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Abstract 

Touch is central to mammalian communication, socialisation, and wellbeing. Despite this 

prominence, interpersonal touch is relatively understudied. In this preregistered investigation, 

we assessed the influence of interpersonal touch on the subjective, neural, and behavioural 

correlates of cognitive control. Forty-five romantic couples were recruited (N=90; dating>6 

months), and one partner performed an inhibitory control task while electroencephalography 

was recorded to assess neural performance monitoring. Interpersonal touch was provided by 

the second partner, and was manipulated between experimental blocks. A within-subject 

repeated-measures design was used to maximise statistical power, with our sample size 

providing 80% power for even small effect sizes (ds > .25). Results indicated that participants 

were not only happier when receiving touch, but also showed increased neural processing of 

mistakes. Further exploratory cognitive modelling using indirect effects tests and drift diffusion 

models of decision making revealed that touch was indirectly associated with both improved 

inhibitory control and increased rates of evidence accumulation (drift rate) through its 

influence on neural monitoring. Thus, beyond regulating emotion and stress, interpersonal 

touch appears to enhance the neurocognitive processes underling flexible goal-directed 

behaviour.  

 

 

Keywords: interpersonal touch; emotion; cognitive control; ERN; social neuroscience; cognitive 

modelling 
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Interpersonal touch enhances cognitive control: A neurophysiological investigation 

Interpersonal touch is a form of nonverbal communication central to mammalian development 

and socialisation. Touch is the first of the major senses to emerge during prenatal development, 

and tactile interaction between adults accurately communicates a broad spectrum of intentions 

and emotions (Hertenstein, Keltner, App, Bulleit, & Jaskolka, 2006). Communicative touch also 

possesses phylogenetic primacy: Touch hypothetically predates language in human 

evolutionary history, and is prevalent across many species with shared ancestry (i.e., non-

human primates; Dunbar, 2010; Hertenstein, Verkamp, Kerestes, & Holmes, 2006). 

Furthermore, by making social proximity and interaction salient, affectionate (non-threatening) 

touch from close others instils encouragement, calmness, trust, and security, promoting 

beneficial outcomes including cooperation (Kraus, Huang, & Keltner, 2010), reduced stress 

reactivity (Coan, 2008; Coan, Beckes, Gonzales, Maresh, Brown, & Hasselmo, 2017; Coan, 

Schaefer, & Davidson, 2006), and wellbeing (Debrot, Schoebi, Perrez, & Horn, 2013; Jakubiak & 

Feeney, 2016).  

Despite this primacy, touch has nevertheless received relatively little research attention, 

particularly in contrast to other major senses and forms of communication. Furthermore, the 

majority of existing research has focused on touch as a source of communication and/or 

emotion regulation. Less understood, however, are interactions between touch and other 

processes that might themselves contribute to health and wellbeing, such as flexible goal-

pursuit (Berkman, Falk, & Lieberman, 2011; Brandtstädter & Rothermund, 2002; Adams, 

Lawrence, Verbruggen, & Chambers, 2017). Here, in a preregistered investigation (see 
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preregistration materials online here: osf.io/d9ea4), we explore how interpersonal touch 

affects the behavioural, neural, and phenomenological processes that underlie flexible goal-

directed behaviour (i.e., cognitive control). 

Cognitive control 

Cognitive control encompasses multiple processes that monitor and adjust attention, 

cognition, and action to achieve goals (Botvinick, Braver, Barch, Carter & Cohen, 2001; Miyake 

et al., 2000). Performance monitoring critically triggers flexible cognitive control by detecting 

events associated with the need for control (e.g., conflicting impulses, mistakes), and 

hypothetically relies on activity in the anterior midcingulate cortex (aMCC; Botvinick et al., 

2001). This monitoring signal is also reflected in the error-related negativity (ERN): A response-

locked event-related potential (ERP) that peaks within 100 ms of making an error (Falkenstein, 

Hohnsbein, Hoormann, & Blanke, 1991; Gehring, Goss, Coles, Meyer, & Donchin, 1993). This 

signal is putatively heeded by the dorsolateral prefrontal cortex, capable of then exerting top-

down control (Kerns et al., 2004).   

But why might interpersonal touch influence cognitive control? Tactile stimulation 

between individuals—and interpersonal support more broadly—is closely linked to social and 

affective outcomes (Coan, 2008; Jakubiak & Feeney, 2016; Uchino, Cacioppo, & Kiecolt-Glaser, 

1996). Yet, prevalent accounts of cognitive control make little reference to social or affective 

processes (Botvinick et al., 2001), with affect often considered antithetical to self-regulation in 

many frameworks (Heatherton & Wagner, 2011; Metcalfe & Mischel, 1999). Consequently, 

these accounts are agnostic about how touch could potentially interact with cognitive control.  
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Mounting evidence, however, now indicates that the aMCC responds to negative affect, 

pain, and cognitive control (Shackman et al., 2011), suggesting that cognitive control might be 

intrinsically connected with affective processes (Botvinick, 2007; Dreisbach & Fischer, 2015; 

Inzlicht, Bartholow, & Hirsh, 2015; Koban & Pourtois, 2014; Weinberg, Riesel, & Hajcak, 2012). 

According to many of these emerging frameworks, the aMCC monitors for negative, affectively-

charged events (e.g., errors, response conflict, punishment, etc.) and dynamically and flexibly 

adapts behaviour when they are encountered (Inzlicht, Bartholow, & Hirsh, 2015; Shackman et 

al., 2011). In this sense, the implementation of cognitive control can be viewed as a form of 

emotion-regulation motivated by the avoidance of further aversive outcomes (Saunders, 

Milyavskaya, & Inzlicht, 2015a). Most critical, this framework provides affective and 

motivational avenues through which social interaction might influence control.  

Does interpersonal touch help or hinder cognitive control? 

We hypothesised two opposing processes through which interpersonal touch might 

influence cognitive control. First, the soothing influence of interpersonal touch might diminish 

cognitive control by reducing the saliency of negative, but nevertheless control-relevant, 

events, such as errors. Indeed, one seminal neuroimaging study found that canonical subjective 

and neural responses to painful stimulation were attenuated by interpersonal handholding 

(Coan, et al., 2006). These findings are accounted for by social-baseline theory, which suggests 

that we come to expect and rely on interpersonal relatedness and social networks that confer 

multiple survival benefits (e.g., distribution of risk, shared workload; Beckes & Coan, 2011). As 

such, cues to social proximity can have a calming influence on humans by signalling that self-

regulatory efforts can be outsourced to close others (Coan et al., 2006). Most interesting, the 
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effects of interpersonal touch on emotion regulation coincides with reduced activity in neural 

sites implicated in effortful emotion-regulation (Coan et al., 2006; Coan et al., 2017), further 

supporting the idea that interpersonal emotion-regulation reduces demands on self-regulatory 

processes within the individual.  

In the context of cognitive control, it is possible that this soothing influence of touch 

might actually result in diminished cognitive control. Recent affective neuroscience theories of 

cognitive control suggest that sensitivity to the aversive/punishing quality of control-related 

signals (e.g., internal error monitoring) acts as a motivational input to cognitive control 

(Botvinick, 2007; Dreisbach & Fischer, 2015; Inzlicht et al., 2015; Shackman et al., 2011). These 

theories are supported by a range of recent findings suggesting that various emotion-regulation 

strategies diminish cognitive control specifically by attenuating neural reactivity to mistakes 

(Bartholow, Henry, Lust, Saults, & Wood, 2012; Hobson, Saunders, Al-Khindi, & Inzlicht, 2014). 

Consequently, our first hypothesis was that touch would diminish control by reducing the 

saliency of negative events (i.e., errors) that are none-the-less useful motivational inputs to 

adaptive behavioural control. This hypothesis suggests that the calming effects of touch might 

indirectly have detrimental effects on performance, rather than suggesting that social proximity 

itself directly impairs cognitive control. 

Touch between individuals is also a salient source of happiness, security, and 

encouragement (Hertenstein et al., 2006; Jakubiak & Feeney, 2016), promoting a second 

hypothesis that interpersonal touch would have beneficial motivational influences on cognitive 

control. Consistent with this idea, prior studies have demonstrated that touch increases 

enjoyment, willingness, and attainment during recreational and academic courses (Legg & 
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Wilson, 2013; Steward & Lupfer, 1987), and it has been suggested that social proximity might 

boost objective and subjective levels of personal efficacy (Coan & Sbarra, 2015). One further 

ethnographic study found that professional basketball teams with higher levels of physical 

interaction (e.g., fist bumps, low fives, hugs) were more cooperative and successful throughout 

the season (Kraus et al., 2010). In short, these findings suggest that interpersonal touch might 

have a positive, motivational influence, proposing that touch might enhance cognitive control.    

The suggestion that touch does enhance control and positive emotions seems hard to 

reconcile with suggestions that the aversiveness of errors (cf., Aarts, De Houwer, & Pourtois, 

2013; Hajcak & Foti, 2008; Saunders, Milyavskaya, & Inzlicht, 2015b) motivates cognitive 

control (Inzlicht et al., 2015). Rather than muting aversive experiences, however, positive affect 

might function to counter defensiveness towards signals that are both informative and 

threatening (Trope & Neter, 1994). Complimenting a friend or colleague, for example, might 

make subsequent criticism seem less threatening, allowing the person use this feedback as 

information without counterproductive dismissiveness or defensiveness.  Consequently, 

supportive states fostered by touch might enhance neural performance monitoring by 

increasing openness to internally generated negative signals, such as error monitoring. Such a 

finding would be consistent with recent studies linking enhanced neural error monitoring with 

emotional acceptance (Legault, Al-Khindi, & Inzlicht, 2012; Saunders, Rodrigo, & Inzlicht, 2016; 

Teper & Inzlicht, 2013).  

The current study 

We designed an EEG experiment to determine if interpersonal touch helps or hinders 

cognitive control. To this end, romantic partners were recruited to participate in the study. 
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Romantic partners were chosen to maximise the power of our touch manipulation—we 

reasoned that the affective benefits of touch would be higher/more consistent for romantic 

couples than friends or strangers (cf., Coan et al., 2006). One individual performed an inhibitory 

control task with an interpersonal touch manipulation (handholding vs. not handholding) 

provided by their partner, within-subjects. A within-subjects manipulation was chosen 

specifically to increase statistical power with sample sizes that are achievable for neuroscience 

investigations. More critically, because of this power advantage, within-subject designs have 

been demonstrated to be more replicable than between-subject designs (Open Science 

Collaboration, 2015). We recorded electroencephalography to assess neural performance 

monitoring while probing the subjective and affective consequences of touch.  

If the emotion-regulatory effects of touch indirectly hinder cognitive control, 

handholding should diminish neural error monitoring (i.e., reduced ERN amplitude), negative 

emotions, and inhibitory control. Conversely, if touch helps control, handholding should 

enhance neural monitoring (i.e., increased ERN amplitude), inhibitory control, and positive 

affect, as well as reducing self-criticism directed towards personal performance.  

Method 

Participants 

Apriori power analyses using G-Power (v 3.1) determined that 32 participants were 

required to achieve 80% power to detect an effect size of d = 0.4 (the estimated average effect 

size in psychology; Richard, Bond, Stokes-Zoota, 2003) in a within-subject design. Rather than 

stopping at 32 participants, we pre-registered that we would to collect data from 45 individuals 

to allow for participant attrition rates that are common in EEG studies of error monitoring (e.g., 
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too few mistakes to compute reliable error-related ERPs, high EEG artefacts).  These stopping 

rules were followed during data collection, and no-interim statistical analyses were conducted 

before data collection was terminated. Details of pre-registered hypotheses, power-analyses, 

and stopping rules were posted online prior to data collection (osf.io/d9ea4).  

45 romantic couples (N = 90) were recruited through campus advertisements at the 

University of Toronto Scarborough. Couples were only eligible if they had been dating for at 

least 6 months (Mean = 21.4 months; range: 6 – 96 months as reported by the EEG participant). 

Participation was compensated with $15 CAD per individual ($30 per couple). Only one member 

of each couple took part in the EEG/performance aspect of the experiment (active partner), 

while the other participant provided the handholding manipulation (passive partner). 

Participant assignment was decided before the experimental session with the aim to achieve 

roughly equal numbers of males and females in each role. Prior studies of interpersonal touch 

have only investigated the neurophysiological effects of hand holding on emotional responding 

in female participants (e.g., Coan et al., 2006). However, in the current study we recorded EEG 

from both male and female participants.  

Of the EEG participants (N = 45; 20 females; mean age = 20.1, range: 18-29), the 

majority self-identified as heterosexual (n = 37), with the remainder identifying as gay or 

lesbian (n = 2); bisexual (n = 1); queer (n = 1); or uncertain or questioning (n = 2). Two further 

participants did not to disclose their sexuality. The majority of the EEG participants identified 

their relationship status as “seriously dating one person, but not living together” (n = 33), with 

others selecting “casually dating one person” (n = 3), “living with my partner” (n = 4), or 

“engaged” (n = 2). Two EEG participants were excluded from the analyses due to excessive 
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high-frequency noise in the EEG signal (n =1), or not completing the experimental task due to 

technical malfunction (n = 1). This meant that our final sample size exceeded our pre-registered 

minimum sample (N=32) by 11 participants. Sensitivity analysis indicated that with our within-

subject, repeated measures design and final sample size, we could detect even small effect 

sizes (i.e., d >.25) with 80% power (Westfall, 2015).  

Procedure 

Both partners were seated together inside an electrically shielded room for the duration 

of the experiment (see Figure 1). The active partner performed the inhibitory control task facing 

the computer screen, while the passive partner sat to their left. Additionally, left-handed 

participants were assigned to the role of the passive participant so that responses were always 

made with the dominant hand.  

In addition to facing away from the computer monitor, an occluding screen attached to 

the monitor further ensured that the passive partner could not see the task during 

performance. This set-up was intended to minimise feelings of social evaluative threat during 

performance (Hajcak, Moser, Yeung, & Simons, 2005). This set-up also ensured that responses 

to subjective experience questions (detailed later) were confidential during the experiment. 

Couples were asked not to talk during performance, and were specifically instructed not to 

confer while answering any subjective report questions.  Couples were kept in the same 

physical location so that the handholding manipulation resulted in contrasting levels of 

interpersonal touch (i.e., touch vs. no touch) while keeping other factors (e.g., presence of 

partner; unaccounted for non-verbal communication such as eye-contact) constant between 

conditions.  
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Figure 1: Top right: graphical depiction of the laboratory set-up during the hand-holding 

manipulation. Bottom left: the inhibitory control paradigm used in the experiment.  

 

The active partner performed a speeded inhibitory control task while either holding or 

not holding their partner’s hand. The task was a modified go/no-go task, where the target letter 

“M” served as the frequent (80% occurrence) and “W” as the infrequent (20% occurrence) 

stimulus. The asymmetrical ratio of target stimuli ensures a pre-potent response tendency in 

favour of the frequent stimuli, with inhibitory control required to overcome this impulse on 

infrequent targets. Participants pressed the left arrow key with their right index finger if they 

saw an “M” target, and the right arrow key with their right middle finger in response to the 
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infrequent “W” targets. Key-presses were made with one hand so that the other hand was free 

for the touch manipulation.  

Trials started with a fixation cross for 200 ms, followed by the brief (200 ms) presentation 

of a target letter in white font on a black background. The screen then remained blank until 

response commission (max: 1000 ms) followed by a white fixation cross (400 ms) before the 

next trial.  

Participants first completed 20 practice trials, before moving on to 840 experimental 

trials. The experimental trials were divided into 12 blocks of 70 trials, separated by the 

subjective report questions and a self-paced rest period. Handholding was manipulated in a 

block-wise manner: 6 handholding blocks; 6 no handholding blocks. The passive partner 

remained present in the same seated position throughout both conditions, and on-screen 

instructions told participants when to start and stop holding hands. Participants were asked to 

hold hands with their partner as they normally would, without doing anything that might be 

distracting (e.g., stroking the palm with their thumb). The order of the handholding 

manipulation alternated in groups of three blocks (e.g., blocks 1-3 = handholding, blocks 4-6 = 

no-handholding, blocks 7-9 = handholding; blocks 10-12 = no-handholding) with block-order 

counterbalanced between participants.   

Subjective experience questions were presented between blocks. Participants were first 

instructed “please answer the following questions about your feelings during the block of trials 

you just did, using numbers 1-7” (1 = “not at all”; 7 = “very much”).  Three specific questions 

asked participants to report their affective experience:  Anxiety (“I felt anxious during the past 

block?”); frustration (“I felt frustrated during the past block”); and happiness (“I felt happy 
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during the past block”), while two further questions probed other aspects of phenomenological 

experience that tested the effects of handholding on emotional acceptance: self-judgement (“I 

told myself not to feel bad about my performance”), self-criticism (“I criticized myself during 

the past block”). Finally, participants reported levels of effort during performance (“I tried hard 

during the past block”) to test for differences in exertion between conditions. The order of 

question presentation was randomised within participants between blocks.   

The passive partner left the room after the inhibitory control task was over so that the 

active partner could answer a number of self-report scales relating to relationship quality and 

demographics. Moderation analyses revealed that no handholding effects were moderated by 

any of these self-report measures, and this self-report data is available on our OSF page.  These 

scales were then completed by the passive partner while the active participant washed their 

hair after removing the EEG apparatus.  

EEG pre-processing and ERP analyses 

Continuous EEG activity was recorded from 36 Ag/AgCl sintered electrodes embedded in 

a stretch-lycra cap arranged according to the international 10-20 system. Vertical electro-

oculography (VEOG) was monitored using a supra- to sub-orbital bipolar montage surrounding 

the right eye. Impedances were monitored (< 5 KΩ) during recording and the EEG signal was 

digitized at 1024 Hz using ASA acquisition hardware (Advanced Neuro Technology, Enschede, 

the Netherlands). The data were band-pass filtered offline (high-pass: 0.1 Hz; low-pass: 20 Hz) 

and corrected for eye-blinks using regression-based procedures (Gratton, Coles, & Donchin, 

1983). Semiautomatic procedures were employed to detect and reject EEG artifacts using Brain 

Vision Analyzer (v.2.0; Brain Products, GmbH, Gilching, Germany). The criteria applied were a 
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voltage step of more than 25 µV between sample points, a voltage difference of 150 µV within 

200 ms intervals, voltages above 85 µV and below -85 µV, and a maximum voltage difference of 

less than 0.05 µV within 100 ms intervals. Intervals were rejected on an individual channel basis 

to maximize data retention.  

ERPs were created by segmenting the continuous EEG data into 1400 ms segments that 

commenced 400 ms before the response. The ERPs were baseline corrected using a 100 ms 

interval that started -150 ms before the response, and averaged separately as a function of 

accuracy (error vs. correct) and condition (handholding vs. non-handholding). The ERN and 

corresponding correct-related negativity (CRN) were calculated for presentation purposes (see 

figure 3). However, statistical analyses focused on the difference activity (ΔERN) obtained by 

subtracting correct trial activity from the error trial activity. The ΔERN, therefore, indicates how 

much the brain differentiates between error and correct trials.  

The ΔERN was defined as the negative maxima 0 to 120 ms at electrode FCz, relative to 

the most positive potential proceeding the response (-100 to 0 ms). These search windows 

were selected to reflect the canonical temporal characteristics of the ERN and match the 

techniques used in our prior publications to quantify the ERN (e.g., Saunders et al., 2015b; 

Saunders et al., 2016). This peak-to-peak analysis is also preferable both because it allows a 

baseline free operationalization of the ERN and because it is implemented relatively 

automatically—these factors reduce the influence of so-called “experimenter degrees of 

freedom” on our ERP analyses. 

 In addition to the ΔERN, we analysed the error positivity (Pe) to provide a comprehensive 

account of error-monitoring processes. The Pe rises after the ERN, is more broadly distributed 
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around centro-parietal electrode sites, and is associated with the motivational significance of 

mistakes and conscious error awareness (Falkenstein et al., 1991; Gehring et al., 1993). As the 

Pe does not have a clearly defined peak, the amplitude of this component was determined as 

the mean amplitude at Pz 200 to 400 ms after the response using a collapsed localizer method 

on the difference waveform (Luck & Gaspelin, 2017). 

Primary statistical analyses 

All primary hypothesis tests were conducted with multi-level modelling (MLM) using the 

MIXED function in SPSS (v. 22.0). We first tested the effect of interpersonal touch on subjective 

experience. Each self-report question (anxiety, frustration, happiness, self-judgement, and self-

criticism) was analysed as a function of the handholding manipulation (effect coded: not-

holding = -1; holding = 1). These MLMs had a two-level structure. Unstructured variance was 

used to estimate a random intercept for each participant.  

All ERP data was analysed in an identical manner to the self-report data, with either the 

amplitude of the ΔERN or ΔPe included as the dependent variable. Participants were still 

included in the case of partially missing data (n =1; missing ΔERN amplitude in no handholding 

condition) due to having too few usable error trials in the EEG data (see also Saunders et al., 

2015). For the behavioural data (mean RTs and choice error rates), MLMs included the 

additional effects of conflict level (-1 = low-conflict; 1 = high-conflict) with data aggregated at 

the level of the block. Reaction times were only considered for trials with correct responses. 

Thus, the behavioural analyses now had a three-level nested structure due to the inclusion of 

conflict-level (i.e., conflict-level within condition within participant). Unstructured variance was 

used to estimate a random intercept for each participant1. 
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For all analyses, effects were determined to be statistically robust if the 95% confidence 

intervals for the given main effect or interaction did not span zero. Semi-partial R2 (R2
β) is 

reported as an effect size for each model effect (Edwards, Muller, Wolfinger, Qaqish, & 

Schabenberger, 2008).  

RESULTS 

Subjective Experience. 

We first tested the influence of interpersonal touch on subjective experience. 

Participants reported increased happiness when holding hands with their romantic partner 

compared to when they did not hold hands (b = -0.89, SE = 0.21), 95% CIs [-1.31, -0.47], R2
β = .29, 

see Figure 2. No other significant effects were found for specific subjective experiences. 

However, as anxiety and frustration were particularly highly correlated, r(86) = .713, p < .001, 

we conducted a further exploratory analysis by averaging these measures to create an 

aggregate negative affect score. Here, the handholding manipulation was associated with 

reduced negative affect relative to the no handholding condition (b = 0.29, SE = 0.14), 95% CIs 

[0.008, 0.57], R2
β = .09. It is noteworthy, however, that this reduction in negative affect has a 

considerably smaller effect size when compared to the large increase in happiness associated 

with handholding.  
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Figure 2: Subjective experience ratings as a function of the handholding manipulation. Error 
bars represent within-subject standard errors. 
 

ERP results 

ΔERN. A one sample t-test confirmed that the ΔERN amplitude (M = -11.50 µV; S.E. = 

0.78), was significantly more negative than zero, t(84)= -14.66, p < .001. The amplitude of the 

ΔERN was more negative during the handholding (M = -12.61 µV, SE = 1.13) condition 

compared to the non-handholding (M = -10.75 µV, SE = 1.13) condition, (b = -0.93, SE = 0.40), 

95% CIs [-1.73, -0.13], R2
β = .12, see figure 3. This result indicates that neural performance 

monitoring processes that unfold within 100 ms of the mistake were enhanced in the 

interpersonal touch condition, relative to the control condition.  

ΔPe. Confirming the classic effect, the ΔPe was significantly more positive than zero, 

t(84)= 12.53, p < .001. In contrast to the ΔERN, the ΔPe did not differ between the handholding 

(M = 9.79 µV, SE = 1.14) and the non-handholding conditions (M = 10.32 µV, SE = 1.14), (b = -
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0.27, SE = 0.37), 95% CIs [-1.02, 0.49], R2
β = .01, see figure 3, lower panels. Thus, while 

handholding led to increased neural reactivity to errors within the time-course of the ΔERN 

(i.e., 0-100 ms), interpersonal touch was not associated with differences in later aspects of 

error processing that arise 200-400 ms after the response.  

 

Figure 3: Left panels: Waveforms depicting the effects of interpersonal touch on error-related 

ERPs at electrodes FCz and Pz. Right panels: Spline maps depicting the topographical 

distribution of the ΔERN (30-80 ms—time period chosen for illustrative purposes) and ΔPe (200 

– 400 ms) across levels of the handholding manipulation. 

Behavioural data 
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Reaction Time. Participants responded more slowly on high-conflict than low-conflict 

trials (b =57.57, SE = 1.27), 95% CIs [55.07, 60.07], R2
β = .87, confirming that the manipulation of 

conflict was successful in response times, see table 1. However, we found no main effect of 

handholding on reaction time (b = -0.28, SE = 1.28), 95% CIs [-2.79, 2.23], R2
β < .001, and no 

interaction between handholding and conflict level (b = -0.23, SE = 1.28), 95% CIs [-2.74, 2.28], 

R2
β < .001.  

 

Table 1: Descriptive statistics for the behavioural data 

      No Holding   Holding 

   Mean S.E.  Mean S.E. 

RT [ms] Low Conflict  352 6.33  352 6.33 

 High Conflict  468 7.21  467 7.90 
        

Error Rates [%] Low Conflict  0.82 0.11  0.76 0.14 

  High Conflict   24.99 2.55   26.01 2.13 

Note: S.E. = Standard Error.  

 

Choice error rates. Percentage error rates were higher on high-conflict compared to 

low-conflict trials (b = 12.35, SE = 0.38), 95% CIs [11.61, 13.09], R2
β = .70, see table 1. However, as 

with RTs, there was no significant main effect of the handholding manipulation, (b = 0.24, SE = 

0.38), 95% CIs [-0.50, 0.98], R2
β < .001, nor did this interact with conflict-level (b = 0.27, SE = 

0.38), 95% CIs [-0.47, 1.01], R2
β < .001. In conjunction with the RT results, these findings suggest 

that we observed robust performance decrements on conflicting compared to non-conflicting 

trials, however, these effects were not directly altered by interpersonal touch.   

Exploratory process analyses 
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In addition to the above analyses, we conducted two additional exploratory analyses to 

further investigate the relationship between cognitive control and interpersonal touch.. First, 

we used indirect effects tests to assess if interpersonal touch indirectly influences behavioural 

performance through handholding’s effects on neural performance monitoring. Second, we 

used a variant of drift-diffusion modelling (EZ-Diffusion Model; Wagenmakers, van der Maas, & 

Grasman, 2007) to extract the latent cognitive processes that underlie observed behaviour on 

our two-alternative forced choice task and test if these processes are also indirectly influenced 

by the effect of interpersonal touch on neural monitoring. Interestingly, although EZ DDM is a 

simplified modeling technique, it was recently found to perform as well as more complex 

models, as determined by a series of blind analyses (Dutilh et al., 2016). Both of these analyses 

are exploratory in nature and should be treated with some caution since neither the indirect 

effects tests nor the EZ-diffusion modelling were included in our pre-registration documents.  

Does interpersonal touch alter behaviour indirectly through its influence on neural error 

monitoring? Structural Equation Modelling (SEM) was used to explore the relationships 

between touch, performance monitoring, and accuracy. Here, we conducted an indirect effects 

test to determine if the handholding manipulation had a significant indirect effect on cognitive 

control through its effect on neural performance monitoring (i.e., ΔERN amplitude). Unlike 

mediation effects where the direct effect of the independent variable on the outcome measure 

is prerequisite to testing mediation, indirect effects test potential process variables without 

requiring an initial direct effect (Preacher & Hayes, 2004).  

 

The path analyses were conducted using the lavaan.survey package in R statistics 

software. Difference scores were used to operationalize both the behavioural conflict effect (Δ 
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%Errors = error rates on high-conflict trials minus error rates on low-conflict trials) and error 

monitoring as the intervening variable (i.e., ΔERN). The degrees of freedom in our SEM were 0, 

suggesting that the model is just identified. This outcome suggests that we can interpret the 

paths defined in our model, but cannot generate reliable fit statistics to compare the model to 

other possible path architectures.   

 

Figure 4: Path analysis of the indirect effects model investigating the effect of handholding on 

performance (Δ% Errors) through neural error monitoring (ΔERN). Unstandardized regression 

coefficients are presented along paths (* p < .05, *** p <.001).  

 

The model revealed a significant indirect effect, b = -2.691, SE = 1.160, Z = -2.320, p = 

.02. Here, handholding was associated with increased ΔERN amplitudes, b = -2.246, SE = 0.943, 

Z = -2.381, p = .017, and this increased neural monitoring predicted reduced error rates on the 

task at hand, b = 1.198, SE = 0.227, Z = 5.284, p < .001. Thus, these analyses suggest that touch 

indirectly improved behaviour through its enhancing effect on neural monitoring. Finally, in 

addition to this indirect effect, a significant direct path suggested that handholding was 

associated with poorer control when ΔERN was defined as an intermediary variable in the 

model, b = 3.113, SE = 1.584, Z = 1.966, p = .049. This result was unanticipated, and, as such, 
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should be considered with some caution. However, the emergence of this direct path when the 

indirect path was accounted for might suggest a suppression effect. While the source of this 

suppression is unclear, it is possible that the handholding manipulation was distracting for 

some participants, resulting in more errors on the inhibitory control task without effecting 

neural monitoring after accounting for the indirect route through which the ERN was amplified 

by handholding. No significant indirect effects were observed for the equivalent model using 

mean reaction time as the outcome variable.  

EZ-Diffusion Cognitive Modelling. The EZ-diffusion model is a simplified version of classic 

drift-diffusion modelling techniques (e.g. the Ratcliff Diffusion Model; cf., Ratcliffe & McKoon, 

2008) that can be used to estimate latent cognitive decision processes from two-alternative 

forced choice tasks (Wagenmakers et al., 2007). Akin to other forms of Drift-Diffusion 

Modelling, the EZ-diffusion assumes that a noisy information/evidence accumulation process 

underlies decisions between defined alternatives (e.g., identifying the letter “M” or the letter 

“W” in our task), with this decision making process terminating when evidence for one of the 

mutually exclusive responses reaches a certain threshold or boundary value (see Figure 5).  
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Figure 5: Overview of the EZ-Diffusion model 

 

One drawback of classic drift-diffusion modelling is that it often requires very many trials 

modelling the entire reaction time distribution in addition to considerable computational 

knowledge to implement and extract parameters reliably (c.f., Dutilh et al., 2012; Wagenmakers 

et al., 2007). The EZ-diffusion model, conversely, allows the three most common drift-diffusion 

parameters (drift rate, boundary separation, and non-decision time) to be reliably estimated in 

smaller data sets with considerably lower computational demands. The EZ-diffusion model was 

fitted to our data using the online JavaScript analysis program 

(http://www.ejwagenmakers.com/EZ.html). EZ-diffusion parameters were calculated separately 

and averaged across trial-types (high-conflict, low conflict). The extracted parameters were 

then compared between the handholding and no-handholding conditions.  

Drift rate (v). This parameter reflects the level of evidence-accumulation from the target 

stimulus. High values of drift rate can be understood as a good signal-to-noise ratio where 

increased values reflect increased rate of approach to the upper (~correct) decision boundary. 

http://www.ejwagenmakers.com/EZ.html
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In between-conditions comparisons, drift rate can be interpreted as a measure of task difficulty 

(Wagenmakers et al., 2007). Overall, we found no direct difference in drift rate between the 

handholding (M = 1.629, S.E. = 0.049) and no-handholding (M = 1.585, S.E. = 0.049) conditions, 

(b = 0.022, SE =0.018), 95% CIs [-0.013, 0.058], R2
β = .04 in these exploratory analyses.  

Boundary separation (a). This parameter reflects the overall level of evidence required to 

reach a decision boundary, and, as such, boundary separation primarily reflects response 

caution and speed-accuracy trade-offs (e.g., sacrificing decision speed for increased accuracy). 

Boundary separation did not differ between the handholding (M = 0.053, S.E. = 0.002) and no-

handholding (M = 0.055, S.E. = 0.002) conditions, (b < -0.001, S.E. = .001), 95% CIs [-0.003, 

0.001], R2
β = .03, suggesting that our manipulation did not make decision thresholds more or less 

conservative.   

Non-decision time (Ter). This parameter reflects time dedicated to mental processes that 

are common to both choice options, and are not related to the decision making process. As 

such, reaction time reflects the summation of both decision and non-decision components. As 

with the other EZ-diffusion parameters, non-decision time did not differ between the 

conditions of our experiment (handholding: M = 0.563, SE = 0.009; no-handholding: 0.564, S.E. 

= 0.009; (b = -0.0005, SE = 0.002), 95% CIs [-0.005, 0.004], R2
β = .009).  

Indirect effects tests. Using the same modelling strategy as with overall choice error 

rates, we conducted indirect effects tests to explore if the parameters of the EZ-diffusion model 

and are impacted indirectly through the effect of handholding on neural performance 

monitoring. While the indirect effects for the models including non-decision time (b = 0.005, SE 

= 0.003, Z = 1.627, p = .104) and boundary separation (b < 0.001, SE < 0.001, Z = 1.656, p = .098) 
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as primary outcome variables were not significant, we did observe a significant indirect path 

between handholding condition on drift rate indirectly through the effects of interpersonal 

touch on the ΔERN (b = 0.053, SE = 0.024, Z = 2.226, p = .026), see Figure 6.  

 

Figure 6: Path analysis of the indirect effects model investigating the effect of handholding drift 

rate (v) through neural error monitoring (ΔERN). Unstandardized regression coefficients are 

presented along paths (* p < .05, *** p <.001).  

 

These exploratory findings provide preliminary evidence suggesting that the extent to 

which ERN amplitudes were increased by handholding indirectly predicted an increased rate of 

evidence accumulation during the inhibitory control task. These findings lend further support to 

the suggestion that interpersonal touch enhances cognitive control, albeit indirectly through its 

effects on neural performance monitoring.  

DISCUSSION 

Despite the established importance of touch for emotional and physical wellbeing 

(Coan, 2008; Jakubiak & Feeney, 2016), touch remains relatively understudied compared to 

other major senses and forms of communication. For the first time, we tested the impact of 
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non-threatening touch between romantic partners on the neural, behavioural, and subjective 

correlates of cognitive control. Our results suggest that interpersonal touch enhances the intra-

personal neural monitoring processes that detect the need for cognitive control. Furthermore, 

our exploratory process analyses provided preliminary evidence that this enhanced monitoring 

also indirectly predicts improved inhibitory cognitive control and rates of evidence 

accumulation derived from the EZ-diffusion cognitive model. Existing theorising has indicated 

that interpersonal touch shows ontogenetic primacy across mammalian species, with existing 

research indicating the beneficial influences of supportive interpersonal touch for socialization, 

wellbeing, and emotion-regulation (Coan, 2008; Debrot et al., 2016; Hertenstein et al., 2006). 

Our results suggest that the positive influence of interpersonal touch might extend beyond 

these domains by facilitating the neurocognitive processes underlying flexible goal-directed 

behaviour (i.e., cognitive control).    

These findings are broadly consistent with the hypothesis that interpersonal touch 

helps, rather than hinders, cognitive control. Prior work has indicated that supportive touch 

elevates enjoyment and attainment during effortful individual performance (Legg & Wilson, 

2013; Steward & Lupfer, 1987), and boosts cooperation and attainment in competitive sports 

teams (Kraus et al., 2010). Our findings may provide insight into the potential neural process 

underlying these prior findings, suggesting that touch might facilitate performance by 

enhancing the neural monitoring processes that underlie flexible goal-directed behaviour. 

Further consistent with our conclusions, one recent investigation reported that simulated 

supportive touch (holding a teddy bear) was also associated increased ERN amplitudes (Tjew-A-

Sin, Tops, Heslenfeld, & Koole, 2016). While simulated touch likely cues social proximity less 
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authentically than handholding from a close relationship partner, these conceptually similar 

studies converge to suggest that touch (both real and simulated) enhances this neural correlate 

of cognitive control.   

Why might touch enhance neural monitoring?  

Addressing why touch might increase neural monitoring can be informed by considering 

the effects of touch on subjective experience in the context of cognitive control. Broadly 

speaking, our results fit within existing frameworks suggesting that interpersonal touch has 

beneficial effects on emotion regulation (Coan, 2008; Jakubiak & Feeny, 2016). Touch produced 

large and robust increases in positive affect (i.e., self-reported happiness), while showing more 

modest reductions on a composite measure of negative affect. As most accounts integrating 

affect and neural monitoring focus on the negative valence of mistakes (Aarts et al., 2013; 

Weinberg et al., 2012; Inzlicht et al., 2015), it should be asked how a manipulation that largely 

increased happiness, and to a smaller extent reduced negative emotions, could sensitize 

individuals to negative error signals.  

According to one account, positive experiences buffer against the threat of negative 

information, making people more open to signals of personal limitation (Trope & Neter, 1994). 

As such, touch potentially enhanced neural monitoring for negative, internally generated 

feedback signals (i.e., the ERN) by reducing natural tendencies to ignore or downplay threats 

associated with personal shortcomings. Supporting this idea, one recent study reported that a 

positive mood induction led to enhanced ERN amplitudes during probabilistic learning (Bakic, 

Jempa, De Raedt, & Pourtois, 2014).  However, as touch had no effect on self-criticism or self-

judgement, our results do not fully support the idea that handholding increased emotional 
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acceptance. Given the findings of the current experiment, in addition to the mixed effects of 

positive emotion on the ERN in past studies, alternative accounts of our findings should be 

considered.  

One possibility is that partner presence increases evaluative threat during performance, 

increasing the salience of errors when people feel judged. Indeed, it has been found that 

interpersonal evaluation leads to increased ERN amplitudes (Hajcak et al., 2005; Masaki, 

Maruo, Meyer, & Hajcak, 2017), while the presence of a close other is sometimes accompanied 

with increased cardiovascular reactivity during stressful tasks (i.e., mental arithmetic; Allen, 

Blascovich, & Mendes, 2002). This evaluative threat account seems less plausible in our study, 

however, because the passive partner could not observe the accuracy of the active partner 

during performance (confidentiality of responding was ensured by a screen and the physical 

position of the passive partner, participants were instructed not to converse). Furthermore, 

active partners experienced more positive affect and less negative affect during handholding 

without significant increases in self-judgement or self-criticism.  Thus, we found little support 

for the idea that error monitoring was elevated because touch increased a sense of 

interpersonal evaluation or threat. This finding is consistent with earlier suggestions that 

interpersonal support reduces stress reactivity in performance contexts that minimize partner 

evaluation (Kamarck, Manuck, & Jennings, 1990).  

A third, and perhaps more likely, possibility is that touch made performance more 

intrinsically motivating. Intrinsic motivation refers to a self-sustaining drive to enact goals that 

are inherently enjoyable, and is improved when contexts support autonomy, security, and 

social relatedness (Deci & Ryan, 2000). By cueing social proximity and amplifying state 
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happiness, interpersonal touch might have introduced the basic ingredients underlying intrinsic 

motivation. Thus, rather than affective and social aspects of touch having individual and parallel 

influences on cognitive control, both enjoyment and social support might have acted in unison 

to produce the observed enhancement. Supporting this suggestion, Tjew-A-Sin et al. (2016) 

demonstrated that simulated touch led to particularly large ERNs for individuals high in trait 

intrinsic motivation. In another study, induced intrinsic motivation enhanced ERN amplitudes 

(Legault & Inzlicht, 2013). This motivational account is particularly appealing  because it can be 

reconciled with empirical reports that extrinsic incentives (i.e., rewards and punishment) 

enhance neural monitoring (Hajcak et al., 2005; Saunders et al., 2015b), and with theoretical 

frameworks in which error monitoring is linked to reward-prediction error (Holroyd & Coles, 

2002): When task engagement feels good, is intrinsically rewarding, and is socially supported, 

worse than expected events (i.e., mistakes) might become particularly salient.  

Several prior investigations have noted that the ERN is moderated by motivational 

variables (see Hajcak, 2012), however, many of these studies have investigated motivational 

inputs to control through external manipulations that are negatively valenced (e.g., 

punishment, loss of rewards; Hajcak et al., 2005; Riesel et al., 2012).  While reward omission 

and punishment are certainly effective at increasing the ERN, these external manipulations 

(particularly punishment) elevate a range of unwanted negative emotions including feelings of 

anxiety, frustration, and hopelessness (Saunders et al., 2015b). In contrast, our manipulation of 

interpersonal touch not only brought about positive emotional states, but also increased neural 

aspects of cognitive control. Unlike other motivational moderators of error monitoring, social 

support might enhance these neural processes without undermining the individual’s mood or 
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feelings of self-efficacy. It is perhaps only by inducing these more positive, supportive states 

that interpersonal touch indirectly improved inhibitory control and the rate of evidence 

accumulation through neural error monitoring.  

Future Directions and Limitations 

Our findings are generative, and we end by providing ideas for future research 

questions. Touch can communicate different emotions (Hertenstein et al., 2006), with varied 

outcomes depending on relationship status. In addition to replicating the results found in the 

present investigation, future work should explore the influence of different forms of touch 

across varying classes of relationship. More energizing and platonic forms of touch (fist bumps, 

high fives), for example, have been related to cooperation (Kraus et al., 2010). On-going 

research could test how different forms of touch facilitate cognitive control in both co-

operative and competitive contexts (cf., de Bruijn, de Lange, von Cramon, & Ullsperger, 2009). 

Further exploration of alternative touch manipulations may clarify the mechanisms through 

which touch might enhance control. In the current manipulation, both the social (i.e., 

interpersonal proximity) and affective (i.e., pleasant) aspects of touch occurred during the 

handholding manipulation. Future research could test if it is the social or affective component 

of touch that contributes to increased control, or, alternatively, if both aspects act in unison to 

enhance control. Recent work indicates that affective touch could be investigated while 

minimising the social interaction. Slow velocity tactile stimulation of the skin even in the 

absence of social context, for example, triggers pleasant experience (and regulates pain) 

through specific unmyelinated C tactile afferent fibers (Johansson & Vallbo, 1979; Krahé, 

Drabek, Paloyelis, & Fotopoulou, 2016). Future research could use these procedures to test if 
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non-social aspects of affective touch modulate cognitive control. In addition to these extension 

studies, it would be valuable to conduct a direct replication of the current results in a second, 

larger sample. While we pre-registered and collected a sample size powerful enough to detect 

even relatively small effect sizes, many p-values in the current study were in the .01 to .05 

range.  While these results are significant at the apriori alpha levels, increasingly robust and 

precise estimates of effect size could be achieved by collecting a larger sample in a future 

replication.  

Besides social and affective influences of interpersonal touch, motor-priming 

mechanisms might be suggested to account for the observed effects. By always engaging the 

left hand of the active participant, our interpersonal touch manipulation perhaps created a bias 

for the left response (i.e., the frequent stimulus), that, in turn, created a larger surprise signal to 

errors. While it is certainly crucial to consider such low-level influences on our results, we think 

that this motor priming account is not likely to explain the effects observed in our study. The 

canonical feature of motor priming is a change in the overt motor response. People are often 

faster and more accurate if the correct motor response is primed by a lateralized source of bias, 

and slower and less accurate if the incorrect response is similarly biased by a spatial cue. 

Consequently, a motor-priming account would predict faster responses to the frequent “go” 

stimuli and higher error-rates for the infrequent “no-go” responses during handholding in our 

inhibitory control task. In our study, however, we observed no direct behavioural differences 

between conditions, and, if anything, our indirect effects tests show the opposite effect where 

control improves under interpersonal touch. Nevertheless, while we find no evidence directly 

supporting the presence of a motor-priming confound, this absence of evidence cannot 
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completely rule out a more subtle motor confound manifest only in the ERP results. Further 

testing with varying control conditions (e.g., holding an innate object) could serve not only to 

even more definitely rule out low level confounds, but would also allow further exploration of 

the specific aspects of touch that modulate cognitive control (e.g., relationship type, social 

proximity, affective processing) and shed light on the mechanisms by which interpersonal touch 

enhanced/facilitates cognitive control.  

Finally, at first sight it appears that our results are discrepant with other neuroscience 

investigations in which interpersonal touch during the threat of electric shock was associated 

with reduced activation in neural areas commonly implicated in cognitive control (Coan et al., 

2006; Coan et al., 2017). However, it seems likely that the effects of interpersonal touch might 

vary by context—handholding might have a different influence during overwhelmingly negative 

contexts (i.e., threat of electric shock) compared to goal-directed and cognitively demanding 

situations (e.g., inhibitory cognitive control). While the sense of social support and 

interpersonal connection initiated by touch might soothe during overwhelmingly negative 

experiences, the same signal of social proximity might have a more encouraging and 

motivational effect during goal-directed activities, such as cognitive control. Future work should 

explore not only the influence of interpersonal touch across contexts, but also the effects of 

touch in cognitively demanding contexts that are also negatively valenced (e.g., control tasks in 

which errors are punished; Riesel et al., 2012; Saunders et al., 2015b).  

Conclusion 

Moving beyond the established benefits of touch for emotion and stress regulation, our 

findings are the first to suggest that touch enhances the neural monitoring processes that 
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underlie flexible goal-directed behaviour. These results open exciting avenues for future 

research investigating the role of social/interpersonal influences on a range of effortful, but 

goal-relevant, cognitive processes.  
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Footnote 

1. We additionally quantified posterror slowing effects and interchannel phase consistency 
in the theta EEG band between electrode FCz and frontolateral sites (F7 and F8). 
However, neither measure showed a main effect of trial-type (i.e., error vs. correct) 
meaning that these variables could not be used to test our hypotheses. We also 
conducted an exploratory analysis of error-related electromyographic activity over the 
corrugator muscle of the face (Lindström, Mattsson-Mårn, Golkar, & Olsson, 2013). 
While this measure did show a main effect of trial-type, unlike the ERN results, this main 
effect did not interact with handholding condition. This finding is consistent with our 
earlier finding that error-related corrugator activity does not covary with the amplitude 
of the ERN (Elkins-Brown, Saunders, & Inzlicht, 2016). These findings suggest that the 
functional significance of the error-related corrugator activity requires further 
elucidation in ongoing research.   
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