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ABSTRACT 

The fluorescent properties of the reduced coenzyme NADH and its phosphorylated derivative (NADPH) have been 

explored in order to assess its potential as an intrinsic probe for cancer surgery. NADPH production is increased in 

cancer cells to quench reactive oxygen species and meet higher demands for biosynthesis, and has attractive fluorescent 

properties such as emission towards the visible part of the spectrum and a relatively long fluorescence lifetime upon 

binding to enzymes (~ 1 – 6.5 ns) that help discriminate against other endogenous species. Different environmental 

effects on NAD(P)H fluorescence are reported here, including an increase in lifetime upon oxygen removal, an ability to 

retain its fluorescent properties in a silica phantom and its fluorescence lifetime also being distinguishable in a cell 

environment. In addition to this, the development of a miniaturised liquid light guide filter-based time-correlated single 

photon counting fluorescence lifetime system is reported as a step towards time-resolved visual imaging in cancer 

surgery. This system has been demonstrated as being capable of measuring NAD(P)H fluorescence lifetimes in both 

simple solvent and cell environments.  

Keywords: fluorescence lifetime, NADPH, fluorescence spectroscopy, tumour margin estimation, liquid light guide, 

intrinsic probe  

 

1. INTRODUCTION 

Cancer is one of the leading causes of death worldwide, with approximately 14 million new cases being diagnosed in 

2012 alone
1
. This number of new cases is expected to rise by approximately 70% over the next 20 years

1
, and so 

improving treatment and diagnosis options for cancer remains of high importance. One of the primary treatment options 

for tumour removal is surgery, where in the UK in 2014 46% of patients diagnosed with cancer underwent surgery to 

remove the tumour as part of the treatment plan, compared to 27% undergoing radiation therapy and 28% having 

chemotherapy
2
. During cancer surgery, surgeons most commonly rely on visual inspection and palpation in order to 

determine how much tissue surrounding the cancerous cells should be removed. While these methods can be used for 

determining bulk tumour, they are not sensitive enough to identify cancer at the cellular level
3
, which can lead to 

cancerous cells remaining in the body and further surgery for the patient. There are methods available for determining 

surgical margins of certain cancers intraoperatively, examples of which include intraoperative MRI (iMRI) or having a 

pathologist present to assess the tissue, however such methods have their own drawbacks such as being time consuming, 

requiring specialist personnel, or requiring expensive surgical suites in the case of iMRI
4
. Surgeons and medical experts 

have highlighted the limited capabilities in real-time margin estimation at the moment, where it is clear a device that can 

significantly reduce repeat surgery rate, take under 20 minutes to display results, have a sensing depth of 1 – 2 mm and 

not require specialist personnel is needed in cancer surgery
5
. 
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Optical imaging techniques have been established as powerful methods in intraoperative cancer surgery due to the 

relatively low cost of devices, intuitive operation and ease of image acquisition
4
, where fluorescence-based optical 

imaging techniques such as fluorescence-guided surgery have obtained a growing amount of interest in particular. Near-

infrared methods are most often used, where for example the fluorescent probe indocyanine green (ICG) remains the 

most commonly studied and utilised fluorophore for applications in fluorescence-guided surgery. ICG has demonstrated 

potential in various oncological applications through combination with endoscopic-based techniques such as 

laparoscopy
6
, as well as demonstrating its potential use in breast cancer margin estimation

7, 8
. Despite success with ICG, 

near-infrared imaging techniques have not readily entered into clinical use due to the lack of appropriate contrast agents 

that have been FDA approved with current imaging technologies
9
. The main problems with developing a contrast agent 

include the significant amount of time and money required to design a probe and bring it to market for human use. 

However endogenous fluorophores are a potential alternative to extrinsic probes, as they offer the major advantage of no 

external agent being required in order to monitor its fluorescent properties, and therefore have significantly less 

regulatory requirements that need to be met for their use in clinical applications
4
.  

The reduced form of the coenzyme nicotinamide adenine dinucleotide (NADH) and its phosphorylated derivative 

(NADPH) are the endogenous fluorophores explored in this work for their potential use as a probe in tumour margin 

estimation, where their structures are shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Chemical structures of a) NADH and b) NADPH, where the redox-active group responsible for fluorescence is 

shown in red, and the additional phosphate group of NADPH in blue. 

NADH and NADPH (referred to together as NAD(P)H) have very similar structures but differing roles in the body. 

NADH is an electron carrier produced in cell respiration, where it carries electrons to the electron transport chain to be 

used in oxidative phosphorylation in cell respiration for the production of ATP
10

. NADPH is instead produced in the 

oxidative phase of the pentose phosphate pathway, where it is used in macromolecular biosynthesis and for the 

quenching of reactive oxygen species
11

. It has been shown that the pentose phosphate pathway is upregulated in cancer 

cells for an increase in NADPH production in particular, in order to meet the increased demand for biosynthesis in these 

cells as well as to quench the elevated levels of reactive oxygen species also present
12

. Obtaining a better understanding 

of the redox state of cells using NAD(P)H fluorescence has also been of interest in recent years
13-15

 due to the 

involvement of both of these coenzymes in several reaction pathways of cancer cells. 

a) b) 



While NADH and NADPH have different roles in the body, both fluoresce in their reduced states and have identical 

fluorescent properties due to their similar structures. It is the nicotinamide ring responsible for fluorescence in NAD(P)H 

(highlighted in red in Figure 1), which remains unaffected by the additional phosphate group in NADPH as this is at a 

remote site of the molecule
16

. As well as being an intrinsic fluorophore, NAD(P)H also offers the advantage of having 

fluorescence emission towards the visible part of the spectrum (そem (max.) ~ 460 nm) compared to other intrinsic 

fluorophores which often fluoresce at lower wavelengths. A combination of these advantageous properties alongside the 

fluorescence lifetime properties of NAD(P)H, which includes a 2-exponential decay with increased lifetime components 

upon binding to enzymes (increasing from ~ 0.4 – 0.8 to ~1 – 6.5 ns)
17

, should help distinguish it from other fluorescing 

components within cells.  

The work presented here focuses on the fluorescence lifetime properties of NAD(P)H in particular. Many procedures and 

instruments used in fluorescence-guided surgery use fluorescence intensity as a means of locating tissue of interest, 

however time-resolved techniques such as fluorescence lifetime measurements can provide additional information about 

a system and offer many advantages over fluorescence intensity. These advantages include the ability to discriminate 

against scattered light and other endogenous fluorophores, as well as being independent from emission wavelength and 

photobleaching, both of which can often affect fluorescence intensity measurements
18

. Therefore to address the needs of 

both an improved probe and improved instrument for margin estimation, this work ties together studies on the 

fluorescence lifetime properties of NADPH that make it a potentially suitable probe as well as the demonstration of 

fluorescence lifetime measurements using a liquid light guide-based system, for their potential use in real-time tumour 

margin estimation. 

 

2. MATERIALS & METHODS 

2.1 Sample preparation 

To measure the fluorescence lifetime of NADH before and after oxygen removal, stock solutions of NADH were 

prepared at concentrations of 80 たM by dissolving 1.70 mg of powdered reduced disodium salt hydrate く-nicotinamide 

adenine dinucleotide (obtained from Sigma Aldrich) in 30 mL of the solvents water, Trizma, PBS and ethylene glycol. 

Final samples were prepared at 40 たM concentrations by adding 1.5 mL of each stock solution to separate cuvettes with a 
further 1.5 mL of solvent added to each cuvette. Cuvettes were then sealed with a rubber stopper and further secured 

with parafilm. To remove the oxygen, argon gas was bubbled through the solutions for ~ 5 minutes per sample using BD 

Microlance 3 needles, where the samples were resealed with more parafilm for fluorescence lifetime measurements to be 

conducted immediately.  

For measurements of NADH in the silica hydrogel environment, a stock solution of 4.25 mg NADH in 30 mL water to 

give a 200 たM concentration was first prepared. The hydrogel itself was then prepared from methods derived from 

previous works
19

, where 10 mL of sodium silicate (4% v/v) was mixed for ~ 5 minutes with 1.5 mL of sulphuric acid 

(2% v/v). 0.5 mL of the NADH stock solution was then added to a cuvette with 2 mL of hydrogel solution to produce a 

40 たM sample of NADH in hydrogel. The sample was sealed with parafilm and mixed by hand for ~ 1 minute, where 
gelation occurred within 15 minutes of mixing. Silica hydrogels are more often manufactured on an industrial scale, 

where monosilicic acid condensates to form siloxane monomeric structures, which aggregate to form nanoparticles that 

grow in size. The network of particles produced will eventually span the vessel and gel at a time tg known as the gelation 

time
20

. The polymerisation of hydrogels occurs through hydrolysis and condensation reactions given by: 軽欠態頚┻ 捲鯨件頚態┻ 検茎態頚 髪 茎態鯨頚替 蝦 鯨件岫頚茎岻替 髪 軽欠態鯨頚替 (Hydrolysis)  (1) 鯨件岫頚茎岻替 髪 鯨件岫頚茎岻替 蝦 に鯨件頚態 髪 ね茎態頚   (Condensation)  (2) 



Silica alcogels were also used in measurements of NADH in a sol-gel environment. Silica alcogels are of a higher purity 

and have better defined structures compared to hydrogels, where tetraethylorthosilicate (TEOS) is used in the preparation 

instead leading to a hydrolysis reaction of:  鯨件岫頚系態茎泰岻替 髪 ね茎態頚 蝦 鯨件岫頚茎岻替 髪 ね系態茎泰頚茎  (Hydrolysis)  (3) 

which then leads to the condensation reactions shown in equation 2. For NADH silica alcogel samples, stock solutions of 

80 たM NADH in PBS were first prepared as described previously. The alcogel itself was prepared by mixing 8 mL of 

TEOS with 3 mL of water and 0.2 mL of 0.01 M hydrochloric acid for 2 hours
21

. Once mixed, 1.5 mL of alcogel was 

added to 1.5 mL of NADH in PBS in a cuvette, which was sealed and then mixed for a further minute, where tg ~ 5 

minutes. 

The fluorescent dye Rhodamine 6G (Sigma Aldrich) and the xanthene based probe JA120 (supplied through 

collaboration with the University of Siegen) used in measurements on the liquid light guide-based system were prepared 

by dissolving the powder form of each probe in methanol (Rhodamine 6G) and water (JA120). These dyes were chosen 

for measurements on the light guide system due to their short lifetimes (~ 4 ns for Rhodamine 6G
22

, ~ 1.8 ns for 

JA120
23

), which are close to that of NAD(P)H in both bound and unbound form. The structures of these fluorophores are 

shown in Figure 2. 

 

 

 

 

 

 

Figure 2. Chemical structures of a) Rhodamine 6G and b) xanthene type probe JA120.  

The volume of stock solution of each dye that was required to give an absorbance of ~ 0.1 in 3 mL of solvent was 

determined, where this absorbance is strong enough to generate a good fluorescence signal but will not allow for 

problems with dye-dye interactions
24

. The determined volume was then added to cuvettes with 3 mL of water and sealed 

to perform lifetime measurements.  

For cell measurements, PNT2 cells (normal prostate epithelium, human) were first cultured in Roswell Park Memorial 

Institute medium (RPMI) under normal conditions, where they were incubated at 37
o
C with 5% CO2. Cells were placed 

in a sterile tube, where the volume of cells required to give a concentration of 1 x 10
6
 cells/mL in 2 mL of solvent was 

calculated. This determined volume was then added to 2 mL of PBS in a cuvette and then sealed with parafilm ready to 

perform fluorescence lifetime measurements.  

2.2 Fluorescence lifetime measurements 

Measurements of NADH in the oxygen purged and silica sol-gel environments were made using time correlated single 

photon counting (TCSPC) on a Horiba Scientific Deltaflex system as shown in Figure 3a. The instrument incorporates a 

monochromator on the emission arm as a means of wavelength selection, where fluorescence photons are detected using 

a TBX photon detection module. The polariser on the excitation arm is set to a vertical position, where the polariser on 

the emission arm is also set to a vertical position to measure the instrument response function (IRF), and is then switched 

to the magic angle (54.7
o
) for fluorescence lifetime measurements. Samples were measured until 10,000 counts in the 

peak of the fluorescence lifetime decay were collected.  

a) b) 



 

Figure 3. Schematic for TCSPC setup of a) Horiba Scientific Deltaflex and b) modified Horiba TemPro system 

incorporating liquid light guides as a means of excitation and collection of fluorescence.  

The liquid light guide-based fluorescence lifetime system was developed from a Horiba TemPro system, where the 

original arms of the instrument have been removed and instead have mounts for the liquid light guides to go in and out 

the sample chamber as shown in Figure 3b. The liquid light guides are used as a means of sample excitation and 

collection of the fluorescence signal. Liquid light guides have advantages over conventional silica fibre bundles which 

are more often used in surgical applications, such as having an ability to transmit more light due to the large cross 

section, an increased flexibility and a higher numerical aperture for a larger acceptance angle of light
25

. Previous work in 

the Photophysics group has demonstrated the capabilities of liquid light guides in miniaturised fluorescence lifetime 

systems, where the use of 50 cm light guides of a 0.3 cm diameter have been used in a multiplexed fluorometer
26, 27

, 

where here we have incorporated 1 m light guides with a 0.3 cm diameter for use in single lifetime measurements. The 

couplings of the light guides to the detector and excitation source have space to hold neutral density and/or longpass 

filters as required, where these couplings were made as light tight as possible to minimise interference from background 

light. The fluorescence lifetime decays of NADH presented in this work were measured using a NanoLED excitation 

source of 339 nm on both systems, with emission wavelengths of 460 nm and 450 nm on the DeltaFlex and TemPro 

systems respectively. Rhodamine 6G samples were excited at 474 nm with an emission wavelength of 560 nm, and 

JA120 samples were excited at 638 nm with emission recorded at 685 nm. For cell measurements, the original setup of 

the Horiba TemPro system and the adapted liquid light guide system were used for comparison, where the original 

TemPro system is the same as the DeltaFlex system in Figure 3a, but instead uses longpass filters rather than a 

monochromator for emission wavelength selection. Data analysis for all measurements was performed using the Horiba 

Scientific DAS6 software package using non-linear least squares (NLLS) reconvolution analysis. 

 

3. RESULTS AND DISCUSSION 

3.1 Effect of oxygen quenching on NADH fluorescence 

The effect of oxygen on the fluorescence lifetime of NADH in various solvents has been investigated. Cancer cells are 

known to have depleted levels of oxygen
28

, so a difference in the fluorescence lifetime of NADH between the two 

environments with and without oxygen may provide a potential method for determining between cancerous and healthy 

cells. Four different solvents – water, PBS, Trizma and ethylene glycol – were used. No difference in lifetime was 

observed for NADH in Trizma and PBS; however changes in the lifetime in water and ethylene glycol are shown in 

Figure 4 and Table 1. 



 

 

 

 

 

 

 

 

 

 

Figure 4. Fluorescence lifetime decays of NADH in water and ethylene glycol (EG) before and after oxygen is removed 

from the sample. 

Table 1. Fluorescence lifetime components obtained from the fluorescence lifetime decays shown in Figure 4 with 

corresponding contribution of each component to the fluorescence decay.  

NADH Sample Ĳ1 (ns) B1 (%) Ĳ2 (ns) B2 (%) Ȥ2
 

H2O 0.26 ± 0.03 51.06 0.63 ± 0.01 48.94 1.10 

H2O w/O2 removed 0.35 ± 0.02 70.55 0.86 ± 0.02 29.45 1.11 

Ethylene glycol 0.77 ± 0.01 86.14 1.72 ± 0.07 13.86 1.20 

Ethylene glycol w/O2 removed 0.77 ± 0.01 88.41 1.94 ± 0.08 11.59 1.10 

 

The effect of oxygen can be seen looking at the fluorescence lifetime decays in Figure 4 alone, where there is a clear 

increase in each decay when oxygen has been removed from the samples. Further to this, Table 1 shows that there is an 

increase in both k1 and k2 when NADH is in water and an increase in k2 for NADH in ethylene glycol. There is also a 

significant increase in the contribution of k1 when NADH is in water as well. Changes in lifetime would be expected due 

to the efficiency of oxygen as a quencher, where the differing viscosities of water and ethylene glycol is likely to be a 

contributing factor to the bigger change being observed in water. Using the Stokes-Einstein equation for diffusing 

molecules in a viscous fluid:  

        経 噺 倦劇は講航堅      (4) 

where k is the Boltzmann constant, T is temperature, ȝ is the solvent viscosity and r is the radius of the diffusing particle, 

we can see that an increased viscosity such as that of ethylene glycol would result in a lower rate of diffusion for the 

molecules in this solvent. This means that the efficiency of oxygen as a quencher is reduced in the ethylene glycol 

environment. The increase in fluorescence lifetime of NADH in water is important to note here. As water is the most 

abundant molecule in cells
29

, this change in lifetime could indicate a potential method of determining the environment 

that NADPH is in, where a longer lifetime could indicate an oxygen deprived i.e. tumour environment. 

3.2 NADH fluorescence in a silica sol-gel environment 

Silica sol-gels are extremely effective scatterers, where here both hydrogels and alcogels have been used as rough human 

tissue mimics, as human tissue is also known to be highly scattering. Many different types of phantom are available in 
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solid and liquid form, where both can be adapted and tuned to match the absorption and scattering properties of the 

different types of tissue in the body. Phantoms have been developed by various groups for their specific use with 

different techniques such as photodynamic therapy
30

, fluorescence spectroscopy
31

 and ultrasound
32

, where here we have 

chosen to use silica sol-gels for their ease of production and highly scattering properties. The fluorescence decays 

obtained for NADH in both the silica hydrogel and alcogel are shown in Figure 5, where the lifetime parameters obtained 

for each measurement are shown in Table 2. 

 

 

 

 

 

 

 

 

 

Figure 5. Fluorescence lifetime decays of NADH in a) a silica hydrogel and b) silica alcogel environment, where the decay 

of NADH in water and the decay of the silica hydrogel and alcogel alone obtained in the same time frame are shown for 

comparison. 

Table 2. Fluorescence lifetime components obtained from the fluorescence lifetime decays shown in Figure 5 with 

corresponding contribution of each component to the fluorescence decay.   

NADH Sample Ĳ1 (ns) B1 (%) Ĳ2 (ns) B2 (%) Ĳ3 (ns) B3 (%) Ȥ2
 

NADH in silica hydrogel 0.61 ± 0.04 46.58 3.88 ± 1.13 1.22 0.26 ± 0.02 52.20 1.19 

Silica hydrogel only 1.31 ± 0.13 10.23 8.88 ± 0.55 8.33 0.11 ± 0.01 81.44 1.19 

NADH in silica alcogel 0.43 ± 0.03 65.71 0.94 ± 0.03 34.29 - - 1.17 

Silica alcogel only 1.08 ± 0.14 9.32 6.73 ± 0.41 7.48 0.09 ± 0.01 83.20 1.17 

NADH in water 0.35 ± 0.03 70.29 0.85 ± 0.03 29.71 - - 1.14 

 

Figure 5a shows that the fluorescence lifetime decay of the silica hydrogel is very close to the decay of NADH in water 

alone, where water is being used here as a simple solvent environment for comparison. A longer component is also 

observed towards the end of the decay which is a contribution from the hydrogel itself, which can be determined both by 

comparison with the fluorescence lifetime decay of the silica hydrogel alone as well as the components shown in Table 

2, where a third exponential component was required to describe the data. 

The fluorescence lifetime decay for NADH in the silica alcogel in Figure 5b again bears great similarity to the decay of 

NADH in water, where there is almost no contribution from the sol-gel itself in this case. The fluorescence decay of the 

silica alcogel itself has a smaller number of counts in the peak of decay compared to that of the hydrogel obtained in the 

same length of time, suggesting that there is less fluorescence emission from the alcogel at そem = 460 nm. This means it 

is less likely to interfere with the fluorescence decay of NADH, which can be seen from Table 2 as only two exponential 

components were required to describe the decay, both of which were close to what was observed for NADH in water 

alone. This smaller contribution from the alcogel would be expected due to their higher purity compared to hydrogels. 
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3.3 Fluorescence lifetime measurements on the liquid light guide system 

Once the liquid light guide system was configured, fluorescence lifetime measurements of the dyes Rhodamine 6G and 

JA120 were performed on the system and then compared with measurements of these dyes on the full fluorescence 

lifetime system that incorporates an emission monochromator. A comparison of the fluorescent lifetimes obtained for 

each of these samples on both systems is shown in Table 3, which shows that the parameters obtained are in good 

agreement with each other and that therefore the liquid light guide system operates as well as the monochromator 

system. 

Table 3. Fluorescence lifetimes obtained for Rhodamine 6G and JA120 on the monochromator system and the liquid light 

guide system.  

Sample Lifetime System Setup Ĳ1 (ns) Ȥ2
 

Rhodamine 6G 

Monochromator 4.06 ± 0.01 1.19 

Liquid light guide 4.01 ± 0.02 1.18 

JA120 

Monochromator 1.75 ± 0.01 1.09 

Liquid light guide 1.79 ± 0.01 1.13 

 

Fluorescent lifetime measurements of NADH in the simple solvent environments were also performed on the liquid light 

guide system, where the fluorescent lifetime decays of NADH in Trizma measured on both systems are shown in Figure 

6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Fluorescence lifetime decays of NADH in Trizma on the monochromator (mono.) and liquid light guide (LLG) 

systems. 

The fluorescent lifetime decays obtained on each system are very similar; however systematic effects that did not show 

up in the fluorescent dye measurements become much more prominent when working at such short timescales. Figure 6 

highlights a secondary peak that occurs ~ 10 ns after the initial peak in both the prompt and fluorescence lifetime 

measurement on the liquid light guide system. Late peaks after the instrumental pulse have previously been reported in 

linear focused photomultipliers
33, 34

, however after doubling the path length by coupling two liquid light guides together 

(2 m length in total), a third peak ~ 10 ns after the secondary peak was observed, demonstrating that it is instead a 

reflection occurring at the end of the liquid light guide. Despite this secondary peak occurring, there were no serious 
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problems in the analysis of the fluorescence lifetime decays of NADH, and so its appearance when measuring NAD(P)H 

fluorescence lifetimes in cells on this system where the fluorescence lifetime is increased will not be of concern.  

3.4 Fluorescence lifetime measurements of NAD(P)H in the cell environment 

Measurements of PNT2 cells were made on the Horiba TemPro in its original configuration as well as on the adapted 

liquid light guide configuration, where a comparison of the fluorescence lifetime decays as well as the corresponding 

lifetime components obtained for each decay are shown in Figure 7 and Table 4.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Fluorescence lifetime decays of PNT2 cells in suspension in PBS measured on both the original Horiba TemPro 

setup and the adapted liquid light guide (LLG) setup. 

Table 4. Fluorescence lifetime components and corresponding contributions of each parameter from the PNT2 fluorescence 

lifetime decays in Figure 7. 

System setup Ĳ1 (ns) B1 (%) Ĳ2 (ns) B2 (%) Ĳ3 (ns) B3 (%) Ȥ2
 

Liquid light guide 3.41 ± 0.25 43.40 12.0 ± 0.3 32.61 0.78 ± 0.03 23.99 1.08 

Original 3.73 ± 0.21 41.01 12.7 ± 0.2 33.13 0.64 ± 0.03 25.86 1.20 

 

Figure 7 shows that there is a significant amount of background noise in the measurement on the liquid light guide 

system compared to the original setup. The photon detection rate was much lower in the liquid light guide system 

measurement, which lead to a significantly larger acquisition time to reach 10,000 counts in the peak (890 s compared to 

52 s). The liquid light guide system setup is also not entirely light tight, and so the combination of this with the long 

acquisition time allows for a larger background noise in the measurement. Despite this background noise, Table 4 

indicates that the fluorescence lifetime components obtained from this measurement are in good agreement with the 

measurement of the PNT2 cells on the original system setup. Looking at these components in detail, it appears that k1 

could correspond to NAD(P)H fluorescence. Not only does this agree with the previous statement that when in cells and 

bound to enzymes the NAD(P)H lifetime increases to between 1 – 6.5 ns
17

, the three exponential fit also agrees with 

previous work on NAD(P)H fluorescence lifetime measurements in the cell environment
35. These results demonstrate 

the capability of the liquid light guide system in measuring NAD(P)H fluorescence in cells, where further 

work in utilising its fluorescence to distinguish between high and low levels of NADPH will be carried out. 
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4. CONCLUSION 

The results presented in this paper demonstrate the potential of NAD(P)H as a fluorescent probe for tumour margin 

estimation, where its fluorescence lifetime has proven to be dominant in the highly scattering sol-gel environment, as 

well as the effect of oxygen on the fluorescence lifetime being shown as a potential mechanism for indicating which 

environment NAD(P)H is in. In addition to this we have demonstrated the successful use of a liquid light guide-based 

fluorescence lifetime system for measurements of NADH in both a simple solvent and cell environment, where a 

combination of using NAD(P)H as a probe and the miniaturised lifetime system pave a path towards real-time margin 

estimation in cancer surgery. 
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