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Abstract—Measurement uncertainty, in general terms, is an
expression of the quality of a measurement. It is typically quan-
tified by defining the location and spread of the distribution of a
hypothetical infinitely large number of measurements of the thing
being measured. The Guide to the Expression of Uncertainty
in Measurement (GUM) classifies uncertainties according to
whether they are evaluated by statistical means or not. The GUM
also mentions that an incomplete definition of the measurand
can give rise to large uncertainty in the result. For some of
the quantities measured in the Smart Grid, it may be that this
“definitional uncertainty” could be a major source of problems.
Influence quantities may have a bearing on the result of a
measurement without being the subject of the measurement. For
example, signal harmonics, noise and temperature effects, while
not desired as part of a measurement, exist in power system
signals being measured, and they have (sometimes significant)
effects on the measurement process.

Index Terms—measurement, smart grid, uncertainty.

I. INTRODUCTION

Metrologists are well aware of measurement uncertainty,

and methods of dealing with it and expressing it are described

in such documents as the ‘Guide to the expression of uncer-

tainty in measurement’ (GUM)[1]. The GUM deals compre-

hensively with traditional sorts of measurement uncertainty –

those related to factors such as uncertainty of the reference

artifact(s) used in a measurement, drift, temperature sensitiv-

ity, nonlinearity, and noise. Metrologists are experienced in

dealing with these forms of uncertainty.

However, in real world applications such as the Smart Grid,

additional forms of uncertainty arise. This paper addresses two

such forms: (1) definitional uncertainty; and (2) uncertainty

due to influence quantities.

A. Definitional uncertainty

Definitional uncertainty arises from the question: “What

exactly is it we are trying to measure?” For instance, clause

1.2 of the GUM says: “This Guide is primarily concerned

with the expression of uncertainty in the measurement of a

well-defined physical quantity - the measurand - that can be

characterized by an essentially unique value.” (The italics are

ours.) In the Smart Grid, what makes measurements useful is

that the values are not fixed, but varying. To control, protect

and meter the grid we monitor dynamically varying quantities

such as current. There is little guidance respecting how to

define the relationship between time and the measurand(s), and

what result is expected (or desired) when a physical quantity

varies in time.

Further, some quantities (such as frequency or rms voltage)

are not directly physically realizable. Surely we want to

measure these things as well; but what should be the definition

of such things, particularly when they vary with time, and

measurands include allocated timestamps with microsecond

resolution? At the present time, different users apply different

interpretations of the measurand definitions; as the GUM states

in 3.3.2 a and b, incomplete definition or imperfect realization

of the measurand, which we call definitional uncertainty, is a

significant source of uncertainty.

B. Representationalism vs Operationalism

Measurement methods have a number of ways of dealing

with such problems. They are all concerned with using some

physical aspect of the the real world to find a conceptual value

that allows us to understand something about the real world.

One might imagine these methods spread along a continuum.

At one end of the continuum are the representationalist

methods. The quantity to be measured is represented by an

equation. It is surely this kind of measurement that Kelvin

was thinking of when he famously wrote

. . . when you can measure what you are speaking about,

and express it in numbers, you know something about

it; but when you cannot measure it, when you cannot

express it in numbers, your knowledge is of a meager and

unsatisfactory kind: it may be the beginning of knowledge,

but you have scarcely, in your thoughts advanced to the

stage of science. . . [2]

At the other end of the continuum of measurements are the

operationalist methods in which the result depends not on the

definition or the mathematics applied to the information avail-

able, but on the method used. Operationalism is exemplified



by the Rockwell hardness tester, which makes a dent in a test

object, and by the measurement of intelligence, something that

can still be measured even without a firm definition.

An obvious problem with operationalist methods, as far as

power engineering is concerned, is that it is not generally clear

exactly what is being measured. Most electrical engineers have

a natural bias toward representationalism. But in reality, few

measurements can be regarded as “pure” in terms of being at

one the end of the continuum. And we should bear in mind

that the application of filters to signals moves the process

of measurement toward the operationalist end. In fact, the

addition of filtering to a signal, by making it less obvious

exactly what is being measured, may increase definitional

uncertainty, because of the potential mismatch between what

is actually contributing to the result of a measurement and

what is supposed by the observer.

C. Influence quantity uncertainties

In the Smart Grid, we must make most of our measurements

in the presence of interfering or influence quantities, which we

might refer to as pollution. These are things (e.g., harmonics,

interharmonics, noise, phase jumps, and phase imbalance)

which are almost always present in the real grid at some level,

often at the same time, and which are themselves time varying.

These things are not part of the signal that we normally ex-

pect to be measuring, and they often complicate extracting the

wanted “essentially unique value.” Essentially, the pollution

creates an added definitional uncertainty: since these quantities

are not included in the definition, they add to the definitional

uncertainty.

Even if we do include these quantities in the definition,

and require them not to be included in the measurement,

practical implementation issues limit the extent to which they

can be excluded. Filters, for instance, can only approximate a

’brick wall’ transfer function; realizable filters always include

a transition band, in which undesired pollution is attenuated,

but not completely removed.

D. Beyond the GUM

In making our measurements, we are going beyond guidance

provided in the GUM, which assumes that definitional uncer-

tainty is negligible compared to other sources of uncertainty.

The GUM does not itself use the term “definitional uncer-

tainty,” but the point is made in the Introduction of the VIM,

the International Vocabulary of Measurement, which observes

(page ix) that “In the GUM, the definitional uncertainty is con-

sidered to be negligible with respect to the other components

of measurement uncertainty.”[3]

In this paper, we have given much of our attention to the

problem of frequency measurement. There are two reasons:

first, several of us have already done significant work in this

area so we are familiar with it; and second, because the

frequency measurement is one where we have found users

very likely to notice the effects of small, unexpected errors.

II. DEFINITIONAL UNCERTAINTY

The real quantity to be measured is described by a definition

that some call the measurand (though that word is also used

for the realized quantity by some metrologists). The result

of the measurement is (ideally) a value of the measurand, a

model of the realized quantity. While we acknowledge that

the realized quantity might be affected by influence quantities

such as signal distortion, we sometimes overlook the fact that

the definition itself might not be perfect.

GUM offers the view that a quantity cannot be completely

described without an infinite amount of information. An

incomplete definition (and GUM implies that all practical

definitions must be incomplete) thus implies an associated

uncertainty.

For example, consider a measurement of single-phase AC

frequency, while frequency varies with time in an arbitrary

manner. To begin with, we observe that while the word fre-

quency is linguistically associated with some sort of repetitive

action or signal, mathematically it applies to something that is

constant over all time: a sinusoid, for example. The domain of

the sine function is between plus and minus one in amplitude

and plus and minus infinity in time. Therefore, we should

be cautious about applying the conventional interpretations to

both our words and our work. A representationalist approach

to the definition we call the measurand would be

• a mathematical equation involving a non-constant “fre-

quency” which applies over some particular time.

An operationalist approach to the problem would involve

• a definition of window/filter lengths/shapes and/or assess-

ment methods

In the representationalist method, frequency is simply the

coefficient of a term in the equation, whereas the operationalist

method derives its result from a more complicated method.

We expect that, for a given input signal, the two schemes

will produce the same result. Indeed, a method of confirming

proper operation is required in either case. Thus, some sort of

definition of what is meant by the word “frequency” must be

found. It is far from simple.

To illustrate the problem, one has only to compare the

definitions of frequency within, for example, IEC 61000-4-

30[4] and IEEE Std C37.118.1[5], which are totally different.

Attempts to define the meaning of a single measurand “fre-

quency,” within a three-phase system that is potentially faulted,

unbalanced, or connected in negative sequence, lead to even

more ambiguity, conflict and confusion, given the present state

of the art.

Similar problems present for other measurands. For in-

stance, if we are to estimate an rms voltage or current for

a time-varying signal, should that estimate include energy

from harmonics, interharmonics and/or low-frequency tran-

sients arising in instrument transformers? Note also that the

measurement of an rms value requires either the specification

of an averaging interval and window-shaping method, or

knowledge of the period (that is, the time derived from a

knowledge of the frequency) over which the measurement is



to be made. There is no right and wrong in this: while the

GUM deprecates the use of the term “true value,” it is shown

in [6] that the idea of there existing a true value of a measured

quantity does not apply to this kind of measurement.

Without a clearly stated and well-understood definition (the

measurand) of the object of our measurement process (the

realized quantity), we cannot communicate the meaning of

the result of the measurement process to the user. A purpose

of this paper is to stimulate discussion of the topic of the

proper definitions for the measurement of frequency, and of

the measurands used in the Smart Grid in general.

The proper refinement of the definitions holds out the pos-

sibility that the measurement results will become more useful

for the intended applications. We are not attempting to provide

all the answers in this paper; rather, we are only beginning to

scratch the surface. Bearing in mind the GUM’s pessimistic

warning that a perfect measurand requires an infinite amount

of information, we hope to move the community toward the

goal of a better definition or definitions, while keeping them

as concise as the requirements allow.

III. INFLUENCE QUANTITY UNCERTAINTY

Suppose for our earlier frequency-estimation example that

there may be interharmonics present. Presumably we wish to

know the value of the frequency of the ≈50 Hz fundamental of

the power signal. One common method of measurement, zero

crossings, is quite accurate for an unimpaired signal, but the

presence of non-harmonically-related signal content degrades

accuracy badly [7].

Other estimation methods have varying sensitivity to such

influence quantities. For instance, a Fourier transform ap-

proach can separate the signals into different ‘bins,’ and the

phase of the desired signal can be used to calculate frequency

as the rate of change of phase angle between two successive

transforms. With suitable windowing/filtering, it is possible to

provide a significant amount of reduction of the interfering

interharmonics. But short windows of one or two cycles

provide only limited reduction of nearby interharmonics.

All practical measurement methods necessarily involve a

time window of non-zero duration. “Instantaneous” measure-

ments imply reducing the window length to zero or near-zero,

and for the case of frequency estimation, such methods are

the subject of much discussion [8][9][10].

Frequency is a term associated with repetitive action, and if

the duration of the signal is restricted to less than one cycle,

the manner of repetition must be assumed by the analyst.

In a Fourier analysis, for example, the mathematics actually

are based on an infinitely-repeating signal, and for a short

stretch of signal, corrections must usually be made for what

is called “spectral leakage,” an error that occurs when the

window duration is not an exact multiple of the signal period.

This problem is not new; it was first described in 1848 by

Wilbraham [11].

A review paper [12][13] points out that if the spectrum of

an amplitude change and a frequency change overlap, their

interpretation is problematical. Cohen [14] reviews 213 studies

of the effect of changing frequency and time-limited windows,

and observes that there have been hundreds of plausible

methods of representing the signal, none of which seem to

be quite right.

Excessive reduction of window length has severe conse-

quences for influence quantity uncertainty. AC measurements

of less than one cycle duration are extremely vulnerable to

many influence quantities, including harmonics. For windows

of at least one cycle length, harmonic and unbalance influences

can be dealt with relatively well. However, handling more

problematic influences like noise and interharmonics usually

requires longer windows.

Given that the window may therefore last several (perhaps

tens of) cycles of the quantity of interest, it becomes increas-

ingly likely that the signal itself may contain an influence

quantity as gross as an AC phase or frequency step. The step

can occur anywhere in the window, from the very start to the

very end. While we can create both a mathematical equation

and a physically-realized signal that embody a step in phase or

frequency, we are not yet aware of any ways to practically and

reliably identify and separate such gross influence quantities

from the underlying measurand, in real time. When the step

in influence quantity occurs at the very end of the window,

i.e. the most recent samples, the practical challenge is largest.

The measurement system can have no knowledge of what is

coming next. How do we reflect these problems in definitions,

requirements and standards?

The phase-step phenomenon, in the context of frequency

measurement, is also an excellent example of the definitional

uncertainty problem. A phase step may be considered to be

a part of the frequency measurand, or it may be considered

to be an influence quantity, depending on your point of view,

the eventual application, and the signal model being employed

[15]).

IV. FURTHER EXAMPLES

A. Smart Grid modal analysis

Consider, for example, system stability analysis. One of the

tools often used for this is Fourier analysis of a series of

frequency measurements. This gives us a plot such as Fig. 1,

in which periodic frequency excursions due to system resonant

modes can be seen as peaks in a mode (sideband) frequency

vs. time graph.

These graphs are often shown in ‘waterfall’ form, allowing

the operator to visualize the variation in magnitude of these

peaks with time. Unstable modes, i.e. underdamped modes,

grow in magnitude over time, and left unchecked can cause

serious problems up to and including cascading failure of the

grid.

Note, however, the magnitude of these peaks. They often

represent a variation in the system frequency – a frequency

modulation – of only a few milliHertz magnitude. Indeed the

‘peaks’ in Fig. 1 at ≈8 Hz are less than that, around 0.3 mHz in



magnitude. Communications theory tells us that this represents

a corresponding phase modulation as shown by:

∆Φ = ∆F/Fm

where Fm is the modulation rate (sideband frequency).

Fig. 1: Sideband magnitude vs. time and frequency

The phase modulation is thus also often only a few milli-

radians, and can be less; in this case it is ≈0.04 mrad. From

this we can see the power of this tool: very small deviations

in phase angle caused by system modes can easily be seen.

But, the requirements in the standards for PMU performance

are larger than the effects we would like to examine. One

percent TVE corresponds to 10 milliradians of phase error –

which can be far greater than the phase deviation caused by

the system mode. Even the frequency requirements are often

larger than the signal to be visualized: 5 mHz in steady state,

and larger errors are allowed in the presence of harmonics and

out-of-band interfering signals [5][16].

Clearly in this case, our existing definition of the measurand

(in [5] and [16]) does not take into account the real needs of

the measurement. Or perhaps more precisely, it might; but it

is incomplete. An error of 5 mHz rms, spread across the full

measurement band as noise, might allow our measurement to

be useful, whereas a single interfering signal would masquer-

ade as a system mode. We must ensure that our definitions of

the measurand consider the various impairments, both internal

to the PMU and in the Smart Grid, that affect our measurement

and its applicability.

B. Harmonics vs. broadband noise

Now consider Fig. 2, which shows a graph of signal

frequency vs. amplitude vs. time, in this case the first 40

harmonics of the power system including the fundamental.

This is an excellent example of the undesirable effects of

pollution on the signal, in this case broadband noise caused

by an arc furnace. In the first (lower) part of the plot, the

harmonics can be seen, poking above the background noise

floor. Then, when the arc furnace starts, the noise floor jumps

up and obscures the formerly-visible harmonics.

Figures 3(a), 3(b), and 3(c) show ‘slices’ of the 3D plot

of Fig. 2. The progression from clearly visible harmonics to

harmonics almost completely obscured by noise is clear.

What should be done with this? A simple approach (used in

most power quality meters) takes the energy in the ‘harmonic’

Fig. 2: Harmonic magnitude vs. time, with added noise

bins, and reports that energy as harmonics. Clearly from the

more informative view shown by the progression from Fig.

3(a) through 3(c), the harmonics (if they indeed are still there)

are no longer readily discernible above the noise floor.

Without an appropriate definition of what to do in a case like

this, we might report misleading information to the operator. In

this case, the damage is likely to be limited since harmonics

(and their accurate measurement) are primarily a customer-

service issue. But the issue is broader than simply saying

“Only report real harmonics.” Some method must be agreed

upon regarding how to make the determination of what is real,

and what is not.

(a) 200 s (b) 500 s

(c) 900 s

Fig. 3: Harmonic magnitude at 3 different times, with noise



C. Nuanced data analysis methods

Our eyes and visual cortex are very powerful tools for

data analysis, which is why we use graphs like those shown

in the figures above. But when we try to provide a formal

definition addressing these issues, we run into problems. Our

eyes can put the information in the multiple cascaded plots

shown in these figures into a meaningful context, and from

that context, we can draw much more nuanced information

compared to that which we can infer from a single plot. Even

for a single harmonics + noise plot though, the context (noise

floor) surrounding the information (harmonic level) provides

useful information respecting whether our ‘measurement’ data

are indeed what they appear.

An example of an analytic tool intended to assist with

problems like this is the ‘peak finder’ provided in modern

spectrum analyzers, designed to identify peaks surrounded by

noise. Indeed, there exist numerous analytical methods to find

peaks in data sequences, since this is a problem common to

many fields. These tools share the need to set some sort of

threshold that enables a ‘peak’ to be declared. Might this apply

to our work and if so, how?

V. CONCLUSIONS AND FUTURE WORK

In real physical systems, where we are required to estimate

the values of quantities that vary with time, we face a serious

problem: we have not, so far, found an agreed-to definition of

what we are measuring. Lacking guidance from the GUM or

other sources, we must formulate the measurement problem

de novo.

We must first agree about what the important characteristics

of the quantity are. To do this, we need to fully understand

the actual applications of the measurements. Then perhaps we

can attempt to formally and unambiguously define the relevant

measurands.

We must also consider how to relate the measurands to the

ever-present influence quantities. If we add filtering (as we

are so far doing), we must understand the resulting effect on

the measurement process, as we migrate in an operationalist

direction.

This procedure may result in several different definitions

for quantities which, until now, have not been well defined.

For example, there could be several different formal definitions

of frequency, specific to: single-phase/three-phase, required

response time (window length), modulation passband width,

and the desire to either treat discrete phase-steps as part of

the measurand, or as an influence quantity.

We need a succinct and understandable definition of each

measurand, that expresses all of these quantities: the basic

measurement, the important characteristics of the quantity, and

the pollution present. Without this, we will not be able to agree

on the overall uncertainty of our results, nor establish their

appropriateness for the intended use.
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