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ABSTRACT

One of the major problems in today’s economy is the phenomenon of tax evasion. The linear regression 
method is a solution to find a formula to investigate the effect of each variable in the final tax evasion 
rate. Since the tax evasion data in this study has a great degree of uncertainty and the relationship between 
variables is nonlinear, Bayesian method is used to address the uncertainty along with 6 nonlinear basis 
functions to tackle the nonlinearity problem. Furthermore, variational method is applied on Bayesian 
linear regression in tax evasion data to approximate the model evidence in Bayesian method. The dataset 
is collected from tax evasion in Malaysia in period from 1963 to 2013 with 8 input variables. Results 
from variational method are compared with Maximum Likelihood Estimation technique on Bayeisan 
linear regression and variational method provides more accurate prediction. This study suggests that, 
in order to reduce the tax evasion, Malaysian government should decrease direct tax and taxpayer 
income and increase indirect tax and government regulation variables by 5% in the small amount of 

changes (10%-30%) and reduce direct tax and 
income on taxpayer and increment indirect tax 
and government regulation variables by 90% in 
the large amount of changes (70%-90%) with 
respect to the current situation to reduce the final 
tax evasion rate.    

Keywords: Bayesian inference, Linear regression, 
Nonlinear problem, Tax evasion, Uncertainty, 
Variational approximation   



Mohamad Mobasher-Kashani, Masri Ayob, Azuraliza Abu Bakar, Razieh Tanabandeh, Kourosh Taheri and
Mohammad Hassan Tayarani Najaran

152 Pertanika J. Sci. & Technol. 25 (S): 151 - 162 (2017)

INTRODUCTION

Tax evasion is one of the most challenging issue facing governments. Failure to tackle all 
aspects of tax evasion in their respective countries can give rise to numerous social problems. 

Bayesian inference methods have various features where the major one is the uniform way 
they handle uncertainties in data through the modelling process (Jaakkola & Jordan, 2000). The 
procedure also provides a monolithic combination of prior knowledge and data observation 
to infer the posterior knowledge (Bernardo & Smith, 2009; Gelman, Carlin, Stern, & Rubin, 
2014). Byesian approaches in practice are intractable even for simple applications; Bayesian 
inference methods take two major approaches to handle this problem. They either sample from 
the exact solution, e.g. Markov Chain Monte Carlo (or MCMC) approaches, or approximate, 
e.g. variational approximation. Although MCMC approaches in general and the Gibbs sampler 
tech-nique in particular have gained a widespread popularity as tools for modelling complex 
systems, there are major disadvantages from practical end-user perspective.

• MCMC sampling methods can be computationally expensive, even for rather small-scale 
statistical problems (Barber, 2012). This is aggravated for large-scale datasets where 
supplementary hardware might be needed.

• Real-time data assimilation adds a further complication to MCMC methods. An intuitive 
way to deals with this problem is to restart and run the method when new sample or batch 
of samples arrives. An alternative solution is to adopt a sequential method, but this presents 
a further challenge to the inference procedure.

• Determining the length of “pre-convergence” (Hjort, Holmes, Müller, & Walker, 2010) 
and deciding when it is safe to stop the sampling (Winn & Bishop, 2005) pose further 
challenges to MCMC which cause great difficulties in implementing the method. Moreover, 
it is reasonable here to question whether samples are drawn correspond to the distribution 
of the Markov chain (Cowles & Carlin, 1996).

Attias (2000) suggests the variational Bayes (VB) approach which facilitates analytical 
calculations of the posterior distributions over a model. The proposed method uses the mean 
field approximation theory by adopting a factorized approximation to the true posterior 
distribution, although in contrast to the Laplace approximation these factorized posteriors 
are not limited to a Gaussian form. Jan Drugowitsch (2013) has applied automatic relevance 
determination (ARD) on linear and logistic regression for a randomly generated dataset. In 

 
Several researches have been done on the tax evasion problem in Malaysia. Tax evasion 
in  Malaysia  is  studied from different  aspects  (Choong &  Lai,  2008;  Jaffar,  Bakar,  & Tahir, 
2011; Kasipillai, Aripin, & Amran, 2003; Kasipillai, Baldry, & Prasada Rao, 2000; Miskam,
 Noor,  Omar,  &  Aziz,  2013;  Tabandeh  &  Tamadonnejad,  2015).  Although  Tabandeh  and 
Tamadonnejad (2015) suggest a regression model for tax evasion data in Malaysia, there is 
also the need  to consider uncertainty and nonlinearity in tax evasion data in Malaysia.
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this study, we follow the presentation of (J Drugowitsch, 2008; Jan Drugowitsch, 2013) for 
variational regression formula to solve the problem of tax evasion regression in Malaysia.

In the domain of economics, measuring  uncertainty is  a challenging issue; hence Bayesian 
methods have been applied on a variety of economical applications (Jackson, 1991; Palfrey & 
Srivastava, 1987; Punt & Hilborn, 1997; Sun & Shenoy, 2007; Tan & da Costa Werlang, 1988). 
However, uncertainty in the tax evasion prediction has not been addressed. This study deals 
with the uncertainty that exists in tax evasion dataset in Malaysia by using variational linear 
regression (VLR) approach with ARD technique. Furthermore, by examining the performance 
of 6 different basis functions, nonlinearity of Malaysia tax evasion dataset is studied. This paper 
is organized as follows. In section II variational linear regression technique is discussed and 
the basis functions and case study used in this research are introduced. Section III is dedicated 
to comparing  VLR with ARD on 6 basis functions and between VLR and MLE method on 
Malaysia dataset. The final section concludes the paper.

MATERIALS AND METHODS

Linear regression model is widely used in many practical applications and is employed to 
deduce the trend. The main idea behind the linear regression is to find a linear combination of 
input variables that fits the most to the output variable. In this sense, the following equation 
de-fines simple linear regression model,

                      (1)

where w is the weight of input variable, which is always linear; x is the input variable, which 
can be a nonlinear function (i.e. basis function) of the input variable; and D is the dimension 
of input variable x; finally, ε is the residual error between the true response and the predicted 
values and should be minimized by adopted model. The parameters of linear regression mould 
can be estimated by VB in an efficient way which the final method is called variational linear 
regression or VLR.

A system can be formalized by defining on certain parameters which is called system 
modelling. Suppose these parameters are defined by θ then the prime issue is to obtain the 
distribution that governs these parameters. A central task in the Bayesian applications is to 
calculate the posterior distribution in a way that we are able to infer extra information from 
it.  In this regard, uncertainty can be addressed using the shape of posterior distribution; the 
narrower the posterior distribution is around the mean, the more the method is certain about 
the final result. However, the posterior distribution proved to be intractable and the most 
computationally expensive part of the posterior distribution is the model evidence . The 
variational Bayes or VB method approximates posterior distribution by factorizing parameters, 

  and estimating distribution for each parameter. The variational approximation 
method attempts to evaluate the posterior distribution  by factorizing into  
Hence, the lower bound of model evidence is estimated by:

                 (2)
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The first part of our modelling is to indicate the prior form which consists of Gaussian 
distribution over weights and two Gamma distributions for calculating the precision.

                 (3)

Since α is hyper-prior in our model, no analytic solution exists to the posterior distribution. 
The optimal form of posterior is approximated as,

                (4)

The variational bound is formed is given by

                   (5)

In order to change the method to ARD, the first step is to modify priors and then the rest of the 
procedure will follow the changes. As seen in equation (6), ARD method alters the Gamma 
distribution over α,

                (6)

where the optimal variational factorization for the approximation of posterior distribution 
consists of:

                  (7)

Consequently, based on Jan Drugowitsch (2013), the equation (5) for ARD changes to:

                 (8)

The predictive distribution is evaluated in the form of a Student distribution using variational 
distribution  as an approximation to the posterior  which involves uncertainty 
of the method and results in the following equation,

               (9)

In the simplest case of linear regression models, it is assumed that the model is a linear function 
for both weights and input variables. However, the model can be made more complex using 
basis functions in order to be efficient on nonlinear data. Since the weights remain linear, the 



Nonlinear Regression in Tax Evasion

155Pertanika J. Sci. & Technol. 25 (S): 151 - 162 (2017)

model is considered to be linear. In this study, 6 basis functions are tested on tax evasion data 
in Malaysia and results are compared in next section. Equations (10-15) present the basis 
functions that are applied in this study.

Eiffel Tower Basis Function:

                     (10)

Radial Basis Function (RBF):

                      (11)

Fourier Basis Function

                   (12)

V Basis Function:

                     (13)

Step Basis Function:

                  (14)

Polynomial Basis Function:

                    (15)

Basis functions define the model by appropriately identifying the number of functions within 
input variable domain. In this study, interval values between basis functions are assigned based 
on minimum and maximum values of input data. However, the number (or shape in the RBF 
case) of basis functions needs to be calculated using model selection procedure.

This study aims to compute nonlinear regression model for tax evasion with regard to 
uncertainty of data in Malaysia. Here, tax evasion data from  Malaysia by Tabandeh and 
Tamadonnejad (2015) has been employed; this dataset consists of 8 predictor variables and 
tax evasion as target variable in the GDP scale. Tax evasion is function of predictor variables 
as in the following: 

      TE = f (TB1, TB2, GR, I, OP, IR, U, II)         (17)

where TB1 is Direct tax and TB2 is Indirect tax in GDP, GR represents Government regulations, 
I is Income of taxpayers, OP is Trade openness, IR represents Inflation rate, U is Unemployment 
Rate, and II is Income inequality.
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RESULTS AND DISCUSSION

The final results from VLR are compared with MLE algorithm which is a well-known sampling 
technique. Figure (1-6) compare of VLR with ARD method to MLE algorithm. The horizontal 
axis represents the year and vertical axis demonstrate the true respond value. The uncertainty 
value is shown by grey margin in these plots. Clearly, VLR with RBF and V basis functions 
provides the most certain results because their uncertainty margins are less.  Nevertheless, Eiffel 
Tower basis function provides the most uniform uncertainty for the final results. Obviously, 
MLE method suffers from over-fitting in the Step and Fourier basis functions (Figures 4,6), 
however, the final results of MLE and VLR with RBF and V basis functions are more reasonable  
(Figures 1,2).
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Figure 1. Comparison between VLR with ARD and MLE on RBF 
Figure 1. Comparison between VLR with ARD and MLE on RBF
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Figure 4. Comparison between VLR with ARD and MLE on Fourier 
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The sample output for Eiffel Tower basis function on VLR with ARD technique is exemplified 
in Table 1. The main purpose of Table 1 is to estimate tax evasion with regard to changes on 
each predictor variable individually. Each column represents the percentage of changes in tax 
evasion in the way that only one particular variable changes and the rest of variables remain 
unchanged. For instance, with 10% increase in TB1 there is 0.8139% decrease in tax evasion. 
Likewise, 30% decline in the government regulation (GR) will lead to 1.4335% reduction in 
tax evasion. Furthermore, any change in tax evasion rate below 0.1% is negligible due to the 
residual error in the VLR. Hence, based on Table 1, the first four variables (i.e. TB1, TB2, 
GR, and I) affect tax evasion significantly and the contribution of last four variables (i.e. OP, 
IR, U, II) to tax evasion in Malaysia is minimal.
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Figure 6. Comparison between VLR with ARD and MLE on Step basis function

Table 1 
The amount of small changes in tax evasion for any single change in valuables

TB1 TB2 GR I OP IR U II
5%↑ MSE (%) -3.576 7.929 -2.627 -2.273 0.002 0.0001 -0.012 -0.019

sd (%) 4.410 2.758 0.039 4.644 0.059 0.009 0.017 0.024
5%↓ MSE (%) -1.433 -4.483 -3.775 -1.283 -0.010 -0.031 0.008 0.011

sd (%) 1.486 -0.379 -0.948 2.147 0.002 -0.041 -0.017 -0.003
10%↑ MSE (%) -0.814 1.274 -0.556 -0.364 0.001 0.003 -0.002 -0.004

sd (%) 0.197 0.277 -0.124 0.436 0.010 -0.001 -0.0004 0.002
10%↓ MSE (%) 0.92 -1.136 -0.291 0.280 -0.002 -0.005 0.002 0.004

sd (%) 0.490 -0.186 -0.209 0.026 -0.006 -0.003 -0.003 -0.003
20%↑ MSE (%) -1.543 2.700 -1.112 -0.836 0.002 0.004 -0.005 -0.009

sd (%) 0.893 0.672 -0.154 1.223 0.025 -0.001 0.002 0.007
20%↓ MSE (%) 0.735 -2.144 -0.768 0.152 -0.005 -0.011 0.004 0.007

sd (%) 0.538 -0.301 -0.419 0.33 -0.009 -0.012 -0.007 -0.003
30%↑ MSE (%) -2.293 4.294 -1.713 -1.319 0.003 0.003 -0.007 -0.012

sd (%) 1.846 1.211 -0.157 2.263 0.042 0.0003 0.005 0.012
30%↓ MSE (%) -0.173 -3.034 -1.433 -0.429 -0.007 -0.018 0.007 0.009

sd (%) 0.230 -0.36 -0.587 0.507 -0.007 -0.026 -0.007 -0.004
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Suppose the Malaysian government is liable to change each predictor variable to a 
maximum 30% every year, this study recommends the government raise TB1 and I by 5%, 
reduce TB2 and GR by 5% and keep the other parameters unchanged. Nevertheless, for 
changes above 30% these results are not reliable and reduction and increase in tax evasion 
should be calculated according to VLR formula. For instance, in a more dramatic alteration 
in predictor variables in Table 2, different outcomes appear; the results suggest that regarding 
the government’s decision to change variables from 70% to 90% it is preferable to shrink TB2 
and GR by 90% and increase TB1 and I by 90%. Interestingly, almost the same pattern appears 
in Table 1, although the level of changes is different.

Table 1 
The amount of great changes in tax evasion for any single change in valuables

TB1 TB2 GR I OP IR U II
70%↑ MSE (%) -4.803 8.957 -3.388 -3.129 -0.0005 -0.002 -0.014 -0.024

sd (%) 6.966 2.550 0.322 7.192 0.077 0.028 0.025 0.036
70%↓ MSE (%) -1.957 -5.522 -6.667 -1.631 -0.012 -0.041 0.009 0.006

sd (%) 4.158 -0.323 -1.362 4.877 0.018 -0.045 -0.022 -0.010
80%↑ MSE (%) -5.403 9.158 -3.511 -3.494 -0.002 -0.006 -0.015 -0.026

sd (%) 8.110 2.362 0.574 8.488 0.087 0.036 0.029 0.040
80%↓ MSE (%) -1.931 -5.896 -7.557 -1.611 -0.013 -0.046 0.01 0.007

sd (%) 5.794 -0.269 -1.421 6.487 0.027 -0.046 -0.023 -0.010
90%↑ MSE (%) -5.948 9.303 -3.532 -3.852 -0.003 -0.011 -0.016 -0.027

sd (%) 9.240 2.196 0.868 9.685 0.098 0.039 0.033 0.043
90%↓ MSE (%) -1.697 -6.171 -8.139 -1.455 -0.013 -0.0497 0.010 0.002

sd (%) 7.599 -0.200 -1.419 8.238 0.038 -0.045 -0.023 -0.008

CONCLUSION 

In this study, the nonlinear feature of tax evasion data is identified by testing 6 nonlinear basis 
functions on VLR in both with and without ARD cases. In the case of Malaysia tax evasion 
dataset, Eiffel Tower basis function on VLR with ARD and Fourier basis function in both with 
and without ARD define the pattern of data better than the other mentioned basis functions. 
Moreover, sample changes in each predictor variable is calculated to maximum 30% for 
minor changes in variables and between 70% to 90% for major changes and, based on results, 
TB1, TB2, GR, and I affect tax evasion more significantly than OP, IR, U, and II in the same 
situation. From computer science viewpoint, one of the important conclusions of this study 
is that, by choosing an appropriate basis function and prior parameters for VLR, complexity 
of a nonlinear data in tax evasion data can be detected by VLR and each basis function treats 
uncertainty in a different way. For instance, RBF tends to underestimate uncertainty, while 
polynomial basis function overestimates it. Furthermore, based on figures (1-6), stability in 
results in VLR+ARD is higher than MLE; in the cases of step and Fourier functions MLE 
provides poor results and results fluctuate rapidly dur-ing times. For future work the authors of 
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this study will consider non-parametric methods as a robust technique to tackle the uncertainty 
and nonlinearity of Malaysian tax evasion data.
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