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Abstract

The performance of wideband array signal processing algorithms is dependant on the

noise level in the system. In this thesis, a method is proposed for reducing the level of

white noise in wideband arrays via a judiciously designed spatial transformation followed

by a bank of high-pass filters. The method is initially introduced for uniform linear arrays

(ULAs) and analysed in detail. The spectrum of the signal and noise after being processed

by the proposed noise reduction method is analysed, and the correlation matrix of the

processed noise is derived.

The reduced noise level leads to a higher signal-to-noise ratio (SNR) for the system,

which can have a significant effect on the performance improvement of various beam-

forming methods and other array signal processing applications such as direction of ar-

rival (DOA) estimation.

The performance of two well-known beamformers, the reference signal based (RSB)

beamformer and the linearly constrained minimum variance (LCMV) beamformer is re-

viewed. Then, the theoretical effect of applying the proposed noise reduction method as

a pre-processing step on the performance enhancement of RSB and LCMV beamformers

is studied. The theoretical results are then confirmed by simulation. As a representative

example of wideband DOA estimation application, a compressive sensing-based DOA

estimation method is employed to demonstrate the improved estimation by applying the

pre-processing noise reduction method, which is confirmed by simulation.

Next, the idea is extended to wideband non-uniform linear arrays (NLAs). Since, NLA

does not have a uniform spacing, the beam response of the row vectors of the transfor-

mation is distorted. Therefore, the transformation is re-designed using the least squares

method to satisfy the band-pass requirements of the transformation. Simulation results

show a satisfactory improvement in the the performance of RSB and LCMV beamform-

ers for the NLA structure.



The idea is further extended to uniform rectangular arrays (URAs) and uniform circu-

lar arrays (UCAs), as two major types of the planar arrays. Two methods are proposed for

reducing the effect of white noise in wideband URAs and for each one, a different trans-

formation is designed. The first one is based on a two-dimensional (2D) transformation

and the second one is an adaptation of the method developed for the ULA case. The devel-

oped method for the UCA structure is based on a one-dimensional (1D) transformation,

with modified modulation for the transformation to satisfy the required band-pass char-

acteristics of the transformation. Same as linear array structures, the RSB and LCMV

beamformers are used to demonstrate the performance enhancement of the method for

planar arrays.
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Chapter 1

Introduction

1.1 Introduction

Wideband array signal processing, including beamforming and direction

of arrival (DOA) estimation, has various applications in radar, sonar and

wireless communications, and has been studied extensively in the past.

In [1], different adaptive beamformer methods and parameter estima-

tion is reviewed thoroughly. Wei et. al [2] has reviewed different methods

of beamforming and array structures. Krim and Vberg review background

material and of the basic problem formulation of the parameter estimation

in [3]. They introduce spectral-based algorithmic solutions to the signal

parameter estimation problem, and the suboptimal solutions are compared

to the parametric methods. Allen and Ghavami review the fundamentals

of array signal processing in [4], and they review different adaptive beam-

forming and estimation methods considering both narrowband and wide-

band cases. Some difficulties and practical techniques related to sensor

1
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arrays are addressed in [5]. Such as, placing sensors as an array for accu-

rate measurement, calibrating a sensor array by experiment and etc.

The performance of wideband array signal processing algorithms is de-

pendent on the level of noise in the system, and normally the lower the

level of noise, the better the performance is. Many methods have been

developed in the past to reduce the noise level, such as adaptive noise can-

cellation (ANC) [6], the Wiener filters [7,8], and zero phase (ZP) noise re-

duction methods [9,10]. The ANC uses a reference undesired noise source

and a primary source contaminated by noise, and then adaptive filtering is

employed to produce a cleaned result [11]. The Wiener filter produces an

estimate of the desired signal by minimising the mean squared error (MSE)

between the noisy signal and a reference [12, 13]. The ANC and Wiener

filter methods have proved to work well in specific applications but due to

their adaptive nature, they have high computational complexity. ZP noise

reducers can reduce the noise without the need to know a priori information

of the signal [14,15]. The limitation of ZP noise reducers is that, the signal

has to be periodic [16], and it is mainly applied to speech signals. In this

thesis, a novel non-adaptive white noise reduction approach is developed

with low computational complexity, and relatively good performance, with

no limitation on the received wideband signal.

In addition to the wideband beamforming, the wideband DOA estima-

tion is also a field of interest in this thesis. Many DOA methods have

been proposed for both narrowband and wideband signals, and two rep-
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resentative ones are the multiple signal classification (MUSIC) [17] and

the estimation of signal parameters via rotational invariance techniques

(ESPRIT) [18] algorithms, which were originally proposed for narrow-

band signals. For wideband signals, a commonly used approach is to

decompose the wideband signal into different frequency bins and trans-

form the wideband problem into a narrowband one through various fo-

cusing or interpolation algorithms [19, 20]. In addition, methods such

as incoherent signal subspace method (ISSM) [21], coherent signal sub-

space method (CSSM) [22] and test of orthogonality of projected sub-

spaces method (TOPS) [23] have also been proposed.

Recently, with the development of compressive sensing theory [24,25],

many sparsity based DOA estimation methods were developed. A source

localization method based on a sparse representation of sensor measure-

ments is introduced in [26]. In [27], a DOA estimation method is proposed

based on a novel data model using the concept of a sparse representation of

array covariance vectors (SRACV), in which DOA estimation is achieved

by jointly finding the sparsest coefficients of the array covariance vectors.

The sparse spectrum fitting algorithm for the estimation of DOAs of mul-

tiple sources is introduced in [28], and its asymptotic consistency and ef-

fective regularization under both asymptotic and finite sample cases are

studied. In [29], the authors propose co-prime arrays for effective DOA

estimation.

In addition, various extensions of the above methods are developed for
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the wideband case. A method named wideband covariance matrix sparse

representation (W-CMSR) is proposed in [30]. In this method, the lower

left triangular elements of the covariance matrix are aligned to form a

new measurement vector, then DOA estimation is achieved by representing

this vector on an over-complete dictionary under the constraint of sparsity.

In [31], the sparse Bayesian learning (SBL) technique is used to estimate

the DOAs of independent narrowband/wideband signals by reconstructing

the covariance vectors with high computational efficiency. In [32], a class

of low-complexity compressive sensing-based DOA estimation methods

for wideband co-prime arrays is proposed, which is based on the narrow-

band DOA estimation method for co-prime arrays [29].

Wideband arrays are affected by noise from different sources. These

noise sources include the voltages due to thermal noise [33] also known

as Johnson-Nyquist noise [34], the shot noise [35], the cosmic black-body

radiation [36] and etc. The classical central limit theorem [37] asserts that

the distribution of the summation of different random variables converges

to a normal, Gaussian distribution with mean 0, which is the definition of

the white noise. Therefore, one common assumption for noise in wideband

arrays is that it is spatially (and in many cases also temporally) white. That

is, the noise at one array sensor is uncorrelated with that at other sensors.

Under this assumption, it seems that there is not much can be done about

it and simply it has to be accepted whatever is left of the noise component

after processing the signals. For example, in the simplest beamforming
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y[n]

x0[n]

w1

w0

θ x1[n]

xM−1[n] wM−1

Fig. 1.1: A simple beamformer with its output y[n] given by a linear combination of the

received array signals x0[n], x1[n], · · · , xM−1[n] weighted with the coefficients w0, w1, · · · ,

wM−1.

structure shown in Fig. 1.1, the beamformer output y[n] is a linear combi-

nation of the received array signals x0[n], x1[n], · · · , xM−1[n] weighted with

the coefficients w0, w1, · · · , wM−1, where n is the discrete time index, M

is the number of sensors in the array and θ is the angle of arrival of the

impinging signal. The values of these coefficients are obtained based on

some criterion such as maximising the output signal-to-interference plus

noise ratio (SINR).

The question here is, whether there is anything that can be done to re-

duce the effect of the white noise in a wideband array system (without at-

tenuating the directional signals) so that the performance of the subsequent

processing (such as DOA estimation and beamforming) can be improved.

In this thesis, the aim is to answer that question by developing a novel

method to reduce the white noise level of a wideband array using a combi-
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nation of a set of judiciously designed spatial transformations and a bank of

high-pass filters, and the key is to realise that the white noise and the direc-

tional wideband signals received by the array have different spatial char-

acteristics. Based on this difference, and motivated by the low-complexity

subband-selective adaptive beamformer proposed in [38], first the received

wideband sensor signals is transformed into a new domain where the di-

rectional signals are decomposed in such a way that their corresponding

outputs are associated with a series of tighter and tighter high-pass spec-

tra, while the spectrum of noise still covers the full band from −π to π in

the normalised frequency domain. Then, a series of high-pass filters with

different cut-off frequencies are applied to selectively remove part of the

noise spectrum while keeping the directional signals unchanged. Finally,

an inverse transformation is applied to the filtered outputs to recover the

original sensor signals, where compared to the original set of received sen-

sor signals, the directional signals are left intact while the noise power has

been reduced.

One condition placed on the transformation matrix is that it must be

invertible. It has been further assumed that it is also unitary and thus the

discrete Fourier transform (DFT) matrix is used as a representative exam-

ple for the uniform linear array (ULA) case and a least squares based de-

sign is introduced for the non-uniform linear array (NLA) case. Detailed

analysis shows that the signal-to-noise ratio (SNR) of the array after the

proposed processing can be improved by about 3 dB in the ideal case. This
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is then translated into improved performance for beamforming, as demon-

strated by both theoretical analysis and simulation results. This work is fo-

cused on two well-known beamformers, namely the reference signal based

(RSB) [39, 40], and the linearly constrained minimum variance (LCMV)

beamformers [41].

The method is also extended to uniform rectangular arrays (URAs), and

uniform circular arrays (UCAs) as examples of planar arrays.

1.2 Original Contributions

The original contributions of this work to the field of array signal process-

ing are listed as follows,

• The SNR of the received signal can be improved by a maximum of

3 dB using the proposed noise reduction method for different array

structures such as ULA, NLA, URA and UCA which have been pre-

sented in this work.

• Using the developed noise reduction method an increased output SINR

performance is achieved for the classic RSB and LCMV beamform-

ers, for different array structures.

• Simulation results show an improved estimation accuracy for the com-

pressive sensing based DOA estimation for the ULA structure.

• The method provides an alternative approach to beamforming with
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reduced computational complexity and more robustness.

• No prior information of the impinging signal is needed and the method

is quite flexible. Therefore, it can be used for different array signal

processing applications, such as beamforming and DOA estimation.

In the following, the contributions of the work are explained in greater

detail.

1.2.1 White noise reduction for wideband uniform linear array sig-

nal processing with applications in beamforming and DOA es-

timation

A novel method is proposed for reducing the level of white noise in wide-

band ULAs via a judiciously designed spatial transformation followed by

a bank of high-pass filters. 3 dB improvement in total SNR is achieved by

this method. A detailed analysis of the method and its effect on the spec-

trum of the signal and noise is presented. The reduced noise level leads

to a higher SNR for the system, which can have significant effect on the

performance of various beamforming methods and other signal processing

applications, such as DOA estimation.

The improved performance of two well-known beamformers, namely,

the RSB and the LCMV beamformers is analysed. Initially, a detailed

theoretical performance analysis is presented, and then, the improved per-

formance is confirmed using simulation.
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A compressive sensing based method employing the group sparsity con-

cept is employed to analyse the performance improvement for DOA esti-

mation. The performance is evaluated by calculating the error between the

estimated and the actual DOA angles of the received signals. By apply-

ing the noise reduction method, the error between the estimated and the

actual DOA angles was reduced. Therefore, the estimation accuracy has

been improved by employing the noise reduction method. The improved

estimation accuracy is confirmed by simulation.

By studying the structure of the method further, it is understood that if

a classic beamformer is applied to a set of array signals which have been

processed by the noise reduction method, the pre-processing and the clas-

sic beamformer can be modelled as an equivalent beamformer with longer

TDLs. Additionally, the complexity of the noise reduction method includ-

ing the beamformer part is less than the direct implementation with equiv-

alent length. Also, with the noise reduction method, a more robust beam-

forming can be achieved, since by using the noise reduction pre-processing

the numerical issues due to calculating the optimum beamforming coeffi-

cients based on inversion of correlation matrices can be avoided.

1.2.2 Extension of the white noise reduction method for non-uniform

linear arrays

The idea is extended to the NLAs by redesigning the transformation using

least squares filter design method. Therefore, the noise reduction method
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is adjusted to be applicable to the non-uniform sensor layout of NLAs. A

prototype filter using least squares method is designed, and modulated to

different frequency subbands to cover the whole normalised spectrum. A

low condition number is crucial, to be certain that the transformation is

invertible. Initially, the diagonal loading method is used to keep the con-

dition number low. Similar to the ULA case, 3 dB improvement in total

SNR is achieved, which leads to the performance enhancement for beam-

forming. This enhancement is demonstrated by simulation, using RSB and

LCMV beamformers.

Also, for reducing the condition number of the designed transforma-

tion matrix, a modification method is proposed based on replacing the

small singular values of the transformation. The effect of this modification

method on the beam-pattern and the condition number of the transforma-

tion is presented, and the beamforming performance of the noise reduction

method using the modified transformation is investigated using simulation.

1.2.3 Extension of the white noise reduction method for planar ar-

rays

The idea is also extended to two major types of planar arrays, namely,

URAs and UCAs.

In case of the URA, two design methods are introduced for the noise

reduction method, and for each one the transformation is redesigned. The

first method is based on a two-dimensional (2D) transformation, and the
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second one is an adaptation of the ULA noise reduction method, which is

based on one-dimensional (1D) transformation of the received signals.

For the UCA case, a 1D transformation is presented, which is almost

similar to the ULA case, and the difference is in modulating the prototype

filter to different subbands. Due to the sparse nature of circular arrays,

the condition number of the transformation might be high, which is in this

case, and the condition number is reduced by replacing the small singular

values of the transformation, same as in the NLA case.

The effect of the noise reduction methods for the planar arrays on per-

formance improvement of RSB and LCMV beamformers is confirmed by

simulation.

1.3 Outline

This thesis is organised as follows.

In Chapter 2, the wideband beamforming is briefly reviewed and a de-

tailed theoretical performance analysis is provided for the two well-known

classic beamformers, namely, RSB and LCMV beamformers. These two

beamformers are used for different applications in this thesis.

The white noise reduction method based on the ULA structure is pro-

posed in Chapter 3, with a detailed analysis of the spectrum and correla-

tion matrix of the noise after the proposed processing, when DFT matrix is

used as transformation. Then, the effect of the noise reduction method on
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the performance enhancement of the RSB and LCMV beamformers and

a compressive sensing based DOA estimation is presented, and confirmed

by simulation results.

The idea is extended to the structure of the NLAs in Chapter 4. The least

squares approach is used for designing the transformation with satisfactory

band-pass response.

The idea is further extended to the URA and UCA structures as exam-

ples of the planar arrays in Chapter 5, where two methods are presented

for the URA case, one based on 2D filtering and one by directly adopting

the method developed for the ULA structure. For the UCA case, the mod-

ulation of the row vectors of the transformation is modified to satisfy the

structure of the UCA.

In Chapter 6, it is shown that the proposed noise reduction method is

equivalent to a traditional tapped delay-line (TDL) system. The perfor-

mance and computational complexity of the beamformers are compared,

with the proposed pre-processing and without any pre-processing with the

same length.

Finally, conclusions are drawn in Chapter 7, with possible topics for

future work.



Chapter 2

Adaptive Wideband Beamforming

In this chapter, the general idea of wideband beamforming is briefly re-

viewed. The RSB and LCMV beamformers are reviewed as examples for

adaptive wideband beamforming, and a detailed analysis of their perfor-

mance is provided.

2.1 Wideband Beamforming

For wideband beamforming, a TDL is normally employed, with Fig. 2.1

showing a general structure, where M is the number of sensors, J is the

length of the TDL and ∆ denotes a tapped delay. The coefficient for the m-

th sensor at the k-th position of the TDL is denoted by wm,k, m= 0, · · · ,M−

1, k = 0, · · · ,J−1. All J weights at the m-th TDL form an element weight

vector wm, m = 0, · · · ,M − 1, and all M element weight vectors form a

MJ×1 total weight vector w, and they are defined as:

wm = [wm,0,wm,1, · · · ,wm,J−1]
T , (2.1)

13
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Fig. 2.1: A general wideband beamformer with M sensors and J taps.

w =
[

wT
0 ,w

T
1 , · · ·wT

M−1

]T
, (2.2)

where {·}T denotes the transpose. The received signal by the m-th sensor

at the k-th position of the TDL is denoted by xm,k[n], m = 0, · · · ,M − 1,

k = 0, · · · ,J − 1. All J received signals at the m-th TDL form an element

signal vector xm, m = 0, · · · ,M−1 and all M element signal vectors form

the total input signal vector x, which are defined as:

xm =
[

xm,0[n],xm,1[n], · · · ,xm,M−1[n]
]T

, (2.3)

x = [xT
0 ,x

T
1 , · · · ,xT

M−1]
T . (2.4)

Finally, the beamformer output y[n] is given by

y[n] = wT x . (2.5)

The idea is to process the received array signals by the noise reduc-

tion method, so that the noise level in the received signals will be reduced.

Then, the new set of array signals with reduced noise level will be fed to the
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+
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e[n]

x[n] y[n]w

Fig. 2.2: The RSB adaptive beamforming structure.

following beamformers. In the following, two widely-used adaptive beam-

forming methods are briefly reviewed and the theoretical performance re-

sults are then derived based on the proposed noise reduction method.

2.2 Reference Signal Based Adaptive Beamformer

The reference signal based (RSB) beamformer is normally employed when

a reference signal r[n] is available, where the weight vector of the beam-

former can be adjusted to minimise the MSE between the reference signal

and the beamformer output y[n] [39,40], as shown in Fig. 2.2. The MJ×1

optimal weight vector is given by:

wopt =ΦΦΦx
−1sd , (2.6)

where {·}−1 denotes the inverse operator, ΦΦΦx is the signal correlation ma-

trix with size MJ×MJ, and is defined by:

ΦΦΦx = E
[

x∗xT
]

, (2.7)
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where E{·} denotes the mathematical expectation, {·}∗ denotes the com-

plex conjugate, and sd is the reference correlation vector with size MJ×1,

sd = E [x∗r0[n]] , (2.8)

with r0[n] being the normalised reference signal with unit power.

There are three components for each of the received sensor signals: de-

sired signal xd[n], interference xi[n] and noise xv[n]. The desired signal

xd[n] is a deterministic signal received from the intended transmitter. The

interference xi[n] is a deterministic or random signal received by the array

transmitted from a source but it does not have the characteristics of the

desired signal. The interference can be a deterministic signal transmitted

from the same source as the desired signal, which is the case for the multi-

path reflection [42]. Otherwise, the source of interference can be from dif-

ferent transmitters, which is the case when there are different transmitters

in the range. This can happen when multiple transmitters and receivers are

trying to communicate in the same area. Also, disturbance signals trans-

mitted from the jammers are considered as interference [43]. The jammers

may transmit deterministic or random signals to interrupt the communi-

cation between the transmitter based on their design. The noise xv[n] is a

random signal which come from different sources such as the voltages due

to thermal noise [33] also known as Johnson-Nyquist noise [34], the shot

noise [35], the cosmic black-body radiation [36] and etc.

The total signal absorption at any time in an array is the linear superpo-
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sition of the absorption associated with all the impinging signals and the

noise [44, 45]. Therefore, the signal available at the m-th sensor and k-th

tap is,

xm,k[n] = xdm,k
[n]+ xim,k[n]+ xvm,k[n] . (2.9)

So, the total signal vector x can also be decomposed into three correspond-

ing parts:

x = xd +xi +xv. (2.10)

Since the desired signal, interference and noise are independent and so,

uncorrelated with each other, ΦΦΦx is also a linear superposition of the cor-

responding parts and can be decomposed into three MJ ×MJ correlation

matrices corresponding to the desired signal, interference and white noise

components, respectively. i.e.,

ΦΦΦx =ΦΦΦd +ΦΦΦi +ΦΦΦv . (2.11)

In the following, each of the correlation matrices from (2.11) are deter-

mined.

First, the desired signal part is considered. To simplify the theoretical

calculations, it is assumed that the desired signal xd[n] has a flat power

spectral density (PSD) equal to 2π pd/∆ωd , where pd, ωd and ∆ωd are the

power, frequency, and bandwidth of the desired signal, respectively. The

PSD of the desired signal Sd(ω) is illustrated in Fig. (2.3) with ω0 being

the centre frequency.

The auto-correlation is a measure of the correlation between the values
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ω

∆ωd2π pd
∆ωd

ω0

Sd(ω)

Fig. 2.3: PSD of the desired signal.

of a signal at different times. Therefore, the auto-correlation function of

the desired signal xd[n] is

Rd[τ] = E [xd[n] xd[n+ τ]] , (2.12)

where τ is the time delay. According to the Wiener-Khinchin theorem [46]

the auto-correlation function Rd(τ) is the inverse Fourier transform of the

PSD Sd(ω). Therefore,

Rd(τ) =
1

2π

∫

∆ωd

Sd(ω)e jωτdω , (2.13)

where j =
√
−1.

By taking the inverse Fourier transform from Sd(ω), the auto-correlation

function of the desired signal can be obtained as [40]:

Rd(τ) = pd sinc

(

∆ωdτ

2

)

e jω0τ . (2.14)

Next, the desired signal correlation matrix ΦΦΦd is separated into M ×M
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sub-matrices as:

ΦΦΦd =













ΦΦΦd0,0
· · · ΦΦΦd0,M−1

...
. . .

...

ΦΦΦdM−1,0
· · · ΦΦΦdM−1,M−1













, (2.15)

where each correlation sub-matrix is a J× J matrix and corresponds to the

correlation of the desired signal of two different element signal vectors.

Therefore,

ΦΦΦdm1,m2
= E

[

x∗dm1
xT

dm2

]

. (2.16)

Note that the correlation between the desired signal at the k1-th tap of the

m1-th element and the k2-th tap of m2-th element is given by:

[

ΦΦΦdm1,m2

]

k1,k2

= E
[

x∗dm1,k1
[n] xdm2,k2

[n]
]

. (2.17)

The desired signal received at the m-th element and the k-th tap is a copy of

the original desired signal with a delay among the array elements, as well

a delay among taps. So

xdm,k
[n] = xd [n−mTe− kT0] , (2.18)

where Te is the unit propagation delay between elements, and T0 is the

propagation delay between adjacent taps. So, (2.17) can be written as:

[

ΦΦΦdm1,m2

]

k1,k2

= Rd [(m1 −m2)Te +(k1− k2)T0] . (2.19)

It is assumed that the adjacent array sensor spacing is half a wavelength

of the maximum frequency ωmax to avoid the spatial aliasing [47]. There-
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fore, the propagation delay between adjacent sensors can be expressed as

Te =
L

c
sin(θd) =

π

ωmax
sin(θd) , (2.20)

where L is the array spacing, c is the wave propagation speed, and θd is

the DOA of the desired signal. Next step is to define the delay between

two adjacent taps T0. It is normally assumed that the delay between the

adjacent taps is r times the delay associating with a quarter wavelength

corresponding to the maximum frequency [48], which is equal to a delay

associated with 90◦ phase shift at ωmax . Therefore,

T90 =
π

2ωmax
. (2.21)

So, the delay T0 can be written as

T0 = rT90 =
πr

2ωmax
. (2.22)

Now, from (2.14) and (2.19),

[

ΦΦΦdm1,m2

]

k1,k2

= pd sinc

{

∆ωd

2
[(m1−m2)Te +(k1− k2)T0]

}

×e jω0[(m1−m2)Te+(k1−k2)T0] . (2.23)

For an easier representation, the above equation is simplified by replacing

the bandwidth ∆ωd and centre frequency ω0 with Bd = ∆ωd/ωmax and

Ω0 = ω0/ωmax, respectively. Consequently, the terms ∆ωdTe and ω0Te can

be written as,

∆ωdTe =
∆ωd

ωmax
π sin(θd) = Bdπ sin(θd) , (2.24)

ω0Te =
ω0

ωmax
π sin(θd) = Ω0π sin(θd) . (2.25)
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Similarly, ∆ωdT0 and ω0T0 are written as,

∆ωdT0 =
∆ωd

ωmax
· πr

2
= Bd

πr

2
, (2.26)

ω0T0 =
ω0

ωmax
· πr

2
= Ω0

πr

2
. (2.27)

Therefore, in the simplified form, the correlation of the desired signal at

the k1-th tap of the m1-th element and the k2-th tap of the m2-th element

can be expressed as,

[

ΦΦΦdm1,m2

]

k1,k2

= pd sinc

{

Bd

2
τd

}

e jΩ0τd , (2.28)

where τd is,

τd = π
[

(m1 −m2)sin(θd)+(k1− k2)
r

2

]

. (2.29)

Next step is to determine the interference correlation matrix ΦΦΦi using

the same approach. The DOA θi of the interference is different from θd .

Same as before, to simplify the theoretical calculations, it is been assumed

that the interference signal xi[n] has a flat PSD, equal to 2π pi/∆ωi, where

pi, ωi and ∆ωi are the power, frequency and bandwidth of the interference

signal, respectively. Same as (2.15), the interference correlation matrix ΦΦΦi

is separated into M×M sub-matrices as:

ΦΦΦi =













ΦΦΦi0,0 · · · ΦΦΦi0,M−1

...
. . .

...

ΦΦΦiM−1,0 · · · ΦΦΦiM−1,M−1













, (2.30)

where each correlation sub-matrix is a J × J matrix, corresponding to the

correlation of the interference of two different element interference signal
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vectors,

ΦΦΦim1,m2
= E

[

x∗im1
xT

im2

]

. (2.31)

The correlation between the interference at the k1-th tap of the m1-th ele-

ment and the k2-th tap of the m2-th element is:

[

ΦΦΦim1,m2

]

k1,k2

= E
[

x∗im1,k1
[n] xim2,k2

[n]
]

. (2.32)

Similar to the desired signal in (2.28), in the simplified form, the correla-

tion of the interference at the k1-th tap of the m1-th element and the k2-th

tap of the m2-th element can be expressed as:

[

ΦΦΦim1,m2

]

k1,k2

= pi sinc

{

Bi

2
τi

}

e jΩ0τi , (2.33)

where Bi = ∆ωi/ω0 and τi is

τi = π
[

(m1 −m2)sin(θi)+(k1 − k2)
r

2

]

. (2.34)

Since it is assumed that the noise available at each sensor is temporally

and also spatially white, so the noise is mathematically independent be-

tween the sensors in the TDL. Therefore, the noise correlation products of

the correlation matrix in (2.11) are zero, apart from the product of the same

delay-line. Similar to (2.15) and (2.30), the noise correlation matrix ΦΦΦv is

also separated into M×M sub-matrices, so:

ΦΦΦv =



















ΦΦΦv0,0 0 · · · 0

0 ΦΦΦv1,1 · · · 0

...
...

. . .
...

0 0 · · · ΦΦΦvM−1,M−1



















, (2.35)
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where each non-zero noise correlation sub-matrix is a J × J matrix. It is

assumed the white noise has a flat PSD equal to 2πσ2
v /∆ωv, where σ2

v is

the noise variance and ∆ωv is the bandwidth of the noise. Therefore, as in

(2.28) and (2.33), the correlation of the noise at the k1-th and k2-th tap of

the same m1-th element is

[ΦΦΦvm1,m1
]k1,k2

= σ2
v sinc

{

Bv

2
τv

}

e jΩ0τv, (2.36)

where Bv = ∆ωv/ω0 and τv is

τv = π
[

(k1− k2)
r

2

]

. (2.37)

Finally, the reference correlation vector sd is determined. Assuming the

reference signal ro[n] is the same as the desired signal xd[n], sd in (2.8) can

be written as

sd = E[x∗ro[n]] = E[x∗xdo
[n]] . (2.38)

where xdo
[n] is the same as xd[n], with unit power. It has been assumed that

the desired signal, interferences and the noise are uncorrelated with each

other. Therefore, (2.38) can be expressed as:

sd = E[x∗dxdo
[n]] . (2.39)

Furthermore, sd can be expanded as:

sd =
[

sd0,0
, · · · ,sd0,J−1

, · · · ,sdM−1,0
, · · · ,sdM−1,J−1

]T
, (2.40)

where sdm,k
, m = 0, · · · ,M−1, k = 0, · · · ,J−1, indicates the correlation of

the reference and the desired signal at the m-th element and k-th tap, given
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by:

sdm,k
=
√

pd sinc

{

Bd

2
τs

}

e jΩ0τs, (2.41)

with

τs = π
[

msin(θd)+ k
r

2

]

. (2.42)

Since ΦΦΦx and sd are fully determined, using (2.6), wopt can be calculated

for the RSB beamformer.

The beamformer output can be calculated from (2.5), and the output

power is:

P =
1

2
E
[

‖y[n]‖2
2

]

=
1

2
wH

optΦΦΦxwopt , (2.43)

where ‖ · ‖2 is the l2 norm and {·}H denotes the Hermitian transpose. As

denoted in (2.11), ΦΦΦx can be expressed as desired, interference and noise

parts. Therefore, the output power can also be expressed as:

Pd =
1

2
wH

optΦΦΦdwopt , (2.44)

Pi =
1

2
wH

optΦΦΦiwopt , (2.45)

Pv =
1

2
wH

optΦΦΦvwopt . (2.46)

Finally, the output SINR of the beamformer is:

SINR =
Pd

Pi +Pv
. (2.47)

This concludes the performance analysis for the RSB beamformer.
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2.3 Linearly Constrained Minimum Variance Adaptive

Beamformer

In practice, the reference signal r[n] may be unavailable. However, when

some information on the DOAs as well as the bandwidth limits of the de-

sired signal and/or the interferences is available, a linearly constrained

minimum variance (LCMV) beamformer can be employed for effective

beamforming [2, 49].

min
w

wHΦΦΦxw subject to CHw = f , (2.48)

where w and ΦΦΦx are defined as before in Section 2.2, C is the MJ × J

constraint matrix and f is the J × 1 response vector. The beamformer will

always have the desired response set out by the constraint equation CHw =

f, no matter how the weights are adjusted. The structure of the LCMV

beamformer is shown in Fig. 2.4. The solution to (2.48) can be obtained

using the Lagrange multipliers method [49],

wopt =ΦΦΦ−1
x C(CHΦΦΦ−1

x C)−1f . (2.49)

The correlation matrix ΦΦΦx is determined in the same way as in Sec. 2.2.

So, only the constraint matrix C and the response vector f need to be de-

fined. In the following, C and f are defined for the case when the desired

signal is coming from the broadside, i.e., θd = 0◦.

In this case, the desired signal components are received at the same

time at the array elements, and so there would be no delay between the
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x[n]

y[n]

CHw = f

w

Fig. 2.4: The LCMV adaptive beamforming structure.

ŵM−1[n]

x0[n]

ŵ0[n] ŵ1[n]
y[n]

Fig. 2.5: The equivalent single TDL beamformer for LCMV when the desired signal is

arriving from broadside.

desired signal components received by the array elements. Therefore, the

beamformer can be considered as a single TDL, where each weight is the

sum of the weights in the corresponding column. Thus, the single TDL

coefficients are defined as:

ŵk =
M−1

∑
m=0

wm,k (2.50)

where k = 0, · · · ,M−1, this single TDL structure is shown in Fig. 2.5.

In order to have a distortion-less response to the desired signal, the

beamformer response should only be a delay. Therefore, only one of the

coefficients of the structure in Fig. 2.5, ŵk, k = 0, · · · ,J−1, is 1 and the rest

are zero. So, the constraint matrix C is expressed as M identity matrices
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IJ, with size J× J. Thus, C is:

C = [IJ, · · · ,IJ]
T . (2.51)

The response vector f is only a delay, so:

f = [0, · · · ,1, · · · ,0]T . (2.52)

After defining C and f, using (2.49), wopt can be obtained and the output

SINR can be calculated using (2.43)–(2.47) from Sec. 2.2.

2.4 Summary

The general area of adaptive wideband beamforming was reviewed in this

chapter. First, the general structure of wideband beamformers using TDLs

was studied and the signal model was introduced which will be used through-

out the thesis. Then, the general structure of the two well-known beam-

formers, namely, RSB and LCMV adaptive beamformers was studied. Un-

der the assumption that the received signals have flat PSDs, the theoretical

values for correlation matrices of the beamformers were calculated. Using

these correlation values the optimum weight vector wopt was calculated for

the beamformers. Since the optimum weight vector wopt and the correla-

tion matrices for desired, interference and the noise for each beamformer

is known, the power of the desired signal Pd , the power of interference

Pi and the power of noise Pn in the output was derived, hence, the output

SINR can be calculated from these values. In the following chapters, a
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method is developed to improve the output SINR by developing a white

noise reduction pre-processing method for different array structures.



Chapter 3

White Noise Reduction for Wideband

Uniform Linear Array Signal

Processing

The most common array structure is the uniform linear array (ULA). The

general idea of the proposed method is presented in this chapter in details

based on a ULA structure for the sensors. Also, the effect of the noise

reduction method on the performance of wideband beamforming and DOA

estimation is shown with simulation. The contents of this chapter has been

published in [50], and parts of the contents is presented at a conference

[51].

3.1 General Structure of the Proposed Method

Consider an M-element ULA, a block diagram for the general structure of

the proposed method is shown in Fig. 3.1. The M received array signals

29
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Fig. 3.1: A block diagram for the general structure of the proposed noise reduction

approach.

xm[n], m = 0, . . . ,M − 1, are first processed by an M ×M transformation

matrix A, and then its outputs qm[n], m = 0, . . . ,M−1, pass through a bank

of high-pass filters with impulse responses given by hm[n], m = 0, . . . ,M−

1. The outputs of these filters are denoted by zm[n], m = 0, . . . ,M− 1 and

these are then transformed by the M×M inverse transformation A−1.

For simplicity it is assumed A is unitary. The matrix A is said to be

unitary if AHA = AAH = I, where I is the identity matrix [52]. Therefore,

A−1 = AH .

It is assumed there are K wideband signals s̄k(t) (where t is the con-

tinuous time index) impinging on the array from different incident angles

θk, k = 0, · · · ,K − 1. The received array signal xm(t) at the m-th sensor

consists of these wideband signals and white noise vm(t), i.e.,

xm(t) =
K−1

∑
k=0

s̄k [t − τm(θk)]+ vm(t), (3.1)

where τm(θk) represents the time delay (relative to a reference sensor) of
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the k-th impinging signal with the incident angle θk arriving at the m-th

sensor of the array. Taking the first sensor in the array as the reference

point, hence τ0(θk) = 0. So with

sm(t) =
K−1

∑
k=0

s̄k [t − τm(θk)] , (3.2)

(3.1) becomes

xm(t) = sm(t)+ vm(t) . (3.3)

With a sampling frequency of fs, the discrete version of the array vector

snapshot is

x[n] = s[n]+v[n] , (3.4)

where

x[n] = [x0[n],x1[n], · · · ,xM−1[n]]
T ,

s[n] = [s0[n],s1[n], · · · ,sM−1[n]]
T ,

v[n] = [v0[n],v1[n], · · · ,vM−1[n]]
T .

Applying the M×M transformation matrix A to the signal vector x[n],

the output signal vector q[n] is obtained as

q[n] = Ax[n], (3.5)

where

q[n] = [q0[n],q1[n], · · · ,qM−1[n]]
T .

The element of A at the m-th row and l-th column is denoted by am,l,

i.e., [A]m,l = am,l. Each row vector of A acts as a simple beamformer, and
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its output qm[n] is given by

qm[n] =
M−1

∑
l=0

am,lxl[n]. (3.6)

The beam response Rm(Ω,θ) of this simple beamformer as a function of

the normalised angular frequency Ω and the DOA angle θ is [38, 53],

Rm(Ω,θ) =
M−1

∑
l=0

am,le
− jlµΩsinθ , (3.7)

where µ = d/cTs and Ω = ωTs, with d being the spacing between the

adjacent sensors, c the wave propagation speed, Ts the sampling period,

and ω the angular frequency of signals.

Since the sampling frequency is fs =
1
Ts

, the normalised angular fre-

quency is Ω = ω
fs
= 2π f

fs
, where f is the signal frequency. In this thesis, fs

is equal to the Nyquist frequency. Therefore, fs = 2 fmax, where fmax is the

maximum frequency of the signal. So,

Ω =
2π f

fs
=

2π f

2 fmax
=

π f

fmax
. (3.8)

Assuming the range of the frequency f is [− fmax : fmax], the range of nor-

malised angular frequency Ω is [−π : π ].

With Ω̂ = µΩsinθ , an alternative representation for Rm(Ω,θ) can be

obtained as follows

Am(Ω̂) =
M−1

∑
l=0

am,le
− jlΩ̂, (3.9)

where Ω̂ is representing the spatial frequency of the received signal, Am(Ω̂)

is the frequency response of the m-th row vector of the M×M transforma-
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Fig. 3.2: Frequency responses of the row vectors of A in the ideal case and the high-pass

filtering effect of a sample row vector.

tion matrix A (if each row vector is considered as the impulse response of

a finite impulse response (FIR) filter).

Since the structure of the array is a ULA and assuming that the sampling

frequency is twice the highest frequency component of the wideband signal

and the array spacing d is half the wavelength of the highest frequency

component, hence µ = 1. Therefore, Ω̂ = Ωsinθ .

Similar to [38], the frequency responses Am(Ω̂), m = 0, · · · ,M− 1, are

arranged to be band-pass, each with a bandwidth of 2π/M. The row vec-

tors of A all together cover the whole normalised frequency range which

is [−π : π ]. An ideal example for an odd number M is shown in Fig. 3.2a.

The band-pass filters, which are used as row vectors of A, have a high-

pass filtering effect on the received array signals. To examine this high-
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pass behaviour, the l-th row vector is analysed. The frequency response of

this row vector is shown in Fig. 3.2a, which is:

∣

∣Al(Ω̂)
∣

∣=











1, for Ω̂ ∈ [Ω̂l,L : Ω̂l,U ]

0, otherwise.

(3.10)

Considering the above frequency response, the received array signal com-

ponents with frequency of Ω ∈ [−Ω̂l,L : Ω̂l,L] will not “pass” through this

row vector, since Ω̂ = Ωsinθ does not fall into the passband of [Ω̂l,L :

Ω̂l,U ], no matter what value the DOA angle θ takes. Therefore, the fre-

quency range of the output is |Ω| ≥ Ω̂l,L and the lower bound is determined

by Ω̂l,L, when Ω̂l,L > 0. Alternatively, the lower bound is determined by

|Ω̂l,U |, when Ω̂l,L < Ω̂l,U < 0.

As a result, the output spectrum of the directional signal part of ql[n]

corresponding to the l-th row vector will then be high-pass filtered as

shown in Fig. 3.2b. As the noise part in x[n] is spatially white, the out-

put noise spectrum of the row vector is still a constant, covering the whole

spectrum. As shown in Fig. 3.1, the output ql[n], l = 0, · · · ,M − 1, of

each row vector is the input to a corresponding high-pass filter hl[n], l =

0, · · · ,M−1. These high-pass filters should cover the whole bandwidth of

the signal part of the output ql[n] and therefore have the same frequency

response as specified in Fig. 3.2b. As a result, in the ideal case, the high-

pass filters will not have any effect on the signal components and all the

signal components will pass through the high-pass filters without any dis-

tortion. But then the frequency components of the white noise falling into
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the stopband of these high-pass filters will be removed.

The output of the high-pass filters is the convolution of each row vector

output and its corresponding high-pass filter,

z[n] =













z0[n]

...

zM−1[n]













=













q0[n]◦h0[n]

...

qM−1[n]◦hM−1[n]













, (3.11)

where ◦ denotes the convolution operator.

Considering the noise reduction effect of the high-pass filters, each fil-

ter removes part of the noise except for the filter corresponding to the row

vector with a frequency response covering the zero frequency component,

which should allow all frequencies to pass. Assuming that the size M of the

array is an odd number, from Fig. 3.2, for the first row vector A0(Ω̂), 2/M

part of the noise passes, while for A1(Ω̂), 4/M part of the noise passes,

and so on. For the row vector with frequency response covering the zero

frequency, all of the noise will pass. For the row vectors with frequency

responses larger than the zero frequency, the high-pass filters are replicas

of the high-pass filters regarding the row vectors with frequency responses

lower than the zero frequency. Therefore, in the ideal case, the ratio be-

tween the total noise power after and before the processing of the M high-

pass filters can be expressed as

Pvo

Pvi
=

1

M

(

1+2

(

2

M
+

4

M
+ · · ·+ M−1

M

))

, (3.12)

where Pvo is the total noise power at the output of the filters and Pvi is the
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total noise power at their input. Following the same procedure, if the size

of the array is an even number, then this ratio is given by

Pvo

Pvi
=

1

M

(

1+2

(

3

M
+

5

M
+ · · ·+ M−1

M

)

+
1

M

)

. (3.13)

As a result,

r(M) =
Pvo

Pvi
=











M2+2M−1
2M2 , if M > 1 is odd

M2+2M−2
2M2 , if M > 2 is even.

(3.14)

When M → ∞, the noise power will be reduced by half in both cases. The

output noise power to input noise power ratio versus the number of array

sensors M is plotted in Fig. 3.3. Since the high-pass filters have no effect

on the signal part, the ratio between the total signal power and the total

noise power is improved by almost 3 dB in the ideal case. For a finite M,

the improvement will be less than 3 dB. For example, when M = 16, it is

about 2.53 dB.

Applying the inverse of the transformation matrix A−1 = AH (with size

M ×M) to z[n], the estimates of the original input sensor signals x̂m[n],

m = 0, · · · ,M−1 is obtained. In vector form, it is represented as

x̂[n] = A−1z[n], (3.15)

where x̂[n] = [x̂0[n], x̂1[n], · · · , x̂M−1[n]]
T .

After going through these processing stages, there is no change in the

signal part at the final output x̂l[n], l = 0, · · · ,M−1 compared to the orig-

inal signal part in xl[n], l = 0, · · · ,M − 1. On the contrary, since A−1 is
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Fig. 3.3: Output to input noise power ratio for odd (M > 1) and even (M > 2) values of

M.

also unitary, the total noise power stays the same between x̂[n] and z[n],

which is almost half the total noise power in x[n]. Therefore, for a very

large array size M,

‖x̂[n]‖2
2 ≈ ‖s[n]‖2

2+
1

2
‖v[n]‖2

2 . (3.16)

Based on the above discussion, in terms of the total signal power to total

noise power ratio (TSNR), the following relationship holds

TSNRx̂ ≈
‖s[n]‖2

2
1
2
‖v[n]‖2

2

= 2×TSNRx . (3.17)

So in the ideal case, for a very large M, the TSNR is almost doubled by

the proposed noise reduction method. This can be translated into higher

performance for different array processing applications such as higher out-

put SINR for beamforming and increased accuracy for DOA estimation.

In the following section, using the DFT-based transformation matrix for
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ULAs, the theoretical result for two commonly used beamformers is anal-

ysed to show the performance improvement in the ideal case.

3.2 Analysis Based on the DFT Matrix for ULAs

The transformation matrix A is the most important part of the system. It

should have a full rank so that an inverse transform can be applied at the

end to recover the directional signals. Another key requirement is that

the row vectors have the desired band-pass frequency responses shown

in Fig. 3.2a. So, in general the design of the transformation matrix can

be formulated as a constrained FIR filter design problem. This is similar

to the beamspace transformation problem studied in [54, 55]. As pointed

out there, a prototype low-pass filter could be designed and then it should

be modulated to different frequency bands by a DFT operation or use the

DFT matrix directly. In particular, the DFT matrix is unitary, which will

simplify the theoretical analysis and provide with the crucial insight into

the performance of the proposed structure.

Using the DFT matrix for an M×M transformation A, with γ = e− j(2π/M),

A =
1√
M



















γ0·0 γ0·1 . . . γ0·(M−1)

γ1·0 γ1·1 . . . γ1·(M−1)

...
...

. . .
...

γ(M−1)·0 γ(M−1)·1 . . . γ(M−1)·(M−1)



















. (3.18)

Next, an analysis of the signal spectrum based on such a transformation
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matrix at different stages of the proposed structure is provided.

3.2.1 Spectrum analysis with DFT matrix

The input-output relationship in the frequency domain based on the DFT

matrix is studied in this section. Taking the discrete-time Fourier transform

(DTFT) of (3.5), (3.11) and (3.15) yields respectively,

q(Ω) = Ax(Ω), (3.19)

z(Ω) = Hq(Ω), (3.20)

x̂(Ω) = A−1z(Ω), (3.21)

where x(Ω), q(Ω), z(Ω) and x̂(Ω) are the vectors holding the DTFTs of

the time-domain signal vectors x[n], q[n], z[n] and x̂[n] respectively. H is

an M ×M real-valued diagonal matrix with its diagonal elements being

the frequency responses Hm(Ω) of the corresponding filters hm[n], m =

0, · · · ,M−1, i.e.,

H =



















H0(Ω) 0 . . . 0

0 H1(Ω) . . . 0

...
...

. . .
...

0 0 . . . HM−1(Ω)



















. (3.22)

Considering (3.19), (3.20) and (3.21) yields,

x̂(Ω) = A−1HAx(Ω). (3.23)

From (3.23), the transfer function of the system is:

T = A−1HA =
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A−1 1√
M



















H0(Ω)γ0·0 · · · H0(Ω)γ0·(M−1)

H1(Ω)γ1·0 · · · H1(Ω)γ0·(M−1)

...
. . .

...

HM−1(Ω)γ(M−1)·0 · · · HM−1(Ω)γ(M−1)·(M−1)



















. (3.24)

Then, all the elements of T (complex-valued, with size M ×M) can be

obtained. Considering the relationship between the terms, a general form

for the elements of T can be derived and the element at the i1-th row and

i2-th column is given by

Ti1,i2 =
1

M

M−1

∑
l=0

Hlγ
−li1γ li2 =

1

M

M−1

∑
l=0

Hlγ
l(i2−i1) . (3.25)

So,

x̂(Ω) = Tx(Ω). (3.26)

The spectrum of the noise at the output is in interest. The relationship

between the input and output signals’ spectrum is [56],

Sx̂(Ω) = TT∗(Ω)Sx(Ω), (3.27)

where the asterisk {·}∗ denotes the complex conjugate, and Sx̂(Ω) and

Sx(Ω) are M × M matrices, where each matrix element represents the

cross-spectral density of the two corresponding signals. Sx(i1, i2) is the

(i1, i2)-th element of Sx and it is the cross-spectral density between xi1[n]

and xi2[n]. It can be easily proved that the cross spectral density is equal to

the DTFT of the cross correlation function of the two signals [57]. Then,

Sx(i1, i2) = x∗i1(Ω)xi2(Ω). (3.28)
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A detailed proof for (3.28) is provided in the Appendix. Similarly, Sx̂(i1, i2)=

x̂∗i1(Ω)x̂i2(Ω).

Considering the noise part, the spectral density of the white noise is σ2
v ,

where σ2
v is the variance of the white noise. Since the white noise received

by each array sensor is uncorrelated, the noise spectral density of a sensor

is Sv(i1, i1) = σ2
v and the noise cross spectral density between two sensors

is Sv(i1, i2) = 0, the noise cross spectral density is the noise power shared

by a given frequency between two sensors. It needs to be emphasised that,

these assumptions are only valid in the presence of the white noise, and in

other cases these assumptions do not hold. So, the spectrum of the white

noise received by the array is:

Sv(Ω) = σ2
v



















1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1



















= σ2
v I , (3.29)

where I is the M×M identity matrix. Therefore, (3.27) can be written as

Sv̂(Ω) = TT∗(Ω)σ2
v I . (3.30)

Sv̂(Ω) is an M × M complex-valued matrix but with real values on the

diagonal. Each term of Sv̂(Ω) is given by:

Sv̂(i1, i2)(Ω) =
σ2

v

M

M−1

∑
l=0

Ti1,lT
∗

i2,l
. (3.31)

From (3.25) and (3.31),

Sv̂(i1, i2)(Ω) =
σ2

v

M

M−1

∑
l=0

Hl(Ω)e j 2π
M
(i1−i2)l. (3.32)
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Fig. 3.4: Power spectrum of the output of the noise reduction system with M=16.

The spectrum of the noise for M = 16 is shown in Fig. 3.4 in the ideal

case. The next step is to take the inverse DTFT from (3.32) to calculate the

correlation function in the time domain. The inverse Fourier transform of

(3.32) is:

Rv̂(i1,i2)(τ) = DTFT−1

{

σ2
v

M

M−1

∑
l=0

Hl(Ω)e j 2π
M
(i1−i2)l

}

=
σ2

v

M

M−1

∑
l=0

e j 2π
M
(i1−i2)lDTFT−1{Hl(Ω)} , (3.33)

where τ is an arbitrary delay and Rv̂(i1,i2)(τ) is the correlation function

between the filtered noise at the i1-th and the i2-th array elements after

applying the noise reduction method. As the only term which is a function

of frequency is Hl(Ω), the inverse DTFT only applies to this part. The

frequency response of a single high-pass filter has the same form as that

shown in Fig. 3.2b. To calculate DTFT−1{Hl(Ω)}, (3.33) can be written
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as

Rv̂(i1,i2)(τ) =
σ2

v

M

M−1

∑
l=0

π − Ω̂l,L

π
e j 2π

M
(i1−i2)le j

π+Ω̂l,L
2

τ sinc(
π − Ω̂l,L

2
τ), (3.34)

where π is the maximum normalised frequency and Ω̂l,L is the lower bound

frequency of the l-th high-pass filter as was previously shown in Fig. 3.2b.

The correlation values regarding different time delays can be calculated

from (3.34) and will be used to derive the theoretical performance results

for different wideband beamformers.

3.3 Performance Analysis of the Proposed Method for

Adaptive Wideband Beamforming

In this section, the performance of the proposed noise reduction method

for adaptive wideband beamforming is analysed.

3.3.1 Reference signal based adaptive beamformer

For the proposed noise reduction method, in the ideal case the directional

signals (desired and interference) remain intact and only the noise part is

reduced/changed. Then, the total signal vector x̂ corresponding to x after

noise reduction can be expressed as:

x̂ = xd +xi + x̂v , (3.35)

where x̂v is the part of x̂ corresponding to the reduced noise after the pro-

posed processing.
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Similarly, the correlation matrices ΦΦΦd and ΦΦΦi will remain the same af-

ter noise reduction, but the correlation matrix for the noise part will be

changed to ΦΦΦv̂ with size MJ×MJ. Then, the MJ ×MJ correlation matrix

ΦΦΦx̂ after noise reduction can be expressed as:

ΦΦΦx̂ =ΦΦΦd +ΦΦΦi +ΦΦΦv̂ . (3.36)

ΦΦΦv̂ can be obtained from (3.34) and partition it into M×M submatrices

(each submatrix is J× J),

ΦΦΦv̂ =













ΦΦΦv̂0,0
· · · ΦΦΦv̂0,M−1

...
. . .

...

ΦΦΦv̂M−1,0
· · · ΦΦΦv̂M−1,M−1













. (3.37)

where ΦΦΦv̂i1,i2
= E

[

x̂∗vi1
x̂T

vi2

]

. The delay between two adjacent taps in a TDL

is T0 =
πr

2Ω0
, where Ω0 is the normalised centre frequency and r is the num-

ber of quarter-wave delays in T0 at frequency Ω0. Hence the delay between

the i-th and the k-th taps is τ = (i− k)T0. Therefore, the correlation value
[

ΦΦΦv̂i1,i2

]

i,k
between the noise (after the proposed processing) at the i-th tap

of the i1-th element and that at the k-th tap of the i2-th element is given by

[

ΦΦΦv̂i1,i2

]

i,k
= E

[

v̂∗i1,i[n]v̂i2,k[n]
]

= Rv̂(i1,i2) [(i− k)T0] . (3.38)

From (3.34) and (3.38),

[

ΦΦΦv̂i1,i2

]

i,k
=

σ2
v

M

M−1

∑
l=0

π − Ω̂l,L

π
e j 2π

M
(i1−i2)le j

π+Ω̂l,L
2

(i−k)T0

× sinc(
π − Ω̂l,L

2
(i− k)T0) .

(3.39)
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Now all the correlation values required for calculating the wopt in (2.6)

is determined and the beamformer output y[n] is

y[n] = wT
opt x̂ , (3.40)

with its power given by

P =
1

2
E
[

‖y[n]‖2
]

=
1

2
wH

optΦΦΦx̂wopt . (3.41)

The output SINR is given by

SINR =
Pd

Pi +Pv̂
, (3.42)

where

Pd =
1

2
wH

optΦΦΦdwopt , (3.43)

Pi =
1

2
wH

optΦΦΦiwopt , (3.44)

Pv̂ =
1

2
wH

optΦΦΦv̂wopt . (3.45)

3.3.2 Linearly constrained minimum variance adaptive beamformer

In practice, the reference signal assumed in Section 2.2 may be unavail-

able. However, when some information on the DOAs as well as the band-

width limits of the desired signal and/or the interferences is available, the

LCMV beamformer can be employed for effective beamforming [2, 49].

The LCMV beamformer is formulated as follows (based on the recovered

signal x̂ after the proposed noise reduction method),

min
w

wHΦΦΦx̂w subject to CHw = f , (3.46)
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where w and ΦΦΦx̂ are defined as before in Section 2.2 and Section 3.3.1,

C is the MJ × J constraint matrix and f is the J × 1 response vector. The

solution to (3.46) can be obtained using the Lagrange multipliers method,

wopt =ΦΦΦ−1
x̂ C(CHΦΦΦ−1

x̂ C)−1f . (3.47)

Suppose the desired signal comes from the broadside, i.e., θd = 0◦.

Then, C and f have a very simple form, and they are same as (2.51) and

(2.52). With the optimal weight vector determined, the output SINR can

be obtained as in Section 2.2.

3.4 Compressive Sensing Based DOA Estimation

To further demonstrate the improved array processing performance with an

improved TSNR, the effect of the developed method on the performance

of the wideband DOA estimation problem is considered in this section by

employing a compressive sensing based method.

3.4.1 Introduction to compressive sensing

The DOA estimation techniques are widely used for different applications

such as radars. Most of the DOA estimation scenarios are sparse, since

only a small fraction of the azimuth-range or the elevation-range cells are

occupied by objects of interest. Therefore, compressive sensing (CS) [58,

59] is a suitable approach to solve the DOA estimation problem.
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By employing the compressive sensing it is possible to reconstruct a

sparse signal f from an under-determined linear system of equations Bf =

g. Assuming f is a sparse vector with length L, the number of non-zero

elements of f satisfies, ‖ f‖0 ≪ L, where ‖ · ‖0 denotes the l0 norm, which

is the number of non-zero elements of a vector. Assume B is a K × L

matrix of rank K, with K < L, so B is under-determined. f is considered to

be sparse, hence, it can be computed from,

min
f

‖f‖0

subject to Bf = g ,

(3.48)

which is a non-deterministic polynomial-time (NP) hard problem. There-

fore, solving (3.48) is not practically feasible. By using convex relax-

ation [60], also known as Basis Pursuit [61], the l0 norm in (3.48) is relaxed

by l1 norm. So, (3.48) is written as,

min
f

‖f‖1

subject to Bf = g ,

(3.49)

where ‖ ·‖1 denotes the l1 norm. (3.49) can be solved by convex optimiza-

tion methods [62]. Two conditions have to be satisfied, so that (3.49) can

be solvable. One condition is that B must satisfy the isotropy property,

which states that the components of each row of B have unit variance and

they are uncorrelated. Another condition is that B should have a small co-

herence. The coherence is defined as the maximum inner product between

normalised columns of B [63].
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The compressive sensing based DOA estimation method adopted in this

chapter is a direct adaptation and extension of the method developed in [29]

and [32] for co-prime arrays.

3.4.2 Signal model for DOA estimation

First, for the received vector signal in (3.4), it is divided into P non-

overlapping groups with length L, and an L-point DFT is then applied. The

l-th frequency bin samples of the p-th group are placed into one vector as:

X[l, p] = [X0[l, p],X1[l, p], · · · ,XM−1[l, p]]T , (3.50)

where

Xn[l, p] =
L−1

∑
i=0

xn[Lp+ i]e− j 2π
L

il, (3.51)

with p = 0, · · · ,P−1 and l = 0, · · · ,L−1.

Define S̄k[l, p] and Vm[l, p] as the DFT of the p-th group impinging sig-

nals s̄k[n] and noise vm[n], respectively. S̄[l, p] =
[

S̄0[l, p], · · · , S̄K−1[l, p]
]T

is a column vector holding signals from the l-th frequency bin, and V[l, p] =

[V0[l, p], · · · ,VM−1[l, p]]T is the column noise vector of the array. Then, the

output signal model in the DFT domain can be expressed as:

X[l, p] = D(l,θ)S̄[l, p]+V[l, p], (3.52)

where D(l,θ) = [d(l,θ0), ...,d(l,θK−1)] is the steering matrix at frequency

Ωl corresponding to the l-th frequency bin. The column vector d(l,θk) is

the steering vector at frequency Ωl and angle θk, which is given by

d(l,θk) =

[

1, e
− j d

cTs
Ωl sinθk , · · · , e

− j
(M−1)d

cTs
Ωl sinθk

]

. (3.53)
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By considering each frequency bin of interest separately, (3.52) is a nar-

rowband signal model.

3.4.3 Generating the virtual array

The auto-correlation matrix of the observed array vector X[l, p] is:

Rxx[l] = E
{

X[l, p]XH [l, p]
}

=
K−1

∑
k=0

σ2
k [l]d(l,θk)d

H(l,θk)+σ2
v [l]IM ,

(3.54)

where IM is the M×M identity matrix. σ2
k [l] represents the power of the k-

th impinging signal of the l-th frequency bin and σ2
v [l] is the corresponding

noise power. In practical applications, it can be assumed that,

Rxx[l] ≈
1

P

P−1

∑
p=0

X[l, p] ·XH [l, p], (3.55)

and it is assumed that the directional signals are wide-sense stationary.

Vectorising Rxx[l] yields:

u[l] = vec{Rxx}= D̃[l]s̃[l]+σ2
v ĨM , (3.56)

where D̃[l] = [d̃(l,θ0), · · · , d̃(l,θK−1)], d̃(l,θk) = d∗(l,θk)⊗d(l,θk) (⊗ is

the Kronecker product), and s̃[l] = {σ2
0 [l],σ

2
1 [l], · · · , σ2

K−1[l]}T . ĨM is an

M2 × 1 column vector obtained by vectorising the identity matrix IM. Eq.

(3.56) characterises a virtual array with D̃[l] and s̃[l] as its steering matrix

and impinging signal vector, respectively. Eq. (3.56) can be reduced to:

u[l] = D̃
◦
[l]s̃◦[l], (3.57)

where D̃
◦
[l] =

[

D̃[l], ĨM

]

and s̃◦ =
[

s̃T [l],σ2
v [l]

]T
.
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3.4.4 Narrowband DOA estimation

For the l-th frequency, with a search grid of Kg potential arriving angles

(θg,0, · · · ,θg,Kg−1) , the steering matrix is

D̃g[l] =
[

d̃(l,θg,0), · · · , d̃(l,θg,Kg−1)
]

. (3.58)

Constructing a column vector s̃g[l] consisting of Kg elements, with each

representing a potential arriving signal, yields

D̃
◦
g[l] =

[

D̃g[l], ĨM

]

; s̃◦g[l] =
[

s̃g[l],σ
2
v [l]

]T

. (3.59)

Since noise power is not known, σ2
v [l] is also considered to be a variable.

In [29], a compressive sensing based DOA estimation was proposed for co-

prime arrays, which can be applied directly for the ULA case. Therefore,

for the l-th frequency bin, the narrowband DOA estimation is formulated

as:

min
s̃◦g[l]

∥

∥s̃◦g[l]
∥

∥

1

subject to
∥

∥u[l]− D̃
◦
g[l]s̃

◦
g[l]

∥

∥

2
≤ ε ,

(3.60)

where ε denote the error bound.

3.4.5 Wideband DOA estimation

The narrowband DOA estimation in (3.60) can be used for wideband case

by applying the estimation to each frequency bin, and then averaging the

results.

For each frequency bin, the impinging signals have the same spatial

characteristics, although the amount of power regarding each DOA might
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be different. This is known as the group sparsity concept [64, 65]. There-

fore, a more effective alternative is to apply the DOA estimation over the

frequency range of interest simultaneously.

It is assumed Q frequency bins are covering the frequency range of

interest in the DFT domain, where Q ≤ L, and the same search grid Kg is

assumed for each frequency bin lq, 0 ≤ q ≤ Q−1.

Two matrices should be constructed here, a block diagonal matrix D̄g

using D̃
◦
g[lq],

D̄g = blkdiag{D̃
◦
g[l0],D̃

◦
g[l1], · · · ,D̃

◦
g[lQ−1]} , (3.61)

and a (Kg+1)×Q matrix R using s̃◦g[lq] with R=
[

s̃◦g[l0], s̃
◦
g[l1], · · · , s̃◦g[lQ−1]

]

.

Then, the following wideband virtual array model ũ= D̄gr̃ can be obtained,

where ũ =
[

uT [l0], · · · ,uT [lQ−1]
]T

and r̃ = vec(R) is a (Kg+1) ·Q×1 col-

umn vector by vectorising R. The row vector rk, 0 ≤ k ≤ Kg, is used to

represent k-th row of matrix R. Then, a new (Kg +1)×1 column vector r̂

is formed based on the l2 norm of rk, 0 ≤ k ≤ Kg, as given below

r̂ =
[

‖r0‖2 ,‖r1‖2 , · · · ,
∥

∥rKg

∥

∥

2

]T
. (3.62)

Finally, the group sparsity based wideband DOA estimation is formulated

as follows

min
r̃

‖r̂‖1

subject to
∥

∥ũ− D̄gr̃
∥

∥

2
≤ ε .

(3.63)

The problem in (3.63) can be solved using CVX, a software package for

specifying and solving convex programs [66,67]. The steps for calculating
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the narrowband DOA estimation is provided in Algorithm 1, and the steps

for calculating the wideband DOA estimation is provided in Algorithm 2.

The idea is to process the signal using the proposed noise reduction

method and then applying the DOA estimation. The noise reduction method

does not affect the directional signal, but it increases the input TSNR by

reducing the white noise. Therefore, it is expected that by applying the

noise reduction method, the conditions of the DOA estimation convergence

should not change considerably. Since the TSNR is increased, higher ac-

curacy in DOA estimation is expected. One idea is to analyse the impact

of the noise reduction method by analysing its effect on the Cramer-Rao

bound (CRB) [68]. Analysing the exact impact of the precessed noise on

the accuracy of the DOA estimation is quite complicated, and it is the scope

of future research.

Algorithm 1: Narrowband DOA estimation

Input : X[l, p],ε,Kg

Output : s̃◦g[l]

Calculate : D̃g[l] =
[

d̃(l,θg,0), · · · , d̃(l,θg,Kg−1)
]

D̃
◦
g[l] =

[

D̃g[l], ĨM

]

Rxx[l] =
1
P ∑P−1

p=0 X[l, p] ·XH [l, p]

u[l] = vec{Rxx}

Begin CVX:

min
s̃◦g[l]

∥

∥s̃◦g[l]
∥

∥

1

subject to
∥

∥u[l]− D̃
◦
g[l]s̃

◦
g[l]

∥

∥

2
≤ ε

Return : s̃◦g[l]
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Algorithm 2: Wideband DOA estimation

Input : X[l, p],ε,Kg

Output : r̂

for l=0:Q-1 do

D̃g[l] =
[

d̃(l,θg,0), · · · , d̃(l,θg,Kg−1)
]

D̃
◦
g[l] =

[

D̃g[l], ĨM

]

Rxx[l] =
1
P ∑P−1

p=0 X[l, p] ·XH [l, p]

u[l] = vec{Rxx}
end

Calculate : ũ =
[

uT [l0], · · · ,uT [lQ−1]
]T

D̄g = blkdiag{D̃
◦
g[l0], D̃

◦
g[l1], · · · , D̃

◦
g[lQ−1]}

Begin CVX:

min
r̃

‖r̂‖1

subject to
∥

∥ũ− D̄gr̃
∥

∥

2
≤ ε

Return : r̂
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Fig. 3.5: The frequency response of the 16×16 DFT matrix.

3.5 Simulation Results

The simulation results are based on a 16-sensor (M = 16) ULA and the

desired signal arrives from the broadside (θd = 0◦). The received signals

are processed by the 16× 16 DFT-based transformation matrix, and its

frequency response is shown in Fig. 3.5. Consider the frequency response

of one of its row vectors shown in Fig. 3.6. The beam response of this row

vector with respect to normalised signal frequency Ω and DOA angle θ is

shown in Fig. 3.7. The high-pass behaviour can be seen clearly from this

beam pattern.

Then, the transformed signals pass through the corresponding high-pass

filters. It has been assumed that the high-pass filters have an ideal brick-

wall shape response and to have a close approximation, linear-phase 101-

tap FIR filters with a common delay of 50 samples are employed, and their

frequency response is shown in Fig. 3.8.
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Fig. 3.6: Frequency response of an example band-pass filter with M=16.
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Fig. 3.7: Frequency response of the resultant beamformer with respect to normalised

signal frequency and DOA angle, when applying the filter coefficients in Fig. 3.6 to the

received array signal.
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Fig. 3.8: Frequency response of the 16 linear-phase 101-tap FIR high-pass filters.

The 3D beam pattern of a sample row vector with respect to normalised

signal frequency Ω and DOA angle θ before and after high-pass filtering

is shown in Fig. 3.9.

3.5.1 The effect of the method on noise and directional signals

To see the effect of the whole system on noise, spatially and temporally

white noise at the array sensors is generated with unit power. The power

spectrum density of noise before and after the proposed noise reduction

process is shown in Fig. 3.10a and Fig. 3.10b, respectively. It can be seen

that the noise power has been reduced significantly at lower frequencies,

while for higher frequencies, the reduction becomes less and less. Overall

the power of noise has been reduced clearly.

For the received directional signals, as discussed before, there should

not be any change after the proposed processing in the ideal case. However,
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(a) Before high-pass filtering.
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(b) After high-pass filtering.

Fig. 3.9: The beam pattern of a sample row vector before and after high-pass filtering

(ULA, M=16).
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(a) Power spectrum density of noise before processing.
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(b) Power spectrum density after processing.

Fig. 3.10: The power spectrum density of the spatially and temporally white noise before

and after processing (M=16).
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the response of the row vectors of the transformation is not ideal and as a

result, a small amount of the directional signals will exist at the lower side-

lobe region and it will be removed by the following high-pass filters.

In order to show this effect, a wideband signal with unit power is applied

to the array from the broadside. The number of signals N sampled in the

time domain at each sensor is 32768. The MSE for the directional signals

before and after the proposed processing is calculated by,

MSE =
1

MN

M−1

∑
m=0

N−1

∑
n=0

(xm[n]− x̂m[n])
2 . (3.64)

The results for different array size (M) are shown in Table 3.1, where it

can be seen that the effect on the directional signal can be ignored for

M > 16. Therefore, the directional signal is recovered with less distortion

by increasing M, since by increasing the array size, less signal is available

in the side-lobes which will be removed by the corresponding high-pass

filters.

The output noise power Pvo to the input noise power Pvi is calculated

and presented in Table 3.2. It can be seen that the power ratio which is pre-

sented in (3.14) is getting closer to the ideal case of -3 dB, as M increases.

Therefore, larger array size M results in having a better recovery of the

directional signal, and having a more effective white noise reduction.
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M MSE

10 0.0339

16 0.0205

20 0.0114

30 0.0069

40 0.0023

Table 3.1: MSE for the directional signal.

M Pvo/Pvi(dB) ideal Pvo/Pvi(dB)

10 -2.21 -2.26

16 -2.41 -2.53

20 -2.52 -2.62

30 -2.65 -2.74

40 -2.79 -2.80

Table 3.2: Power loss for the white noise.

3.5.2 The effect of the method on beamforming performance

The effect of the proposed method on the performance of both the RSB

and the LCMV beamformers is examined here.

A desired band-limited wideband signal with bandwidth of [0.3π : π ] is

received by the M = 16 array sensors from the broadside. An interfering

signal with the same bandwidth and a -10 dB signal-to-interference ratio

(SIR) arrives with a varying DOA angle. The received array signals are

processed by the proposed noise reduction method and then the recovered

array signals with an increased SNR are used as input to the beamformer.
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The input SNR is 0 dB and the TDL length is J = 100.

The output SINR performances of both beamformers with and without

the proposed pre-processing are compared in Fig. 3.11 as a function of the

DOA angle θi of the interfering signal, where the theoretical value is based

on the result derived in Sec. 3.3. It can be seen that the simulation result

matches the theoretical one very well. With the change of the direction of

the interfering signal, except for the region where DOA of the interfering

signal is very close to the desired signal, an almost constant improvement

of about 2 dB can be observed.

It is also important to analyse how the output SINR performance of

the proposed method varies with different input SNRs. Seven interfering

signals are applied to the system, each with a -10 dB input SIR, and their

DOAs are θi = 10◦,20◦,30◦,40◦,50◦,60◦ and 70◦, respectively. All the

other settings are the same as before. The results are shown in Fig. 3.12. As

expected, a higher output SINR has been achieved by the proposed method

for both beamformers especially when the input SNR is larger than -10 dB

and generally the improvement becomes larger when input SNR increases.

In general, the theoretical results should be the best one, but it can be

seen in Fig. 3.11 and Fig. 3.12 that the simulated results are better than the

theoretical results. The reason is that the band-pass response of the row

vectors of the transformation is not ideal and therefore, the directional sig-

nal components which are available in the lower side-lobes are removed

by the high-pass filters. So, the interfering signals are going to be slightly
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Fig. 3.11: SINR performance of both beamformers with and without the proposed noise

reduction (NR) method (M=16, J=100).
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Fig. 3.12: SINR performance of both beamformers with and without the proposed noise

reduction method with regard to input SNR (M=16, J=100).
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distorted, which contributes in the performance improvement of the beam-

former. In the theoretical case, this distortion to interferences are not con-

sidered, and it is assumed that the interference after the pre-processing is

exactly the same as before the processing, and only the effect of the method

on the white noise is considered. Thus, the simulated results are showing

a higher output SINR.

3.5.3 The effect of the method on DOA estimation performance

There are 12 band-limited impinging signals with a normalised frequency

range from 0.5π to π and 0 dB SNR, and their DOAs are uniformly dis-

tributed between -60 to 60 degrees. The number of signals sampled in

the time domain at each sensor is 32768, and a DFT of L = 64 points is

applied. The number of data blocks used for estimating Rxx[l] in (3.54)

at each frequency bin is P = 512. The search grid is formed to cover the

full DOA range with a step size of 0.05◦. By applying the proposed noise

reduction method, 2.41 dB improvement in SNR is achieved.

The DOA estimation results with and without noise reduction are shown

in Fig. 3.13, where it can be seen that in Fig. 3.13a there are a few false

directions detected and the results are not as accurate as Fig. 3.13b when

the proposed noise reduction method is used.

To compare the performance with more accuracy the root mean square

error (RMSE) for the DOA estimation result with respect to different SNRs

is shown in Fig. 3.14. The results are averaged from running the simulation



3.5. Simulation Results 65

−80 −60 −40 −20 0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

θ: Degrees

N
o
rm

al
is

ed
 S

p
ec

tr
u
m

(a) Without white noise reduction.

−80 −60 −40 −20 0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

θ: Degrees

N
o
rm

al
is

ed
 S

p
ec

tr
u
m
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Fig. 3.13: DOA estimation results with and without the proposed white noise reduction.

100 times. It can be clearly seen that using the developed noise reduction

method, the DOA estimation result has been improved significantly over

the whole considered input SNR range.
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Fig. 3.14: RMSE vs input SNR.

3.6 Summary

In this chapter, a method for reducing the white noise level in wideband

ULAs has been introduced. Initially, the general structure of the proposed

method was explained, and each stage of the structure was analysed. It was

shown that considering the array size is very large M → ∞, a maximum of

3 dB improvement in TSNR can be achieve.

Since the DFT matrix is unitary, and it has good side-lobe attenuation, it

was used as the transformation matrix. Then, the transfer function for the

method was derived, and later, it was used to analyse the power spectrum

and the auto-correlation of the noise after being processed.

Next, the performance of the proposed noise reduction method for adap-

tive wideband beamformers was analysed, considering the change in the

correlation matrix of the noise. Then, as another example of the array sig-

nal processing applications, a compressive sensing based DOA estimation
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for was reviewed.

In the simulation section, the effect of the method on the directional sig-

nal, and white noise presented. Then, the SINR performance of the RSB

and LCMV beamformers with and without the noise reduction method was

demonstrated, which confirmed the increased output SINR for beamform-

ers using the proposed method. Also, simulation results showed an im-

provement in the accuracy of the compressive sensing based DOA estima-

tion.



Chapter 4

Extension of the Noise Reduction

Method for Non-uniform Linear Arrays

In Chapter 3, a method was developed for reducing the effect of white noise

in wideband ULAs via a combination of a judiciously designed transforma-

tion followed by high-pass filters to improve the performance for wideband

beamforming and DOA estimation. In this chapter, that idea is extended

to non-uniform linear arrays (NLAs) and as a result, the transformation is

re-designed using the least squares method to adjust the noise reduction

method for the non-uniform sensor layout of NLAs.

To make sure the transformation is invertible, a prototype filter is first

designed and then modulated to different subbands to cover the full nor-

malised frequency band from −π to π . The diagonal loading method is

used to keep the condition number to a low level [69]. Similar to the ULA

case, the overall SNR of the system can be improved by up to 3 dB, which

then leads to performance enhancement for beamforming as demonstrated

68
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using two well-known adaptive beamformers, namely the RSB [70,71] and

the LCMV beamformers [2, 49].

The contents of this chapter is published in [50] and is also presented at

a conference [72].

4.1 The Proposed White Noise Reduction for Non-uniform

Linear Arrays

The general structure of the proposed method for NLAs is same as the

general structure for ULAs, as presented in Fig. 3.1. M array signals

xm[n],m = 0, · · · ,M − 1, are received by the NLA sensors. Then, the re-

ceived array signals are transformed by an M×M transformation A. Next,

the transformed signals qm[n],m = 0, · · · ,M − 1, are passed through the

corresponding high-pass filters hm[n],m = 0, · · · ,M−1. Finally, the high-

pass filtered signals zm[n],m = 0, · · · ,M − 1 are block-transformed by the

inverse of the transformation A−1.

The signal model is similar to the ULA case, and it can be presented

by (3.1)–(3.4). By applying the M×M transformation to the signal vector

x[n], the output signal vector is obtained as (3.5). Each row vector of A acts

as a simple beamformer, with its output same as (3.6). The beam response

Rm(Ω,θ) of this beamformer for the NLA structure is given by:

Rm(Ω,θ) =
M−1

∑
l=0

am,le
− j

dl
cTs

(Ωsinθ) = Am(Ωsinθ), (4.1)

where dl is the spacing between the zero-th sensor and the l-th sensor
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(where d0=0). Therefore, considering Ω̂ = Ωsinθ ,

Am(Ω̂) =
M−1

∑
l=0

am,le
− j

dl
cTs

Ω̂, (4.2)

where Am(Ω̂) is the frequency response of the m-th row vector of the trans-

formation matrix A, considering each row vector as the impulse response

of an FIR filter. The frequency responses Am(Ω̂),m = 0, · · · ,M−1, are set

to have band-pass characteristics, each with a bandwidth of 2π/M. Over-

all, the row vectors of A cover the entire normalised frequency band of

[−π : π ].

By considering the entire range of the DOA θ of the received sig-

nals, the row vectors of A have high-pass filtering behaviour as explained

in Sec. 3.1. According to the general structure in Fig. 3.1, each high-

pass filter hl[n], l = 0, · · · ,M − 1, processes its corresponding input ql[n],

l = 0, · · · ,M−1. The high-pass filters have the same high-pass frequency

response as their corresponding row vectors of the transformation A, and

they cover the entire bandwidth of the directional signal. Therefore, in the

ideal case, the directional signal is not affected by any distortion after be-

ing processed by the high-pass filters. On the contrary, the high-pass filters

remove parts of the white noise which fall into their stop-band.

The output of the aforementioned high-pass filters which is denoted

by zl[n], l = 0, · · · ,M− 1, is then processed by the inverse transformation

A−1, and the original array signals will be recovered without any distor-

tion in the ideal case, while the noise power will be reduced leading to an
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improved overall SNR. Following the same analysis for the ULA, as dis-

cussed in Sec. 3.1, when A is unitary, up to 3 dB total SNR improvement

can be achieved by the proposed method. Although, in practice, the TSNR

improvement will be less than 3 dB, due to limited number of sensors and

difficulty in designing a unitary transformation matrix with the required

band-pass responses for the NLA case.

The transformation matrix A is required to be unitary to make sure that

the row vectors of both A and A−1 have unity norm and preserve the signal

power after transforming the signal and also after transforming the signal

back. If the transformation is not unitary, the noise might be amplified sig-

nificantly during the process, even if some of it has been removed by high-

pass filters, which subsequently leads to a reduced output SNR. Moreover,

a unitary transformation ensures that A is of full rank.

In the next section, the design of the transformation for NLAs is pre-

sented, with required band-pass characteristics.

4.2 Least Squares Based Design for the Transformation

Matrix

As an example for a unitary matrix with a good band-pass response, the

DFT matrix in the ULA case is considered in this section. However, the

DFT matrix is not applicable for the NLA case, since it does not have a

uniform spacing, and the resultant beams by each row vector of such a
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transformation will be significantly distorted.

Therefore, a different approach for designing the transformation ma-

trix is used for NLAs by introducing a least squares based design method

here. The idea is to use an ideal unitary beam response such as those of a

DFT matrix as the reference response for the least squares method to de-

sign a prototype filter p (where [p]l = pl, l = 0, · · · ,M − 1), and then it is

modulated into different subbands in a uniform way to form the required

transformation matrix.

The least squares filter design method has been well studied in the

past [2, 73]. Given the desired beam pattern Pd(Ω̂) and considering d(Ω̂)

as the steering vector of the NLA,

d(Ω̂) =

[

1, e
− j

d1
cTs

Ω̂, · · · , e
− j

dM−1
cTs

Ω̂

]

, (4.3)

the problem can be solved by minimising the sum of squares of the error

between Pd(Ω̂) and the designed response P(Ω̂) over the frequency range

of interest, i.e.,

min
p

∑ |P(Ω̂)−Pd(Ω̂)|2. (4.4)

Minimising the above cost function with respect to the coefficients vec-

tor p gives the standard least squares solution,

popt = G−1
ls gls, (4.5)

with

Gls = ∑
Ω̂pb

d(Ω̂)dH(Ω̂),
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gls = ∑
Ω̂pb

(dR(Ω̂)Pd,R(Ω̂)+dI(Ω̂)Pd,I(Ω̂)),

where dR(Ω̂) and Pd,R(Ω̂) denote the real parts of d(Ω̂) and Pd(Ω̂), and

dI(Ω̂) and Pd,I(Ω̂) are their imaginary parts.

Then, p is modulated to different subbands to cover the whole nor-

malised frequency band,

Am,l = e
− j 2π

M
m

dl
cTs pl, (4.6)

where m = 0, · · · ,M−1, l = 0, · · · ,M−1.

At this stage, if the condition number of the resultant transformation

matrix is high, the diagonal loading method [69] can be used to reduce the

condition number,

AL = A+αI , (4.7)

where α is a constant representing a small loading level.

Note that the transformation matrix obtained by the above procedure

will not be unitary in general and how to design a unitary matrix for NLAs

with the required band-pass filtering effect is still an open problem for

the future research work. However, it is shown in the simulation that the

transformation matrix obtained from the above procedure works well to

some degree and provides a clear performance improvement.
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4.3 Simulation Results

These simulation results are based on an M = 15 NLA example provided

in [74], with the sensor locations listed in Table 4.1, where λ is the wave-

length associated with the normalised frequency Ω= π . The 15×15 trans-

formation matrix is obtained by the design procedure described in Sec. 4.2,

and its frequency response is shown in Fig. 4.1. The other settings are the

same as in the ULA case.

n 1 2 3 4 5

dn/λ 0 0.81 1.62 2.42 3.28

n 6 7 8 9 10

dn/λ 4.09 4.24 5.00 5.81 5.96

n 11 12 13 14 15

dn/λ 6.72 7.58 8.38 9.19 10

Table 4.1: Sensor locations for the wideband NLA example.

The received signals are processed by the designed sparse transforma-

tion matrix and then pass through the high-pass filters. For high-pass fil-

ters, 101-tap linear-phase FIR filters with a common delay of 50 samples

are employed same as ULA. Then, the signals are transformed back by

inverse of the transformation matrix.

The effect of the proposed method on the performance of both the RSB

beamformer and the LCMV beamformer is examined. A desired band-

limited wideband signal with a bandwidth of [0.3π : π ] is received by the

previously mentioned NLA from the broadside. Same as the ULA case,
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Fig. 4.1: Frequency response of the row vectors of the 15×15 designed transformation

matrix for NLAs.

seven interfering signals are applied to the system, each with a -10 dB

input SIR and their DOAs are θi = 10◦, 20◦, 30◦, 40◦, 50◦, 60◦ and 70◦,

respectively. A TDL length of J = 100 is used for these beamformers [2].

The results are shown in Fig. 4.2, and it can be seen that a higher output

SINR is achieved by the proposed method for both beamformers, espe-

cially when the input SNR is larger than 0 dB and generally the improve-

ment becomes larger when input SNR increases. However, compared to

the ULA case, for input SNR smaller than 0 dB, there is not as much im-

provement. Moreover, the improvement becomes smaller when the input

SNR is roughly larger than 25 dB, which is difficult to explain. After

checking the designed transformation matrix, it is been found that it is far

away from being unitary and has a large condition number, which could

be the reason for such a behaviour. A method for reducing the condition
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number even further is introduced in Sec. 4.4 but as mentioned at the end of

Sec. 4.2, further research is needed for designing a unitary transformation

matrix for NLAs with the desired frequency responses.

4.4 Fixing Ill Conditioned Transformation Matrix With

Singular Value Decomposition

It has been mentioned before that, it is important that the transformation

matrix is well conditioned and ideally unitary. A well conditioned matrix

has a low condition number. In section 4.2, the least squares method is

used to design a transformation for NLAs by employing the least squares

filter design method, and then using the diagonal loading method, the con-

dition number of the transformation is reduced. As it was seen in previous

section, an improvement in the performance of the NLAs was achieved but

for low input SNRs the performance was not satisfactory and by analysing

the transformation, it was realised that the condition number of the trans-

formation is still high (around 9). In this section, the singular value decom-

position (SVD) is used to decompose the transformation and subsequently

to modify the transformation to be well-conditioned and as close to unitary

as possible by replacing the low value singular values.

An M ×M transformation matrix A is assumed, which is not unitary.

The SVD of A is

A = UΣVH , (4.8)
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Fig. 4.2: SINR performance of both beamformers with and without the proposed noise

reduction method for the NLA.
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where U and V are M×M unitary matrices and Σ is a diagonal rectangular

M×M matrix with singular values σi, i = 0, · · · ,M−1, on the diagonal.

The condition number of a matrix is the largest singular value divided

by the smallest one:

κ =
σ0

σM−1
. (4.9)

Therefore, small singular values result in a large condition number.

The unitary matrix B which minimises ||A−B||2F is B = UVH , where

||.||F defines the Frobenius norm, and therefore, the closest unitary matrix

to A is B [75,76]. This is actually, equal to replacing all the singular values

with 1, σi = 1, i = 0, · · · ,M−1.

The problem with this method is that, if all singular values are replaced

with 1, the beam-pattern of the row vectors of the transformation may be

changed significantly. Therefore, it is not suitable for transforming the

signal, although the transformation is unitary.

The alternative approach is to replace the singular values smaller than

a threshold value. Using this method, the condition number is reduced but

the singular values which are bigger than the threshold are kept the same.

4.4.1 Simulation

As an example, the NLA case which was mentioned before is considered,

the threshold is set to 0.5, and all the (σi, i = 0, · · · ,M − 1) ≤ 0.5 are re-

placed with 0.5. After replacing the small singular values, the condition

number is reduced to 2.45, which is much better than 9 achieved by the
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diagonal loading previously. In order to analyse the effect on the beam pat-

tern, the side-lobe attenuation and 3 dB beamwidth are calculated before

and after the singular value modification of the transformation. The aver-

age 3 dB beamwidth before the modification is 0.162 in the normalised fre-

quency. The average 3 dB beamwidth after the modification is also 0.162,

and therefore, there is no change in 3 dB beamwidth. Moreover, The aver-

age side-lobe attenuation before the modification is 12.59 dB, and after the

modification is 12.73 dB. So, there is no major change in the beam-pattern

for the transformation, and the proposed modification method works quite

well.

Next, the performance of the noise reduction method is analysed with

the modified transformation with low condition number, when used as a

pre-processing step for TDL beamformers. The NLA array structure has

15 sensors (M = 15) and the desired signal arrives from the broadside

(θd = 0◦). The transformation is a 15× 15 matrix obtained by the modi-

fied design procedure described. For high-pass filters, 101-tap linear-phase

FIR filters with a common delay of 50 samples are employed. A desired

band-limited wideband signal with a bandwidth of [0.3π ,π ] is received by

the aforementioned NLA from the broadside. Four interfering signals are

applied to the system, each with a -20 dB input SIR and their DOAs are

θi = 10◦,30◦,50◦,70◦, respectively. A tapped delay line with length J = 5

is used for these beamformers. Fig. 4.3, illustrates the performance of the

two well-known RSB and LCMV beamformers when used with and with-
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out the modified noise reduction method. It is clear that for both RSB and

LCMV beamformers the performance of the beamformer with the modi-

fied noise reduction pre-processing is increased significantly.

4.5 Summary

In this chapter, the noise reduction method introduced in Chapter 3 was

re-designed based on the structure of NLAs. Same as the ULA case, a

maximum of 3 dB improvement in output TSNR was achieved. This TSNR

improvement leads to possible performance enhancement in many array

signal processing applications.

Due to the non-uniform spacing of the NLA, the resultant beam-patterns

of the row vectors are significantly distorted. Therefore, the DFT matrix

is not applicable. The least squares method was used for re-designing the

transformation for NLA. The beam response of DFT matrix was used as

the reference response for the least squares method to design a prototype

filter, and then the prototype was modulated to different subbands to form

the transformation matrix.

Diagonal loading method was used to reduce the condition number of

the designed transformation, and simulation results presented an improve-

ment in output SINR performance for the RSB and LCMV beamformers,

when the noise reduction method is used as a pre-processing step.

Later, the SVD was used to decompose the transformation. By replac-
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Fig. 4.3: SINR performance of both beamformers with and without the modified noise

reduction (NR) methods for the NLA.
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ing the low value singular values, the transformation was modified to be

well-conditioned and as close to unitary as possible. The simulation re-

sults showed a steady improvement for RSB and LCMV beamformers for

a wide range of input SNRs from -20 dB to 30dB.

In the following chapter transformation is re-designed for the structure

of planar arrays.



Chapter 5

Extension of the Method to Planar

Arrays

In Chapter 3, a method was developed for reducing the effect of white noise

in wideband ULAs via a combination of a judiciously designed transforma-

tion followed by high-pass filters to improve the performance for wideband

beamforming and DOA estimation. In this chapter, the idea is extended to

the case of planar arrays, and focus on two major types of planar arrays,

namely, uniform rectangular arrays (URAs) [77, 78] and uniform circular

arrays (UCAs) [79, 80]. As a result, the transformation matrix has to be

re-designed to adjust the noise reduction method to the structure of URAs

and UCAs.

In particular, two noise reduction methods are introduced in this chapter

for URAs and for each one, a different transformation is designed. The first

method is based on a two-dimensional (2D) transformation. The second

method is an adaptation of the method introduced in Chapter 3, which

83
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is based on one-dimensional (1D) transformation of the signals received

by the URA. The transformations must be invertible and ideally, unitary.

As representative examples for unitary transformations, 2D-DFT (discrete

Fourier transform) and 1D-DFT are used in simulation.

Later, a method is introduced for the UCAs based on a 1D transforma-

tion. The transformation is re-designed for the UCA structure, by changing

the modulation of the prototype filter to match the structure of the UCA.

All the methods can increase the overall signal-to-noise ratio (SNR) of

the array. This improvement leads to performance enhancement of var-

ious array signal processing applications such as beamforming, which is

demonstrated by simulation using two well-known adaptive beamformers,

namely the RSB [39, 40], and the LCMV beamformers [2, 49].

Part of the contents of this chapter was presented at a conference [81].

5.1 White Noise Reduction for URAs with a 2D Transfor-

mation

The linear arrays are used to resolve the azimuth angle θ of the received

signal, whereas the URA allows to resolve the elevation angle φ in addition

to the azimuth angle θ [82]. Both structures are widely used for developing

different smart antennas.

The structure of a URA is shown in Fig. 5.1, and a block diagram for

the general structure of the proposed noise reduction method is shown in
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Fig. 5.1: The structure of a URA, where a signal impinges from azimuth angle θ and

elevation angle φ .

Fig. 5.2. Suppose there are M sensors along the x-axis and N sensors

along the y-axis. The received array signals xm,l[n], m = 0, . . . ,M − 1,

l = 0, . . . ,N − 1, are first transformed by a 2D transformation and then

its outputs qm,l[n],m = 0, · · · ,M−1, l = 0, · · · ,N−1, pass through a set of

high-pass filters with impulse responses given by hm,l[n],m = 0, · · · ,M−1,

l = 0, · · · ,N−1. The outputs of the high-pass filters zm,l,m = 0, · · · ,M−1,

l = 0, · · · ,N−1, are then transformed by the inverse of the 2D transforma-

tion.

There are two components for the received array signal xm,l[n] at the

(m, l)-th sensor: the directional signal part sm,l[n] and the white noise part

vm,l[n], i.e.,

xm,l[n] = sm,l[n]+ vm,l[n] . (5.1)
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Fig. 5.2: A block diagram of the proposed noise reduction method based on a 2D trans-

formation.

The complete M×N signal matrix X[n] can be expressed as

X[n] = S[n]+V[n] , (5.2)

where

X[n] = [x0[n],x1[n], · · · ,xN−1[n]] ,

S[n] = [s0[n],s1[n], · · · ,sN−1[n]] ,

V[n] = [V0[n],V1[n], · · · ,VN−1[n]] .

and

xl[n] = [x0,l[n],x1,l[n], · · · ,xM−1,l[n]]
T ,

sl[n] = [s0,l[n],s1,l[n], · · · ,sM−1,l[n]]
T ,

Vl[n] = [v0,l[n],v1,l[n], · · · ,vM−1,l[n]]
T ,

with l = 0,1, · · · ,N −1.

In this method, the array signal X[n], which is received by an M ×N

URA, is transformed with a 2D unitary transformation. The output matrix
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Q[n] of the transformation is [7, 83],

Q[n] = AX[n]B, (5.3)

where A and B are M×M and N×N transform matrices, respectively, and

they are assumed to be unitary and together form the 2D transformation.

The element of A at the m-th row and i-th column is denoted by am,i,

i.e., [A]m,i = am,i, and the element of B at the k-th row and l-th column

is denoted by bk,l, i.e., [B]k,l = bk,l. Each pair of a row vector of A and

a column vector of B acts as a simple beamformer, and its output qm,l is

given by

qm,l[n] =
M−1

∑
i=0

N−1

∑
k=0

am,ibk,lxi,k[n] . (5.4)

The beam response Rm,l(Ω,θ ,φ) of this beamformer as a function of

the normalised frequency Ω, azimuth angle θ and elevation angle φ is [84]

Rm,l(Ω,θ ,φ) =
M−1

∑
i=0

N−1

∑
k=0

am,ibk,le
− jΩsinθ(iµx cosφ+kµy sinφ) , (5.5)

where µx =
dx

cTs
, µy =

dy

cTs
and Ω = ωTs, with c being the wave propagation

speed, Ts the sampling period, dx and dy the array spacings along the x-axis

and y-axis, and ω the angular frequency of signals.

With Ω1 = µxΩsinθ cosφ and Ω2 = µyΩsinθ sinφ ,

Am,l(Ω1,Ω2) =
M−1

∑
i=0

N−1

∑
k=0

am,ibk,le
− jiΩ1− jkΩ2 , (5.6)

where Am,l(Ω1,Ω2) is the frequency response of the pair of the m-th row

vector of the transformation matrix A and the l-th column vector of the
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transformation B, considering each row vector and column vector pair as

defining the impulse response of a separable 2D FIR filter.

Equation (5.6) can be rearranged as

M−1

∑
i=0

am,ie
− jiΩ1

N−1

∑
k=0

bk,le
− jkΩ2 = Am(Ω1)Al(Ω2) , (5.7)

where Am(Ω1) is the frequency response of the m-th row vector of the

transformation matrix A and Al(Ω2) is the frequency response of the l-

th column vector of the transformation matrix B. By substituting Ω1 =

µxΩsinθ cosφ and Ω2 = µyΩsinθ sinφ in (5.7) and considering (5.5),

Rm,l(Ω,θ ,φ) = Am(µxΩsinθ cosφ)Al(µyΩsinθ sinφ) . (5.8)

So, the beam pattern of the (m,l)-th 2D transformation is the frequency

response of the m-th row vector of A multiplied by frequency response of

the l-th column vector of B.

By assuming that the sampling frequency is twice the highest frequency

component of the wideband signal and the array spacings (dx, dy) are half

the wavelength of the highest frequency component, hence µx = µy = 1 [2].

The frequency responses Am,l(Ω1,Ω2),m = 0, · · · ,M−1, l = 0, · · · ,N −1,

are arranged to be band-pass, each with a bandwidth of 2π/M for Ω1 and

2π/N for Ω2 in the normalised 2D frequency domain. The row vectors

of A and column vectors of B all together cover the whole 2D frequency

band, which is Ω1,Ω2 ∈ [−π : π ]. An ideal example of the 2D band-pass

filter responses in the 2D frequency domain is shown in Fig. 5.3.

The 2D band-pass filters have a high-pass filtering effect on the received
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Fig. 5.3: Frequency responses of the 2D transformation applied to an M×N URA.

array signals. Taking the pair of the m-th row vector of A and the l-th

column vector of B as an example, its frequency repsonse is

∣

∣Am,l(Ω1,Ω2)
∣

∣=























1, for Ω1 ∈ [Ω1(m,L);Ω1(m,U)]

& Ω2 ∈ [Ω2(l,L);Ω2(l,U)]

0, otherwise.

(5.9)

Considering the above frequency response, the received array signal com-

ponents with frequency of Ω ∈ [−Ω1(m,L) : Ω1(m,L)]&[−Ω2(l,L) : Ω2(l,L)]

will not pass through this row vector, since Ω1 = Ωsinθ cosφ and Ω2 =

Ωsinθ sinφ does not fall into the passband of [Ω1(m,L) : Ω1(m,U)] and [Ω2(l,L) :

Ω2(l,U)], no matter what value the DOA angles (θ ,φ) take. Therefore, the

frequency range of the output is |Ω| ≥ min(Ω1(m,L),Ω2(l,L)) and the lower

bound is determined by min(Ω1(m,L),Ω2(l,L)) when Ω1(m,L) and Ω2(l,L) ≥

0. The negative values for Ω1 and Ω2 needs to be considered as well.

Therefore, more generally, the frequency range of the output is |Ω| ≥
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Fig. 5.4: The high-pass filtering effect of the (m, l)-th 2D filter in the ideal case.
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Fig. 5.5: The high-pass filtering effect of the (m, l)-th 2D filter in the signal frequency

domain in the ideal case.

min(|Ω1(m,L)|, |Ω1(m,U)|, |Ω2(l,L)|, |Ω2(l,U)|), with lower bound determined

by min(|Ω1(m,L)|, |Ω1(m,U)|, |Ω2(l,L)|, |Ω2(l,U)|).

Therefore, the output spectrum of the directional signal part of qm,l[n]

from (3.6) corresponding to the m-th row vector of A and the l-th column

vector of B is high-pass filtered as demonstrated in Fig. 5.4 in the 2D fre-

quency domain, and its effect on the signal frequency domain is shown in

Fig. 5.5. Since the noise part at the array sensors is spatially white, the

output noise spectrum of each pair of transformation vectors is still a con-
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stant, covering the whole spectrum. Assuming the row vectors of A and

the column vectors of B are normalised to unity norm, there would be no

change to the total noise power after the transformation.

Each qm,l[n],m = 0, · · · ,M−1, l = 0, · · · ,N −1, is the input to the cor-

responding high-pass filter hm,l[n],m = 0, · · · ,M−1, l = 0, · · · ,N −1, and

that filter should cover the whole bandwidth of the signal part, i.e., having

the same high-pass frequency response as shown in Fig. 5.5. Therefore,

ideally the high-pass filters will not have any effect on the signal part and

the signal part should pass through the high-pass filters without any dis-

tortion. But the frequency components of the white noise which fall into

the stopband of the high-pass filters will in fact be removed. The output of

these high-pass filters is given by

Z[n] =













z0,0[n] . . . z0,N−1[n]

...
. . .

...

zM−1,0[n] . . . zM−1,N−1[n]













, (5.10)

where zm,l[n] = qm,l[n]◦hm,l[n],m = 0, · · · ,M−1, l = 0, · · · ,N −1.

By applying the 2D inverse transformation to Z[n], the estimates of the

original input sensor signals x̂m,l[n],m = 0, · · · ,M−1, l = 0, · · · ,N−1 will

be obtained. Therefore, in matrix form,

X̂[n] = A−1Z[n]B−1, (5.11)

where A−1 and B−1 are the inverse of the corresponding transformation

matrices. The original directional array signal will be recovered without
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distortion in the ideal case, while the noise power will be reduced, leading

to an improved TSNR.

Considering the stopband of each high-pass filter, the total effect of the

high-pass filters on the total noise power can be calculated. By using nu-

meric methods, it has been calculated that when M, N → ∞, the power of

noise will be reduced by 1.76 dB. Therefore, up to a maximum of 1.76 dB

improvement in TSNR can be achieved. However, in practice, the TSNR

improvement will be less than that, due to the limited number of sensors

in the URA. This TSNR improvement is less than the 3 dB improvement

which was achieved for ULAs using a 1D unitary transformation as in

Chapter 3. In the next section, as an alternative approach, the noise re-

duction method for ULAs is adapted to be applicable to URAs, in order to

achieve a higher output TSNR.

5.2 White Noise Reduction for URAs with a 1D Transfor-

mation

In this approach, the method developed for ULAs in Chapter 3 is adapted

for the URA structure. Each column of the sensors of a URA is actually

a ULA. Therefore, each column of the sensors is taken separately as a

ULA and the previously developed noise reduction method is applied for

the ULAs to each column. As a result, along each column of sensors a 3

dB improvement in the SNR of that column is achieved. Considering the
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whole URA structure, the TSNR is improved by 3 dB. In the following,

this approach is explained in more details.

Assume the l-th column of sensors along the x-axis, is considered for

processing. xl[n]=[x0,l [n], x1,l[n], · · · , xM−1,l[n]]
T is the signal vector ac-

cording to this column. xl[n] is transformed with a 1D transformation ma-

trix such as A, with size M×M. After transforming xl[n], the output signal

vector ql[n] is obtained as

ql[n] = Axl[n], (5.12)

where ql[n] = [q0,l[n], · · · ,qM−1,l[n]]
T .

The high-pass filtering effect of the transformation for ULAs has been

shown in Chapter 3. Because of the high-pass filtering effect of the trans-

formation on the directional signal, the output spectrum of the directional

signal part of qm,l[n] corresponding to the m-th row vector of A is high-

pass filtered. As the noise part of the array sensors is spatially white, the

output noise spectrum of the row vector is still a constant, covering the

whole spectrum. Since A is assumed to be unitary and the row vectors of

A are normalised to unity norm, therefore, there would be no change to the

total noise power after transformation.

Similar to the explanation for (5.10), each qm,l[n],m = 0, · · · ,M − 1, is

the input to the corresponding high-pass filter hm,l[n],m = 0, · · · ,M − 1,

and the high-pass filter should cover the whole bandwidth of the signal

part, i.e., having the same high-pass frequency response. Therefore, ide-
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ally the high-pass filters will not have any effect on the signal part and

the signal part should pass through the high-pass filters without any distor-

tion. However, frequency components of the white noise which fall into

the stopband of the high-pass filters will be removed. The output of these

high-pass filters is given by

zl[n] =



















z0,l[n]

z1,l[n]

...

zM−1,l[n]



















=



















q0,l[n]◦h0,l[n]

q1,l[n]◦h1,l[n]

...

qM−1,l[n]◦hM−1,l[n]



















. (5.13)

By applying the inverse of the transformation matrix (A−1) to zl[n], the

estimates of the original input sensor signals x̂m,l[n], m = 0, · · · ,M − 1 is

obtained. Therefore, in vector form,

x̂l[n] = A−1zl[n], (5.14)

where x̂l[n] = [x̂0,l[n], x̂1,l[n], · · · , x̂M−1,l[n]]
T . After going through these

processing stages, ideally, there is no change in the signal part in the final

output x̂m,l[n], m = 0, · · · ,M − 1, compared to the original signal part in

xm,l[n], m = 0, · · · ,M − 1. However, since A−1 is also unitary, the total

noise power stays the same between x̂l[n] and zl[n]. Following the same

analysis for the ULA case as discussed in Chapter 3, the same conclusion

can be drawn that up to 3 dB TSNR improvement can be obtained by the

proposed method. However, in practice, the SNR improvement will be less

than 3 dB due to the limited number of sensors. The same process needs to
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be applied to all the columns of sensors of the URA across the x-axis, and

for each column of sensors a 3 dB improvement in TSNR will be achieved.

However, one important point is that, although the TSNR improvement

is 3 dB and much higher than the case of the 2D transformation devel-

oped in the last section, the side-lobe attenuation of the 1D case will be

much less than the 2D case. Because as shown in (5.8), the beam-pattern

of the 2D transformation is the multiplication of the beam-patterns of its

corresponding row/column vectors. A direct consequence will be more

distortion to the signal part using the 1D transformation when discarding

the noise components using the high-pass filters. As a result, the perfor-

mance improvement may be less than the method directly based on the 2D

transformation. This will be demonstrated in simulation section.

5.3 White Noise Reduction for UCAs

In this section, the method is extended to uniform circular arrays (UCAs)

which is another type of planar arrays. Therefore, the transformation is

re-designed to adjust the noise reduction method to the structure of UCAs.

The method introduced in this section is based on a 1D transforma-

tion and is an adaptation of the method introduced in Chapter 3. Same as

before, the transformation should be invertible and ideally, unitary. The

circular arrays have a sparse structure naturally. Therefore, designing an

ideal unitary transformation is not always possible. First, the transforma-
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tion matrix is designed with the required bandwidth characteristics for the

UCA structure. Then, same as section 4.4, the singular values of the trans-

formation which are lower than a threshold are replaced with a higher value

to improve the condition number of the transformation.

x

y

z

d

signal

θ

φ

φl

M−1

0 1 l

r

Fig. 5.6: The general structure for UCA.

The structure of a UCA is shown in Fig. 5.6. The general structure of

the method for UCA is same as the structure for ULA, and is shown in

Fig. 3.1. Suppose there are M sensors along the perimeter of the UCA,

with a circumferential spacing of d, the radius r of the UCA is:

r =
Md

2π
. (5.15)

The position of the l-th sensor is (r cosφl,r sinφl,0), l = 0,1, · · · ,M−1,

where φl = l2π/M is the angle between the x-axis and the m-th sensor. The
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spacing d is α/2 times the wavelength of the highest frequency component

of the signal λmin, and therefore, d = αλmin/2, where α is a scalar value.

So, r is [85, 86]:

r = α
λmin

2

M

2π
. (5.16)

Considering β = M/2π ,

r = αβ
λmin

2
. (5.17)

The phase difference between the centre of the UCA and the l-th sensor is:

Φ = ω
r sinθ cos(φ −φl)

c
, (5.18)

where ω is the angular frequency of the signal and c is the wave propaga-

tion speed. By plugging (5.16) into (5.18),

Φ =
ωλmin

2c
αβ sinθ cos(φ −φl) . (5.19)

Ω = ωTs by considering the sampling frequency of Ts = λmin/2c. There-

fore, the l-th element of d(Ω,θ ,φ) which is the steering vector of the UCA

is [79, 87]:

dl = e jαβΩsin θ cos(φ−φl) . (5.20)

The transformation can be designed for the UCA using the steering vec-

tor. The row vectors of the transformation matrix are each a band-pass filter

and together they cover the entire normalised frequency range of the sig-

nal. Same as before, first a low-pass filter with the required characteristics

is designed as the prototype filter. Then, the prototype filter is modulated

to each subband of the transformation. Considering p is the prototype
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filter with length M, p can be modulated to cover the entire normalised

frequency band, using

am,l = e− jαβ 2π
M

mcos(φ−φl)pl , (5.21)

where m = 0, · · · ,M−1, l = 0, · · · ,M−1. Note that, for different elevation

angles φ , the transformation changes, and the design gives different results.

Therefore, the elevation angle φ of the desired signal should be known to

design the transformation. For the signals not coming from φ used for

the design, the frequency response of the transformation is different, so in

here, it is assumed that the impinging signals are coming from the same φ .

If the elevation angle φ of the desired signal changes, the transformation

should be re-designed, or alternatively, pre-steering can be used to adjust

the impinging signal to the transformation.

In this work, it is assumed that φ = π/2. Therefore, (5.21) can be

written as:

am,l = e− jαβ 2π
M

mcos(π
2
−φl)pl . (5.22)

The beam response Rm(Ω,θ) of a row vector of the transformation is:

Rm(Ω,θ) =
M−1

∑
l=0

am,le
jαβΩsinθ cos(π

2
−φl) . (5.23)

With Ω̂ = Ωsinθ , Rm(Ω,θ) can be represented in the following form:

Am(Ω̂) =
M−1

∑
l=0

am,le
jαβ Ω̂cos(π

2
−φl), (5.24)

where Am(Ω̂) is the frequency response of the m-th row vector of the trans-

formation.
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The frequency responses are designed to be band-pass, each with a

bandwidth of 2π/M, and altogether they cover the entire normalised fre-

quency band. The band-pass filters have high-pass filtering effect on the

received signals with φ = π/2, and different values for θ . The examina-

tion of the high-pass behaviour is same as the examination provided for the

ULA case in Sec. 3.1.

The transformation should be invertible and ideally unitary. The cir-

cular arrays are sparse in general [88]. Therefore, if the transformation

matrix is ill-conditioned, the approach introduced in Sec. 4.4 can be used

to reduce the condition number of the transformation, without causing a

significant change in the beam pattern of the transformation.

After designing a well-conditioned transformation with the required fre-

quency responses, the high-pass filters are applied and then the signal is

transformed back, similar to the block diagram illustrated in Fig. 3.1.

5.4 Simulation Results

In this section, simulation results will be provided and compared to verify

the effectiveness of the proposed noise reduction pre-processing methods

for the URA and UCA structures.
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5.4.1 Simulation for the URA structure

For simplicity, the same number of sensors is used across the x-axis and

y-axis (M = N), with the same array spacings (dx = dy). The URA has 16

sensors along each axis (M = 16) and the desired signal arrives from the

broadside (θd,φd = 0). The transformation matrix A = B is a 16×16 DFT

matrix, as an example of unitary transformation. For the high-pass filters,

linear phase 101-tap FIR filters with a common delay of 50 samples are

employed. Then, the array signals are transformed back by the inverse of

the transformation matrix (A−1).

As mentioned before, by using the 2D transformation method, up to

1.76 dB and by using the 1D transformation method, up to 3 dB TSNR

improvement can be achieved. Despite lower TSNR improvement, the 2D

transformation method has less distortion on the directional signal, because

the 2D transformation vectors have a higher side-lobe attenuation, due to

the dual filtering process along both axes. Frequency responses of an ex-

ample 2D-DFT vector in the frequency domain and its corresponding 1D-

DFT vector, for the directional signal arriving from θ = 90◦ and φ = 45◦

are shown in Fig. 5.7. It can be clearly seen that the side-lobe attenuation

for the 2D-DFT is around 26 dB, whereas the side-lobe attenuation for the

1D-DFT is around 13 dB. This results to less amount of directional sig-

nals available in the lower side-lobes of the 2D-DFT, to be removed by the

high-pass filters compared to the 1D-DFT. Therefore, a better recovery for
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Fig. 5.7: Frequency responses of an example 2D-DFT vector and its corresponding 1D-

DFT vector, for the directional signal arriving from θ = 90◦ and φ = 45◦.

the directional signals after the inverse transformation is achieved.

In order to compare the performance of the two methods in recovering

the directional signal, wideband signals with unit power from random di-

rections are applied to the URA, and then processed by the noise reduction

methods. The MSE between the original signal and the recovered one by

both methods is calculated for different URA sizes (M) with 10,000 Monte

Carlo runs [89], and the results are presented in Table 5.1. It is clear that

the effect on the directional signal for the method using the 2D-DFT is

much smaller compared to the method using the 1D-DFT, and hence better

recovery.

Here, the effect of the two proposed methods on the performance of

both the RSB beamformer and the LCMV beamformer is examined. When

the directional signal is arriving from the broadside, there is no delay be-
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M 2D-DFT 1D-DFT

10 8.25×10−4 2.04×10−2

16 6.63×10−4 1.85×10−2

20 5.66×10−4 1.75×10−2

30 3.79×10−4 1.43×10−2

40 2.80×10−4 1.20×10−2

Table 5.1: MSE for the directional signal before and after the proposed noise reduction

process for different URA sizes.

tween the received array signals. Therefore, most of the signal power

appears in the output of the transformation covering the zero frequency,

which is not affected by the corresponding high-pass filter. This leads to

an almost distortionless output for both methods. In the following simula-

tion, the desired signal is first assumed to be arriving from the broadside.

Otherwise, pre-steering can be used to change the look direction. When

the desired signal is arriving from a direction other than broadside, both

methods will have a small distortion on the desired signal. The method

with a 1D-DFT has a higher SNR improvement, and so for low input SNR

values, it is expected that the beamformer will have a higher SINR perfor-

mance compared to the method with a 2D-DFT. On the other hand, when

the input SNR is high enough, the 2D-DFT method should have a higher

SINR performance, as it has less distortion on the desired signal. For very

high SNR values, as the effect of noise is almost negligible, higher beam-

forming performance is expected by not applying any noise reduction.
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First, it is assumed that a desired band-limited signal with bandwidth

of [0.3π ,π ] is received by the URA from the broadside. Seven interfering

signals are applied to the system, each with a -10 dB input SIR and their

DOAs are θi = 10◦, 20◦, 30◦, 40◦, 50◦, 60◦ and 70◦, respectively, all with

φ = 45◦. A TDL with length of J = 30 is used for the beamformers.

The results are shown in Fig. 5.8. A higher output SINR is achieved

by both proposed noise reduction methods for both beamformers for all

the input SNR range and generally the improvement becomes larger when

the input SNR increases. As the SNR improvement of the noise reduc-

tion method with a 1D-DFT is higher than the SNR improvement of the

method with a 2D-DFT, a higher SINR improvement is achieved for both

beamformers using the method with a 1D-DFT.

At last, an example is given to show the effect caused by the differ-

ent distortions using the two different noise reduction methods. The SINR

performance of the RSB beamformer is shown in Fig. 5.9, with the de-

sired signal arriving from θd = 5◦ and φd = 0◦, and other conditions are

the same. As it is shown in Table 5.1, when the direction of desired sig-

nal is not form the broadside, it is affected by some degree of distortion.

For low SNR values, the performance is higher using a 1D-DFT noise re-

duction method, since it has a higher SNR improvement compared to the

2D-DFT noise reduction method. Although the 2D-DFT noise reduction

method has a lower SNR improvement, but it causes less distortion to the

desired signal. Therefore, for the input SNR values higher than 12 dB, the
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Fig. 5.8: SINR performance of both beamformers with and without the proposed noise

reduction (NR) methods for the URA.
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Fig. 5.9: SINR performance of the RSB beamformer with the desired signal arriving

from θd = 5◦ and φd = 0◦.

less distortion to the desired signal becomes the dominant factor, and the

beamformer using the 2D-DFT noise reduction achieves a higher output

SINR performance.

For very high SNR values the effect of noise is almost negligible, while

the distortion to the desired signal caused by the noise reduction meth-

ods becomes the dominant factor. Therefore, when the input SNR value

is higher than 30 dB, the beamformer with 1D-DFT noise reduction has a

lower performance compared to the beamformer without the noise reduc-

tion. Also, for the input SNR values higher than 36 dB, both beamformers

employing the noise reduction have a lower performance compared to the

beamformer without the noise reduction.
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5.4.2 Simulation for the UCA structure

For simulation, a UCA with M = 30 sensors is considered, and for de-

signing the transformation, it is assumed that φ = π/2 = 90◦. Then, the

method explained in Sec. 4.4 is employed to reduce the condition number.

The threshold is set to 1, i.e., the singular values σi = 1, · · · ,M−1 smaller

than 1 are replaced with 1. After replacing the small singular values, the

condition number is reduced to 2.25. Now the effect of reducing the condi-

tion number, on the beam-pattern of the transformation matrix is analysed.

The average 3 dB beamwidth before and after the condition number modi-

fication is 0.15 in normalised frequency, and it is not affected. The average

side-lobe attenuation before the modification is 7.90 dB, and it is 8.02 dB

after the modification. Therefore, the beam-pattern of the transformation

matrix has not changed considerably. Fig. 5.10 illustrates the beam-pattern

of the transformation before and after modifying the condition number. It

is clear that there is almost no considerable change in the beam-pattern.

Now, the effect of the noise reduction method with the modified trans-

formation on the performance of the RSB and LCMV beamformers is

analysed. A desired band-limited wideband signal with a bandwidth of

[0.3π : π ] is received by the UCA from the broadside (θd = 0◦,φd = 90◦).

Seven interfering signals are received by the array each with a -10 dB input

SIR and DOAs of θi = 10◦,20◦,30◦,40◦,50◦,60◦ and 70◦, respectively, all

with φi = 90◦. For the high-pass filters, linear phase 101-tap FIR filters
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Fig. 5.10: The beam-pattern of a sample row vector of the transformation designed for

UCA, before and after modifying the condition number, M = 30, φ = 90◦.

with a common delay of 50 samples are employed. A TDL of length J = 5

is used for these beamformers.

The results are shown in Fig. 5.11. A higher output SINR is achieved

by the proposed noise reduction method for both beamformers for the in-

put SNR range. The improvement becomes larger when the input SNR

increases.

5.5 Summary

In this chapter, the idea for white noise reduction was extended to the pla-

nar arrays. As representative examples of the planar arrays, two types of

planar arrays were considered which have been widely used for different

applications, namely, URA and UCA.

Two methods for mitigating the effect of white noise without affecting
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Fig. 5.11: SINR performance of both beamformers with and without the modified noise

reduction (NR) methods for the UCA, M = 30, J = 5.
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the directional signal in wideband URAs have been introduced. With the

proposed method using a 2D transformation, a maximum of 1.76 dB im-

provement in TSNR can be achieved in the ideal case, which is less than

the 3 dB improvement previously achieved for ULAs. As an alternative,

the noise reduction method using a 1D transformation for the URAs was

proposed, which is a direct adaptation of the method used for ULAs, with

a 3 dB improvement achieved. Despite lower improvement in TSNR, the

2D transformation method has less distortion for directional signals.

Later, a method based on 1D transformation was introduced for the

UCAs, with a maximum of 3 dB improvement in TSNR. Due to the sparse

nature of the UCA structure, the transformation is not unitary, and the con-

dition number of the transformation is high. Therefore, same as Chapter 4,

the transformation was modified by replacing the low value singular values

of the transformation.

The increased TSNR can be translated into performance improvement

in various planar array signal processing applications and as an example its

effect on adaptive beamforming was studied. As demonstrated by simula-

tion results, a clear improvement in performance in terms of output SINR

has been achieved for a range of input SNR values.



Chapter 6

Further Insights into the Proposed

Noise Reduction Method

As it can be seen from the proposed structure in Chapter. 3, no prior in-

formation is needed about the impinging signals to reduce the noise level

and increase the overall SNR by about 3 dB. However, although the SNR

has been improved, the noise is not white any more, as specified in (3.34),

whose effect on the ultimate performance of the system can not be seen

directly. That is why both theoretical analyses and computer simulation

are provided to show that indeed by the proposed method, the performance

of the two studied beamformers has been improved.

The result in the previous chapters is obtained from the viewpoint of

reducing the noise level of the received signals. In this chapter, the benefits

of the method is discussed from a broader point of view.

The contents of this chapter is published in [50].

110
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6.1 The TDL Equivalent Structure

Actually by studying the structure further, it is realised that the proposed

structure is equivalent to a traditional TDL system, but with a much larger

TDL length. As a result, by applying the same LCMV beamformer (with

the same TDL length) to both the original set of array signals and the

new set of array signals after the proposed pre-processing, the latter one

will be equivalent to a kind of LCMV beamformer but with much longer

TDLs, and hence the improved performance. From this viewpoint, the

proposed method can also be considered as a low-complexity approach to

adaptive beamforming. Certainly another advantage is that the proposed

pre-processing is standard and can be applied to the original array signals,

whatever the following processing (either beamforming or DOA estima-

tion, or tracking, etc.) is. As shown in the study for DOA estimation based

on the proposed structure in [51], the improved SNR can be translated into

improved DOA estimation performance too.

To show that the overall combination of the proposed noise reduction

part and the following TDL-based beamformer is equivalent to a new beam-

former with a much longer TDL, i.e., the noise reduction method along-

side the TDL attached can be modelled as an equivalent TDL with a larger

length, first the following is derived:

y[n] =
M−1

∑
k=0

lhp+J−2

∑
n0=0

xk[n−n0]
M−1

∑
p=0

apk

M−1

∑
m=0

ãmp

J−1

∑
j=0

wm jhp[n0− j], (6.1)

where lhp is the length of the high-pass filters and [A−1]mp = ãmp .
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By arranging (6.1),

y[n] =
M−1

∑
k=0

lhp+J−2

∑
n0=0

M−1

∑
p=0

M−1

∑
m=0

J−1

∑
j=0

apkãmpwm jhp[n0− j]xk[n−n0] . (6.2)

By assuming w̃k,n0
=∑M−1

p=0 ∑M−1
m=0 ∑J−1

j=0 apkãmpwm jhp[n0− j] , (6.1) becomes

y[n] =
M−1

∑
k=0

lhp+J−2

∑
n0=0

w̃k,n0
xk[n−n0], (6.3)

which is the equivalent TDL of a length Jeq = lhp + J − 1 for the noise

reduction method combined with a TDL of length J.

The question is, since the noise reduction method can be modelled as

a TDL, which one of the following provides a higher performance: using

the noise reduction method and a TDL with length J or using a larger TDL

with length Jeq = lhp + J − 1. It might be thought that the latter one will

give a higher performance, although it may have the highest implemen-

tation complexity, since a globally optimum solution can be found with-

out constraints imposed by the proposed specific noise reduction process.

However, the real picture is much complicated, due to numerical issues

involved in calculating the optimum beamforming coefficients based on

inversion of correlation matrices of difference sizes [90, 91]. The longer

the TDL, the larger the dimension of the matrix involved and the more

likely it will cause additional errors in performing matrix inversion.
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6.2 Computational Complexity of the Method

To further investigate the performance of the method the computational

complexity of the white noise reduction method is considered. The compu-

tational complexity of the proposed noise reduction method (including the

beamforming part), and the directly implemented RSB and LCMV beam-

formers is presented in Table 6.1, where N is the number of signal samples

at each sensor. As J ≪ Jeq, the complexity with the proposed method is

much smaller than the direct implementation case.

Algorithm without NR with NR

RSB O(M3J3
eq)+M2J2

eqN +M2J2
eq O(M3J3)+M2J2N +M2J2

+MJeqN +MJN +2M2N +Ml2
hp +MNlhp

LCMV O(M3J3
eq)+O(J3

eq)+2M2J3
eq O(M3J3)+O(J3)+2M2J3 +2MJ3

+2MJ3
eq +M2J2

eqN +MJ2
eq +M2J2N +MJ2 +2M2N +Ml2

hp +MNlhp

Table 6.1: Computational complexity of the noise reduction based implementation, the

RSB and LCMV beamformers.

6.3 Simulation Results

Same as Chapter. 3, the simulation results are based on a 16 sensor (M =

16) ULA, and the number of signal samples N in the time domain at each

sensor is 20000. Again, the two types of TDL-based beamformers, i.e.,

the RSB and the LCMV beamformers are considered. The desired signal

arrives from the broadside (θd = 0◦). The received signals are processed
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by the 16×16 DFT-based transformation matrix. Seven interfering signals

are applied to the system, each with a -10 dB input SIR, and their DOAs

are θi = 10◦,20◦,30◦,40◦,50◦,60◦ and 70◦, respectively.

The SINR performance of RSB beamformer with noise reduction method

and without the method with the equivalent length Jeq is shown in Fig. 6.1,

and for LCMV beamformer is shown in Fig. 6.2. All the simulation con-

ditions are the same as in Section 3.5. When the length of the beamformer

is short (J=10 and equivalent of Jeq=110) as in Fig. 6.1a and Fig. 6.2a, the

performance of the beamformers without pre-processing is higher, as ex-

pected in theory. When the length of the beamformers is larger (J=50 and

equivalent of Jeq=150) as in Fig. 6.1b and Fig. 6.2b, the performance of the

beamformers with pre-processing is higher.

The SINR performance of the beamformers with noise reduction method

and without the method with the equivalent length Jeq, with respect to num-

ber of taps J is shown in Fig. 6.3. In this simulation, the interfering signals

are same as before but the input SNR is 10 dB. It is clear that when the

number of taps is low, the performance of the beamformer without the pre-

processing noise reduction is higher than the method with pre-processing,

but as the number of taps increases, the beamformer with pre-processing

has a higher performance.

A direct advantage of the proposed noise reduction pre-processing is

in reducing the computational complexity of the beamformers. The com-

putation time for processing a snapshot of the received signal with length
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Fig. 6.1: SINR performance of RSB beamformer with NR method and without NR with

equivalent length, lhp = 101.
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Fig. 6.2: SINR performance of LCMV beamformer with NR method and without NR

with equivalent length, lhp = 101.
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Fig. 6.3: SINR performance of both beamformers with respect to number of taps, with

NR method and without NR with equivalent length Jeq.
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Algorithm without NR with NR without NR with NR

Jeq = 110 J = 10 Jeq = 150 J = 50

RSB 9.274s 3.635s 13.719s 5.527s

LCMV 9.104s 3.536s 13.874s 5.574s

Table 6.2: Computation time of the noise reduction based implementation, the RSB and

LCMV beamformers.

N = 20000, calculated by the MATLAB R2017a under the environment

of Intel CPU I5-2400 with a clock speed of 3.1 GHz and 4 GB RAM

is presented in Table 6.2. As it can be seen in Table 6.1 and Table 6.2,

since J ≪ Jeq, the complexity of the noise reduction method including

the beamforming part, is much smaller than the direct implementation of

the beamformer. Also, using the noise reduction pre-processing the com-

plications due to numerical issues involved in calculating the optimum

beamforming coefficients based on inversion of correlation matrices can

be avoided [90, 91]. Hence, a more robust beamforming is achieved with

the noise reduction pre-processing.

6.4 Summary

In this chapter, the equivalent TDL structure of the noise reduction pre-

processing method was analysed. By studying the structure of the method

further, it was understood that if a classic beamformer such as RSB or

LCMV is applied to a set of array signals which have been processed by
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the noise reduction method, the pre-processing and the classic beamformer

can be modelled as an equivalent beamformer with longer TDLs.

The weight vector of the equivalent TDL structure was derived, and the

expressions for the computational complexity of the beamformers with and

without the noise reduction method was presented.

The advantages of using the method as a pre-processing step for the

beamformers compared to the direct usage of the classic adaptive beam-

formers with equivalent length Jeq from the viewpoint of computational

complexity was discussed, and the performance of RSB and LCMV beam-

formers with noise reduction pre-processing method, and without the method

with the equivalent length Jeq was compared by simulation results.

It was understood that the complexity of the noise reduction method in-

cluding the beamformer part is less than the direct implementation with

equivalent length Jeq. Also, with the noise reduction method, a more

robust beamforming is achieved, since by using the noise reduction pre-

processing the numerical issues due to calculating the optimum beamform-

ing coefficients based on inversion of correlation matrices are avoided.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, a method for mitigating the effect of white noise without

affecting the directional signals in wideband arrays has been introduced.

With the proposed method, a maximum 3 dB improvement in TSNR can

be achieved in the ideal case. The increased TSNR can be translated into

performance improvement in various array signal processing applications

such as beamforming and DOA estimation.

The performance of the two well-known beamformers, namely, RSB

and LCMV beamformers was briefly reviewed in Chapter 2. The proposed

noise reduction method was introduced based on the ULA structure, and a

detailed study of the proposed method was performed in Chapter 3. The

analysis showed that the method does not have any effect on the spectra of

the directional signal in the ideal case, but it will remove half of the noise

power. Although in practice, the directional signal is distorted slightly

120
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due to the presence of some signal components in lower side-lobes of the

transformation. Also, due to the limitation of the size of the array, the

improvement in TSNR is less than 3 dB.

The theoretical and simulated results for beamforming and DOA esti-

mation showed that by using the noise reduction method as a pre-processing

step, a higher output SINR performance for beamformers and a more accu-

rate DOA estimation was achieved. Since the transformation for the ULA

is unitary and the side-lobe attenuation of the DFT matrix which was used

as the transformation is as high as 13 dB, the distortion to the directional

signal caused by the method does not affect the performance considerably.

The method was re-designed to be applied to different array structures,

namely, NLA, URA and UCA.

The least squares method was employed for the design of the trans-

formation for the NLA to satisfy the required band-pass characteristics in

Chapter 4. Since the NLA has a sparse array structure, designing a unitary

or close to unitary transformation is a problematic issue. In addition to

diagonal loading, a method based on replacing the small singular values

was proposed to reduce the condition number of the transformation and

still keeping the band-pass characteristics the same. Replacing the small

singular values, reduces the condition number of the transformation which

is in our interest. The improvement in the output SINR of the RSB and

the LCMV beamformers was demonstrated by simulation. More research

is needed to successfully design unitary transformations. Since transfor-
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mations which are not unitary do not preserve the power of the signal after

transformation, the transformed signals are prone to more significant dis-

tortion.

Two types of planar arrays were considered in Chapter 5, namely, URA

and UCA. Two methods for mitigating the white noise for the URA were

introduced. With the proposed method using a 2D transformation, a maxi-

mum of 1.76 dB improvement in TSNR can be achieved in the ideal case,

which is less than the 3 dB improvement achieved for the linear arrays.

Alternatively, the noise reduction method using a 1D transformation for

URAs was also proposed, which is a direct adaptation of the method used

for ULAs, with a 3 dB improvement achieved. Despite the lower TSNR,

the 2D transformation method has less distortion for the directional signals.

Therefore, depending on the application and the input SNR, either one of

the methods can provide a satisfactory performance. The transformation

was also re-designed for the UCA structure by modifying the modulation

of the row vectors of the transformation. As demonstrated by simulation

results, a clear improvement in performance, in terms of the output SINR

has been achieved for a range of input SNR values.

As it was discussed in Chapter 6, the proposed structure is equivalent

to a traditional TDL. Therefore, the noise reduction method and the cor-

responding beamformer can be considered as a beamformer with longer

TDLs, but with lower computational complexity. There are different ad-

vantages and also disadvantages of using the proposed method. Based on
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the application, one might find using the method beneficial or otherwise.

Overall, some the advantages of the proposed noise reduction method

are:

• Improved TSNR by a maximum of 3 dB for different array structures.

• providing an alternative approach to beamforming with reduced com-

putational complexity.

• Achieving a more robust beamforming solution, since the method

does not involve the computation of the inverse of the signal corre-

lation matrix which is normally needed for computing the optimal

weight vector coefficients.

• Since no prior information of the impinging signal is needed, the

method is quite flexible. Therefore, it can be used for different ar-

ray signal processing applications.

On the other hand, the method has the following disadvantages:

• A unitary transformation design can only be achieved for uniform

array structures.

• For non-uniform and sparse structures, the condition number needs to

be reduced by either diagonal loading or replacing the small singular

values, which can change the beam-pattern of the transformation and

cause further complications in the design.
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• The noise after being processed by the method is not white any more.

This makes it more complicated to analyse the impact of the pro-

cessed noise on the performance of the array signal processing appli-

cations, such as beamforming and DOA estimation.

7.2 Future Work

The following topics can be considered as future work.

The output noise spectrum is not white after being processed by the

noise reduction processing, and it is correlated between the sensors. More

research is needed to analyse the effect of the correlated and coloured noise

on the performance of the beamformers, and the characteristics of the re-

maining noise need to be analysed further.

In Chapter 6, it was shown that the proposed structure is equivalent to

a traditional TDL system with a larger TDL length and it was mentioned

previously that the same beamforming techniques can be applied to the

new set of array signals after the proposed processing, and it is equiva-

lent to kind of adaptive beamformer but with longer TDLs. Therefore, the

proposed method can be considered as a low-complexity approach to adap-

tive beamforming. This approach can be further studied and possibly new

adaptive beamformers can be designed with lower complexity and optimal

performance.

In addition, for every array structure, a transformation was designed
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with the required band-pass characteristics. The transformation has to be

invertible and ideally unitary. For the ULA and URA structure design-

ing unitary transformations is not an issue, but with the increasing interest

in sparse arrays, designing a unitary transformation is challenging. The

transformation was designed for NLAs, with low condition number by ei-

ther diagonal loading or replacing the small singular values, but designing

a unitary or almost unitary transformation for sparse arrays is still an open

problem. As the array becomes more sparse, the transformation design be-

comes more difficult. Some of the sparse arrays which are in focus for fu-

ture work are co-prime arrays [92,93], nested arrays [94] and super nested

arrays [95, 96].

Another topic for further research can be designing unitary transfor-

mations with higher side-lobe attenuation. After the transformation, the

directional signals which are available on the side-lobes are removed by

consequent high-pass filters. So, the higher the side-lobe attenuation, the

less distortion is caused to the directional signal. In this thesis, for ULA, 13

dB side-lobe attenuation has been achieved with DFT matrix as the trans-

formation. By windowing techniques, higher side-lobe attenuation can be

achieved, but the transformation will not be exactly unitary after applying

the windows to the row vectors of the transformation. Therefore, further

research is needed to design unitary transformation with higher side-lobe

attenuation.
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Appendix:

The relationship between cross correlation and convolution of two sig-

nals is [57]

E[xm[n] xn[n+m0]] = x∗m[−n]◦ xn[n] , (7.1)

where E, {·}∗ and ◦ denote expectation, complex conjugate and convolu-

tion, respectively, and m0 is the lag. Taking the DTFT of both sides yields:

DTFT{E[xm[n] xn[n+m0]]}= DTFT{x∗m[−n]◦ xn[n]}

= DTFT{x∗m[−n]}DTFT{xn[n]}

=
∞

∑
n=−∞

x∗m[−n]e− jΩn
∞

∑
n=−∞

xn[n]e
− jΩn

=
∞

∑
n=−∞

x∗m[−n]
(

e− jΩ(−n)
)∗ ∞

∑
n=−∞

xn[n]e
− jΩn

=
∞

∑
n=−∞

(

xm[−n]e− jΩ(−n)
)∗ ∞

∑
n=−∞

xn[n]e
− jΩn

= x∗m(Ω)xn(Ω).

(7.2)

Therefore,

DTFT{E[xm[n] xn[n+m0]]}= x∗m(Ω)xn(Ω), (7.3)

which is the cross spectral density of xm[n] and xn[n].
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