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SUMMARY 

 

A dynamic fault tree model for a ship main engine is developed in order to analyse and identify critical 

systems/components of the main engine. The identified most critical systems are then used as input in an artificial neural 

network. An autoregressive dynamic time series neural network modelling approach is examined in a container ship case 

study, in order to monitor and predict future values of selected physical parameters of the most critical ship machinery 

equipment obtained from the fault tree analysis. The case study results of the combination of the fault tree analysis and 

artificial neural network model demonstrated promising prospects for establishing a dense methodology for ship 

machinery predictive maintenance by successfully identifying critical ship machinery systems and accurately forecasting 

the performance of machinery parameters. 

 

 

1. INTRODUCTION 

 

Maintenance deals with systems that are subject to 

deterioration and failure with usage and age. For systems 

on board ships, it is extremely important to avoid failures 

during actual operation because it can be dangerous or 

disastrous in terms of performance, safety and economic 

losses. The performance of the vessel generally 

deteriorates with time as a result of fouling or degradation 

of machinery systems and components. Unwanted failures 

result in economic impact in form of higher maintenance 

costs and lower machine reliability and availability. With 

reduced manning levels and the ever increasing 

competition, ship maintenance has become one of the 

major challenges in the marine industry. Technological 

advances and high cost of ownership have resulted in 

considerable interest in advanced maintenance techniques. 

As a consequence, the maritime industry is seeking for 

increased reliability, maximum uptime and optimal 

operational efficiency, as well as ensuring safe and 

sustainable environmental performance in harsh 

environments. 

 

Optimisation of maintenance is challenging due to highly 

restrictive and harsh operating conditions of ships in 

addition to the high level of uncertainty accompanied by 

these operating conditions. Compared to other industries, 

data gathering and processing is not always possible as 

similar equipment in diverse conditions may have 

different failure patterns. Data is not collected in standard 

ways which would aid in successful decision making [1]. 

An additional issue is the constant appearance of new 

equipment, which makes historical records obsolete and 

lays other aspects on the replacement decisions. 

 

Efforts have being made to transform 

corrective/preventive maintenance techniques into 

predictive ones. Condition monitoring is considered as a 

major part of predictive maintenance. It assesses the 

operational health of equipment, in order to provide early 

warning of potential failure such that preventive 

maintenance action may be taken. Predictive maintenance 

consists in deciding whether or not to maintain a system 

according to its state [2]. Moreover, predictive 

maintenance focuses on failure prediction, occurring 

through follow-ups with a specific systematic on 

parameters and equipment conditions. This type of 

maintenance did not emerge as a replacement for 

corrective and preventive maintenance, but as an 

additional tool, which seeks to minimize maintenance 

costs and losses in equipment through the monitoring of 

specific parameters [3].  

 

As part of the above, this paper focuses in combining a 

Fault Tree model and then an Artificial Neural Network 

(ANN) for forecasting selected machinery parameters. 

Fault Tree Analysis (FTA) is a top-down approach which 

uses failure rates, mean time between failures and minimal 

cut sets to evaluate the reliability and availability of the 

examined system [4]. FTA can be applied both in a 

qualitative and quantitative way. The objective of a Fault 

Tree is to evaluate the probability of occurrence of the top 

event. Moreover, Fault Trees are also used to display the 

causes and consequences of events, identify system 

critical components and evaluate changes in design 

amongst other things. Fault Tree diagrams provide 

important information regarding the likelihood of a failure 

occurring and the means by which this failure could occur. 

They can be constructed at any point of a design stage and 

the FTA results can help improve system safety. 

 

Raza and Liyanage [5] stated that there has been an 

increasing demand for testing and implementing 

intelligent techniques as a subsidiary to existing 

monitoring programs and that Artificial Neural Networks 

(ANNs) have emerged as one of the most promising 

techniques in this regard. The equipment condition and the 

fault developing trend are often highly nonlinear and time-

series based. ANNs can be used due to their potential 

ability in nonlinear time-series trend prediction. Therefore 

this paper initially proposes the analysis of a Fault Tree 

model for the main engine of a ship in order to identify the 

most critical systems/items of the main engine. Physical 

parameters of the identified systems are then used as input 

in the ANN model in order to monitor and predict their 

future values. 



 

 

 

This paper is organized as follows: Section 2 briefly 

describes the research background, containing 

information regarding predictive maintenance, FTA and 

ANNs. Section 3 presents and defines the overall 

methodology. A case study is presented in Section 4 and 

results are presented in Section 5, followed by the 

concluding remarks contained in the last section. 

 

2. BACKGROUND 

 

2.1 MAINTENANCE 

 

Ships are part of the marine transportation system and are 

crucial assets of the supply chain. In this respect, 

maintenance tasks affect the reliability and availability 

standards of the shipping industry and are an important 

factor in the lifecycle of a ship that can minimize down-

time and reduce operating costs [9]. The importance of 

maintenance is demonstrated by the fact that it is the only 

shipboard activity to have one whole element assigned to 

it [6]. Also, due to the impact of shipping on the 

environment and the importance of the safe operation of 

ships; ship owners and operators pursue to adopt a 

maintenance plan and procedures that will reduce costs, 

promote the lifecycle integrity and enhance the energy 

efficiency of the ship. 

 

Initially, corrective maintenance was applied to ships 

followed by successful preventive maintenance actions 

due to International Safety Management (ISM) code [6] 

and regulations and was then followed by predictive 

maintenance advances [7]. Predictive maintenance did not 

emerge as a replacement for corrective and preventive 

maintenance, but as an additional tool, which seeks to 

minimize, through the monitoring of specific parameters, 

maintenance costs and losses in equipment [3]. Therefore, 

predictive maintenance differs from preventive 

maintenance by concentrating maintenance on the actual 

condition of the machinery rather on some predefined 

schedule dictated by predefined time intervals or system 

operating hours. Consequently, predictive maintenance is 

used to define required maintenance tasks based on 

quantified material and equipment condition. It uses 

modern measurement and signal processing methods to 

accurately predict and diagnose items/equipment 

condition during operation [8]. 

 

2.2 FAULT TREE ANALYSIS  

 

Reliability assessment tools include Reliability Block 

Diagrams (RBD), FTA, Failure Modes Effects Analysis 

(FMEA), Failure Modes Effects and Criticality Analysis 

(FMECA), Markov analysis and Bayesian Belief 

Networks (BBN). FTA is one of the basic methods of 

assessing reliability. The FTA method allows detailed 

examination of the system operation principles during the 

design, operation and accident investigations. 

 

Fault Tree diagrams are a graphical design technique 

following a top-down approach. It uses a graphic model of 

the pathways within a system that can lead to a projected, 

undesirable event or failure. The pathways interconnect 

contributory events and conditions, using standard logic 

symbols and the basic constructs in a fault tree diagram 

are gates and events. The fault tree analysis module is 

based on sets of rules and logic symbols from probability 

theory and Boolean algebra. Gates represent logic 

operators that link the various branches of the fault tree 

together and determine whether the top event can occur or 

not. Basic events can be defined as the lower level events 

in each fault tree branch. 

 

FTA uses failure rates, mean time between failures and 

minimal cut sets to evaluate the reliability and availability 

of the system. Moreover, fault trees are also used to 

display the causes and consequences of events, identify 

system critical components and evaluate changes in design 

amongst other things. 

 

Lazakis et al. [7] presented a predictive maintenance 

strategy utilizing FMECA and FTA by considering the 

existing ship maintenance regime as an overall strategy 

including technological advances and decision support 

system by combining existing ship operational and 

maintenance tasks with the FTA and FMECA tool.  

 

An innovative ship maintenance strategy is also presented 

by Turan et al. [4] based on criticality and reliability 

assessment while utilising the FTA tool with time-

dependent dynamic gates in order to accurately present the 

interrelation of the components for a diving support 

vessel.  

 

Lazakis and Olcer [9] introduced a Reliability and 

Criticality Based Maintenance (RCBM) strategy by 

utilizing a fuzzy multiple attributive group decision-

making technique, which is further enhanced with the 

employment of Analytical Hierarchy Process (AHP). The 

outcome of this study indicated that preventive 

maintenance is still the preferred maintenance approach 

by ship operators, closely followed by predictive 

maintenance; hence, avoiding the ship corrective 

maintenance framework and increasing overall ship 

reliability and availability.  

 

2.3 ARTIFICIAL NEURAL NETWORKS  

 

A neural network can be defined according to Principe et 

al. [10] as distributed, adaptive, generally nonlinear 

learning machines built from many different processing 

elements that receive connections from other processing 

elements and/or itself. Several distinguishing features of 

ANNs [11] make them attractive for the development of 

prognostic tools. First of all, opposed to the traditional 

model-based methods, ANNs are data-driven and self-

adaptive methods, meaning that there are few a priori 

assumptions about the models under study. They learn 

from past examples and capture subtle functional 



relationships among the data even if the underlying 

relationships are hard to describe or unknown. ANNs do 

not rely on prior principles or statistics models and can 

significantly simplify the model synthesized process. 

They can readily address modelling problems that are 

analytically difficult and for which conventional 

approaches are not practical, including complex physical 

processes having nonlinear, high-order, and time-varying 

dynamics. Secondly, ANNs have good generalisation 

capabilities and are universal functional approximators. 

They are also nonlinear. Real word failure models are 

generally non-linear. However, these models are still 

limited in that they are based on a little knowledge of 

underlying law. 

 

The application fields of neural networks can be 

categorised with respect to different criteria, such as 

industrial application, type of reliability problem, life 

cycle phase in which the algorithms are predominantly 

applicable and the type of learning problem. The building 

block of a neural network is a neuron [12], which has 

several inputs an, each of these inputs are multiplied by 

weights wij and then added up. Weights are adaptive 

coefficients within the network that determine the 

intensity of the input signal [13]. Often a bias is added bj, 

which is the node’s internal threshold. The result is the 
neuron activation z as shown in the following equation: 
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Time series modelling and forecasting has fundamental 

importance to various practical domains. The main aim of 

time series modelling is to carefully collect and rigorously 

study the past observations of a time series to generate 

future values for the series. Time series forecasting can be 

termed as the act of predicting the future by understanding 

the past. 

 

Although linear models possess many advantages in 

implementation and interpretation, they have serious 

limitations in that they cannot capture nonlinear 

relationships in the data which are common in many 

complex real world problems. Neural nets have the 

potential to represent any complex, nonlinear underlying 

mapping that may govern changes in a time series [14]. 

Zhang et al. [15] showed that neural networks are valuable 

tools for modelling and forecasting nonlinear time series 

while traditional linear methods are not as competent for 

this task. The lack of systematic approaches to neural 

network model building is probably the primary cause of 

inconsistencies in reported findings.  

 

With the increased availability of monitoring data on the 

condition of systems and equipment, neural networks are 

increasingly applied in the field of fault detection [16], 

fault diagnostics [17] and for predicting the residual useful 

life [18].  

 

3. METHODOLOGY 

 

The methodology suggested in this paper initially 

generates a generic model approach, utilising the 

capabilities of fault tree modelling. Subsequently, the 

ANN model is applied for the transition of the generic 

model into a specific model. The aim of the FTA is to 

calculate and identify the most critical 

subsystems/components of the top main system. Once the 

most critical items of the FTA have been acquired, 

physical parameters associated with these items are used 

as input in the ANN in order to conduct a time series 

analysis aiming in predicting their future values. Figure 1 

provides an overview of the methodology approach. 

 

 
Figure 1: Methodology 

 

3.1 FTA MODEL 

 

A very important part of FTA is the system definition. The 

basis of the system definition is the fault tree diagram 

which defines all interconnections and components of the 

system. Also, reliability parameters should be identified 

and the system definition must identify important 

assumptions regarding the system and the conditions that 

indicate that the components of the system have failed. 

The top event should also be clearly defined as if a top 

event is not concisely defined then the fault tree can 

possibly become too large and complex, resulting in an 

unfocused system analysis. 

 

One of the advantages of FTA is that it is an event-oriented 

method. In addition to considering failures in hardware, 

fault trees can take into account the undesirable events that 

can possibly occur due to software failures, environmental 

influences and human errors during the stages of 

maintenance and system operation. On the other hand, one 

of the biggest disadvantages of FTA is that all events 

leading to the top event must be foreseen and the 

contributors to the occurrence of these undesired events 

must be anticipated. In addition, FTA requires analyst skill 

and can be time-consuming, thus costly.  

 

The following steps are usually performed when 

constructing a fault tree [19]: 

 Definition of the FTA scope 

 Identification of the top event. 

 Identification of the first level events. 

 Connection of the first level events with the top 

event by using gates. 

 Identification of the second level events. 

FTA ANN Extract Predictions

Obtain most critical 

items of ship system

Time series modelling 

and analysis

Qualitative/quantitative 

analysis
Quantitative analysis

Predict future values 

of time series for 

FTA critical items



 

 

 Connection of the second level events with first 

level by using gates. 

 Repetition of the above steps for all subsequent 

event levels. 

 

3.1(a) Fault Tree Minimal Cut Sets 

 

The FTA can be conducted in a qualitative or quantitative 

manner, depending on the type of data available. If no data 

is available, a fault tree can be analysed qualitatively by 

using minimal cut sets. Qualitative analysis is used to 

identify what combinations of events cause the top event 

to occur. 

 

A cut set is a set of basic events, which if they all occur, 

will result in the top event of the fault tree occurring. A 

minimal cut set is a combination (intersection) of primary 

events sufficient for the top event. The combination is a 

“minimal” combination in that all the failures are needed 

for the top event to occur; if one of the failures in the cut 

set does not occur, then the top event will not occur (by 

this combination). To determine the minimal cut sets of a 

fault tree, the tree is first translated to its equivalent 

Boolean equations. One of the main purposes of 

representing a fault tree in terms of Boolean equations is 

that these equations can then be used to determine the 

associated minimal cut sets. 

 

The minimal cut set expression for the top event can be 

written in the general form according to [19]: 

 

1 2 ... kT M M M      

 

where T is the top event and Mi are the minimal cut sets, 

each of them consisting of a combination of specific 

component failures. The general n-component minimal 

cut can be expressed as: 

 

1 2 ...iM X X Xn      

 

where X1, X2,…, Xn are basic component failures.  

 

If data such as mean time between failures, failure rates, 

probabilities are available, the fault tree can use 

quantitative calculation methods and also reliability 

importance measures [4] such as Birnbaum, Criticality 

and Fussell-Vesely to identify and calculate most critical 

items.  

 

3.1(b) Fault Tree Gates  

 

Logic operators known as gates determine how events are 

generated. A basic event represents the lowest level of a 

fault tree. Gates are used to represent the failure logic 

paths between various levels of the tree. Gates can be 

either static or dynamic. A static gate indicates that the 

order of the inputs of a gate do not matter, therefore are 

not sequence-dependent as in dynamic gates. On the other 

hand, in dynamic gates, the order of the occurrence of 

input events is vital for determining the output. If dynamic 

gates are used, then the fault tree becomes a dynamic fault 

tree. The most common static gates include the AND, OR 

and Voting gates. An AND-gate indicates that the output 

occurs if and only if all the input events occur. The OR-

gate is used to specify that the output occurs if and only if 

at least one of the input events occurs. The Voting-gate 

occurs when at least m out of n input events occurs. 

Dynamic fault tree gates include the Sequence Enforcing-

gate, Priority AND-gate, Spare-gate and Functional 

Dependency-gate amongst other. The Priority AND-gate 

indicates that the output will occur if and only if all the 

input events occur in a particular order from left to right. 

Thus, items need to fail in temporal order from left to right 

to trigger the event. Similarly, the Sequence Enforcing-

gate forces events to occur in a particular order from left 

to right. This implies that the left-most event must occur 

first and that an event connected to such a gate will be 

initiated immediately after the occurrence of its immediate 

left event. 

 

3.2 ANN ARCHITECTURE 

 

Data has to be pre-processed prior to using it in the 

Artificial Neural Network. Also, the neural network 

architecture has to be established in order to design a 

network capable of modelling a time series problem and 

accurately predicting future values of that time series. 

Figure 2 demonstrates the methodology implementation 

followed for the neural network structure. 

 

 
Figure 2: ANN Methodology 

 

Once the data has been processed, the neural network is 

firstly modelled in open loop and is then converted to 

closed loop for multistep-ahead predictions. 

 

3.2(a) Data Preparation & Processing 

 

Before the data can be analysed in the neural network, it 

has to be correctly processed in order to achieve a correct 

analysis and improve the efficiency of network training.  

A time series is a sequential set of data points, measured 

typically over successive times. It is mathematically 

defined as a set of vectors y(t), t = 0 ,1 , 2 ,...,d where t 

represents the time elapsed [20]. The variable y(t) is 

treated as a random variable. The measurements taken 

during an event in a time series are arranged in a proper 

chronological order. The future values of a time series y(t) 

are predicted only from the past values of that series. This 

form of prediction is called nonlinear autoregressive and 

can be written as: 

 

( ) ( ( 1),..., ( ))y t f y t y t d     

 

ANN Open Loop

Data Collection Data Processing Prediction Results

ANN Closed Loop



Where yt is the observation at time t; and d is the 

dimension of the input vector or number of past 

observations used to predict the future; and f is a non-

linear function. The data is prepared by shifting time by 

the minimum amount to fill input states and layer states 

for network open loop and closed loop feedback modes. 

This allows the time series data to be trained with the 

dynamic neural network. Finally, data is divided into two 

subsets in the network for training and testing purposes. 

The training set is used for computing the gradient and 

updating the network weights and biases and the test data 

is used to measure how well the network generalizes 

overall. 

 

3.2(b) Neural Network Modelling 

 

An artificial neural network consists of interconnection of 

neurons. The neurons are usually assembled in layers [12]. 

Each layer has a number of simple, neuron processing 

elements called nodes or neurons that interact with each 

other by using numerically weighted connections [21]. 

Generally a neural network consists of n layers of neurons 

of which two are input and output layers, respectively. The 

former is the first and the only layer which receives and 

transmits external signals while the latter is the last and the 

one that sends out the results of the computations. The n-

2 inner ones are called hidden layers which extract, in 

relays, relevant features or patterns from received signals. 

 

The interconnectivity defines the topology of the ANN 

[5]. The network topology describes the arrangement of 

the neural network. Successful ANN modelling is based 

upon the number of neurons, number of hidden layers, 

values of the weights and biases, type of the activation 

function, structure of the network, training styles and 

algorithms as well as data structure. However, the best 

structure is the one which can predict behaviour of the 

system as accurately as possible. A crucial step in the 

building of a neural network model is the determination of 

the number of processing elements and hidden layers in 

the network. Hidden nodes are used to capture the 

nonlinear structures in a time-series. Since no theoretical 

basis exists to guide the selection, in practice the number 

of hidden nodes is often chosen through experimentation 

or by trial-and-error. 

 

ANNs learn the relation between inputs and outputs of the 

system through an iterative process called training [22]. 

Neural networks are trained for input data and the output 

is computed. The error obtained by comparing outputs 

with a desired response is used to modify the weights with 

a specific training algorithm. This procedure is performed 

using training data set until a convergence criterion is met. 

Neural networks have different learning algorithms for 

training. The choice of a particular learning algorithm is 

influenced by the learning tasks a neural network has to 

perform. The training performance is evaluated using the 

following performance measures, namely the Mean 

Square Error (MSE) average sum of square errors and 

Correlation Coefficient (R) given by the following 

equations respectively [23]: 
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where P = number of output processing elements; N = 

number of exemplars in the data set; yij = network output 

for exemplars i at processing element j ; and dij = desired 

output for exemplars i at processing element j. 

 

A nonlinear autoregressive dynamic neural network is 

used for the prediction. A hyperbolic tangent transfer 

function in the hidden layer and linear transfer function in 

the output layer are employed, capable of approximating 

any function with a finite number of discontinuities. The 

system is firstly modelled as an open loop system to train 

the network accurately up to the present with all of the data 

in order to achieve correct predictions; and is then 

transformed to closed-loop for calculating multistep-

ahead predictions. During training, the network weights 

and biases are updated after all of the inputs and target 

values have been presented to the network. The network 

is autoregressive as the only inputs are lagged target 

values. The neural network is trained using the Bayesian 

regularization backpropagation algorithm. The term 

backpropagation refers to the process by which derivatives 

of network error, with respect to the network weights and 

biases, can be computed. Bayesian regularization 

algorithm provides better generalization performance and 

is most suitable for small data sets compared to other 

training algorithms. The performance of the network is 

evaluated using the MSE performance measure and 

Correlation Coefficient R. 

 

The open loop network is a feed-forward back propagation 

network. Then, for the multistep-ahead predictions, the 

open loop network is converted to a Recurrent Neural 

Network (RNN) closed-loop system, by creating a 

feedback connection from the output to the network input, 

thus making the network dynamic. The first two time steps 

of the input are used as input delay states in order to model 

the dynamic system.  

 

RNNs can store sequential information in the form of 

historical data and can be used in forecasting. For 

example, in an RNN, the input nodes are taken as the value 

of the current condition Xt and values of the previous time-

series condition (Xt-1, Xt-2, Xt-3,…, Xt-d and Xn). The value 

of the output Xt+1 can provide a one-step-ahead prediction 

of a time-series condition, which is a function of the 



 

 

current value Xt and time-lagged values of the previous 

condition ( Xt-1, Xt-2, Xt-3, … , Xt-d and Xn). The predicted 

value Xt+1 of a time series, one-step ahead in the future is 

given by the following equation: 

 

 1 1 2, ,  ,  , , ,t t t t t l nX F X X X X X        

 

Where, l is the time lag, Xt+1 is the predicted value, Xt is 

the current value or condition and Xt-d is the values of 

previous condition lagged by time d. The closed-loop 

network is show in Figure 3. 

 

 
Figure 3: Closed-loop dynamic neural network 

 

4. CASE STUDY 

 

The described methodology is applied for the case study 

of a Panamax container ship. A Fault Tree model is 

constructed for the system of an eight cylinder two stroke 

marine diesel engine. Once the Fault Tree has been 

constructed and analysed, the most critical 

subsystems/components of the top main system are 

identified. Then, physical parameters (e.g. temperature, 

pressure) associated with the critical items of the Fault 

Tree are used as input in the ANN in order to conduct a 

time series analysis aiming in predicting their future 

values. 

 

4.1 FAULT TREE MODELLING BOUNDARY 

 

As with any modelling technique, the boundaries of a FTA 

must be defined prior to the construction of the fault tree. 

In general, defining the boundaries of the analysis 

involves defining what is in the analysis and what is out of 

the analysis. Figure 4 displays the boundary condition for 

the main engine. 

 

 
Figure 4: Boundary condition of main engine including 

sub-systems 

 

As observed in Figure 4, the main engine is divided into 

six categories which include namely the cooling systems, 

lubrication oil systems, fuel system, air systems, cylinder 

block assembly and engine block and components. The 

cooling system is further divided into the jacket water 

cooling and central cooling system. The jacket water 

cooling system consists of the jacket fresh water cooling 

pump and jacket water cooling and the central cooling 

system of the sea chest strainer, sea water pipes and central 

cooler. The lubrication oil system includes the lube oil 

filter, pump, valves and lube oil cooler. Furthermore the 

fuel system resembles the lube oil system with the addition 

of the fuel injectors. The air systems are further separated 

into the main air system and scavenging air system. In the 

cylinder block assembly system, the system has been 

separated into the cylinder system which includes the 

cylinder head and liner and the piston assembly including 

the piston crown, rings, stuffing box and connecting rod. 

Finally, the engine block and components group contains 

components of the main engine such as the crankshaft, 

crankcase, camshaft and various bearings. In total, 39 

basic events were created in the fault tree representing the 

components of the various main engine sub-systems as 

illustrated in Table 1. 

 

Lube Oil Filter Air Cooler, Piping 

Main Lube Oil Pump Air Cooler 

Lube System Valves Scavenge Air Port 

Lube Oil Cooler Scavenge Air Receiver 

J.F.W Cooling Pump Scavenge Air Manifold 

Jacket Water Cooling Air Receiver 

Sea Chest Strainer Cylinder Head 

Sea Water Pipes Cylinder Liner 

Central Cooler Piston Crown 

Fuel Piping System Piston Ring 

Fuel Oil Filter Piston Rod Stuffing Box 

Fuel Pumps Piston Connecting Rod 

Fuel Valves Camshaft Bearing 

Fuel Injector Thrust Bearing 

Main Air Compressor Main Bearings 

Air Distributor Crankshaft 

Air Starting Valves Crankcase 

Air Filter Camshaft  

Auxiliary Blower Exhaust Valves 

Table 1: List of components used for fault tree 

 

For each system and associated component, physical 

parameters such as temperature, pressure are measured in 

order to monitor their condition. Key parameters in 

performance observations include amongst others: 

 

 Engine speed 

 Barometric pressure 

 Compression pressure 

 Fuel pump index 

 Exhaust gas temperatures and pressures 

 Scavenge air temperature and pressure 

 Air and cooling water temperatures prior and 

after scavenge air cooler. 

 

Cooling Systems

Air Systems

Lubrication Oil 

Systems

Engine Block & 

Components
Fuel System

Cylinder Block 

Assembly

Main Engine



Table 2 illustrates a sample of physical parameters 

monitored for the systems and components included and 

modelled in the Fault Tree analysis. In total, 20 physical 

parameters are monitored associated with the 6 systems 

used in the Fault Tree of the main engine as seen in Figure 

5. 

 

System Parameter 
Physical Measurement 

Temperature Pressure 

Cylinder 

Scavenging Air •  

Exhaust Gas 

Temperature 

Outlet 

•  

Jacket Fresh 

Water Cooling 

Inlet 

 • 

Piston 
Piston Cooling 

Lube Oil Inlet 
 • 

Lube 

Oil 

Cooler 

Sea Water Inlet •  

Sea Water 

Outlet 
•  

Thrust 

Bearing 

Thrust Bearing 

Lube Oil Outlet 
 • 

Table 2: Physical parameters for main engine systems 

 

Based on the FTA and utilising Table 2, the selected 

physical parameters are then used as input for the ANN. 

 

4.2 ARTIFICIAL NEURAL NETWORK 

 

The data composed for analysis of the selected physical 

parameters was collected through an on board 

measurement campaign as presented in Raptodimos et al. 

[24]. The neural network uses a univariate time series data 

set. The data monitored on board the container ship case 

study, represents 30 continuous per hour records of 

physical parameters regarding systems such as the ones 

shown in Table 2. The ANN constructed consists of one 

hidden layer with 8 hidden nodes as illustrated in Figure 

3. The ANN receives these values as input as a univariate 

time series data and attempts to predict the upcoming 

values as output. 

 

5. RESULTS 

 

Results are firstly shown for the FTA of the main engine. 

Finally, based on the Fault Tree Analysis, results are 

shown for the Artificial Neural Network. 

 

5.1 FTA RESULTS 

 

A four level fault tree for the ships main engine is 

constructed including 39 basic events and 14 gates as 

described in Table 1. Qualitative analysis is performed in 

order to obtain the minimal cut sets of the fault tree, which 

provide insight into weak points of complex systems. 

Figure 5, displays a fragment of the main engine fault tree. 

 

 
Figure 5: Main engine fault tree diagram 

 

The cooling systems are modelled using an AND gate 

assuming both the jacket water cooling and central cooling 

system have to fail. The lubrication oil system has been 

modelled using a Priority-AND gate, assuming as seen in 

Figure 5, that the lube oil filter has to occur before the 

pump, vales and then lube oil cooler occur. By using 

dynamic gates, the fault tree becomes a dynamic fault tree. 

The fuel system has been designed using a Voting gate of 

3 out of 5 systems and the air system has been modelled 

as an AND gate assuming that both the main air system 

and scavenge air system have to occur. The engine block 

and components gate is composed of a Voting gate 

assuming that any three of the bearings, crankshaft, 

crankcase, camshaft or exhaust valves have to occur. 

Table 3 displays the top five minimal cut sets obtained 

from the main engine FTA. 

 

 
Table 3: Top five fault tree minimal cut sets 

 

All the minimal cut sets are of third order. As observed, 

the first three cut sets involve systems/components that 

were constructed in the cylinder block assembly gate 

illustrated in Figure 6. 

 

 
Figure 6: Cylinder block assembly sub-system 

 

Figure 6 shows the cylinder block assembly system 

modelled with an AND gate, the cylinder OR gate and the 

piston sub-system modelled with a 2 out of 4 Voting gate. 

1 Cylinder Head Piston Crown Piston Ring

2 Cylinder Head Piston Crown Piston Rod Stuffing Box

3 Cylinder Liner Piston Crown Piston Ring

4 Crankcase Crankshaft Camshaft

5 Fuel Oil Filter Fuel Pumps Fuel Injector



 

 

 

Since the minimal cut sets have been calculated and 

involve systems and components inside the cylinder, 

based on Table 2, physical parameters such as the cylinder 

exhaust gas temperature can be used as input in the ANN 

in order to further monitor and examine the performance 

of the specific system. 

 

5.2 ANN RESULTS 

 

The ANN constructed attempts to predict the upcoming 

five cylinder exhaust gas temperature values as output, for 

cylinder 1. The results obtained from the network for 

predicting the future upcoming five values in time are 

illustrated in Figure 7. 

 

 
Figure 7: Cylinder 1 exhaust gas temperature prediction 

graph 

 

Figure 7 illustrates the graph of the recorded values and 

predicted ones against time. The recorded temperatures 

are within the range of 254 degrees to 283 degrees Celsius. 

Variations in temperature, especially the rise of the 

exhaust gas temperature at some points is observed and is 

mainly caused by an increase in the engine and fuel load. 

This is due to the engine governor regulating the engine 

speed, as the vessel is also sailing at a constant speed of 

10 knots. Moreover, these variations could be the result of 

the specific cylinder condition. 

 

5.2(a) ANN Validation 

 

The results of the ANN are examined and validated using 

two approaches. The first approach uses the network 

performance in terms of the regression plots R for the 

training and testing data as shown in Figure 8 and the error 

autocorrelation as shown in Figure 9. 

 

Figure 8: Regression results for training and test data of 

neural network 

 

The correlation coefficient R, regression plot, is a good 

measure of how well the network has fitted the data. The 

regression plot shows the actual network outputs plotted 

in terms of the associated target values. Regression values 

measure the correlation between outputs and targets. A 

correlation coefficient R value of 1 implies a perfect fit of 

outputs exactly equal to targets. Figure 8 displays the 

network outputs with respect to targets for training and test 

sets. Bayesian regularization does not use a validation set 

but includes this in the training set. The training data 

indicate a good fit as does the test results showing values 

of R greater than 84% and 91% respectively. For all data 

sets, the fit is very good. 

 

Error autocorrelation is used to validate the network 

performance. The error autocorrelation function defines 

how the forecast errors are interrelated in time. For a 

faultless prediction model, there should be one non-zero 

value that should occur at zero lag implying that the 

forecast errors are entirely uncorrelated with each other. 

Therefore, if the network has been trained well then 

besides the centre line which shows the mean squared 

error, all other lines should fall within the confidence 

limits as successfully shown in Figure 9. 

 



 
Figure 9: Autocorrelation of error 

 

In the second network validation approach, a sensitivity 

analysis is conducted [25]. The network predicted values 

for the temperature are compared with the actual values 

recorded on board the vessel as seen in Table 4 in order to 

validate the network prediction accuracy. 

 

Prediction 
Recorded 

Onboard 

ANN 

Prediction 
Error 

hours °C °C  

+1 263.00 261.66 0.51% 

+2 260.00 261.45 0.56% 

+3 262.00 261.29 0.27% 

+4 262.00 261.14 0.33% 

+5 263.00 261.00 0.76% 

Table 4: ANN prediction results versus actual results 

 

As seen from Table 4, the error difference between the 

values indicate that the predicted values are extremely 

close to the actual monitored temperature values recorded 

on board the vessel, thus verifying the performance and 

accuracy of the trained network. 

 

6. CONCLUSIONS 

 

Marine automation, electrical and propulsion systems, 

sensors, robotics, advanced materials, big data analytics, 

are a few of the categories that can describe the concept 

behind smart ships. The question of how much data, which 

data, and how often this should be collected and how has 

also risen; as although companies adopt condition based 

maintenance schemes, there seems to be an issue in 

processing, analysing and utilising the recorded 

operational data. Intelligent ships will enable owners to 

make more rapid operating decisions, by analysing real 

time data, providing real-time information regarding the 

condition of on board equipment. Thus, this will lead to 

the evolution of maintenance from fixed intervals, towards 

tailored predictive maintenance applications, which will 

optimise maintenance and operation planning and will 

also boost performance and safety. Therefore, it is clear 

that such developments have the potential of transforming 

the design, construction and operation of commercial 

ships. 

 

This paper proposed the combination of a Fault Tree 

model with ANN in order to create a generic model in 

terms of obtaining the most critical systems and 

components of a main engine through qualitative analysis 

using minimal cut sets. A minimal cut set is the smallest 

set of basic events which result in the occurrence of the 

top event. The set is minimal in the sense that if any of the 

events do not occur, then the top event will not occur by 

this combination of basic events. Physical parameters of 

the most critical systems and components identified from 

the fault tree are used as input in an artificial neural 

network for time series analysis and prediction. 

 

The data used for the network represents cylinder exhaust 

gas temperatures while the vessel was in transient 

operation. Since no faulty data or failures occurred during 

the on board measurement, the obtained data does not 

cover the whole operational range of the system. The case 

study provided accurate results for predicting upcoming 

temperature measurements based on previous monitored 

values. The data monitored represents continuous per hour 

temperature values. The network predicted values for the 

temperatures are then compared with the actual values 

recorded on board the vessel which indicated that the 

network is capable for time series analysis and has good 

predictive capabilities. 

 

An important issue in ANN model building is how large 

the training and/or test sample sizes should be. In the ANN 

literature, large sample size for training is often suggested 

for sufficient learning and to ease the overfitting effect in 

training a neural network. However, Kang [26] found that 

neural network models do not necessarily require large 

data sets to perform well, as also demonstrated in this 

paper, in which the Bayesian regularization algorithm 

provided sufficient generalization performance 

capabilities for a small data set. However, the question of 

how much data is sufficient still exists and ANN models 

are still limited in that they are based on a little knowledge 

of underlying law. 

 

In conclusion, the predictive results obtained can be 

utilised within a maintenance and condition monitoring 

framework in order to assess the performance of ship 

machinery equipment based on current and real time 

information and can be used for prognostic and diagnostic 

purposes and applications. Finally, it is possible to extend 

the neural network capabilities by investigating additional 

analysis in terms of also including temperature ranges 

with various engine loads and other parameters, which 

will increase the network generalisation and accuracy. 
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