b 

component (electrodes P3, Pz and P4), ERPs in response to L – M and S-cone 

shapes are characterised by a longer onset latency than stimuli in Haenschel et al. 

(2007), exceeding their predefined time range of 200-400 ms. Thus, we decided 

to extend the interval used in Haenschel et al. (200-400 ms) and 200 and 500 

ms time window was used instead. 

We additionally analysed data during the maintenance stage. The maintenance 

stage was defined as a period between the offset of the last to-be-remembered 

item (at 600 ms after onset of that stimulus) to the onset of a memory 

probe/start of retrieval stage (at 1600 ms). Visual inspection of this period 

pointed to a clear negative peak between 700 and 900 ms, as well as a slow 

positive/negative potential starting at around 1000 ms, continuing throughout 

the maintenance (ending at the onset of the probe, at 1600 ms after the onset of 

the first stimulus in a trial). The slow wave during maintenance was analysed at 

both occipital and frontal sites. 

The measured components are summarised in Table 2.  
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Table 2. Analysed ERP components, electrode sites and time intervals used to define and extract 
components. The map at the bottom shows electrode setup used in the experiment, with 
electrodes of interest marked with coloured circles. 
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ERP amplitudes and latencies for each component were analysed using a 

repeated measures ANOVA with factors: contrast level (low or high) WM load 

(Load 1, 2 and 3), DKL direction (3 levels: S-cone, L – M and luminance) and 

electrode location (3 levels, specific to the analysed component; see Table 4).  

11.6. Note on ERP amplitude and latency 
extraction 

Traditionally, ERP components are compared on the basis of their peak 

amplitude, i.e. the maximum amplitude measured in a specified time window 

(Luck, 2014; Donchin & Heffley, 1978). While still widely used, a number of 

alternative approaches have been developed over the years, such as mean 

amplitude. In our analysis, we decided to use traditional approach for two 

reasons. Firstly, we wanted to replicate the finding of Haenschel et al. who, using 

both peaks and mean amplitude measures, showed WM modulation of 

component P1. Secondly, while mean amplitude measure is usually superior to 

peak amplitude mostly due to better signal-to-noise ratio (see Luck, 2014), one of 

the drawbacks of using this measure is that it is very sensitive to the choice of 

measurement window. In the case where the latency of a component varies 

across conditions, a fixed measurement window can include two different 

components, affecting its amplitude. Indeed, we have noticed that attempts to 

measure mean amplitude of component P1 in our experiment resulted in negative 

amplitudes for Load 3 condition, despite the fact that P1 could be clearly 

identified when individual data was plotted for inspection. The use of signed area 

amplitude (Sawaki, Geng & Luck, 2012) can overcome the problem of defining a 

measurement window. However, this measure is not recommended when the 

noise levels between groups or conditions are likely to vary (Luck, 2014). 

Importantly, the same problem arises with peak amplitude measures; however, 

since mean amplitude was also not an ideal measure in our case, we decided to 

carry on with peak amplitude measures. 

However, other than measuring a maximum voltage within the specified time 

window, we identified local peaks (local maxima) in the data. These were defined 

as time points which had a larger amplitude than the two neighbouring peaks. 
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The minimum peak height was defined as 0, and had to be positive for positive – 

going components or negative for negative- going components. If these criteria 

were not met, the local peak was replaced with a maximum peak value in the 

time window; if that was not successful either, the value was set to 0. 

To quantify component latencies, we used the 50% fractional peak latency 

measure approach (Luck, 2014; Hansen & Hillyard, 1980). In this approach, a 

local or maximum peak is found; next, the procedure finds the time point 

(towards the time 0) at which amplitude equals a specified fraction of the 

local/maximum peak of the waveform – here, 50%. This time point is then used 

as a measure of onset latency (see Kiesel, Miller, Jolicœur & Brisson, 2008, for a 

discussion on the efficiency of different onset latency measurement techniques). 
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12. Behavioural results 

12.1. Vision tests 

Results of the vision tests are summarised in Figure 16 below. All participants 

passed the colour vision test and had normal acuity and functional contrast 

sensitivity. Therefore, no participants were rejected based on these 

measurements. We correlated each measure with performance on the WM task. 

There were no significant correlations. 

 

Figure 16 Results from AcuityPlus tests (functional contrast sensitivity: upper left, acuity – upper 
right) and the CAD test (bottom left). Each dot represents the overall score of one individual on a 
particular test (indicated on the x-axis). The red line in the middle represents the mean, red 
shading is the 95% confidence interval, and the blue line is one standard deviation. 
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12.2. Working memory tests 

We correlated the digit span and letter-number tests with performance on the 

WM task. There were no significant correlations. 

Overall results of working memory tests are shown below (see Figure 17).  

 

Figure 17 Results of the WM tests. Each dot represents the overall score of one individual on a 
particular test (indicated on the x-axis). The red line in the middle represents the mean, red 
shading is the 95% confidence interval, and the blue line is 1 standard deviation. 

12.3. Threshold measurements 

DKL coordinates (radius, elevation and angle) in which individual same/different 

discrimination thresholds are expressed are relative to the white point set up for 

the experiment, and thus are monitor-specific. Therefore, the threshold values 

were converted into cone excitations expressed in Weber contrasts. During the 

calibration and verification procedures, Weber contrasts were obtained for each 

post-receptoral mechanism, measured out from maximum contrast level that 

could be reproduced on the display (details on the procedure were described in 

Chapter 2, General Methods). In other words, at this point, the cone excitation of 

each of the three mechanisms, expressed in Weber contrasts, for the maximum 

radius of the particular DKL direction is known. Based on this, a scale factor was 

calculated by dividing Weber contrast of the mechanism by the radius. Using 

that scale factor we can work out excitations for any radius, since (with fixed 
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elevation and angle), the radius scales linearly. Thus, using DKL radiuses of the 

same/different discrimination thresholds and its scaled counterparts and by 

multiplying them by the scale factor obtained using above method we finally 

acquired cone excitations for each DKL condition for each participant.  

One participant was tested under a different calibration than the rest, and hence 

scale factors differed for that individual. Further two participants were tested 

with the same calibration as the other 19 participants during session one, 

however, session two was run under a different calibration (they were unable to 

complete the study immediately, and completed the 2nd session after the display 

was recalibrated for a different experiment). For these participants, we checked 

whether the contrasts differed in a substantial way between the sessions. This 

could introduce a bias, making one of the sessions easier or more difficult than 

the other. For L – M and luminance contrast, the difference was 1 % and 1.3 %, 

respectively, and for S-cone it was 3.3%. We concluded that these differences 

were within acceptable levels. For these two participants, we averaged the 

contrasts between the sessions and used those to summarise contrast levels 

across all participants and mechanisms. These were as follows: Weber contrasts 

for discrimination thresholds ranged from 0.04 to 0.14 for S-cone (0.08 on 

average), from 0.007 to 0.016 for L – M (0.01 on average) and from 0.03 to 0.06 

for luminance (0.04 on average). Scaled contrasts used as the low contrast 

combination ranged from 0.12 to 0.29 for S-cone (0.18 on average), while for L − 

M the contrast went from 0.01 to – 0.04 (0.3 on average). The high contrast 

stimuli ranged from 0.23 to 0.59 for S-cone (0.36 on average) and for L − M the 

contrast went from – 0.03 to 0.08 (0.05 on average). 

Because of the scaling procedure applied, low and high contrast luminance 

shapes had a fixed value (see Chapter 2). Since three participants were tested on a 

different calibration, their low and high luminance contrast different slightly 

from the last set of the participants. Taking these three participants into account, 

luminance contrasts at threshold ranged from 0.032 to 0.062 (0.044 on average), 

low contrast luminance contrasts ranged from 0.097 to 0.102 (0.097 on average), 

and high contrast luminance contrasts ranged from 0.194 to 0.204 (0.195 on 

average). 
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12.4. Accuracy 

There was a main effect of visual input (F(2, 42)=43.3, p<.001, η²=.67). Bonferroni 

post-hoc tests showed that accuracy for luminance-defined stimuli was higher 

than the performance for both S-cone (p<.001) and L – M stimuli (p<.001). S-

cone accuracy was itself lower than the L – M (p<.001). With an increase in WM 

load, the accuracy decreased (F(2, 42)=227, p<.001, η²=.91; see Figure 2). 

Bonferroni post-hoc tests confirmed that load 3 was characterised by lower 

accuracy than load 2 and load 1, and load 2 by lower accuracy than load 1 (all 

comparisons p<.001; see Figure 18). 

 

Figure 18 Mean proportion of correct responses for S-cone (blue line), L – M (red) and luminance 
stimuli (black) at three levels of WM load (error bars: standard error) 

Accuracy was also significantly higher in response to high contrast compared to 

low contrast shapes (F(1,21)=61.04, p<.001, η²=.74). There was a significant 

interaction between visual input and contrast (F(2,42)=4.72, p=.004, η²=.18; see 

Figure 19). Bonferroni post-hoc tests showed that, at low contrast, accuracy rate 

differences between DKL directions were more pronounced than at high contrast. 

In particular, accuracy for luminance was higher than for both isoluminant 

conditions (p<.001). At the same time, L – M accuracy was itself higher than S-

cone (p=.001). At high contrast on the other hand, there was no difference 

60%

70%

80%

90%

100%

Load 1 Load 2 Load 3

M
ea

n
 p

ro
p

o
rt

io
n

 c
o

rr
ec

t 
(%

)

Accuracy

S cone

L-M

Luminance



140 

 

between luminance and L – M (p=.24, n.s.), though both conditions elicited 

higher accuracy than S-cone (p<.001). 

 

Figure 19 Mean proportion of correct responses for S-cone (blue line), L – M (red) and luminance 
stimuli (black) at 3 levels of WM load, shown separately for low (left) and high (right) contrast 
levels (error bars: standard error). 

There was a main effect of probe type (match/mismatch; F(1, 21)=5.07, p=.035, 

η²=.19), with mismatching probes producing a more accurate response. There was 

also a significant interaction between visual input and the probe type 

(F(2,42)=4.19, p=.022, η²=.17) and a three-way interaction between visual input, 

probe type and WM load (F(4,84)=3.46, p=.011, η²=.14). To follow up on these 

interactions, we conducted an ANOVA for match and mismatch separately with 

factors: DKL direction, WM load and contrast level. The breakdown of this 

interaction and illustration of effects described below are depicted in Figure 20. 

12.4.1. Match 

For the match, accuracy was higher for high than low contrast (F(1, 21)=21.8, 

p<.001, η²=.51). Accuracy decreased with increasing load (F(1.55,32.6)=103.0, 

p<.001, η²=.83). There was a main effect of DKL direction (F(2,42)=7.36, p=.002, 

η²=.26). Post-hoc, Bonferroni corrected tests showed that luminance and L – M 

were not significantly different (p=1.0, n.s.). At the same time, both luminance 
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(p=.013) and L – M (p=.005) were characterised by higher accuracy than S-cone 

condition. No interactions were significant. 

12.4.2. Mismatch 

For mismatch, accuracy was also higher for high compared to load contrast (F(1, 

21)=22.6, p<.001, η²=.52), and decreased with increasing WM load (F(1.18, 

24.8)=57.1, p<.001, η²=.73). Like in the mismatch, there was a main effect of DKL 

direction (F(2, 42)=30.5, p<.001, η²=.59). This time, however, DKL directions 

were dissociated in terms of accuracy; according to post-hoc tests, luminance 

elicited higher performance than both L – M and S-cone (both p<.001) and L – M 

itself was characterised by higher accuracy than S-cone (p=.002). 

The main effect of load and the main effect of DKL were qualified by an 

interaction between contrast and load (F(2, 42)=4.71, p=.014, η²=.18) and between 

contrast and DKL (F(2, 42)=6.93, p=.003, η²=.25; see Figure 20, B). Interestingly, 

accuracy was higher at high contrast than at low contrast for S-cone and L – M 

(p<.001, as showed by post-hoc, Bonferroni-corrected comparisons). This was 

not, however, the case for luminance, i.e. performance was not significantly 

different between low and high contrast for this DKL direction (p=.869). 

Additionally, better accuracy for high versus low contrast was present for load 1 

(p=.001) and load 3 (p<.001), while the difference was not significant for load 2 

(p=.090). Of main interest was the interaction between load and DKL direction 

which, unlike at match, was significant (F(3, 63.3)=6.2, p=.001, η²=.23; see Figure 

20 A). Luminance was characterised by better performance than S-cone at all 

WM loads (p=.037, p<.001 and p<.001 for load 1, 2 and 3, respectively). 

Luminance had better accuracy than L – M at load 2 (p=.009) and load 3 (p<.001) 

only. L – M demonstrated better accuracy than S-cone only at load 2 (p=.003). In 

other words, at load 2, accuracy differentiates all three DKL directions, with the 

lowest accuracy for S-cone, intermediate for L – M, and highest for luminance. At 

highest WM load, the difference between isoluminant conditions disappears, 

while luminance still elicits better performance. See Figure 20 B for a breakdown 

of effects at load 3 for low and high contrast and match and mismatch. 
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Figure 20 A) Proportion of correct responses for S-cone (blue line), L – M (red) and luminance 
stimuli (black) at 3 WM loads shown separately for the match (left) and mismatch probes (left). 
Error bars represent standard error of the mean. Dashed box marks comparison between the DKL 
directions at WM load 3. B) Box plots with individual data points (each dot is an average of one 
participant) for the three DKL directions, at WM Load 3, shown separately for low/high contrast 
and match/mismatch condition. Note the increase in accuracy for luminance at low contrast 
mismatch condition, and smaller spread and narrower confidence intervals at high contrast. Red 
lines inside box plots represent the mean, coloured patches are 95% confidence intervals, the 
black vertical line is one standard deviation. 
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To summarise participants’ performance between match and mismatch, accuracy 

at different WM loads differentiated between luminance and isoluminant 

conditions at mismatch. Although the performance dropped for all DKL 

conditions, luminance remained superior over isoluminant conditions. At match, 

on the other hand, performance dropped with increasing WM load for luminance 

and isoluminant stimuli to a similar magnitude. In both cases, performance for S-

cone was the lower than other conditions throughout, although for mismatch at 

highest WM load, L – M performance drops to similar levels as S-cone. 

12.5. Reaction times 

Figure 21 depicts mean of median reaction times for S-cone, L – M and luminance 

shapes. There was a main effect of DKL direction (F(2,42)=24.3, p<.001, η²=.54). 

Bonferroni-corrected post-hoc tests indicated that responses were faster for 

luminance than S-cone and L – M (p<.001). S-cone and L – M did not differ 

(p=.222, n.s.). Reaction time increased with WM load (main effect of load 

(F(1.41,29.6)=38.1, p<.001, η²=.65). 

 

Figure 21 Mean of median reaction times for S-cone (blue line), L – M (red) and luminance 
stimuli (black) at three levels of WM load (error bars: standard error). 

Responses to matching probes were faster than responses to mismatching shapes 

(the main effect of probe type, F(1, 21)=10.5, p=.004, η²=.33) and faster for high 

contrast compared to low contrast condition (F(1,21)=52,65, p<.001, η²=.65). 
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An interaction between WM load and DKL direction was also significant 

(F(2.21,46.3)=3.95, p=.023, η²=.16). Post-hoc tests showed that responses were 

faster for luminance shapes than for S-cone and L – M at load 1 (p<.001 and 

p=.004 for S-cone and L – M, respectively) and load 2 (both p<.001). Responses 

to L – M shapes were also faster than responses to S-cone at load 1 (p=.048) and 

load 2 (p=.004). 

At load 3, post-hoc tests did not show significant differences between the three 

DKL directions. 

12.6. Comparison with mixed signals stimuli 

As mentioned in the methods section, a “mixed signals” condition was used as a 

control to investigate how luminance artifact would affect performance in 

response to isoluminant conditions, if such artifact was present. To that end we 

conducted an additional ANOVA with factors: contrast level (2 levels: low and 

high contrast), DKL direction (4 levels: Mixed signals, luminance, isoluminant L – 

M, isoluminant S-cone), WM load (3 levels: Load 1, Load 2, Load 3) and probe 

type (2 levels: match or mismatch). Greenhouse-Geisser corrections were applied 

where necessary. 

An interaction between probe type and DKL direction was significant 

(F(2.05,43.2)=4.63, p=.014, η²=.18), as well as a three-way interaction between 

probe type, WM load and DKL direction (F(6, 126)=2.21, p=.046, η²=.095; see 

Figure 22.A). Post-hoc, Bonferroni-corrected tests showed that, for the mismatch 

condition at high WM load, mixed signals condition performed better than S-

cone (p<.001) and L – M (p=.002), but it also elicits similar performance as 

luminance-defined shapes (p=.114, n.s.). 

Further, an interaction between contrast and DKL direction was significant (F(3, 

63)=3.80, p=.014, η²=.15; see Figure 22.B). Post-hoc, Bonferroni-corrected tests 

revealed that at low contrast, mixed signals condition elicited better performance 

than S-cone (p<.001) and L – M (p=.044), while it did not reach luminance 

accuracy level (p=.005). 
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This indicates that a luminance artifact present in otherwise isoluminant stimuli 

can lead to higher accuracy at low contrasts, as well as in response to mismatch 

probes at high WM load. The finding that in both cases performance in response 

to chromatic shapes that contain an additional achromatic component is clearly 

dissociable from purely isoluminant shapes suggests that our isoluminant stimuli 

were likely not significantly contaminated by luminance signal. It appears that 

only a relatively large luminance component (as it was the case with the mixed – 

signal condition) leads to improvement in performance. In summary, these 

findings validate the design of the stimuli used in this study. 

 

Figure 22 A) Line plot showing accuracy in response to S-cone (blue line), L – M (red line), mixed 
signals (green line) and luminance-defined shapes (black line) at three WM load levels, in 
response to match (left) or mismatch probe (right). B) Overall accuracy at low (left) and high 
contrast (right) in response to four DKL directions. Error bars in A and B represent standard error 
of the mean. C) Box plots with individual data points (each dot is an average of one participant) 
for the three DKL directions, at WM Load 3, shown separately for low contrast in response to 
mismatch probe (see the dashed-line box in A). Red lines inside box plots represent the mean, 
coloured patches are 95% confidence intervals, the black vertical line is one standard deviation. 
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13.  Event-related potential (ERP) results 

13.1.  Encoding stage 

13.1.1. P1 Amplitude (Oz, O1, O2; 80-160 ms) 

Inspection of Grand averaged waveforms (see Figure 26) suggested that the P1 

component was reliably elicited only by luminance shapes, which is in 

accordance with the previous literature (Crognale, 2002; Gerth et al., 2003). In 

addition, amplitudes in response to high contrast shapes appeared to be larger 

than for low contrast shapes. We used a repeated measures ANOVA with factors: 

contrast level (low or high) and DKL direction (3 levels: S-cone, L – M and 

luminance) to confirm these observations (see Figure 23). 

 

Figure 23 Local peak amplitudes of component P1 for S-cone (blue line), L – M (red) and 
luminance stimuli (black), at three levels of load for low (left) and high (right) contrast. (error 
bars: standard error). 

There was indeed a main effect of DKL direction (F(1.17, 24.6)=19.6, p<.001, 

η²=.48), with luminance eliciting higher amplitudes than S-cone (p=.001) and L – 

M (p<.001). Additionally, an interaction between contrast level and DKL 

condition was significant (F(2, 42)=8.09, p=.001, η²=.28). Post hoc tests using the 

Bonferroni correction showed that luminance was higher than S-cone (p=.020) 

and L – M (p=.014) at low contrast as well as at high contrast (both p<.001). 
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There was no difference between amplitudes at low and high contrast for S-cone 

and L – M. For luminance, amplitudes at high contrast were higher (p=.001). 

Based on these results, we did not include S-cone and L – M in further analyses. 

Two separate ANOVAs with factors WM load (3 levels) and electrodes (3 levels: 

electrodes O1, O2 and Oz) for each contrast level were conducted. 

13.2. Low contrast 

There was a main effect of electrode location (F(1.55, 32.5)=4.27, p=.031, η²=.17). 

Local peak amplitude was lower at electrode Oz than O2 (p=.005). See Figure 24 

for a grand average of the P1 component at low contrast. 

 

Figure 24 Upper left: Grand average waveform at electrode O1 during encoding low contrast 
luminance-defined shapes, at three levels of WM load. Gray box marks the time window (80 – 160 
ms) from which peak amplitudes were extracted for analysis. Bottom left: average peak amplitude 
values at three levels of WM load, extracted from 80 – 160 ms time window. Error bars are 
standard error of the mean. Upper right: corresponding topographic maps at 50, 100 and 150 ms 
after stimulus onset. 
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13.3. High contrast 

As expected, results demonstrated WM load-related amplitude modulation (main 

effect of load (F(2, 42)=3.84, p=.029, η²=.15). Post-hoc, Bonferroni-corrected tests 

did not point to significant pairwise comparisons, although inspection of the 

waveforms and average peak amplitude values (see Figure 25) suggest that 

amplitudes are the highest at load 3. 

There were no significant differences between electrodes (p=.079, n.s.) and no 

electrode by load interaction (p=.42, n.s.). 

 

Figure 25 Upper left: Grand average waveform at electrode O1 during encoding high contrast 
luminance-defined shapes, at three levels of WM load. The grey box marks the time window (80 – 
160 ms) from which peak amplitudes were extracted for analysis. Bottom left: average peak 
amplitude values at three levels of WM load, extracted from 80 – 160 ms time window. Error bars 
are standard error of the mean. Upper right: corresponding topographic maps at 50, 100 and 150 
ms after stimulus onset. 
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Figure 26 Averaged waveforms at electrode O1 during WM encoding of luminance, L – M and S-
cone DKL directions, presented at low contrast (left column) and high contrast (right column). 
Note a robust P1 component for luminance at high contrast and its smaller, though still clear, 
counterpart in low contrast condition. Isoluminant conditions did not elicit a reliable P1, in 
accordance with previous findings (Gerth et al., 2003). 

  



150 

 

13.3.1. Latency 

No effects or interactions were significant. 

13.4. N1 Amplitude (Oz, O1, O2; 130-300 ms) 

Refer to Figure 26 for plotted Grand averaged waveforms. Average peak 

amplitudes for the component N1 for different conditions are shown in Figure 27. 

Refer to Figure 26 for Grand averaged waveforms. 

There was a main effect of DKL direction (F(2, 42)=27.8, p<.001, η²=.57). This 

effect was qualified by an interaction between electrode location and DKL 

(F(2.97, 62.3)=6.31, p=.001, η²=.23). Post-hoc, Bonferroni-corrected tests showed 

that luminance elicited less negative amplitudes than both isoluminant 

conditions at all electrode sites (all p<.000530). Additionally, S-cone elicited 

more negative amplitude than L – M at electrodes O2 (p=.040) and Oz (p=.015), 

but this was not the case at electrode O1 (p=.220, n.s.). 

There was no main effect of load (F(2, 42)=.758, p=.475, η²=.03, n.s.), however, an 

interaction between WM load and DKL was significant (F(3.58, 75.3)=2.66, 

p=.045, η²=.11). Post-hoc, Bonferroni-corrected tests showed that, at every load 

level, luminance elicited less negative amplitude than both S-cone and L – M (all 

comparison p – values ranged from p=.000014 to p=.008). However, only at load 

2 did the L – M differed from S-cone, with less negative amplitude for the latter 

(p=.006). At load 1 and load 3, S-cone and L – M did not differ significantly (see 

Figure 27). 

N1 amplitudes for high contrast were larger (more negative) than for low contrast 

(F(1, 21)=19.3, p<.001, η²=.48). 

The main effect of electrode location (F(1.41, 29.7)=5.55, p=.016, η²=.21) suggested 

that N1 amplitudes at electrode O1 tended to be less negative than at electrode 

O2. While post-hoc, Bonferroni-corrected tests did not point to any significant 

differences, there was a significant quadratic component to this interaction (F(1, 

21)=7.20, p=.014, η²=.25), which suggested that electrode O2 had more negative 

amplitude than the other two electrodes. 
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All factors interacted with each other (F(8, 168)=2.72, p=.008, η²=.11). 

This was followed with an ANOVA for each DKL direction separately, with the 

following factors: contrast, electrode location and WM load. The results showed 

that, for luminance, a three-way interaction between contrast level, electrode 

location and load was significant (F(4, 84)=3.27, p=.015, η²=.13). This interaction 

was followed up with a separate ANOVA for each contrast, with factors electrode 

location and load. At low contrast, electrode location and load interacted (F(4, 

84)=3.15, p=.018, η²=.13). Post-hoc analyses using the Bonferroni correction did 

not point to any significant pairwise comparisons. At high contrast, there were no 

main effects or interactions. 

 

Figure 27 Local peak amplitudes of component N1 for each DKL direction, at three levels of load 
for low and high contrast, averaged over electrodes O1, O2 and Oz. Error bars represent standard 
error of the mean.  

13.5. Latency 

There was a main effect of DKL direction F(2, 30)=9.02, p=.001, η²=.38). Overall, 

amplitudes in response to luminance peaked earlier than for L – M (p=.002). In 

addition, the interaction between electrode location and DKL direction was 

significant F(4, 60)=3.78, p=.008, η²=.20). Bonferroni-corrected post-hoc tests 

showed that N1 in response to luminance shapes peaked earlier than S-cone 

(p=.021) and L – M (p=.002) at electrode O2, as well as at electrode O1 (p=.018 
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and p=.005 for comparisons with S-cone and L – M, respectively). At electrode 

Oz, latencies in response to S-cone peaked earlier than L – M (p=.040). 

There was a main effect of load F(2, 30)=4.39, p=.021, η²=.23). As shown by post-

hoc, Bonferroni-corrected tests, amplitudes in response to load 1 peaked earlier 

than in response to load 2 (p=.030). 

Latencies in responses to high contrast shapes were shorter than in response to 

low contrast shapes F(1, 15)=25.1, p<.001, η²=.63). There was a main effect of 

electrode location F(2, 30)=4.29, p=.023, η²=.22). All factors interacted with each 

other F(8, 120)=2, 76, p=.008, η²=.15). 

13.6. P1 and N1 interactions with behavioural 
performance 

We have correlated P1 in response to luminance stimuli and N1 amplitude in 

response to isoluminant conditions (S-cone and L – M) at each electrode and 

three load levels with overall accuracy (i.e. average accuracy at both contrasts, for 

each DKL condition). The results indicated that P1 component during the 

encoding of luminance shapes correlated with performance at load 1 (r=.480, 

p=.024), load 2 (r=.593, p=.004) and load 3 (r=.613, p=.002; see Table 5for details) 

at electrode O17. There were no correlations between the overall performance in 

response to N1 amplitudes elicited by both isoluminant conditions. 

  

                                                 
7 Even though there was no clear P1 for S-cone and L – M, we have run the same correlation with values 
extracted from the same time – window for these two conditions. Not surprisingly, amplitudes did not 
correlate with overall task accuracy. 
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Table 5 P1 amplitude at encoding stage for luminance condition and N1 amplitude at encoding for 
two isoluminant conditions correlation with overall task accuracy. Light green=significant 
correlations, light blue=non-significant values. The figure below shows the correlation between 
the P1 component at electrode O1 (for load 3) and overall task accuracy. 

 

 

Since the amplitude values used for correlation are derived from high contrast 

luminance waveforms, an additional correlation was performed with accuracy in 

response to high contrast stimuli only, rather than overall accuracy. Performance 

correlated with P1 amplitude at load 2 (r=.488, p=.021) and load 3 (r=.483, 

p=.023), but not with load 1 (r=.199, p=.375, n.s.; see Table 6 for details). As 

before, the N1 amplitude in response to both isoluminant conditions did not 

correlate with performance. 
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Table 6 P1 amplitude at encoding stage for luminance condition and N1 amplitude at encoding for two 
isoluminant conditions correlation with task accuracy at high contrast, for corresponding DKL condition. 
Light green=significant correlations, light blue = non-significant values. 

 

13.7.  P3a Amplitude (C1, C2, Cz; 200-400 ms) 

The main effect of DKL was significant (F(2, 42)=5.69, p=.006, η²=.21). Post-hoc 

tests showed that luminance elicited lower P3a amplitude than L – M (p=.032), 

but not S-cone (p=.053, n.s.). S-cone and L – M itself did not differ (p=1.0). 

The amplitude decreased with increasing load (F(2, 42)=4.32, p=.020, η²=.17). 

Interestingly, inspection of Grand averaged waveforms (see Figure 28) would 

suggest that P3a amplitude in response to luminance-defined shapes tended to be 

lower than the isoluminant conditions; however, the interaction between WM 

load and DKL direction was not significant (F(4, 84)=1.89, p=.119, η²=.08). 

The overall P3a amplitude was lower for low compared to high contrast stimuli 

(F(1, 21)=7.36, p=.013, η²=.26).  

P3a amplitude was highest at lateral electrode sites (F(2, 42)=109, p<.001, 

η²=.84). An interaction between contrast and electrode location (F(2, 42)=3.45, 

p=.041, η²=.14), although post-hoc tests did not account for this interaction. 

A separate ANOVA with factors WM load (3 levels), visual input/DKL direction 

(3 levels: S-cone, L – M and luminance) and electrodes (3 levels: electrodes C1, C2 

and Cz) for each contrast level was conducted. 
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13.8. Low contrast 

DKL effect was not significant (F(2, 42)=3.15, p=.053, η²=.13), although luminance 

appeared to elicit somewhat smaller amplitude than other DKL directions. Test of 

within-subject contrasts supports this with a marginally significant linear 

decrease in amplitude from S-cone and L – M to luminance conditions (F(1, 

21)=4.46, p=.047, η²=.17). 

13.9. High contrast 

Luminance elicited smaller amplitude (main effect of DKL: F(1.47, 31.0)=7.38, 

p=.005, η²=.26) than L – M (Bonferroni-corrected post hoc test, p<.001) but not 

S-cone (p=.082,n.s.); S-cone itself did not differ significantly from L – M (p=1.00, 

n.s.). Load 1 elicited larger amplitude than load 3 (p=.012), but not load 2 (p=.09, 

n.s.). The interaction between load and DKL direction (F(4, 84)=2.53, p=.046, 

η²=.11) suggested that at the highest load, luminance had a lower amplitude than 

S-cone (p=.020) and L – M (p<.001). Additionally, luminance had a lower 

amplitude than L – M at load 2 as well (p=.002), but not S-cone (p=.074, n.s.). 

There were no significant simple effects at load 1, suggesting waveforms from all 

conditions were similar across DKL directions. 

Waveforms in response to both isoluminant conditions were not by itself 

modulated by WM load, as shown with post-hoc tests using Bonferroni 

correction. However, for luminance, Load 1 had significantly higher P3a 

amplitude than Load 2 (p=.005) and load 3 (p=.004). Test of within-subject 

contrasts for the Load by DKL interaction has shown a significant linear effect 

(F(1, 21)=8.27, p=.030, η²=.20), suggesting that the amplitude tended to decrease 

with increasing WM load for luminance. 
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Figure 28 Upper left: Grand average waveform at electrode C1 during encoding high contrast 
luminance-defined, L – M and S-cone shapes at load 3. The grey box marks the time window 
(200-400 ms) from which peak amplitudes were extracted for analysis. Bottom left: average peak 
amplitude values at three levels of WM load for luminance, L – M and S-cone shapes, extracted 
from 200-400 ms time window. Error bars are standard error of the mean. Upper right: 
corresponding topographic maps at 200, 250, 300 and 350 ms after stimulus onset. 

13.10. Latency 

There was a main effect of WM load F(2, 32)=4.10, p=.026, η²=.20). While post-

hoc, Bonferroni-corrected tests did not point to significant pairwise comparisons, 

load 1 appeared to elicit somewhat shorter latencies than load 2 and load 3. 

There was a main effect of contrast (F(1, 16)=7.0, p=.018, η²=.30), qualified by an 

interaction between contrast and DKL direction (F(2, 32)=8.08, p=.001, η²=.33). 

Post-hoc, Bonferroni-corrected tests showed that latencies in responses to high 

contrast shapes were shorter than in response to low contrast shapes for S-cone 

(p=.017) and L – M conditions (p=.001). However, the latencies did not differ 

between contrast levels for luminance-defined stimuli (p=.475, n.s.). 
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13.10.1. P3b Amplitude (P3, P4, Pz; 200-500ms) 

There was a main effect of DKL F(2, 42)=18.1, p<.001, η²=.46), qualified by an 

interaction between electrode location and DKL (F(2.7, 56.8)=5.01, p=.005, 

η²=.19; see Figure 29). Post hoc tests using Bonferroni correction showed that 

there were no significant differences between DKL directions at electrode Pz. At 

electrode P3 and P4, luminance elicited higher amplitudes than both S-cone and 

L – M luminance (electrode P3: p<.001 and p=.012 for S-cone and L – M, 

respectively; electrode P4: p=.001 and p=.002 for S-cone and L – M, respectively; 

see Figure 30). 

Main effect of load was not significant (F(1.18, 24.7)=2.61, p=.086, η²=.11). 

Amplitudes were higher for high contrast stimuli (F(1, 21)=17.7, p<.001, η²=.46). 
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Figure 29 P3b amplitude at electrodes P3, P4 and Pz (rows 1 – 3), at low and high contrast 
(columns 1 & 2), for luminance (black line), L – M (red) and S-cone (blue). The grey box indicates 
time window from which the peak amplitudes were extracted for analysis (200 – 500 ms). 
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Figure 30 P3b waveforms at electrode P3 at three levels of WM load, for S-cone (upper left), L – 
M (upper right) and luminance (bottom left). The grey box indicates time window from which the 
peak amplitudes were extracted for analysis (200 – 500 ms). Average peak amplitude values at 
three levels of WM load for S-cone (blue line), L – M (red line) and luminance (black line) are 
shown on the line plot at the bottom-right corner. Error bars are standard error of the mean. 

13.10.2. Latency 

There was a main effect of DKL direction F(2, 32)=41.2, p<.001, η²=.72) and load 

(F(2, 32)=6.51, p=.004, η²=.29), qualified by an interaction between load and DKL 

direction F(4, 64)=3.45, p=.013, η²=.18). Post hoc tests using Bonferroni 

correction showed that component latencies in response to S-cone shapes varied 

with WM load. More specifically, P3b latency was shorter at load 1 than at load 2 

(p<.001) and load 3 (p=.003). There was no load modulation for L – M and 

luminance shapes. There was a main effect of contrast (F(1, 16)=31.5, p<.001, 

η²=.66), qualified by an interaction between contrast and DKL direction F(2, 

32)=3.92, p=.030, η²=.20). 
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Post-hoc, Bonferroni-corrected tests showed that latencies in responses to high 

contrast shapes were shorter than in response to low contrast shapes for S-cone 

(p=.001) and L – M conditions (P<.001). However, the latencies did not differ 

between contrast levels for luminance-defined stimuli (p=.182, n.s.). 
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14. ERPs – maintenance stage 

14.1. Stimuli offset peak (700-900 ms) 

A negative peak could be observed in the grand average waveforms shortly after 

stimulus offset (see Figure 31). It is most likely a stimulus offset – evoked 

potential. The peak is most clearly visible in Luminance data and, analogically to 

P1, it is less robust or absent in response to isoluminant shapes. It is interesting to 

note that for luminance shapes, Grand average waveforms seem to be somewhat 

load – sensitive, with the highest amplitude for load 1 and the lowest for load 3. 

The same offset peak is not that robust for L – M and S-cone shapes and it does 

not display similar load – dependence pattern. To confirm these observations, we 

performed a repeated measures ANOVA with factors: contrast (2 levels: low and 

high contrast), WM Load (3 levels), DKL direction (3 levels: S-cone, L – M and 

luminance) and electrode locations (3 levels: O1, O2 and Oz). Local amplitudes 

were extracted from the 700 – 1000 ms interval, determined subjectively based 

on grand average waveforms. 

There was a main effect of DKL direction F(1.47, 30.8)=5.12, p=.019, η²=.20). 

Pairwise comparisons did not point to significant differences, however, it 

appeared that luminance tended to elicited larger amplitude than S-cone 

(p=.082, n.s.) and L – M (p=.066, n.s.). 

An interaction between contrast and electrode location was also significant (F(2, 

42)=6.1, p=.005, η²=.22), although post-hoc, Bonferroni-corrected tests did not 

point to significant pairwise comparisons. 

14.2. Slow wave (1000-1600 ms) – occipital 
(electrodes O1, O2, and Oz). 

There was a main effect of DKL direction (F(2, 42)=12.3, p<.001, η²=.37): 

luminance elicited lower amplitude than S-cone (p=.005) and L – M (p=.001). 

There was a main effect of load (F(2.39, 29.2)=3.936, p=.044, η²=.16; see Figure 
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31). Post-hoc tests suggested that load 3 had a larger amplitude than load 2, 

although this effect was not significant (p=.05, n.s.). 

There was a main effect of electrode location (F(1.52, 31.9)=13.1, p<.001, η²=.38), 

qualified by an interaction between contrast level and electrode location (F(2, 

42)=5.73, p=.006, η²=.21). Post-hoc, Bonferroni-corrected tests showed that mean 

amplitude was larger at channel Oz than O1 at both contrast levels (both p<.001), 

however amplitude at electrode O2 was larger than at electrode O1 only at high 

contrast (p=.008), but not at low contrast (p=.741, n.s.). 

 

Figure 31 Grand average waveform at electrode O1 during maintenance at three levels of WM 
load. DKL conditions and contrast levels were collapsed to highlight the main effect of WM load. 
The grey box marks the time window (1000– 1600 ms) from which mean amplitudes were 
extracted for analysis. Bottom left: average mean amplitude values at three levels of WM load, 
extracted from 1000 – 1600 ms time window. Error bars are standard error of the mean. Upper 
right: corresponding topographic maps at 1000, 1200, 1400 and 1600 ms after the stimulus onset. 
The last stimulus in the encoding array disappeared at 600 ms mark. 
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14.3. Slow wave (1000-1600ms) – frontal 
(electrodes F3, F4, and Fz). 

Main effect of DKL (F(2, 42)=9.88, p<.001, η²=.32) showed that luminance 

elicited higher amplitude than S-cone (p=.014) and L – M (p=.003). There was a 

main effect of load (F(2, 42)=4.7 p=.014, η²=.18); amplitude in response to load 3 

was significantly lower than load 2 (p=.017; see Figure 32).  

There was also a main effect of electrode location (F(2, 42)=7.50 p=.002, η²=.26), 

with an amplitude at electrode Fz being greater than at electrode F4 (p=.008). 

 

 

Figure 32 Grand average waveform at electrode F3 during maintenance at three levels of WM 
load. DKL conditions and contrast levels were collapsed to highlight the main effect of WM load. 
The grey box marks the time window (1000– 1600 ms) from which mean amplitudes were 
extracted for analysis. Bottom left: average mean amplitude values at three levels of WM load, 
extracted from 1000 – 1600 ms time window. Error bars are standard error of the mean. Upper 
right: corresponding topographic maps at 1000, 1200, 1400 and 1600 ms after the stimulus onset. 
The last stimulus in the encoding array disappeared at 600 ms mark. 
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15. ERPs – retrieval stage 

15.1. P1 Amplitude (Oz, O1, O2; 80 ms-160 ms) 

Similarly to P1 component at encoding, Inspection of Grand averaged waveforms 

suggested that the P1 component was reliably elicited only by luminance shapes. 

In addition, amplitudes in response to high contrast shapes appeared to be larger 

than for low contrast shapes. We used a repeated measures ANOVA with factors: 

contrast level (low or high) and DKL direction (3 levels: S-cone, L – M and 

luminance) to confirm these observations (see Figure 23). 

There was a main effect of DKL direction (F(1.07, 22.5)=28.7, p<.001, η²=.58), 

with luminance eliciting higher amplitudes than S-cone and L – M (both p<.001). 

High contrast shapes elicited higher amplitude than low contrast shapes (F(1, 

21)=10.7, p=.004, η²=.34). Additionally, an interaction between contrast level and 

DKL condition was marginally significant (F(2, 42)=3.26, p=.048, η²=.13). Post 

hoc tests using the Bonferroni correction showed that luminance was higher than 

S-cone at low contrast as well as at high contrast (all comparisons p<.001). There 

was no difference between amplitudes at low and high contrast for S-cone and L 

– M. For luminance, amplitudes at high contrast were higher (p=.004). 

Based on these results, we did not include S-cone and L – M in further analyses. 

Two separate ANOVAs with factors WM load (3 levels) and electrodes (3 levels: 

electrodes O1, O2 and Oz) for each contrast level were conducted. There were no 

significant effects at low contrast (see Figure 33). At high contrast, only the effect 

of electrode location was significant (F(1.36, 28.6)=5.38, p=.019, η²=.20). P1 

amplitude was higher at electrode O2 than O1 and Oz. No other effects were 

significant (see Figure 34). 
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Figure 33 Grand average waveform at electrode O1 during retrieval of low contrast luminance-
defined shapes, at three levels of WM load. The grey box marks the time window (80 – 160 ms) 
from which peak amplitudes were extracted for analysis. Bottom left: average peak amplitude 
values at three levels of WM load, extracted from 80 – 160 ms time window. Error bars are 
standard error of the mean. Upper right: corresponding topographic maps at 50, 100 and 150 ms 
after the onset of the memory probe. 
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Figure 34 Grand average waveform at electrode O1 during retrieval of high contrast luminance-
defined shapes, at three levels of WM load. The grey box marks the time window (80 – 160 ms) 
from which peak amplitudes were extracted for analysis. Bottom left: average peak amplitude 
values at three levels of WM load, extracted from 80 – 160 ms time window. Error bars are 
standard error of the mean. Upper right: corresponding topographic maps at 50, 100 and 150 ms 
after the onset of the memory probe. 

As with encoding, the P1 amplitude at retrieval in response to high contrast 

shapes was correlated with behavioural performance. The amplitude at electrode 

O1 correlated with overall performance at all loads for electrodes O1 and Oz and 

for Load 1 and Load 3 for electrode O2 (see Table 7 for details). Interestingly, 

when looked at match and mismatch probes separately, P1 correlated with 

accuracy for mismatch probes at all loads and electrodes (see Table 8 for all p 

values and correlation coefficients, and Figure 35 for plotted variable correlations 

for load 3 at electrode O1), but not for match probes (see Table 9). The distinction 

between match and mismatch is interesting given that, in behavioural results (see 

Section 12.4), luminance benefit was manifested in mismatch condition. 
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Table 7 Pearson correlation coefficients and p values for P1 amplitude at retrieval stage with 
overall accuracy. Light green=significant correlations, light blue = non-significant values. 

 

Table 8 Pearson correlation coefficients and p values for P1 amplitude at retrieval stage for 
mismatching probes with accuracy for mismatching probe at three WM loads. Light 
green=significant correlations, light blue=non-significant values. 
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Figure 35 Correlation between the P1 component at electrode O1 (for load 3) and overall task 
accuracy. 

Table 9 Pearson correlation coefficients and p values for P1 amplitude at retrieval stage for 
matching probes with accuracy for matching probe at three WM loads. Light green=significant 
correlations, light blue=non-significant values. 
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15.1.1. Latency 

Latencies in responses to high contrast shapes were shorter than in response to 

low contrast shapes F(1, 16)=34.4, p<.001, η²=.68). There were no other significant 

effects or interactions. 

15.2. N1 Amplitude (Oz O1 O2; 130 ms – 300 ms) 

High contrast shapes elicited higher amplitudes than low contrast shapes F(1, 

21)=10.6, p=.004, η²=.33). There was a main effect of electrode location F(2, 

42)=12.6, p<.001, η²=.37). Post-hoc tests using Bonferroni correction showed that 

amplitudes at electrode Oz were lower than at electrode O1 (=.009) and O2 

(p<.001). 

There was a main effect of DKL direction F(2, 42)=19.2, p<.001, η²=.48). Load and 

DKL interaction was also significant (F(4, 84)=3.66, p=.008, η²=.15). Post-hoc, 

Bonferroni-corrected tests indicated that only luminance condition was 

modulated by WM load (see Figure 36): load 1 elicited more negative amplitude 

than both load 2 (p=.009) and load 3 (p=.042). The amplitude of load 2 and 3 did 

not differ significantly (p>.05). 
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Figure 36 Grand average waveform at electrode O1 during retrieval of high contrast luminance-
defined shapes, at three levels of WM load. The grey box marks the time window (130 – 300 ms) 
from which peak amplitudes were extracted for analysis. Bottom left: average peak amplitude 
values at three levels of WM load, extracted from 80 – 160 ms time window. Error bars are 
standard error of the mean. Upper right: corresponding topographic maps at 50, 100 and 150 ms 
after the onset of the memory probe. 

The following interactions (all including DKL direction) were significant: an 

interaction between DKL direction and electrode location F(2.07, 43.5)=5.19, 

p=.009, η²=.20), a three-way interaction between contrast, electrode location and 

DKL (F(4, 84)=2.72, p=.035, η²=.11), as well as three-way interaction between 

contrast, load and DKL (F(4, 84)=3.03, p=.022, η²=.13) was significant.  

To account for the above interactions, a separate ANOVA with factors WM load 

(3 levels), visual input/DKL direction (3 levels: S-cone, L – M and luminance) and 

electrodes (3 levels: electrodes O1, O2 and Oz) was conducted for each contrast 

level. 
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15.2.1. Low contrast 

For low contrast, there was a main effect of electrode location F(2, 42)=11.9, 

p<.001, η²=.36), with electrode Oz demonstrating lower amplitude than electrode 

O1 (p=.016) and O2 (p<.001). DKL effect was significant F(2, 42)=21.1, p<.001 

η²=.50). S-cone elicited the highest amplitude; higher than L – M (p=.020) and 

luminance (p<001). Luminance was also characterised by lower amplitude than L 

– M (p=.008). An interaction between WM load and DKL direction was 

significant F(4, 84)=2.79, p=.032, η²=.12). This interaction shows that differences 

between DKL directions were not uniform across WM loads. Luminance had a 

lower amplitude than S-cone at all WM loads, but it differed from L – M only at 

load 2. Similarly, S-cone had a higher amplitude than L – M only at load 2 as well, 

but was not significantly different at load 1 and load 3. 

Neither DKL direction was modulated by WM load. 

15.2.2. High contrast 

DKL conditions differed in terms of local N1 amplitude (main effect of DKL: F(2, 

42)=10.9, p<.001, η²=.34). Amplitudes differed across electrode locations (F(2, 

42)=12.2, p<.001, η²=.37), with an amplitude at electrode Oz significantly lower 

than at electrode O1 (p=.008) and O2 (p<.001). There was an interaction between 

DKL direction and electrode location (F(2.43, 51)=7.78, p=.001, η²=.27) with 

luminance amplitude being larger at electrode O1 than both S-cone (p=.032) and 

L – M (p<.017), electrode O2 (p<.001 and p=.005 for S-cone and L – M, 

respectively) and electrode Oz (p=.001 and p=.006). 

There was a significant interaction between WM load and DKL (F(4, 84)=3.95, 

p=.006, η²=.16). Luminance shapes elicited lower N1 amplitudes than S-cone 

(p<.001) and L – M (p=.029) at load 3 and load 2 (p=.009 and p=.032 for S-cone 

and L – M, respectively). At load 1, there was a significant difference only between 

luminance and L – M (p=.003) but not S-cone (p=.066, n.s.). L – M had a lower 

amplitude than S-cone only at load 3 (p=.003). 
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As with luminance condition, we attempted to run correlations between N1 

amplitude for isoluminant stimuli and overall performance. Unlike the luminance 

condition, there were no significant correlations. 

15.2.3. Latency 

There was a main effect of electrode location (F(2, 38)=3.79, p=.031, η²=.17), with 

shorter latencies for electrode Oz than O1 (p=.009). 

There was a main effect of DKL (F(2, 38)=15.0, p<.001, η²=.44) and a significant 

interaction between electrode location and DKL direction (F(4, 76)=15.9, p<.001, 

η²=.45). Post-hoc tests using Bonferroni correction showed that differences in 

latencies between DKL directions were most pronounced at electrodes O1 and 

O2. More specifically, at electrode O1, luminance had the shortest latencies when 

compared with S-cone and L – M (both p<.001), while S-cone had the longest 

latencies when compared with L – M and luminance (both p<.001). At electrode 

O2, luminance had shorter latencies than S-cone (p<.001) and L – M (P=.004). 

There were no significant differences between DKL conditions at electrode Oz.  

In addition, there was a main effect of contrast F(1, 19)=60.6, p<.001, η²=.76), 

which indicated that latencies were longer at low compared to high contrast 

condition. An interaction between contrast and DKL direction was significant 

(F(2, 38)=3.57, p=.038, η²=.16). Post-hoc, Bonferroni-corrected tests showed that 

luminance elicited faster latencies than both S-cone (p=.008) and L – M (p=.001) 

at high contrast, while at low contrast luminance latencies were shorter only 

from S-cone (p<.001). Additionally, S-cone was characterised by slower latencies 

than L – M only at low contrast (p=.023), but not high contrast. 

15.3. P3a Amplitude (C1, C2, Cz; 200 – 400 ms) 

The main effect of DKL was not significant (F(2, 42)=1.57, p=.221, η²=.069, n.s.). 

P3a was modulated by WM load (F(2, 42)=5.45, p=.008, η²=.21), with load 1 

amplitude lower than amplitude for load 2 (p=.029). 
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The amplitude of the P3a component was largest at electrode Cz (main effect of 

electrode location: (F(2, 42)=28.1 p<.001, η²=.57). 

 

Figure 37 Grand average waveform at electrode Cz during retrieval at three levels of WM load. 
DKL conditions and contrast levels were collapsed to highlight the main effect of WM load. The 
grey box marks the time window (200-400 ms) from which peak amplitudes were extracted for 
analysis. Bottom left: average peak amplitude values at three levels of WM load, extracted from 
200-400 ms time window. Error bars are standard error of the mean. Upper right: corresponding 
topographic maps at 200, 250, 300 and 350 ms after the onset of the memory probe. 

15.3.1. Latency 

Latencies in responses to high contrast shapes were not significantly different 

than in response to low contrast shapes F(1, 16)=.037, p=.851, η²=.002, n.s.). No 

effects or interactions were significant. 

15.4. P3b Amplitude (P3, P4, Pz; 200 – 500 ms) 

DKL effect was significant F(2, 42)=16.4, p<.001, η²=.44). Post-hoc tests using 

Bonferroni correction showed that S-cone elicited the lowest amplitude (lower 
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than L – M at p=.019 and luminance at p<.001). Amplitude in response to 

luminance was higher than both S-cone (p<.001) and L – M (p=.011). 

Load effect was significant F(1.46, 30.7)=5.90, p=.012, η²=.22). Post hoc tests 

showed that amplitude for load 1 was higher than at load 2 (p=.016; see Figure 

38). 

Low contrast amplitudes were lower than high contrast (F(1, 21)=14.0, p=.001, 

η²=.40). There was a main effect of electrode location F(2, 42)=7.04, p=.002, 

η²=.25). Post hoc tests using Bonferroni correction showed that amplitude at 

channel Pz was higher than at channel P3 and P4 (both p=.015). 

 

Figure 38 Grand average waveform at electrode Pz during retrieval at three levels of WM load. 
DKL conditions and contrast levels were collapsed to highlight the main effect of WM load. The 
grey box marks the time window (200 – 500 ms) from which peak amplitudes were extracted for 
analysis. Bottom left: average peak amplitude values at three levels of WM load, extracted from 
200 – 500 ms time window. Error bars are standard error of the mean. Upper right: 
corresponding topographic maps at 200, 250, 300 and 350 ms after the onset of the memory 
probe. 
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15.4.1. Latency 

The main effect of DKL direction was also significant (F(2, 38)=70.4, p<.001, 

η²=.79); luminance peaked earlier than both S-cone and L – M (both p<.001). 

Latencies for S-cone were longer than L – M and luminance (both p<.001). 

There was a main effect of electrode location (F(1.25, 23.8)=8.18, p=.006, η²=.30). 

Electrode P3 had a longer latency than P4 (p=.040) and Pz (p=.019). 

Latencies in responses to high contrast shapes were shorter than in response to 

low contrast shapes (F(1, 19)=65.1, p<.001, η²=.77). Contrast level interacted with 

electrode location (F(2, 38)=6.80, p=.003, η²=.79), as well as with DKL direction 

(F(2, 38)=5.55, p=.008, η²=.23). A separate repeated measures ANOVA was 

conducted for latency measures with factors: WM load (3 levels of load) and 

electrodes (3 levels: electrodes P3, P4 and Pz), separately for each contrast. 

15.4.2. Low contrast 

There was a main effect of electrode location F(2, 38)=11, p<.001, η²=.37). 

Amplitudes peaked later at amplitude P3 than P4 (p=.045) and Pz (p=.003). 

Amplitudes at electrode Pz were peaking earlier than at P3 (p=.003) and P4 

(p=.045). There was a main effect of DKL direction F(2, 38)=63.2, p<.001, η²=.77). 

Latencies were the slowest for S-cone condition; component P3b peaked later 

than for L – M (p=.033) and luminance (p<.001). Luminance had the shortest 

latencies, with shorter component peak latency than S-cone and L – M (both 

p<.001). 

15.4.3. High contrast 

There was a significant main effect of DKL condition (F(1.38, 27.7)=63.9, p<.001, 

η²=.76). P3b in response to luminance peaked earlier than S-cone and L – M 

(both p<.001). Additionally, L – M peaked earlier than S-cone (p<.001). 
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16. Discussion 

16.1. Overall behaviour findings 

This experiment examined the differential contribution of luminance and 

isoluminant signals to visual WM encoding and performance. We used stimuli 

that were defined along different directions in cardinal colour space, in an effort 

to differentially excite post-receptoral mechanisms of interest. These included 2 

isoluminant, chromatic directions (S-cone isolating and L – M), and one 

luminance, achromatic channel. The stimuli were matched for saliency on the 

basis of each participant’s discrimination thresholds. 

We found that remembering abstract shapes designed to engage the luminance 

channel resulted in a superior behavioural performance in a delayed match-to-

sample task over isoluminant stimuli. This effect was most pronounced when the 

stimuli were presented at low contrast levels, and when the WM load was high. 

In terms of reaction times, we observed that responding to luminance stimuli was 

associated with quicker responses than responding to both isoluminant stimuli 

types. While we also observed the increase of reaction times with increasing load 

– most likely reflecting higher task demands – we did not find any special benefit 

of luminance at higher WM loads, as was the case with the accuracy data. 

Demonstrating a superior WM luminance performance supports previous 

findings, which showed that achromatic signals benefit object recognition (Bar, 

2003; Kosilo et al., 2013; Kveraga et al., 2007; Martinovic et al., 2011). In 

particular, these studies showed that object recognition performance benefits 

from luminance inputs. Therefore, our experiment extends these findings, 

showing that the “luminance benefit” is not specific to perception or object 

recognition, but instead can be demonstrated in other cognitive domains, like 

working memory. Importantly, the accuracy benefit was most pronounced at 

higher WM loads, which further suggests that these effects are not purely 

perceptual, but stem from the interaction between perception and WM. While 

the performance naturally dropped when participants had to keep more stimuli 
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in the memory for all DKL directions, the loss of accuracy was not as severe in the 

luminance condition compared to the isoluminant conditions.  

16.2. Match/mismatch effects 

Another important finding of this study is that luminance-defined shapes elicited 

higher accuracy when the memory probe was different than the remembered 

stimuli (i.e. when the currently perceived probe mismatched remembered 

stimuli). The behavioural pattern replicates unpublished results from a different 

lab with a different set of participants (Haenschel, Kosilo & Martinovic, 2012). 

This finding is important for two reasons. Firstly, it confirms that better 

behavioural accuracy in response to luminance-defined shapes cannot be 

explained by differences in stimulus saliency. If the stimuli were not equally 

salient across DKL directions, we would expect that the decrease in accuracy 

would be the same for match and mismatch and different WM loads. However, 

this is not the case in our study, as we have shown that luminance benefits 

performance over isoluminant stimuli only at higher WM load conditions, and 

predominantly when the probe mismatched previously presented shapes. 

Therefore, we argue that the scaling procedure did not introduce a bias towards 

any stimulus category. 

Secondly, this finding is in line with the literature suggesting that the 

mechanisms behind same/different (or match/mismatch) judgements made 

between perceptual and memory representations are not equivalent (Engel & 

Wang, 2011; Hyun et al., 2009; Johnson, Spencer, Luck, & Schöner, 2009). 

Interestingly, similar conclusions come from research investigating how 

match/mismatch (or same/different) judgements are achieved for comparisons in 

purely perceptual domain (i.e. between two sensory representations, rather than 

between sensory and memory representation; Davelaar, Tian, Weidemann, & 

Huber, 2011a; Huber, Tian, Curran, O’Reilly, & Woroch, 2008). This further 

speaks to the view that perception and working memory share the same 

mechanisms (Pasternak & Greenlee, 2005). Importantly, our results extend these 

findings by demonstrating the process of comparing mnemonic representation 
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with currently perceived stimuli benefits from luminance inputs. The 

implications of this finding will be discussed at length in the General Discussion 

(Chapter 6). Generally, however, we suggest that differentiating between match 

and mismatch comparisons in future studies can be beneficial for our 

understating of processes contributing to WM performance. 

16.2.1. Contrast effects 

As expected, we also found that the differences in accuracy between luminance 

and isoluminant stimuli were more pronounced at lower contrasts. This pattern 

is consistent with the previous literature (outlined in the Introduction to this 

chapter), suggesting that contributions of different inputs are better dissociable 

at lower contrasts; at high contrast levels, the influence of post-receptoral 

mechanisms tend to overlap more (Ivanov & Mullen, 2012). Using low contrast 

stimuli also biases the luminance processing to be carried by the magnocellular 

pathway, since it is more sensitive to contrast (Derrington et al., 1984; Hicks et 

al., 1983; Kaplan & Shapley, 1982; Shapley, 1990; Vidyasagar et al., 2002). At 

higher contrast levels, luminance can be processed by both magno and 

parvocellular pathways. Therefore, this pattern of results implicates the 

magnocellular pathway in improving WM performance. 

16.2.2. Lack of correlation between digit span 
and letter-number tests and delayed match-
to-sample task 

We have correlated the digit span and letter-number WM tests with behavioural 

accuracy on our match-to-sample task. No significant correlations were found. 

This result might be due to different modalities: digit span and letter-number 

tests are presented in a verbal/auditory manner, while our delayed match-to-

sample task is predominantly visual. Previous studies attempting to correlate 

performance on tasks that differ in modality also yielded no significant effects. 

For example, Miller, Price, Okun, Montijo, & Bowers (2009) found that the N-

back task performance did not correlate with digit span backwards. The authors 
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also attribute this to differences in modality, although they also suggest that it 

might be because the N-back is not a pure measure of working memory. 

16.3. ERP effects 

Our task design allowed for a clear distinction between WM stages: the encoding, 

maintenance and retrieval. For each stage, a number of well-defined ERP 

components were analysed, focusing on those that are related to visual 

processing and/or WM processing. There were two aspects of each ERP that we 

were particularly interested in in the context of this thesis. These were: 1) the 

differences (or similarities) between the ERPs recorded in response to shapes 

defined along different directions in DKL colour space (S-cone isolating, L – M, 

and luminance), and 2) changes in amplitude and timing that could be linked to 

WM load. We had two general predictions related to that. Firstly, we expected to 

observe an interaction between WM load and DKL direction – i.e. that the 

differences between DKL conditions will be most pronounced at higher WM 

loads. The second prediction concerned the earliest visual components we looked 

at in this experiment; the visual P1 and N1. We looked at whether these two early 

components will be modulated by WM load, and we expected that the P1 will 

show such modulation in response to luminance shapes. 

In the next section, I will summarise ERP effects that can be linked to perceptual 

processing. These are likely to reflect changes in response to low-level visual 

properties of the stimuli, rather than working memory.  

16.3.1. Perceptual effects 

In accordance with the previous literature (Crognale, 2002; Gerth et al., 2003), 

the early visual component P1 could be reliably evoked by luminance-defined 

stimuli at both encoding and retrieval WM stages. There was no reliable P1 in 

response to isoluminant shapes. N1 was the first component that was elicited by 

all stimuli classes. The P1 in response to S-cone isolating and L – M shapes would 

have occurred if a consistent luminance artifact was present in otherwise 

isoluminant stimuli. As this was not the case, we concluded that the stimulus 
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design was appropriate. N1 in response to luminance was smaller than in 

response to isoluminant shapes, which is also consistent with the literature 

(Gerth et al., 2003). 

Low contrast stimuli, in general, elicited smaller amplitudes and longer latencies 

for all components, with the exception of the slow wave. Despite our efforts to 

increase the signal-to-noise ratio by using scaled thresholds, we hypothesise that 

reduced amplitudes for the ERP components might be related to decreased 

signal-to-noise ratio in response to low contrast shapes. Notably, components 

cannot be measured reliably if they are small (Luck, 2014). This would explain 

why – for the P1 and N1 – most of the WM-related effects or differences between 

ERPs elicited by different DKL directions were often significant at high contrast, 

but not at low contrast (see next section).  

At the same time, there were no clear differences between low and high contrast 

ERPs recorded during the maintenance period (the slow wave); this waveform 

demonstrated a WM load-related modulation that was not contrast-dependent. 

This might simply reflect the fact that this component is more sensitive to 

cognitive modulation rather than to low-level factors, such as contrast. 

Alternatively, it could also be a result of the way the amplitude was measured for 

this particular component. We extracted the mean amplitude within a specified 

time window for the slow wave, while for the other components a local peak 

measurement was used. Using a mean over a time window is less prone to noise 

than the peak amplitude (Luck, 2014). It is possible that we achieved better 

signal-to-noise ratio for this component at low contrast, which gave us enough 

statistical power to observe load-dependent effects. However, for the component 

P3a measured with peak amplitudes, we reported an overall effect of load during 

WM encoding. This effect did not appear to be contrast-dependent, similarly to 

the slow wave during maintenance. Therefore, it appears that components 

sensitive to cognitive factors can be modulated by WM processing even at low 

contrast levels. On the other hand, since both P1 and N1 components have been 

shown to be modulated by low-level stimulus properties, including contrast 

(Luck, 2014), demonstrating WM-related modulation requires good signal-to-

noise ratio in this case. 
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Using only high contrast data to draw our conclusions about the P1 and N1 effects 

is not without its problems. As mentioned in the introduction, ERP responses to 

low contrast stimuli are dominated by inputs from the magnocellular pathway. At 

high contrast, however, inputs from both magno and parvocellular pathway seem 

to contribute to the signal if the spatial frequency of the stimuli exceeds a specific 

frequency (i.e. 3 cycles per degree; Souza, 2007). Indeed, it has been suggested in 

the past that the parvocellular pathway is involved in carrying luminance 

information as well (De Valois & De Valois, 1975; Ingling & Martinez-Uriegas, 

1985; Shapley, 1990; Schiller and Colby, 1983). One cannot, therefore, assume 

that ERP waveforms in our study reflect responses to signals originating 

predominantly from the magnocellular pathway. However, it needs to be 

emphasized that the aim of our study was to investigate the contribution of 

luminance signals to WM. Therefore, even if part of the signal contributing to a 

given ERP component was transmitted through the parvocellular pathway, this 

would not necessarily invalidate our conclusions about the specific role of 

luminance. Still, one can make inferences about the relative role of either 

pathway, since the stimuli were carefully designed to be purely achromatic, 

therefore biasing stimulus processing towards non-chromatic, magnocellular 

pathway, as opposed to the chromatic parvocellular pathway. A lack of reliable P1 

component in response to isoluminant, chromatic stimuli even in high contrast 

condition strongly supports this notion, as this component is largely attenuated 

for purely chromatic stimuli (Crognale, 2002; Gerth, Delahunt, Crognale, & 

Werner, 2003). 

In summary, we suggest that future studies interested in cognitive effects related 

to stimuli presented at low contrast should ensure a sufficient number of trials 

and use of appropriate, noise-resistant measurements in order to reliably 

demonstrate the existence of such effects (or lack thereof) in the early visual 

components. 

In the next section, I will summarise ERP effects that appear to be related to WM 

processing, rather than perception and low-level factors (as described above). 

One of the hypotheses in this thesis was that processing taking place at WM 
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encoding is related to task performance; hence, I will also summarise the results 

of these correlations. 

16.3.2. ERP modulations related to working 
memory load 

Both P1 and N1 components in our experiment were modulated by low-level 

factors, consistently with previous literature (Luck, 2014). Hence, we found that 

amplitudes were generally smaller and delayed for low contrast shapes and – for 

the P1 – isoluminant stimuli did not elicit a reliable P1 (Gerth et al., 2003). 

However, it has been shown previously that beyond such low-level visual 

properties, the P1, as well as N1, are also sensitive to cognitive factors such as 

attention (Fu et al., 2010; Hillyard et al., 1998) and perceptual load (Handy & 

Mangun, 2000; Rose et al., 2004). 

Our study adds to the existing literature by showing that the P1 can also be 

modulated by WM, consistently with previous studies (Haenschel et al., 2007). In 

particular, we show that P1 can index the interaction of both low-level visual 

properties (i.e. using stimuli exciting the luminance channel) and WM. The P1 

demonstrates a characteristic magnocellular response, while the N1 demonstrates 

parvocellular properties (Ellemberg & Hammarrenger, 2001). Thus it is not 

surprising that the P1 was evident only in our luminance condition, given that 

magnocellular pathway receives predominantly achromatic, luminance inputs. By 

showing that the P1 was modulated by WM load but the N1 was not, we support 

our hypothesis that perception interacts with WM and that this interaction is 

driven predominantly by luminance inputs. 

We found that, during stimulus encoding, the early visual component P1 in 

response to luminance – shapes was modulated by WM load when the stimuli 

were presented at high contrast. Most importantly, the P1 amplitude at high 

contrast correlated with behavioural performance, thus supporting confirming 

previous findings (Haenschel et al., 2007) that early encoding WM stages are 

important for WM. Importantly, load-dependent modulation of component P1 in 

response to luminance might be related signal amplification. Previous studies 
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suggested that the modulation of the P1 amplitude reflects amplification of neural 

response, which results in increased signal-to-noise ratio (Hanslmayr et al., 2007; 

Hawkins et al., 1990; Klimesch et al., 2004; Reinitz, 1990). In line with this 

account, increased amplitude of the P1 in response to luminance at high WM 

load in our study might reflect better fidelity of stimulus encoding, achieved 

through such signal amplification. 

In terms of processing of isoluminant stimuli, the first ERP component that can 

be reliably elicited by these stimuli is N1. At low and high contrast during the 

encoding stage of WM, there was no significant load-related modulation of this 

component in response to isoluminant as well as luminance-defined shapes. 

Moreover, N1 amplitude did not correlate with behavioural performance. 

Another component modulated by WM load at encoding was the P3a recorded at 

central electrodes. Interestingly, however, load modulation appeared to be 

specific for luminance shapes presented at high contrast. The component’s 

amplitude decreased linearly with increasing WM load, while for the isoluminant 

conditions it remained similar across different WM loads. 

In addition, while at lower WM loads P3a amplitude was similar across DKL 

directions, at higher WM load luminance amplitude diverged, driving the 

significant load effects. Notably, this is a similar pattern to the behavioural 

results, where the differences in accuracy between task performance for 

luminance and isoluminant shapes where pronounced at higher WM loads as 

well. This is in line with our predictions. As outlined in the introduction, 

amplitude of component P3a has been linked to frontal attentional mechanisms 

related to stimulus processing. The pattern of our results suggests that 

attentional resources during WM encoding are working differently for the DKL 

directions tested. The difference seems to arise at high WM load for luminance, 

suggesting more efficient processing of luminance signals under high load 

conditions. 

The slow wave recorded during the stimulus maintenance stage at occipital and 

frontal sites appeared to be sensitive to WM load for all DKL conditions. There 

was some indication that the amplitude of the slow wave recorded from occipital 
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electrodes in response to luminance diverged from S-cone and L – M at the 

highest WM load. However, this observation yielded no statistically significant 

effects. While this could be due to a lack of power, there are no strong 

conclusions that can be drawn from this observation. Slow wave recorded at 

frontal sites did not show any differential influence of luminance on amplitude. 

Therefore, with a degree of caution, we suggest that interactions between WM 

load and DKL directions are more pronounced during the encoding stage at 

occipital electrodes, while during the maintenance, waveforms behave similarly 

across DKL conditions at both occipital and frontal sites. 

During the retrieval stage, load effects were not significant for the P1 component. 

Interestingly, however, the P1 amplitude at retrieval did correlate with 

behavioural accuracy calculated for mismatch condition. This pattern of results is 

reminiscent of the behavioural results, were luminance advantage have shown to 

be present at higher WM loads, but only when the probe mismatched one 

remembered during the encoding stage. It appears that the memory-probe 

comparison can be indexed early during probe encoding and that luminance is 

especially important for discriminating the mismatch between the memory 

representation and currently encoded test stimulus. Crucially, the memory 

comparison-related ERPs reported here occurred earlier than in the previous 

studies (Agam & Sekuler, 2007; Yin et al., 2012). This might suggest that the 

memory-probe comparison is tightly related to initial perceptual processing also 

at the retrieval stage. 

The P3b component at retrieval was modulated by WM load, along with the P3a 

component. Interestingly, the load effect at P3b was not present during the 

encoding; however, such modulation was present at retrieval (in addition to 

modulation by the DKL direction). As mentioned in the introduction (see Section 

9.1.3), it has been suggested that the P3b component reflects a completion of 

cognitive operations related to a task-relevant stimulus (Desmedt, Bourguet, 

Huy, & Delacuvellerie, 1984; Desmedt & Debecker, 1979; Desmedt, 1980; 

Tomberg & Desmedt, 1998; Verleger, 1988). Further, it can be used as an index of 

a decision mechanism performed during stimulus comparison during a delayed 

discrimination task (Croizé et al., 2004). Based on that, Croizé et al. suggest that 
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the P3b is not crucial for WM processing during encoding, and its modulation is 

related to processes taking place at the retrieval. The presence of WM load-

related modulation of the P3b during the retrieval in our study, but not encoding, 

supports this view.  

WM load influenced the N1 amplitudes at the retrieval, in particular in response 

to high contrast shapes. At higher WM loads, DKL directions were more 

differentiated, with luminance showing lower amplitude than S-cone and L – M. 

It is important to point out at this point a specific shortcoming of the analysis of 

ERPs at the retrieval stage. As mentioned above, in terms of behavioural 

accuracy, the luminance advantage was most pronounced at mismatch condition. 

However, our ERP analysis did not differentiate between match and mismatch 

responses due to an insufficient amount of trials. Thus, our ERPs reflect both 

match and mismatch processing, which in light of our behavioural results is not 

ideal, as these processes appear to be substantially different. It would be 

beneficial for the future studies to ensure that sufficient amount of trials is 

available to probe the effects of match/mismatch comparisons on ERP 

waveforms.  

16.4. What mechanism underlies luminance 
advantage? 

The exact mechanism through which luminance benefits encoding and 

performance in WM task warrants further investigation. We hypothesize that the 

luminance benefit can be either low-level, i.e. related to low-level visual 

processing, or it has to do more with high-level cortical processing, or both. In 

this view, WM can benefit from luminance signals because the sustained 

representation is less noisy throughout the maintenance stage, resulting in more 

accurate memory-probe comparison. On the other hand, our findings might be 

also interpreted in relation to Bar’s (2003) model. Bar proposed that perception 

(or, more specifically, object recognition) benefits from fast luminance inputs to 

the cortex, providing frontal areas with a “rough outline” of currently perceived 

stimuli. Based on the initial shape information, top-down signals would facilitate 
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further processing and subsequent recognition. Empirical findings were 

consistent with this model (Bar, et al., 2006; Kveraga et al., 2007; Martinovic, 

Mordal & Wuerger, 2011). A more comprehensive interpretation of the findings 

and the mechanisms behind them will be provided more extensively in the 

General Discussion (see Chapter 6). 

16.5. Further directions and general 
shortcomings 

The results of the current study might be invalidated if the stimuli across 

different classes were not equalized in terms of saliency. We have obtained 

same/different thresholds from each participant before they completed the 

delayed match-to-sample WM task to achieve just that. However, it was 

necessary to ensure that the EEG signal had sufficient signal-to-noise ratio so that 

individual ERP components could be readily isolated. We have achieved that by 

scaling same/different discrimination thresholds upwards (see Section 11.2.3). 

The crucial part of the procedure was to maintain the relative distance between 

the contrasts for each DKL direction. 

However, there is a possibility that the scaling procedure might have violated the 

saliency. More specifically, the slope of the psychometric function underlying 

discrimination performance at thresholds could be considerably different 

between stimuli classes.  

Our results suggest that the saliency procedure was appropriate. This conclusion 

is based on the results which showed that luminance stimuli produced better 

performance than chromatic stimuli in trials where the probe mismatched 

remembered stimuli. If the luminance stimuli were simply more salient then the 

chromatic stimuli, the differences should be general and apply to all experimental 

conditions. In other words, we should expect to find a similar pattern of results 

for both match and mismatch conditions. However, this was not the case. 

Nevertheless, it would be beneficial to verify the procedure further by measuring 

slope differences between luminance and chromatic conditions in detection and 
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discrimination tasks. This was one of the aims of the next experiment, described 

in Chapter 4. 

16.6. Summary 

In summary, the findings of the current experiment are consistent with the 

hypothesis that luminance provides special inputs to working memory over 

isoluminant signals. In terms of ERP responses, luminance-defined shapes tended 

to elicit greater amplitudes than isoluminant shapes. Most importantly, however, 

ERP waveforms in response to luminance-defined stimuli were additionally 

affected by the number of items stored in memory. 

This conclusion is further strengthened by the fact that the P1 amplitude at 

encoding correlated with working memory performance, while the N1 amplitude 

in response to isoluminant items did not. Furthermore, the results also suggested 

that later components recorded during the encoding stage – namely, the P3a – 

also appeared to be modulated by WM load, albeit only in response to 

luminance-defined shapes. This would suggest that luminance inputs interact 

with working memory already during initial stimulus encoding, and these 

interactions have an effect on WM performance. Hence, our behavioural results 

could be successfully linked to ERP modulation, suggesting that higher accuracy 

seen in behavioural responses most likely results from processes taking place 

during the encoding stages of working memory, rather than the later stages. 

However, other WM stages also proved to contribute to performance. More 

specifically, we found that the luminance advantage was more pronounced when 

the probe mismatched the remembered shapes; furthermore, the amplitude of 

the component P1 during retrieval correlated with behavioural performance in 

response to mismatching probe, but not in response to matching shape. 

More generally, the above findings suggest that the mechanism behind the 

interaction between perception and working memory differs depending on the 

stage of working memory processing. At encoding, we are looking into processes 

that “write” the stimuli into WM for later maintenance and retrieval. In this 

sense, perception/WM interaction will be related to creating a WM 
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representation based on the currently perceived stimuli. On the other hand, no 

memory encoding is needed at the retrieval stage. Any ERP modulation at this 

stage will therefore likely reflect the comparison process between currently 

perceived stimuli (perception) and memory representations encoded earlier. 

Therefore, even though we analysed the same components at encoding and 

retrieval (namely, P1 and N1), they might not reflect the same underlying neural 

processing. This highlights the importance of distinguishing between different 

working memory stages when investigating neural processing that underlies it. 
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Chapter 4 

Psychophysical experiments on visual working 
memory 

 

 

 

This chapter describes psychophysical experiments that extend the findings 

outlined in the preceding chapter as well as address some of its potential 

limitations. 

As detailed in the previous chapter, encoding luminance-defined as opposed to 

isoluminant shapes led to better performance in a delayed match-to-sample WM 

task. To ensure that our results could be explained in terms of differences 

between post-receptoral mechanisms, stimuli had to be matched for saliency 

across different DKL conditions. We have achieved that by estimating 

same/different discrimination thresholds for each condition using a 

same/different task. Participants were presented with two stimuli (shown 

consecutively) and had to respond whether they were the same or different. 

Same/different discrimination thresholds were estimated using an adaptive 

procedure for chromatic and achromatic visual channels and reflected a level of 

intensity at which the probability of individual’s correct answer was 75% (derived 

from a logistic psychometric function fitted to the data; see General Methods 

chapter). Since we were also interested in EEG measurements, we scaled these 

thresholds up to make sure that stimuli had a sufficiently high contrast to elicit 

reliable ERPs. This was done while making sure that the relative difference 

between each condition was maintained so that they were still matched in 

saliency. 
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While this approach enabled us to assess WM task performance as well as obtain 

EEG recordings, thresholds can be used to directly assess WM and not merely as 

a control measurement. Threshold estimation, as well as fitting a psychometric 

function to the data to obtain other measures (such as slope) is the core of 

psychophysical methods. Since the foundation of the psychophysics (and 

experimental psychology in general), thresholds have been effectively used to 

probe sensory function and perception. 

In the following section, I will introduce a brief history of psychophysics. The aim 

of doing so is to demonstrate that psychophysical methods were originally 

developed to study sensations, but they soon began to be used effectively to study 

complex perceptual functions and cognition. Importantly, this means that these 

methods can be used to study visual working memory as well. 
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17. Psychophysical measurements and sensory 
perception. 

The pioneering experiments of Ernst Weber (1795/1878) investigating the 

sensation of touch and pressure (Weber, 1834) demonstrated that before any 

stimulus can be detected by the senses, it needs to pass a “threshold of 

sensation”. Weber referred to the amount of increase needed to elicit a sensation 

– or, a ratio between the detected stimulus and a baseline – as “just-noticeable 

difference”, otherwise known as detection threshold (Weber, 1905). Early 

psychophysical work focused on senses, such as a sense of touch, vision, hearing 

and others (Fechner, 1860). The ideas laid foundations for new scientific field, 

later formalised by Gustav Fechner and since referred to as experimental 

psychophysics (1801/1887). In more general terms, psychophysical methods (with 

the threshold being one of the central measures) were used to describe and 

quantify the relationship between the physical world and the “mind”, i.e. the 

subjective experience (Ehrenstein & Ehrenstein, 1999). 

With the advance in the methodology, thresholds began to be used not to merely 

describe the detection or discrimination of a given stimulus, but they enabled for 

a more detailed investigation of visual processing beyond sensation. The 

contribution of psychophysics to this line of research will be discussed in the next 

section. 

17.1. Insights into visual perception 

Threshold measurements, coupled with physiological recordings, helped to 

break-down visual processing and correlate different aspects of vision with its 

subdivisions. For example, psychophysics and thresholds measurements helped 

to establish that magno and parvocellular visual channels are not only separated 

anatomically but also functionally (De Valois & Kooi, 1991; for a review, see 

Livingstone & Hubel, 1987). The problem was approached by using stimuli that 

were designed to be processed predominantly by magno or parvocellular visual 

channels and comparing how thresholds are affected when engaging one channel 
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in isolation. It was demonstrated that some aspects of vision are achieved more 

efficiently by different channels. For example, depth and movement seem to be 

derived from luminance signals carried by the magnocellular pathway, while 

colour information is carried predominantly by the parvocellular system. 

Regarding motion processing, it was demonstrated that the perceived velocity of 

luminance gratings decreased with added chromatic information, suggesting that 

the luminance-driven, magnocellular stream is specialised in motion detection 

(Cavanagh, Tyler, & Favreau, 1984). 

Despite this apparent segregation, the two streams interact, and – at some point 

– an integration of information from both streams must be achieved to come up 

with a coherent percept of the visual world. A specific example of this would 

involve working out the basis of object recognition. Psychophysical experiments 

using discrimination thresholds have proved again to be useful in addressing this 

issue. For example, it was demonstrated that observer’s judgments about the 

relative position of two components within visual patterns are accurate despite 

changes in size, orientation or overall spatial profile of the pattern (De Valois et 

al., 1990). These results supported the notion that the visual system can utilize 

spatial relations and relative positions of visual features for object recognition. 

17.2. Studying memory and cognition with 
psychophysics 

It can be argued that object recognition goes beyond “simple” perception and 

begins to enter the territory of higher cognitive function. Indeed, psychophysics 

has been successfully applied to different domains, which exceed the sensory-

perceptual domain. One of such domains of particular interest here is memory 

research. Although the contemporary literature suggests that visual perception 

and visual memory (specifically, working memory) are not so easily separated 

(Harrison & Tong, 2009; see Chapter 1), traditionally memory was associated 

with cognition rather than perception, and thus used to be discussed separately. 

The idea of using psychophysics to study memory rather than perceptual 

representations can be traced back almost to the very origins of the field. As 
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Algom (2001) points out, the notion was first considered by Fechner in 1882 

(translated in Fechner, 1987). It was only later, however, that the focus shifted 

towards verifying whether some findings from sensory psychophysics – e.g. 

Weber’s law – hold for memory representations. In other words, researchers 

began to be interested in whether perceptual psychophysics can be applied to 

memory as well (Björkman, Lundberg, & Tärnblom, 1960; Hubbard, 1994). In a 

first systematic attempt to study this issue, Björkman et al. (1960) described the 

relationship between stimulus intensity and perceived magnitude while also 

adding another dimension into play: the memory magnitude. 

In their experiments, observers were judging the size of the circles or weight of 

various objects and were later required to recall the magnitude of remembered 

objects in relation to currently perceived ones. This was used as a basis to 

estimate the ratio between perceptual and memory amplitude – similarly as it 

was done in classic Weber’s experiments. Their experiments showed that the 

magnitude of the memory representation tended to increase with the magnitude 

of the perceived one, displaying the characteristics of a positively accelerated 

function – i.e. one where the rate of increase of one variable (memory magnitude) 

increases with the rate of another variable (perceived magnitude). The rate of the 

increase is initially characterised by a shallow function, which becomes 

increasingly steeper. Later experiments additionally suggested that the rate of 

memory decay is not equal across different visual features, such as height or size 

(Algom, Wolf, & Bergman, 1985; Hubbard, 1988). It is important to note that 

short-term memory was not always the focus of the investigation, as researchers 

were equally interested in estimating the magnitude of memory representations 

also after longer retention delays, such as 24-hour delay (Moyer, Bradley, 

Sorensen, Whiting, & Mansfield, 1978). 

How does the efficiency of discriminating between memory and perceptual 

(ongoing) representations compares with perceptual detection and 

discrimination, where no memory is involved? Generally speaking, detection and 

discrimination of visual features in the human visual system is very efficient 

(Salmela & Saarinen, 2013). For example, discrimination thresholds for spatial 

frequencies are low (Hirsch & Hylton, 1982; Itti, Koch, & Braun, n.d.; Wilson & 
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Gelb, 1984). Similarly, orientation discrimination is very accurate (Vogels & 

Orban, 1986; Westheimer, 1998). These findings indicate that perceptual system 

is able to encode visual stimuli with high fidelity.  

However, introducing a delay between encoding and probe, and thus engaging 

working memory, increases discrimination thresholds and reduces the slope of 

the psychometric function. This suggests that the ability to store representations 

for extended periods of time is possible at the expense of precision and fidelity of 

the representation. As mentioned above, previous studies have mostly 

investigated the memory for single stimulus features, such as contrast, 

orientation and spatial frequency. Later experiments confirmed that memory 

representations for different visual features do not decay at the same rate 

(Magnussen & Greenlee, 1999; Magnussen et al., 1991; Magnussen, Idås, & Myhre, 

1998; Pasternak & Greenlee, 2005). It has been shown that, generally, thresholds 

for most visual features increase with increasing inter-stimulus interval, although 

some features, such as spatial frequency (Magnussen, Greenlee, & Thomas, 1996) 

can be retained with high precision even with long stimulus intervals. Other 

features, notably orientation, are subject to a more rapid decay (Vogels & Orban, 

1986). 

Thresholds for single stimulus features are modulated not only by the length of 

the inter-stimulus interval but also by increasing the number of items that are 

encoded into memory (Bays & Husain, 2008). For example, orientation 

discrimination becomes less precise with increasing working memory load, which 

is reflected in a shallower slope of the psychometric function (Bays & Husain, 

2008; Palmer, 1990; Salmela & Saarinen, 2013). 

In addition to memory for single stimulus features, these findings also apply to 

memory for shapes (Salmela, Lähde, & Saarinen, 2012). Salmela et al. used radial 

frequency patterns (RF shapes) – i.e. contoured shapes that are created from a 

base circle stimuli by adjusting its radius, amplitude and spatial frequency. They 

used two tasks: a delayed discrimination task and delayed recall. In the delayed 

discrimination task, participants were required to discriminate between a set of 

memorised RF shapes and a probe presented after a blank retention interval. To 
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manipulate WM load, observers were required to remember from 1 to 6 shapes 

presented simultaneously. The results showed that discrimination thresholds 

increased linearly with increasing WM load. The delayed recall followed a similar 

procedure, except the observers were required to adjust the amplitude of the 

probe so that it matched one of the remembered shapes in the cued location. 

Their results showed that thresholds increased linearly with increasing WM load. 

The same was the case for standard deviations, which were used as a measure of 

recall error in the delayed recall task, signifying a loss of precision of the stored 

representations. 

17.3. Summary: studying memory and cognition 
with psychophysics 

To summarise, psychophysical measurements of thresholds were at the centre of 

investigating the relationship between the physical word and perception. It is, 

therefore, a long-established method, which is also being applied to answer 

questions that go beyond the perceptual processing and concern cognitive 

functions, including memory8.  

Current studies suggest that perception and cognition are inherently linked. This 

idea was already put forward in the past (Barsalou, 1999; Kosslyn, Thompson, 

Kim, & Alpert, 1995; Kosslyn, 1994; Kosslyn, Ganis, & Thompson, 2001; Shepard & 

Metzler, 1971; Shepard & Podgorny, 1978) and has recently enjoyed much 

attention thanks to advances in neuroimaging and other methods (see Harrison 

& Tong, 2009 and Chapter 1). The main implication of such view is that cognition 

can be seen as a continuum to low-level perception, and thus some of the 

principles of the latter should be applicable to higher-level cognition as well 

(Nieder & Miller, 2003). Such a view, as argued in Chapter 1, is also adopted in 

this thesis. 

                                                 
8 In fact, psychophysical methods are today employed in various different contexts, including social 
cognition and emotions (see, for example, MacLin, MacLin, Peterson, Chowdhry, & Joshi, 2009; Roesch, 
Sander, Mumenthaler, Kerzel, & Scherer, 2010). 
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Since psychophysical measurements have been successfully applied to investigate 

memory processing in the past, applying these methods to investigate working 

memory in this thesis is warranted. In our experiments, we take a similar 

approach to probe the memory efficiency of different visual channels (e.g. De 

Valois et al., 1990). 
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18. Current experiment: visual working memory 
thresholds 

In this experiment, we set to measure thresholds using a delayed match-to-

sample task (i.e. the same task design used in Experiment 1). Therefore, we 

introduce a memory component to same/different discrimination threshold by 

delaying presentation of the probe, which resembles the delayed-discrimination 

designs described above (additionally, see General Methods for more detailed 

description of simple discrimination and same/different thresholds). However, 

this task also varies the number of stimuli the observers are required to 

remember (encode). We are going to refer to a threshold measured using this 

task as visual working memory thresholds (vWM thresholds) to emphasize the 

goal-oriented, working memory component of the task and to discriminate it 

from delayed discrimination tasks which do not manipulate working memory 

load. 

Building on the findings of our previous study, we aim to compare WM 

thresholds for chromatic and luminance stimuli, in order to establish how inputs 

from the chromatic and achromatic visual channels interact with working 

memory. As previously, we are defining the stimuli in the DKL colour space to 

excite the appropriate post-receptoral mechanisms. We defined WM thresholds 

as stimulus contrast level at which the probability of responding correctly is 75%. 

Hence, we assume that the thresholds will provide a measure of the efficiency of 

chromatic vs achromatic, luminance mechanism in encoding stimuli to WM. 

Additionally, we are again recruiting a “mixed signal” condition as a control 

measure. In this condition, stimuli are designed to excite both chromatic 

mechanisms as well as the luminance mechanism (See Chapter 3 for details on 

this condition). 

Based on the previous studies cited above (e.g. Bays & Husain, 2008), we 

expected that WM thresholds in the current study will increase with the 

increased number of shapes stored in memory. However, we do not expect this 

decrease to be of equal degree for luminance and chromatic shapes. This will be 

reflected in smaller threshold increase for the luminance-defined shapes. 
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The prediction that WM thresholds will not be the same for luminance and 

chromatic stimuli is based on studies showing that global shape discrimination 

thresholds for chromatic and achromatic mechanisms have been shown to differ 

(Mullen & Beaudot, 2002). We would expect this pattern to hold even if a 

retention period is introduced between encoding and recall, given that the same 

mechanisms are responsible for visual encoding and working memory (Harrison 

& Tong, 2009). 

In their study, Mullen & Beaudot (2002) used stimuli that biased stimuli 

processing towards chromatic (L – M and S-cone) and achromatic, luminance 

mechanisms. In the task, participants were shown a circular and a non-circular 

stimulus and asked to discriminate between them, i.e. respond which of the two 

stimuli was circular. To allow for a direct comparison between achromatic and 

chromatic stimuli, their contrasts were equated in terms of multiples of detection 

threshold. The authors showed that the performance was best for the achromatic 

stimuli, followed by L – M and S-cone, with the latter associated with the worst 

performance. Authors note, however, that this relative impairment was mild and 

all channels appeared to be to some extent efficient at this task. Nevertheless, 

while the impairment might not have been dramatic, the differences between 

chromatic and achromatic stimuli were still evident. 

Notably, this pattern of results resembles findings from our previous experiment 

(Chapter 3), where we showed that behavioural performance in a delayed match-

to-sample task was also the worst for the S-cone condition (equivalent of the 

blue-yellow direction in Mullen & Beaudot, 2002), followed by L – M (red-green) 

and luminance (achromatic). Therefore, we expected that this pattern will be also 

evident using WM thresholds as a measure of performance. 

Salmela et al. (2012) suggest that visual working memory resources are 

continuous and that the stimulus discriminability determines the fidelity of the 

stored representations. This conclusion is relevant to our predictions. Our 

previous study (see Chapter 3) showed that behavioural performance in a delayed 

match-to-sample task decreases with increasing number of shapes retained in 

memory. However, loss in accuracy was less severe for luminance-defined shapes 
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compared to chromatic shapes. Our results and the results of Salmela et al.’s 

study speak to our interpretation that the luminance channel enables more 

precise encoding of stimuli into working memory. Based on these results, we 

expect that WM thresholds in the current study will also show a linear increase 

with increasing number of encoded shapes. However, we also expect that the loss 

of accuracy will not be uniform across DKL directions. In particular, we expected 

the luminance condition to preserve the accuracy (reflected in lower threshold 

values) even when the number of the items in memory is high. In other words, 

thresholds in response to chromatic should show a linear increase; in case of 

luminance-defined stimuli, we predict that the thresholds will remain more 

uniform across working memory loads (i.e. increase in thresholds will be less 

steep with increasing load). 

An additional reason why it is important to compare the efficiency of chromatic 

and achromatic mechanisms at near-threshold levels is that the results of our 

EEG experiment are based on remembering stimuli presented at suprathreshold 

levels. The contrast was increased (scaled-up) to ensure sufficient signal-to-noise 

ratio. Separation of chromatic and achromatic mechanisms is not necessarily 

clear-cut at suprathreshold levels, as they are subject to non-linear interactions 

(Kulikowski, 2003). It is implied that “mixed detectors” in vision – i.e. 

mechanisms that are responsible for processing both chromatic and achromatic 

(luminance) information – are less sensitive than those dedicated to chromatic-

only and luminance-only mechanisms (Kulikowski, 2003), and thus cannot 

operate at near-threshold levels. One of the core conclusions of our previous 

experiment is that luminance mechanism has special and apparently exclusive 

contributions to WM encoding. However, one possible objection to this 

conclusion is that luminance and chromatic mechanisms are likely to interact at 

contrast levels used in the experiment. Thus, providing data derived from the 

observer’s performance in response to near-threshold stimuli will help to 

strengthen our conclusions about the special role of luminance inputs into WM. 
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18.1. Summary – visual working memory 
threshold experiment 

To summarise, we expected that participants will show lower visual working 

memory thresholds for luminance-defined shapes, as opposed to chromatic and 

mixed signals shapes. We anticipated that this pattern will be evident at all WM 

load levels. In addition, we predicted an interaction between WM load and DKL 

direction. More specifically, we expected that thresholds will increase with 

increasing number of items held in memory. Importantly, however, if luminance 

inputs indeed better efficiency, load-related increase in thresholds would be less 

pronounced for this mechanism. 

Lower WM thresholds for luminance channel would imply that WM processing 

in this channel is facilitated. Higher thresholds would be on the other hand 

associated with less efficient WM processing. We compare thresholds between 

the visual channels and additionally contrast them at different WM loads, to 

assess whether the increase in the number of items stored in memory will affect 

four mechanisms differently. 

We also expected that S-cone contributions to WM will be less effective than 

other conditions. In previous experiments that included S-cone mechanism to 

assess its efficiency in mid and high-level vision (Martinovic et al., 2011; Kosilo et 

al., 2013; Jennings & Martinovic, 2014) performance on various tasks was worse 

for S-cone. In addition, in our previous experiment (see Chapter 3) we also found 

that WM performance suffered when to-be remembered shapes isolated S-cone 

mechanism. Thus, in the current experiment, we expected S-cone condition to 

elicit higher thresholds. 
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19. Experiment 1: working memory thresholds 

19.1. Methods 

19.1.1. Participants 

Twenty participants were recruited for the study. Sixteen participants have 

completed the experiment and were included in the analysis. Four participants 

were excluded as their thresholds could not be reliably estimated (see Procedure 

for details). 

All participants have reported having normal or corrected-to-normal visual acuity 

and colour vision. This was confirmed using Acuity Plus and City University 

Colour test (CAD; Barbur, Rodriguez-Carmona & Harlow, 2006). No participants 

were rejected based on these measurements. 

Participants took part in two separate experimental sessions. The first session 

consisted of vision tests (AcuityPlus and CAD, mentioned above) and working 

memory threshold measurements. The latter took place in EEG laboratory (for 

the experimental setup and display characteristics, see Chapter 2). During the 

second session, stimulus detection thresholds for the same experimental 

conditions were estimated. As mentioned above, four participants could not be 

brought back for this session and their data were also excluded; overall, 16 

datasets ended up in the main analysis. 

Participants were reimbursed financially or with course credits. 

19.1.2. DKL colour space & stimuli  

The stimuli used in the experiment differed in terms of their chromatic and 

achromatic properties. As in the previous experiment, we used DKL colour space 

to define these properties (Derrington et al., 1984). The DKL space was 

implemented in the Colour Toolbox (CRS, UK; Westland, Ripamonti, & 

Cheung, 2012) using measurements of the spectra of the monitor phosphors 
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taken by a SpectroCAL (CRS, UK) and cone fundamentals (Stockman & 

Sharpe, 2000; Stockman, Sharpe, & Fach, 1999). See Chapter 2 for details. 

For clarity, I reproduce the table from Chapter 2 (general methods) to provide a 

summary of conditions tested in the current experiment (see Table 10 below).  

As mentioned in chapter 2 (general methods), any point in the DKL colour space 

is defined using the following coordinates: a radius (r), the angle of rotation 

(ϕDKL), and angle of elevation (θDKL).  

We used the same three classes of stimuli as in the previous experiment (two 

chromatic, one achromatic/luminance) plus a “mixed signals” condition. 

Opponent mechanisms corresponding to chromatic stimuli were L – M (ϕDKL = 

O⁰) and S – [L – M] (ϕDKL = 270⁰). Luminance elevation was determined using 

heterochromatic flicker photometry procedure (see Procedure for details). 

Achromatic/luminance mechanism was defined as L+M (ϕDKL = O⁰) and the 

elevation was fixed at θDKL = 90⁰. For the mixed – signal condition, luminance 

signal was added to otherwise isoluminant stimuli. This condition excited both 

isoluminant mechanisms: [L – M] and S – [L – M] as well as the achromatic 

mechanism [L+M] (ϕDKL = 135⁰). Luminance elevation was fixed (θDKL = 45⁰).  

For all conditions, radius r (i.e. distance from the white point, equivalent to 

stimulus intensity) served as the dependent variable and was varied during the 

staircase procedure. 
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Table 10 Psychophysical mechanisms of interest and their corresponding DKL coordinates. Only 
angle and elevation are provided as r is either fixed at individuals’ discrimination threshold 
(Experiment 1, chapter 3) or serves as the dependent variable in threshold experiments 
(experiment 2 and 3, chapter 4). *The elevation of L – M and S-cone is not 0°, but is determined 
from the HCFP procedure to adjust for individual’s point of isoluminance. Signs in brackets 
corresponds to the polarity of the angle or luminance elevation (+ for increment and – for 
decrement). A rough appearance of the stimuli as it could appear on the display is provided, along 
with a position inside the DKL space (radius r is given only arbitrarily for presentation purposes). 
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19.1.3.  Threshold normalisation 

In our task, the stimulus contrast is expressed in radii (i.e. the distance from the 

“white point” in the colour space). The axes for each direction in this space are 

not in same units. Therefore, comparing thresholds simply based on the 

measures of radiuses is inappropriate. To overcome this problem and to be able 

to meaningfully compare results from each DKL direction, detection thresholds 

were additionally measured using a two interval forced-choice task for each 

individual using the same set of stimuli that were used in the in the delayed 

match-to-sample task. The details on the detection threshold procedure and 

normalisation will be described in Section 19.1.4 below. 

19.1.4. Procedure 

After initial vision tests that ensured normal colour vision and normal, or 

corrected-to-normal acuity (CAD and AcuityPlus test, respectively), participants 

completed a Heterochromatic Flicker Optometry tests (HCFP). For the design, 

procedure and rationale of this test, see Chapter 2, Section 7.3. Participants 

adjusted the flicker for stimuli chosen randomly from the experimental set. In 

total, 8 – 10 reliable measurements were recorded (after the outliers were 

discarded) and averaged to use as an elevation angle for the next task. 

After the procedure, the threshold task commenced. 

Threshold measurements were obtained using a delayed match-to-sample task 

(the same design used in the EEG experiment; see Chapter 3). 

There were 12 experimental conditions overall, with three WM load levels for 

each stimulus class (see Table 11). Twelve staircases, one for each condition, 

controlled through Palamedes toolbox (Kingdom & Prins, 2009) were interleaved 

in the procedure. Each staircase controlled the stimulus intensity for a given 

condition. The intensity was defined as the DKL radius (r).  
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Table 11 Summary of experimental conditions. Numbers in the table (1 – 12) correspond to 
condition numbers. There were 3 levels of WM load for each of the 4 DKL conditions. 

 

 

Each staircase was terminated after 35 trials. Participants were instructed to 

remember one, two or three abstract shapes shown sequentially, one at a time. 

After a blank interval (maintenance delay), a probe that either matched the 

remembered items (a match probe) or one that was different to the remembered 

shapes (a mismatch probe) was presented. Participants responded whether the 

probe was the same or different from previously presented shapes (see Figure 39 

for trial outline). Participants were told to guess if they were not sure of the 

answer, forgot the stimuli, or did not see well due to low contrast. This task 

design probes working memory by requiring participants to hold presented 

stimuli in memory and later prompting them to make a comparison between the 

memory of the stimulus with currently perceived shape. 

Stimulus intensity was adjusted based on participants responses in an adaptive 

fashion. Same intensities were applied to all shapes presented in the trial (i.e. 

intensity of every shape in the encoding array was the same as that of the probe). 

Every intensity level at which the stimuli were presented during the staircase 

were recorded in a file, separately for each staircase. 

The second experimental session involved estimating detection thresholds for the 

stimuli used in the previous session. As mentioned above, this was done so that 

we could normalise WM thresholds to enable a meaningful comparison between 

different DKL directions. Four participants could not be brought back for the 

second session; their data were thus discarded. 
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Detection threshold procedure followed a two interval forced-choice paradigm 

(2IFC; see Chapter 2 for details on different psychophysical paradigms). A 

fixation cross was displayed for 1000 ms; it disappeared for the first interval, 

lasting 600 ms; an 800 ms delay with fixation cross was next, followed by 

another interval lasting 600 ms. One of the two 600 ms intervals contained a 

BORT shape. Participants were required to respond whether the shape appeared 

in the first or the second interval using a button box. They were also instructed to 

guess if they were not sure of the answer. The control of the stimulus intensity 

was based on participants’ responses and was adjusted adaptively, just like in the 

WM threshold procedure. 

 

Figure 39 Two interval forced-choice procedure (2IFC) used to measure stimulus detection 
thresholds. 

After all staircases were finished, logistic functions were fitted to data to obtain 

detection thresholds, i.e. the stimulus intensity (expressed in DKL radius r) at 

which the probability of correct answer for that individual was 75%. The 

detection threshold of each DKL direction was then used to normalise staircases 

obtained in the previous section. This was done as follows: each staircase step 

was divided by the detection threshold value of the corresponding DKL direction. 

Subsequently, the logistic function was fitted to these normalised staircases to 

obtain normalised WM threshold, i.e. the stimulus intensity (expressed in DKL 
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radius r) at which the probability of correct answer for that individual was 75%. 

In other words, WM thresholds that we are discussing after they are normalised 

are expressed in multiples of detection threshold. 

Additionally, the second session also served as an opportunity to obtain 

“correcting” threshold measurements for each participant. For every participant, 

some WM thresholds could not be estimated during the first session, or the 

threshold was likely to be a result of incorrect sampling. In the former case, there 

were instances where for certain conditions participants did not reach 75% 

accuracy threshold. In the latter case, upon inspection of the logistic fits, it was 

apparent that for certain conditions contrast limits set prior to the experiment 

were either too low or too high for a given individual. For example, if the upper 

contrast limit was too low for a given participant, staircase procedure would end 

up sampling intensities close to the upper limit. As a result of this, it was likely 

that the threshold value was underestimated and should have been higher. 

Stimulus limits would be thus adjusted for that participant in the correcting 

session. 

On average, 6 out of 12 conditions had to be repeated per participant. WM 

threshold estimation proved to be therefore problematic practically, at least with 

the adaptive procedure used here. This qualitative observation can be perhaps 

attributed to considerable individual differences between participants in terms of 

WM thresholds. Using a common set of contrast limits within which the 

experimenter expected the threshold to be was counterproductive and led to the 

problems described above. Note that estimating detection thresholds using 2IFC 

task did not produce similar problems. It is therefore apparent that WM 

thresholds might be more variable due to more cognitive nature of the task, as 

the source of individual differences might lie beyond perceptual factors alone. 

For 6 participants, even after running the second session, reliable WM threshold 

estimates for some conditions could not be achieved. This was usually the case 

for load 3 condition, especially when defined by S – [L+M] (S-cone) signals. These 

participants were omitted from the ANOVA analysis due to these missing values. 

Notably, Jennings and Martinovic (2014) also had to reject a number of 
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participants due to a difficulty estimating discrimination thresholds for this DKL 

direction. However, as noted above, other conditions were also problematic in 

our task. 

19.1.5. Analysis 

Normalised thresholds were analysed using within-subject, repeated measures 

ANOVA with factors: DKL direction (4 levels: S-cone, L – M, Luminance, mixed 

signals) and WM load (3 levels: Load 1, Load 2, Load 3). Greenhouse-Geisser 

corrections were applied where necessary. 
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20. Results 

Overall results are presented in Figure 40 below. 

 

Figure 40 Multiples of detection thresholds plotted for 4 DKL conditions, at 3 levels of WM load. 
Error bars are 95% confidence intervals. 

There was a main effect of DKL direction (F(1.38, 11)=14.8, p=.002, η²=.65). Post-

hoc tests using Bonferroni correction indicated that luminance WM thresholds 

were lower than S-cone (p<.001), L – M (p=.005) and mixed signal thresholds 

(p=.002). There was no significant difference between S-cone, L – M or mixed 

signal conditions. 

Thresholds were overall lower for luminance than for S-cone, L – M and mixed 

signal conditions (F(1.38)=14.8, p=.002, η²=.65). Thresholds also increased with 

increasing WM load (F(2, 16)=136, p<.001, η²=.94). These effects were qualified by 

an interaction between the DKL direction and WM load (F(2.12, 17)=9.76, p=.001, 

η²=.55). Post-hoc tests using Bonferroni correction indicated that thresholds 

increased with WM load for all DKL directions. It appears that thresholds 

measured for luminance were, however, lower than the chromatic and mixed 
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conditions at all WM loads, with the exception of load 1, suggesting that 

luminance thresholds remained to be relatively low despite an increase in WM 

load. This difference was most pronounced at WM load 3 (see Figure 41 below). 

 

Figure 41 WM thresholds at Load 3, for each DKL condition. Red lines are mean WM thresholds 
across observers, coloured shaded areas are 95% confidence intervals, and error bars on top and 
bottom of the shaded area correspond to 1 SD. Each dot represents observer’s WM threshold, 
estimated using the QUEST procedure and normalised to multiples of detection threshold for 
that participant. 
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21.  Control experiments 

As mentioned above, in order to obtain a sufficient signal-to-noise ratio while 

controlling for stimulus saliency, same/different discrimination thresholds were 

obtained for the EEG experiment and the resulting contrasts were subsequently 

scaled up. A possible shortcoming of this approach is that we did not estimate 

slopes of the psychometric function. During the fitting procedure to obtain the 

thresholds, it was assumed that the slopes did not differ between the conditions. 

However, if psychometric functions underlying the performance in our WM task 

have different slopes for different conditions, there is a possibility that by 

increasing contrast, the assumption of equivalent saliency of the stimuli was 

violated. Therefore, we decided to perform additional, control experiments to 

investigate how the slope of the psychometric function differs depending on the 

stimulus type (chromatic vs achromatic) as well as the task type (detection vs 

same/different discrimination task). In line with the previous research, we 

expected that the slope will be steeper for luminance-defined shapes than for L – 

M and S-cone directions (Eskew, McLellan & Giulianini, 1990). While the slope 

measurements vary for the chromatic stimuli, luminance tends to have 

consistently higher (steeper) slope at detection (See Eskew et al., 1999 for a 

review). In relation to Experiment 1, it is important to demonstrate that the 

slopes do not differ between different visual channels in the same/different 

discrimination task using our stimuli. Showing otherwise could potentially 

undermine the claim that the stimuli in our task were matched for saliency. For 

example, if same/different discrimination for luminance-defined stimuli was 

characterised by a steeper slope of the psychometric function than chromatic 

condition, this difference could be magnified due to the scaling procedure, thus 

making the luminance-defined shapes much easier to discriminate. 
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22. Experiment 2 – shape detection thresholds  

22.1. Methods 

3 participants (two naïve to the experiment and one author of the study) 

performed a 2IFC task. Testing conditions were the same as in other experiments. 

We used Psychtoolbox routines to control the flow of the experiment and Visage 

Toolbox to control stimulus properties. Shapes were again defined in different 

directions of DKL colour space to create shapes isolating the luminance 

mechanism and two opponent-chromatic mechanisms (L – M and S-cone). The 

additional mixed signal condition, which excited both luminance and chromatic 

pathways, was also used. 

The task used a method of constant stimuli: each visual input condition was 

presented at 10 stimulus levels, with 100 trials per stimulus level (1000 trials per 

visual input condition or 4000 trials overall). Stimulus intensity was varied by 

varying DKL radius, while other DKL parameters remained unchanged. 

The condition and stimulus level presented in each trial was randomized. The 

task followed the same procedure as in detection threshold measurement in 

experiment 1, i.e. the 2IFC task (see section 19). After the second interval finished 

(which was signified by the fixation cross changing colour from white to black), 

participants responded with a button press whether the shape was present in the 

first or second interval. 

As explained before (see section 19), it is impossible to compare thresholds across 

different DKL directions directly as they do not share a common metric. To allow 

such comparison, we have normalised detection thresholds in the following 

manner: once the task has finished, we fitted a logistic PF to individual 

conditions using Palamedes Toolbox routines to obtain DKL radius that led to 

75% performance level. We then divided stimulus level units by these detection 

thresholds and fitted logistic function again individually to each condition to get 

the threshold and slope value in converted units. 
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Once the stimulus levels were normalised for each DKL direction, a combined fit 

to all conditions was performed. 

To reduce the number of free parameters (which is required to perform a 

combined fit to more than one condition), threshold and guess rates were fixed 

to the value obtained from individual fits, while the lapse rates were constrained 

(i.e. the fit was performed, but it would fit the same value to all conditions). Only 

slope values were unconstrained (i.e. we fit different value to each condition). 

Bootstrap analysis was performed to estimate errors of the parameter estimates in 

the fit. 400 simulations were performed. 

To formally check whether the observed differences were significant, we 

performed a statistical model comparison, again using Palamedes toolbox 

routines. The routine is based on comparing two models (fuller and lesser) to see 

which one better fits the data. The fuller model assumed that the thresholds, as 

well as the lapse rates, are identical between conditions and that the guess rate 

equals 0.5 for all conditions. The lesser model was identical, except it made an 

additional assumption that slopes are identical between conditions. The 

assumptions of the model that turned out to be the best fit for the experimental 

data were verified using a goodness-of-fit test. 

22.2. Results 

The results indicate that in two out of three participants’ slope of PF for 

luminance-defined shapes differed significantly from other conditions (see Figure 

42 below). 



216 

 

 

Figure 42 Table at the top shows results of model fits for the 2IFC detection threshold task. 
Figure below depicts a comparison of slopes of the psychometric function for different post-
receptoral mechanisms (left) fitted to data derived from shape detection task (right). 
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23. Experiment 3: Same/different shape 
discrimination thresholds 

23.1. Methods 

Additional same/different discrimination threshold task with one participant was 

performed to see if slopes are similar to those obtained from detection threshold 

data. 

All procedures, routines and analyses are the same as above. The paradigm itself 

differs however in that this time participants are presented with two shapes in a 

succession, which could be either two identical shapes or two different shapes. As 

soon as the second shape disappears, the participant responded whether the 

shapes were same or different using a button press. 

23.2. Results 

The model comparison indicated that slopes did not significantly differ between 

conditions. Although not significant, S-cone tended to have a steeper slope than 

other DKL conditions. Interestingly, if scaling the contrast up would exaggerate 

differences between DKL conditions and thus violating the saliency, we should 

expect S-cone performance to be superior in comparison to other conditions, 

which was not the case. 
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Figure 43 Comparison of slopes of the psychometric function for different post-receptoral 
mechanisms (left) fitted to data derived from shape discrimination task (right). 
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24. Discussion 

The current set of experiments aimed to explore contributions of chromatic and 

achromatic channels to visual WM using psychophysical methods. We used a 

delayed match-to-sample task with varying WM load in order to measure visual 

working memory thresholds in response to chromatic and achromatic 

(luminance) shapes. We predicted that encoding of luminance shapes into WM 

will be more efficient than chromatic shapes, reflected in lower WM thresholds. 

The results confirmed our predictions. Encoding of luminance shapes produced 

lower thresholds than achromatic stimuli. Importantly, thresholds in response to 

both chromatic and achromatic stimuli increased with increasing WM load, but 

despite this, threshold increase for luminance was less severe. This suggests that 

WM representation remains robust even at higher WM loads. 

Mullen & Beaudot (2002) reported lower discrimination thresholds for 

achromatic compared to chromatic stimuli. We report similar pattern in our task, 

suggesting that similar mechanisms are responsible for perceptual as well as 

working memory comparisons (Hyun et al., 2009). Mullen & Beadot (2002) note 

that global shape perception is only moderately worse when performed by the 

chromatic system. Our study shows, however, that at higher WM loads the 

difference between chromatic and achromatic mechanisms is becoming more 

pronounced. In other words, while at perceptual level (and low WM loads), 

chromatic stimuli perform only moderately worse than luminance, chromatic 

signals seem less efficient in sustaining multiple memory representations for a 

prolonged period. 

Unlike Mullen and Beadot, we did not find that the two chromatic mechanisms 

tested (S-cone and L – M) differed in terms of thresholds. In their experiment, the 

blue-yellow mechanism (which is roughly equivalent to our S-cone condition) 

performed worse than the red-green mechanism (L – M). There was an indication 

that at L – M performed better than S-cone at load 2, but, unlike luminance, both 

chromatic mechanisms performed equally at higher WM loads. This suggests that 
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L – M and S – (L+M) cone-opponent mechanisms are similarly efficient in terms 

of WM processing. 

Our study is in line with previous literature showing that increasing WM load is 

associated with an increase in delayed discrimination thresholds and shallower 

slope of the psychometric function in response to single stimulus features as well 

as shapes (Bays & Husain, 2008; Palmer, 1990; Salmela, Lahde, & Saarinen, 2012; 

Salmela & Saarinen, 2013). We extend these previous findings by showing that 

while this is true for all post-receptoral mechanisms, the luminance channel 

remains comparatively more efficient than chromatic mechanisms despite the 

increase in a number of shapes encoded. 

Importantly, the pattern of results in the current experiment is analogical to 

performance in a WM task in conditions where the memory probe was different 

than stimuli in the encoding array (i.e. mismatch condition; see Chapter 3; see 

also Figure 44 below for replotted results of the previous experiment).  

 

Figure 44 Results from a delayed match-to-sample task with fixed stimulus contrast from the 
previous experiment (see Chapter 3). Error bars represent 95% confidence intervals. 

For mismatch, performance dropped with increasing WM load, however, the loss 

of accuracy was less severe for luminance-defined stimuli compared to L – M and 

S – (L+M) conditions. One of the shortcomings of the EEG experiment was that 

the stimuli used in the main experiment were presented at suprathreshold levels. 
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While at the level of detection thresholds the contribution of different channels 

is largely independent, at suprathreshold levels these mechanisms interact in a 

non-linear fashion (Kulikowski, 2003). Showing similar behavioural effects at a 

near-threshold level further strengthens our conclusions regarding the special 

nature of luminance inputs in WM. In summary, the results complement findings 

from the delayed match-to-sample task with fixed thresholds (see Chapter 3), 

suggesting that the smaller decrease in accuracy for luminance at higher loads 

could be explained in terms of better efficiency of luminance inputs to working 

memory. 

One shortcoming of the current experiment is that we did not discriminate 

between match and mismatch probes like it was done in the EEG experiment. 

The fact that the threshold data closely follows the pattern found for mismatch 

condition might suggest that the luminance advantage for higher WM loads is 

present at near-threshold level. At suprathreshold, the pattern can be also 

observed at mismatch. Future experiments should discriminate between match 

and mismatch to support this conclusion. 

The current experiment also addresses another potential shortcoming of the EEG 

experiment. Specifically, using suprathreshold contrasts obtained by scaling 

same/different discrimination thresholds might have violated the saliency 

between stimuli classes. This would be the case if the slope of the psychometric 

function underlying discrimination performance at thresholds was considerably 

different between stimuli classes. While we concluded that the saliency 

procedure was appropriate based on the results of the previous experiment 

(different effects for match and mismatch conditions – see Chapter 3), this study 

aimed to verify the procedure further by measuring slope differences between 

luminance and chromatic conditions in detection and discrimination tasks. 

As expected, we found that luminance produced steeper function than chromatic 

stimuli in the detection task, which is consistent with previous findings (Eskew, 

McLellan & Giulianini, 1990). However, slopes in the discrimination task did not 

differ between the conditions. This provides support for the use of scaled 

same/different discrimination thresholds to match stimuli in saliency. The main 
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problem with this interpretation, however, is that it is based on the data from one 

participant only. Therefore, more data is needed to confirm this observation and 

warrant firm conclusions. 

The current results do not imply that the interactions between luminance and 

chromatic mechanisms are unimportant to WM performance. Further 

experiments might explore the nature of interactions between the channels in 

WM task. Recently, the focus of vision research shifted to the exploration of these 

complex interactions, with some interesting results (Shevell & Kingdom, 2008; 

Clery et al., 2013; Jennings & Martinovic, 2014). Despite this, however, our 

experiment provides evidence that, when considered separately, chromatic and 

achromatic mechanisms do not contribute to WM in a symmetric fashion. 

Insights into interactions between the mechanisms can be explored at near-

threshold levels as well (Jennings & Martinovic, 2014). In our study, we 

attempted to do so by introducing a “mixed” stimuli in this experiment (which 

was designed to excite chromatic as well as luminance mechanisms). However, 

the interpretation of the result is currently limited. The “mixed” condition 

produced results similar to S-cone and L – M conditions, also revealing higher 

thresholds than luminance, especially at higher WM loads. This would suggest 

that performance for this condition was driven predominantly by chromatic, 

rather than luminance information. Indeed, contrasts calculated for chromatic 

and achromatic mechanisms for each condition (averaged over all participants 

and WM load levels) confirm this observation (see Table 12). For the mixed 

condition, luminance L+M contrast was – 0.0157 and chromatic L – M contrast 

was – 0.0621, making it similar to red-green isoluminant condition, which was – 

0.007 for luminance (L+M) and 0.0569 for L – M contrast. The luminance 

condition, on the other hand, had 0.1455 luminance contrast, and – 0.0002 L – M 

contrast. In other words, the luminance contrast in the mixed condition was at 

similar levels as in the isoluminant red-green condition, supporting the 

interpretation that performance in response to this class of stimuli was driven 

predominantly by chromatic information. 
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Table 12 Weber contrasts for achromatic and chromatic mechanisms for each condition, derived 
from L, M and S contrasts. 

 

Previous studies showed that addition of luminance information benefits object 

recognition over chromatic-only stimuli (Kosilo et al., 2013; Martinovic et al., 

2011). It is difficult to compare this design with our experiment, as their study 

introduced high-level factor by asking participants to discriminate between 

objects and non-objects. Interestingly, however, performance between mixed and 

chromatic stimuli produced equivalent results in response to non-objects. This 

would mean that addition of luminance information to chromatic stimuli 

interacts with high-level cognition (here, object recognition), but in a task 

without such high-level factors, the simple addition of luminance signal does not 

appear to benefit shape discrimination. 

Our mixed signal stimuli only tested a single luminance elevation angle. It is 

possible that luminance benefits can become apparent only at certain luminance 

levels. An approach adopted by Jennings & Martinovic (2014) might be more 

appropriate to address this question. Jennings and Martinovic tested several 

levels of luminance elevation and showed that luminance and chromatic 

mechanisms interact in a complex fashion. To find out more about the 

interactions between luminance and chromatic mechanisms in a delayed match-

to-sample task and their contribution to WM processing, we suggest that the 

future studies should incorporate stimuli with varying levels of chromatic and 

achromatic component (e.g. Jennings & Martinovic, 2014). 

In summary, threshold measurements suggested that luminance signals carry an 

advantage during WM processing over chromatic signals. This is especially 

pronounced when more stimuli have to be kept in memory. Thus, despite the 
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increase in task difficulty, the threshold increase expected to occur with 

increasing WM load is less evident for shapes isolating luminance mechanism. 

Importantly, these results also complement the finding from the delayed match-

to-sample task with fixed, scaled-up same/different discrimination thresholds 

(see Chapter 3), suggesting that the smaller decrease in accuracy for luminance at 

higher loads could be explained in terms of better efficiency of luminance inputs 

to working memory. More broadly, the study further confirms that interactions 

between perceptual processing and working memory have an impact on 

performance (Haenschel et al., 2007). Furthermore, isolating post-receptoral 

mechanisms to study working memory encoding is a fruitful strategy, helping to 

extend the scope of approaches to working memory. This study also 

demonstrates that using methods traditionally reserved for vision science can be 

effectively applied to study cognitive functions, especially in the light of a 

recently established linked between perception and memory (Pasternak & 

Greenlee, 2005). 
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Chapter 5 

A pilot study of luminance processing and 
visual working memory in schizophrenia 

 

 

 

Schizophrenia is a chronic disorder with a prevalence of about 1% worldwide 

(Bromet & Fennig, 1999). It is caused by a collection of complex factors 

interacting with typical brain development, including genetic, environmental and 

developmental factors (Lewis & Lieberman, 2000; Millan et al., 2016a). The 

history of psychiatric diagnosis of schizophrenia can be traced back to a Jewish 

Czech psychiatrist Arnold Pick (1851 – 1924), who was first to use the term 

“dementia praecox” to describe his patient (Hoenig, 1995). The term became 

popular and regularly used as a diagnosis after German psychiatrist Emil 

Kraepelin (1856 – 1926) included it in his famous psychiatry textbook published 

in 1899 (Greene, 2007; Kraepelin, 1902). The later work by Eugen Bleuler (1857 – 

1939) helped to crystallise the clinical definition of the disorder (Berrios, Lugue & 

Villagran, 2003). Bleuler also helped to establish the term “schizophrenia”, which 

replaced the “dementia praecox” (Bleuer, 1908; Bleuler, 1911). Later work by Kurt 

Schneider further contributed to characterising the disorder, mostly by his 

attempts to differentiate schizophrenia more clearly from other conditions by 

developing a list of symptoms typical of the disorder (so-called “first-rank 

symptoms”; Schneider, 1959). Currently, symptoms that characterise the disorder 

are categorised as positive and negative symptoms. The former include 

hallucinations, delusions, thought disorders and other perceptual abnormalities, 

while the latter refers to social withdrawal and emotional bluntness. 
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Figure 45 Top: title page of Bleuler’s 1911 article on dementia praecox, where he referred to the 
disorder as “group of schizophrenias”. Image: H. P.Haack, under Creative Commons licence (CC 
BY – SA 3.0). Bottom: title page of the 1912’s translation of Kraepelin's “Lehrbuch der Psychiatrie”, 
originally published in 1899 (Image: https://ia802703.us.archive.org). 

Central to this thesis are findings that demonstrate a range of deficits in visual 

perception (Butler, Silverstein, & Dakin, 2008) as well as cognitive impairments 

(Millan et al., 2016a), including working memory (Goldman-Rakic, 1994). These 

appear to occur in addition to positive and negative symptoms described above. 
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It has been suggested that low-level perceptual deficits can actually contribute to 

some cognitive impairments (Javitt, 2009b). In this chapter, I will describe both 

cognitive and perceptual deficits in more detail. In terms of cognition, I will focus 

on visual working memory. In terms of perception, I will mostly focus on the 

apparent deficits in processing luminance information and – more generally – on 

magnocellular deficit theory of schizophrenia (Butler et al., 2005). Further, I will 

argue that the perceptual deficits can be linked to WM deficits (Haenschel et al., 

2007); more specifically, impaired luminance processing might explain 

diminished visual working memory performance in patients. 
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25. Cognitive deficits in schizophrenia 

While cognitive deficits are widely recognised and reported (Javitt, 2009b), they 

are not regarded as a clinical feature of the disorder (Barch et al., 2013; Tandon et 

al., 2013). Furthermore, they are not currently a target for medication 

development (Millan et al., 2016b)9. Nevertheless, several deficits have been 

identified, including working memory, attention, memory, and speed of 

processing (see Nuechterlein et al., 2004 for a review).  

WM memory dysfunction is regarded as one of the most prominent features of 

the disorder, which adversely affects day-to-day functioning (Forbes, Carrick, 

McIntosh, & Lawrie, 2009; Goldman-Rakic, 1994; Lee & Park, 2005; Silver et al., 

2003). A meta-analysis showed that this deficit cannot be explained by IQ 

differences between patients and healthy controls (Forbes et al., 2009). It also 

appears that there is no clear link between WM and the use of antipsychotic 

medication or illness duration, although, as Forbes et al. note, this interpretation 

is limited by the heterogeneity of the studies included in the analysis. 

Importantly, however, a number of studies demonstrating impairment in WM in 

patients versus controls included in Forbes’ meta-analysis did not show evidence 

of publication bias. There is also some indication that visuospatial WM deficits 

are more consistent across studies than verbal working memory (Lee & Park, 

2005), though a later meta-analysis did not found a difference between 

impairments of WM from different domains, including phonological, visuospatial 

and central executive working memory (Frobes et al., 2009). At the same time, 

impairments in spatial working memory compared to healthy controls appear to 

be consistent (Piskulic, Olver, Norman, & Maruff, 2007). Taken together, 

working memory deficits in schizophrenia can be regarded as a core feature of 

the disorder. This impairment extends to different modalities, including visual 

working memory, which is of particular interest to this thesis. In the next section, 

                                                 
9 This is not to say that there are no initiatives that attempt to change the current state of affairs – for 
example, the CNTRICS initiative (Carter & Barch, 2007) aims to identify cognitive impairments that can 
become a target for treatment development, as well as devise measures that will test cognitive 
functioning in individuals with schizophrenia using methods derived from cognitive neuroscience. 
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I will outline perceptual deficits, and I will further argue that they might 

contribute to the reported impairments in visual working memory.  

25.1. Perceptual and sensory deficits in 
schizophrenia 

In addition to cognitive impairments, perceptual deficits received a great deal of 

attention in the recent years (Butler, Silverstein, & Dakin, 2008). While one of 

the most prominent symptoms of schizophrenia-related to perception involves 

visual hallucinations, much less “dramatic” visual impairments in the visual 

domain have been documented over the years. Interestingly, Bleuler in the 1950’s 

explicitly stated that sensory processing is intact in schizophrenia, and any self-

reported impairments stem from altered top-down processing. More specifically, 

Bleuler believed that patients would “complain” about their disturbances, but he 

attributed these complaints to the emotional state of the individual. This view 

has been highly influential, however, eventually it was challenged by research 

showing that perception is not as intact as previously thought. A clear example of 

this are case studies described by (McGhie & Chapman, 1961). McGhie and 

Chapman quote a number of patients who describe their experiences that point 

to abnormalities in vision and hearing: 

(Patient 17) – Colours seem to be brighter now, almost as if they are 

luminous. When I look around me it’s like a luminous painting (…) 

(Patient 23) – Sometimes I feel alright then the next minute I feel that 

everything is coming towards me. I see things more than what they really 

are. Everything’s brighter and louder and noisier. 

(Patient 15) – I seem to be noticing colour more than before (…) 

The colours of things seem much clearer and yet at the same time there 

is something missing. The things I look at seem to be flatter as if you were 

looking just at a surface (…) 

- McGhie & Chapman, 1961, p. 105 
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Other case studies have also listed similar disturbances in the visual domain, 

including disturbances in the perception of size, seeing things as if they were flat 

or even apparent need to bind individual elements to form a coherent percept: 

Case 22 

I have to put things together in my head. If I look at my watch I see the 

watch, watchstrap, face, hands and so on, then I have got to put them 

together to get it into one piece. 

- Chapman, 1966, p.229 

Such first-person accounts contributed to questioning the traditionally held view 

that perception is intact in the disorder. Javitt (2009) argues that another factor 

that brought perceptual impairments into focus were new advances in cognitive 

sciences. For example, Baddeley and Hitch’s model of working memory (Baddeley 

& Hitch, 1974) emphasized the role of the central executive system, but at the 

same time, he recognised that the low-level, bottom-up aspects of the memory 

system are capable of independently storing sensory information. Such 

conceptualisation of cognitive function helped to provide a framework that 

proved to be influential on cognitive theories in schizophrenia as well (Javitt, 

2009b). 

A number of disturbances in visual processing have been recognised by 

contemporary research. Individuals with schizophrenia demonstrate decreased 

sensitivity to contrast (Butler et al., 2005, 2009; Calderone et al., 2013; Kéri, 

Szamosi, Benedek, & Kelemen, 2012; Slaghuis, 1998), spatial frequency 

(Khosravani & Goodarzi, 2013; Antígona Martínez et al., 2008; O’Donnell et al., 

2002) and motion (Chen, Nakayama, Levy, Matthysse, & Holzman, 2003; Yue 

Chen, Levy, Sheremata, & Holzman, 2004; Kim, Wylie, Pasternak, Butler, & 

Javitt, 2006). Moreover, as pointed out by Yoon, Sheremata, Rokem, and Silver 

(2013), post-mortem studies have also indicated abnormalities in brain structures 

related to visual processing, though the findings are not always consistent. More 

specifically, one study has indicated an increased neuronal density in occipital 

Brodmann’s area 17 (Selemon, Rajkowska, & Goldman-Rakic, 1995). However, this 

was not confirmed by later post-mortem studies. Although they did demonstrate 
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a reduction in a total number of neurons and a smaller cortical area allocated to 

visual perception, however, the overall neural density was not affected (Dorph-

Petersen, Pierri, Wu, Sampson, & Lewis, 2007). 

Importantly, there is some evidence suggesting that visual impairments might be 

clinically relevant. For example, Klosterkötter et al. (2001) assessed a sample of 

patients with prodromal symptoms and found that disturbances in visual 

perception were among factors that strongly predicted progression to the 

disorder. Such perceptual disturbances, which include sensitivity to light and 

changes in face perception of one’s own face among others, are considered to be 

linked to sensory processing (Huber & Gross, 1989; Schultze-Lutter et al., 2007). 

Similarly, visual disturbances in children of parents with schizophrenia or even 

disturbances in children in the general population also appear to be associated 

with later development of schizophrenia (Schiffman et al., 2006; Schubert, 

Henriksson, & McNeil, 2005; Silverstein et al., 2015). Such deficits impact 

functional outcome of the affected individuals, i.e. their everyday functioning is 

impaired as well (Green, Hellemann, Horan, Lee, & Wynn, 2012; Rassovsky, 

Horan, Lee, Sergi, & Green, 2011). 

In summary, cognitive as well as perceptual disturbances appear to be prevalent 

in schizophrenia. Researchers are currently emphasizing that the schizophrenia-

related changes in visual processing are especially worth pursuing, given our 

advanced understanding of the human visual system, from anatomy, neural 

circuitry and functional assemblies to behaviour (Silverstein & Keane, 2011; Yoon 

et al., 2013). In other words, visual impairments might provide a window into 

some of the brain mechanisms involved in the disorder. Interestingly, visual 

deficits seem to impact other cognitive functions. Studied examples include 

reading (Revheim et al., 2006), object processing (Doniger, Foxe, Murray, 

Higgins, & Javitt, 2002) emotional processing (Butler et al., 2009; Turetsky et al., 

2007), as well as working memory (Haenschel et al., 2007). In subsequent 

sections, I will focus on the relationship between early visual processing and 

working memory. The aim of this approach is to establish whether impairments 

in visual working memory can be a consequence of altered perceptual processing. 
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25.2. Interaction between visual perception and 
working memory in schizophrenia 

As outlined above, it is evident that perceptual deficits in the visual domain, as 

well as WM impairments, are both core features of the disorder. It has been 

suggested that perception can contribute to WM impairments (Haenschel et al., 

2007; Haenschel & Linden, 2011; Tek et al., 2002; Lee & Park, 2002; Park, 

Swisher, & Knurek, 2001).  

One of the consequences of this view is that the research must focus on the 

earliest, encoding stages of WM as well as on perceptual processing of the 

stimulus in general (Haenschel et al., 2007). This marks a diversion from earlier 

research. Typically, studies have focused on cognitive processing supposedly 

mediated by activity in the prefrontal cortex and differences between patients 

and controls. Consequently, WM impairments tended to be mainly attributed to 

dysfunctional prefrontal (Barch et al., 2001; Callicott et al., 2000; Manoach, 

2003), rather than sensory networks. Consequently, it was the maintenance and 

retrieval stages of WM that received the most attention. However, as Lee & Park 

(2005) suggested, subdividing WM into three, temporally-defined stages can 

potentially help to elucidate processes that are contributing to successful 

performance. Indeed, such approach turned out to be beneficial. Studies that did 

differentiate between WM stages found that the interaction with perceptual 

processing most likely takes place during early encoding. For example, Haenschel 

et al. (2007) recorded EEG during WM at all stages from controls and 

participants with early-onset schizophrenia. They found that modulation of the 

early event-related components (in particular, P1 component) was sensitive to the 

number of stimuli kept in memory (i.e. WM load). Importantly, modulation of 

these components correlated with better WM performance in control group. On 

the other hand, the P1 in the patient group was largely attenuated, and no 

correlation with behaviour could be demonstrated. 

Another study (Tek et al., 2002) demonstrated that perceptual processing is the 

main culprit behind WM impairments. They suggested that perceptual deficits 

manifest themselves during WM encoding, which was demonstrated using a 
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delayed match-to-sample task. Participants were presented with two shapes, 

shown consecutively. A probe was presented after a varying time delay. In one 

condition participants had to respond whether the probe matched one of the 

presented shapes, thus testing object-based working memory. In other condition, 

they responded whether the location was the same or different, thus testing 

spatial working memory. Tek et al. showed that increasing stimulus presentation 

for patients allowed for more efficient encoding, thus improving performance on 

the task. At the same time, memory for the spatial location was insensitive to 

stimulus presentation length. This finding is line with other studies (e.g. 

Hartman, Steketee, Silva, Lanning, & McCann, 2003) which also showed that 

longer stimulus presentation allows individuals with schizophrenia to overcome 

some impairments in WM performance. In their study, control and patient 

groups were matched in terms of stimulus presentation time needed to reach 

optimal performance levels. Such manipulation resulted in lack of group 

differences between patients and participants. Further, a meta-analysis (Lee & 

Park, 2005) found that the length of WM delay (i.e. time period between the end 

of stimulus presentation and memory retrieval) does not appear to influence 

effect size in studies reporting WM deficits in schizophrenia patients. According 

to Lee and Park (2005), it is important to bear in mind however that 

demonstrating the importance of encoding does not necessarily indicate that 

maintenance and retrieval stages of WM are not affected in schizophrenia. 

In other words, these studies highlight the importance of accurate perceptual 

encoding in working memory and they suggest that impaired perceptual 

processing likely contributes to WM impairment in patients compared to 

controls. 

Importantly, this is in line with studies advocating the view that perception and 

working memory share similar mechanisms (Harrison & Tong, 2009; Pasternak & 

Greenlee, 2005) since such view implies that close interactions between the two 

systems must be taking place (Gao et al., 2011). One way of testing such 

interactions is to take advantage of visual science methods to investigate how 

early perceptual mechanisms contribute to working memory. In the last two 

experiments described in this thesis, it was demonstrated that luminance 
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information appears to contribute to working memory, resulting in better 

behavioural performance. In the next section, I will argue that this approach 

might also be used when studying working memory processing in schizophrenia 

to pin down the mechanisms through which perception interacts with working 

memory in this disorder. 

25.3. Luminance processing in schizophrenia: 
relevance to working memory performance 

In our previous study, it was established that perception contributes to WM 

performance in a healthy sample of participants. We investigated whether 

luminance and colour-opponent channels differentially contribute to WM 

performance. We showed that encoding of luminance-defined shapes led to 

better performance over isoluminant shapes, suggesting that luminance signals 

are beneficial for WM performance, possibly through interactions with WM 

processing during early encoding. In the current study, we aimed to see whether 

a similar pattern will be evident in patients with schizophrenia. Investigating 

luminance processing in schizophrenia is interesting for a number of reasons. 

Firstly, as mentioned above, perceptual deficits in schizophrenia are widely 

reported; since in a previous experiment, we showed that luminance-defined 

stimuli are beneficial for WM encoding, investigating whether this aspect of WM 

processing in schizophrenia is intact is warranted. 

Secondly, some studies attribute perceptual deficits in schizophrenia to 

impairments in the dorsal visual stream (Foxe, Doniger, & Javitt, 2001), while 

others argue that the impairment might be traced even further back, to a 

subcortical level, namely the magnocellular visual pathway (Butler et al., 2001; 

Kéri, 2008; Antígona Martínez et al., 2008; Schechter et al., 2005). Notably, 

magnocellular pathway receives predominantly luminance inputs. If the 

luminance processing via magnocellular pathway indeed contributes to 

perceptual abnormalities in schizophrenia, then one would expect that the 

luminance – advantage that we demonstrated in healthy participants during a 
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WM task will be affected in schizophrenia. I will now describe the research 

suggesting specific magnocellular impairment in the disorder. 

To support the claim of impaired magnocellular processing in schizophrenia, a 

number of studies have shown that the processing of stimuli designed to 

preferentially stimulate magnocellular pathway appears to be impaired in the 

disorder (Butler et al., 2001, 2008; Butler & Javitt, 2005; Javitt, 2009a; Kim, 

Zemon, Saperstein, Butler, & Javitt, 2005; Antígona Martínez et al., 2008). One 

study (Butler et al., 2005) used a combination of EEG, psychophysics and 

behavioural measures to provide evidence for impaired magnocellular function. 

In respect to the EEG, this study has used a steady state visual-evoked potential 

method (ssVEP). This method allows for isolation of stimulus-related EEG signal 

by extracting activity constrained only to frequency range at which the stimulus 

is continuously modulated (Butler & Javitt, 2005). The luminance contrast was 

manipulated to differentially engage magno and parvocellular pathways. Their 

study took advantage of the fact that magnocellular pathway is most sensitive to 

low-frequency stimuli and it saturates at higher contrast levels, while the 

parvocellular response does not saturate (Tootell, Hamilton, et al., 1988; Tootell, 

Silverman, et al., 1988). Hence, presenting stimuli at different spatial frequency 

and contrasts can be used to study the differential contribution of these two 

pathways in perceptual processing in schizophrenia (Butler et al., 2001). Thus, to 

isolate magnocellular response, Butler et al. (2005) used a low frequency, low 

contrast stimuli. On the other hand, for the parvo-biased condition, stimulus 

contrast was manipulated around a high contrast level (a contrast “pedestal”), 

which is meant to saturate magnocellular response and thus isolate parvocellular 

responses. The results showed that the evoked potentials recorded from 

individuals with schizophrenia in response to magno-biased stimuli were 

significantly reduced when compared to responses elicited by parvo-biased 

stimuli. This was not the case in the control group. In terms of behavioural 

responses, the researchers have biased processing of the stimuli to the 

magnocellular pathway by manipulating spatial frequency and contrast of the 

stimuli. Butler et al. (2005) analysed contrast gain in both groups (among other 

measures). As expected, the magnocellular contrast gain response was 



238 

 

characterised by an initial steep increase, reaching a saturation point at higher 

contrast levels (Tootell, Hamilton, et al., 1988; Tootell, Silverman, et al., 1988). 

This was true for both groups. However, the schizophrenia group was 

characterised by a shallower slope of the contrast gain function compared to 

controls, indicating impairment in this domain. 

These findings were further supported by later studies using VEPs to test magno-

biased stimuli (Butler et al., 2007; Schechter et al., 2005). Butler et al. (2007) 

used high – density recordings while participants viewed stimuli of varying 

contrast in experiment one and sinusoidal gratings of varying spatial frequency in 

experiment 2. Contrast and spatial frequency were adapted so that stimuli would 

be magno or parvo-biased (see above). The authors looked at the amplitudes of 

the early visual components C1, P1 and N1. They found that the amplitude of 

these components was significantly reduced in response to magno-biased 

conditions in patients, but not in controls. 

Other EEG studies have also suggested magno-specific impairment (Javitt, 

2009b). The P1 component is thought to reflect mostly processing in the dorsal 

stream which receives predominantly magnocellular inputs (Livingstone & 

Hubel, 1988). Therefore, decreased P1 amplitude might be taken as an indirect 

evidence of magnocellular deficit. In line with this, studies showed reduced P1 

response in patients compared to controls in object recognition (Doniger et al., 

2002), WM tasks (Haenschel et al., 2007) and in response to line drawings (Foxe, 

Murray, & Javitt, 2005; Foxe & Simpson, 2002; Foxe et al., 2001; Foxe et al., 

2008). Similar evidence came from the non-clinical population, e.g. with people 

who are at increased risk of schizophrenia (i.e. first-degree relatives of diagnosed 

individuals; Yeap et al., 2006). Furthermore, individuals with a variation of 

dysbindin gene (associated with increased risk of developing schizophrenia; 

Norton, Williams, & Owen, 2006) also demonstrate reduced P1 component 

(Donohoe et al., 2008). 

Another suggestion that the functionally-defined magnocellular pathway is 

impaired in schizophrenia can be inferred from the effects of NMDA antagonists 

on V1 and LGN (Javitt, 2009b). In the 1950’s – 60’s, it was observed that a (then 
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newly discovered) chemical compound phencyclidine (PCP, known also as the 

“angel dust”), as well as ketamine, induce symptoms that resemble both positive 

and negative symptoms of schizophrenia. Both compounds work by acting as 

NMDA antagonists. As Javitt (2009a) points out in his review, NMDA receptors 

mediate non-linear gain, which is characteristic for magnocellular neurons. More 

specifically, magnocellular neurons are characterised by a nonlinear contrast 

response – they start firing at low contrast levels but saturate at higher contrast 

levels. Infusion of NMDA receptor antagonist into primary visual area V1 affect 

this nonlinearity. On the other hand, NMDA antagonists infused into the LGN 

affects the firing of neurons that are likely to be responsible for mediating motion 

detection, thought to be carried by magnocellular neurons as well. In short, 

NMDA seems to affect responses of neurons linked to magnocellular functions 

(Javitt, 2009b). Interestingly, these observations led to a development of an 

alternative hypothesis to the well – known and dominant model of schizophrenia 

which suggested a hyperactivity of dopamine systems contributes to the 

development of the disorder (for a historical overview of the model, see 

Baumeister & Francis, 2002). This alternative model proposed that symptoms of 

schizophrenia are related to dysfunction of NMDA receptors in affected 

individuals rather than overactivity of dopamine systems as such (Javitt & Zukin, 

1991). In line with that, the observation that contrast gain function is affected in 

schizophrenia (for example, Butler et al., 2005, described earlier) might be thus 

accounted for by the NMDA dysfunction. 

To summarise, low-level perceptual deficits have been widely researched in the 

past. The magnocellular theory of schizophrenia attempts to systemise these 

deficits and provide a link between them. However, the theory has been met with 

some criticism (Skottun & Skoyles, 2008a). In the next session, a brief criticism 

of the magnocellular account will be provided and I will try to specify how our 

hypothesis fits into the magnocellular deficit narrative, and how it relates to the 

criticisms that have been put forward. 
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25.4. Investigating luminance – processing in 
schizophrenia in the context of magnocellular 
theory and its criticism 

The question whether we can speak of a specific magnocellular deficit in 

schizophrenia is still (often fiercely) debated. In particular, Scottun and 

colleagues (Skottun, 2013; Skottun & Skoyles, 2008b; Skottun & Skoyles, 2011) 

raise concerns whether the stimuli used in previous studies can separate magno 

and parvocellular responses using variations in contrast and spatial frequency. 

While others disagree with such criticism (Kéri, 2008; Kéri & Benedek, 2007), 

the discussion seems to be ongoing (Skottun & Skoyles, 2008a, 2013). The design 

of our study can overcome these concerns, however, as it is not relying on the 

spatial frequency or contrast levels to engage luminance processing (which in 

turn maps onto magnocellular pathway). Rather, our stimuli are defined using 

the DKL colour space, which allows one to create stimuli that excite post-

receptoral mechanisms of interest (Derrington et al., 1984). 

On the other hand, while not directly critical of the magnocellular hypothesis in 

schizophrenia as such, researchers are suggesting a more generalised visual 

deficit. Such explanation would account for magnocellular-specific impairments, 

without making strong assumptions about an impairment constrained to 

magnocellular functioning (Yoon, Sheremata, Rokem, & Silver, 2013). A similar 

view is also adopted by Skottun & Skoyles (2013), who argue that a general deficit 

related to diminished attention and medication effects accounts for the apparent 

magnocellular dysfunction. 

It is important to note that a magnocellular deficit does not imply that neurons 

that form the magnocellular pathway are lost, which the critics of magnocellular 

impairments in schizophrenia assume should be the case (Skottun & Skoyles, 

2008a). The deficit is related to their function, rather than anatomy10. Indeed, a 

                                                 
10 Interestingly, some anatomical changes in schizophrenia patients related to visual processing have 
been suggested to exist, but at the earlier, retinal level (Silverstein & Rosen, 2015). However, there is 
currently very little direct evidence for these changes, and the research on the topic is ongoing. 
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post-mortem study of a schizophrenia brain revealed no such loss in the LGN 

(Selemon & Begovic, 2007). Further, although the deficit seems to be related 

mostly to the magnocellular pathway, some studies have shown that impairments 

in the parvocellular pathway are also present (Butler & Javitt, 2005; Javitt, 

2009a). 

It is perhaps important to note that throughout our study, the stimuli were 

designed to specifically to target post-receptoral mechanisms, namely chromatic 

and luminance mechanisms. It is well documented that magnocellular pathway 

takes luminance inputs preferentially. It is, therefore, reasonable to interpret our 

studies as supporting the magnocellular theory of schizophrenia, although the 

author of this thesis believes that it is possible to make claims about preferential 

luminance inputs without making strong arguments for or against the 

magnocellular theory of schizophrenia; indeed, the critics of the magnocellular 

theory of schizophrenia take a similar stand while discussing visual search studies 

that use magno-biased stimuli (Skottun & Skoyles, 2008b). 

Moreover, such bottom-up accounts of the disorder are not the only explanations 

that have been put forward. The next session will outline top-down accounts of 

some of the deficits in schizophrenia. I will also specify how – and why – 

investigating luminance processing in the disorder can also inform top-down 

accounts (in addition to bottom-up ones). 
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25.5. Top-down accounts of perceptual deficits 
in schizophrenia and the potential role of 
luminance signals 

Other accounts of perceptual deficits in schizophrenia emphasize the role of top-

down in addition bottom-up processing (Dima, Dietrich, Dillo, & Emrich, 2010; 

Silverstein et al., 2006). For example, Dima et al. used dynamic causal modelling 

of fMRI (Dima et al., 2009) as well as ERP (Dima et al., 2010) to explain the 

observation that patients are less prone to some visual illusions, including the 

hollow mask illusion (Gregory, 1973). In the hollow mask illusion, healthy 

observers perceive features of a concave mask as convex, while individuals with 

schizophrenia appear to be less susceptible to this illusion (Emrich, Leweke, & 

Schneider, 1997; Schneider et al., 2002; Schneider, Leweke, Sternemann, Weber, 

& Emrich, 1996). In healthy controls, it is the top-down signals that are suspected 

to be responsible for the illusion. Dima et al. (2009, 2010) demonstrated that in 

schizophrenia top-down processing might be impaired, while the bottom-up 

processing is strengthened, thus leading to “correct” perception of the illusion. 

Some studies have suggested that perceptual processing is not different in 

patients and in controls. For example, one study failed to find differences 

between patients and controls in early visual components during various tasks 

(van der Stelt et al., 2004). More specifically, using a visual as well as auditory 

oddball task, van der Stelt et al. (2004) found that patient and control group did 

not differ significantly in terms of the visual P1 and N1 components (and auditory 

P2) in response to visual stimuli paired with auditory distractors. They did find, 

however, differences in the P3 component, which occurs much later than the P1 

and is indicative of cognitive rather than low-level sensory processing. The 

authors thus argued that, while low-level vision (and hearing) are unimpaired, 

abnormalities in schizophrenia can be explained by general attentional deficits. 

Another study (Oribe et al., 2015) looked at both early and late visual ERPs in the 

first episode schizophrenia with a one-year follow-up. The study found reduced 

P3 in patients compared to controls at both time points; interestingly, P3 was the 

only component to show a reduction at follow-up. N2 also had reduced 
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amplitude, though with no sign of reduction at a follow-up; additionally, N1 

latency was also delayed compared to controls at both time points. The authors 

also note that the P1 component appeared to be somewhat reduced at both times, 

although this effect was not statistically significant. 

The results cited above go in line with accounts emphasizing the role of top-

down effects on vision in schizophrenia. However, reduced P1 amplitude does not 

necessarily go against the top-down account of deficits. As outlined in the 

previous chapter, the P1 component is also sensitive to high-level processing, 

such as attention. In fact, some studies (Zanto et al., 2011) showed that disrupting 

the prefrontal cortex using TMS during a WM task not only diminished 

performance but also reduced the P1 amplitude during stimulus processing. 

Gazzaley (2011) further suggested that early top-down, attentional modulation 

impacts WM performance; importantly, they suggested that such modulation 

must be initiated early enough in order to facilitate WM processing. Fast 

luminance signals seem to be a good candidate to provide such head-start. As 

suggested by (Bar, 2003; Kveraga et al., 2007), object recognition is enhanced 

thanks to fast luminance projections reaching frontal areas, which provide a 

trigger for top-down modulation, leading to improved performance. Therefore, 

luminance signals have the potential to impact both bottom-up and top-down 

processing during WM in schizophrenia. Regardless of which one it is, one can 

expect that WM processing will not benefit from luminance, as it did for healthy 

participants in our previous study. 

25.6. Summary and aims 

In the previous study (see Chapter 3), the luminance benefit was manifested in 

increased behavioural accuracy in a delayed match-to-sample working memory 

task. The results showed evidence for perception-working memory interaction 

mediated by luminance signals. This conclusion was derived from the finding 

that decreased performance associated with increasing working memory load was 

less severe when participants remembered luminance-defined, as opposed to 

isoluminant-chromatic stimuli. The ERP results suggested that luminance 
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influences working memory processing at early encoding stages. Additionally, 

luminance signals seemed to also benefit memory-probe comparison at later 

stages as well, which was reflected in the fact that luminance – advantage was 

present in conditions where the probe mismatched remembered shapes.  

The main aim of the current experiment was to examine whether luminance 

processing is predominantly impaired in schizophrenia. Based on previous 

research suggesting early visual deficits (e.g. Javitt, 2009a; Silverstein et al., 2015) 

and their magnocellular deficit account (Kéri & Benedek, 2007), we predict that 

the luminance benefit will not be apparent in the behavioural data. More 

specifically, we do not expect to find that, at higher WM load levels, luminance-

defined stimuli will elicit better performance than isoluminant stimuli for 

patients. In this case, one would expect a general reduction in accuracy across all 

DKL directions compared to controls, not specific to encoding luminance-defined 

shapes. 

An alternative prediction would be that luminance processing is not affected in 

schizophrenia and the luminance benefit is preserved despite the overall decrease 

in accuracy. While it would go against our predictions regarding altered 

luminance processing in schizophrenia, it would further strengthen our previous 

finding that luminance leads to better WM encoding by showing that this is not 

restricted only to healthy participants. 

In terms of ERP responses, we expect a reduction of ERPs during early stimulus 

encoding, i.e. the P1 component. (Haenschel et al., 2007). In their study, 

Haenschel et al. found that while there were group differences in the early visual 

components, this was not the case for the family of P3 components (P3a, P3b). 

Other studies did show that the P3 component is affected in schizophrenia 

(Oribe et al., 2015). However, we expected to demonstrate a similar pattern as in 

Heanschel et al. (2007), as we are using the same task design. 

Similarly, as in the previous experiment, another aim of the current study is to 

determine whether the load-related modulation of the early visual components 

(P1 for luminance, and N1 for isoluminant stimuli) will be present. 
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We also measured contrast sensitivity to luminance stimuli, and colour 

sensitivity thresholds using CAD and AcuityPlus (Barbur, Rodriguez-Carmona & 

Harlow, 2006), the same as in previous experiments (see Chapters 3 and 4). We 

expect to find reduced contrast sensitivity in patients compared to controls, a 

pattern that would be indicative of impaired luminance processing. A previous 

study (Cadenhead, Dobkins, McGovern, & Shafer, 2013) also looked at contrast 

sensitivity in patients and controls. Participants were presented with chromatic 

and luminance stimuli in a 2-alternative forced choice task. They found that 

patients demonstrated lower contrast sensitivity compared to controls. However, 

the finding was not specific to luminance stimuli, as it also occurred for the 

chromatic stimuli. On the other hand, another study (Butler et al., 2005) showed 

impaired contrast gain as well as lower contrast sensitivity in patients compared 

to controls. By using a standardized luminance and chromatic contrast sensitivity 

tests, we aimed to verify these results. We expected that patients will show a 

reduced functional contrast sensitivity, but their colour thresholds will remain 

within typical levels. 

An additional aim of the current study was to replicate results demonstrated in 

our previous studies, in particular supporting the general conclusion that 

luminance inputs are beneficial to WM encoding and performance on visual WM 

tasks (see Chapters 3 and 4). We thus expected that the luminance benefit will be 

manifested especially at higher working memory loads, and at mismatch 

condition. Moreover, we were expecting to find an ERP evidence for a luminance-

working memory interaction at encoding stage of working memory. 

Lastly, we introduced some changes to the study design used in the previous 

experiment, in order to adapt the study for testing with the patient population by 

reducing the testing time. Details of the applied changes are highlighted in the 

methods section below. 
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26. Methods 

26.1. Participants 

Patients were recruited from the East London NHS Trust, following NHS ethics 

approval. Initially, 21 participants were recruited. Three (two patients and one 

control) were rejected as they did not meet the colour test criteria and were 

suspected to have colour vision deficiency (see Result subsection 27.1, Vision 

Tests). This left 18 participants in total used in the behavioural data analysis. 

For the ERP analysis, further two participants (one control and one patient) were 

rejected due to noisy EEG data, i.e. there was an insufficient amount of trials left 

after the artifact rejection procedure. Hence, 16 participants were analysed in the 

ERP analysis across two groups (8 patients and 8 controls). 

Controls were recruited through adverts in shops local to the university and 

through word of mouth. Controls and patients were matched in terms of age and 

educational level. Mean age of patients and controls was 26 and 28.44 years old, 

respectively. The education level was coded from 1 (lowest educational level) to 4 

(highest educational level) and was 3.1 for control and 2.6 for schizophrenia 

group, on average. See Table 13 for coding key and age/educational level 

summary for both groups and for a summary of patient and control details. 
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Table 13 Coding of educational level (A) and a summary of age/qualifications for control (B) and 
schizophrenia (C) group. 
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26.2. Procedure 

The experimental design of the previous experiment was modified to decrease the 

length of the experiment so that it is better suited for use in a clinical population. 

The previous experiment could take around 9h to complete over two 

experimental sessions. We aimed to decrease the testing time so that our 

hypotheses could be tested in one experimental session lasting around 4h. In 

order to do that, we decided to drop some of the experimental conditions – refer 

to the methods section below for details. One of the major changes concerned 

the use of averaged discrimination thresholds obtained in the previous 

experiment, rather than estimating thresholds for each individual (again, details 

on the procedure can be found in the methods section). A secondary aim of this 

pilot study is to verify whether these changes are not negatively impacting 

conclusions that can be derived from the results. 

Prior to being invited to the laboratory, patients were screened on a variety of 

measures in day care centres. These included The Manchester Short Assessment 

of Quality of Life (MANSA), Social Contact Assessment, Edinburgh Handedness 

Inventory, as well as the digit span and letter-number test. 

The rest of the experimental procedures were identical for patients and controls 

and were conducted in a single session (on a separate day to the screening 

measures in case of patients). Due to time constraints and to avoid excessive 

fatigue, some participants performed the vision tests also on a separate day. 

The experimental procedure shared the experimental setup and equipment as in 

the ERP experiment (see Chapter 2: general methods and Chapter 3). The 

difference between the current task and the previous experiment was the number 

of conditions and abandonment of the discrimination procedure. These will be 

described in more detail below.  
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26.3. Averaged thresholds and Weber contrasts 

The difference between the current experiment and the previous experiment (see 

Chapter 3) was that here participants did not perform the HCFP tests and 

discrimination threshold tests and went straight to working memory task. In an 

attempt to maintain equal saliency between DKL conditions, we have used 

averaged thresholds from the ERP experiment (N = 22; see Chapter 3). It was 

assumed that the average thresholds would be sufficient to achieve that. The 

main rationale was to significantly reduce overall testing time to avoid excessive 

fatigue and accommodate patients. 

We averaged scaled thresholds in the low contrast conditions and high contrast 

conditions, obtaining a value for each DKL direction at low and high contrast 

levels. Similarly, we used averaged luminance elevation for L – M and S-cone 

condition obtained through the HCFP task in the ERP experiment (for task 

design, timings and implementation, see Chapter 3). Although the final sample 

size in the previous experiment was 22, for the averaged thresholds we only used 

participants that were tested on the same display calibration, i.e. 19 (as outlined 

in Chapter 3, three participants completed the experiment under different display 

calibration). 

Table 14 shows individual thresholds as well as averaged values that were used in 

the current experiment. Weber contrasts of the averaged thresholds are provided 

in Table 15. 
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Table 14 Individual discrimination thresholds for all DKL directions obtained in the previous 
experiment (see Chapter 3). Averaged thresholds used in the current study are at the bottom of 
the table 

 

Table 15 Weber contrast values for all post-receptoral mechanisms tested in the experiment, 
based on averaged thresholds. 

 Low contrast High contrast 

   

S-cone (S-[L+M]) 0.18 0.37 

L - M 0.03 0.05 

Luminance (L+M) 0.10 0.19 

 

26.4. Task design 

The same task design was used as in Experiment 1, i.e. the delayed match-to-

sample task. Refer to Chapter 3 for details. 

In contrast to the previous experiment (see Chapter 3), we dropped several 

conditions in order to make the study shorter and more suited for the clinical 

population. In particular, we decided to drop load 2 condition (see Table 16). The 

inclusion of three load levels allowed us to demonstrate a mostly linear decline of 

performance with increasing WM load. This time we are focusing on DKL effects 
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on low (one item to memorize) versus high WM load (three items to memorize). 

Since the previous study suggested that differences between DKL conditions are 

most pronounced at load 3, we decided that we can drop load 2 condition to 

increase the number of trials and shorten the study length while still being able 

to look at DKL-specific effects at high WM loads. 

Table 16 Conditions in the current study. 

 

26.5. EEG data acquisition, pre-processing and 
analysis 

EEG data were acquired using a 64-channel ActiCap, with an in-built reference 

electrode at location FCz. FT7 electrode was placed below participant’s left eye 

and served as a vertical ocular electrode. Recording and digitization were 

performed using a BrainAmp amplifier and the BrainVision Recorder software 

(Brain Products, Munich, Germany). The EEG was recorded at a 1000Hz 

sampling rate with an on-line bandpass filter between 0.1 and 1000 Hz. 

Data were pre-processed using Brain Vision Analyzer software (Brain Products, 

Germany). Further data analysis, including averaging, was done using custom 

routines as well as functions from EEGLAB (Delorme & Makeig, 2004) and 

FieldTrip (Oostenveld et al., 2011) toolboxes developed for Matlab (Mathworks, 

Natick, Massachusetts), incorporated into custom scripts. 

We applied the following pre-processing steps: 
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Step 1: Data were filtered with a low-pass filter (0.01 Hz) to remove low-

frequency drifts. 

Step 2: Noisy electrodes were interpolated. 

Step 3: An ocular correction was performed using ICA algorithm (Infomax 

Restricted). 

Step 4: The data were re-referenced to an average of all electrodes. 

Step 5: Continuous EEG data was segmented into epochs. Epochs ranged from -

100 ms before stimulus onset and to 600 ms for analysis of encoding stage; 

longer epochs were used for the maintenance stage (-100 ms to 1700 ms); shorter 

epochs were again used for the retrieval stage (-100 ms to 600 ms). We chose not 

to use longer epochs for the encoding stage to increase the number of trials 

available for analysis; extracting longer epochs results in the decreased amount of 

trials due to artifacts occurring after 600 ms. 

Epochs were time-locked to the onset of the last item in the memory array (i.e. 

single item for load 1, second item from the two presented for load 2 and third 

item from the three presented for load 3). 

Step 6: Baseline correction was applied (100 ms prior to stimulus onset) 

Step 7: Automatic artifact rejection procedure was applied. Epochs were removed 

if they met the following criteria: 

- The maximum voltage exceeded 100 µV 

- If the difference between maximum and minimum values in an epoch 

exceeded 100 µV; 

- If the gradient (i.e. voltage step) exceeded 30 µV. 

- If the activity was below 0.5 µV for at least 50 ms. 

Step 8: Pre-processed data was exported to MATLAB and further processing/data 

analysis was done using EEGLAB and FieldTrip routines. These are outlined 

below. 

Peak ERP component amplitudes were extracted from the predefined time 

intervals within the epochs. Details on extracting peak amplitudes are provided 
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in Chapter 3. For the slow wave, mean amplitude was extracted, rather than local 

peak. Statistical analysis was performed using SPSS. Local (or mean) amplitudes 

for each component were analysed using a mixed ANOVA with between-subject 

factor (group: control or patient group), and the following within-subject factors: 

contrast level (2 levels: low and high contrast), electrode location (2 lateral 

electrodes plus 1 central electrode, specified in each section) and WM load (2 

levels: Load 1 and Load 3). Greenhouse-Geisser corrections were applied where 

necessary. 

Table 17 Analysed ERP components, electrode sites and time intervals used to define and extract 
components. The map at the bottom shows electrode setup used in the experiment, with 
electrodes of interest marked with coloured circles. 
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ERP components and time intervals used for peak extraction in this study were 

the same as in Experiment 1 (see Chapter 3) and are summarised in Table 17  

above. We decided not to include the negative peak occurring at the stimulus 

offset and the frontal slow wave in the current analysis, as both were not 

informative in terms of the tested hypotheses in the previous experiment (see 

Chapter 3). 

26.6. Vision tests and behavioural data analysis 

We compared the red-green and yellow-blue colour contrast thresholds (as 

measured by CAD), as well as visual acuity and functional contrast sensitivity 

(measured using Acuity+) between the groups using a between-subject one way 

ANOVA. 

Accuracy (defined as proportion of correct answers) and reaction times were 

analysed using a mixed ANOVA with between-subject factor (group: control or 

patient group), and the following within-subject factors: contrast level (2 levels: 

low and high contrast), DKL direction (3 levels: Luminance, isoluminant L – M, 

isoluminant S-cone), WM load (2 levels: Load 1 and Load 3) and probe type (2 

levels: match or mismatch). Greenhouse-Geisser corrections were applied where 

necessary. 
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27. Behavioural results 

27.1. Vision tests 

Results of the vision tests are summarised in the figure below. Based on the CAD, 

we excluded six participants (including three patients) due to deficient colour 

vision. These participants did not take part in further tests and were discharged 

after the vision tests were completed. 

There was a significant difference between controls and patients in terms of 

acuity, as measured with luminance-increment stimuli (F(1,12)=5.95, p=.033, 

η²=.35). See Figure 46 for the summary of results for both groups. 
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Figure 46 Results of the vision tests for patients and controls shown in box plots. Each dot 
represents contrast threshold value for an individual participant. Red line in the middle 
represents the mean, red shading is the 95% confidence interval, and blue shading is 1 standard 
deviation. A) red-green colour threshold B) yellow – blue threshold C) Acuity (increment, or 
positive contrast) D)Functional contrast sensitivity (increment, or positive contrast) E) Acuity 
(decrement, or negative contrast) F)Functional contrast sensitivity (decrement, or negative 
contrast). 
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27.2. Accuracy 

27.2.1. Between-subject effects 

Overall controls outperformed patients (F(1, 16)=8.25, p=.011, η²=.34; see Figure 

47 below). Load and DKL factors did not interact with group type. 

 

Figure 47 Overall mean accuracy for control and patient group (middle bar graph), and 
control/patient group mean accuracy shown at WM load 1 and load 3, separately for DKL 
directions (line graphs). Patients performed worse than controls on average, though group type 
did not interact with other factors. Error bars represent standard error of the mean. 

27.2.2. Within-subject effects 

There was a main effect of DKL direction (F(2, 32)=11.8, p<.001, η²=.42); post-hoc 

Bonferroni-corrected tests indicated that responses to luminance and L – M 

shapes were more accurate then to S-cone shapes (difference significant at 

p=.003 for Lum/S-cone and p=.001 for L – M/S-cone). 

We found higher accuracy for load 1 than load 3 (F(1, 16)=64.2, p<.001, η²=.80) as 

well as higher accuracy for high contrast than low contrast shapes (F(1, 16)=12.0, 

p=.003, η²=.43). 

There was a significant three-way interaction between probe type 

(match/mismatch), load and DKL direction (F(2, 32)=5.64, p=.008, η²=.26). 
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We conducted three separate ANOVAs (probe type x contrast x load x group) for 

each DKL direction to account for this interaction. 

Patients demonstrated lower accuracy than controls at each DKL direction 

(significant effect of group for S-cone: F(1,16)=7.09, p=.017, η²=.31; L – M: 

F(1,16)=8.92, p=.009, η²=.36; Luminance: F(1,16)=7.19, p=.016, η²=.31). 

Additionally, accuracy dropped with increased WM load for each DKL direction 

(main effects of Load for S-cone: F(1,16)=40.3, p<.001, η²=.72; L – M: F(1,16)=58.3, 

p<.001, η²=.78; Luminance: F(1,16)=56.7, p<.001, η²=.78). While S-cone and 

luminance accuracy did not differ significantly for low and high contrast 

condition, the difference was significant for L – M, with participants performing 

better at high contrast level (main effect of contrast: F(1,16)=5.12, p=.038, η²=.24). 

Interestingly, an interaction between probe type and WM Load was significant 

for L – M direction (F(1,16)=5.48, p=.032, η²=.25) and Luminance (F(1,16)=6.51, 

p=.021, η²=.29), but not for S-cone (F(1,16)=.108, p=.747, η²=.007, n.s.). Post-hoc 

tests using Bonferroni correction did not point to significant differences that 

could explain this interaction; however, visual inspection of the data suggests 

that for S-cone performance decreased with load for match and mismatch 

equally, while for L – M and Luminance the decrease was sharper for match 

condition (see Figure 48 and Figure 49). Also of note is apparent lack of 

difference between match and mismatch accuracy data in patients, although (as 

noted above), the group by probe type interaction was not significant. 



259 

 

 

Figure 48 Accuracy at load 1 and load 3 for matching and mismatching memory probe, shown for 
each DKL direction and control/patient group separately. Error bars represent standard error of 
the mean. 
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Figure 49 Overall match & mismatch accuracy (patients + controls) for the different DKL 
directions at low and high WM load. The bar graph in the middle shows an average of match 
(left) and mismatch (right). Error bars represent standard error of the mean. 

27.3. Reaction times 

27.3.1. Between-subject effects 

Overall reaction times did not differ significantly between control and the patient 

group (F(1,15)=97.7, p=.214, η²=.10, n.s.; see Figure 50). 

 

Figure 50 Overall reaction times for control and patient group (middle bar graph), and 
control/patient group reaction times are shown at WM load 1 and load 3, separately for DKL 
directions (line graphs). RTs did not differ significantly between the groups and there were no 
group interactions with other conditions. Error bars represent standard error of the mean. 
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27.3.2. Within-subject effects 

There was a main effect of DKL condition (F(2, 30)=5.56, p=.009, η²=.27). 

Responses to S-cone stimuli were slower than L – M (p=.045) and Luminance 

stimuli (p=.030.). L – M and luminance did not differ significantly (see Figure 51). 

 

Figure 51 Reaction times for S-cone, L – M and Luminance conditions. Error bars represent 
standard error of the mean. 

An interaction between probe type and WM load was not significant 

(F(1,15)=4.42, p=.053, η²=.29, n.s.). Responses to high contrast stimuli were faster 

(F(1,15)=9.97, p=.007, η²=.40). Responses to matching probes were also on 

average quicker (F(1,15)=10.3, p=.006, η²=.41) than mismatching probes (see 

Figure 52).  

 

Figure 52 Overall match & mismatch reaction times (patients + controls; middle bar graph) and 
RTs for different DKL directions at low and high WM load for match and mismatch (red and left 
line graphs, respectively). Error bars represent standard error of the mean. 
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28. Event-related potential (ERP) results 

After the pre-processing steps were complete, we compared the number of 

resulting trials for each condition and group (see Figure 53). This was done using 

a mixed ANOVA with between-subject factor (group) and the following within-

subject factors: contrast (low/high), WM load (Load 1/Load 3) and DKL direction 

(S-cone/L – M/Luminance). We found that there were no significant differences 

between groups (F(1, 14)=.592, p=.592, η²=.04, n.s.) or interactions with the 

group factor. A number of trials differed between WM load levels (F(1, 14)=8.25, 

p=.012, η²=.37), with more trials for Load 1 condition (25.4 on average) than Load 

3 (21 on average). 

 

Figure 53 Comparison between the number of trials for patients and controls. Each dot 
represents average no of trials across all conditions for each individual participant. Red line in the 
middle represents the mean, red shading is the 95% confidence interval, and blue shading is 1 
standard deviation. 
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28.1. Encoding stage 

28.1.1. P1 Amplitude (Oz, O1, O2; 80-160 ms) 

There was no significant effect of group (F(1, 14)=2.38, p=.145, η²=.14, n.s.). A 

three-way interaction between contrast, electrode location and group was 

significant (F(2, 28)=4.15, p=.026, η²=.23) as well as a three-way interaction 

between contrast, electrode location and WM load (F(2, 28)=4.82, p=.016, 

η²=.26). To disentangle this interaction, we performed 2 mixed ANOVAs 

separately for each contrast level, with between-subject factor (controls vs 

patients) and the following within-subject factors: electrode location (O1, O2, 

Oz) and WM load (2 levels: Load 1 and Load 3). 

28.1.2. Low contrast 

At low contrast, there were no significant differences between patients and 

controls (F(1, 14)=.338, p=.570, η²=.02, n.s.); there were no within-subject effects 

overall (see Figure 54). The averaged waveforms suggested that component P1 

was largely attenuated in both groups compared to high contrast responses. We 

suggest that this is due to low signal-to-noise ratio in response to low contrast 

stimuli, a pattern observed in the previous experiment (see Chapter 3). 

 

Figure 54 ERP waveforms during the encoding of low contrast luminance shapes are shown for 
control group (blue trace) and schizophrenia group (orange trace). The waveforms represent an 
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average over two WM loads and over three electrodes (O1, O2, Oz). Time 0 is the onset of the to-
be-remembered stimulus. There were no differences in terms of P1 amplitude in the time – 
window of interest (80 ms – 160 ms) 

28.1.3. High contrast 

Overall, the P1 amplitude at high contrast was greater for controls than patients 

(F(1, 14)=5.44, p=.035, η²=.28; see figure Figure 55). 

 

Figure 55 ERP waveforms during the encoding of high contrast luminance shapes are shown for 
control group (blue trace) and schizophrenia group (orange trace). The waveforms represent an 
average over two WM loads and over three electrodes (O1, O2, Oz). Time 0 is the onset of the to-
be-remembered stimulus. P1 amplitude was greater for control group than patients. 

There was a significant interaction between electrode locations and WM load 

(F(2, 28)=3.57, p=.041, η²=.20). Post-hoc, Bonferroni-corrected tests indicated 

that P1 amplitude for load 3 encoding was greater than that for load 1 at electrode 

O2 (p=.014), which was not the case for electrode O1 (p=.419, n.s.) nor for the Oz 

(p=.770, n.s.). 

There was no interaction between group and electrode location or WM load. 
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28.1.4. Latency 

A separate repeated measures ANOVA was conducted for latency measures.  

There was a significant three-way interaction between contrast level, electrode 

location and WM load (F(2, 18)=6.73, p=.007, η²=.43). To understand this 

interaction, we performed 2 mixed ANOVAs separately for each contrast level, 

with between-subject factor (controls vs patients) and the following within-

subject factors: electrode location (O1, O2, Oz) and WM load (2 levels: Load 1 

and Load 3). There were no effects for high contrast reaction time data. At low 

contrast, an interaction between electrode location and WM load was significant 

(F(2, 24)=3.73, p=.039, η²=.24). Post-hoc tests using Bonferroni correction did 

not point to significant comparisons, however, latencies tended to be somewhat 

shorter for load 1 than load 3 at electrode O2 (p=.087, n.s.). 

28.2. N1 Amplitude (Oz, O1, O2; 130-300 ms) 

There was no significant effect of group (F(1, 14)=1.00, p=.333, η²=.07, n.s.). There 

was a main effect of DKL direction (F(2, 28)=20.4, p=.018, η²=.25; see Figure 56 

below). Post-hoc Bonferroni-corrected tests revealed that luminance shapes 

elicited lower N1 amplitude than L – M shapes (p=.041). The difference between 

luminance and S-cones was not significant (p=.141, n.s.). 
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Figure 56 ERP waveforms during encoding of S-cone (blue trace), L – M (red trace) and 
luminance shapes (black trace). Waveforms were collapsed across WM load, contrast levels, 
electrode locations and groups to show a significant main effect of DKL direction.  

A number of interactions involving contrast level was significant. There was an 

interaction between contrast level and electrode location (F(2, 28)=4.03, p=.029, 

η²=.22) as well as an interaction between contrast and load was also significant 

(F(2, 28)=5.00, p=.042, η²=.26). Further, a three-way interaction between 

contrast, electrode location and DKL was significant (F(4, 56)=2.68, p=.041, 

η²=.16) as well as a four-way interaction between contrast, electrode location, 

DKL direction and group (F(4, 56)=4.20, p=.005, η²=.23). To disentangle these 
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interactions, we performed separate ANOVAs for low and high contrast levels 

separately. 

28.2.1. Low contrast  

The n1 amplitude for patients and controls was not significantly different (F(1, 

14)=1.37, p=.261, η²=.09, n.s.). There was a main effect of DKL (F(2, 28)=3.78, 

p=.035, η²=.21), though pairwise comparisons were not significant. There was a 

three-way interaction between electrode locations, DKL condition and group 

(F(4, 56)=3.32, p=.017, η²=.19). 

A separate ANOVA for control and the patient group was performed. There were 

no significant results for the patient group. For controls, the main effect of DKL 

direction was significant (F(2, 14)=3.88, p=.046, η²=.36). Post-hoc tests using 

Bonferroni correction did not point to significant differences, although it appears 

that the amplitude was the most negative for S-cone, then L – M, then 

luminance. There was a trend for a significant linear contrast which is in line with 

this interpretation, although it was not significant (F(1, 7)=5.10, p=.058, η²=.42, 

n.s.; see Figure 57 N1 amplitude in response to different DKL directions at low 

contrast level for control and schizophrenia group below). 

 

Figure 57 N1 amplitude in response to different DKL directions at low contrast level for control 
and schizophrenia group. Error bars represent standard error of the mean. 
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28.2.2. High contrast 

There were no significant group or within-subject effects for high contrast. 

Groups did not appear to differ, and there were no differences between DKL 

conditions within groups. 

28.2.3. Latency 

A separate repeated measures ANOVA was conducted for latency measures.  

N1 component in response to high contrast shapes peaked earlier than in 

response to low contrast shapes (F(1, 8)=32.3, p<.001, η²=.80). There was a main 

effect of DKL condition (F(2, 16)=3.81, p=.044, η²=.32). Post-hoc Bonferroni-

corrected tests did not show significant pairwise comparisons, however, it 

appeared that the latency was the shortest in response to luminance-defined 

shapes, followed by the L – M, and the slowest for S-cone condition. This 

observation was confirmed with significant linear effect for DKL direction (F(1, 

8)=5.61, p=.045, η²=.41; see Figure 58 below). 

 

Figure 58 N1 component latencies for control (blue) and schizophrenia group (red), for the three 
DKL directions. Group factor did not interact with DKL direction. There was an overall effect of 
DKL. Error bars represent standard error of the mean. 
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corrected tests showed that there was a trend at low contrast at channel O2, for 

load 1 had shorter N1 latency than Load 3 (p=.05). 

28.3. P3a Amplitude (C1, C2, Cz; 200-400 ms) 

There were no significant results for P3a amplitude. 

28.3.1. Latency 

A separate repeated measures ANOVA was conducted for latency measures. 

There was a trend towards a significant interaction between electrode location 

and group (F(2, 14)=3.74, p=.050, η²=.35, n.s.). There was a main effect of DKL 

direction (F(2, 14)=4.65, p=.028, η²=.40). Post-hoc Bonferroni-corrected tests did 

not show significant pairwise comparisons, however, it appeared that the latency 

was the shortest in response to luminance-defined shapes, followed by the L – M, 

and the slowest for S-cone condition. This observation was confirmed with 

significant linear effect for DKL direction (F(1, 7)=7.36, p=.030, η²=.51). Further, 

an interaction between group and DKL direction was significant (F(2, 14)=3.92, 

p=.044, η²=.36), suggesting that the above pattern was evident in schizophrenia 

but not in the control group (see Figure 59). Additionally, post-hoc, Bonferroni-

corrected tests showed that component P3a peaked earlier for patients than 

controls for luminance condition (p=.015). 

 

Figure 59 N1 component latencies for control and schizophrenia group during encoding 
luminance-defined shapes. Error bars represent standard error of the mean. 
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28.4. P3b Amplitude (P3, P4, Pz; 200-500 ms) 

P3b amplitude differed between DKL directions (F(2, 28)=5.72 p=.008, η²=.29; 

see Figure 60). Post-hoc tests using Bonferroni correction showed that there was 

a lower amplitude in response to S-cone shapes than in response to luminance 

(p=.018).  

 

Figure 60 P3b amplitude in response to S-cone, L – M and Luminance shapes. The amplitude at 
each DKL direction did not differ significantly between control and patient group. Error bars 
represent the standard error of the mean. 

 

Figure 61 ERP waveforms during encoding of S-cone (blue trace), L – M (red trace) and 
luminance shapes (black trace). Waveforms were collapsed across WM load, contrast levels, 
electrode locations (P3, P4, Pz) and groups to show a significant main effect of DKL direction. 
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There was an interaction between contrast level and WM load (F(1,14)=18.5 

p=.001, η²=.57). Post-hoc tests using Bonferroni correction showed that Load 1 

had a lower amplitude than load 3 only at low contrast (p=.002). 

A three-way interaction between electrode location, WM load and DKL direction 

was also significant (F(4, 56)=3.20, p=.020, η²=.18). 

There was a trend for an interaction between contrast, electrode location, WM 

load, DKL direction and group (F(4, 56)=2.54, p=.050, η²=.15, n.s.). 

To disentangle this and previous interactions, we performed separate ANOVAs 

for control and patient group. 

28.4.1. Control group 

28.4.1.1. Low contrast 

 There was a marginal main effect of load for the control group (F(1, 7)=5.67, 

p=.049, η²=.45). Load 1 elicited lower amplitude than load 3. 

28.4.1.2. High contrast 

There was an interaction between electrode location, WM load and DKL 

direction (F(4, 28)=3.83, p=.013, η²=.35). Post-hoc tests using the Bonferroni 

correction did not yield significant pairwise comparisons. Inspection of the plots 

(see Figure 60 below) suggests that differences in amplitudes between DKL 

directions had different patterns on each electrode, although generally, 

luminance tended to demonstrate lower amplitude than S-cone and L – M. 
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Figure 62 P3b amplitudes at electrode O1, O2 and Oz, at two levels of load, for each DKL 
direction. Error bars are the standard error of the mean. 

28.4.2. Patient group 

28.4.2.1. Low contrast 

There was a main effect of WM load (F(1, 7)=12.3, p=.010, η²=.64). Load 1 elicited 

lower amplitude than load 3. 

28.4.2.2. High contrast 

There were no main effects or interactions. 

28.4.3. Latency 

A separate repeated measures ANOVA was conducted for latency measures. 

There was a main effect of DKL direction (F(2, 14)=6.99, p=.008, η²=.50); 

luminance demonstrated shorter latencies than S-cone (p=.049). 

An interaction between electrode location, load and group was in trend 

significant (F(2, 14)=3.60, p=.055, η²=.34, n.s.). 
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29. Maintenance stage 

29.1. Slow wave (1000-1600 ms) – occipital (O1, 
O2, Oz). 

Controls were characterised by a larger mean amplitude of the slow wave 

compared to patients (F(1, 14)=5.07, p=.041, η²=.27). Group factor interacted with 

contrast level and electrode location F(2, 28)=3.44, p=.046, η²=.20; see Figure 63 

below). Post-hoc, Bonferroni corrected tests showed that the amplitude 

difference between patients and controls was significant at low contrast at 

electrode Oz only (the difference between groups had p=.008). The difference at 

the Oz at high contrast showed a non-significant effect at p=.055. 

 

Figure 63 Late, slow wave for controls (blue trace) and patients (red trace), presented at low 
contrast, at electrode Oz; data were collapsed across 3 DKL directions and 2 load levels to 
illustrate the significant group by contrast by electrode position interaction. 

There was a significant four-way interaction between group, contrast level, WM 

load and DKL direction (F(2, 28)=3.44, p=.046, η²=.20). A separate ANOVA was 

conducted for each group. 

For controls, there was a trend towards contrast by load interaction (F(1, 7)=5.04, 

p=.060, η²=.42). No main effects or interactions were significant. 
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For patients, there was a significant three-way interaction between contrast level, 

WM load and DKL direction (F(2, 14)=7.39, p=.006, η²=.51). Post-hoc, 

Bonferroni-corrected t-tests did not point to pairwise differences. Inspection of 

Grand averaged waveforms (see Figure 64 below) suggested that at low contrast, 

the amplitude at load 3 was higher than load 1 for luminance. At high contrast, 

for S-cone, Load 1 elicited higher amplitude than Load 3. 

 

Figure 64 Slow wave for the patient group, presented at low and high contrast, for separate DKL 
directions and load levels. Data were collapsed across channels to demonstrate an interaction 
between contrast, WM load and DKL direction. The data was filtered using a 20Hz low-pass filter 
for presentation purposes. 
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30. Retrieval stage 

30.1. P1 Amplitude (Oz O1 O2; 80-160 ms) 

There was no overall difference between groups (F(1, 14)=1.06, p=.320, η²=.071, 

n.s.). There was a trend towards contrast by group interaction (F(1, 14)=3.58, 

p=.079, η²=.20), suggesting that at high contrast, the P1 amplitude for the control 

group was greater than that for the patient group. 

 

Figure 65 ERP waveforms collapsed across load contrasting patient and control luminance data at 
retrieval at low and high levels of contrast. 

30.2. Latency 

A separate ANOVA for latency measures was conducted. There was a significant 

interaction between contrast level and group (F(1, 9)=7.31, p=.024, η²=.45) as well 

as a three-way interaction between contrast, electrode location and group (F(2, 

18)=4.15, p=.033, η²=.31). Post hoc, Bonferroni-corrected tests showed that at high 

contrast, control participants demonstrated shorter latencies than patients at 

electrode O2 (p=.017). At low contrast, controls demonstrated shorter latencies 

than patients as well (p=.028). 
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30.3. N1 Amplitude (Oz O1 O2; 130 ms – 300 ms) 

There was no overall difference between groups (F(1, 14)=.372, p=.552, η²=.026, 

n.s.). There was a main effect of DKL direction (F(2, 28)=4.42, p=.021, η²=.24). 

Post-hoc Bonferroni corrected tests did not point to any significant pairwise 

comparisons. 

 

Figure 66 Waveforms collapsed across WM load, electrode location & contrast to show 
differences between DKL directions, for controls and patients separately. Waveforms were low-
pass filtered at 20Hz for presentation. 

30.3.1. Latency 

A separate ANOVA for latency measures was conducted. There was a main effect 

of contrast (F(1, 9)=7.48, p=.023, η²=.45), with shorter latencies for high contrast 

shapes. There was a main effect of load (F(1, 9)=650, p=.031, η²=.42), with shorter 

latencies for load 1 than load 3. A main effect of DKL (F(1.29, 11.6)=12.7, p=.003, 

η²=.59) showed that luminance shapes were characterised by shorter N1 latencies 

than S-cone (p=.005) and L – M (p=.014). There was a four-way interaction 

between contrast, load, DKL direction and group (F(2, 18)=5.79, p=.011, η²=.39) as 

well as between electrode location, load, DKL and group (F(4, 36)=2.68, p=.047, 

η²=.23). A separate ANOVA for each group was conducted to disentangle these 

interactions. Controls showed significant effect of load (F(1, 4)=8.14, p=.046, 

η²=.67), with load 1 eliciting shorter N1 latencies, and main effect of DKL 

direction (F(2, 8)=5.87, p=.027, η²=.59); post-hoc, Bonferroni corrected tests did 
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not point to any significant differences, although latencies for S-cone appeared to 

be longer than for L – M and luminance. Patients showed only DKL-related 

modulation (F(2, 10)=7.35, p=.011, η²=.59). Luminance elicited shorter N1 

latencies than L – M (p=.015), though the difference between luminance and S-

cone was not significant (p=.078, n.s.). 

30.4. P3aAmplitude (C1, C2, Cz; 200-400 ms) 

There was no overall difference between groups (F(1, 14)=2.46, p=.139, η²=.15, 

n.s.). There was a significant interaction between group and DKL direction (F(2, 

28)=4.29, p=.024, η²=.23). Post-hoc tests showed that the P3a amplitude was 

higher for controls for isoluminant L – M condition (p=.025, Bonferroni-

corrected). For luminance and S-cone, amplitudes were not statistically different 

between controls and patients. 

 

Figure 67 ERP waveforms collapsed across contras levels, WM load and electrode locations (C1, 
C2 & Cz), presented at each DKL direction separately to demonstrate differences between control 
and patient group for component P3a (200-400 ms). 
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30.4.1. Latency 

A separate ANOVA for latencies was conducted. High contrast shapes elicited 

shorter latencies than low contrast shapes (F(1, 10)=5.30, p=.044, η²=.35). There 

was a main effect of DKL (F(2, 20)=4.00, p=.035, η²=.29); L – M shapes elicited 

shorter latencies than S-cone shapes (p=.048). 

There was a trend for DKL effect (F(2, 16)=3.39, p=.059, η²=.30, n.s.); luminance 

appeared to elicit somewhat shorter latencies than l – M and S-cone. 

An interaction between electrode location, DKL direction and group was 

significant (F(4, 40)=2.85, p=.036, η²=.22). We conducted separate ANOVAs for 

each group. 

30.4.2. Control group 

Latencies were shorter for high than low contrast stimuli (F(1, 5)=8.55, p=.033, 

η²=.63). There was a main effect of load (F(1, 5)=27.7, p=.003, η²=.85), showing 

that latencies were shorter for load 3. Load interacted with electrode location 

(F(2, 10)=5.76, p=.022, η²=.53). Post-hoc tests using Bonferroni correction 

showed that load 1 differed from load 3 at electrode P4 (p=.007). An interaction 

between contrast level, electrode location and DKL direction was significant (F(4, 

20)=3.19, p=.035, η²=.39). Post-hoc tests using Bonferroni correction did not 

show significant effects. 

30.4.3. Patient group 

There was a main effect of DKL direction (F(2, 10)=7.52, p=.010, η²=.60). 

Latencies decreased linearly (F(1, 5)=17.7, p=.008, η²=.78), with longest latencies 

for S-cone, then L – M, and shortest for luminance stimuli. Post-hoc tests using 

Bonferroni correction showed that luminance had significantly different latencies 

than S-cone (p=.025). Electrode location interacted with DKL direction (F(4, 

20)=3.90, p=.017, η²=.44). Post-hoc tests using Bonferroni correction showed that 

the differences between DKL directions were most evident at electrode P3, where 

luminance was significantly different than both S-cone (p=.018) and L – M 
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(p=.001). At electrode P4, luminance was different only from S-cone (p=.002), 

while there were no differences in latencies at electrode Pz. 

30.5. P3b Amplitude (P3, P4, Pz; 200-500 ms) 

There was no overall difference between groups (F(1, 14)=.825, p=.379, η²=.056, 

n.s.). Low contrast shapes elicited lower P3b amplitude (F(1, 14)=6.00, p=.028, 

η²=.30). There was a trend towards significant group by electrode location 

interaction (F(2, 28)=3.18, p=.057, η²=.18, n.s.), with somewhat higher amplitude 

for controls compared to patients at electrode Pz. 

 

Figure 68 Waveforms collapsed across DKL directions, load and contrast levels at electrode Pz 
for controls (blue trace) and patients (red trace). 

There was a main effect of DKL direction (F(2, 28)=8.65, p=.001, η²=.38); 

luminance had a higher amplitude than S-cone (p=.013); L – M also had a higher 

amplitude than S-cone (p=.015). There was a trend towards channel by load 

interaction (F(1.26, 17.7)=3.6, p=.066, η²=.20, n.s.); load 1 elicited somewhat 

higher amplitude than Load 3 at the central electrode Pz. Finally, there was a 

three-way interaction between contrast level, WM load and DKL direction (F(2, 

28)=4.75, p=.017, η²=.25). We run a separate ANOVA for each contrast level.  At 

low contrast, group interacted with electrode location (F(2, 28)=4.51, p=.020, 
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η²=.24). Post hoc tests using Bonferroni correction showed that P3b amplitude 

for patient group was lower than for controls at electrode Pz (p=.023). There was 

a main effect of DKL at low contrast was significant (F(2, 28)=4.94, p=.015, 

η²=.26). There was a linear increase in amplitude (F(1, 14)=8.24, p=.0127, η²=.37) 

across the three DKL directions, with the smallest amplitude for S-cone, then L – 

M, then luminance. Post-hoc tests using Bonferroni correction showed that the 

difference in amplitude between luminance and S-cone was significant (p=.037). 

DKL factor interacted with electrode location (F(4, 56)=2.78, p=.035, η²=.17). 

Post-hoc tests using Bonferroni correction suggested that differences in 

amplitudes between DKL directions were most pronounced at electrode P4, 

where luminance had significantly greater amplitude than L – M (p=.014) and 

marginally greater than S-cone (p=.05). There was also a trend for a significant 

load by DKL direction interaction, although it was not significant (F(2, 28)=3.20, 

p=.056, η²=.19). This interaction would suggest that differences between DKL 

directions were most pronounced at higher WM load (see Figure 69 below). 

There were no effects or interaction at high contrast 

 

Figure 69 P3b amplitude during retrieval for 3 DKL directions, at load 1 and load 3. Although the 
interaction between load and DKL was significant, differences between DKL directions could be 
more pronounced at higher WM load levels. Error bars represent standard error of the mean. 

30.5.1. Latency 

A separate ANOVA for latencies was conducted. High contrast shapes elicited 

shorter latencies than low contrast shapes (F(1, 8)=5.91, p=.041, η²=.42). 
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Figure 70 Waveforms collapsed across groups and electrodes and presented at low and high 
contrast separately, for each DKL direction, to demonstrate the three-way interaction between 
contrast, WM load and DKL direction. 
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31. Discussion 

In this experiment, we compared WM performance on a delayed match-to-

sample task between schizophrenia and control group (matched for age and 

educational level). We expected that performance of the schizophrenia group will 

be overall worse than that of controls on this task (Hasenschel et al., 2009; 

Haenschel, Linden, Bittner, Singer, & Hanslmayr, 2010; Haenschel, Bittner, 

Haertling, Rotarska-Jagiela, Maurer, Singer, Linden, et al., 2007; Nuechterlein et 

al., 2004; Nuechterlein, Ventura, Subotnik, & Bartzokis, 2014),  

We predicted that given apparent visual deficits in schizophrenia (e.g. Javitt, 

2009a; Silverstein et al., 2015)) and magnocellular deficit account of these 

impairments (Kéri & Benedek, 2007), luminance-defined shapes will not provide 

a memory advantage over isoluminant shapes.  

Another aim of the current study was to replicate the main behavioural finding of 

the previous EEG and psychophysics experiment – that is, that luminance 

benefits visual WM. More specifically, we looked whether, in the control group 

data, the advantage of luminance over isoluminant conditions will be reflected in 

better accuracy in response to luminance shapes at higher working memory 

loads. In the previous study, this was the case for the probes that mismatched 

remembered shapes. 

In terms of ERP responses for the control group, we were mostly interested 

whether the amplitude of the early visual component P1 in response to luminance 

shapes will be modulated by WM load (Haenschel et al., 2007). For patients, we 

expected no such modulation of the component P1, along with the overall 

reduction of this component in response to our stimuli (Haenschel et al., 2007). 

We also looked at N1 in response to isoluminant shapes – our hypothesis was that 

the N1 will not be modulated by WM load in either group.  

The interaction between WM load, DKL direction and probe type was one of the 

major findings in the previous study. In particular, we showed that the luminance 

benefit was manifested in the behavioural accuracy data especially at higher WM 
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loads and in the mismatch condition (i.e. when the memory probe was different 

to the remembered stimuli).  

We did not show a clear indication of luminance benefit in control participants. 

Participants’ accuracy levels were indeed higher for luminance than S-cone, but 

this was also the case for L – M condition. Accuracy in response to all DKL 

directions was reduced in patients compared to controls, however, there was no 

specific reduction for luminance-defined shapes. 

We also expected to see the luminance benefit to manifest at higher WM load for 

mismatching probes, as we have shown in the previous experiment. 

Consistently with the previous study, we found that the probe type interacted 

with WM load for luminance. The results suggested that a higher WM level, the 

decrease in accuracy was more severe for a match than it was at the mismatch. 

While no such interaction could be seen in S-cone condition, L – M condition 

displayed a similar pattern. 

While there were no significant interactions with group type, the pattern of 

results (see Figure 48) suggests that in the schizophrenia group, accuracy was 

similar in response to match and mismatch probes, i.e. it decreased with 

increasing WM load. On the other hand, while in the control group both 

conditions also suffered from increasing WM load, mismatch probes tended to 

produce higher accuracy than in the match condition, suggesting that the benefit 

of luminance at mismatch could be lost in the schizophrenia group. However, 

more data is needed to confirm this interpretation. 

The modulation of the early visual component in control and schizophrenia 

group was in line with our predictions. Based on previous findings (e.g. 

Heanschel et al., 2007) we expected to see a reduced P1 amplitude for patients 

compared to controls, which was the case with our data. It is worth noting that P1 

component was reduced for both patients and controls in low contrast condition. 

As discussed in the previous chapter, we attribute this to the low signal-to-noise 

ratio for low contrast condition. A similar pattern was also observed at retrieval, 

although the difference was not statistically significant. 
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Additionally, we also found that the P1 component was modulated by WM load 

in controls, reflected in higher amplitude in high WM load condition. However, 

in the current study, the effect was confined to electrode O2. It is worth noting 

that in the previous study load effects were most evident at lateral electrodes (O1 

and O2), while such pattern was less clear at electrode Oz. In the future studies, 

it would be reasonable to focus on lateral electrodes, as it appears that load 

effects are lateralised. Averaging across multiple electrode sites might be also 

beneficial to increase the signal-to-noise ratio, as load effects in the previous and 

in the current study were small. 

N1 was the first component that was reliably elicited by isoluminant shapes, as 

the P1 was absent in response to this class of stimuli (Crognale, 2002; Gerth et al., 

2003). Similarly to the experiment one, this pattern suggests that the isoluminant 

stimuli were not contaminated by luminance artifact, thus validating the design 

of our stimuli. 

As previously, we did not find clear load-related modulation of this component, 

neither for isoluminant or luminance condition, confirming that the P1 

component was the first to be modulated by WM load. Luminance elicited overall 

less negative amplitude than isoluminant conditions. There was no clear 

differentiation between control and patient group in terms of N1 amplitude. 

However, at low contrast, the difference between luminance and isoluminant 

conditions seemed to be more pronounced for controls. 

There was also no clear distinction between controls and patients for the P3a and 

P3b components, which was in line with previous studies (Haenschel, Bittner, 

Haertling, Rotarska-Jagiela, Maurer, Singer, Linden, et al., 2007). This finding 

(together with P1 effects discussed above) suggests that, in terms of WM 

encoding, early visual processing is especially affected in schizophrenia. 

The maintenance period also appeared to play a role, however, as the occipital 

slow wave differentiated between patients and controls. At retrieval, on the other 

hand, there were no specific group or WM load-related effects. 

Taken together, the findings suggest that WM is affected in schizophrenia 

compared to controls. This was reflected in lower behavioural accuracy. A 
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reduction of ERP component P1 in patients but not in controls suggests that early 

visual processing is altered in schizophrenia. Slow wave recorded from occipital 

sites could also differentiate between controls and patients during the 

maintenance. One interpretation of this finding could be that the impaired 

perceptual processing (as indicated by reduced P1) has effects on the 

maintenance of the stimulus in later WM stages, which in turn impacts 

behavioural performance. It would be beneficial in future studies to establish how 

the neural activity at one stage affects the next. 

The overall pattern of results also suggests that in controls, responding to 

mismatching memory probes produced better performance than when the 

memory matches previously presented item at high WM load. This suggests that 

the process which compares memory representation with the ongoing perceptual 

representation is different for match and mismatch (Hyun et al., 2009) and is in 

line with other studies that showed that mismatch probes are accurately rejected 

by participants in a WM task regardless of WM load (Bledowski et al., 2011). This 

interpretation was also put forward while discussing the similar pattern of results 

in experiment one (see Chapter 3). 

Interestingly, this pattern is less evident in the patient sample (see Figure 5). For 

patients, accuracy in response to different DKL directions was similar at low and 

high WM load, and at match and mismatch condition. Even with the confound 

introduced by the use of averaged thresholds, these results might suggest that 

accuracy in response to luminance behaves differently than in controls. 

However, while the previous study showed that this mismatch-specific effect was 

demonstrated for luminance-defined stimuli, in the current study the pattern was 

similar in L – M condition. Moreover, the overall accuracy did not seem to benefit 

from luminance, although it was reduced for the isoluminant S-cone condition. 

Furthermore, the current study failed to show a luminance-specific impairment 

in the patient group, showing instead a generalised reduction in accuracy. 

The failure to observe the difference between luminance and isoluminant L – M 

could suggest that our earlier finding was a false positive. However, it could as 

well be the case that there was a significant luminance artifact in the L – M data 
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that would essentially make these two classes of stimuli similar. Inspection of the 

ERP waveforms does not seem to support this interpretation as there is no clear 

P1 in response to L – M shapes, which should be the case if a substantial 

luminance artifact was present in the data. An alternative explanation for this 

pattern is that it was due to the decision to use average thresholds instead of 

measuring individual thresholds prior to the main WM experiment. 

At this point, we cannot rule out the possibility that in some participants 

averaged thresholds could contribute to unequal stimulus saliency between 

different DKL directions. This could lead, for example, to overestimated L – M 

contrast and/or underestimated Luminance contrast, which, on average, would 

cancel out any differences between these two conditions that would be otherwise 

observable. 

However, even if we would be able to replicate the results of the previous study, 

they would be not free from the same criticism – mainly that using averaged 

thresholds could make it more likely to invalidate our efforts to make stimuli 

isosalient. Moreover, one could also argue that by using averaged thresholds we 

have biased the patients to perform worse than controls. If magnocellular deficits 

are actually present in our sample of patients, and if (as we claim), luminance 

processing is casually tied to WM performance, then the luminance 

discrimination thresholds must be higher than those of controls. This would be 

consistent with vision test results; in our sample, patients tended to perform 

worse on acuity measures, and somewhat worse on functional contrast sensitivity 

measures (although in the latter case the results were not significant). Using 

thresholds that are based on non-clinical population can, therefore, introduce a 

major bias. In conclusion, any strong conclusions derived from our data are 

therefore prone to criticism, should the pattern replicated that of the previous 

experiment or not (as it is the case currently). In summary, the use of individual 

thresholds should be preferable. 

Currently, we are collecting more data to address those shortcomings. Should we 

find that the pattern of results still does not replicate the first experiment, we 
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would know that our design choice was not at fault. However, this is beyond the 

scope of this thesis. 

The results of the pilot study are mostly promising. We have replicated the 

accuracy advantage in the behavioural data; luminance-defined shapes led to 

better accuracy than S-cone and L – M conditions, although this effect did not 

correlate with the group. Nevertheless, patients performed worse than controls 

overall. 

Interestingly, besides the overall group differences, the data showed that patients 

performed somewhat worse than controls in the mismatch condition. This 

finding is promising for the future study – it would partially support the 

conclusion of our previous experiment that the luminance advantage manifests 

itself when the probe mismatches remembered stimuli and that this advantage 

might be less pronounced in patients. This conclusion is, of course, limited by the 

three-way interaction between probe type, WM load and DKL direction – it 

occurred regardless of the group type. However, it is important to bear in mind 

that the sample size of this study is small (8 participants per group), and thus the 

study was likely underpowered to detect a four-way interaction with the group. 

Visual inspection of the box plots (see figure) indicates that this conclusion is 

likely. The pattern of results for controls resembles the one we reported in the 

previous experiment; namely, accuracy for luminance at mismatch appears to be 

somewhat higher than S-cone; although luminance and L – M do not appear to 

differ in this case (see above for a discussion on the apparent lack of dissociation 

between responses to L – M and luminance shapes). For patients, accuracy in 

response to S-cone, L – M and luminance at mismatch seems to be uniform 

across these conditions, resembling the match condition pattern that we found in 

both the previous and in the current study as well. 

While our study highlighted the importance of perceptual processing, there is a 

number of other factors that could contribute to WM performance (Lee & Park, 

2005), or even interact with perceptual processing at encoding. For example, 

attention might be a relevant factor. Failure to select information relevant to the 

task, or a failure to direct attention to the relevant feature could result in worse 
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performance via lack of encoding precision (Adler et al., 1998; Braver, Barch, & 

Cohen, 1999).  

While our study is not testing these factors directly, it would be useful for future 

research to identify top-down factors that can interact with perception at the 

encoding stage. 

Other low-level factors might be also at play. For example, performance in 

patients versus controls could stem from slower encoding (Hartman et al., 2003). 

It would be interesting to see whether increasing the timing of stimulus 

presentation would increase performance in patients, as was the case in previous 

studies (Tek et al., 2002). 

Given that visual impairments in schizophrenia have been widely reported 

(Silverstein et al., 2015), studies attempting to assess visual WM in schizophrenia 

would be wrong to assume intact perceptual processing (Tek et al., 2002). 

However, it is unclear what the precise nature of this perceptual impairment is 

and how it contributes to WM performance. Results of our study go in line with a 

growing number of studies that recognise the role of sensory and perceptual 

processing at the encoding stage of WM (e.g. Haenschel, Bittner, Haertling, 

Rotarska-Jagiela, Maurer, Singer, Linden, et al., 2007). It also sheds light on the 

potential perceptual mechanism contributing to impaired WM performance – 

namely, an impaired processing of luminance signals. While more data is needed 

to confirm this interpretation, current results suggest that this is a direction 

worth pursuing. 

As mentioned above, a study by (Haenschel et al., 2007) recorded EEG from 

patients and controls during WM task. More specifically, they were looking at 

ERP component P1, which is related to perceptual processing (see Chapter 3). 

They found that this component was sensitive to WM load in the control group. 

More specifically, while WM load was inversely correlated with performance 

(participants in both groups found it harder to remember more items), the 

amplitude of P1 component increased with increasing WM load in controls. 

Moreover, the amplitude of this component successfully predicted performance 

on the task, but again, only in the control group. If component P1 is mainly 
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associated with perceptual processing, this study supports the notion of an 

impairment in perceptual processing during WM encoding. Other EEG and 

studies have also indicated impairment in early visual processing (Butler et al., 

2001, 2005; Uhlhaas et al., 2006) 

Interestingly, amplitudes of the N1 components did not differ between patients 

and controls; we also did not report a load-dependent modulation of this 

component for luminance or isoluminant conditions. This would suggest that, in 

correspondence to our hypothesis, the interaction between perception and WM 

appears to occur early and can be indexed using a P1 component. 

In summary, the results of the pilot study provide a partial support for the 

luminance advantage hypothesis; although the pattern of behavioural results is 

similar to the previous study, luminance elicited similar accuracy to L – M 

isoluminant condition. At the same time, visual component P1 at encoding seems 

to be modulated by WM load, while component N1 was not; this could suggest 

perception/WM interactions at the level of P1 component, which suggests the 

role of luminance. 

At this point, it is also difficult to establish whether the luminance advantage is 

not present in the patient population. It does appear, however, that patients have 

reduced component P1, and that the component seems not to be modulated by 

load. It is important to note however that overall, patient data appeared to be 

noisier than that of controls. Additionally, it is assumed that using average 

thresholds in an attempt to equate stimuli in terms of saliency is not a viable 

approach, and it has likely contributed to unclear results of the current study. 
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Chapter 6 

General discussion 

 

 

 

Sensory areas have been shown to play a crucial role in both encoding and 

maintaining information in WM (Harrison & Tong, 2009; Pasternak & Greenlee, 

2005). This has considerably changed the long-held view that perception and 

working memory are separate systems (D’Esposito & Postle, 2015). 

Neuroscientific studies, ranging from single-cell recordings in primates to EEG 

and fMRI in humans indicated the importance of frontoparietal network in 

working memory, with the dorsolateral prefrontal cortex implied as the location 

of the memory storage (Levy & Goldman-Rakic, 2000). While it was 

acknowledged that working memory relies on a distributed network of closely 

interacting brain areas (Eriksson, Vogel, Lansner, Bergström, & Nyberg, 2015), 

the sensory cortex, together with perceptual processing mediated by it, played a 

considerably lesser role (Linden et al., 2003; Munk et al., 2002). In light of the 

new findings, however, it became clear that we should pay closer attention to 

how perception and working memory interact (Haenschel et al., 2007; Lara & 

Wallis, 2012). 

In this thesis, it was argued that the problem of the interaction between 

perception and working memory can be approached using tools derived from 

vision science. The visual system is thoroughly described and a detailed 

description of its hierarchy exists, from the retina and subcortical structures to 

the primary visual cortex and beyond. In the past, using stimuli that selectively 

excited post-retinal mechanisms helped to elucidate how the visual information 

is “put together” to form a perceptual representation of the visual world (De 

Valois & Kooi, 1991; Crognale, 2002; Gegenfurtner & Kiper, 2003; McKeefry, 
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Murray, & Kulikowski, 2001; Vidyasagar, Kulikowski, Lipnicki, & Dreher, 2002). 

This approach has since been used to refine some of the early conclusions 

regarding perception, including high-level aspects of vision such as object 

recognition (Martinovic et al., 2011). Given the current evidence suggesting that 

perception and working memory are closely linked (D’Esposito & Postle, 2015; 

Lara & Wallis, 2012; Postle, 2006; Zimmer, 2008), we decided to apply this 

strategy to visual working memory. 

This thesis presented a number of experiments that aimed to verify the utility of 

this approach. Specifically, we looked at how the achromatic, luminance 

mechanism (L+M) and two chromatic mechanisms (S – [L+M], or S-cone, and L – 

M) compare in terms of encoding, maintaining and the retrieval of the visual 

information in WM. We showed that processing of luminance-defined items 

indeed leads to better WM performance over isoluminant shapes. In particular, in 

two separate behavioural experiments, we demonstrated an interaction between 

the number of items stored in memory and the stimulus type. Although memory 

accuracy decreased with increasing WM load, this drop was less severe for 

luminance. This was reflected in better behavioural accuracy in the ERP 

experiment (Chapter 3) and lower WM thresholds in the psychophysics 

experiment (Chapter 4). 

Our studies are novel in that the differential contribution of the psychophysical 

channels in visual working memory has not been investigated before. The results 

are in line with earlier findings that showed that luminance signals are especially 

suitable for processing and integration of edges and contours, and thus are 

important for the perception of form (Beaudot & Mullen, 2005; Gregory & Heard, 

1989; Lu & Fender, 1972; Gregory, 1977; Livingstone & Hubel, 1987, 1988; Mullen, 

Beaudot, & McIlhagga, 2000). Other studies also implicated that luminance plays 

a special role in object recognition (Bar, 2003; Kveraga et al., 2007; Martinovic et 

al., 2011). Our experiments extend these findings and suggest that luminance and 

chromatic channels provide differential contribution WM, with the luminance 

information being especially important for performance. 
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Looking only at behavioural data cannot answer the question at which WM stage 

luminance has the greatest benefit for the behavioural accuracy. Hence, it is 

important to differentiate between encoding, maintenance and retrieval using 

appropriate study design paired with a technique that provides an insight into 

processing taking place at each stage. To that end, we have used a delayed match-

to-sample working memory task (Haenschel et al., 2009; Haenschel et al., 2007; 

Linden et al., 2003) and recorded the EEG. 

Our ERP experiment demonstrated that the P1 component in response to 

luminance shapes at encoding was indeed modulated by WM load; further, the 

component peak correlated with behavioural performance. Interestingly, we did 

not find N1 to be reliably modulated by load in response to isoluminant items; 

this component also did not correlate with performance. We suggest that this 

observation corroborates our conclusion that luminance poses a benefit for WM 

performance and that this benefit may stem from early encoding stages of WM. 

However, the results also show that luminance plays an important role during the 

retrieval stage of WM. This conclusion is based on the finding that retrieving 

luminance-defined shapes led to better performance if the probe was different 

from the remembered shapes. Such mismatch-specific effect might indicate that 

luminance contributes to a successful comparison between the memory 

representation and currently perceived stimuli. This was further supported by a 

significant interaction between the P1 component during retrieval with 

behavioural performance. 

Although our experiments manipulated low-level properties of the stimuli (i.e. 

their luminance and chromaticity in order to stimulate different visual channels), 

the results do not exclude the possibility of the top-down signals impacting 

performance on the task. Notably, in addition to being sensitive to low-level 

features, the component P1 can be modulated by attention as well (Gazzaley & 

Nobre, 2012; Taylor, 2002). As attentional load increases, the P1 amplitude and 

latency increase as well (Fu et al., 2010). Thus, one should avoid implying a 

strong dichotomy between these two cognitive processes, especially in studies 

that do not attempt to dissociate between these two by design. It has been 

suggested that because WM and attention have to actively interact, they might as 
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well share a common mechanism (e.g. Chun, 2011; Gazzaley & Nobre, 2012), 

although this view is facing some criticism (Tas, Luck, & Hollingworth, 2016). It 

would be interesting to address this issue in future studies by separating 

attention from WM with the appropriate experimental design. If the mechanism 

behind luminance advantage reported here works through the facilitation of top-

down modulation, attention could be the modulating factor triggered by 

luminance. 

In the next section, I will describe the nature of the reported “luminance 

advantage” in more detail and consider different mechanisms through which 

luminance signals might contribute to better WM performance. 
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32. The underlying mechanism(s) behind the 
luminance advantage in visual working memory 

If the luminance indeed benefits WM as our results seem to indicate, it is 

important to consider what the specific mechanism behind this advantage is. 

Based on previous research, there are a number of possibilities. I will now outline 

each them and argue that, although our study did not test these mechanisms 

directly, the current evidence favours the interpretation that luminance benefits 

WM by improving the fidelity of memory representation as well as facilitating 

memory-probe comparison. 

32.1. Is luminance advantage mediated by a top-
down or bottom-up mechanism? 

Bar (2003) proposed a mechanism of object recognition in which luminance 

information serves as a trigger for a top-down facilitation. According to the 

model, luminance rapidly provides frontal areas with low-resolution information, 

which is then used as a basis to form an initial prediction about the object 

identity. Such “prediction” then serves as a top-down facilitator for object 

recognition, improving task performance (Kveraga et al., 2007). Specifically, they 

argue that magnocellular projections enable fast connections between early visual 

areas and inferotemporal regions (linked to object recognition) with orbitofrontal 

cortex. 

We reasoned that object recognition does not have to be the only process that 

can benefit from enhanced communication between visual areas and frontal 

regions, and therefore hypothesised that luminance can benefit WM via similar 

interactions. 

There is a large body of evidence for feedforward and feedback connections 

between the prefrontal cortex and sensory areas (Pasternak & Greenlee, 2005). 

Importantly, these connections appear to be important for WM (Fuster et al., 

1985; Miller & Cohen, 2001; Tomita, Ohbayashi, Nakahara, Hasegawa, & 

Miyashita, 1999). 
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Indeed, it has been shown that WM performance is facilitated by top-down 

interactions with frontal areas (e.g. see Gazzaley, 2011). Furthermore, a study 

using dynamic causal modelling (Friston, Harrison, & Penny, 2003) showed that 

increased WM load in a verbal N-back task increased connection from the left 

posterior parietal cortex to the left inferior frontal cortex (Ma et al., 2012). At the 

same time, lower WM load inhibited connection between right posterior parietal 

cortex to the left anterior cingulate cortex. Since the benefit of luminance 

demonstrated in our studies was most pronounced at higher WM load, we 

suggest that luminance information may enhance the connection between 

posterior and frontal areas. Because Ma et al. (2012) interpreted the enhanced 

posterior-frontal connection as an evidence for PPC’s involvement with early 

visual processing stages, this further supports the notion that WM encoding is 

crucial for WM performance. This interpretation can be further supported by the 

fact that posterior parietal cortex forms part of the dorsal visual stream, which 

receives predominantly magnocellular inputs (which, in turn, carry 

predominantly luminance information). The posterior parietal cortex has been 

shown to be connected to visual areas (Baizer, Ungerleider, & Desimone, 1991). 

Moreover, this region plays an important role in the processing of early visual 

signals (Andersen, 1989; Nakashita et al., 2008). 

Additionally, Gazzaley (2011) argues that top-down modulation must be initiated 

sufficiently early for the facilitation to take place. Such “head start”, could be 

achieved via fast luminance projections (Bar, 2003). The modulation early visual 

component P1 by luminance-defined stimuli in our experiment might support 

this view. It is important to note that by “facilitation”, Gazzaley and his 

colleagues usually mean improving the “fidelity” of memory representation. They 

define fidelity as the ability to distinguish memory representations from 

irrelevant signals and overcoming “undesired processing” (Gazzaley, 2011). To 

support this hypothesis, Rutman, Clapp, Chadick, & Gazzaley (2010) used a 

design in which a distractor is superimposed with a target. Thus, to perform 

correctly on the task, an appropriate stimulus selection must take place. 

According to Rutman et al. (2010), WM facilitation is achieved both via 

suppression of irrelevant information (or processing) and facilitation of attended 
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information. Even though our design does not introduce distractors, sustained 

attention on correct trials is nevertheless important for correct performance 

(Pessoa et al., 2002). As Bays (2014) argues, the neural noise is the main culprit 

behind errors in WM performance. The result from our psychophysical 

experiments would argue for this interpretation: lower WM thresholds for 

luminance-defined items would imply more efficient processing of the stimuli 

and higher precision of the stored representations. In other words, luminance 

could effectively “amplify” activity related to stimulus representation, through a 

top-down control, in consequence allowing for better extraction and later storage 

of relevant features (Gazzaley, Cooney, McEvoy, Knight, & D’Esposito, 2005; 

Hillyard et al., 1998). 

However, another possibility is that a more efficient representation and better 

signal-to-noise ratio can be achieved because of the way luminance is used in 

perception to build a perceptual representation of the stimulus, without 

necessarily invoking top-down influences. 

Within this framework, the studies on visual binding using luminance and 

isoluminant stimuli are of particular interest. As mentioned in the introduction 

(see Chapter 1), Lehky (2000) showed that participants produce more feature 

binding errors when the stimuli are isoluminant. They argue that the errors are a 

result of poor form processing, and that feature binding of isoluminant features is 

less efficient and possibly slower (Leonards & Singer, 1998). Efficient feature 

integration might be especially important in WM tasks, where the relevant 

stimuli must be accurately (and quickly) encoded before they disappear from 

view, as is the case in the delayed match-to-sample task used in our experiments. 

It is possible that the luminance advantage might be therefore better explained 

not by top-down facilitation via luminance, but through less efficient isoluminant 

signals, which (on their own) cannot sufficiently support adequate stimulus 

encoding and representation, especially over time. 

Analysis and task design utilised in our experiments cannot directly test which 

one of the two mechanisms (top-down facilitation versus low-level inefficiency of 

isoluminant encoding) would be a better explanation for the results presented in 
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this thesis. It is, of course, plausible that WM performance would not depend 

only on one mechanism, and both factors contribute to successful performance. 

Nevertheless, a way to provide a support (or undermine) the top-down account of 

our results would be to analyse the time-frequency dynamics of the EEG signal 

during WM encoding from our ERP experiment. By applying connectivity 

measures, such as time-frequency coupling, we could establish whether visual 

areas and frontal areas were reciprocally engaged in WM encoding; additionally, 

we could also assess the direction of causality by using more advanced 

connectivity techniques, such as DCM (which can also be successfully applied to 

EEG signals – e.g. see Dima et al., 2010). Additionally, modelling the source of the 

P1 elicited by our stimuli might also be informative. As earlier source localisation 

studies have indicated, the P1 is characterised by two neural generators; 

component’s early portion (peak latency at 98 – 110 ms, as measured by Di Russo 

et al. (2002) seems to be localised in the dorsal extrastriate cortex, while its later 

portion (136 – 146 ms) is localised in the ventral extrastriate cortex. It was 

suggested that this early portion corresponds to spatial selection, while the later 

portion is related to attention-enhanced processing taking place in the ventral 

stream (Di Russo et al., 2003). Hence, tracking down the neural generators of the 

ERPs shown to be selectively modulated by luminance would help to clarify 

whether attention contributed to this modulation as well. 

We also hypothesise that the encoding of luminance-defined stimuli results in 

better fidelity of the memory/perceptual representation, and hence better 

behavioural performance. This issue is related to the signal-to-noise ratio of the 

neural signals representing the encoded stimuli. With no time delay, detection 

and discrimination between visual stimuli is highly efficient. However, 

introducing a time delay between stimuli has a negative impact on discrimination 

performance (Wilken & Ma, 2004; Najima, Dosher, Chu, & Lu, 2011; Salmela, 

2012). Furthermore, the representation of the majority of visual features (such as 

orientation or contrast) decays over time (Pasternak & Greenlee, 2005). It has 

been argued (Bays, 2014; Bays et al., 2011) that increasing the number of stimuli 

held in memory increases the neural noise, and that such noise is the main 

source of errors in WM. It is also conceivable that the neural noise accumulates 
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over time, also contributing to less precise working memory representations, and 

thus leading to errors (Salmela et al. 2012). In line with this accounts, the results 

of our psychophysical experiments (see Chapter 4) showed that the observers 

needed less stimulus contrast to perform a delayed match-to-sample task with 

luminance-defined stimuli than with isoluminant shapes, even if the number of 

remembered items was high. This suggests that WM system is more efficient in 

processing luminance-defined stimuli, which could be the result of better fidelity 

and reduced noise. 

This leads to an interesting conclusion. Even if perception and working memory 

share similar mechanisms and the underlying neural architecture (Harrison & 

Tong, 2009; Pasternak & Greenlee, 2005), the efficiency of the visual working 

memory system seems to be inferior to that of perception (Salmela et al., 2012). 

In other words, even though the recently proposed sensory recruitment 

hypothesis (D’Esposito & Postle, 2015) emphasizes that the same areas are 

involved in encoding and storage of visual information, one should remember 

that this does not imply that the fidelity and neural noise is invariant to time 

delay and a number of encoded stimuli. Thus, it is important to compare the 

efficiency of both systems under such conditions, as well as to contrast new 

findings with our extensive knowledge of the nuts and bolts of the visual system. 

The above considerations point to an obvious direction which future studies 

should undertake in order to follow up on our experiments. More specifically, it is 

important to note that we did not measure fidelity or neural noise as such 

directly. In other studies, good fidelity (also referred to as resolution and 

precision) is defined with respect to irrelevant stimuli (e.g. Gazzaley & Nobre, 

2012). In other words, if the target stimuli are clearly distinguishable from non-

targets or distractors, it means that it is represented with a very good resolution. 

Other studies attempted to directly test the precision of WM by using a task 

where participants are required to adjust the test stimulus in order to match 

stimulus held in memory. For example, Bays et al. (2011) used a task where 

participants were required to remember orientations of coloured bars. After a 

memory delay, participants would adjust the orientation of the final bar to try to 
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reproduce target’s orientation. Difference between target’s and probe’s 

orientation served as a measure of recall error and precision. 

To directly test the assertion that luminance has a considerable impact on 

fidelity, it would be useful to employ a similar task. For now, our interpretation of 

the data remains somewhat indirect, based on available literature and the 

properties of the visual system. A more direct fidelity measure would be certainly 

beneficial. 

32.2. Contribution of luminance signals to 
memory-probe comparison 

Interestingly, we found that the luminance advantage in the match-to-sample 

task was pronounced in trials where the memory probe mismatched the 

remembered items. This finding seems to be replicated in healthy controls in the 

pilot schizophrenia study (See Chapter 5) and in an unpublished study performed 

in a different lab, but using similar design (Haenschel, Kosilo & Martinovic, 

2012). To understand this result, we need to appreciate that successful 

comparison between memory representation and incoming/currently perceived 

stimuli is achieved differently in the match and mismatch conditions. This 

deserves a more detailed discussion, which will be presented in the section 

below. 

32.3. Comparison between WM representation 
and currently-perceived stimuli – insights from 
WM literature. 

Episodic and long-term memory is generally considered to be specially tuned to 

detection of familiarity (Davelaar, Tian, Weidemann, & Huber, 2011b). The 

distinction between detecting familiarity or novelty is analogical to our match 

and mismatch conditions, respectively. Notably, however, the process behind the 

comparison between memory representation and incoming stimuli, and the 

consequences for the memory performance, has also received less attention over 
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the years (Hyun et al., 2009) 11. The current available empirical evidence and 

theoretical accounts highlight however that these processes are not equivalent. 

For example, Bledowski, Kaiser, Wibral, Yildiz-Erzberger, & Rahm (2011) report 

that mismatch-dissimilar probes were accurately rejected regardless of memory 

load. On the other hand, rejecting match probes or probes similar to sample 

stimuli was worse with increasing WM load. Bledowski et al. (2011) regard the 

results as evidence that working memory comparisons share similar mechanisms 

to long-term memory comparisons, and that these are based on similarity 

summation. 

As mentioned at the beginning of this chapter, top-down signals from the 

prefrontal cortex to sensory areas are important for WM. Interestingly, evidence 

for this came from primate studies looking at the function of inferotemporal 

cortex in the absence of inputs from prefrontal cortex (e.g. Tomita et al., 1999). 

Inferotemporal cortex forms a final stage in the dorsal visual stream and is 

considered crucial to object recognition (e.g. Tanaka, 1996). Neurons in the IT 

areas (in monkeys) are also responsive to aspects of shapes that are already 

segregated from the background (Baylis & Driver, 2001). Crucially to our 

findings, neurons in this area demonstrate match suppression as well as novelty 

enhancement; more specifically, nonmatching stimulus evokes larger responses 

than the same stimuli presented as a match (Constantinidis & Procyk, 2004; 

Miller, Li, & Desimone, 1991). 

This, by itself, does not provide an answer as to how the luminance signals 

provide an advantage over isoluminant signals. However, there are a few 

interesting, loosely connected clues. 

More specifically, based on the match-suppression and novelty-enhancement 

properties of the IT neurons, Miller, Li, & Desimone (1993) suggested that one 

can think of the comparison between memory representation and currently 

                                                 
11 Perhaps with the exception of studies related to change blindness (Simons, Levin, & Haber, 1997; 
Simons & Rensink, 2005), where much more attention is drawn to these comparisons due to the nature 
of this phenomenon. 



303 

 

perceived stimuli as a process analogical to figure-ground segmentation, but in a 

temporal, rather than spatial, domain. Miller et al. (1993) build this analogy by 

pointing out that the visual system is highly responsive to contrasts, in the sense 

that two opposing features are compared. According to this analogy, memory 

representation (or, as Miller et al. put it more broadly, “the past”) functions as a 

surround, with which the incoming, currently perceived stimuli is contrasted. 

This analogy is especially attractive given that detection of luminance contours is 

an important step in figure-ground segmentation process (Peterson & Gibson, 

1993; Peterson & Gibson, 1994; Rubin, 2001)12. Furthermore, as mentioned above, 

it is the early luminance projections from the inferotemporal cortex that form the 

basis for luminance advantage in object recognition (Bar, 2003; Kveraga et al., 

2007). It is tempting to explore the nature of such temporal figure-ground 

segmentation further, although it is not clear to what extent this is indeed a good 

analogy for memory-perception comparisons in WM, and whether luminance 

would indeed be somehow beneficial in this instance. 

To further draw on how match and mismatch WM comparisons are achieved, 

and how luminance could enhance mismatch comparisons, in particular, we can 

turn towards the perceptual literature. I will now describe how match/mismatch 

comparison is achieved in perceptual comparison studies and how this may 

inform memory-percept comparisons in WM in general, and luminance 

advantage in particular. 

32.4. Insights from perceptual comparison 
studies 

According to Hyun et al. (2009), in order to describe the processes behind 

comparing memory representations with currently perceived stimuli, one can 

turn to the literature on perceptual comparisons. Studies in this field use a 

                                                 
12 Although contour recognition alone is not enough for separating figure from the background, as a 
simple contour do not, by itself, carry information as to which side of the contour is the “figure”, and 
which one is the “background” – a problem referred to as Zusammmengehörigkeit (“belonging 
together”) by Edward Rubin in his classic work (Rubin, 2001). 
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similar methodology as WM experiments, i.e. they require participants to make 

same/different decisions during change detection or match-to-sample tasks. 

Therefore, perceptual comparison literature can provide a step towards the 

conceptualization of comparison processes in WM. This approach is sensible 

considering the already described overlap between WM and perception (Harrison 

& Tong, 2009; see Chapter 1). 

Hyun et al. (2009) proposed, for instance, that mechanisms of change detection, 

and thus comparison, can be regarded as equivalent to visual search. According 

to this view, the presence of change is detected using unlimited – capacity 

comparison process, which is analogical to responses to salient features during 

visual search tasks. Also, targets defined by the presence of a feature are detected 

more efficiently than the targets defined by the absence of a feature (Treisman, 

1998). In other words, detection of change can be more efficient. 

In one study, Davelaar et al. (2011b) attempted to establish whether change 

detection is made based on the strength of the match signal (detection of 

familiarity), or on the magnitude of the mismatch signal (detection of novelty). 

Using MEG, they presented participants with a same/different judgement task. In 

terms of neural responses, they failed to detect different patterns of activity for 

the match or mismatch responses, interpreting this as an evidence for a common 

neural source of such comparison. At the same time, the activity was larger for 

mismatch responses. Behaviourally, they showed that, when participants were 

cued with targets in trials preceding the same/different judgement, their 

responses were slower. At the same time, when participants were primed with the 

non-target cue, their response times improved. Together, the data presented in 

their study is taken as an evidence for change detection, rather than familiarity 

detection, as the driver for same/different judgements. 

The authors propose a habituation account to explain their findings on a neural 

level (Davelaar et al., 2011b). When the target prime is salient, it causes the given 

stimuli to be habituated; when the response probe appears, the habitation state is 

still persistent. As a result, a subject is able to detect novel stimuli more 

effectively. At a neural level, it is hypothesised that neurons which were 
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habituated to a given stimulus (i.e. ones that have been active recently) do not 

have enough neurotransmitters available to effectively transmit activation to 

other neurons. On the other hand, inactive neurons will have enough 

neurotransmitters available to transmit its activation to other neurons. Thus, 

same/judgement task would be based on response to novelty, rather than 

similarity. Similar conclusions were drawn from other experiments (Huber, 

2008). They showed that, if the exposure to the stimuli matching the target 

presented prior to judgement was sufficiently long, behavioural performance was 

worse unless the final target represented a change. Again, these results can be 

explained in terms of habituation. 

Another model described by Johnson et al. (2009) model draws on the similar 

assumption in relation to same/different judgements. However, their model is 

applied explicitly to WM, rather than perceptual judgement. Johnson et al. 

described the neural architecture that underlies WM encoding and maintenance 

as well as possible mechanisms behind the comparison of current perceptual 

input with memory representations (inspired by canonical cortical circuit by 

Douglas & Martin, 2004 and Douglas, Martin, & Whitteridge, 1989). According to 

this model, there are two excitatory fields (perceptual field and working memory 

field), and one inhibitory field. Current input enters the perceptual field while 

working memory field receives excitatory input primarily from the perceptual 

field. Sustained activation occurs due to excitatory and inhibitory interactions 

between neurons in those fields. 

The model adds another layer to account for responses in change detection tasks 

– the response field. For instance, when presented colour is the same as a colour 

currently stored in memory, activation in the perceptual field remains below a 

threshold. This is due to neurons in this field being inhibited as a result of the 

previous exposure to that colour. Therefore, the input to the response layer 

comes from the working memory field – and a ‘same’ response is made. If on the 

other hand, a colour enters an uninhibited perceptual field, it generates an 

activation which is relayed to the response field, and ‘different’ judgement ‘wins 

the competition’. 
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In short, Johnson’s model suggests that the “match” response is a default one 

since the activation of the change-detection node in their model remains below 

the threshold due to inhibition; if the threshold is not reached, the system 

produces a “match/same” response. As Johnson et al. note, the “match” response 

comes from WM mode, while the “mismatch” response is driven by perceptual 

field. Incoming stimuli that mismatches the stored WM representation enters an 

uninhibited perceptual field, allowing for an activity peak exceeding the 

judgment threshold. 

An interesting and, at first, counterintuitive behavioural prediction of this model 

is that the change detection will be enhanced if the mismatch stimuli have 

similar features. According to their model, WM representations excite the 

inhibitory field; if the inhibition is strong, the perceptual field is strongly 

inhibited; this raises the threshold needed for the system to reach a “mismatch” 

decision (and if such threshold is not exceeded, the system produces the default 

“match” response). In line with this, similar representations in WM field would 

interact and inhibit one another; as a result, their excitation of the inhibitory field 

is weaker; which, in turn, makes the perceptual field less inhibited, meaning a 

lower threshold is needed to reach a mismatch response. 

This prediction could be relevant to our study. Even though similarity was not 

tested in our experiment directly, the stimuli that we have used are (at least 

qualitatively) similar. Moreover, the stimuli that participants remember are 

always presented at the same DKL direction as the probe; thus, it could be argued 

that the shapes must produce similar representations (even if the shape outline 

might be different). Indeed, our results show that responses to mismatch probes 

produce more accurate results than match probes in general. However, the main 

question is why would luminance pose an advantage over isoluminant shapes at 

match, and especially at higher WM loads? 

If we were to use Johnson et al.’s model to explain this results, one could say that 

luminance-driven WM representations are “sharper” and thus produce weaker 

excitatory inputs to the inhibitory field, leaving the perceptual field receptive to 

incoming, mismatching stimuli (as outlined in the example above). This can be 
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linked to a better signal-to-noise ratio achieved with luminance inputs, as 

discussed earlier in the discussion; less noisy neural representations could drive 

weaker excitatory inputs to the inhibitory field. This would explain why 

luminance produced better mismatch responses than mismatching isoluminant 

stimuli. While isoluminant mismatch stimuli also result in better responses due 

to the uninhibited perceptual field, luminance would be superior due to sharper 

representation in memory. 

Another possibility is that isoluminant and luminance shapes provide a similarly 

weak excitatory input to the inhibitory field, but due to a less noisy perceptual 

representation of the incoming stimuli it is easier for luminance inputs to exceed 

the threshold, leading to fewer errors. On the other hand, isoluminant inputs are 

noisy and thus they would more often than not stay below the threshold, 

producing more errors. To directly test these two predictions against each other, 

it would be useful to quantify errors in response to mismatching stimuli for 

luminance and isoluminant conditions (as already discussed above). If the 

magnitude of errors is higher for the isoluminant conditions, this would indicate 

that indeed the neural representation is far noisier than for luminance stimuli. 

Johnson et al.’s model is of course not the only one that attempts to account for 

memory or perceptual comparison process. Since Hyun et al. (2009) suggested 

that the perceptual comparison literature can be as well used to explain 

comparisons between incoming stimuli with existing WM representations, this 

opens a path to a broad perceptual decision – making literature; dwelling deeper 

into this topic is however outside the scope of this thesis (although it does 

indicate one possible direction where our research question can lead us). Some of 

the models, similar to Johnson’s, also discuss repetition suppression 

phenomenon, citing it as a driving factor behind more optimal match versus 

mismatch responses (e.g. Engel & Wang, 2011; Hussar & Pasternak, 2012) 13. 

                                                 
13 Notably, the relative advantage of mismatch responses (manifested behaviourally in better accuracy 
and/or faster reaction times) can be overridden by top – down inputs, for example, in tasks that require 
the subject to specifically respond to match trials. 
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Of note are the experiments by Hussar & Pasternak (2012), who recorded the 

activity of prefrontal cortex neurons from monkeys performing a delayed motion 

direction comparison. Among other findings, they also observed that the activity 

signalling different trials (equivalent to our mismatch) emerged earlier than the 

activity signalling same (match trials). They hypothesised that this difference is 

due to local origins of the more optimal “different” responses in the middle 

temporal area MT (V5). Better responses to “same” trials would, on the other 

hand, originate via slower, top-down inputs (Lui & Pasternak, 2011). According to 

this view, a comparison between sensory representations would take place in MT, 

and thus would be achieved quicker. Although we did not observe a specific 

advantage in terms of RT for mismatching luminance stimuli, Lui and Pasternak’s 

account is an attractive one due to the fact that area MT forms part of the dorsal 

visual stream, which receives predominant magnocellular inputs. It is, of course, 

hardly surprising, given that this area is dedicated to motion detection; it is also 

problematic to directly relate that to the findings of our study, given that our 

experiment does not involve motion detection and thus cannot be localised to 

the area MT specifically. Nevertheless, it is, to an extent, sensible to hypothesise 

that efficient feed-forward signalling from this area may produce a more optimal 

behavioural performance for luminance stimuli over isoluminant stimuli. The 

lack of reaction time advantage for luminance over isoluminant stimuli does not 

necessarily exclude that possibility; Lui and Pasternak also acknowledge that the 

late mismatch- over-match advantage would be also driven by slower top-down 

signals. It is conceivable that the reaction time advantage was overridden, but the 

accuracy advantage achieved by more efficient top-down signalling has been 

preserved. 
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33. Summary and implications for future research 

Overall, the psychophysical, behavioural, and ERP data presented in this thesis 

support the notion that encoding luminance-defined shapes into WM results in 

relatively better performance than encoding isoluminant shapes. Although the 

exact mechanism behind this advantage cannot be directly inferred from the 

current data, we propose that the general factor behind the luminance advantage 

is a better signal-to-noise ratio of the stored representations and enhanced 

communication between sensory and frontal areas. Because the luminance 

advantage is most pronounced at higher WM loads, it supports the notion that 

WM and perception are intrinsically linked. Furthermore, our ERP data suggests 

that this benefit might manifest itself already during the early WM stages. 

To fully understand factor contributing to successful WM performance, we argue 

that is necessary to focus on the encoding stage of WM when the dynamic 

interactions between perception and WM are likely to take place. Luminance 

benefit was also pronounced in cases when the probe did not match the 

previously presented stimuli. This also points to the possible importance of 

memory/perception interaction, but at the retrieval stage as well, when the 

processes behind contrasting the memory representation with currently 

perceived stimuli are taking place. This opens up new possibilities. In particular, 

it emphasizes the importance of studying how the memory/percept comparison 

is achieved, and how it is linked to the fidelity of encoding at earlier stages. In 

addition to encoding, retrieval might be another WM stage where interaction 

between WM and perception is especially important for performance. Findings 

from the perceptual comparison literature might prove to be relevant here (Hyun 

et al., 2009), and establishing whether WM comparisons work analogically to 

perceptual comparisons might be a good starting point. 

Crucially, the results of the current study emphasize the need to consider the 

validity of collapsing responses across match and mismatch conditions. It appears 

that it might not be the best strategy, as match and mismatch appear to be 

tapping into different processes which might impact performance in a different 

manner. 
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Conclusion 

 

 

 

Vision starts from detecting spots of light and advances further through 

computing edges, contours, colours, segmenting objects from the background, 

and finally combining elemental visual features into meaningful representations. 

A classical approach in vision science would be to compare the performance of 

luminance and chromatic channels to determine whether they are equally 

efficient in sustaining different aspects of vision. Our experiments show that it is 

possible to use this approach to investigate the capability of visual channels not 

only during the on-line vision but also when the visual input is no longer present 

in the visual field. Achieving this requires working memory. Working memory 

processing involves encoding and sustaining the representation of the visual 

stimulus over time. Subsequently, the representation needs to be accessed to 

meet current task demands, such as comparison of the memory representation 

with a newly presented stimulus. Consequently, it is important to consider how 

the different visual channels are contributing to these processes. The results 

presented in this thesis suggest that the visual channels do not perform equally in 

working memory tasks, with the luminance providing a benefit over isoluminant 

signals. This finding adds to the growing body of literature concerned with 

mechanisms behind working memory performance in health and disease. 
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