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Abstract 
 
Post-translational modification of 
serine/threonine residues in nucleocytoplasmic 
proteins with N-acetylglucosamine (O-
GlcNAcylation) is an essential regulatory 
mechanism in many cellular processes. In 
Drosophila, null mutants of the polycomb gene 
O-GlcNAc transferase (OGT, also known as 
super sex combs [sxc]) display homeotic 
phenotypes. To dissect the requirement for O-
GlcNAc signaling in Drosophila development, 
we used CRISPR/Cas9 gene editing to generate 
rationally designed sxc catalytically hypomorphic 
or null point mutants. Of the fertile males derived 
from embryos injected with the CRISPR/Cas9 
reagents, 25% produced progeny carrying precise 
point mutations with no detectable off-target 
effects. One of these mutants, the catalytically 
inactive sxcK872M, was recessive lethal, whereas a 
second mutant, the hypomorphic sxcH537A, was 
homozygous viable. We observed that reduced 
total protein O-GlcNAcylation in the sxcH537A 
mutant is associated with a wing vein phenotype 
and temperature-dependent lethality. Genetic 
interaction between sxcH537A and a null allele of 
Drosophila host cell factor (dHcf), encoding an 
extensively O-GlcNAcylated transcriptional 
coactivator, resulted in abnormal scutellar bristle 
numbers. A similar phenotype was also observed 
in sxcH537A flies lacking a copy of skuld (skd), a 

Mediator complex gene known to affect scutellar 
bristle formation. Interestingly, this phenotype 
was independent of OGT Polycomb function or 
dHcf downstream targets. In conclusion, the 
generation of the endogenous OGT hypomorphic 
mutant sxcH537A enabled us to identify pleiotropic 
effects of globally reduced protein O-GlcNAc 
during Drosophila development. The mutants 
generated and phenotypes observed in this study 
provide a platform for discovery of OGT 
substrates that are critical for Drosophila 
development.  
_______________________________________ 
 
Introduction 
 
Nucleocytoplasmic post-translational 
modification of protein serine/threonine residues 
with N-acetylglucosamine (GlcNAc), otherwise 
known as O-GlcNAcylation, is a key regulator of 
several cellular signalling events (1). O-GlcNAc 
transfer is mediated by O-GlcNAc transferase 
(OGT) while O-GlcNAcase (OGA) removes the 
modification from proteins. The OGT donor 
substrate UDP-N-acetylglucosamine (UDP-
GlcNAc) is one of the critical regulators of O-
GlcNAcylation and is a product of the 
hexosamine biosynthetic pathway (HBP) (2). 
Change in flux through HBP downstream of 
glucose availability leads to altered UDP-
GlcNAc levels and consequently impinges upon 
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levels of nucleocytoplasmic protein O-
GlcNAcylation (3). Thus, O-GlcNAc signalling 
is an important transducer of cellular glucose 
levels, modulating the function of the O-
GlcNAcylated substrates by multiple 
mechanisms including changes in enzyme 
activity (4), protein stability (5,6), 
oligomerization (7) and solubility (8). Protein O-
GlcNAcylation has also been demonstrated to 
occur co-translationally and was shown to 
increase the stability of nascent protein chains 
(9). Modulation of protein function by O-
GlcNAcylation ultimately leads to altered 
transcriptional profiles (10,11). Increasing 
evidence associates deregulation of O-GlcNAc 
signalling with disease states such as cancer, 
diabetes and neurodegeneration (12). Point 
mutations in OGT that segregate with X-linked 
intellectual disability have recently been 
described (13,14). 
 Loss or knockdown of OGT in metazoa 
leads to lethality at various stages of development 
(15-18). Mouse embryonic stem cells are not 
viable in the absence of ogt and tissue-specific ogt 
knockout leads to a range of phenotypes in 
nervous and immune systems (15,19,20). 
Reduction in OGT levels in Xenopus and 
zebrafish leads to severe growth defects (17,18). 
In Drosophila, OGT (also known as super sex 
combs (sxc), henceforth referred to only as sxc) 
mutants die as pharate adults (21). sxc is a 
polycomb group (PcG) gene that contributes to 
control of HOX gene expression and specification 
of segmental identity (16). The Drosophila 
embryonic O-GlcNAcome is dynamic with 
increased numbers of proteins becoming O-
GlcNAc modified with developmental time (22). 
Polyhomeotic (Ph), a core component of the 
PRC1, has been identified as a key O-GlcNAc 
substrate (8). Reduced O-GlcNAcylation of a 
Ser/Thr-rich stretch in Ph leads to its aggregation 
and is associated with misexpression of 
downstream HOX genes (8). Interestingly, 
lethality of sxc mutants can be rescued by 
transgenic overexpression of catalytically 
defective Drosophila OGT (DmOGT) point 
mutants (23). When one of the catalytically 
compromised DmOGT mutants, DmOGTH537A, 
was used to rescue pupal lethality of sxc nulls, the 
efficiency of the rescue was about 80% relative to 
the rescue with DmOGTWT. The in vitro catalytic 

activity of DmOGTH537A is about 6% of that of 
DmOGTWT (23). Another point mutant, 
DmOGTK872M, in which the catalytic lysine 
residue is mutated, lacks any detectable activity 
in vitro and does not rescue pupal lethality of sxc 
mutants. These observations imply that a minimal 
level of protein O-GlcNAcylation is sufficient to 
support a complete life cycle in Drosophila. In 
addition, it also implies that the functionality of 
the most critical O-GlcNAc substrates in addition 
to Ph is still retained to a large extent in sxc null 
flies rescued by the DmOGTH537A mutant.   

The recent emergence of CRISPR/Cas9 
gene editing technology allows the generation of 
flies with precise point mutations in sxc to begin 
to link phenotypes to mechanisms. Bacteria 
utilize CRISPR/Cas9 as a defense system against 
viral pathogens (24). Harnessing the 
endonuclease activity of Cas9 targeted to a 
specific genomic target by providing a single 
guide RNA, double stranded DNA breaks (DSB) 
can be introduced. Repair of these DSBs by 
homologous recombination can be exploited to 
create precise point mutants. Since the first report 
exploiting the CRISPR/Cas9 technique to 
engineer targeted DSBs mutants, this gene editing 
strategy has been used to generate null mutants in 
numerous organisms (25,26). Generation of 
animals with precise point mutations has been 
achieved in zebrafish (27) and mice (28). In 
Drosophila, CRISPR/Cas9 technology has been 
used to produce protein nulls (29), to create 
defined deletions (30), to tag proteins (31), insert 
FRT/attP sites in endogenous loci (31), to activate 
transcription in vivo (32), to decipher functional 
implications of miRNA-miRNA response 
elements interaction (33) and also to create a 
mutagenic chain reaction aimed at generating 
autocatalytic mutations to produce homozygous 
loss-of-function mutations (34). More recently, 
point mutants have also been generated by several 
groups (35-37). 

Human Host cell factor 1 (Hcf1) has been 
previously reported as an O-GlcNAc protein (38). 
A transcriptional regulator, Hcf1 is required as a 
host cell factor for human herpes simplex virus 
infection (39). Hcf1 is a large protein that is 
proteolytically processed by OGT into N-
terminal Hcf1N and C-terminal Hcf1C products 
that regulate different phases of the cell cycle 
(40). Apart from O-GlcNAcylating Hcf1, 
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mammalian OGT is also essential for this 
proteolytic processing of Hcf (41). Intriguingly, 
while Drosophila Hcf (dHcf) is also extensively 
O-GlcNAcylated (22), its proteolytic processing 
is instead performed by a separate protease, 
Taspase I (8,22,42). O-GlcNAcylation of Hcf has 
been proposed to prevent its aggregation (8). 
dHCf is a multifunctional protein, underlined by 
virtue of genetic interaction of a null allele, 
dHcfHR1, with components of the PcG, Trithorax 
(TrxG) and Enhancer of Trithorax and Polycomb 
(ETP) group (43). Since dHcf is not a proteolytic 
substrate of OGT in Drosophila, this is an 
attractive system to dissect the role of dHcf O-
GlcNAcylation. Flies null for dHcf display 
pleiotropic phenotypes that are enhanced or 
suppressed in various PcG, TrxG and ETP mutant 
backgrounds (43). Several phenotypes of the 
dHcfHR1 mutant are enhanced by an allele of an 
ETP gene skuld (skd) (43). skd encodes the 
Drosophila orthologue of human Med13, a 
component of the Mediator complex which is a 
conduit connecting transcription factor signals to 
RNA Polymerase II transcriptional machinery 
(44,45). 
 The effect of reduced as opposed to 
complete loss of protein O-GlcNAc at the 
organismal level has not been previously 
investigated. Here, we investigated the genetic 
interaction between sxc/OGTH537A and dHcfHR1, a 
dHcf null allele (43). Using hypomorphic sxcH537A 
homozygotes we demonstrate that O-GlcNAc 
signalling is required for wing vein formation and 
tolerance to increased temperature. In addition, 
variation in scutellar bristle numbers is enhanced 
in sxcH537A mutants simultaneously lacking dHcf 
or having reduced skd function. In summary, 
these results outline the requirement of O-
GlcNAc signalling in several pathways in 
Drosophila.  
 
Results 
 
Highly efficient gene editing with CRISPR-Cas9 
generates precise sxc mutants  

Given that sxc is a maternal effect gene 
and resides at a locus that is not amenable to 
producing germline clones lacking the maternal 
copy using the FRT-flipase system, current 
approaches to eliminate the maternal copy have 
relied on using the UAS-GAL4 system (8,46).  To 

enable reliable and physiological phenotypic 
characterization of the requirement of the O-
GlcNAc modification for Drosophila 
development, we embarked on producing a 
precise hypomorphic OGT point mutant, sxcH537A 
and a catalytically dead mutant, sxcK872M utilizing 
the CRISPR/Cas9 gene editing technology in 
combination with homologous recombination 
(Fig. 1A). Single guide RNA (sgRNA) was 
designed using the Zhang laboratory web tool 
(crispr.mit.edu). To facilitate homologous repair 
based gene editing, a repair construct carrying the 
desired OGT hypomorphic (H537A) or 
catalytically dead (K872M) mutations were 
cloned into a pGEX6P1 plasmid (Fig. 1B). The 
homologous arms on either side of the mutations 
were about 1 kb long with the repair cassette 
targeting exon 7 of the OGT genomic region for 
both of the mutations (Fig. 1B). In addition to the 
necessary mutations changing the codon to Ala in 
place of His at position 537 or Met in place of Lys 
at position 872, silent mutations were introduced 
in wobble positions of adjacent codons (Fig. 1C). 
This strategy was employed to decrease the 
chances of the repaired DNA being subjected to 
further Cas9 nuclease cleavage and also to enable 
a robust screening assay exploiting the 
elimination of TaqI (H537A) or XhoI (K872M) 
restriction enzyme sites (Fig. 1C). 

Both the sgRNA and the repair plasmids 
were injected into the vasa::Cas9 fly line (47). 
Injected adult males were mated with balancer 
chromosome stock to eliminate the X 
chromosome carrying the Cas9 transgene and to 
balance the putative mutant chromosome. F1 
males resulting from this cross were allowed to 
mate before sacrificing and isolating whole 
genomic DNA. Isolated genomic DNA was 
subjected to PCR followed by restriction analyses 
with TaqI (H537A) or XhoI (K872M). At least 
five individual F1 males from each of the 23 
(H537A) and 8 (K872M) fertile parental lines 
were assessed in this manner (Table 1). A 
representative gel demonstrating the restriction 
assay from two different parental lines for each 
mutation is shown in Fig. 2A. Two lines were 
positive with the XhoI restriction assay while 
screening for the K872M mutation. Sequencing 
the PCR product confirmed that at least one F1 
male from each of these two parental lines was 
positive for the precise K872M mutation. Thus, 
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the efficiency of generating the K872M precise 
point mutation was 25%. Neither of the sxcK872M 
lines produce homozygotes or complement the 
well-characterized sxc null alleles, sxc1 or sxc6 
(48). The sxcK872M is therefore a recessive lethal 
allele. Thus, the successful generation of such an 
allele using the CRISPR/Cas9 technique implies 
that loss of OGT catalysis can be tolerated during 
male germ cell development. 

Screening for the H537A mutation 
revealed a total of six lines that were positive in 
the TaqI restriction assay. Sequencing showed 
that at least 1 F1 male from each of these six 
parental lines was positive for the precise H537A 
mutation, establishing the rate of generating a 
precise mutation at 26%. In addition, four of the 
six lines also carried insertions/deletions leading 
to sxc null. From the parental line 1, one of the 
lines that triggered the TaqI assay (line 1.1), was 
assessed by genomic sequencing and was found 
to have a 63 bp insertion resulting in a frameshift 
that would only code for an OGT truncation (1-
537). Line 1.1 did not complement either the sxc1 
or sxc6 alleles and was found to be recessive 
lethal. On the other hand, sequencing of line 1.5 
heterozygotes confirmed that it was a precise 
H537A mutation, henceforth referred to as 
sxcH537A. sxcH537A homozygotes could be derived 
and their mutant status was further confirmed by 
sequencing (Fig. 2B). The codon specifying the 
His537 to Ala mutation and the additional wobble 
mutations were also present in the homozygous 
sxcH537A mutants. Furthermore, upon sequencing 
the entire region of the approximately 2 kb 
homologous recombination genomic boundaries 
we did not observe non-specific mutation(s) that 
might have been introduced during the gene 
editing process. A key concern with the use of any 
gene editing approach is the possibility of off-
target mutagenesis. All the potential off-targets 
predicted by the web tool used for gRNA 
selection were sequenced in the sxcH537A (Table 
S2) and sxcK872M (Table S3) mutants and 
confirmed to be wild type. Thus, we have 
achieved highly efficient gene editing with 
CRISPR-Cas9 to generate sxc hypomorphic 
mutants in an otherwise endogenous background 
that will help interrogate the function of O-
GlcNAc in development.  
 

Reduced O-GlcNAcylation is associated with 
wing vein phenotype and developmental 
lethality  
We probed the levels of global O-GlcNAc and 
OGT in the sxcH537A mutant embryos (Fig. 3A) 
and adults (Fig. 3B). Immunoblots with a 
commercial O-GlcNAc antibody (RL2) revealed 
a large reduction in protein O-GlcNAcylation in 
F2 embryos that lack both wild type maternal or 
zygotic contribution and in adults (Fig. 3A,B). 
However, OGT protein levels are comparable 
between wild type and sxcH537A mutant embryos 
or adults (Fig. 3A,B). Immunostaining sxcH537A 

homozygous embryos using RL2 antibody 
revealed a global reduction in O-GlcNAc levels 
as compared to the wild type embryos (Fig. 3C). 
However, the reduced O-GlcNAc levels in 
sxcH537A embryos does not lead to a change in the 
expression domains of Hox proteins:  Scr, Ubx 
and Abd-B as compared to the wild type (Fig. 4).  

To assess whether reduced O-GlcNAc 
levels in the sxcH537A mutants resulted in defects 
during larval/pupal development, Cr control 
(generation outlined in materials and methods) or 
sxcH537A mutant L1 larvae were transferred onto 
fresh food vials and the number of pupae formed 
as well as adults eclosed were evaluated. When 
the larvae were collected from embryos grown at 
25 °C, there was no difference in the percentage 
of larvae developing to pupae or adults between 
Cr control or sxcH537A mutants (Fig. 5A). Given 
that increased temperature affects the viability of 
sxc null flies (46), pupae formation and adult 
eclosion was also assessed at 30 °C. Larvae to 
pupal or adult development was significantly 
affected in sxcH537A mutants as compared to Cr 
control flies at 30 °C (Fig. 5A). While 73% and 
46% Cr control larvae develop into pupae and 
adults respectively, only 51% and 17% sxcH537A 

mutant larvae develop to pupae and adults (Fig. 
5A). Pupal to adult development was 63% and 
33% in Cr control and sxcH537A mutants, 
respectively (Fig. 5A). The increased lethality of 
sxcH537A homozygotes was associated with the 
inability to increase total O-GlcNAc levels at 30 
°C as compared to the Cr control (Fig. 5B), which 
appears to be independent of OGT or OGA 
protein levels (Fig. 5B). In summary, it appears 
that the ability to increase O-GlcNAc levels with 
increase in temperature during Drosophila 
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development is protective to the organism. We 
next went onto investigate whether global 
reduction in O-GlcNAc levels in the sxcH537A 
affects dHcf function.  
 
Hypomorphic OGT phenotype is enhanced on 
reducing levels of transcriptional modulators   
One of the striking phenotypes observed in 22% 
of sxcH537A adults was an ectopic wing vein 
emerging from the posterior cross vein (Fig. 
6A,B). Homozygotes for dHcf null allele, dHcfHR1 
display a similar phenotype (43). We therefore 
assessed the genetic interaction between the 
dHcfHR1 null allele and the sxcH537A hypomorph 
given that dHcf is a well characterized O-
GlcNAcylated protein in human (41) and 
Drosophila (22). A previous report has 
characterized the genetic interaction between skd1 
(a hypomorphic recessive lethal skd allele) and 
the dHcfHR1 allele resulting in enhancement of the 
ectopic wing vein phenotype, along with extra 
scutellar bristle and genitalia rotation phenotypes 
(43). There was no enhancement of the ectopic 
wing vein phenotype in sxcH537A; dHcfHR1 double 
homozygotes (Fig. 6D,E) compared to dHcfHR1 
homozygotes (Fig. 6C,E). Moreover, the genitalia 
rotation phenotype was not observed in any of the 
genotypes tested.  

There are four scutellar bristles in most 
Drosophila species (49). In a previous study, skd1 

heterozygotes were found to have normal bristle 
numbers, while about a third of skd1 
heterozygotes in a dHcfHR1 background possessed 
extra scutellar bristles (43). In our experiments, 
all the Cr control flies had the normal component 
of four scutellar bristles (Fig. 6A,G,H). On 
examining sxcH537A homozygotes (n = 111), about 
5% of the flies were found to have either one or 
two extra scutellar bristles (Fig. 6C,G). In 
dHcfHR1 homozygotes, the percentage of flies 
with extra scutellar bristles was 18% (Fig. 6B,G). 
Interestingly, 41% of sxcH537A; dHcfHR1 double 
homozygotes (n = 58) had one or two extra 
scutellar bristles, whereas 12% were missing a 
scutellar bristle (Fig. 6D,E,G). The defect in flies 
scored for a missing bristle was the complete loss 
of the mechanosensory organ as opposed to 
accidental bristle damage (Fig. 6E). These data 
therefore demonstrate an interaction between the 
sxcH537A and dHcfHR1 alleles, specifically in the 
determination and/or function of the sensory 

organ precursor (SOP) cells essential for bristle 
formation. Furthermore, we also investigated 
whether the deregulation of scutellar bristle 
number is affected by PcG (Polycomb: Pc) and 
TrxG (brahma: brm) genes (Table 2). On 
reducing one copy of Pc (Pc1, an amorphic 
recessive lethal allele) in either sxcH537A/+ or 
sxcH537A background, normal number of scutellar 
bristles were observed indicating no genetic 
interaction with respect to this phenotype (Table 
2). However, the super sex combs phenotype (sex 
combs in the second and third pairs of thoracic 
legs) observed in Pc1/+ flies (21% of all males 
scored) was enhanced in a sxcH537A/+ (56%) or a 
sxcH537A (66%) background, revealing a role of the 
catalytic activity of sxc in Polycomb function 
(Table 3). Cr control or sxcH537A flies did not 
exhibit the super sex combs phenotype (Table 3). 
On performing a genetic interaction between 
sxcH537A and brm2 alleles, only a small percentage 
of sxcH537A/+; brm2/+ (5%) or sxcH537A; brm2/+ 
(4.8%) flies were found to have the scutellar 
bristle phenotype (Table 2). 

To investigate whether reduced O-
GlcNAc levels in the sxcH537A homozygotes also 
impinges upon skd function or vice versa, 
interaction between sxcH537A and a hypomorphic 
recessive lethal skd allele, skd2 (the skd1 stock is 
not publicly available) was assessed. About 7% of 
the skd2 heterozygotes (n = 184) displayed extra 
scutellar bristles. Slightly higher abnormal 
scutellar bristle numbers were observed in both 
sxcH537A/+; skd2/+ double heterozygotes (13%, n 
= 309, Fig. 6H) and sxcH537A; skd2/+ flies (13%, n 
= 146, Fig. 6F,H) indicating a genetic interaction 
between the sxcH537A and skd2 alleles, albeit to a 
lesser extent than that observed between the 
sxcH537A and dHcfHR1 alleles. Adults of the 
genotype sxcH537A; skd2/+; dHcfHR1 could not be 
derived implying that loss of OGT and dHcf 
activity in skd heterozygotes leads to 
developmental lethality.  

In the light of the genetic interaction 
between sxcH537A and dHcfHR1 alleles, we 
investigated whether dHcf function is affected in 
sxcH537A mutants. Knockdown of dHcf in S2 cells 
was previously reported to lead to transcriptional 
upregulation of fibrillarin and CG5033 (50). 
There is also evidence that dHcf interacts with 
Drosophila elongation factors dE2F1and dE2F2 
(51).  Data from human cell lines implicate a role 
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for HCF1 in transcriptional control of E2F bound 
genes (52). Transcription of several genes (Table 
S4) including ASXL, CDK5 and CDK8 is 
deregulated on HCF1 knockdown (52). We 
investigated the changes in transcript levels of 
dHcf/HCF1 downstream targets derived from 
both these studies (50,52) in Cr control and 
sxcH537A embryos. The transcript levels of all of 
the dHcf/HCF1 downstream targets investigated 
remain unchanged when compared to those in Cr 
control embryos (Fig. 6I). In summary, these data 
implicate sxc, dHcf and skd in a common pathway 
that is responsible for scutellar bristle 
determination. Nevertheless, the molecular 
details of how reduced O-GlcNAc levels in the 
sxcH537A mutants contributes to this phenotype 
remains to be investigated.  
 
Discussion 
 

Using CRISPR/Cas9 technology we have 
been able to produce an important tool in the form 
of a hypomorphic sxc mutant. This is particularly 
useful given that sxc is a maternal effect gene and 
its genomic locus impedes production of mutants 
that lack maternal as well as zygotic gene 
products using the Flipase/FRT system (53). 
Previous studies have circumvented this hurdle 
using various transgenic approaches (8,23,46). 
However, non-endogenous, constitutive 
expression of transgenic OGT can lead to 
artefacts. In addition, our previous observation 
that minimal OGT glycosyltransferase activity is 
sufficient to sustain Drosophila development 
through multiple generations was an added 
impetus to produce catalytically deficient OGT 
mutants in an otherwise endogenous background 
(23). The sxcH537A mutant provides a platform to 
investigate the role of OGT catalytic activity in 
Drosophila development. Utilizing a restriction 
assay to screen for potential mutants, we have 
harnessed the CRISPR/Cas9 gene editing 
technology to create precise sxc point mutations. 
We were able to produce two precise sxc point 
mutations, sxcH537A and sxcK872M at an efficiency of 
25% starting from fertile injected males for each 
of the mutations.  

Phenotypic analysis of the sxcK872M 

mutant that codes for a catalytically dead mutant 
could not be pursued since this mutation is 
recessive lethal. This observation is supported by 

the fact that the previously published sxc1 or sxc6 
mutant alleles cannot be complemented by the 
sxcK872M allele. In addition, we were able to derive 
null alleles from the H537A gRNA injections that 
also did not complement sxc1 or sxc6 lethality. 
These results establish the specificity of the 
gRNAs used in our CRISPR/Cas9 approach to 
create the sxc point mutations. Specificity of the 
mutagenesis was also highlighted by the 
significant reduction of O-GlcNAc levels in 
sxcH537A homozygotes. The lack of derepression of 
Hox genes in sxcH537A F2 embryos reiterates our 
earlier finding that a minimal level of O-
GlcNAcylation is sufficient to support 
Drosophila development (23). The data obtained 
in the current work eliminates the potential 
artefacts of overexpression and the possibility 
that wild type and mutant forms of OGT form 
heteromeric complexes. In this scenario of 
significantly reduced global O-GlcNAc that does 
not lead to Hox gene derepression, it will be 
interesting to investigate the dynamics of Ph O-
GlcNAcylation and consequently its 
aggregation/loss of function (8). This is relevant 
since the loss of Ph function leads to derepression 
of Hox genes in embryos and larval imaginal 
discs (16,54). 

The reduced levels of protein O-
GlcNAcylation in sxcH537A homozygotes are 
associated with larval and pupal lethality at 
elevated temperatures. It has previously been 
reported that elevated temperature leads to 
lethality during embryogenesis in maternal or 
zygotic sxc mutants (46). The endogenous 
sxcH537A mutant has enabled us to identify the 
specific requirement of catalytic activity of OGT 
as opposed to the OGT interactome, at post-
embryonic stages of development. It opens up the 
possibility that the O-GlcNAc modification, akin 
to glycosylation in the secretory pathway, is 
essential for stabilizing misfolded proteins at 
higher temperatures. Heat stress in mammalian 
cells is associated with increased cellular O-
GlcNAc levels. Reducing OGT catalytic activity 
by genetic or chemical means render the cells 
more susceptible to thermal stress (55,56). Heat 
stressed OGT-/- mouse embryonic fibroblasts 
have reduced levels of specific heat shock 
proteins (57). Downstream of OGT/O-GlcNAc 
cycling, the levels of these heat shock proteins are 
proposed to be regulated by GSK3ß-dependent 
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phosphorylation of heat shock factor 1 (57). 
Several proteins with diverse functions were 
demonstrated to be hyper O-GlcNAc modified 
and upregulated on heat stress in monkey 
fibroblasts (58).   Heat stress induced heat shock 
protein 70 has been described to bind to O-
GlcNAcylated proteins preventing their 
misfolding (59). Increased hsp70 levels on heat 
stress is probably downstream of O-
GlcNAcylated Sp1(60). Nevertheless, the 
mechanistic details of how O-GlcNAc dependent 
thermoprotection occurs in  Drosophila, needs 
further analyses.  

Scutellar bristles arise from progenitors 
in the larval wing imaginal disc epithelium 
known as SOPs. Clusters of cells that express 
proneural genes of the achaete-scute (ac-sc) 
complex are subjected to selection by Notch-
Delta signaling mediated lateral inhibition. This 
process leads to specification of SOPs (61-64). 
Once specified, the SOPs go on to differentiate 
into mechanosensory organs via a complex, 
orchestrated pathway (65).  A GATA-1 family 
transcription factor Pannier (Pnr) is an activator 
of ac-sc, specifically required for the 
specification of the dorsocentral bristles that are 
non-scutellar mechanosensory organs (66). The 
extra bristle phenotype of the pnrD1 allele is 
enhanced by the Pc1 allele implying PcG 
mediated control of SOP determination (66). 
However, we do not observe an interaction 
between Pc1 and sxcH537A with respect to bristle 
numbers in the scutellum. Moreover, the 
phenotype observed in sxcH537A; HcfHR1 double 
homozygotes is one wherein there is increased 
variation in the number of scutellar bristles with 
some flies also having a reduced number of 
bristles. These observations therefore imply that 
the specification of scutellar SOPs in sxcH537A 
flies is not via the influence of OGT catalytic 
activity on PcG function. 

The extra scutellar bristle phenotype is 
enhanced significantly in sxcH537A; HcfHR1 double 
homozygotes when compared to either sxcH537A or 
HcfHR1 homozygotes (Fig. 6). This phenotype is 
also enhanced in HcfHR1 homozygotes that have a 
single copy of skd1 allele (43). However, we 
observe a weaker genetic interaction between 
sxcH537A and skd2 alleles as compared to the 
interaction between sxcH537A and HcfHR1. This 
implies that the pathways potentially affected by 

reduced O-GlcNAc levels in sxcH537A flies are able 
to tolerate the presence of a hypomorphic copy of 
skd more effectively than a HcfHR1 null 
background. None of the other phenotypes 
described for the skd1/+; HcfHR1 flies were 
recapitulated in either sxcH537A; HcfHR1 or sxcH537A; 
skd1/+ animals indicating specific roles for O-
GlcNAc in dHcf and/or Mediator complex 
function. Nevertheless, reduction in O-GlcNAc 
levels is not tolerated in animals having both 
reduced skd levels and lacking dHcf. 
Interestingly, point mutations in human OGT and 
MED12, another Mediator component, co-
segregate in individuals affected with X-linked 
intellectual disability (XLID) (13,14). Mutations 
have also been identified in human HCF1 that are 
associated with X-linked mental retardation 
(67,68). Moreover, rare variants of both MED12 
and HCF1 were shared only by the affected 
siblings in a family affected by a severe form of 
XLID (69). We observe a common pathway 
being affected when orthologs of XLID genes are 
used in genetic interaction experiments. 
Therefore, the scutellar bristle number phenotype 
is potentially a readout in Drosophila to 
genetically dissect the contribution of OGT/O-
GlcNAc function in XLID.  

In conclusion, we have demonstrated 
successful generation of catalytically 
hypomorphic sxc mutants using a simple, 
transferable assay to screen for mutagenesis by 
CRISPR/Cas9 gene editing. Analysis of the 
sxcH537A thus obtained has helped uncover several 
phenotypes that are a result of a reduction in 
protein O-GlcNAcylation. Either the reduced O-
GlcNAcylation of dHcf or conversely decreased 
dHcf function impinging upon OGT function(s) 
affect normal scutellar bristle numbers. 
Moreover, Drosophila embryos possess a 
dynamic O-GlcNAcome that could contribute to 
phenotypes described in this study and others that 
remain to be discovered (22,70,71). Apart from 
other applications, the hypomorphic sxcH537A 

mutant is a tool that can be used to investigate the 
role of dHcf O-GlcNAc, potentially developed as 
a model to investigate the role of OGT in XLID 
and investigate O-GlcNAc occupancy in the Ph 
Ser/Thr rich stretch. Moreover, investigating the 
O-GlcNAcome in sxcH537A mutants would help 
narrowing down key transducers of O-GlcNAc 
signaling in Drosophila development. This 
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analysis will be particularly informative in 
eliminating the functionally inconsequential O-
GlcNAcylation events and establish the role of O-
GlcNAc signaling in Drosophila development.   
 
Experimental Procedures 
 
Drosophila genetics, scutellar imaging and 
immunostaining 

The following stocks from Bloomington 
Drosophila Stock Centre were used: w1118 wild 
type, vasa::Cas9 (BL51323), HcfHR1, skd2/TM6, 
brm2/TM6 and Pc1/TM1. CRISPR/Cas9 
injections were performed at University of 
Cambridge fly facility into embryos from the 
vasa::Cas9 line (Bloomington stock:51323). 
Microinjections were carried out with a mixture 
of 100 ng/µl gRNA plasmid with 300 ng/µl repair 
construct mix. Injected founder male flies were 
crossed with IF/CyO; MKRS/TM6 balancer stock. 
At least 10 male F1 sxc*/CyO potential germline 
mutants were crossed again with IF/CyO; 
MKRS/TM6 virgins. This ensured the outcrossing 
of the vasa::Cas9 carrying X chromosome.  The 
F1 males were then snap frozen for genotyping as 
outlined below. Stocks of either sxcH537A/CyO or 
sxcK872M/CyO were established from F2 progeny 
of sequence confirmed mutants. Furthermore, the 
genotype of sxcH537A homozygotes derived from 
the sxcH537A/CyO stock was confirmed. In 
addition, all the predicted off-target sites were 
PCR amplified and checked for presence of any 
lesions compared to the genomic DNA from the 
BL51323 line. None of the predicted off-target 
sites were found to have mutations. To perform 
Western blots with whole flies, either wild type 
or the sxcH537A flies were snap frozen and 
processed as outlined below. The control flies (Cr 
control) were derived by crossing the flies from 
the stock used for microinjection (Bloomington 
Stock: BL51323) using a similar crossing scheme 
as that used to derive the sxcH537A homozygotes. 
This ensured maintenance of the genetic 
background and the loss of the vasa::Cas9 
carrying X chromosome.  

The number of scutellar bristles were 
assessed in the following genotypes: Cr control, 
sxcH537A, HcfHR1, skd2/+, sxcH537A; HcfHR1, 
sxcH537A; skd2/+ and sxcH537A/+; skd2/+, brm2/+, 
sxcH537A/+; brm2/+, sxcH537A; brm2/+, Pc1/+, 
sxcH537A/+; Pc1/+ and sxcH537A; Pc1/+ using a 

Motic SMZ microscope. Images from 
representative flies treated with FlyNap (Carolina 
Biological Sciences) were acquired using a Leica 
E24 HD dissection microscope. The presence of 
sex combs on second and third thoracic legs was 
scored for the following genotypes Cr control, 
sxcH537A, Pc1/+, sxcH537A/+; Pc1/+ and sxcH537A; 
Pc1/+ using a Motic SMZ microscope. 

Fixing and immunostaining of embryos 
was performed as described previously (72). The 
following antibodies were used:  mouse anti-O-
GlcNAc (1:250, RL2, Abcam), and mouse 
antibodies from Developmental Studies 
Hybridoma Bank (DSHB): anti-Scr (1:50), anti-
Abd-B (1:50) and anti-Ubx (1:50) with the 
respective fluorescent secondary antibodies 
(Invitrogen). Microscopic images were obtained 
with Leica SP8 confocal microscope and 
processed using Volocity (Improvision) software. 
 
Cloning and restriction fragment length 
polymorphism assay to detect mutants  

gRNA sites were chosen using the 
website crispr.mit.edu and annealing 
oligonucleotides were designed with the 
appropriate overhangs and cloned into the BpiI 
cut pCFD3-dU63gRNA vector. Inserts were 
confirmed by DNA sequencing. 

Repair templates were generated by PCR 
of either a 2160 bp (H537A) or a 2063 bp 
(K872M) region of the Drosophila genome from 
S2 cell genomic DNA using GoTaq G2 
Polymerase (Promega). The PCR product was 
cloned into pGEX6P1 plasmid. The insert 
sequence was confirmed by DNA sequencing. 
The desired mutation, in addition to two silent 
mutations, was introduced by site-directed 
mutagenesis following the Stratagene 
QuikChange mutagenesis kit but using KOD Hot 
start polymerase (Novagen) and subsequently 
confirmed by DNA sequencing. 

To assess and confirm generation of 
CRISPR/Cas9 gene editing, candidate 
homo/heterozygous flies were frozen in 
Eppendorf tubes and homogenized in 50 µl of 
squishing buffer (10 mM Tris-HCl pH 8, 1 mM 
EDTA, 25 mM NaCl and 200 µg/ml freshly 
added Proteinase K (Roche). The homogenate 
was incubated at 37 °C for 30 min, followed by 
inactivation of Proteinase K at 95 °C for 3 min, 
and centrifuged. 1 µl of supernatant was used per 
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25 µl PCR reaction. 5 µl of PCR reactions was 
digested with TaqI (H537A PCR) or XhoI 
(K872M PCR) followed by electrophoresis of the 
digested products. Samples that were resistant to 
TaqI and XhoI digestion were sequenced. A 
second PCR was performed on potential 
heterozygous CRISPR mutants with primer pairs 
out with the repair construct to confirm that the 
observed sequencing result was not due to 
random integration of the repair plasmid. The 
second PCR product was also sequenced. To 
determine any potential mutagenesis at any of the 
predicted off-targets sites, PCRs were performed 
with the requisite primers (Table S2) followed by 
sequencing.  
 
Eclosion rate experiments 

For eclosion rate experiments, Cr control 
or sxcH537A homozygote flies were transferred to 
apple juice agar plates thinly smeared with yeast 
paste at either 25 °C or 30 °C. After an overnight 
collection, 25 F1 larvae were transferred to fresh 
food vials. Four such vials were setup per 
biological replicate (n = 6, a total of 600 F1 larvae 
were thus scored for each genotype). The number 
of pupae formed was assessed by counting the 
number of pupal cases per food vial. In addition, 
the number of adult flies eclosing from each vial 
was also recorded. We report the percent of F1 
larvae forming pupae/adults and the number of 
pupae giving rise to adults.  t-tests were 
performed for statistical analyses.  

To harvest embryos for Western blotting, 
embryos were collected for 1 h and further aged 
(to Stage 16) for either 13.5 h or 11 h at 25 °C or 
30 °C, respectively before dechorionating and 
snap freezing the embryos. The frozen embryos 
were subjected to Western blot analysis as 
outlined below.  
 
Western blotting 

To prepare total embryo lysates, embryos 
were collected on apple juice agar plates at 25 °C 
overnight (0-16 h). The embryos thus collected 
were dechorionated with bleach and snap frozen 
in dry ice. The frozen embryos were 
homogenized in lysis buffer (LB; 50 mM Tris-
HCl, pH 8.0, 150 mM NaCl, 1% Triton-X-100, 1 
µM GlcNAcstatin C, 5 mM sodium fluoride, 2 
mM sodium orthovanadate, 1 mM benzamidine, 
0.2 mM PMSF, 5 µM leupeptin and 1 mM DTT). 

For Western blots, five anaesthetised adult flies 
were frozen on dry ice. The frozen flies were 
homogenised in 50 µl of lysis buffer, followed by 
addition of an equal volume of 3x SDS Laemmli 
Buffer. Lysates were then heated for 5 min at 95 
�C, centrifuged at 16000 g for 10 min and 
supernatants were collected. Protein 
concentrations were estimated using the 660 nm 
protein assay (Thermo Scientific). 30 µg of the 
crude lysate was subjected to SDS-PAGE and 
transferred onto nitrocellulose membrane before 
immunoblotting with RL2 (1:1000, Abcam), 
rabbit anti-OGT (H-300, 1:1000, Santa Cruz 
Biotech), rabbit anti-OGA (1:1000, Sigma), 
mouse anti-α-tubulin (1: 10,000, DSHB) and/or 
rabbit anti-actin (1:5000, Sigma) and the 
respective infrared dye conjugated secondary 
antibodies (Li-Cor or Life Technologies, 1: 
10,000).  
 
Quantitative Real-time PCR 

Quantitative Real-time PCR (qPCR) was 
performed with Cr control and sxcH537A 

homozygous embryos. Cr control and sxcH537A 
were transferred to apple juice agar plates thinly 
smeared with yeast paste at 25 °C. Fresh plates 
were used to collect embryos for 2 h. The plates 
were then changed and the embryos were allowed 
to age for 3 h. RNA isolation (Qiagen RNAeasy 
Plus kit), quantification (Nanodrop) and cDNA 
generation (Biorad Iscript cDNA synthesis kit) 
was then performed as per manufacturer’s 
instructions. cDNA equivalent to 100 pg of input 
total RNA was subjected to qPCR (Quanta 
Biosciences) in a BioRad CFX Connect system. 
Primers used for dHcf downstream targets (Table 
S4) were either from published literature (50) or 
an online tool for Drosophila primers (73). The 
reported Threshold cycle (CT) values were used 
to compute DCT values as described (74). Three 
biological replicates were used to determine the 
DCT

 values and t-tests with Holm-Sidak method 
to correct for multiple comparisons was used for 
statistical analysis.  
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Table 1 :  
 
Efficiency of generating sxcH537A mutants using CRISPR/Cas9 approach 
 

 
Mutant Parental lines tested PCR 

+ restriction digestion 
Precise 

mutations Indels Efficiency precise 
mutation (%) 

H537A 
K872M 

23 
8 

6 
2 

4 
2 

26 
25 
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Table 2 :  
 
Scutellar bristle phenotype of sxcH537A mutants is not affected by reduction of Polycomb function 
 

Genotype Number of flies 
scored 

Percent flies with decreased 
scutellar bristle number 

Percent flies with increased 
scutellar bristle number 

Cr control 388 0.3 1 

sxcH37A 302 1 0.3 

Pc1/+ 247 0.4 0 

sxcH537A/+; Pc1/+ 197 0 0.5 

sxcH537A; Pc1/+ 150 2 0 

brm2/+ 99 0 0 

sxcH537A/+; brm2/+ 302 0.3 5 

sxcH537A; brm2/+ 104 0 4.8 

 
Flies of the respective genotypes were scored for the number of scutellar bristles. Percentage of flies 
exhibiting either less or more than the normal scutellar bristle number of four are listed.  
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Table 3 :  
 
Super sex combs phenotype of Pc1 is enhanced in sxcH537A background 
 

Genotype Number of 
males scored 

Percent males super sex combs 
phenotype 

Cr control 203 0 

sxcH537A 153 0 

Pc1/+ 124 21 

sxcH537A/+; Pc1/+ 115 56 

sxcH537A; Pc1/+ 80 66 

 
Males of the respective genotypes were scored for the presence of sex combs on second and third thoracic 
legs. Percentage of flies exhibiting the super sex combs phenotype are listed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 at U
N

IV
E

R
SIT

Y
 O

F D
U

N
D

E
E

 on M
arch 28, 2018

http://w
w

w
.jbc.org/

D
ow

nloaded from
 

http://www.jbc.org/


Drosophila hypo O-GlcNAcylation 

	19	

 
 
Figure 1: Strategy to generate sxcH537A mutants using the CRISPR/Cas9 gene editing technology 

A) Experimental outline of the CRISPR-Cas9 homologous recombination scheme adopted to generate 
sxc mutant flies. Guide RNA (gRNA) and the respective homologous repair plasmids were injected 
into vasa::Cas9 embryos (Bloomington stock 51323). F1 males derived from injected embryos 
were allowed to mate with balancer chromosome stocks, sacrificed and genotyped using restriction 
fragment length polymorphism assay to determine the presence of a genetic lesion. Genomic DNA 
from flies that were resistant to restriction digestion were sequenced to confirm the nature of the 
lesion.  

B) sxc genomic region with exons depicted as orange boxes and introns as black lines. The extent of 
the genomic DNA supplied for homologous repair carrying either the H537A or the K872M 
mutations is shown in the yellow and blue boxes respectively. The red line highlighted within each 
of these boxes marks the site of the introduced mutations in the repair constructs.  

C) Genomic DNA sequence of the repair region carrying the mutation in the wild type and mutant 
scenarios are outlined. Below the DNA sequence is the translated protein. The changes that were 
made in the mutant DNA construct are highlighted in green and the expected change in protein 
translation is marked in red. The TaqI and XhoI restriction sites are marked with light purple or 
brown boxes, respectively. Successful incorporation of the mutant sequence or an indel will lead 
to the loss of the restriction sites.  
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Figure 2: Confirmation of sxcH537A and sxcK872M mutant lines derived by the CRISPR/Cas9 technique 

A) Representative gels demonstrating the loss of TaqI (above) or XhoI (below) restriction sites in 
potential sxcH537A or sxcK872M mutants, respectively. Genomic DNA from F1 males was extracted, 
subjected to PCR amplification followed by restriction digest with TaqI or XhoI. Shown are 
restriction digestion pattern of genomic DNA from 5 F1 males each derived from two injected 
parents. The arrowheads mark the digested band while the asterisk marks the band resistant to TaqI 
(above) or XhoI (below). 

B) Sequencing chromatograms of wild type (top), the putative sxcH537A homozygote line 1.5 (second) 
genomic DNA, wild type (third) and the putative sxcK872M heterozygote line 7.11. These data 
confirm the incorporation of desired mutation that would lead to the His537 to Ala mutation in 
addition to the two silent mutations that were introduced into the wobble positions in the adjacent 
codons. For the Lys872 to Met mutants, presence of multiple peaks in the chromatogram 
demonstrates the heterozygosity of the locus.  
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Figure 3: The hypomorphic sxcH537A mutants have reduced O-GlcNAc levels 

A) O-GlcNAc levels are severely reduced in sxcH537A embryos. Either wild type (WT) or sxcH537A 

homozygous embryos were collected, dechorionated, lysed and subjected to SDS PAGE and 
immunoblotted with anti-O-GlcNAc (RL2) or anti-OGT antibodies. The blots were normalized 
with either anti-actin or anti-α-tubulin antibodies, respectively.  

B) O-GlcNAc levels are severely reduced in sxcH537A adults. Wild type (WT), balancer (IF/CyO; 
MKRS/TM6: ICMT) and sxcH537A homozygous adults were lysed and the lysates used for 
immunoblotting with anti-O-GlcNAc (RL2) or anti-OGT antibodies. The blots were normalized 
with either anti-actin or anti-α-tubulin antibodies, respectively. 

C) Wild type (w1118; top panel) or sxcH537A (bottom panel) homozygous embryos were immunostained 
with anti-O-GlcNAc antibody (RL2). Shown are stage 9-11 embryos of each of the genotypes. 
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Figure 4: Reduced O-GlcNAc levels in sxcH537A mutants does not affect Hox gene expression pattern  
Stage 13-14 wild type (w1118; A,C,E) or sxcH537A (B,D,F) embryos were immunostained with anti-Scr (A,B), 
anti-Ubx (C,D) or anti-Abd-B (E,F) antibodies. The expression domains of all these Hox genes tested 
remain unchanged. All the embryos are aligned with along the anterior-posterior axis with the anterior to 
the left. Embryos are depicted in either dorsal (A,B) or lateral (C-F) views. 
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Figure 5: Reduced O-GlcNAc levels in sxcH537A mutants leads to increased larval/pupal lethality at 
higher temperature 

A) Lethality at higher temperature is increased in sxcH537A homozygotes. Either Cr control or sxcH537A 

F1 larvae (25 per vial, 100 larvae per experiment, n = 6) were transferred to fresh food vials at 25 
°C or 30 °C and the number of pupae formed and adults eclosed were counted. Development to 
pupae/adults from larvae or to adulthood from pupae was significantly reduced in sxcH537A 

homozygotes compared to Cr control flies (a, b: p<0.001, c: p<0.05; t-test with Holm-Sidak 
correction) 

B) O-GlcNAc levels remain unaltered at higher temperature in sxcH537A embryos. Age-matched stage 
16 Cr control or sxcH537A embryos were collected at either 25 °C or 30 °C, dechorionated, lysed and 
subjected to SDS PAGE and immunoblotted with anti-O-GlcNAc (RL2), anti-OGT or anti-OGA 
antibodies. The blots were normalized with either rabbit anti-α-tubulin (O-GlcNAc blot) mouse 
anti-α-tubulin (OGT and OGA blots) or antibodies. This blot is representative of 3 biological 
replicates.  
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Figure 6: Ectopic wing vein phenotype of dHcfHR1 mutants is not enhanced in sxcH537A mutants  

A) Image of the wing of an adult fly from the Cr control stock. There is no ectopic wing vein 
material seen arising from the posterior cross vein (PCV) in any of the control fly wings. Also 
marked are the longitudinal veins (L4 and L5).  

B) In HcfHR1 homozygotes ectopic wing vein material is seen deposited in most flies, marked by 
the white arrowhead. 

C) In sxcH537A homozygotes this phenotype is not as penetrant. 
D) The number of sxcH537A; HcfHR1 double homozygous flies having ectopic wing vein phenotype 

is comparable to penetrance seen in HcfHR1 homozygotes. 
E) The number of in adult flies having ectopic wing vein deposition arising from the PCV from 

Cr control (white bar), HcfHR1 homozygotes (grey bar), sxcH537A homozygotes (hashed bar) and 
sxcH537A; HcfHR1 double homozygotes (black bar) were counted. The graph represents 
percentage of flies from each of the above genotypes having the ectopic wing vein in either one 
or both of the wings. None of the Cr control flies have ectopic wing veins while quite a high 
percentage of HcfHR1 homozygotes display this phenotype. The proportion of sxcH537A; HcfHR1 

double homozygotes have similar levels of the ectopic wing vein phenotype.  
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Figure 7: sxcH537A extra scutellar bristle phenotype is enhanced in Hcf null background. 

A)  Cr control 
A) sxcH537A homozygotes 
B) HcfHR1 homozygotes 
C) sxcH537A; HcfHR1 double homozygotes 
D) sxcH537A; HcfHR1 double homozygotes 
E) sxcH537A; skd2/+ flies were treated with Flynap and scutellar images were captured. The white 

arrows mark the four scutellar bristles. Homozygous HcfHR1 or sxcH537A homozygotes predominantly 
possess four scutellar bristles However, in sxcH537A; HcfHR1 double homozygotes over half of the 
flies have either extra (D) or missing (E) scutellar bristle(s). Flies of the genotype sxcH537A; skd2/+ 
also have slightly increased extra scutellar bristle phenotype (F). The extra scutellar bristle is 
marked with an asterisk in D and F. The yellow arrowhead marks the missing scutellar bristle in E 

F) The number of scutellar bristles in adult flies from Cr control (orange bars, n = 199), HcfHR1 (blue 
bars, n = 43), sxcH537A (purple bars, n = 111) and sxcH537A; HcfHR1 double homozygotes (brown bars, 
n = 58) were counted. The graph represents the percentage of flies from each of the above genotypes 
having either one less (-1) or one (1) or two (2) more than the four scutellar bristles mostly observed 
in control flies. All the control (Cr control) flies have only four scutellar bristles with minor 
deviation towards an extra one or two scutellar bristles in HcfHR1 or sxcH537A homozygotes. However, 
a significant proportion of sxcH537A; HcfHR1 double homozygotes have varying scutellar bristle 
numbers.  

G) The number of scutellar bristles in adult flies from Cr control (dark blue, n = 492), sxcH537A (orange 
bars, n = 507), skd2/+ (grey bars, n = 184), sxcH537A/+; skd2/+ (yellow bars, n = 309) and sxcH537A; 
skd2/+ (light blue bars, n=146) flies were counted. The graph represents the percentage of flies 
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from each of the above genotypes having either one less (-1) or one (1) or two (2) more than the 
four scutellar bristles mostly observed in control flies. There is a modest increase in the percentage 
of sxcH537A/+; skd2/+ or sxcH537A; skd2/+ flies having extra scutellar bristles as compared to skd2/+ 
flies. 

H) Quantitative real time PCR was performed to detect the transcripts potentially downstream of dHcf 
apart from sxc and dHcf transcripts. The graph represents the ∆CT values of the respective 
transcripts in either Cr control (blue squares) or sxcH537A (red circles) stage 7-11 embryos. The 
experiments were repeated thrice and no significant difference was observed in the levels of any of 
the transcripts assessed (t-test with Holm-Sidak correction). 
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