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Abstract LetΩ be a Jordan domain in C, J an open arc of ∂Ω and φ : D → Ω
a Riemann map from the open unit disk D onto Ω. Under certain assumptions
on φ we prove that if a holomorphic function f ∈ H(Ω) extends continuously
on Ω ∪ J and p ∈ {1, 2, . . . } ∪ {∞}, then the following equivalence holds: the
derivatives f (l), 1 ≤ l ≤ p, l ∈ N, extend continuously on Ω ∪ J if and only if
the function f |J has continuous derivatives on J with respect to the position
of orders l, 1 ≤ l ≤ p, l ∈ N. Moreover, we show that for the relevant function
spaces, the topology induced by the l−derivatives on Ω, 0 ≤ l ≤ p, l ∈ N,
coincides with the topology induced by the same derivatives taken with respect
to the position on J .

Keywords Riemann map · Poisson Kernel · Jordan curve · Smoothness on
the boundary

1 Introduction

In this paper we investigate the relationship between the continuous extend-
ability of the derivatives of a function f ∈ A(Ω), for some Jordan domain Ω,
and the differentiability of the map t 7→ f(γ(t)) for some parametrization γ of
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∂Ω. Here, A(Ω) is the collection of all complex functions holomorphic on Ω
and continuous on Ω. Specifically, it is well known that the first p derivatives
of a function f ∈ A(D), D being the unit disk in C, continuously extend over
D if and only if the map t 7→ f(eit) is p times continuously differentiable ([6]).
We generalize this for functions that are holomorphic on the unit disk but now
continuously extend over an open arc of T = ∂D and prove an analogous equiv-
alence for functions defined on Jordan domains that have sufficiently smooth
Riemann maps.

The spaces Ap(Ω), p ∈ {0, 1, 2, ...} ∪ {∞}, consist of all holomorphic
functions f in Ω whose derivatives f (l), l ∈ {0, 1, ...}, l ≤ p, extend con-
tinuously on Ω. It is well known that for any f in the disc algebra A(D),
f ∈ Ap(D) if and only if the map t 7→ f(eit) is Cp smooth. In other words,
Ap(D) = A(D)∩Cp(T) both as sets and as topological spaces. Additionally, if
f ∈ A(D) and g(t) = f(eit), t ∈ R, the equation that relates the continuous ex-
tension of f ′ on T and the derivative of g is as expected, i.e. dgdt (t) = ieitf ′(eit).
To prove this, one can use the Poisson representation, to recover the values
of f in the disk from its boundary values, i.e. f(reit) = (g ∗ Pr)(t) where Pr
denotes the Poisson kernel, differentiate both sides with respect to t and let
r → 1−. A detailed proof can be found in [6].

In this paper we prove analogous results for functions f ∈ A(D) whose
derivatives continuously extend on an open arc of the unit circle but not nec-
essarily the entire circle. Moreover, using Riemann’s mapping theorem, we can
drop our initial assumption f ∈ A(D) and instead assume that it only extends
continuously over the specific arc we are interested in. Precisely, if f : D → C is
holomorphic and continuously extends over an open arc J ⊆ T, then its first p
derivatives continuously extend over that arc if and only if the map t 7→ f(eit)
is in Cp(I), where I = (a, b) is an interval in R with J = {eit : t ∈ I}. This
motivates a more general definition of the spaces Ap.

In section 3 we consider functions f holomorphic on a Jordan domain Ω
and continuous on Ω ∪ J , for some open arc J of ∂Ω. We prove that for any
p ∈ {1, 2, . . . } ∪ {∞}, the derivatives f (l), 0 ≤ l ≤ p, continuously extend over
Ω ∪J if and only if the continuous extension of f on J is p times continuously
differentiable on J with respect to the position ([2]). To do this, we place a
smoothness assumption for the Riemann map φ : D → Ω from the open unit
disk D onto Ω. The condition is that (φ−1)′ has a continuous extension on
Ω ∪ J and that (φ−1)′(z) 6= 0 on Ω ∪ J .

2 Extendability over an open arc of the unit circle

For 0 ≤ p ≤ +∞, Ap(D) denotes the space of holomorphic functions on D
whose derivatives of order l ∈ N, 0 ≤ l ≤ p, extend continuously over D. It is
topologized via the semi-norms:

|f |l = sup
z∈D
|f (l)(z)| = sup

z∈T
|f (l)(z)|, 0 ≤ l ≤ p, l ∈ N.

The following theorem is well known. A detailed proof can be found in [6],
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Theorem 1 For all f ∈ A(D) the following equivalence holds: f ∈ Ap(D) if
and only if the map g(t) = f(eit), t ∈ R, is p times continuously differentiable.
In that case:

dg

dt
(t) = ieitf ′(eit). (1)

We now generalize this on functions that are holomorphic on D and contin-
uously extend over an open arc J of the unit circle. We prove that for any such
function f and p ∈ {1, 2, ...} ∪ {∞} the first p derivatives of f continuously
extend over D ∪ J if and only if the map t 7→ f(eit) is p times continuously
differentiable in I = {t ∈ [a, a+ 2π] : eit ∈ J} for a suitable a ∈ R. Denote by
Ap(D,J) the space of holomorphic functions whose first p derivatives contin-
uously extend over D ∪ J and let Cp(J) be the class of functions f : J → C,
such that the map t 7→ f(eit), t ∈ I, is p times continuously differentiable.
The aim is to show the equality Ap(D,J) = A(D,J) ∩ Cp(J). For simplicity,
we take J = {eit : 0 < t < 1} throughout this section. For any z = reiθ ∈ C
we denote by Pz(t) or Pr(t) the Poisson kernel [1].

Proposition 1 If u : [0, 1]→ R is a continuous function then:

A(z) =
1

2π

∫ 1

0

u(t)Pz(t)dt (2)

is well defined in C \ J̄ and C∞ harmonic.

Proof To see that A(z) is well defined in C \ J̄ observe that:

A(z) =
1

2π

∫ 1

0

u(t)Pz(t)dt = Re

(
1

2π

∫ 1

0

u(t)
1 + e−itz

1− e−itz
dt

)
(3)

and 1− e−itz = 0⇔ z = ei(t+2kπ), k ∈ Z. For a fixed z ∈ C \ {eit : 0 ≤ t ≤ 1}
we have δz = dist(1, {ze−it : 0 ≤ t ≤ 1}) > 0 and:∣∣∣∣u(t)

1 + e−itz

1− e−itz

∣∣∣∣ ≤ sup
t∈[0,1]

|u(t)|1 + |z|
δz

< +∞ (4)

for all t ∈ [0, 2π]. Since the quantity on the right hand side is integrable we
deduce that A(z) is indeed well defined in C \ J̄ .

In order to prove that A is C∞ harmonic it suffices to show that g(z) =
1
2π

∫ 1

0
u(t) 1+e−itz

1−e−itzdt is holomorphic in C \ J̄ , since A is the real part of g ac-
cording to (3). Note that for z 6= z0:

g(z)− g(z0)

z − z0
=

1

2π

∫ 1

0

u(t)
2e−it

(1− e−itz)(1− e−itz0)
dt (5)

and hence for z sufficiently close to z0:
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∣∣∣∣g(z)− g(z0)

z − z0
− 1

2π

∫ 1

0

u(t)
2e−it

(1− e−itz0)2
dt

∣∣∣∣ = (6)∣∣∣∣ 1

2π

∫ 1

0

u(t)
2e−2it(z − z0)

(1− e−itz)(1− e−itz0)2
dt

∣∣∣∣ (7)

≤ 1

2π
sup
t∈[0,1]

|u(t)|2
(

2

δz0

)3

|z − z0|
z→z0−−−→ 0. (8)

Therefore g is holomorphic and the proof is complete.
ut

Lemma 1 Let u : [0, 1] → R be a continuous function and define A(z) as in
Proposition 1. For all z = reiθ ∈ C \ J̄ :

dA

dθ
(reiθ) =

1

2π

∫ 1

0

u(t)
−2r(1− r2) sin(θ − t)

(1 + r2 − 2r cos(θ − t))2
dt. (9)

Thus, for θ ∈ (1, 2π) and r = 1:

dA

dθ
(eiθ) = 0. (10)

Proof SinceA(reiθ) = 1
2π

∫ 1

0
u(t)Pr(θ−t)dt= 1

2π (f∗Pr) and Pr is differentiable

in respect to θ we have that A(reiθ) is differentiable in respect to θ,

dA

dθ
(reiθ) =

1

2π

d(f ∗ Pr)
dθ

(reiθ) =
1

2π
(f ∗ dPr

dθ
)(reiθ) =⇒ (11)

dA

dθ
(reiθ) =

1

2π

∫ 1

0

u(t)
−2r(1− r2) sin(θ − t)

(1 + r2 − 2r cos(θ − t))2
dt. (12)

(10) is derived from (9) substituting r = 1 and θ ∈ (1, 2π).
ut

Because every continuous function u : [0, 1] → C can be considered a 2π-
periodic function u : R → C such that v(x) = u(x) for x ∈ [0, 1] + 2πZ and
v(x) = 0 otherwise, one can expect that such a function when convolved with
the Poisson kernel would retain the nice properties. More specifically, it will
uniformly converge to 0 and to u(x) on the compact subsets of the respective
open arcs. We prove this in Propositions 2 and 3.

Proposition 2 If A(z) is as before, then for all θ ∈ (1, 2π) and l ∈ N:

lim
r→1−

dlA

dθl
(reiθ) = 0. (13)

The convergence is uniform in the compact subsets of (1, 2π).
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Proof We start with l = 1. It suffices to prove that for all [θ1, θ2] ⊂ (1, 2π) the
convergence is uniform. Observe that 0 < θ1 − t < θ2 − t < 2π for all t ∈ [0, 1]
and therefore cos(θ − t) ≤ max{cos(θ1 − 1), cos(θ2)} = M < 1,∀t ∈ [0, 1]
and ∀θ ∈ [θ1, θ2]. This implies that 1 + r2 − 2r cos(θ − t) ≥ 1 + r2 − 2rM =
(1− r)2 + 2r(1−M) for all t ∈ [0, 1] and θ ∈ [θ1, θ2]. Thus, for all θ ∈ [θ1, θ2]
and 0 < r < 1:

∣∣∣∣dAdθ (reiθ)

∣∣∣∣ =

∣∣∣∣ 1

2π

∫ 1

0

u(t)
−2r(1− r2) sin(θ − t)

(1 + r2 − 2r cos(θ − t))2
dt

∣∣∣∣ (14)

≤ 1

2π
‖u‖∞

2r(1− r2)

((1− r)2 + 2r(1−M))2
(15)

and hence sup
θ∈[θ1,θ2]

∣∣dA
dθ (reiθ)

∣∣ r→1−−−−−→ 0 since the right hand side of (15) con-

verges to 0 as r → 1−.
Note that no matter how many times we differentiate Pr in respect to θ we
will have a finite sum of fractions with numerator c(1−r2)k cos(θ)l sin(θ)m for
c 6= 0, k, l,m ∈ N and denominator a power of (1 + r2 − 2r cos(θ − t)). So for
any l ≥ 2 the same arguments apply.

ut
Denote by Cp([0, 1]) the class of functions u : [0, 1] → C that are p times

continuously differentiable in (0, 1) and u(l) continuously extend on [0, 1] for
all 0 ≤ l ≤ p, l ∈ N.

Proposition 3 Let p ∈ {0, 1, ...} ∪ {∞}, u : [0, 1]→ R of class Cp([0, 1]) and
define A(z) as in Proposition 1. For all θ0 ∈ (0, 1) and 0 ≤ l ≤ p, l ∈ N,

lim
z→eiθ0
|z|<1

dlA

dθl
(z) = u(l)(θ0). (16)

The convergence is uniform in the compact subsets of (0, 1).

Proof By a theorem of Borel (see [5]), we can find a function q : R → R of
class C∞(R) such that ql(0) = ul(0) and ql(1) = ul(1) for 0 ≤ l ≤ p, l ∈ N.
Thus, the function:

g(t) =

{
u(t), t ∈ [0, 1]

q(t), t ∈ (1, 2π)

is of class Cp(T). Define:

G(z) =
1

2π

∫ 2π

0

g(t)Pz(t)dt. (17)

It is well known that uniformly for all θ ∈ R, 0 ≤ l ≤ p, l ∈ N:

lim
z→eiθ
|z|<1

dlG

dθl
(z) = g(l)(θ) (18)
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Let

A(z) =
1

2π

∫ 1

0

u(t)Pz(t)dt and B(z) =
1

2π

∫ 2π

1

q(t)Pz(t)dt. (19)

Note that G(z) = A(z) +B(z) for all |z| < 1 and hence for 0 ≤ l ≤ p, l ∈ N:

dlG

dθl
(z) =

dlA

dθl
(z) +

dlB

dθl
(z). (20)

From (18) Proposition 2 we have that dlG
dθl

(reiθ)→ u(l)(θ) and dlB
dθl

(reiθ)→ 0
as r → 1−, uniformly in the compact subsets of (0, 1). As a result,

lim
z→eiθ0
|z|<1

dlA

dθl
(z) = lim

z→eiθ0
|z|<1

(
dlG

dθl
(z)− dlB

dθl
(z)

)
= u(l)(eiθ0) (21)

while the convergence is uniform in the compact subsets of (0, 1).
ut

Remark 1 By linearity, Propositions 1, 2, 3 and Lemma 1 hold for complex
functions f = u + iv where u = Ref and v = Imf , since we can apply them
to the real and imaginary part separately.

We now adapt the proof of Theorem 1 for functions whose derivatives only
extend over an open arc of the unit circle.

Theorem 2 Let p ∈ {1, 2, ...} ∪ {∞}, f ∈ A(D) and g(t) = f(eit), t ∈ (0, 1).
The following are equivalent: f (l) continuously extends on D ∪ J for all 0 ≤
l ≤ p, l ∈ N if and only if g is p times continuously differentiable in (0, 1). In
that case, for all t ∈ (0, 1)

dg

dt
(t) = ieitf ′(eit). (22)

Proof We prove it by induction on p. For p = 1, let t0 ∈ (0, 1) and t1 < t0 < t2
such that [t1, t2] ⊂ (0, 1). Assuming that f (l) continuously extends over D ∪ J
for all 0 ≤ l ≤ p, l ∈ N, let fr(t) = f(reit), h(t) = ieitf ′(eit) and:

hr(t) =
dfr
dt

(t) = ireitf ′(reit) (23)

for all t ∈ (0, 1) and 0 < r < 1. We have hr → h as r → 1− uniformly in [t1, t2],
since f ′ is continuous in D ∪ J . Note that fr(t0) → f(eit0) and hence from a
well-known theorem fr →

∫
hdt + c, for a some c ∈ C, as r → 1, while the

convergence is uniform in [t1, t2]. Additionally, fr → g, as r → 1, uniformly
in [t1, t2] and therefore g′(t) = h(t) = ieitf ′(eit), t ∈ (t1, t2). However, t0 was
arbitrary thus, g ∈ C1((0, 1)) and (22) holds.

For the converse let g ∈ C1((0, 1)). We now use the Poisson representation:

f(z) =
1

2π

∫ 2π

0

f(eit)Pz(t)dt. (24)
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for |z| < 1. Define:

A(z) =
1

2π

∫ t2

t1

g(t)Pz(t)dt and B(z) =
1

2π

∫ 2π+t1

t2

f(eit)Pz(t)dt. (25)

Note that f(z) = A(z) +B(z) for all |z| < 1. Consequently,

df

dt
(reit) =

dA

dt
(reit) +

dB

dt
(reit) (26)

for all 0 < r < 1 and t ∈ R. Since [t1, t2] ⊂ (0, 1), Propositions 2 and 3 imply
that:

lim
r→1−

dA

dt
(reit) =

dg

dt
(t) (27)

and

lim
r→1−

dB

dt
(reit) = 0 (28)

uniformly for t ∈ [t1, t2]. Combining (26), (27) and (28) we get:

lim
r→1−

f ′(reit) = lim
r→1−

1

ireit
df

dt
(reit) =

1

ieit
dg

dt
(t) (29)

uniformly for t ∈ [t1, t2]. Since t0 was arbitrarily chosen in (0, 1) we deduce
that f ′ extends continuously on D ∪ J . To complete the induction, let us
assume that the theorem holds for some p ≥ 1. If f (l) continuously extends on
D ∪ J for all 0 ≤ l ≤ p + 1, l ∈ N it follows that (f ′)(l) continuously extends
on D ∪ J for all 0 ≤ l ≤ p, l ∈ N. By the induction hypothesis the map t 7→
f ′(eit) belongs in the class Cp((0, 1)) and since, by the case of p = 1, g′(t) =
ieitf ′(eit) we have g′ ∈ Cp((0, 1)) and hence g ∈ Cp+1((0, 1)). For the converse,
if g ∈ Cp+1((0, 1)) it follows from (22) that g′(t) = ieitf ′(eit) ∈ Cp((0, 1))
and therefore, the map t 7→ f ′(eit) is of class Cp((0, 1)). By the induction
hypothesis, (f ′)(l) continuously extends on D ∪ J , for all 0 ≤ l ≤ p, l ∈ N and
hence f (l) continuously extends on D∪J , for all 0 ≤ l ≤ p+ 1, l ∈ N. The case
of p =∞ follows easily.

ut
Using Riemann’s mapping theorem [1] we can drop the assumption of con-

tinuity over D. Indeed, we can just have f continuously extend over the open
arc we are dealing with, i.e. f ∈ A(D,J).

Theorem 3 Let p ∈ {1, 2, ...}∪{∞}, f : D∪J → C continuous on D∪J and
holomorphic in D and g(t) = f(eit), t ∈ (0, 1). The following are equivalent:
f (l) continuously extends over D ∪ J , for all 0 ≤ l ≤ p, l ∈ N, if and only if g
is p times continuously differentiable in (0, 1). In that case:

dg

dt
(t) = ieitf ′(eit) (30)

for all t ∈ (0, 1).
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Proof We prove it by induction on p. For p = 1, the only if part is proven like
Theorem 2; we also obtain (30). For the converse, let t0 ∈ (0, 1), t1 < t0 < t2
such that [t1, t2] ⊆ (0, 1) and J ′ = {eit : t1 < t < t2}. Set V = {|z| <
1, z 6= 0 : z

|z| ∈ J
′}. It is easily verified that V is simply connected and hence

there is a conformal map φ : D → V which extends to homeomorphism over
the closures φ : D → V , by the Osgood-Carathéodory theorem ([4]). Since
φ(T) = {eit : t1 ≤ t ≤ t2} ∪ {reit1 : 0 ≤ r ≤ 1} ∪ {reit2 : 0 ≤ r ≤ 1} and
{eit : t1 ≤ t ≤ t2} is connected we deduce that φ−1({eit : t1 ≤ t ≤ t2}) is closed
and connected in T. Without loss of generality, assume that φ−1({eit : t1 ≤
t ≤ t2}) = {eit : 0 ≤ t ≤ 1}. Consequently, f ◦ φ : D → C is continuous on D
and holomorphic in D that is, of class A(D). Using the Reflection Principle, we
deduce that φ conformally extends on an open G ⊃ V ∪{eit : t1 ≤ t ≤ t2} thus,
t 7→ φ(eit), t ∈ (t1, t2) is of class C∞((t1, t2)) with non-vanishing derivative (see
[1] p. 233-235). Since g ∈ C1((t1, t2)) and t 7→ φ(eit) is in C∞((0, 1)) we have
that the map t 7→ f(φ(eit)) is in C1((0, 1)). By Theorem 2 the derivative
(f ◦ φ)′ continuously extends on D ∪ J and hence f ′ continuously extends in
D∪J ′, because f = (f ◦φ) ◦φ−1 and f ′ = (f ◦φ)′ ◦φ−1 · (φ−1)′. Our choice of
t0 was arbitrary and therefore f ′ continuously extends on D ∪ J . To complete
the induction, we follow the proof of Theorem 2. The case of p = ∞ follows
easily.

ut
In other words, Theorem 3 states that for any open arc J of T and p ∈

{0, 1, 2, ...} ∪ {∞}, Ap(D,J) = A(D,J) ∩ Cp(J) holds.

Remark 2 In all Propositions and Lemmas of this section, [0, 1] can be replaced
by any interval [a, b] with 0 ≤ a < b < a+ 2π.

3 Jordan Domains

Motivated by Theorem 3 we now give a more general definition of the spaces
Ap. Let Ω be a Jordan domain and J an open arc of ∂Ω. Denote by Ap(Ω, J)
the collection of all functions f holomorphic on Ω such that f (l) continuously
extends on Ω ∪ J for all 0 ≤ l ≤ p, l ∈ N. Note that Ap(Ω, ∂Ω) = Ap(Ω). If
γ : I → J is a parametrization of J , denote by Cpγ(J) the class of all functions
f : G → C defined on a varying set G, J ⊂ G, such that f ◦ γ : I → C is p
times continuously differentiable. Moreover, if φ : D → Ω is a Riemann map,
denote by Cpφ(J) the class Cpγ(J) where γ(t) = φ(eit) . Since any two Riemann
maps differ by an automorphism of the unit disk it is easily verified that the
spaces Cpφ(J) do not depend on the chosen Riemann map. Next, we consider
differentiability on J with respect to the position [2].

Definition 1 Let J be a Jordan arc and f : J → C. We define the derivative
of f on z0 ∈ J by:

df

dz
(z0) = lim

z→z0,z∈J

f(z)− f(z0)

z − z0
(31)

if this limit exists and is a complex number.
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In order to go one step further , we consider the derivative df
dz on J of

Definition 1 and we take its derivative on J with respect to the position.

Definition 2 A function f : J → C belongs to the class C1(J) if df
dz (z) exists

and is continuous for z ∈ J . Inductively, suppose that dp−1f
dzp−1 is well defined on

J for some p = 2, . . . ,+∞, we say that f is of class Cp(J) if

dpf

dzp
(z) =

d(d
p−1f
dzp−1 )

dz
(z) (32)

exists and is continuous on J .

Remark 3 In [2] the following fact is proven. If γ : I → J is a Cn regular (with
non vanishing derivative) parametrization of a Jordan arc J, n ∈ {1, 2, . . . } ∪
{∞}, a function f is of class Cp(J) if and only if g(t) = (f ◦ γ)(t), t ∈ I, is of
class Cp(I), p ∈ {1, 2, ...} ∪ {∞}, p ≤ n. Additionally,

dg

dt
(t) =

df

dz
(γ(t)) · γ′(t). (33)

In this section we prove that given a Jordan domain Ω, φ : D → Ω a Rie-
mann map such that φ−1 ∈ A1(Ω, J) and (φ−1)′(z) 6= 0, z ∈ Ω∪J , f ∈ A(Ω, J)
and p ∈ {1, 2, . . . }∪{∞} the following are equivalent: f (l) continuously extend
over Ω ∪ J for all 0 ≤ l ≤ p, l ∈ N if and only if f |J is of class Cp(J). That is
Ap(Ω, J) = A(Ω, J) ∩ Cp(J).

Let us first prove a straightforward fact concerning the parametrization of
an arc J of ∂Ω induced by a Riemann map φ.

Theorem 4 Let Ω be a Jordan domain, φ : D → Ω a Riemann map and J an
open arc of ∂Ω such that φ−1 is of class An(Ω, J) for some n ∈ {1, 2, . . . } ∪
{∞} and (φ−1)′(z) 6= 0, z ∈ Ω∪J . The following holds for any p ∈ {1, 2, . . . }∪
{∞}, p ≤ n: Ap(Ω, J) = A(Ω, J) ∩ Cpφ(J). In that case, if f ∈ Ap(Ω, J) and

g(t) = (f ◦ φ)(eit):
dg

dt
(t) = ieitf ′(φ(eit))φ′(eit) (34)

for all t ∈ {s ∈ R : φ(eis) ∈ J}.

On the right hand side of (34) f ′ denotes the continuous extension of f ′(z)
from Ω to Ω ∪ J .

Before proceeding to the proof, let us note that the choice of the Riemann
map is irrelevant. Suppose that Φ, Ψ are two Riemann maps and J an open arc
of ∂Ω such that Φ−1 is of class An(Ω, J), n ∈ {1, 2, ...}∪{∞}, and (Φ−1)′(z) 6=
0 for all z ∈ Ω ∪ J . Then, Ψ−1 is also of class An(Ω, J) and (Ψ−1)′ is non
zero in Ω ∪ J . To see this, observe that Φ−1 ◦ Ψ is an automorphism of the
unit disk and hence there are a ∈ D and c ∈ T such that Ψ = Φ ◦ φa,
where φa(z) = c z−a1−az , z ∈ D. Note that φa is holomorphic in D(0, 1a ) ⊃ D

with non vanishing derivative thus, Ψ (l) can be extended over D for all 0 ≤
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l ≤ n, l ∈ N. Additionally, (Ψ−1)′(z) = 1−|a|2
(1+aΦ−1(z))2 · (Φ

−1)′(z) 6= 0 for all

z ∈ Ω ∪ J . Moreover, Φ−1 being of class An(Ω, J) is equivalent to Φ being
of class An(D, I), I = φ−1(J). This is easy to see given that (Φ−1)′(z) 6= 0
for z ∈ Ω ∪ J . In other words, if a Riemann map induces a regular n times
continuously differentiable parametrization of J then, the same holds for any
other Riemann map.

Proof (Theorem 4) Set I = φ−1(J) and Ĩ = {s ∈ R : φ(eis) ∈ J}. Given an
f ∈ A(Ω, J) one can easily verify that f is of class Ap(Ω, J) if and only if
f ◦φ is of class Ap(D, I), since φ′ is non zero in D∪ I and p ≤ n. By Theorem
3, f ◦ φ is of class Ap(D, I) if and only if the map t 7→ (f ◦ φ)(eit), t ∈ Ĩ ,
is p times continuously differentiable which by definition is equivalent to f
being of class Cpφ(J). To see that (34) holds, set gr(t) = f(φ(reit)), t ∈ R, 0 <
r < 1. Note that gr → g as r → 1− uniformly in the compact subsets of
Ĩ. Additionally, dgr

dt (t) = ireitf ′(φ(reit))φ′(eit) which uniformly converges to

ieitf ′(φ(eit))φ′(eit) as r → 1− in the compact subsets of Ĩ. From a well known
theorem of calculus (34) follows.

ut
In the next theorem we prove that for any function f ∈ A(Ω, J) the first

p derivatives of f continuously extend over Ω ∪ J if and only if f |J is of class
Cp(J), given that J is a smooth enough open arc of the Jordan domain Ω.
That is, if φ is a Riemann map and φ−1 is of class A1(Ω, J) with (φ−1)′(z) 6=
0, z ∈ Ω ∪ J then Ap(Ω, J) = A(Ω, J) ∩ Cp(J) for all p ∈ {1, 2, ...} ∪ {∞}.

Theorem 5 Let Ω be a Jordan domain, φ : D → Ω a Riemann map and J an
open arc of ∂Ω such that φ−1 is of class A1(Ω, J) with (φ−1)′(z) 6= 0, z ∈ Ω∪J .
Given an f ∈ A(Ω, J) and p ∈ {1, 2, ...}∪{∞} we have that: f (l) continuously
extend over Ω ∪ J for all 0 ≤ l ≤ p, l ∈ N if and only if f |J is of class Cp(J).
That is, Ap(Ω, J) = A(Ω, J) ∩ Cp(J). In that case:

f (l)(z) =
dl f |J
dzl

(z) (35)

for all z ∈ J and 0 ≤ l ≤ p, l ∈ N.

On the left hand side of (35), f (l)(z) denotes the continuous extension of f (l)

on Ω ∪ J , while on the right hand side the differentiation is with respect to
the position.

Proof Let p = 1 and f ∈ A(Ω, J). Denote by Ĩ = {s ∈ R : φ(eis) ∈ J}. By The-
orem 4 we have that f ∈ A1(Ω, J) if and only if the map g(t) = f(φ(eit)), t ∈ Ĩ
is continuously differentiable. Additionally, dg

dt (t) = ieitφ′(eit)f ′(φ(eit)) and:

dg

dt
(eit) =

d f |J
dz

(φ(eit)) ·
d φ|T
dz

(eit) · ieit = ieitφ′(eit)
d f |J
dz

(φ(eit)) (36)

Since ieitφ′(eit) is non zero we have that g is continuously differentiable if
and only if f |J is of class C1(J). Consequently, f is of class A1(Ω, J) if and
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only if g is of class C1(Ĩ) if and only if f |J is of class C1(J). Equation (35)
follows from equations (34) and (36). For the induction step, assume that
p > 1. We have that f ∈ Ap(Ω, J) if and only if f ′ ∈ Ap−1(Ω, J) which by the
induction hypothesis is equivalent to f ′|J ∈ Cp−1(J) and that is equivalent to
f |J ∈ Cp(J), by (35) for l = 1. Moreover,

dl f |J
dzl

(z) =
d(l−1)

dz(l−1)

(
d f |J
dz

(z)

)
=

d(l−1)

dz(l−1)
(f ′(z)) = (f ′)(l−1)(z) = f (l)(z)

(37)
for all z ∈ J and 1 ≤ l ≤ p, l ∈ N.

ut

Remark 4 Note that if Ω is a Jordan domain, J an analytic arc of ∂Ω and
φ : D → Ω a Riemann map we know from [1] (p. 235) that φ−1 has a conformal
extension over an open set G ⊃ Ω ∪ J . Consequently, if J is an analytic arc
we immediately have Ap(Ω, J) = A(Ω, J)∩Cp(J) for all p ∈ {1, 2, ...} ∪ {∞}.

In addition, if we have γ a Cn regular parametrization of J, n ∈ {1, 2, ...}∪
{∞} we have a triple equivalence as derived from Remark 3 and Theorem 5.

Theorem 6 Let Ω be a Jordan domain, φ a Riemann map and J an open
arc of ∂Ω such that φ−1 is of class A1(Ω, J) and (φ−1)′(z) 6= 0, z ∈ Ω ∪ J ,
γ a Cn regular parametrization of J, n ∈ {1, 2, ...} ∪ {∞}, f ∈ A(Ω, J) and
p{1, 2, ...} ∪ {∞}, p ≤ n. The following are equivalent:

1. f (l) continuously extend over Ω ∪ J for all 0 ≤ l ≤ p, l ∈ N. That is, f is
of class Ap(Ω, J).

2. f |J is of class Cp(J).
3. g(t) = (f ◦ γ)(t), t ∈ I is p times continuously differentiable. That is f is

of class Cpγ(J).

In other words, Ap(Ω, J) = A(Ω, J) ∩ Cp(J) = A(Ω, J) ∩ Cpγ(Ω, J). In that
case:

dg

dt
(t) =

d f |J
dz

(γ(t))γ′(t) = f ′(γ(t))γ′(t) (38)

for all t ∈ I.

Remark 5 We notice that the assumption on Theorem 5 that the Riemann
map φ : D → Ω is such that φ−1 ∈ A(Ω, J) with (φ−1)′(z) 6= 0 for z ∈ Ω ∪ J
is in fact equivalent to say that the parametrization of J induced by φ is C1

regular.

We topologize Ap(Ω) by the semi-norms

|f |l = sup
z∈Ω
|f (l)(z)| = sup

z∈∂Ω
|f (l)(z)|, 0 ≤ l ≤ p, l ∈ N (39)

and Cp(∂Ω) by the semi-norms

|g|l = sup
z∈∂Ω

|d
lg

dzl
(z)|, 0 ≤ l ≤ p, l ∈ N (40)
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see also [2]. By equation (35) it easily seen that the topology on Ap(Ω) and
A(Ω) ∩ Cp(∂Ω) induced by Cp(∂Ω) coincide. Summarizing:

Corollary 1 Let Ω be a Jordan domain and φ : D → Ω a Riemann map of
class A1(D) such that φ′(z) 6= 0 for all z ∈ D. The following equivalence holds
for all f ∈ A(Ω) and p ∈ {1, 2, ...} ∪ {∞}: f ∈ Ap(Ω) if and only if f |∂Ω is
p times continuously differentiable with respect to the position. In this case we
have:

dlf

dzl
(z) = f (l)(z) (41)

For all z ∈ ∂Ω and 0 ≤ l ≤ p, l ∈ N. On the right hand side of (41) f (l)(z)
denotes the continuous extension of f (l) from Ω to Ω ∪ J . We also have,
Ap(Ω) = A(Ω) ∩ Cp(∂Ω) as topological spaces.

Remark 6 There is a natural way to topologize the spaces Ap(Ω, J) for any
Jordan domain Ω, open arc J ⊂ ∂Ω and p ∈ {1, 2, . . . } ∪ {∞}. Then, the
equality Ap(Ω, J) = A(Ω, J)∩Cp(J) holds taking into account the topologies
of the spaces as well. However, we will not deal with the topological properties
of the spaces Ap(Ω, J) in this paper.

One can easily extend the results of this section for the complement of a
Jordan domain Ω given that the functions considered vanish at infinity. That
is, if Ap0(Ĉ \ Ω) is the class of all functions f with limz→∞ f(z) = 0 and
holomorphic in C \ Ω such that their first p derivatives extend over C \ Ω
for all 0 ≤ l ≤ p, l ∈ N, then Ap0(Ĉ \ Ω) = A0(Ĉ \ Ω) ∩ Cp(∂Ω) under
similar assumptions to that of Theorem 5. For J an open arc of ∂Ω we define
Ap0(Ĉ \Ω, J) similarly.

Remark 7 The previous results can be generalized to the case of finitely con-
nected domains bounded by a finite set of disjoint Jordan curves. For this we
use the Laurent Decomposition [3].

We will take a moment to sketch the proof. Let Ω be a bounded domain whose
boundary consists of a finite number of disjoint Jordan curves. If V0, V1, ..., Vn−1
are the connected components of Ĉ \ Ω, ∞ ∈ V0 and Ω0 = Ĉ \ V0, ...,

Ωn−1 = Ĉ \ Vn−1, then for every f which is holomorphic in Ω we know that
there exist functions f0, ..., fn−1 which are holomorphic in Ω0, ..., Ωn−1 respec-
tively such that f = f0+f1+...+fn−1 and limz→∞ fj(z) = 0, j ∈ {1, . . . , n−1}
[3]. Let φj : D → Ωj , j ∈ {0, 1, . . . , n− 1}, be the respective conformal maps.
Without loss of generality, take J an open arc of ∂Ω0 such that φ−10 is of class
A1(Ω0, J) with non vanishing derivative. Let also f be a holomorphic function
in Ω and continuous in Ω∪J such that f = f0+f1+· · ·+fn−1, fj holomorphic
in Ωj , is the extended Laurent decomposition of f . Since fj is holomorphic
in a neighborhood of ∂Ω0 for all j 6= 0, we have that f0 continuously extends
over Ω0 ∪ J since f continuously extends over Ω ∪ J . Similarly, f (l) continu-
ously extends over Ω ∪ J for all 0 ≤ l ≤ p, l ∈ N, if and only if f0 is of class
Ap(Ω0, J). By Theorem 5, f is of class Ap(Ω0, J) if and only if f0|J is of class
Cp(J), which happens if and only if f |J is of class Cp(J).
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