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Abstract

Enormous advances in computing power in recent decades have made it possible to

perform accurate numerical simulations of a wide range of systems in condensed matter

physics. At the forefront of this progress has been density functional theory (DFT),

a very popular approach to tackling the complexity of quantum-mechanical systems

that very often strikes a good balance between accuracy and tractability in light of

the finite computational resources available to researchers.

This thesis describes work utilising DFT methods to tackle two distinct problems.

Firstly, the theoretical prediction of stable and metastable periodic structures under

specified conditions using the ab initio random structure searching (AIRSS) method,

which involves a large scale exploration of the Born-Oppenheimer energy surface, and

secondly the use of a vibrational self-consistent field (VSCF) approach to investigate

the effects of nuclear motion and anharmonicity in crystal systems, which involves a

local exploration of the Born-Oppenheimer energy surface.

The AIRSS crystal structure prediction method is here applied to a study of defect

structures in graphene. It is also applied to a study of the xenon-oxygen binary system

under a range of geological pressures (83–200 GPa). Novel xenon oxide structures are

predicted and characterised theoretically. This work was carried out in collaboration

with an experimental study of the system at the lower end of the pressure range.

The VSCF approach to investigating anharmonicity is here applied to the study of

tin selenide (SnSe), a material that has recently been shown to demonstrate consider-

able promise as a thermoelectric material. In this thesis, the effects of the anharmonic

nuclear motion on the vibrational and electronic properties of SnSe are investigated

quantitatively.
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Chapter 1

Thesis Outline

Predicting and understanding the behaviour of matter in the solid phase is one of

the foremost challenges occupying modern physics. This behaviour is enormously

dependent on the atomic arrangement within the material. Though crystal structure –

where atoms ‘sit’ in periodic solids – can often be determined experimentally, this can

sometimes be challenging or impossible. In such circumstances, theoretical approaches

can be highly effective. Chapters 3 and 4 of this thesis describe the application of one

such approach to crystal structure prediction. Of course, in reality, atoms do not ‘sit’

in one place, but are in motion. The effects of the quantum and thermal motion of

atomic nuclei can be of vital importance to understanding the behaviour of materials.

Nuclear motion is commonly treated using the harmonic approximation, but in some

materials this approximation is simply not accurate enough. Chapter 5 of this thesis

describes the application of the vibrational self-consistent field (VSCF) approach to

dealing with anharmonicity in crystals. Advances in these fields have been made

possible by the development of computational approximations to quantum mechanics

– the set of physical laws that determines behaviour at an atomic level – coupled with

the exponential growth in computing power available to scientists.

This thesis is laid out as follows. In Chapter 2, the theoretical background to

the work in this thesis is laid out, beginning with crystal structure. Next, starting

from quantum mechanics, density functional theory (DFT) is introduced, including

details of its practical implementation within the computational code castep. Having

introduced the basic theory, we move on to the application of DFT to real systems,

covering the basics of stable crystal structure, and then moving on to theoretical

approaches to predicting crystal structure, principally the ab initio random structure

searching (AIRSS) method. The problem of nuclear vibration is then introduced. Two
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approaches to solving this problem are laid out: the harmonic approximation, and the

VSCF method.

Chapter 3 reports the results of a project in which AIRSS was used to search for

a variety of metastable defects in graphene monolayers.

Chapter 4 reports the results of research conducted in collaboration with experi-

mentalists to predict, identify and characterise stable structures in the xenon-oxygen

binary system at high pressures approaching 1 Mbar. Higher-pressure phases are also

predicted. These xenon oxides are all characterised using density functional theory,

and conclusions drawn about the stability of xenon oxides under geological pressures.

In Chapter 5, the results of a theoretical study of tin selenide (SnSe) are reported.

Thermal expansion, and the effects of thermal motion on the vibrational and elec-

tronic properties of SnSe are studied using an accurate DFT mapping of the Born-

Oppenheimer energy surface together with the VSCF method.

Finally, the work in this thesis is summarised and avenues for future investigation

are discussed.



Chapter 2

Theoretical Overview

This chapter lays out the theoretical framework for the work of this thesis, begin-

ning with important concepts in crystal systems. Density functional theory is then

introduced, starting from many-body quantum mechanics. Next, crystal structure

prediction is introduced, with one particular method – ab initio random structure

searching – outlined. Finally, the problem of vibrations in solids is outlined, with two

approaches to solving the problem – the harmonic approximation and the vibrational

self-consistent field approach – laid out.

2.1 Crystal Systems

The work in this thesis concerns the properties of crystalline systems. Crystals are

solid materials in which the position of the atoms conforms to a regular, repeating

pattern throughout the material. Crystals exist widely in nature, and understanding

their properties is of considerable interest. The calculation of crystal properties from

first principles requires knowledge of the atomic arrangement in the crystal. The

description of this atomic arrangement is called crystal structure.

The basic unit used to describe the atomic structure of a crystal is the unit cell.

This is a theoretical construction that describes the entire crystal system through

translation operations in three dimensions. The set of translation operations used to

described the crystal is usually considered to be infinite, so that the crystal spans

all of space. Of course, this is not true; however crystals will generally contain an

extremely large number of unit cells. For example, a one-carat diamond contains

∼1021 conventional unit cells. The bulk of a real crystal is sufficiently far from the

edge of the crystal that it behaves in almost exactly the same way as the hypothetical

infinite crystal.
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The unit cell can be described by six parameters that define the cell itself: three

lengths, denoted a, b and c, and three angles, denoted α, β and γ. These six parameters

define a parallelepiped box that constitutes the translational repeating unit. There

are infinitely many choices that can be made in defining the unit cell of a crystal

structure, but conventional choices favour small cells in which the symmetries of the

crystal structure are manifest. An example of a generic empty unit cell is depicted in

Fig. 2.1.

Fig. 2.1 A generic unit cell. The lattice parameters are the lengths of the sides, a, b
and c, and the angles between them, α, β and γ.

The atoms that make up the crystal can be fully described within the unit cell,

with the full crystal formed by a periodic repetition of the atoms in the unit cell. The

atomic positions are thus subject to periodic boundary conditions. In many crystals,

the atoms are found at points of symmetry. The generic unit cell has 3(N +1) degrees

of freedom, where N is the number of atoms contained within the unit cell. This

consists of 3 spatial degrees of freedom within the unit cell for each atom, plus 6

degrees of freedom in the unit cell parameters. The translational symmetry of the

unit cell that all crystal systems possess removes 3 degrees of freedom.

2.2 Many-Body Quantum Mechanics

Interactions on an atomic scale are described by quantum mechanics. The starting

point is the non-relativistic many-body Hamiltonian Ĥtotal – the operator correspond-
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ing to the total energy of the atomic system – which is considered to consist of Ne

electrons and NN nuclei. In the absence of an external magnetic field, only the kinetic

and electrostatic potential (Coulomb) energies are considered. The Hamiltonian is

therefore [1]:

Ĥtotal =
∑

i

− ~
2

2me

∇2
i +

∑

I

− ~
2

2mI

∇2
I +

1
2

∑

i6=j

e2

4πǫ0|~ri − ~rj|

+
∑

i,I

− ZIe
2

4πǫ0|~ri − ~RI |
+

1
2

∑

I 6=J

ZIZJe
2

4πǫ0|~RI − ~RJ |
.

(2.1)

m and Z denote masses and atomic numbers, respectively; ~r and ~R denote the posi-

tion coordinates for electrons and nuclei, respectively. The first two terms correspond

respectively to the kinetic energies of the electrons and of the nuclei. The last three

terms correspond to electrostatic potential energies, firstly between pairs of electrons,

then between the electrons and the nuclei and finally between pairs of nuclei. The

factor of a half in the electron-electron and nucleus-nucleus Coulomb terms is to pre-

vent double-counting. Nuclei are represented by uppercase letters and electrons by

lowercase letters.

For the sake of simplicity, we change now to Hartree atomic units (|e| = me = ~ =

4πǫ0 = 1), which will be used throughout the rest of this thesis. We may now express

the Hamiltonian as

Ĥtotal = T̂e + T̂N + V̂int + V̂ext + V̂N−N , (2.2)

in which we have defined

T̂e = −1
2

∑

i

∇2
i , (2.3)

T̂N = −1
2

∑

I

1
mI

∇2
I , (2.4)

V̂int =
1
2

∑

i6=j

1
|~ri − ~rj|

, (2.5)

V̂ext = −
∑

i

V (ri) =
∑

i

∑

I

ZI

|~ri − ~RI |
, (2.6)
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and

V̂N−N =
1
2

∑

I 6=J

ZI ZJ

|~RI − ~RJ |
. (2.7)

T̂e and T̂N are the electron and nuclei kinetic energy operators, respectively, V̂int is the

“internal” electrostatic potential energy between the electrons, V̂ext is the “external”

electrostatic potential energy of the electrons due to the external potential generated

by the nuclei, and V̂N−N is the Coulomb interaction energy between the nuclei. This

Hamiltonian is simple enough to write down, but solving it for all the particles found

in a crystal system is impossible to do in an exact, analytical way. However, as we

shall now see, it is possible to solve it approximately.

2.2.1 The Born-Oppenheimer Approximation

To begin with, the Born-Oppenheimer (BO) approximation [2] is applied. The BO

approximation assumes that the motions of the electrons and of the nuclei in a quantum

system are separable, so that the wavefunction of the system, Ψtotal, can be expressed

as the product of an electronic wavefunction, ψ, and a nuclear wavefunction, ϕ. ψ is a

function of the collective electronic position vector ~r = (~r1, . . . , ~rNe) and the collective

nuclear position vector ~R =
(
~R1, . . . , ~RNN

)
; the latter enters into the problem as

a parameter in the electronic part of the Hamiltonian, Ĥel. ϕ is a function of the

collective nuclear coordinates ~R and time t only.

Let us first define the electronic Hamiltonian Ĥel as

Ĥel = T̂e + V̂int + V̂ext, (2.8)

so that

Ĥtotal = Ĥel + T̂N + V̂N−N . (2.9)

The BO approximation starts with a trial solution in which the total wavefunction is

represented by products of nuclear wavefunctions ϕn and electronic wavefunctions ψn

[3]:

Ψtotal(~r, ~R, t) =
∑

n

ϕn(~R, t)ψn(~r, ~R). (2.10)
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The electronic wavefunctions ψn(~r, ~R) are those that solve the electronic Hamiltonian

defined in equation (2.9):

Ĥel ψn(~r, ~R) = Eel
n (~R)ψn(~r, ~R). (2.11)

Substituting the trial solution (2.10) into the time-dependent Schrödinger equation

with the Hamiltonian of equation (2.9), and selecting out a single nuclear wavefunction

ϕm by multiplying from the left with 〈ψm(~r, ~R)|, we obtain

[
i
∂

∂t
+

1
2

∑

I

1
mI

∇2
I − V̂N−N − Eel

m(~R)

]
ϕm(~R, t) =

− 1
2

∑

n

∑

I

1
mI

〈
ψm

∣∣∣∇2
I

∣∣∣ψn

〉
ϕn(~R, t)

−
∑

n

∑

I

1
mI

~∇Iϕn(~R, t) ·
〈
ψm

∣∣∣~∇I

∣∣∣ψn

〉
,

(2.12)

in which we have made use of the relation

∇2
I ϕnψn = ψn∇2

Iϕn + 2 ~∇Iϕn · ~∇Iψn + ϕn∇2
I ψn. (2.13)

Neglecting the first term on the right hand side of equation (2.13) constitutes the adi-

abatic approximation, which assumes that the evolution of the nuclear wavefunctions

{ϕn} occurs sufficiently slowly to prevent mixing of electronic states {ψn}. The elec-

trons instantaneously follow the motion of the nuclei; a system in a given electronic

stationary state – for example, the ground state – will remain in that stationary state

as the nuclear wavefunctions evolve (although the state itself will change). The full BO

approximation additionally neglects the second term on the right hand side, thereby

allowing the total wavefunction to be represented by a single term of equation (2.10):

Ψtotal(~r, ~R, t) = ϕ(~R, t)ψ(~r, ~R). (2.14)

The validity of the BO approximation rests on the much greater mass of the nuclei

compared to the electrons, leading to electronic relaxation occurring on a much shorter

timescale than the motion of nuclei. For the purpose of calculating electronic structure

– the electronic part of the total wavefunction, ψ(~r, ~R) – the semi-classical approach is

taken, with the nuclei considered to be point particles in a fixed configuration. As such,

the nucleus-nucleus Coulomb term is a constant contribution towards the energy of the

system, and the electron-nucleus interaction term can be thought of as an interaction
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between the electrons and a fixed external potential generated by all of the stationary

nuclei. Thus for the electronic problem we can drop the nuclear kinetic energy term

and consider the Hamiltonian Ĥ to be:

Ĥ = T̂e + V̂int + V̂ext + EN−N , (2.15)

where

EN−N =
1
2

∑

I 6=J

ZIZJ

|~RI − ~RJ |
. (2.16)

We note here that the kinetic and internal electrostatic potential energy terms,

because they involve only the electrons, take the same form for all systems of electrons,

depending only on Ne. The only non-constant term that is affected by the position of

the nuclei is the external potential energy term, as it is the nuclei that are generating

the external potential felt by the electrons.

Consideration of the nuclear wavefunction yields the nuclear eigenvalue equation:

Ĥnuclϕm(~R, t) = Em ϕm(~R, t), (2.17)

where

Ĥnucl =
∑

I

− 1
2mI

∇2 + ǫm(~R), (2.18)

ǫm(~R) = Eel
m(~R) + EN−N (~R) (2.19)

Approaches to solving equation (2.17) are presented later in this chapter. For now, we

shall only consider the solution of the electronic problem of equation (2.11).

2.2.2 The Electronic Problem

To find the energy eigenvalues and eigenfunctions of the Hamiltonian Ĥ = Ĥel +

EN−N , and so be able to calculate properties of the system, we must solve the time-

independent Schrödinger equation:

ĤΨ(~r) = EΨ(~r) (2.20)
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The ground state is represented by the solution to equation (2.20) with the lowest

value of E. As we are dealing with a system of indistinguishable fermions, the overall

wavefunction of the system must be antisymmetric under particle exchange.

The wavefunction contains all information about the state of the system, so that

from it we are able to calculate all of the properties of the system. For an observable

O, whose operator is denoted by Ô, the expectation value of the operator is given by:

〈Ô〉 =
〈Ψ|Ô|Ψ〉
〈Ψ|Ψ〉 . (2.21)

We consider first the total energy of the system:

E = 〈Ĥ〉 = 〈T̂e〉 + 〈V̂int〉 + 〈V̂ext〉 + EN−N . (2.22)

We can rewrite the expectation value for V̂ext as an explicit integral over the electron

density, n(~r):

V̂ext =
∫
d3~r Vext(~r) n(~r), (2.23)

where the electron density is the expectation value of the density operator:

n(~r) =
〈Ψ|n̂(~r)|Ψ〉

〈Ψ|Ψ〉 =
∫
d3~r1...d

3~rN

∑N
i=1 δ(~r − ~ri) |Ψ(~r1, ..., ~rN)|2

∫
d3~r1...d3~rN |Ψ(~r1, ..., ~rN)|2

= N

∫
d3~r2...d

3~rN |Ψ(~r, ~r2, ..., ~rN)|2
∫
d3~r1...d3~rN |Ψ(~r1, ..., ~rN)|2 .

(2.24)

Putting this together, we obtain as an expression for the energy of the system:

E = 〈T̂e〉 + 〈V̂int〉 +
∫
d3~r Vext(~r) n(~r) + EN−N . (2.25)

Finally, when actually attempting to evaluate the energy terms in a system subject

to periodic boundary conditions, Coulomb interaction terms should be arranged into

neutral groups to avoid energies diverging. This means that we need to rearrange

equation (2.25) to evaluate terms in which the charges involved sum to zero. To do

this, we introduce the Hartree term, EH :

EH =
1
2

∫
d3~rd3~r′n(~r)n(~r′)

|~r − ~r′|
. (2.26)
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This is the energy of a classical continuous charge distribution with a charge density

n(~r). By defining a classical Coulomb energy:

ECC = EH +
∫
d3~r Vext(~r) n(~r) + EN−N , (2.27)

we can rearrange equation (2.25) to obtain:

E = 〈T̂e〉 + (〈V̂int〉 − EH) + ECC . (2.28)

The first term represents the kinetic energy of the electrons, the third term the

Coulomb energy of a continuous classical charge distribution with the same density

as the electrons in the space around the nuclei, and the second term represents the

energy difference between this picture and the true picture, in which there are discrete

electrons with interactions and correlations. The second two terms, which relate to

Coulomb energies, are both neutral - the second term has two sub-terms concerning

electron-electron interactions that cancel, while the third term has sub-terms relating

to equal amount of positive and negative charge. The Coulomb terms are usually

evaluated using Ewald summation, which splits the summation two parts: a short-

range term evaluated in real space, and a long-range term evaluated in reciprocal

space; both terms are rapidly convergent [1, 4].

Equation (2.28) is impossible to evaluate exactly for more than one electron. As the

electrons interact, the number of states required to describe the wavefunction grows

exponentially with system size. For many-electron crystal systems, equation (2.28) is

far beyond our capabilities to solve even numerically, without making some further ap-

proximations. There are various approximate methods available. One popular class of

methods, encompassing Hartree-Fock and post-Hartree-Fock theories, will be outlined

first, followed by density functional theory, which is the primary methodology used for

the work of this thesis.
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2.2.3 Hartree-Fock Theory and Beyond

Hartree-Fock is a trial wavefunction-type method based upon the ansatz of using a

Slater determinant of single-particle spin-orbitals φi(~xj) = ψσ
i (~rj)αi(σj) to represent

the total wavefunction [1]:

Ψ(~x1,~x2, . . . ,~xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(~x1) φ2(~x1) · · · φN(~x1)

φ1(~x2) φ2(~x2) · · · φN(~x2)
...

...
. . .

...

φ1(~xN ) φ2(~xN ) · · · φN(~xN )

∣∣∣∣∣∣∣∣∣∣∣∣

. (2.29)

The nature of the determinant ensures that the wavefunction is antisymmetric

under exchange, as is required for indistinguishable fermions, so that exchange sym-

metry is built into the approach. Each term in the Slater determinant is the product of

independent-particle wavefunctions, so the electrostatic energy, including exchange ef-

fects, is treated in a mean-field approach. The effects of correlation are not considered.

The total electronic energy in Hartree-Fock is

EHF
el =

〈
Ψ
∣∣∣Ĥ
∣∣∣Ψ
〉

=
∑

i

〈
φi

∣∣∣∣−
1
2

∇2 + Vext(~r)
∣∣∣∣φi

〉
+

1
2

∑

i,j

〈
φiφj

∣∣∣∣∣
1

|~r − ~r ′|

∣∣∣∣∣φiφj

〉

−1
2

∑

i,j

〈
φiφj

∣∣∣∣∣
1

|~r − ~r ′|

∣∣∣∣∣φjφi

〉
,

(2.30)

where Vext(~r) is the external potential felt by the electrons due to the nuclei. For

the sake of simplicity, let us consider the case of orthonormal spin-orbitals and a

spin-independent Hamiltonian. Equation (2.30) then evaluates to
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〈
Ψ
∣∣∣Ĥ
∣∣∣Ψ
〉

=
1
2

∑

i,σ

∫
d~r ψσ∗

i (~r)
[
−1

2
∇2 + Vext(~r)

]
ψσ

i (~r)

︸ ︷︷ ︸
Single-particle energy

+
∑

i<j

∫
d~rd~r ′ ψσi∗

i (~r)ψσj∗
j (~r ′)

1
|~r − ~r ′|ψ

σi
i (~r)ψσj

j (~r ′)

︸ ︷︷ ︸
Direct interaction,J

− 1
2

∑

i<j

δσiσj

∫
d~rd~r ′ ψσ∗

i (~r)ψσ∗
j (~r ′)

1
|~r − ~r ′|ψ

σ
j (~r)ψσ

i (~r ′)

︸ ︷︷ ︸
Exchange interaction,K

.

(2.31)

The first term is the single-particle term, containing each electron’s kinetic energy

and Coulomb energy due to interaction with the nuclei. The second term, the direct

term, denoted J , is the standard Coulomb energy for non-interacting particles. The

final term, the exchange term, denoted K, is the correction to the Coulomb energy due

to exchange effects, which are introduced through the Slater determinant formulation.

The antisymmetry of the wavefunction means that the electronic wavefunction must

tend to zero as ~ri → ~rj, having the effect of reducing the probability of two electrons

being close together. As two electrons being close together yields a large Coulomb

energy, this exchange effect therefore acts to reduce the total energy of the system.

The Hartree-Fock ground state is found by minimising the system energy using the

variational method applied to the individual particle spin-orbitals, which are subject

to the mean field potential of the other spin-orbitals. The minimisation proceeds

iteratively until the final field from the energy-minimised spin-orbitals is self-consistent

with the field the spin-orbitals were minimised in. For this reason Hartree-Fock is

known as a self-consistent field method. This procedure utilises the fact that the

expectation value of the Hamiltonian with respect to a general wavefunction Ψ has

the ground state energy as a lower bound (see Appendix A for a proof):

E0 6
〈
Ψ
∣∣∣Ĥ
∣∣∣Ψ
〉
. (2.32)

The spin-orbitals can be expressed in a computationally convenient basis set, such as

Slater-type orbitals [5], or Gaussian-type orbitals [6].

Post-Hartree-Fock methods such as Møller-Plesset perturbation theory, coupled

cluster and configuration interaction attempt to build upon Hartree-Fock methods to
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include electron correlation effects [3]. This generally improves accuracy, at a cost of

greater computational expense. The Hartree-Fock method scales with system size N

as O(N4), with post-Hartree-Fock methods scaling as O(N5) or higher.

Hartree-Fock and post-Hartree-Fock methods are widely used in computational

chemistry, but they are less widely used for periodic crystal systems. For these systems,

the more commonly-used choice is density functional theory (DFT).

2.3 Density Functional Theory

2.3.1 The Hohenberg-Kohn Theorems

At the heart of density functional theory are the two Hohenberg-Kohn theorems, in-

troduced by Hohenberg and Kohn in 1964 [7], which were extremely important in the

development of density functional theory. The theorems tell us that instead of dealing

with trial wavefunctions in 3N electron position coordinates, it is possible to do exact

calculations using only the total electron ground state density, which is a function of

three spatial coordinates only, and that a functional of this ground state density exists

that determines the total energy of the system. However, the theorems do not estab-

lish the form of this functional; as such, they provide no insight into how to actually

find the ground state density or how to extract properties from it.

The first of the two theorems states that the ground state electron density, n0,

is sufficient to construct the external potential Vext that the electrons feel, up to a

constant energy term. Therefore if two external potentials result in the same ground

state electron density, then the two potentials can differ by at most a constant. This

theorem can be proven by contradiction. Suppose we have two external potentials,

Vext and V ′
ext, which we take to differ by more than a constant, that both lead to the

same ground state electron density n0(~r). These two external potentials can be used to

define corresponding Hamiltonians, Ĥ and Ĥ ′, which have ground state wavefunctions

Ψ and Ψ′ and corresponding ground state energies E0 and E ′
0. We assume in this proof

that the ground states are non-degenerate, but the proof can be extended to other cases

[8].

These ground state wavefunctions cannot be eigenstates of the other Hamiltonian:

if we had Ĥ |Ψ′〉 = E |Ψ′〉 then we would obtain:

(Ĥ − Ĥ ′) |Ψ′〉 = (V̂ext − V̂ ′
ext) |Ψ′〉 = (E − E ′

0) |Ψ′〉 , (2.33)
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which would require that V̂ext and V̂ ′
ext differ by only a constant, which is contrary to

our original definition of the potentials.

As Ψ′ therefore cannot be the ground state of Ĥ, we can use the variational method

(2.32) to conclude that

E0 = 〈Ψ|Ĥ|Ψ〉 < 〈Ψ′|Ĥ|Ψ′〉 . (2.34)

We can re-arrange the rightmost term in (2.34) as follows:

〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉 + 〈Ψ′|(Ĥ − Ĥ ′)|Ψ′〉

= E ′
0 +

∫
d3~r (Vext − V ′

ext)n0(~r),
(2.35)

to obtain

E0 < E′
0 +

∫
d3~r (Vext − V ′

ext)n0(~r). (2.36)

However, this procedure can be repeated for E ′
0, from which we find:

E ′
0 < E0 +

∫
d3~r (V ′

ext − Vext)n0(~r). (2.37)

Summation of (2.36) and (2.37) yields E0 +E ′
0 < E0 +E ′

0, a contradictory result that

proves that Vext and V ′
ext cannot differ by more than a constant if they are to produce

the same ground state density n0(~r).

The implications of this first theorem are profound. Since the ground state electron

density is sufficient to fix Vext up to a constant energy shift, if we know n0 then the

Hamiltonian is fully specified. If we know the Hamiltonian then we can in principle

solve it to obtain the wavefunctions for all the states of the system, and from the

wavefunctions we can determine any properties of the system that we are interested

in. We can therefore express any property of the system as a functional of the ground

state electron density. However, while the first Hohenberg-Kohn theorem tells us that

this is possible in principle, it does not directly lead to solutions for physical problems

in practice.

The second Hohenberg-Kohn theorem states that for any Vext it is possible to create

a functional for the energy of the system, E[n(~r)], which takes as its input the electron

density function. Minimising this functional will give the ground state energy and the

density function that minimises E[n(~r)] is the ground state density, n0(~r). Thus we

can obtain the ground state density – from which all properties of the system can
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in principle be determined – by knowing the form of the energy functional. Mermin

extended this theorem to excited electron states corresponding to finite-temperature

thermal equilibrium [9].

The second Hohenberg-Kohn theorem is derived from the first. Let us consider

only “V-representable” densities n(~r), which are those densities that are the ground

state density of some external potential Vext. As each of these densities corresponds

to a particular Hamiltonian (up to a constant energy shift) – from which in turn the

wavefunction and so all of the properties of the system can be deduced – all of the

properties of the system can be expressed as a functional of the density:

EHK [n] = T [n] + Eint[n] +
∫
d3~r Vext(~r)n(~r) + EN−N

= FHK [n] +
∫
d3~r Vext(~r)n(~r) + EN−N .

(2.38)

The Hohenberg-Kohn functional FHK [n], made up of the electrons’ kinetic energy and

internal electrostatic potential energy terms, is a universal functional, in that it is the

same for all electron systems, and does not depend on the external potential.

Let us now consider a system with external potential Vext, which gives rise to a

Hamiltonian Ĥ, a ground state wavefunction Ψ0 and a non-degenerate ground state

density n0(~r). Then the ground state energy, which is the expectation value of the

Hamiltonian Ĥ in the ground state Ψ0, is also given by the Hohenberg-Kohn functional

with the ground state density:

E0 = EHK [n0] = 〈Ψ0|Ĥ|Ψ0〉 . (2.39)

If we now consider a wavefunction, Ψ′, leading to a different density, n′(~r), then

we can see from the variational principle that:

EHK [n0] = 〈Ψ0|Ĥ|Ψ0〉 < 〈Ψ′|Ĥ|Ψ′〉 = EHK [n′], (2.40)

so we conclude that the value of the Hohenberg-Kohn energy functional is greater

than the ground-state energy for any density other than the ground state energy,

which is achieved at the ground state density. Minimising the Hohenberg-Kohn energy

functional with respect to the electron density thus results in the ground-state energy,

and the density that produces this minimum value is the ground-state density.1

1In varying the ground state density, we must maintain the total number of electrons given by
the density, N =

∫
d3~r n(~r). This is achieved through a Lagrange multiplier, so that EHK [n] −

µ
(∫

d3~r n(~r) − N
)

is the quantity that is minimised in the variational method.
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An alternative formulation of the Hohenberg-Kohn approach is provided in the

work of Levy and Lieb, known as the constrained search formulation [10–15]. This in-

volves a two-step minimisation procedure. Working from the wavefunction formulation

for the total energy of the system, E:

E = 〈Ψ|Ĥ|Ψ〉 = 〈Ψ|T̂e|Ψ〉 + 〈Ψ|V̂int|Ψ〉 +
∫

d3~r Vext(~r)n(~r) + EN−N , (2.41)

the Levy-Lieb energy functional, ELL, is defined as a functional of the density by

minimising (2.41) with respect to all wavefunctions Ψ that correspond to the density

n(~r):

ELL[n] = min
Ψ→n(~r)

[
〈Ψ|T̂e|Ψ〉 + 〈Ψ|V̂int|Ψ〉

]
+
∫

d3~r Vext(~r)n(~r) + EN−N

= FLL[n] +
∫
d3~r Vext(~r)n(~r) + EN−N .

(2.42)

FLL[n] is the equivalent of the Hohenberg-Kohn functional FHK [n] within the Levy-

Lieb formulation. Equation (2.42) defines the energy functional of the density for all

“N -representable” densities – that is, all densities that correspond to an antisymmetric

N -electron wavefunction. This is a relaxation of the requirement of the Hohenberg-

Kohn formulation that we consider only “V -representable” densities – densities that

are the ground state density for some Vext. We can now minimise the density functional

defined in (2.42) with respect to the density to obtain the ground state energy and

the corresponding density. At this minimum the Levy-Lieb energy functional is equal

to the Hohenberg-Kohn energy functional: ELL[n0(~r)] = EHK [n0(~r)]. There is also no

restriction on there being degenerate ground states.

2.3.2 The Kohn-Sham Equations

The Hohenberg-Kohn theorems establish that the total electron density, rather than

the many-electron wavefunction Ψ, may be used in the calculation of physical proper-

ties. However, they only establish this in principle – they do not provide an actual

practical method for carrying out calculations. In the year after the Hohenberg-Kohn

theorems were published, Kohn and Sham proposed such a method [16], which shall

now be outlined here.

The essence of the Kohn-Sham approach is to replace the true problem of solving

the Hamiltonian of an interacting many-body system (equation (2.15)) with a different
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problem, which approximates the original problem while being much easier to solve.

The replacement system, known as the auxiliary system, is a non-interacting many-

body system. At the heart of this is the assumption, originally made by Kohn and

Sham, that one can construct an auxiliary non-interacting many-body system whose

ground state density is the same as the ground state density of the actual system.

The starting point is the second Hohenberg-Kohn theorem, which allows us to

express the system energy (2.25) as a functional of the ground state electron density.

The Hohenberg-Kohn energy functional in equation (2.38) can be re-written as:

EHK = Ts[n] + EH [n] +
∫
d3~r Vext n(~r) + EN−N + (T [n] − Ts[n] + Eint[n] − EH [n]) ,

(2.43)

where Ts[n] is a functional for the independent-particle kinetic energy, and EH [n] is a

functional for the classical Hartree energy defined in equation (2.26). The Kohn-Sham

approach treats the auxiliary system as being composed of independent particles, so

that a total N -electron wavefunction Ψ may be constructed using products of single-

particle wavefunctions ψ:

Ψ(~r1, ~r2, . . . , ~rN) =
N∏

i=1

ψi(~ri). (2.44)

Such a wavefunction, known as a Hartree product, is not guaranteed to obey exchange

symmetry, so in fact we represent the total wavefunction using a Slater determinant,

which results in a linear superposition of Hartree-like products:

Ψ(~r1, ~r2, . . . , ~rN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(~r1) ψ2(~r1) · · · ψN(~r1)

ψ1(~r2) ψ2(~r2) · · · ψN(~r2)
...

...
. . .

...

ψ1(~rN ) ψ2(~rN ) · · · ψN(~rN )

∣∣∣∣∣∣∣∣∣∣∣∣

:= 〈{~ri}|ψ1ψ2 . . . ψN 〉 .

(2.45)

The total electron density n(~r) now takes the simple form

n(~r) =
N∑

i=1

|ψi(~r)|2 . (2.46)

The independent-particle kinetic energy for the system, Ts, is

Ts = −1
2

N∑

i=1

〈ψi|∇2|ψi〉 =
1
2

N∑

i=1

∫
d3~r |∇ψi(~r)|2. (2.47)
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This form makes it clear that Ts is an explicit functional of the single-particle wavefunc-

tions, and so only an implicit functional of the density (applying the Hohenberg-Kohn

theorems to the Kohn-Sham system).

We now collect the final four terms of equation (2.43) together to form the exchange-

correlation (xc) functional:

Exc[n] = F [n] − Ts[n] − EH = 〈V̂int〉 − EH + 〈T̂e〉 − Ts[n], (2.48)

to yield the total energy functional in the Kohn-Sham approach:

E[n] = Ts[n] + EH [n] +
∫
d3~r Vext(~r) n(~r) + EN−N + Exc[n]. (2.49)

We can see from the form of Exc that the exchange-correlation functional represents

the difference between the energy of the real system and that of the independent-

particle system where the particle Coulomb interactions are replaced by a continuous

charge distribution with the same density as the real system. The exchange-correlation

functional thus contains all of the complexity relating to the effects of correlation and

exchange, leaving all the other terms well-defined.

The final stage for getting to an equation we can actually solve is minimising the

energy defined in equation (2.49). We do this by taking the functional derivative with

respect to the conjugate of the wavefunction:

δE

δψ∗
i (~r)

=
δTs

δψ∗
i (~r)

+

[
δEext

δn(~r)
+

δEH

δn(~r)
+
δExc

δn(~r)

]
δn(~r)
δψ∗

i (~r)
= 0. (2.50)

Using (2.45) as well as equation (2.47) and ensuring conservation of electron number

constraints using Lagrange multipliers, we get a Schrödinger-like equation for each

non-interacting electron:

ĤKSψi(~r) = ǫiψi(~r). (2.51)

ĤKS acts as a Hamiltonian, defined as:

HKS(~r) = −1
2

∇2 + VKS(~r). (2.52)

Here, VKS is an effective potential, made up of the several different potentials in the

system, which are the functional derivatives of the equivalent energy terms:

VKS(~r) = Vext(~r) + VH(~r) + Vxc(~r). (2.53)
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It is important to remember that the equations above are for the non-interacting

Kohn-Sham auxiliary system, which is related to the physical interacting system in

that their ground state electron densities are taken to be identical. The wavefunction

(2.45) will not necessarily be a good approximation to the true wavefunction: all we can

say is that the non-interacting ground state electron density defined by (2.46) should

be the same as the interacting ground state density defined by (2.24). It should also

be noted that the Kohn-Sham eigenvalues ǫi do not correspond to physical electron

energies, and so do not give the energy for adding or removing electrons from the

system in general. However, it can be shown that the highest occupied energy level is

equal to minus the first ionisation energy in a finite system, or to the Fermi energy in

a metal [17]. It should also be noted that the total energy of the physical system is

not equal to the sum of the Kohn-Sham eigenvalues. Instead the total energy is given

by:

E =
N∑

i=1
ǫi − e2

2

∫
d3~r

∫
d3~r′n(~r)n(~r′)∣∣∣~r − ~r′

∣∣∣
−
∫
n(~r)Vxc(~r)d3~r + Exc[n(~r)]. (2.54)

Equations (2.51) – (2.53) form a set of equations we actually have some hope of

being able to solve. Later sections will cover the methods for solving these equations,

but first we must consider the exchange-correlation functional.

2.3.3 The Exchange-Correlation Functional

The exchange-correlation functional contains all the effects related to exchange and

correlation in the interacting system [1]. The derivation of the Kohn-Sham equa-

tions outlined in the previous section provides a formal definition of the exchange-

correlation functional as the difference between the interacting and Kohn-Sham ki-

netic energies, and the difference between the true electron-electron interaction energy

and the Hartree energy for the Kohn-Sham system. This definition provides us with

no particular insight as to the form of the functional, which in principle we could

expect to be complicated and non-local. However, we are able to approximate the

exchange-correlation functional using relatively simple functional forms that repro-

duce the physics of many systems to a good level of accuracy. In this section, several

of these functional forms will be described; their known shortcomings will be briefly

discussed, and corrections for these shortcomings described.
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A useful aspect of the exchange-correlation functional is that it can often be well

approximated as a local or semi-local functional of the density. Such an approxima-

tion greatly reduces the computational complexity of evaluating the functional. For

simplicity, the theory laid out in this section is for non-spin-polarised systems. In the

spin-polarised theory, the single density function is replaced with densities for each spin

component, n↑ and n↓, which are dealt with separately, and the exchange-correlation

(xc) functional becomes a functional of the densities of each spin channel.

The local density approximation

One of the most straightforward approaches to obtaining a form for the xc functional

is the local density approximation (LDA) [1], in which the exchange-correlation energy

of the system at a point is taken to be the same as the exchange-correlation energy of

a homogeneous electron gas (HEG) with the same density as the local density of the

system:

Exc =
∫
d3~r n(~r) ǫhom

xc (n(~r)). (2.55)

The exchange energy of the HEG can be found analytically as [17]:

ǫhom
x (n(~r)) = −3

4

( 3
π
n(~r)

) 1
3

. (2.56)

The correlation energy cannot be found analytically in the same way, although it can

be analytically parameterised in the low- and high-density case of the HEG. Ceperley

and Alder [18] calculated the correlation energy of the HEG at a range of intermediate

electron densities to a high level of accuracy using Quantum Monte Carlo (QMC)

methods. Several analytic parameterisations of these data have been subsequently

developed to interpolate the correlation energy of the HEG to all densities, such as

the PZ81 parameterisation, due to Perdew and Zunger [19].

The LDA is a simple approximation, but one that produces good results in a variety

of systems [16]. Part of the reason for the success of the LDA is that it obeys the sum

rule for the exchange-correlation hole [3]:

∫
d3~r′ n(~r′)

(
g(~r, ~r′) − 1

)
= −1, (2.57)

where g(~r, ~r′) is the pair correlation function, which can be thought of as the normalised

probability of finding an electron at position ~r′ given that there is an electron at
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position ~r. In other words, the presence of an electron displaces exactly one other

electron from its vicinity.

However, the LDA is known to over-bind (calculate interatomic bonds to be stronger

than they are) because it favours more uniform charge densities [3]. This motivated

efforts to go beyond the LDA by taking the gradient of the density into account when

constructing the xc functional.

The generalised gradient approximation

More sophisticated approaches for the xc functional are semi-local functionals, which

are functionals not only of the value of the density at the point of evaluation, but also

of the gradient of the density (thus giving some information about the neighbouring

environment):

EGGA
xc =

∫
d3~r n(~r) ǫGGA

xc (n(~r), |~∇n(~r)|) (2.58)

=
∫
d3~r n(~r) ǫhom

x (n(~r)) FGGA
xc (n(~r), |~∇n(~r)|), (2.59)

where ǫhom
x (n(~r)) is the exchange energy density of the HEG and FGGA

xc is a dimen-

sionless quantity known as the enhancement factor [20]. The enhancement factor is

usually defined in terms of a dimensionless gradient quantity s1:

s1 =
|~∇n(~r)|
2kF n(~r)

, (2.60)

where kF is the local Fermi wavevector, kF = (3π2 n(~r))
1
3 .

These types of functionals are known as generalised gradient approximations (GGAs).

Various forms for the GGA enhancement factors have been put forward, such as the

PW91 [21, 22], WC [23] and PBE [24] functionals. The last of these functionals is one

of the most commonly used in condensed-matter studies today, due to its respectable

all-round accuracy for a range of properties. It has demonstrated a good level of

accuracy over a variety of systems, although – in contrast to the LDA – it tends to

overestimate volumes (under-bind) [3]. There exist two variants of the original PBE

functional: the revised PBE (RevPBE) functional [25], which is intended to produce

more accurate surface binding (adsorption) energies, and the PBE for solids (PBEsol)

functional [26], which is designed to produce a more accurate description of equilibrium

bond lengths and lattice parameters in solids. There are various physical conditions

that the functionals should satisfy, which help to determine the forms of the function-
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als, such as the local Lieb-Oxford limit [27]; these are discussed further by Martin [1]

and Kohanoff [3]. Different formulations for FGGA
xc make different choices on which of

the conditions to obey and which to relax, leading to a variety of GGA xc functionals.

The idea behind the GGA can be extended further, in a process that Perdew

described as part of a “Jacob’s Ladder” of exchange-correlation functionals [28]. So-

called meta-GGAs are integrals of the electron density over a local energy function,

which takes as its inputs not only the value of the electron density and the gradient

of the electron density at a point, but also the second derivative (Laplacian) of the

density, or the kinetic energy density. Such functionals are also semi-local in nature.

Hybrid functionals

One well-known problem [29] with LDA and GGA functionals is that they fail to

reproduce the known property of the non-vanishing discontinuity in the derivative of

the xc energy with respect to the density upon passing through an integer number of

particles in the system:

lim
δ→0

[
δExc

δn(~r)

∣∣∣∣∣
N+δ

− δExc

δn(~r)

∣∣∣∣∣
N−δ

]
= C, (2.61)

for integer particle number N , where C is a constant [30]. This leads to the band-gap

problem, in which the band gaps of semi-conductors and insulators are under-predicted

by a system-dependent constant amount of energy, C, which can typically represent

∼40% of the experimentally observed band gap [31].

Hybrid functionals are one approach to predicting more accurate band gaps. Such

functionals mix a local or semi-local xc functional with the Hartree-Fock exchange

energy, which is known to overestimate band gaps [3]. The HF exchange energy is

computed in terms of wavefunctions, so hybrid density functionals are implicit rather

than explicit functionals of the electron density. Hybrid functionals may differ both in

the choice of (semi-)local functional and the method of mixing with the exact exchange

energy from Hartree-Fock theory. Hybrid functionals commonly used in condensed

matter physics include PBE0 [32] and HSE06 [33, 34]. The former straightforwardly

mixes the PBE and Hartree-Fock exchange energies in a ratio fixed at 3:1, along with

the PBE correlation energy. HSE06 is a more sophisticated functional, taking the

form:

EωP BEh
xc = aEHF,SR

x (ω) + (1 − a)EP BE,SR
x (ω) + EP BE,LR

x (ω) + EP BE
c . (2.62)
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SR and LR indicate short-range and long-range interactions respectively, the two

ranges being delineated using a screening error function. Thus the correlation energy

is simply that from PBE, and the exchange energy is the same as for PBE for long

range interactions, and a mixture of PBE and HF exchange energies at short ranges,

with the parameter ω determining the range of the short- and long-range interactions,

and the parameter a determining the ratio of the exchange energy mixing for short-

range interactions. The mixing and range parameters that mix the two theories –

semi-local DFT and HF – are usually chosen to reproduce known results for a wide

range of systems, so that hybrid functionals can no longer be considered a fully ab

initio approach.

For a comparison of the performance of different xc functionals in various systems,

see references 20 and 35. The choice of xc functional is usually determined by the sys-

tem and properties of interest, so that well-converged calculations reproduce known

properties of interest in the system under consideration. This agreement may be re-

lated to how important the conditions that are and aren’t satisfied by the xc functional

are to the system and properties under consideration.

Dispersion corrections

A second known failure of xc functionals is an inability to reproduce van der Waals

(vdW) interactions. In order to ameliorate this problem in systems where vdW inter-

actions are believed to play a significant role, such as molecular crystals or layered

systems with interlayer interactions, an additional energy term can be applied to the

DFT energy, so that the dispersion-corrected total energy EDF T −D is given by [36]:

EDF T −D = EDF T + EvdW . (2.63)

These corrections are known as semi-empirical dispersion corrections (SEDCs). SEDCs

use a functional form for pairwise interactions between atoms, for which the parame-

terisation is set to reproduce known results. Popular SEDC schemes such as G06 [36]

and TS [37] use an r−6 functional form for the vdW energy between pairs of atoms,

suppressed at short range:

EvdW = −1
2
s6

∑

i

∑

j 6=i

∑

~L

fdamp(rij, Ri, Rj)
C6,ij

r6
ij

, (2.64)

where s6 is an xc functional-dependent overall energy scaling, i and j label atoms

in the unit cell, the vectors ~L are the translation vectors to all unit cells within the

periodic structure, rij is the separation between atoms i and j, Ri and Rj are the
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vdW radii of atoms i and j, C6,ij is a constant describing the strength of the vdW

interaction between the species of atoms i and j, and fdamp(rij , Ri, Rj) is a damping

function that prevents the r−6
ij term diverging at small separations and to allow DFT

to describe chemical bonding2:

fdamp(rij, Ri, Rj) =

[
1 + exp

(
−d

(
rij

sR(Ri +Rj)
− 1

))]−1

. (2.65)

The r−6
ij term means that very long-range interactions make little contribution to EvdW ,

so that the summation in practice can be truncated to medium-range interactions.

In the G06 scheme, the atomic-pair dispersion constant C6,ij is defined as the

geometric mean of constants for each atomic species:

C6,ij =
√
C6,i C6,j. (2.66)

C6,i and C6,j are constants for each atomic species, determined by fitting to known

results for a large range of systems. The TS scheme is designed to be somewhat

less empirical, though still not entirely ab initio, by taking the calculated electronic

structure into account when determining the C6,ij constants. This is done by using

effective C6,ij constants, modified from default values by comparing the Hirshfeld

volume [38] around each atom to a pre-determined free atomic volume. The need to

calculate Hirshfeld volumes can be problematic in small unit cells.

The G06 and TS schemes have both been shown to be effective in systems where

vdW interactions are important, with the TS scheme having a better performance [39]

overall.

2.3.4 Solving the Kohn-Sham Equations

The independent-particle Kohn-Sham problem defined in equations (2.51) – (2.53) now

has to be solved. A self-consistent field approach is taken [1]. As the density can be

used to generate the effective potential in equation (2.53), from an initial guess of the

density we are able to calculate the effective potential, VKS, of the Kohn-Sham single-

particle Schrödinger-like equations. We can then solve the Kohn-Sham non-interacting

Schrödinger-like equation to obtain the wavefunctions, from which we can calculate

the density. Only when this calculated density is equal to the original density has

self-consistency been achieved.

2The dispersion energy still diverges for extremely small interatomic separations, but the very
high DFT energy cost of such small separations prevents this region from being reached in practice.
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If the calculation is not self-consistent, then we can mix together the inputted and

outputted densities to form a new density function, which can be used as the input

to another iteration of the procedure described above. There are various schemes for

mixing the density, such as the Broyden [40] and Pulay [41] mixing schemes. In this

way we can improve our density function until the result of the iterative procedure

is self-consistent (in practice, to within some tolerance in the calculated energy and

forces). From this solution of the density we can construct the wavefunctions and

then any property of the system we desire (for example, the total energy or the band

structure).

This self-consistent-field procedure is summarised in the flow chart in Fig. 2.2,

adapted from Martin [1]; fi is the Fermi-Dirac function, fi =
[
1 + exp

(
−E−µ

kBT

)]−1
,

where µ is the chemical potential.

Solving the Kohn-Sham equations takes up most of the computational effort of DFT

calculations, particularly in ensuring that the solutions labelled by band index i are

orthogonal to each other. There are alternative approaches to solving the Kohn-Sham

equations, such as ensemble density functional theory (EDFT) [42], which is generally

more robust than density mixing but more computationally expensive. EDFT is vari-

ational with respect to the total energy of the system, unlike many density mixing

implementations, which utilise the Harris functional [43], and not the Kohn-Sham en-

ergy functional. These two functionals are equivalent when self-consistency has been

achieved.
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Initial guess

n0(~r)

Calculate effective potential

VKS(~r) = Vext(~r) + VH [n] + Vxc[n]

Solve KS equations

[
−1

2
∇2 + VKS(~r)

]
ψi(~r) = ǫiψi(~r)

Calculate electron density

n(~r) =
∑

i fi|ψi(~r)|2

Self-
consistent?

Density mixing

ni+1(~r) =
∑i

j=i0
αj nj(~r)

Output quantities

No

Yes

Fig. 2.2 Schematic of the density mixing approach to solving the Kohn-Sham equa-
tions.
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2.3.5 Plane-Wave Basis Sets

The usual approach to solving the Kohn-Sham Schrödinger-like equations defined in

equation (2.51) is to express the Kohn-Sham wavefunctions ψi(~r) in terms of a con-

venient basis set [3]. There are many choices that may be taken, depending on the

system of interest, for example Gaussian basis set for molecular systems. For periodic

crystals, the obvious choice of basis set is plane waves (PW): a PW basis set can

easily be constructed to satisfy the periodic boundary conditions of a crystal system.

Components of the plane wave basis set denoted by general wavevector ~q, |~q〉, have

the position representation:

〈~r|~q〉 = φ~q(~r) =
1√
Vcell

ei~q·~r. (2.67)

We express the Kohn-Sham eigenfunctions and the periodic potential in terms of

these Fourier components,

ψi(~r) =
∑

~q

αi,~q φ~q(~r), (2.68)

with the αi,~q being the coefficients of the wavefunction in the plane-wave basis. Bloch’s

theorem [44] states that the eigenfunctions of the Hamiltonian of a periodic crystal

system can be expressed as:

ψ~k
(~r) = ei~k·~ru~k

(~r), (2.69)

with u~k
(~r) being a periodic function with the same periodicity as the crystal, satisfying

u~k
(~r + ~L) = u~k

(~r) for general lattice vectors ~L = na~a + nb
~b + nc~c; ~a, ~b and ~c are the

lattice vectors defining the unit cell, and na, nb, nc ∈ Z. By considering u~k
(~r) in terms

of its Fourier-transformed representation in reciprocal space:

u~k(~r) =
∫
d~g ũ~k(~g) ei~g·~r, (2.70)

we can see from

u~k
(~r + ~L) =

∫
d~g ũ~k

(~g) ei~g·(~r+~L) (2.71)

= ei~g·~Lu~k
(~r) (2.72)

that the only wavevectors ~g that need to be considered in the Fourier transform in

equation (2.70) are those satisfying ~g · ~L = 2πn for integer n. This condition means
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that we can re-express equation (2.70) as a sum over general reciprocal lattice vectors
~G = nã

~̃a+ nb̃
~̃b+ nc̃

~̃c, where ~̃a, ~̃b and ~̃c are the reciprocal lattice vectors of the crystal,

and nã, nb̃, nc̃ ∈ Z:

u~k
(~r) =

∑

~G

ũ~k
( ~G) ei ~G·~r. (2.73)

If we now represent general wavevectors ~q as the sum of a wavevector, ~k, in the

first Brillouin zone (henceforth referred to simply as BZ), and a general lattice vector
~G: ~q = ~k + ~G, then equation (2.68) can be expressed as

ψi(~r) =
∫

BZ
d~k φ

i,~k
(~r) ei~k·~r, (2.74)

where

φi,~k(~r) =
1√
Vcell

∑

~G

Ci,~k( ~G)ei ~G·~r. (2.75)

In practice, we do not calculate the integral in equation (2.74). Instead the integral

is approximated using numerical integration methods by sampling the BZ at specific

k-points. In this thesis the sampling is carried out using the Monkhorst-Pack scheme

[45], a computationally-efficient scheme for generating a regular N1 ×N2 ×N3 grid in

reciprocal space.

~k(n1, n2, n3) =
3∑

i=1

2ni −Ni − 1
2Ni

ãi, (2.76)

where the ni are integers running between 0 and Ni, and the ãi correspond to the

reciprocal basis vectors of the crystal. The size of the grid is chosen to accurately

approximate the true integral over the BZ.

The Kohn-Sham potential can also be represented in reciprocal space through

VKS(~r) =
∑

~G

ṼKS( ~G) ei ~G.~r. (2.77)

Substituting these expressions into the Kohn-Sham Schrödinger-like equations (2.51),

we obtain the following equation for the components αi:

∑

~G′

H ~G, ~G′(~k) αi, ~G′(~k) = ǫi(~k) αi, ~G(~k), (2.78)

where
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H ~G, ~G′ =〈~k + ~G|ĤKS|~k + ~G′〉 (2.79)

=
1
2

|~k + ~G|2δ ~G, ~G′ + ṼKS( ~G− ~G′) (2.80)

It is these equations for the Fourier components that we then solve computationally.

When reconstructing the new electron density from these components, the straight-

forward approach is simply to add the modulus-squared of the Fourier components

and integrate over all k-points to construct the density. However, it is more compu-

tationally efficient to use fast Fourier transforms (FFTs) [46] to transform the Fourier

components into a real-space representation, and construct a density in real space.

The FFTs are carried out in O(N lnN), whereas the first approach is carried out in

O(N2). FFTs are can also be used to construct the Hamiltonian, transforming be-

tween reciprocal space, in which the kinetic energy term is diagonal, and real space,

in which VKS is usually local.

In principle the transformation into the plane wave basis set requires an infinite

number of wavevectors to be complete. In practice, however, it is acceptable and

indeed necessary to truncate the wavevectors at a certain point, the energy equivalent

of which is called the cutoff energy: Ecut = 1
2
|~k+ ~Gmax|2 in atomic units. The G vectors

to be included in the sum in equation (2.75) can be envisioned as those contained

within a sphere in reciprocal space of radius Gmax, centred on the Γ point. It is

physically reasonable to do so as we expect the components C
i,~k

( ~G) corresponding to

very high-energy plane waves to be small [3]. Extrapolative techniques can be used to

correct for errors introduced by using a finite basis set [47]. Calculations can be run

at a range of cutoff energies to determine the point at which the calculation is well

converged with respect to Ecut in the calculated properties of interest.

When constructing the density, n(~r) =
∑N

i |ψi(~r)|2, we need in principal to take G-

vector components up to 2Gmax. However, in practice the largest of these components

are often insignificant, so the FFT grid is often truncated at some size multiple of the

cut-off sphere less than 2, for example 1.75. Truncating the summation in equation

(2.75) to G vectors | ~G| ≤ Gmax introduces a limit on how accurately wavefunctions

can be described in real space. The smallest meaningful separation between points in

real space, ∆x, scales as ∆x ∼ E
− 1

2
cut [3].
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2.3.6 Pseudopotentials

When working with plane wave basis sets, it is desirable to minimise the number of

plane waves required to describe the wavefunction of the system. This motivates the

pseudopotential approach [48], in which an atom’s electrons can be divided into core

electrons, which are closely bound to the nucleus, and outer or valence electrons, which

are less tightly bound to the nucleus and are relatively free to take part in bonding. [1].

In some atoms, there also exist ‘semi-core’ electrons, which are still highly localised to

the atom but which nonetheless can have an indirect effect on the chemical bonding.

These atoms may have to be treated as valence atoms to achieve accurate results,

depending on the conditions under which the pseudopotential is being used.

Pseudopotentials remove the core electrons from the calculation and instead incor-

porate them within the potentials generated by the nuclei. The external potentials

felt by the electrons, which are generated by the nuclei, are thus modified from a bare

Coulomb potential to become pseudopotentials, taking into account the effect of the

core electrons. The form of the pseudopotentials can be generated from first principles,

so DFT using pseudopotentials can still be considered ab initio.

The atomic wavefunctions undergo rapid fluctuations close to the nucleus as a re-

sult of the orthogonality requirement on eigenfunctions of the Hamiltonian. As more

rapid fluctuations require more Fourier components to map accurately into recipro-

cal space, the computational effort required to describe these wavefunctions becomes

great. Instead, the real atomic potentials are replaced by a pseudopotential. This

pseudopotential is constructed such that the wavefunctions corresponding to the pseu-

dopotential, ψps(~r), match the wavefunctions of the real all-electron potential, ψAE(~r),

outside of some cut-off radius rcut, but are much smoother than those of the real poten-

tial inside the cut-off radius. Additionally, the pseudopotential should be constructed

such that the logarithmic derivatives of pseudowavefunction and the all-electron wave-

function, and the first energy derivatives of these, match at the cut-off radius; and

such that the real and pseudo valence eigenvalues agree for a chosen electronic configu-

ration [49]. We set the cut-off radius such that electronic wavefunctions are minimally

affected by the external potential inside the cut-off radius. In this way we can preserve

accuracy while reducing the computational effort substantially. Pseudopotentials must

be tested to make sure that they reproduce the results of an all-electron calculation to

the desired level of accuracy in the range of chemical environments that they will be

used, in a property known as transferability. An example of the effect of pseudisation

on a wavefunction is shown in Fig. 2.3.
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rcut

r/bohr

ψ(r)

All-electron
Pseudopotential

Fig. 2.3 The real and pseudised wavefunctions for the O 2s orbital. The all-electron
wavefunction is represented by the dashed red line. The smoother wavefunction, aris-
ing from the pseudopotential, is in solid red. It is the same as the all electron wave-
function beyond the cut-off radius.

Ab initio pseudopotentials come in several varieties, including norm-conserving,

ultrasoft [50] and projector augmented wave (PAW) [51] pseudopotentials. Norm-

conserving pseudopotentials have the requirement that the norm of the pseudowave-

functions (wavefunction corresponding to the pseudopotential) inside the cutoff radius

has the same value as for the true all-electron calculation. Physically, this means that

the total charge inside the cutoff radius is the same for the pseudopotential calculation

as for the all-electron calculation.

Ultrasoft pseudopotentials relax this requirement in order to create even smoother

functions within the cutoff radius, thus lowering the required cut-off energy even fur-

ther. The charge missing from inside the cut-off radius is replaced by an ‘augmentation

charge’, Q(~r), so that the total density under the ultrasoft pseudopotential description

becomes

n(~r) =
N∑

i

|ψi(~r)|2 +Q(~r). (2.81)

The augmentation charge is itself pseudised, and is described in real space on a grid

that usually needs to be finer than the grid that describes the charge density aris-

ing from the wavefunctions. The introduction of the augmentation charge generally
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requires considerably more programming effort to implement, but is justified by the

lower cut-off energies that can be used with the smoother ultrasoft pseudopotentials.

Several methods for generating pseudopotentials exist, such as the Troullier-Martins

[52] and Vanderbilt [50] schemes. Such schemes usually decompose the pseudopotential

into local and angular-momentum dependent potentials [1]:

V̂ps = Vlocal(~r) +
∑

l,m

|Yl,m〉Vl(~r) 〈Yl,m| , (2.82)

where |Yl,m〉 are the spherical harmonic states, so that the external potential expe-

rienced by the valence electrons is no longer truly local, though is considered to be

‘semi-local’ as each angular momentum channel is local within Vl(~r) [1].

Projector augmented wave pseudopotentials use a linear transformation to trans-

form the rapidly-varying core electron wavefunctions into smoother pseudowavefunc-

tions [1, 51]. This transformation can be used to recover the core wavefunctions for

calculating properties; PAW pseudopotentials are particularly useful when calculating

properties that depend on the wavefunctions of the core electrons [53].

2.3.7 Geometry Optimisation

The previous sections have detailed how the Kohn-Sham system of density functional

theory can be solved to obtain the ground-state electron density and the total energy.

We are often interested in more than just the total energy, but many properties of

interest can be related to the differential of the energy of the system with respect to

some change. In this section, one such property shall be considered: the forces on

each atom in the system. These are significant for vibrational properties of the crystal

such as phonon frequencies, and are required to carry out geometry optimisation of a

crystal structure, as described later in this section.

There is a straightforward way of calculating force FI on an atom with position

RI if we know the total energy of the system, E:

~FI = − ∂E

∂ ~RI

. (2.83)

Using the Hellmann-Feynman theorem [54]:

∂E

∂ ~R
=
∫
d3~r ψ∗(~R)

dĤ

d~R
ψ(~R), (2.84)
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as well as using the form of (2.25), we can obtain from (2.83)

~FI = −
∫
d3~r n(~r)

∂Vext(~r)

∂ ~RI

− ∂EN−N

∂ ~RI

(2.85)

This expression can be used to calculate the forces on the nuclei. By taking deriva-

tives of the energy with respect to the strain tensor, the stresses on the unit cell can

also be calculated [1].

Once we are able to calculate the forces and stresses arising from a given crystal

structure, non-linear optimisation methods can be used to adjust the nuclear positions

and unit cell parameters to relax a structure to a local minimum in enthalpy, a proce-

dure known as geometry optimisation. The system parameters are varied by a small

step in directions determined by the optimisation method chosen, and the forces and

stresses are recalculated. This procedure is followed until the forces on the nuclei are

sufficiently close to zero and the stresses on the unit cell are matched by any external

pressure. At this point the system has been relaxed to an enthalpy minimum.

A variety of optimisation methods exist. One such method, which is used in the

work in this thesis, is the quasi-Newton BFGS method [55], which is more robust than

some other optimisation methods such as steepest descent, and its limited-memory

variant, L-BFGS [56].

2.3.8 CASTEP

In this thesis I have used the castep code for implementing DFT using plane-wave

basis sets and grids [57]. Castep parallelises calculations in a highly efficient way by
~k point (requiring little inter-process communication), and less efficiently by ~G vector

(in which many-to-many communications are required between processes to carry out

Fourier transformations between real and reciprocal space). The computational cost

of a calculation with a local or semi-local xc functional in castep scales with the num-

ber of calculated electronic states N as ∼N3. Castep can generate pseudopotentials

‘on the fly’, by default using the Vanderbilt scheme [50] to generate ultrasoft pseu-

dopotentials. Castep can automatically determine symmetries in crystal structures

and use them to reduce the computational cost of a calculation. Convergence testing

was carried out to obtain suitably well-converged parameters for the plane-wave cutoff

energy, k-point sampling density and grid scales, with regard to the total energy and

other properties of interest, such as forces and stresses.
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2.4 Stable Crystal Structures

2.4.1 Stability

The concept of crystal structure was introduced in Section 2.1. Knowledge of a crys-

tal’s atomic structure is essential for understanding and predicting the properties of

that material. Often the structure of a crystalline material can be determined using

experimental techniques such as X-ray or neutron diffraction. However, sometimes

experimental determination of crystal structure is not possible or practical. There

are several reasons for this. If the conditions of interest involve extremes of pressure

and/or temperature, then they may be beyond the accessible range of experimental

technologies such as diamond anvil cells, or else experimental data may be insufficiently

clear to make an unambiguous determination of crystal structure. Furthermore, ex-

periments are expensive; recent attempts to design materials for specific purposes are

much more cost-effective if some of the screening of potential materials can be done

theoretically, rather than through experimental synthesis. This further motivates the

development of theoretical methods for crystal structure prediction.

For many years, such a method for predicting theoretically which crystal structures

will emerge in nature, given a particular mix of elements and a set of conditions such

as pressure and temperature, has been desired but not achieved. As recently as 1988,

John Maddox – then the editor of Nature – said [58]:

One of the continuing scandals in the physical sciences is that it remains in

general impossible to predict the structure of even the simplest crystalline

solids from a knowledge of their chemical composition. Who, for example,

would guess that graphite, not diamond, is the thermodynamically stable

allotrope of carbon at ordinary temperature and pressure? Solids such as

crystalline water (ice) are still thought to lie beyond mortals’ ken.

In recent years, however, and with the exponential growth of computational power

available to scientists, crystal structure prediction has become feasible. There still

does not exist any ‘handle-turning’ method of proceeding from a set of elements and

environmental conditions directly and with certainty to the crystal structures that

are adopted in nature, but a variety of methods have been developed that all work

by exploring a range of possible crystal structures and comparing them to predict

which will be found in nature. These methods shall be introduced later; first we must

consider how we determine whether or not a given crystal structure will be adopted.
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Thermodynamically, spontaneous changes in closed systems will act to increase the

entropy of the system. This can be reformulated by saying that spontaneous changes

in a system will act to decrease the thermodynamic free energy of the crystal. If we

consider a crystal of volume V to be at constant temperature T and pressure P , then

spontaneous changes to the crystal structure will be those for which the Gibbs free

energy, G:

G = H − TS (2.86)

is reduced. H denotes the enthalpy of the system:

H = U + PV. (2.87)

U denotes the internal energy of the system – the total energy of the system in isolation,

consisting of the kinetic and potential energies of the atoms that make up the crystal.

In searching for crystal structures, we usually consider the crystal system to be at zero

temperature, and neglect the quantum-mechanical zero-point motion, a simplification

known as a static lattice treatment. Finite-temperature effects can then be calculated

for the most promising static lattice structures found in the search, if desired. At

T = 0, the Gibbs free energy thus reduces to the enthalpy, H , which itself reduces to

the internal energy U in the absence of pressure.

Spontaneous changes to crystal structures will be those that reduce the free energy –

or in the static lattice approximation, which shall be assumed henceforth, the enthalpy

– of the system. If there is a structure such that any infinitesimal perturbation to

the crystal’s lattice parameters or atomic positions increases the enthalpy, then that

structure is locally stable. Of all the locally stable structures, the one with the lowest

enthalpy is termed globally stable. Any structure other than the globally stable one will

be liable to undergo a spontaneous transition to a lower-enthalpy structure, ultimately

down to the globally stable structure. As such, the structure corresponding to the

global minimum of the enthalpy is the one we are usually most interested in. However,

other locally stable structures, whose enthalpies are relatively low, may be regarded

as metastable if spontaneous transitions or reactions to lower-enthalpy structures are

energetically improbable, meaning that such structures may be found in nature. As

such, these structures may be of interest. A prominent example of a metastable

structure is the diamond allotrope of carbon – under ambient conditions it has a higher

free energy than graphite, but the energy barrier for the transition between the two
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structures is sufficiently high to make such a spontaneous transformation extremely

improbable.

To examine the properties of minima of the enthalpy of a system more deeply, we

shall introduce the concept of the potential energy surface.

2.4.2 The Potential Energy Surface

We have seen in Section 2.1 that the structure of a periodic crystal can be described

by using a unit cell, and that a unit cell containing N independently-placed atoms

has 3(N − 1) atomic and 6 lattice degrees of freedom, i.e. can be fully described

using 3N + 3 parameters. We can now consider functions of these 3N + 3 variables.

These functions form a hypersurface in 3N + 4 dimensional space. It is easiest to

visualise what this means conceptually by reducing the number of free variables to

one or two. An example function of a single variable is plotted in Fig. 2.4. The point

denoted ‘A’ is the global minimum of the function within the plotted range. The points

denoted ‘B’ are local minima. If the function plotted was the enthalpy of a system

parameterised by this single variable, then the structure corresponding to ‘A’ would

be globally stable, and structures corresponding to the points ‘B’ would be locally

stable – and potentially metastable. We can extend this treatment to a function of

two variables, which is plotted in Fig. 2.5, with the variables plotted on the x and y

axes, and the value of the function on the (vertical) z axis. The height of the surface

thus represents the value of the function at that point. The point at which this value

is lowest – the global minimum in the plotted range – is marked ‘A’. There are several

local minima, with one such minimum marked with ‘B’. Again, if the function plotted

was the enthalpy of a system parameterised by two variables, then the point ‘A’ would

correspond to the globally stable structure, and the structure represented by point ‘B’

would be locally stable and potentially metastable. These concepts can be extended

to functions of an arbitrary number of variables – in our case, 3N + 3.
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Fig. 2.4 Example of a function of one variable. ‘A’ marks the global minimum in the
region under examination, and ‘B’ marks local minima.



38 Theoretical Overview

Plot of a function of two variables, with the value of the function
plotted on the vertical axis.

Contour map of the same function of two variables. Blue colours
denote lower values of the function, and red colours denote higher
values; green colours are intermediate values.

Fig. 2.5 Plots of an example function of two variables. Point ‘A’ denotes the global
minimum of the function in the region plotted. Point ‘B’ denotes a local minimum of
the function.
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The functions that we are interested in are those that yield the thermodynamic

potentials mentioned in the previous section – enthalpy or, at zero pressure, internal

energy. The surface formed by the function corresponding to the internal energy

in the space of crystal configurations is the Born-Oppenheimer energy surface, also

called the potential energy surface (PES). This is a concept that can be generalised to

other thermodynamic functions in crystal configuration space, such as to an enthalpy

surface. In the rest of this thesis, PES shall denote the surface corresponding to

whichever thermodynamic function is relevant – internal energy at zero pressure and

temperature, and enthalpy at non-zero pressure but zero temperature.

Density functional theory can be used in a wide variety of systems to find the

enthalpy or internal energy of a crystal system at zero temperature to a good degree

of accuracy, requiring only the positions of the atoms and lattice parameters as inputs.

We wish to find the lowest-lying minima of the enthalpy – corresponding to the deep

wells in the two-variable function of Fig. 2.5. Several general properties of potential

energy surfaces are worth considering:

• The number of local minima in the PES tends to grow exponentially with the

number of atoms in the unit cell, N , for large values of N :

nminima ∼ eαN . (2.88)

This rapid growth in the number of minima suggests that the time required to

sample all the minima will grow rapidly with system size, limiting our ability

to predict structures for materials with a large number of atoms in their unit

cells. The derivation of equation (2.88) makes no suggestion of clear relationships

between the potential minima that could be used to ameliorate the exponential

dependence, and no method has been put forward that reliably reduces the

dependence of the number of minima on N [59].

• Around each local minimum is a ‘basin’. All atomic configurations that lie in

these basins relax to the basin’s local minimum, so that the minimum may be

representative of a large area of the PES. Every point on the surface is either a

local extremum or lies in the basin of a local minimum.

• It has been demonstrated that the lowest-lying minima tend to have the largest

basins, although this is not always true [60, 61]. Indeed, it has been demonstrated

that the distribution of basin areas on the PES in model calculations follows a

power-law relationship, and that the area of a basin grows exponentially with
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its maximum depth [62]. This distribution is analogous to the distribution of

volumes in high-dimensional Apollonian packing [63]; a two-dimensional example

of which is illustrated in Fig. 2.6.

• Low-lying minima tend to cluster together, close to each other on the poten-

tial energy surface. This leads to the concept of ‘funnels’ – large areas of the

PES in which very low-lying minima lie [64]. Of course, there may be multiple,

disconnected, funnels in the PES, each of which contain low-lying minima. Fur-

thermore, the energy barrier between low-lying basins tends to be small, making

it relatively easy for a crystal to change between the two structures that the min-

ima represent. This is related to the Bell-Evans-Polanyi principle, which holds

that the more exothermic a reaction is, the smaller its activation energy will be

[65, 66].

• Large areas of the potential energy surface have only high-lying minima. These

areas usually correspond to pairs of atoms being very close to each other, leading

to very high Coulomb energies [64].

• Low-lying minima of the PES tend to correspond to structures with high sym-

metry [67, 68].
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Fig. 2.6 Two-dimensional example of Apollonian packing of circles. Note how most of
the total area is taken up by a small number of very large circles, with the rest of the
area taken up by a very large number of small circles. Potential energy surfaces have
shown analogous properties, so that despite the exponential growth of the number of
basins with the number of atoms in the unit cell (equation (2.88)), much of the area
of the PES is nevertheless taken up by a small number of the lowest-lying minima.
Figure taken from Wikimedia Commons.

2.4.3 Methods for Crystal Structure Prediction

The theoretical task in predicting crystal structure is therefore to find the low-lying

minima of the PES. There are multiple approaches to this problem, which are all fun-

damentally based on evaluating a range of possible structures and evaluating their en-

thalpies. Methods differ on how the structures are generated. Wolpert and Macready’s

“no free lunch” theorems for optimisation [69] suggest that no method will be consis-

tently better than any other over a wide range of systems [64]. Techniques for finding

the local minima of a PES include data mining techniques, simulated annealing, ge-

netic algorithms, particle swarm optimisation and purely stochastic methods. A brief

https://commons.wikimedia.org/wiki/File:Apollonian_gasket.svg


42 Theoretical Overview

overview of these methods is provided here; further information can be found in refer-

ences 70 and 71.

Data mining approaches do not attempt to predict entirely novel crystal structures;

instead, they attempt to reuse knowledge of known crystal structures. The general

approach is as follows. First, a large number of existing crystal structures are obtained

from one or more databases of crystal structures. The crystal structures selected are

often restricted to those with some similarity to the system of interest – containing

elements from the same groups as the species in the system of interest, for example.

Next, the atoms in the database structures are appropriately replaced – anion for

anion, and cation for cation – with atoms of the species in the system being studied.

The unit cells are rescaled to an appropriate volume and the resulting structure relaxed

to the local minimum in enthalpy. In this way a number of candidate structures are

generated.

Such data mining techniques often produce competitive structures relatively cheaply,

but are limited in their predictive power as they can only consider crystal structures

that have already been observed before. Their ability to predict new structures is

therefore limited, and there is nothing in the methodology that leads us to believe

that the PES is well sampled. Nonetheless, data mining methods can be a good

first step, before more powerful predictive techniques are used to produce competitive

structures at low computational cost.

Simulated annealing is an optimisation technique inspired by physical annealing

in metals [72]. An initial crystal structure is generated at random and its enthalpy

is evaluated. The structure is then perturbed using either a Monte Carlo scheme or

molecular dynamics, and the enthalpy of the new structure is evaluated. The change

is either accepted (the new structure becomes the ‘current’ structure) or rejected (the

original structure remains ‘current’) based on the Metropolis algorithm [73], in which

the probability of a structural perturbation with enthalpy change ∆H being accepted

is 1 if ∆H 6 0 and a random number between 0 and 1, ξ, if ∆H > 0:

e
− ∆H

kBT − ξ





> 0 Accept

< 0 Reject.
(2.89)

T serves as a simulated temperature. At the beginning of the process, T is chosen

to be large, in order to enable the structure to hop over large energy barriers, but

its value gradually decreases as the perturbation and accept/reject steps are repeated.

This is intended to settle the structure down to the global optimum, or at least, the

optimum in the region of configuration space the structure began in. To try to ensure
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that all the PES is sampled, the procedure is repeated multiple times with different

initial structures chosen at random.

A related technique is a ‘basin hopping’ method developed by Wales and Doye [74]

and initially applied to Lennard-Jones clusters. The technique is similar to simulated

annealing except that each time a structure is perturbed, it is relaxed to the local

minimum of enthalpy, and this enthalpy is then used in the Metropolis algorithm. A

high simulated temperature is used and kept constant, allowing high energy barriers

between basins in the PES to be crossed, and so enabling the technique to explore a

large area of the PES.

Genetic algorithms are a class of evolutionary algorithms that take their inspira-

tion from Darwinian or Lamarckian evolution [75]. An initial generation of structures

are generated at random. A new generation of structures is then formed from the pre-

vious generation using operations of selection (removing from consideration structures

considered poor, based either on enthalpy or some other ‘cost function’), ‘mutation’

(randomly perturbing an existing structure) and ‘crossover’ (combining structural mo-

tifs from existing structures). New random structures may also be generated in order

to promote a diversity of structures. This process continues for a number of gener-

ations. Many genetic algorithms exist, varying in how they select which structures

survive to the next generation, and how the crossover and mutation operations are

carried out. An example of a genetic algorithm is the Uspex code [76], which has

been successfully applied to systems such as elemental boron [77].

Particle swarm optimisation (PSO) is an evolutionary method for crystal structure

prediction that avoids the use of the mutation and crossover operations of genetic

algorithms. An initial generation of randomly-generated structures are relaxed to

their local minimum in enthalpy, and a new generation formed using an algorithm

that gives each structure a ‘velocity’ in configuration space that is updated based not

only on that particle’s ‘history’, but also on the location in configuration space of the

lowest-enthalpy particle in the ‘swarm’. The procedure is repeated for a number of

generations. In each generation repeated structures are removed and new randomly-

generated structures are introduced, in order to try to promote diversity in the swarm.

A PSO method, Calypso, has been applied to systems such as the Xe-Fe and Xe-Ni

binary systems at high pressure [78].

All of the techniques described here, with the exception of data mining, have some

stochastic elements to them (for example, the generation of a random set of initial

structures). However, there also exist purely stochastic methods for crystal structure

prediction that are based solely on the generation of structures at random, though
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usually subject to constraints. These methods have been successfully applied to a

wide variety of systems, such as silane [79] and high-pressure hydrogen [80]. This is

the class of method that has been used in this thesis, and the particular implementation

used, ab initio random structure searching, shall now be described and discussed.

2.5 Ab initio Random Structure Searching

2.5.1 Overview

Ab initio random structure searching [64] (AIRSS) is conceptually a very simple tech-

nique. It can be summarised as follows:

1. Generate a random structure: choose random values for each of the 3N + 3

parameters, within the allowed ranges for each parameter. The restrictions on

the parameters are such that the lengths of the cell axes are positive, unit cell

angles are between 60◦ and 120◦ (all unit cells with other angles are equivalent to

a unit cell with angles in this range [64]), and all atoms lie within the unit cell. In

practice, we always put constraints on the unit cell parameters, so that we start

with a physically reasonable unit cell volume. We intuitively realise that unit

cells with volumes far removed from any found experimentally are very unlikely

to correspond to low-lying minima of the enthalpy. Additional constraints can

be placed on the structures we randomly generate. These will be discussed in

the next section.

2. Calculate the forces and stresses on the structure. Relax the structure until the

forces are zero and the stresses in the crystal are matched by any externally

applied pressures (in practice, this is to within some tolerance). The structure

has now relaxed into the local minimum of the basin the structure began in.

3. Calculate the total enthalpy of the system for this relaxed structure.

4. Repeat this procedure many times. As more and more structures are randomly

generated, an increasingly large portion of the PES is sampled. When we start

to see the same local minima appearing multiple times, we can be reasonably

confident that we have sampled all the lower-lying minima. This can require the

generation of thousands of structures.

5. The local minima that have been found can then be ranked in terms of their en-

thalpy. The structure that has the lowest enthalpy is presumed to correspond to
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the global minimum of the PES, and so is the most stable structure. Metastable

structures can also be identified by looking at other low-enthalpy structures.

In order to reduce computational cost, the initial optimisation and evaluation of the

random structures is carried out using a ‘rough’ set of computational parameters.

Although this reduces the accuracy of the calculated structures and enthalpies, the

rough calculations should be good enough to distinguish between a small number

of low-enthalpy candidate structures, which can be re-optimised using high-precision

calculations, and the rest, on which further computational expense need not be wasted.

An additional type of stochastic search can be carried out on the lowest-enthalpy

structures, known as relax and shake (RASH). In this, the lattice parameters and

atomic displacements are given a small, random perturbation from the values for a

relaxed low-enthalpy structure, and the resulting structure relaxed. Repetition of this

procedure increases the chance of finding nearby local minima, which may be lower in

enthalpy than the initial structure.

The AIRSS method is summarised in the flow chart of Fig. 2.7.

Several questions immediately arise:

i. How do we relax the structures and calculate the enthalpy?

The AIRSS method is independent of the physical description of the system used –

any approximation to quantum mechanics may be used, from empirical potentials

to quantum Monte Carlo, provided that the method is capable of calculating

forces, stresses and energies of the system. In practice, density functional theory

is usually found to offer the best balance between accuracy and computational

cost.

ii. Which atoms should be put into the unit cell?

So far, we have dealt with unit cells containing N atoms, but which atoms? Clearly,

the species of atoms to be used depend on the system we wish to study. But

how many atoms should be inserted in total, and how many of each species? If

we are interested in elemental systems, then the latter question is not relevant,

but in binary, ternary, etc., systems, we have a choice of stoichiometric ratios.

Sometimes we may be interested in a particular stoichiometry only, but in general

we must search over as wide a range of stoichiometries as is feasible. This can

be done by selecting the number of atoms of each species at random, subject to

the constraint that there are N atoms in total. The lowest-enthalpy structures
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Generate random struc-
ture, subject to constraints

Calculate forces and stresses
and relax to local minimum

Calculate enthalpy
of relaxed structure

Repeats of
lowest-

enthalpy
structures?

Refine low-enthalpy
results with higher-

precision calculations

Calculate quantities of
interest for very low-
enthalpy structures

No

Yes

Fig. 2.7 Schematic of the ab initio random structure searching (AIRSS) method for
crystal structure prediction.
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at each stoichiometry can be compared by means of a convex hull plot (Maxwell

construction) [81]. The total number of atoms in the unit cell, N , can in principal

take any value. We may begin at small values of N , for which searches can be

completed quickly, and then progressively increase N . In practice we must stop

when the computational resources required for the search become unfeasible.

iii. Is there any way of reducing the search space?

We can apply chemical intuition to conclude that large areas of the PES are un-

likely to contain low-lying enthalpy minima. We can apply additional constraints

to the structures that we generate, to avoid sampling these areas of the PES [64].

This can save a considerable amount of computational effort, at the cost of hav-

ing a less complete survey of the surface. The sorts of constraints that might be

applied are discussed in the next section.

iv. How do we know when we have done enough sampling of the surface?

There is no way to be absolutely sure that we have found every minimum of

the PES. We are, after all, only sampling the surface, not attempting to find an

analytic form for it or carry out a complete mapping. Nonetheless, when we start

to find multiple random structures relaxing into the same minimum, we know that

there are basins that have been sampled multiple times. As the number of repeats

we find increases, the likelihood that there is a minimum whose basin has not been

sampled at all decreases. This is particularly true for the lowest-enthalpy minima

(the ones we are most interested in), as these tend to have the largest basins, as

discussed in the previous section. Thus, four to six repeats of the lowest-enthalpy

structures and several repeats of higher-enthalpy structures usually means that

the system has been adequately searched. Nevertheless, some basins – even those

of low-lying enthalpies – can be much smaller than others, which means that we

may sometimes finish searching when some minima have only a couple of repeats,

if other minima have many more repeats. Looking for ‘marker’ structures that

are known to exist is also a good check for making sure the PES has been well

sampled – if such structures are absent, it could indicate that more searching

should be performed. Ref. [64] discusses these issues in greater depth.

It should be noted that the PES of a system under external pressure changes as the

pressure is varied. The results of searching the PES at a given pressure are therefore

only exactly valid at that pressure. However, it is possible to extrapolate how the
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enthalpies of the minima will change as the pressure is changed by a small amount,

∆P , from the searching pressure P0 by considering the Taylor expansion of the enthalpy

[64] at pressure P = P0 + ∆P :

H(P ) =H(P0) +
dH

dP

∣∣∣∣∣
P0

∆P +
1
2
d2H

dP 2

∣∣∣∣∣
P0

(∆P )2 + . . .

=H(P0) + V0 ∆P − 1
2
V0

B0

(∆P )2 + . . .

≃H(P0) + V0 ∆P,

(2.90)

where V0 and B0 are respectively the volume and bulk modulus of the structure at

the reference pressure, and the final line assumes that ∆P is small. As the volume of

the structures at a searching pressure is known, equation (2.90) provides a cheap and

convenient way of extrapolating the results of a structure search to other pressures.

2.5.2 Constraining the Search

Constraining the search by imposing a physically reasonable range for the unit cell

volume – typically within 25% of the sum of the atomic volumes under the relevant

conditions – has already been discussed. If this is the only condition imposed on

the random structures then we will have to generate and relax a large number of

random structures in order to be able to sample all of the potential energy surface

corresponding to reasonable unit cell volume. Bearing in mind the exponential growth

in the number of local minima with system cell size, this could rapidly lead to the

computational time required to conduct a thorough survey of the potential energy

surface becoming impractically large.

As a result, it is desirable to reduce the area of the PES that we actually search

over. We can do this by utilising known properties of potential energy surfaces. We

know that large areas of the PES, corresponding to atomic configurations in which

pairs of atoms are very close together, are very unlikely to contain low-lying minima.

Therefore a restriction can be imposed on the random structures that we generate,

requiring a minimum separation between atoms. This minimum separation can be

defined pairwise by species to generate structures in which certain pairs of species are

more likely to be close together than others. This can be used to find structures in

which atoms of different species bond with each other, for example.

We know also that the low-lying minima tend to correspond to high-symmetry

structures [67], so we can impose a certain minimum amount of symmetry upon the
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structures that we generate. Imposing symmetry on the random structures is partic-

ularly useful if we have experimental evidence that a crystal of unknown structure

belongs to a certain space group. This is an example of using the available experimen-

tal evidence to restrict our search.

Another example of using experimental evidence to restrict searches is by imposing

restrictions on unit cell dimensions or atomic positions, which can be deduced from

diffractometry or other experimental techniques. Only structures that are compatible

with these experimentally-imposed restrictions will be generated.

The effective dimensionality of the problem can be reduced by inserting pre-formed

molecular units, such as water or ammonia molecules, into the unit cell, rather than

individual atoms. This is useful when searching for molecular crystals; in such cases

we are only interested in those structures containing the molecular building blocks.

These constraints on the random structures mean that we are sampling less of the

PES. While this reduces the number of random structures required for a thorough

search, it comes at the expense of potentially missing low-lying minima in the areas

of the surface that we have restricted ourselves from searching. Such restrictions

should therefore only be imposed when we are confident from physical and chemical

intuition that the areas of the PES being ignored will not contain low-lying minima.

The imposition of such restrictions means that generated structures are no longer

randomly distributed over the whole potential energy surface, but rather only over

those parts of the surface that we think stable structures might exist in.

2.6 Vibrations in Solids

In dealing with crystal structure in the previous sections, the nuclei have been treated

semi-classically – as having fixed, definite positions – equivalent to the nuclear wave-

functions within the Born-Oppenheimer (BO) approximation (equation (2.14)) being

infinitely localised to a point. This is usually a reasonable treatment for crystal struc-

ture prediction. Once a structure has been determined, however, nuclear motion has a

significant impact on a material’s properties. Various methods for determining nuclear

vibrational properties have been developed. We shall here consider two approaches:

the harmonic approximation (HA) and the vibrational self-consistent field method

developed by Monserrat et al. [82].
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2.6.1 Overview

The treatment of nuclear motion requires knowledge of the nuclear part of the total

wavefunction of equation (2.14). In thermal equilibrium, this wavefunction can be

constructed from the eigenvalues and eigenfunctions of the nuclear Hamiltonian, Ĥnucl,

of equation (2.18). Under the BO approximation this consists of the nuclear kinetic

energy term of equation (2.1) and the total electronic energy arising from the solution

of the electronic Hamiltonian of equation (2.15), ǫel(~R),

Ĥnucl =
∑

I

− 1
2mI

∇2 + ǫel(~R), (2.91)

where ~R is a 3N -dimensional collective position vector for the nuclei; ~R = ( ~R1, ~R2, . . . , ~RN ),

and MI is the mass of nucleus I.

Solving this Hamiltonian is not easy: to solve exactly – or rather, to within the ac-

curacy of the electronic structure method used to solve the electronic Hamiltonian and

determine ǫel(~R) – the BO surface must be calculated as a function of many variables,

with every point requiring a computationally demanding calculation. A straightfor-

ward approach to greatly simplifying this problem – which yields good results in a

wide range of systems – is the harmonic approximation, which shall now be discussed.

2.6.2 The Harmonic Approximation

The harmonic approximation (HA) was developed on the assumption that typical

nuclear displacements from their equilibrium (static lattice) positions are small, due

to the large mass of the nuclei relative to electrons.

Let us label the unit cells of a periodic crystal by p, with translation vectors from

a reference point labelled ~Lp, and with the atoms within one unit cell labelled by α.

Although we should in principle consider every atom within the crystal, in practice

we will later find that we only need to explicitly consider atoms lying within a small

number of unit cells, due to the relatively short range of inter-atomic interactions. We

begin by defining displacement co-ordinates ~up,α for each nucleus, relative to ~r 0
p,α, the

equilibrium positions for each nucleus: ~up,α = ~rp,α−~r 0
p,α. Let the unsubscripted vectors

~r, ~r 0 and ~u denote the all-atom collective vectors for their relevant coordinates, e.g.

~r 0 = (~r 0
1,1, . . . , ~r

0
1,Nα

, ~r 0
2,1, . . . , ~r

0
Np,Nα

), where Np is the number of unit cells and Nα is
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the number of atoms in each unit cell. With these new co-ordinates, we can use a

Taylor expansion for ǫel(~r) to rewrite the nuclear Hamiltonian (2.91) as:

Ĥnucl =
∑

~Lp,α

− 1
2Mα

∇2
p,α + ǫel(~r 0) +

1
2

∑

~Lp,α,i
~Lp′,α′,j

∂2ǫel(~r)
∂up,α;i ∂up′,α′;j

∣∣∣∣∣
~r 0

ûp,α;i ûp′,α′;j + O(u3).

(2.92)

The Latin indices i and j label the Cartesian directions x, y and z. Equation (2.92)

uses the fact that, at equilibrium, the first-order derivatives of the BO energy ǫel are

all zero, as they are proportional to the forces on the nuclei, which at equilibrium must

be zero:

∂ǫel(~r)
∂up,α;i

∣∣∣∣∣
~r 0

= 0 ∀ p, α, i. (2.93)

The harmonic approximation is obtained by truncating (2.92) at terms of O(u2),

with higher-order terms being dropped. As we shall see, this approximation can

enormously simplify the problem of nuclear motion. At this stage we also define

ǫel(~u) = ǫel(~r) − ǫel(~r 0), and drop the constant-energy term ǫel(~r 0) so that under the

HA equation (2.92) becomes

Ĥnucl ≃
∑

~Lp,α,i

− 1
2Mα

∇2
p,α +

∑

~Lp,α,i
~Lp′,α′,j

∂2ǫel(~u)
∂up,α;i ∂up′,α′;j

∣∣∣∣∣
~u=~0

ûp,α;i ûp′,α′;j. (2.94)

The second-order partial derivatives can be expressed as a matrix, which is called the

matrix of force constants, Φα,i;α ′,j(~Lp, ~Lp ′):

Φα,i;α ′,j(~Lp, ~Lp ′) =
∂2ǫ(~u)

∂up,α;i ∂up ′,α ′;j

∣∣∣∣∣
~u=~0

, (2.95)

so that the nuclear Hamiltonian can finally be written as

Ĥnucl =
∑

~Lp,α,i

− 1
2Mα

∇2
p,α +

∑

~Lp,α,i
~Lp′,α′,j

Φα,i;α ′,j(~Lp, ~Lp ′)ûp,α;i ûp′,α′;j. (2.96)
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It is convenient to consider the reciprocal space representation of the matrix of

force constants, Dα,i;α ′,j(~k), defined as

Dα,i;α′,j(~k) =
1

Np

√
MαMα′

∑

~Lp,~Lp ′

Φα,i;α′,j(~Lp, ~Lp′) e−i~k·(~Lp−~Lp′ ), (2.97)

where Np is the number of unit cells. Dα,i;α ′,j(~k) is called the dynamical matrix, and

as we shall see it is a very useful way of thinking about nuclear vibrational motion

under the HA. The dynamical matrix arises from the ansatz of plane-wave solutions

to the nuclear Hamiltonian in equation (2.96):

u
n,~k;α,p;i =

1√
Mα

η
n,~k;α,i

ei(~k·~Lp−ω
n,~k

t), (2.98)

in which ~η
n,~k

is the collective polarisation vector for atoms within the reference unit cell,

and ~k is a wave-vector, commensurate with the boundary conditions, lying within the

BZ. Note that the translational symmetry of the unit cell means that any wavevector

lying outside the BZ is equivalent to one inside it [83]. The trial solution of equation

(2.98) solves the semi-classical equations of motion for atomic motion under the HA:

Mα

∂2uα,p;i

∂t2
= − ∂ǫ(~u)

∂uα,p;i
, (2.99)

if the eigenvalue equation

∑

α′,j

Dα,i;α′,j(~k) η
n,~k;α′,j

= ω2
n,~k
η

n,~k;α,i
(2.100)

is satisfied. Here n is the mode index, with dimensionality 3Nα. It is convenient when

considering collective atomic motion to define phonon coordinates q′
n,~k

, as amplitudes

of the 3Nα allowed oscillations of the plane-wave solutions defined in equation (2.98):

uα,p;i =
1

√
Np

∑

n,~k

q′
n,~k
un;α,p;i(~k)

=
1

√
NpMα

∑

n,~k

q′
n,~k
ei~k·~Lp η

n,~k;α,i
,

(2.101)

from which can be obtained an explicit form for the phonon co-ordinates:

q′
n,~k

=
1

√
Np

∑

~Lp,α,i

√
Mα uα,p;i e

−i~k·~Lp η
n,−~k;α,i

. (2.102)
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These phonon normal coordinates, q′, are, in general, complex. We can exploit the

Hermitian nature of the dynamical matrix defined in (2.97) to conclude that η
n,~k;i,α =

η∗
n,−~k;i,α

. Using this property, combinations of these normal coordinates corresponding

to opposite wavevector values can be taken to form a set of real coordinates:

q
n,~k

=
1√
2

(
q′

n,~k
+ q′

n,−~k

)
,

q
n,−~k

=
i√
2

(
q′

n,~k
− q′

n,−~k

)
.

(2.103)

In terms of these new, real coordinates, the harmonic Hamiltonian (2.94) becomes

Ĥnucl =
∑

n,~k


−1

2
∂2

∂q2
n,~k

+
1
2
ω2

n,~k
q2

n,~k


 . (2.104)

The form of equation (2.104) is of 3Nα independent quantum harmonic oscillators

(HO) for each of the Nk k-points in the BZ. The eigenfunctions of each HO are well

known and have the real-space representation:

〈x|ϕs〉 = ϕs(~x) =
1√
2s s!

(
mω

π

) 1
4

Hs

(√
mωx

)
e− mω

2
x2

, (2.105)

where m is the mass of the nuclear and Hs is the sth physicists’ Hermite polynomial,

defined as

Hs(y) = (−1)s ey2 ds

dys
e−y2

, (2.106)

with the sth eigenfunction solution having energy

Es =
(
s+

1
2

)
ω. (2.107)

Each independent HO in equation (2.104) can be in state sn,~k. The total nuclear

wavefunction can be formed as the Hartree-like product of the individual HO wave-

functions:

|Φ~S〉 =
∏

n,~k

|ϕs
n,~k

n,~k
〉 , (2.108)

where ~S is a total state vector for the system, whose components are the excitation

states of the individual HOs: ~S =
(
s1,~k1

, . . . , s3Nα,~kNk

)
. A Hartree product, rather
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than the Slater determinant (2.29) used in the electronic structure problem, is per-

missible because there is no requirement for the wavefunction to be antisymmetric. A

state vector ~S has total energy E ~S given by

E
~S =

∑

n,~k

(
s

n,~k
+

1
2

)
ω

n,~k
. (2.109)

In thermal equilibrium, the probability of the systems being in state ~S is proportional

to exp
(

− E
~S

kBT

)
. The partition function, Z, for the system is given by

Z =
∑

~S

e−βE
~S

=
∏

n,~k

∑

s
n,~k

e
−β

(
s

n,~k
+

1
2

)
ω

n,~k

=
∏

n,~k

Zn,~k

=
∏

n,~k

1
2

[
sinh

(
1
2
βω

n,~k

)]−1
,

(2.110)

where β = 1
kBT

is the inverse temperature and Z
n,~k

is the partition function for the

individual mode with index n and wavevector ~k. The free energy F of the system is

given by

F = − 1
β

ln Z

= − 1
β

∑

n,~k

ln Z
n,~k

=
∑

n,~k

F
n,~k

=
∑

n,~k

1
β

ln
[
2 sinh

(
1
2
βω

n,~k

)]
.

(2.111)

Finally, we note that if a collection of harmonic oscillators are in thermal equilib-

rium, such that the probability of being in a state ~S with energy E ~S is proportional to

exp(−βE ~S), then the probability density function of the system, given by the modulus-

square of the wavefunction, |Φ(~q, β)|2, is [84]
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|Φ(~q, β)|2 =
1
Z
∑

~S

e−βE~S |Φ~S|2

=
∏

n,~k

1
√

2π w
n,~k

(β)
exp


−

q2
n,~k

2w
n,~k

(β)


 ,

(2.112)

where the distribution width w
n,~k

(β) is defined as

w
n,~k

(β) =
1

2ω
n,~k

coth
(

1
2
βω

n,~k

)
. (2.113)

There are two principal methods for carrying out vibrational calculations within the

HA in practice. The first of these is density functional perturbation theory (DFPT)

[85], in which the dynamical matrix is directly calculated using linear response per-

turbation theory at specified k points. Provided the k point sampling with exact

DFPT calculations is sufficiently dense, properties at other k points can be calcu-

lated through Fourier interpolation, in which the dynamical matrices at the exact k

points are Fourier-transformed to construct the effective force constant matrix, which

can then be Fourier transformed back into reciprocal space to yield an approximate

dynamical matrix at any given k point.

The second principal method for calculating vibrational properties is known as the

finite displacement method. In this method, the dynamical matrix is calculated using

equation (2.97) through knowledge of the matrix of force constants. The force constant

matrix is calculated by making small perturbations to each atomic position from their

equilibrium positions and calculating the resulting forces. Using the relation between

atomic forces and the curvature of the Born-Oppenheimer surface:

F α′,p′;j =
∂ǫ(~u)
∂uα′,p′;j

, (2.114)

the matrix of force constants can then be constructed as

Φα,i;α′,j(~Lp, ~Lp′) =
∂2ǫ(~u)

∂uα,p;i ∂uα′,p′;j

=
∂F α′,p′;j

α,p;i

∂uα,p;i

≃ δF α′,p′;j
α,p;i

δuα,p;i

, (2.115)

where δuα,p;i is a small displacement to atom α in unit cell ~Lp in direction i, and

δF α′,p′;j
α,p;i is the force in direction j on atom α′ in unit cell ~Lp′ arising as a result of

this displacement. In the basic version of the scheme, calculations can be carried
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out at the vibrational Γ point only. The derivatives of the forces with respect to an

atomic displacement, due both to that displacement and all the periodic repeats of

the displacement, yield directly the dynamical matrix of equation (2.97) at ~k = 0.

Other wavevectors can be calculated only by use of a supercell commensurate with

that wavevector, such that the wavevector is equivalent to the Γ point of the supercell.

If a sufficiently dense sampling of the vibrational BZ is performed, then the vibrational

properties at any given wavevector can be calculated using Fourier interpolation, as for

DFPT. The finite displacement scheme can also be extended beyond the Γ point using

the direct or supercell scheme [86]. In this approach, a supercell is used for the finite

displacement force calculations of sufficient size to ensure that the periodic repeats of a

displaced atom do not have a significant impact on the calculated force constants. The

matrix of force constants can thus be directly calculated and the dynamical matrix

constructed from it. The use of larger supercells in finite displacement calculations is

equivalent to denser k-point sampling under DFPT.

In this thesis, the finite displacement method is used, with implementation through

castep, and the lte code developed by Neil Drummond, with modifications by Bar-

tomeu Monserrat.

2.6.3 Anharmonicity

While the HA works well in many systems, in some systems the approximation is not

sufficiently accurate. This occurs when the O(u3) – or, in phonon coordinates, O(q3) –

and higher terms in the expansion of equation (2.92) become too large, relative to the

second-order terms, to ignore. Such deviation from the ǫ(q)∼q2 harmonic approxima-

tion is called anharmonicity. Consideration of anharmonicity tends to be important

in systems with light atoms or at high temperature, due to the large amplitudes of

oscillation in such systems; or in systems with highly anisotropic atomic environments

[82].

Many schemes for introducing anharmonic corrections to vibrational calculations

exist, which usually take the HA as a starting point. Many methods are based on

the self-consistent harmonic approximation ‘effective phonon’ approach developed by

Hooton [87]. In this thesis, a new approach developed by Monserrat et al. [82] is used,

and shall now be discussed.
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2.7 Vibrational Self-Consistent Field Approach to

Anharmonicity

The vibrational self-consistent field (VSCF) approach to treating anharmonicities in

crystals starts by expressing the full BO energy surface using the harmonic phonon

modes as a convenient coordinate system.

2.7.1 The Principal Axis Approximation

The principal axis approximation (PAA) describes any point around a local minimum

of the BO surface as a series of terms, which are functions of an increasing number of

coupled harmonic phonon modes, thus:

ǫel
PAA(~q) = ǫel(~0) +

∑

n,~k

V
n,~k

(q
n,~k

) +
1
2!

∑

n,~k

∑′

n′,~k′

V
n,~k;n′,~k′(qn,~k

, q
n′,~k′) + . . . , (2.116)

with subsequent terms being functions of 3,4,. . . , NmodesNk of phonon coordinates. The

final term is thus a function of all phonon coordinates. The prime on the summation

symbol indicates that the sum does not include (n′, ~k′) = (n,~k). The potential terms

V are defined as

V
n,~k

(q
n,~k

) = ǫel(0, . . . , q
n,~k
, . . . , 0) − ǫel(~0), (2.117)

and

V
n,~k;n′,~k′(qn,~k

, q
n′,~k′) =ǫel(0, . . . , q

n,~k
, . . . , q

n′,~k′, . . . , 0)

−V
n,~k

(q
n,~k

) − V
n′,~k′(qn′,~k′) − ǫel(~0),

(2.118)

with higher terms defined similarly. Each potential term is thus defined as a correction

to the description of the BO surface afforded by lower-order terms. If the full series is

used, then the PAA is an exact description of the BO surface. However, such a com-

plete mapping of the surface is an enormous computational expense: if each direction

is mapped using Nm points, then a full mapping requires N (3NαNk−3)
m points to be cal-

culated on the BO surface. The PAA amounts to truncating the expansion in equation

(2.116); typically at either the first (requiring mapping of O(NαNkNm) configurations)

or second non-constant term (requiring mapping of O(N2
αN

2
kN

2
m) configurations).
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In this thesis, only the terms in one phonon coordinate (independent mode) are

used, though in some systems the effect of the term in two phonon coordinates (pair-

wise coupled modes) is significant [82].

The PAA is a reasonable approximation because under the HA, different phonon

modes are exactly non-interacting – that is, the V terms in more than one phonon

mode are zero. Each additional term therefore adds an additional level of accuracy

to the description of the BO energy surface beyond that afforded by the harmonic

approximation.

The electronic energy at a given configuration may be calculated using any elec-

tronic structure methodology, although DFT has been used in most applications of

the methodology [88–90], as it generally offers the best balance between accuracy and

computational affordability. The mapping can be carried out in any electronic state,

which under the BO approximation is taken to remain adiabatically the same under

the nuclear motion. Typically either the ground state or a thermal (Fermi-Dirac) oc-

cupation distribution is used; if the material has a band gap substantially larger than

the thermal energy β−1 = kBT then it makes little difference to the results.

2.7.2 Vibrational Self-Consistent Field Equations

Expressing the electronic BO energy ǫel(~q) with the PAA, the Hamiltonian (2.104)

becomes

Ĥnucl =
∑

n,~k

−1
2
∂2

∂q2
n,~k

+ ǫPAA(~q). (2.119)

We construct now a trial nuclear wavefunction, |Φ〉, as a Hartree product of individual-

mode nuclear wavefunctions |ϕ
n,~k

〉,

|Φ(~q)〉 =
∏

n,~k

|ϕ
n,~k

(q
n,~k

)〉 . (2.120)

A Slater determinant is not required as there is no requirement for the bosonic phonon

wavefunctions to satisfy antisymmetry.

Substituting this trial wavefunction into the time-independent Schrödinger equa-

tion with the Hamiltonian of equation (2.119), and multiplying from the left by
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〈
∏′

n′,~k′
ϕn′,~k′(qn′,~k′)|, yields a set of mean-field equations for the individual-mode wave-

functions:


−1

2
∂2

∂q2
n,~k

+ V̄
n,~k


 |ϕ

n,~k
(q

n,~k
)〉 = Evib |ϕ

n,~k
(q

n,~k
)〉 , (2.121)

where

V̄
n,~k

=

〈
∏′

n,~k

ϕ
n,~k

(q
n,~k

)

∣∣∣∣∣∣∣
ǫPAA(~q)

∣∣∣∣∣∣∣

∏′

n,~k

ϕ
n,~k

(q
n,~k

)

〉
(2.122)

is the mean-field potential felt by the mode
(
n,~k

)
, and Evib is the total vibrational

energy.

In evaluating V̄
n,~k

(q
n,~k

), it is useful to re-write the BO energy under the PAA, ǫPAA,

by separating the terms that are a function of q
n,~k

and those that aren’t:

ǫPAA(~q) =V
n,~k

(q
n,~k

) + 2 · 1
2!

∑

n′′,~k′′

6=(n,~k)

V
n,~k;n′′,~k′′(qn,~k

, q
n′′,~k′′) + . . .

︸ ︷︷ ︸
q

n,~k
dependent terms

+ ǫ(~0) +
∑

n′,~k′

6=(n,~k)



Vn′,~k′(qn′,~k′) +

1
2!

∑′

n′′,~k′′

6=(n,~k)

Vn′,~k′;n′′,~k′′(qn′,~k′, qn′′,~k′′) + . . .




︸ ︷︷ ︸
non-q

n,~k
dependent terms

,

(2.123)

where we have used the fact that V
n′′,~k′′;n,~k

(q
n′′,~k′′, qn,~k

) = V
n,~k;n′′,~k′′(qn,~k

, q
n′′,~k′′) to collect

together each coupled term that is a function of q
n,~k

. A term with Nc coupled modes

will have Nc such terms appearing in the first grouping. When the expectation value

with respect to the state |∏′
n′,~k′

ϕ
n′,~k′(qn′,~k′)〉 is taken to form V̄

n,~k
(q

n,~k
), the first set of

terms will give a function of q
n,~k

, which is denoted by V̄ ′
n,~k

(q
n,~k

), while the second will

produce a constant energy, denoted V̄ const
n,~k

. Thus:

V̄
n,~k

(~q
n,~k

) = V̄ ′
n,~k

(~q
n,~k

) + V̄ const
n,~k

. (2.124)
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We can then define individual-mode eigenvalues λ
n,~k

as

λn,~k = Evib − V̄ const
n,~k

, (2.125)

so that equation (2.121) can be re-expressed as



−1
2
∂2

∂q2
n,~k

+ V̄ ′
n,~k



 |ϕ
n,~k

(q
n,~k

)〉 = λ
n,~k

|ϕ
n,~k

(q
n,~k

)〉 . (2.126)

This set of coupled mean-field equations is solved by self-consistently minimising the

energy with respect to the individual mode wavefunctions
{
|q

n,~k
(q

n,~k
)〉
}
. We can

also obtain individual-mode excited states, which must be orthogonal to lower-energy

solutions. The total vibrational energy Evib is not simply a sum of the individual-mode

eigenvalues, but rather is given by

Evib =
∑

n,~k

λ
n,~k

+

〈
∏

n,~k

ϕ
n,~k

(q
n,~k

)

∣∣∣∣∣∣∣
ǫPAA(~q) −

∑

n,~k

V̄ ′
n,~k

∣∣∣∣∣∣∣

∏

n,~k

ϕ
n,~k

(q
n,~k

)

〉
. (2.127)

The second term on the right hand side of the equation is a correction for multiple-

counting of mode energies under the mean-field approach. Note that it equals zero in

the case of independent modes.

When dealing with excited states, an excited state wavefunction analogous to that

of equation (2.108) may be used:

|Φ~S(~q)〉 =
∏

n,~k

|ϕS
n,~k

n,~k
(q

n,~k
)〉 . (2.128)

A Møller-Plesset MP2-type perturbation theory can be implemented [91] to provide

a correction to the mean-field energy, given by

E
(2),~S
nucl =

∑

~S 6=~S′

1
E~S − E~S′

∣∣∣∣∣∣∣

〈
∏

n,~k

ϕ
S′

n,~k

n,~k
(q

n,~k
)

∣∣∣∣∣∣∣
ǫPAA(~q) −

∑

n,~k

V̄ ′
n,~k

∣∣∣∣∣∣∣

∏

n,~k

ϕ
S

n,~k

n,~k
(q

n,~k
)

〉∣∣∣∣∣∣∣

2

. (2.129)

Again, for independent modes this quantity equals zero. For coupled modes, the size

of this correction gives some indication of the validity of the mean-field approach.

The partition function Z and free energy F are still given by the first lines of

equations (2.110) and (2.111) respectively, but the state energies E~S are now those
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determined from the VSCF calculations, rather than under the harmonic approxima-

tion.

2.7.3 Implementation

The work relating to anharmonic vibrational calculations in this thesis was carried out

using a set of scripts originally authored by Bartomeu Monserrat, with modifications

and further development by the author of this thesis. As the PAA is built upon

the harmonic normal modes, a harmonic-level vibrational calculation must first be

carried out. This also sets a baseline for comparison with the anharmonic treatment,

to determine the extent of anharmonicity in a system of interest. The harmonic

calculations were carried out using the finite displacement method implemented by

the lte code, with force constants derived from DFT calculations using the castep

program.

The eigenvectors and frequencies calculated at the harmonic level serve as inputs

to the mapping of the BO energy surface. For the work in this thesis, mapping is

carried out along each normal mode direction independently. An even number of

equally-spaced data points are calculated, split evenly each side of the equilibrium

configuration, in addition to the equilibrium configuration. The mapping is taken out

to some multiple, typically five, of the square root of the harmonic expectation value

of q2
n,~k

, given by

〈
q2

n,~k

〉
=

1
ω

n,~k

[
1

eβω
n,~k − 1

+
1
2

]
. (2.130)

For soft modes, in which the harmonic frequency gives a poor approximation to the

shape of the potential to be mapped, a different multiple of
√〈

q2
n,~k

〉
is used to ensure

a sensible sampling of the BO surface along that mode direction. A cubic spline is

then fitted to the mapping data to produce a continuous BO surface for each mode.

Examples of BO surfaces of modes demonstrating anharmonicity are shown in Fig.

2.8.

The VSCF calculation is then carried out using the mapping data. The single-

mode wavefunctions |ϕ
n,~k

(q
n,~k

)〉 are expanded in terms of a basis of quantum harmonic

oscillator eigenstates,
{
|φω

i (q
n,~k

)〉
}
,

|ϕ
n,~k

(q
n,~k

)〉 =
Nb∑

i=0

α
n,~k;i |φω

i (q
n,~k

)〉 , (2.131)
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Fig. 2.8 Examples of Born-Oppenheimer energy surfaces along individual mode direc-
tions in the Cmcm phase of SnSe. Subfigures (a) and (c) show the Born-Oppenheimer

energy surface as a function of normal mode amplitude (expressed relative to
√〈

q2
n,~k

〉
)

for two modes: (a) demonstrates a quartic-type anharmonicity, while (c) demonstrates
a strong cubic-type anharmonicity. The solid blue lines show the cubic spline fit to the
mapped BO potential, and the dashed red lines show the HA potential. Note that the
BO surface and the harmonic potential agree well for small amplitudes, but diverge at
larger amplitudes. Subfigures (b) and (d) depict the movement of the atoms for the
modes plotted in (a) and (c), respectively.
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where i denotes the excitation level of the harmonic eigenstate, ω is the frequency

of the harmonic oscillator, and Nb is the number of basis functions used. The α
n,~k;i

coefficients are subject to the normalisation condition
∑Nb

i α2
n,~k;i

= 1. In the limit of an

infinite number of harmonic oscillator eigenfunctions, the basis is complete, though in

practice the basis must be truncated at some finite Nb. The number of basis functions

used is tested for convergence. The harmonic frequency of the basis functions, ω, is

determined through a harmonic fit to the mapping data.

In the limit of infinite crystal size, the summation over all allowed wavevectors ~k

becomes an integration over the BZ. This integration can be approximated by sampling

the BZ on an n1×n2×n3 grid, the size of which must be tested for convergence. In order

to carry out mapping at a given k vector, a unit cell commensurate with vibrations

with that k vector must be used. An n1 × n2 × n3 sampling grid for BZ integration

can be calculated by using a n1 × n2 × n3 supercell, which is commensurate with all

sampled k vectors. However, with plane-wave DFT, where the computational expense

increases as the cube of the system size, this can rapidly become computationally

unaffordable. For example, the computational cost of each atomic configuration for

an n× n× n sampling of the BZ grows as n9.

The non-diagonal supercell method developed by Lloyd-Williams et al. [92] pro-

vides a way of greatly reducing this computational expense. A supercell matrix S can

be used to construct a supercell with lattice vectors ~as, ~bs and ~cs from a primitive cell

with lattice vectors ~ap, ~bp and ~cp as follows:




~as

~bs

~cs


 =




S11 S12 S13

S21 S22 S23

S31 S32 S33




S




~ap

~bp

~cp


 . (2.132)

By allowing the off-diagonal elements of S to be non-zero, a non-diagonal supercell

commensurate with a given vibrational k vector can be created – that is, the atomic

displacements associated with the normal modes at the k vector can be represented

within the periodic supercell. If the k vector can be represented in irreducible fractional

coordinates within the BZ as

~k =




m1

n1

m2

n2

m3

n3


 , (2.133)
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then displacements corresponding to ~k can be represented within a non-diagonal su-

percell containing a number of primitive unit cells Np.c. equal to the least common

multiple (LCM) of n1, n2 and n3:

Np.c. = LCM(n1, n2, n3). (2.134)

For the example of the n×n×n grid, this means that each atomic configuration used

as part of the mapping of the BO energy surface can be represented within a supercell

containing n, rather than n3 primitive cells, with a computational cost within plane-

wave DFT scaling as n3, rather than n9, a saving of six powers of n. This clearly

allows calculations to be performed that would be infeasible using diagonal supercells

only.

Two examples of non-diagonal supercells are depicted in Fig. 2.9. A primitive cell

and two non-diagonal supercells are depicted for the Cmcm phase of SnSe. The two

supercells are generated by supercell matrices S1 and S2 to be commensurate with

k-vectors given (in fractional coordinates) by ~k1 = (0, 0, 1
3
) and ~k2 = (0, 1

3
,−1

3
). The

supercell matrices are

S1 =




1 0 0

0 1 0

0 1 −3


 S2 =




1 0 0

0 1 1

0 2 −1




It should be noted that the definitions for atomic displacements and normal coordi-

nates of equations (2.101) and (2.102) are not size-consistent within the supercell-based

PAA. Instead, an alternative Fourier convention for these quantities is taken to ensure

size-consistency within supercells:

uα,p;i =
1√
Mα

∑

n,~k

q′
n,~k
e

~k·~Lp ηn,~k;α,i, (2.135)

and

q′
n,~k

=
1
Np

∑

~Lp,α,i

√
Mα uα,p;i e

−i~k·~Lp ηn,−~k;α,i. (2.136)

The non-diagonal supercell and VSCF calculations were carried out using programs

authored by Jonathan Lloyd-Williams and Bartomeu Monserrat, with modifications

by the author of this thesis.
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(a)

(b) (c)

Fig. 2.9 Examples of non-diagonal supercells in the Cmcm phase of SnSe. In each
case, several cells are depicted, with the boundary of one cell shown as black lines. (a)
The primitive cell; (b) a supercell generated by supercell matrix S1 to be commensurate
with k point ~k1; (c) a supercell generated by supercell matrix S2 to be commensurate
with k point ~k2.
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2.8 Expectation Values of Observables

The basic VSCF approach yields nuclear vibrational energies and free energies, but it

also yields the anharmonic nuclear wavefunctions |Φ~S〉, which are the nuclear part of

the wavefunction within the BO approximation, and therefore fully characterise the

vibrational motion of the system. If the behaviour of some general physical observable

can be characterised as a function of atomic configuration, then the wavefunction can

be used to calculate an expectation value for that observable, renormalised over the

atomic motion. This section describes the different approaches that can be taken to

calculate these renormalised expectation values, and then proceeds to look in particu-

lar at the renormalisation of the stress experienced by a system, and the consequences

for thermal expansion (which is an inherently anharmonic effect [93]); and the renor-

malisation of electronic structure due to nuclear motion (electron-phonon coupling).

2.8.1 Renormalisation of Observables

A physical observable may be denoted by an operator Ô. Let us suppose the observable

may be uniquely determined by the atomic configuration ~q, so that Ô = Ô(~q). We shall

assume that we are able to calculate the value of the observable at any given nuclear

configuration. The expectation value of the observable at in a statistical ensemble at

inverse temperature β,
〈
Ô
〉

β
, is given by

〈
Ô
〉

β
= 〈Φ|Ô|Φ〉 , (2.137)

where |Φ〉 is the total vibrational wavefunction of the system. We may consider the to-

tal wavefunction |Φ〉 in terms of the energy eigenfunctions defined in equation (2.128),

|Φ~S(~q)〉; equation (2.137) becomes:

〈
Ô
〉

β
=
∑

~S

p~S

〈
Φ

~S
∣∣∣Ô
∣∣∣Φ~S

〉
, (2.138)

where p~S is the fraction of the ensemble found in state ~S.

In thermal equilibrium, the fraction of the ensemble being in state ~S with energy

E~S is determined by the Boltzmann distribution, so that p~S ∝ e−βE~S . Thus, at thermal

equilibrium,
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〈
Ô
〉

β
=

1
Z
∑

~S

e−βE~S

〈
Φ

~S(~q)
∣∣∣Ô(~q)

∣∣∣Φ~S(~q)
〉

=
1
Z
∑

~S

e−βE~S

∫
d~q |Φ~S(~q)|2O(~q)

=
∫
d~q |Φ(~q)|2O(~q),

(2.139)

defining |Φ(~q)|2 = 1
Z

∑
~S e

−βE~S |Φ~S(~q)|2. The evaluation of (2.139) can be tricky. Al-

though we can produce |Φ~S(~q, β)|2 through the VSCF approach, finding O(~q) is not

necessarily straightforward.

A few approaches to evaluating equation (2.139) will now be discussed.

Monte Carlo integration

One of the most direct approaches to the evaluation of equation (2.139) is Monte

Carlo integration. In this method, the observable is evaluated at a finite number,

N , of nuclear configurations, denoted {~qi}, generated such that the probability of a

configuration being generated is proportional to the amplitude-square of the thermally-

averaged nuclear wavefunction evaluated at that configuration, i.e. {~qi} ∼ |Φ(~q, β)|2.
The expectation value of the observable is then determined through standard numerical

integration as

〈
Ô
〉

β
≃ 1
N

N∑

i=1

Ô(~qi). (2.140)

The Monte Carlo integration approach has several advantages. Firstly, the scheme

allows for the evaluation of Ô(~q) across the complete range of nuclear configurations,

without restricting configurations to only a certain number of coupled modes. How-

ever, this generally rules out use of the non-diagonal supercell method, as a supercell

commensurate with all sampled ~k points is required. Secondly, the statistical variance

of the expectation value, σ2
〈O〉β

, which can be estimated as

σ2
〈O〉β

≃ 1
N(N − 1)

N∑

i=1


O(~qi) − 1

N

N∑

j=1

O(~qj)




2

, (2.141)

is reduced simply by increasing the number of sampling points, without dependence

on the dimensionality of the integral. This makes Monte Carlo integration especially
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attractive for the evaluation of expectation values in large systems. Finally, from a

computational point of view each sampling point ~qi is essentially independent from all

other points, so that the evaluation of (2.140) is trivially parallelisable. The principal

disadvantage of the Monte Carlo integration approach is that the number of sampling

points required for an accurate evaluation of the integral in equation (2.139) tends

to be rather large. For high-dimensional systems, the dimensionality independence of

the number of sampling points is attractive, but for lower-dimensional systems, other

methods tend to be less computationally expensive.

The main difficulty in the implementation of the Monte Carlo method lies in the

generation of the points {~qi}. The computation of random numbers distributed accord-

ing to an arbitrary distribution function is not a straightforward problem. However, in

the present case we can make use of the known form of |Φ(~q, β)|2 within the harmonic

approximation, given in equations (2.112) and (2.113). Random numbers may be gen-

erated according to a Gaussian distribution straightforwardly using the Box-Muller

transformation [94], and all that is required in the harmonic case is a temperature-

dependent rescaling of the standard deviation (and corresponding normalisation) of

the generated numbers. Provided the full anharmonic wavefunction is not very dis-

similar from the harmonic wavefunction, we can go beyond the HA while still making

use of the simplicity of generating Gaussian-distributed random numbers by rewriting

equation (2.139) as

〈
Ô
〉

=
∫
d~q

|Φanh(~q, β)|2
|Φhar(~q, β)|2 |Φhar(~q, β)|2 Ô(~q)

≃ 1
N

N∑

i=1

|Φanh(~qi, β)|2
|Φhar(~qi, β)|2 Ô(~qi).

(2.142)

The nuclear configurations {~qi} of the second line are again generated according to

the harmonic distribution, {~qi} ∼ |Φhar(~q, β)|2. The only difference to the harmonic

case then becomes the additional weighting factor given by the ratio of the amplitude-

squares of the anharmonic and harmonic wavefunctions. The variance of this approach

is given by

σ2
〈O〉β

≃ 1
N(N − 1)

N∑

i=1


 |Φanh(~qi, β)|2

|Φhar(~qi, β)|2 O(~qi) − 1
N

N∑

j=1

|Φanh(~qi, β)|2
|Φhar(~qi, β)|2 O(~qj)




2

. (2.143)
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Anharmonic wavefunctions that are substantially different from their harmonic

equivalents may not be suited to this approach; instead, a Metropolis-Hastings algorithm-

based approach [73, 95] may be better. However, the Metropolis-Hastings algorithm

requires knowledge of the history of previously generated configurations, and so is

much less suited to calculations in parallel.

Quadratic approximation

Another approach to the evaluation of equation (2.139) is to expand O(~q) as a power

series in the qn,~k about ~q = ~0:

Ô(~q) = Ô(~0) +
∑

n,~k

c
(1)

n,~k
q

n,~k
+

∑

n,~k;n′,~k′

c
(2)

n,~k;n′,~k′
q

n,~k
q

n′,~k′ + . . . , (2.144)

where the c(i)

n,~k;...
are coupling constants of the observable to the relevant term in the

power expansion. These may be obtained by fitting a functional form to the observable

mapped along relevant modes.

In the case of a harmonic wavefunction, the evenness of the wavefunction about

~q = ~0 leads to all the terms in an odd power of q evaluating to zero, leaving only the

even-powered terms. Furthermore, at O(q2), terms corresponding to different modes

or k-points also evaluate to zero in the expectation value. Thus, in the case of the

harmonic wavefunction, the expectation value of equation (2.144) evaluates to

〈
Ô
〉

= Ô(~0) +
1
Z
∑

n,~k

∑

~S
n,~k

c
(2)

n,~k;n,~k

〈
φ

S
n,~k

har (q
n,~k

)
∣∣∣∣q

2
n,~k

∣∣∣∣φ
S

n,~k

har (q
n,~k

)
〉
e

−βES
n,~k + O(q4), (2.145)

which can be further simplified to

〈
Ô
〉

≃ Ô(~0) +
∑

n,~k

c
(2)

n,~k;n,~k

2ω
n,~k

[
1 + 2nB(ωn,~k, β)

]
, (2.146)

where nB is the Bose-Einstein occupation, nB(ω
n,~k
, β) =

[
exp

(
βω

n,~k

)
− 1

]−1
. The

terms in q4 and higher have been dropped here; the assumption that these terms are

small compared to the lower-order terms is not always true, as has been demonstrated

in one recent study [88].

In the more general case of an anharmonic wavefunction, we may no longer consider

the evaluation of terms in odd powers of q to be small, or that terms with (n′, ~k′) 6=
(n,~k) will evaluate to zero in the second-order term. We should instead evaluate
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the full expression in (2.144). An alternative approximation that can be made when

evaluating the expectation value of the expansion is to neglect coupled modes, so only

coupling constants of the form c
(i)

n,~k;n,~k;...
are considered to be non-zero. This is the

approach used in this thesis.

Although the quadratic approximation is not as exact as the Monte Carlo inte-

gration method, it is usually less computationally intensive, particularly for lower-

dimensional systems, and like Monte Carlo integration is easily parallelised. It also

allows for physical insight into the renormalisation of physical properties through ex-

amination of the individual terms in the expansion; this is not possible in Monte Carlo

integration, which simply produces the renormalised expectation value without physi-

cal insight. However, while a reasonable approximation in some systems, the quadratic

approximation has been found to be inadequate in others, such as molecular crystals

[88].

An extension to the quadratic approximation based on estimating a mean-value

nuclear configuration for a property, known as the thermal lines method, has also been

proposed [96, 97].

Dynamical approaches

A final class of methods for evaluating the integral equation (2.139) is based on dynam-

ical methods, such as classical molecular dynamics (MD) [98, 99] and path integral

molecular dynamics (PIMD) [100, 101].

In these methods, the nuclear configurations at which the observable is sampled

are generated by propagating the system in discrete time steps according to forces

calculated by quantum mechanical methods. In MD, the nuclei are treated classically,

but with forces calculated through quantum-mechanical methods such as DFT. As

a result the quantum-mechanical effect of zero-point motion is not included. PIMD

is based on the path-integral formulation of quantum mechanics and does include

zero-point effects.

When propagated for a sufficiently long time, these dynamical methods end up gen-

erating configurations according to |Φ(~q, β)|2 indirectly through the quantum-mechanical

forces used, rather than the direct generation of configurations according to |Φ(~q, β)|2
employed in the Monte Carlo integration technique.

The principal drawback to such dynamical techniques is that the next configuration

can only be generated following a computationally intensive electronic structure cal-

culation based on the previous configuration. These techniques are therefore serial in
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nature, as opposed to the easily parallelisable Monte Carlo integration and quadratic

approximation methods, and so less well suited to high-throughput calculations.

2.8.2 Specific Cases of Renormalised Observables

Particular attention will now be turned to the principal observables studied in this

thesis (other than energies): stress and electronic band gaps. The thermal expansion

that results from the vibrational stress will also be discussed.

Stress and thermal expansion

Under the HA, nuclear vibrations do not lead to any thermal expansion. However,

when anharmonicities are treated, nuclear motion gives rise to a vibrational correction

to the stress tensor σ of the system, which determines the thermal expansion of the

system.

For systems with only a very small number – typically not more than two – de-

grees of freedom, an established method for studying thermal expansion is the quasi-

harmonic method [83]. In this method, the HA is used, but the vibrational frequencies

are taken to be dependent on the lattice parameters of the system. For example, in the

case of a system with a single lattice parameter, a, such as diamond, ω
n,~k

= ω
n,~k

(a).

Phonon calculations at the harmonic level are carried out at a range of lattice param-

eters, and the total free energy of the system is calculated. Energies are generated for

intermediate values of the lattice parameter by interpolation. The thermally-expanded

lattice parameter is then the one that minimises the total free energy of the system.

The quasi-harmonic approximation is an effective technique in systems with only a very

small number of degrees of freedom, but in other systems the global minimisation of

the free energy as a function of many variables becomes a computationally expensive

task. It is therefore desirable to be able to study thermal expansion through the full

anharmonic vibrational renormalisation of the stress tensor.

Nielsen and Martin [102] derived the internal stress tensor σ for a quantum me-

chanical system as

σij =
1
V

∂ 〈Ψ|Ĥ|Ψ〉
∂ǫij

, (2.147)

where V is the volume, Ĥ is the Hamiltonian of the system, and ǫij is the strain tensor;

i and j label Cartesian directions. Following the Hamiltonian of equation (2.18), we

may decompose the Hamiltonian Ĥ into nuclear kinetic and electronic potential parts
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– σvib,kin and σvib,pot, respectively – and examine the contribution of each to the total

stress [82]. The kinetic contribution to the stress tensor is given by

σvib,kin
ij =

1
Z
∑

~S

− 1
V

〈
Φ

~S
∣∣∣
∑

~Lp,α

mα
ˆ̇up,α;i

ˆ̇up,α;j

∣∣∣Φ~S
〉
e−βE~S , (2.148)

where the dots indicate time derivatives. Using mα
ˆ̇up,α;i = p̂p,α;i = −i ∂

∂x̂p,α;i
, where p̂

is the momentum operator, we can see that these time derivatives can be calculated

from the gradient of the wavefunction, which can be easily obtained for the anharmonic

wavefunction when using a basis of harmonic wavefunctions.

The electronic stress σel experienced by the system is a function of the nuclear con-

figuration, and can be calculated using DFT methods. The potential contribution to

the stress tensor then arises from a vibrational renormalisation of the electronic stress

within the system. In accordance with equation (2.139), the potential contribution to

the stress is

σvib,pot
ij =

1
Z
∑

~S

〈
Φ

~S(~q)
∣∣∣σel

ij

∣∣∣Φ~S(~q)
〉
e−βE~S , (2.149)

which may be evaluated using the methods described in the previous section. The

total vibrational correction to the internal stress of the system is then simply σvib =

σvib,kin + σvib,pot.

Thermal expansion

We shall now see the role the vibrational stress tensor plays in thermal expansion.

Indeed, as well as thermal expansion, the vibrational stress tensor includes quantum-

mechanical zero-point effects, which will also be included in the expansion described

here.

The expanded system will be the one in which the Gibbs free energy, G, is min-

imised, so that the differential Gibbs free energy dG, given by [103]

dG = dFel + dFvib − V
∑

i,j

σext
ij dǫij , (2.150)

is zero. F is the Helmholtz free energy, decomposed into electronic and nuclear vi-

brational parts, and σext is the external stress tensor acting upon the system. The
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vibrational stress tensor can be related to the differential of the vibrational Helmholtz

free energy with respect to strain:

σvib
ij = − 1

V

∂Fvib

∂ǫij
. (2.151)

By defining an effective total stress tensor σeff = σvib + σext, we can use equation

(2.151) to re-write equation (2.150) as

dG = dFel − V σeff
ij dǫij. (2.152)

Electronic structure codes such as castep are capable of performing such a minimisa-

tion of the Gibbs free energy with respect to lattice parameters and atomic positions,

so that the thermally-expanded unit cell and atomic coordinates can be obtained by

use of this effective stress tensor.

It should be noted that thermal expansion modifies the BO energy surface mapped

by the phonon normal modes, and so changes σvib. Therefore, to obtain the correct

thermally-expanded structure, the BO mapping and thermal expansion processes may

have to be repeated until the calculated effective stress tensor is self-consistent with

the stress tensor used to generate the static lattice. In practice the vibrational stress

tensor does not vary very much during thermal expansion and so only a relatively

small number of iterations are usually required.

Carrying out thermal expansion of a system at a range of temperatures allows

for the calculation of properties such as coefficients of expansion – for example, the

volume coefficient of expansion, αV (T ), defined as

αV (T ) =
1
V

dV

dT
. (2.153)

Band Gaps

The coupling of nuclear vibrational motion to electronic structure, often referred to as

electron-phonon coupling, is a property of interest. Solving the electronic Hamiltonian

Ĥel at each nuclear configuration yields the electronic band structure. Let the energy

for band s at position ~r in reciprocal space be denoted by ǫs,~r. Then, following equation

(2.139), the expectation value for this band energy will be

〈ǫs,~r〉 =
1
Z
〈
Φ

~S(~q)
∣∣∣ǫs,~r(~q)

∣∣∣Φ~S(~q)
〉
e−βE~S , (2.154)
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which may be evaluated using the methods described in the previous section. This

allows the entire renormalised band structure to be calculated.

In general, a single band energy is not of much interest, as the energy scale is

arbitrary. However, the difference between two bands is not. Of particular interest

in non-metals is the band gap – the difference in energy between the highest-energy

valence band and the lowest-energy conduction band – which is of considerable im-

portance to the properties of many materials. For example, the vibrational renormal-

isation of the band gap of helium at terapascal pressures indicates that helium does

not metallise until higher pressures than are predicted using static-lattice calculations,

leading to revised estimates of the age of white dwarf stars [104]. The band gap should

be calculated at each nuclear configuration and vibrationally averaged, as interactions

involving electronic transitions happen over a timescale much shorter than nuclear

motion.

Finally, it should be noted that the thermal expansion described in the previous

section affects the electronic energy bands, and so is also an important factor in cal-

culating electron-phonon coupling.

The renormalisation calculations described in this thesis were carried out using pro-

grams authored by Bartomeu Monserrat, Jonathan Lloyd-Williams and the author of

this thesis.

2.9 Summary

Within the density functional theory approach to determining the properties of quantum-

mechanical systems, we have described a methodology, AIRSS, for conducting global

explorations of the Born-Oppenheimer energy landscape, to identify stable and metastable

structures. We also have a methodology, the VSCF approach, to explore the local

shape of the Born-Oppenheimer energy surface around such local minima, and to ob-

tain renormalisations for physical observables as a result of nuclear motion through

this local energy landscape. The application of these methodologies to several systems

of interest shall now be described.



Chapter 3

Defects in Graphene

In this chapter, a random structure searching method is applied to search for new

vacancy and adatom defects in the two-dimensional carbon allotrope graphene. The

atoms in a region of a graphene supercell are randomly disrupted to generate defect

structures, whose formation energy is then calculated. Several possible new defect

types are identified, with almost all known point defects of the types studied also

appearing in the searches.

3.1 Introduction

3.1.1 Graphene

Graphene is a two-dimensional allotrope of carbon consisting of a flat layer of threefold-

coordinated carbon atoms forming tessellating hexagons, as illustrated in Fig. 3.1.

Graphene belongs to the hexagonal P6/mmm space group. The C–C bonding consists

of sp2 hybridisation of the carbon s, px and py orbitals to form σ bonds, with a bond

length of about 1.42 Å. The pz orbitals hybridise to form half-filled π bands, which are

the source of many of graphene’s electronic properties [105, 106]. The common three-

dimensional carbon allotrope graphite consists of weakly-bound layers of graphene,

which are alternately offset from one another. Isolation of a single layer of graphene

leads to remarkable properties not observed in bulk graphite.

Although theoretical work has been carried out on the graphene structure for many

decades [106], it was only as recently as 2004 that Konstantin Novoselov and Andre

Geim were able to isolate and study single layers of graphene experimentally [107],

an achievement that won them the 2010 Nobel Prize in Physics. Since that time,

there has been a great deal of experimental and theoretical interest in graphene for its
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Fig. 3.1 Structure of pristine (undefected) graphene. The blue lines denote the prim-
itive unit cell. The threefold-coordinated carbon atoms form tessellating hexagons,
one of which is highlighted in red. The carbon atoms lie in a single plane of the c
direction, which is perpendicular to the page.

extraordinary physical and electronic properties and its potential practical applications

[108], some of which will now be summarised.

Graphene possesses enormous mechanical strength, with a tensile strength mea-

sured at 130 GPa and a Young’s modulus of 1 TPa [109]. Being made up of light

atoms that are tightly bound in the plane of the layer gives graphene a very high

sound velocity, and consequentially a high thermal conductivity [105]. The thermal

conductivity of graphene has been measured to be between 600 and 5,300 Wm−1K−1

[110, 111]. Graphene also possesses remarkable electronic properties. Graphene is a

zero band-gap semiconductor with a linear dispersion relation at the K and K′ points

in the Brillouin zone (BZ), at which the valence and conduction bands meet at the

Fermi energy. The electronic band structure along a high-symmetry path in the BZ is

shown in Fig. 3.2. The points K and K′ are known as Dirac points, so called because

the linear dispersion relation about these points corresponds to that of the massless

Dirac equation, with the Fermi velocity vF taking the place of the speed of light. In

graphene, vF/c ≃0.01. Electrons with wave vectors in the vicinity of K and K′ – i.e.

near the Fermi level – thus behave relativistically [105, 106].

Graphene possesses exceptionally high carrier mobilities µ, with values of µ =

15,000 cm2V−1m−1 reported, which are only weakly dependent on temperature [108],

and which remain high even when graphene is heavily doped. This yields very high

electrical conductivity, including a minimum electrical conductivity when the carrier
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Fig. 3.2 Band structure of pristine graphene along a high-symmetry path through
the first Brillouin Zone, calculated using DFT with the PBE [24] xc functional. Note
that the conduction and valence bands meet at the K point, with zero band gap, and
that the dispersion relation around this point is linear.
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concentration tends towards zero [105]. Other electronic properties of graphene are

discussed in the review of Castro Neto et al. [106].

The π bands in graphene open up the possibility of bonding and adsorption [106].

One notable example of graphene reactivity is with hydrogen. One hydrogen atom can

bond to each carbon atom in graphene, with hydrogen atoms bonding to neighbouring

carbon atoms being on opposite sides of the graphene sheet, to form a material known

as graphane. Chemically, the carbon atoms transform from sp2 to sp3 hybridisation,

with the π band disappearing [112]. This introduces a direct band gap of about 5.4 eV

[113]. The presence of defects in the graphene structure is known to increase the

reactivity of the defect site [114].

Various methods of synthesising graphene have been developed, such as mechanical

exfoliation from graphite, the thermal decomposition of SiC, and molecular beam

deposition on a substrate. The carrier mobility of graphene is highly dependent on

the substrate [105].

The unique electronic and mechanical properties of graphene has led to a great

deal of interest in the material over recent years. It is hoped that graphene will one

day be used in a wide variety of applications, such as in battery applications and in

hydrogen storage [108], that take advantage of its properties. The most longed-for

potential application for graphene is in electronics, as a replacement to silicon chips,

on account of graphene’s very high carrier mobility [108]. However, such an application

is a long way off, and will require us to be able to engineer a band gap of about 0.4 eV

in graphene [105].

3.1.2 Defects in Graphene

Most theoretical studies consider only ‘pristine’ graphene, represented by an infinitely-

repeated two-atom unit cell. However real graphene, like every material, may pick up

defects in the ‘pristine’ material structure. This can occur naturally during graphene

synthesis, particularly if carried out at low temperatures. Defects may also be delib-

erately induced through particle irradiation (requiring an energy of 15–20 eV to be

transferred to a carbon atom to prevent immediate recombination [115]) or chemi-

cal reactions such as with an oxidising acid like H2SO4 [116]. Various types of de-

fects in graphene have been studied both theoretically and experimentally, with many

having been directly observed using high-resolution transmission electron microscopy

(HRTEM) techniques [117–120].

The presence of defects in graphene modifies the local electronic and chemical

properties in the vicinity of the defect. This may be undesirable, impairing pris-
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tine graphene’s remarkable properties, but it may also be desired. For example, for

graphene-based electronic devices to become a reality, a method of introducing a

small band gap in graphene is required, and inducing defects at particular sites on a

graphene sheet could potentially offer a way of doing so [108]. The chemical reactivity

also increases in the vicinity of graphene defects, opening up the possibility of local

functionalisation of graphene sheets, for example to create electrical “contacts” with

other materials [116, 121].

Graphene defects can be characterised as either 0-dimensional point defects, or 1-

dimensional line defects. Line defects are reconstructions of the graphene structure

occurring as a result of dislocations, at the interface of two graphene sheets and at the

edges of graphene layers [116]. These types of defect are not the focus of this study;

instead, we will focus on point defects of graphene.

The point defects of graphene can be considered to be of one of the following types:

1) Reconstructions of the graphene sheet;

2) Vacancies due to the loss of one or more carbon atoms;

3) The addition of carbon adatoms;

4) Foreign adatoms;

5) Substitutions of carbon atoms for foreign (non-carbon) atoms.

When vacancies, substitutions or adatoms occur, a reconstruction of the graphene

layer usually occurs, which often maintains threefold carbon coordination through the

formation of non-hexagonal groups of carbon atoms, such as pentagons and heptagons.

The known point defects of graphene layers, falling into one of the above classes, shall

now be briefly summarised. In the following discussion, the defect formation energy

Ef is defined as

Ef = Ed −
∑

s

Ns µs, (3.1)

where Ed is the total energy of the defected graphene structure, s labels the atomic

species that constitute the defected structure, Ns is the number of atoms of species s

in the structure, and µs is the chemical potential for species s. The chemical potential

for carbon is the energy per atom of pristine graphene; for nitrogen, oxygen, hydrogen

etc. it is the energy per atom of their diatomic gases. The defect migration energy is

the minimum energy barrier that must be overcome for a defect to move from one site

on the graphene layer to another.
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(a) SW(55–77) (b) V1(5–9)

(c) V2(5–8–5) (d) V2(555–777)

Fig. 3.3 Points defects in graphene. (a) Stone-Wales reconstruction SW(55–77); (b)
single vacancy V1(5–9); (c) double vacancy V2(5–8–5); (d) double vacancy reconstruc-
tion V2(555–777). In each case, the defect is highlighted in red. The single vacancy
defect leaves an undercoordinated carbon atom, highlighted in blue, with dangling
bonds that substantially increase the site reactivity. This atom is raised up slightly
out of the plane. A slight ‘ripple’ in the sheet is observed for the Stone-Wales defect;
the double vacancy defects do not produce any out-of-plane distortion in the graphene
layer.
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Reconstructions of pristine graphene: the Stone-Wales defect

The rotation by 90◦ of a C–C bond in the pristine graphene structure can lead to a

point defect known as the Stone-Wales defect, SW(55–77) [122]. This leads to the

formation of two pentagonal and two heptagonal arrangements of carbon atoms, in

place of four hexagons, accompanied by an out-of-plane ‘rippling’ of the graphene

sheet in the region around the defect [123]. The Stone-Wales defect is depicted in Fig.

3.3a. The energy barrier for formation of a Stone-Wales defect has been calculated

to be about 9.2 eV [124], indicating that Stone-Wales defects are unlikely to form

spontaneously at equilibrium under ambient conditions [116]. However, once formed,

for example through particle beam irradiation, an energy barrier of about 4.4 eV for the

reverse transformation keeps the Stone-Wales defect stable under ambient conditions

[116, 124]. The formation energy of the Stone-Wales defect has been calculated to

be about 5 eV [123]. Although the Stone-Wales defect leaves all carbon atoms fully

coordinated, with no dangling bonds, the disruption to the π electrons results in an

increase in the chemical reactivity of the defect site [116].

Vacancies

The loss of a carbon atom from graphene leads to a local reconstruction around the

vacancy site, leaving a pentagonal and a nonagonal structure, denoted V1(5–9) and

depicted in Fig. 3.3b. The reconstruction takes the form of a Jahn-Teller distortion

[125]. One atom in the nonagonal structure is only two-fold coordinated, leaving

that carbon atom with dangling bonds that substantially increase the site reactivity,

opening up the possibility of functionalisation at this site. The dangling bonds result in

the under-coordinated atom sitting slightly above the graphene plane. The formation

energy of the single vacancy defect is high, calculated theoretically to be 7.4–7.7 eV

[125, 126] and experimentally estimated at 7.0±0.5 eV [127], due to the presence of

the dangling bond, though the migration energy is smaller, at 1.4–1.7 eV [125, 126].

If two vacancies occur in the same location on the graphene sheet, either through

direct double vacancy formation or through the migration of two single vacancies, then

a reconstruction of the carbon atoms occurs, which results in a fully connected sp2

network with no dangling bonds. There are three known reconstructions, which are

denoted V2(5–8–5), V2(555–777) and V2(5555–6–7777) and are depicted in Figs 3.3c,

3.3d and 3.4a, respectively. The V2(5–8–5) defect consists of an octagon with two

pentagons either side of it, taking the place of four hexagons in pristine graphene.

Calculations have estimated the formation energy of V2(5–8–5) to be 7.5–8.0 eV [128].



82 Defects in Graphene

The transformation of a V2(5–8–5) into a V2(555–777) has been found by theoreti-

cal calculations to be energetically favourable, as the formation energy of V2(555–777)

is about 0.9 eV lower than that of V2(5–8–5) [129]. The energy barrier for this trans-

formation has been calculated to be about 5 eV, a substantially smaller barrier than

that required for the Stone-Wales bond rotation [129].

The V2(555–777) structure can be formed from the V2(5–8–5) defect through a

bond rotation, and consists of three heptagons, which all share a carbon atom, and

three pentagons, each one adjacent to two of the heptagons. A further bond rotation

leads to the formation of the V2(5555–6–7777) defect, consisting of a central hexagon

that is surrounded by four heptagons and two pentagons. A pentagon is also located

adjacent to each of two pairs of heptagons. The V2(5555–6–7777) formation energy

is about 0.3 eV smaller than that of V2(5–8–5), and so is intermediate between the

formation energies of V2(5–8–5) and V2(555–777) [128].

The migration energy of these double defects is about 6–7 eV [116, 125], making

them essentially immobile under ambient conditions.

Carbon Adatoms

The addition of a single carbon adatom can take several known forms, such as the

“bridge” and “dumbbell” configurations [130]. These are depicted in Figs 3.4b and

3.4c, respectively. In no known form does the additional carbon atom sit within the

graphene layer, as this would require a very high energy to achieve [116].

In the “bridge” configuration, which is lower in energy by about 0.22–0.5 eV than

the metastable “dumbbell” configuration [130, 131], the carbon adatom sits above the

graphene layer, equidistant between two neighbouring carbon atoms and bonded to

both. These two atoms in the graphene layer are pulled slightly out of the graphene

plane by the adatom [132]. The binding energy Eb of the carbon adatom in the “bridge”

configuration to the graphene sheet has been calculated to be 1.4–1.8 eV [132, 133],

corresponding to a formation energy of about 6–7 eV [116] 1 The migration energy of

the carbon adatom in the “bridge” configuration is low, at 0.4–0.5 eV [131, 133, 134].

The “dumbbell” configuration consists of two carbon atoms – the adatom and one

of the atoms of the graphene layer – ‘sharing’ a site on the graphene later, one below

the graphene plane and the other above. The two site-sharing carbon atoms each bond

to the three nearest neighbours in the graphene sheet [116, 131].

1The formation energy Ef can be calculated as Ef = Eb + µC , where µC , the chemical potential
for a carbon atom, is the atomisation energy per atom of pristine graphene.
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(a) V2(5555–6–7777) (b) “Bridge” adatom

(c) “Dumbbell” adatom (d) I2(7557)

Fig. 3.4 (a) Double vacancy reconstruction V2(5555–6–7777); (b) carbon adatom in
the “bridge” configuration; (c) carbon adatom in the “dumbbell” configuration; (d)
double carbon adatom reconstruction I2(7557), known as the inverse Stone-Wales de-
fect. The out-of-plane effects of each defect are displayed above the in-plane structures
of each defect. The inverse Stone-Wales defect leads to a ‘bulging’ out of the plane,
while the V2(5555–6–7777) defect does not protrude from the plane.
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Two carbon adatoms may migrate across the surface of the graphene layer and

combine to form a single defect, or adatom dimer, of which there are several known

structures [130]. One such structure, which is formed of a pair of pentagons and

a pair of heptagons, is known as the inverse Stone-Wales defect, denoted I2(7557)

and depicted in Fig. 3.4d. This structure is considered to be an important building

block in the synthesis of nano-engineered graphene [135]. In contrast to the Stone-

Wales defect, the pentagons are in direct contact and the heptagons are separated.

The inverse Stone-Wales defect allows an sp2 bonded network to be restored, though

at the cost of introducing a ‘buckling’ of the graphene layer out of the plane. The

formation energy of an inverse Stone-Wales defect, which is calculated to be 6.2 eV

[134, 135], is substantially less than twice the formation energy of an isolated adatom

defect, and so it is energetically favourable for two single adatoms to combine into

a single defect structure. The inverse Stone-Wales defect is not mobile at ambient

temperature [116, 130].

Other adatom dimer structures exist, such as the defect blister I2(555–6–777) [134],

which consists of three pentagons and three heptagons alternately surrounding a cen-

tral hexagon ring and which is related to the inverse Stone-Wales defect through a bond

rotation, as well as further such structures related to the I2(7557) and I2(555–6–777)

defects through additional bond rotations [130, 136, 137]. The formation energy of the

I2(555–6–777) defect has been calculated to be 6.07 eV [134], comparable to the inverse

Stone-Wales defect. An I2(7–4–7) defect featuring two heptagons and two hexagons

surrounding a square of carbon atoms raised above the graphene plane has also been

investigated and found to have a formation energy 1.09 eV higher than I2(7557). As

with the inverse Stone-Wales defect, these defect structures all involve a reconstruction

of the graphene sheet to avoid dangling bonds, at the cost of introducing a buckling

of the graphene sheet.

An extension to the single adatom “bridge” defect has also been studied, which

features a second carbon adatom bonded to the “bridge” atoms, leading to a two-

atom protrusion from the graphene plane, with a formation energy 1.03 eV higher

than that of the inverse Stone-Wales defect [130]. The I2(555–6–777), I2(7–4–7) and

two-atom protrusion adatom dimer structures are displayed in Figs 3.5a, 3.5b and 3.5c,

respectively.

Non-carbon Adatoms

Non-carbon, or foreign, adatoms may bond to a layer of pristine graphene. Foreign

adatoms sit above the plane of the graphene layer in high-symmetry sites such as above
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(a) I2(555–6–777) (b) I2(7–4–7)

(c) Two-atom protrusion

Fig. 3.5 (a) double carbon adatom reconstruction I2(555–6–777); (b) double carbon
adatom reconstruction I2(7–4–7); (c) double carbon adatom in the two-atom protru-
sion configuration. Out-of-plane effects of each defect are displayed above the in-plane
structures of relevant defects.
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the centre of a hexagon, above a carbon atom, or in the “bridge” position occupied by

carbon adatoms [138]. Many foreign adatoms will only undergo physisorption with the

graphene layer with van der Waals bonding, but some species such as Au, W and Pt

may form stronger covalent bonds and undergo chemisorption, with binding energies

typically less than 1 eV [116, 117, 139, 140]. The relatively weak bonding strength

of foreign adatoms allows the adatoms to migrate across the graphene surface under

ambient conditions [139].

Other defects of graphene may result in a substantial increase in local reactivity,

enabling a stronger bonding between a foreign adatom and a graphene layer [140, 141].

The Stone-Wales and inverse Stone-Wales defects result in a significant increase in

local reactivity [116], while the dangling bonds of the under-coordinated carbon atom

in the V1(5–9) defect substantially increases the site reactivity. One study found that

the reconstructed V2(777–555) defect has a binding energy of about 2 eV with a range

of metal adatoms. This was ascribed to a distortion to the π bands due to the defect

[117].

Substitutional Defects

Foreign atoms may also enter into the graphene structure itself through substitutional

defects, in which one or more carbon atoms is replaced by a foreign atom – essentially

the combination of a vacancy defect and a foreign adatom.

Boron and nitrogen are commonly found as substitutional atoms, as they are of

a very similar size to carbon, while possessing respectively one fewer and one more

electron [116]. Larger atoms such as transition metals may also be substituted in for

carbon atoms, and are capable of replacing one or two carbon atoms, with strong

binding energies for W atoms of –8.6 eV and –8.9 eV for unreconstructed single and

double vacancies, respectively [117]. The, in general, longer bond lengths between

carbon and foreign substitutional atoms compared with the C–C bond length means

that the substitutional atom usually sits slightly above the graphene layer [141].

The presence of substitutional impurities such as B and N alters the local electronic

structure of the graphene sheet [121, 142], and increases the chemical reactivity of the

defect site [121, 143]. Transition metal impurities are able to inject additional charge

into graphene sheets [144]. As such substitutional defects may offer pathways for the

functionalisation of graphene for electronics applications [121].
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Summary of Defect Energies

The formation energies Ef for some types of graphene defects, which have been calcu-

lated by previous studies and that have been referred to in this section, are summarised

in Table 3.1.

Defect type Specification Ef/eV

Stone-Wales SW(55–77) 5

Single vacancy V1(5–9) 7.4–7.7

Double vacancy V2(5–8–5) 7.5–8.0
V2(555–777) 6.6–7.1

V2(5555–6–7777) 7.2–7.7

C adatom “Bridge” 6–7
“Dumbbell” 6.2–7.5

Double C adatom I2(7557) 6.2

Table 3.1 Graphene defect formation energies Ef from previous theoretical studies.

In this thesis, an ab initio random structure searching method was applied to find

point defect structures in graphene, involving reconstructions, vacancies and carbon

adatoms, as well as nitrogen, oxygen and hydrogen adatoms. The discovery of known

defect structures is intended to demonstrate the validity of the approach. The forma-

tion energies of several potentially viable new defect structures are calculated.

3.2 Methodology

Novel and known graphene point defects were searched for using a set of scripts devel-

oped by the author of this thesis, which implemented the ab initio random structure

searching method for graphene. 4×4×1 and 5×5×1 supercells of pristine graphene

were generated, and the atoms lying within a central section of each supercell were

removed, and then replaced in randomly-generated positions within the central area.

Depending on the nature of the defect type under investigation, carbon atoms could

be removed, and carbon or foreign adatoms added, during the randomisation process.
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The resulting randomly-generated structure was then relaxed until the forces on the

atoms were close to zero, and the procedure repeated until multiple repeats of defect

structures were obtained. Relatively low-energy structures, which could correspond

to defects with relatively low formation energies, were then set within larger graphene

supercells (between 7×7×1 and 9×9×1), in order to increase the separation between

a defect and its periodic repeats, as is illustrated in Fig. 3.6. This reduces the effect

of spurious defect-defect interactions, so that in the limit of increasing supercell size

the true single defect formation energy is obtained from the calculations. The size of

the supercell was increased until the formation energy was converged to within 0.1 eV.

The separation between the graphene layer and its periodic repeats was kept fixed

at 8 Å during the initial searches and at 10 Å in the refined calculations using the

larger supercells.

(a) 5×5 supercell (b) 7×7 supercell

Fig. 3.6 Illustration of supercell size convergence with graphene defects. A Stone-
Wales defect SW(55–77) is shown, highlighted in red, set within an (a) 5×5 and (b)
7×7 graphene supercell, with the unit cell in each case denoted by the black dashed
lines. Increasing the supercell size also increases the separation between the periodic
repeats of the defect, thus reducing undesirable defect-defect interactions.

Electronic structure calculations were carried out using the castep code [57]. The

PBE functional [24] was used to approximate the effects of exchange and correlation.

For the final converged (large-supercell) results, a plane-wave cut-off energy of 600 eV

was used for calculations involving only carbon atoms, while a higher cut-off energy

of 850 eV was used for calculations involving hydrogen and oxygen. In calculations

of the formation energy Ef defined in equation (3.1), the chemical potentials µ were

calculated using the same cut-off energy as the defect structure. A 3×3×1 Monkhorst-

Pack grid was used to sample the Brillouin zones of the defect structures, equivalent

to a k-point spacing of 2π×0.025 Å−1 for k-vectors within the graphene layer. These
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parameters were tested to ensure total energy convergence of 1 meV/atom and conver-

gence of calculated forces to within 1 meV/Å. Lower cut-off energies and a less dense

k-point grid were used for the initial searches.

Ultrasoft pseudopotentials generated on-the-fly by the castep code were used to

describe the nuclei and core electrons of the atoms. The default pseudopotentials for

castep version 8 were used, which treated explicitly the 2s2 and the 2p electrons for

C, O and N. The H pseudopotential is simply a Coulomb potential that is softened

within the core radius.

The chemical potential of carbon was set to be the energy per atom of carbon in

pristine graphene. The chemical potentials of H, O and N were taken to be the ener-

gies per atom of their respective diatomic molecules, calculated using a 10×11×12 Å

periodic unit cell containing one diatomic H2, O2 or N2 molecule, with spin-polarised

calculations and sampling of the Brillouin zone at the gamma point only.

3.3 Results

Searches over double carbon vacancies, single carbon vacancies, graphene sheet recon-

structions, single carbon adatoms and double carbon adatoms produced all known

defects for these types, with the exception of a very large I2(755–6776–557) defect

[137], which is related to the I2(777–6–555) defect through a bond rotation. This

defect was too large to be found with the randomised section of the graphene sheet

used.

Specifically, the Stone-Wales, single vacancy, V2(5–8–5), V2(555–777), V2(5555–

6–7777) double vacancy, “bridge” and “dumbbell” single carbon adatom and I2(7557)

(inverse Stone-Wales), I2(777–6–555), I2(7–4–7) and “two-atom protrusion” double car-

bon adatom vacancies were all found in searches, validating the approach taken. The

calculated formation energies Ef and supercell sizes used for the converged calcula-

tions are given for each of these defects in Table 3.2. They largely compare very well

to the previously-calculated formation energies of Table 3.1.

Searches involving N, O and H substitutions and adatoms also confirmed:

1. that N and O can substitute in for a C atom to form a low-energy defect struc-

ture;

2. that an OH group can stably bond in the “atom” position directly above a carbon

atom in the graphene layer; and

3. that O atoms can exist in the “bridge” position as an adatom.
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Defect type Specification Ef /eV Supercell size
Double C vacancy V2(5–8–5) 7.51 9 × 9
Double C vacancy V2(555–777) 6.63 8 × 8
Double C vacancy V2(5555–6–7777) 7.03 9 × 9

Single C vacancy V1(5–9) 7.84 8 × 8

Reconstruction SW(55–77) 4.81 8 × 8

Single C adatom “Bridge” 6.49 8 × 8
Single C adatom “Dumbbell” 6.89 8 × 8

Double C adatom I2(7557) 6.27 8 × 8
Double C adatom I2(777–6–555) 6.61 8 × 8
Double C adatom I2(7–4–7) 7.12 8 × 8
Double C adatom “Two-atom protrusion” 6.99 8 × 8

Table 3.2 Formation energies of known defects from structure searching calculations,
along with the supercell size used for the converged calculation of the formation energy.

In addition to finding a wide range of known defect structures, the structure search-

ing calculations also revealed two new defects that it may be possible to engineer in

graphene: a double carbon vacancy structure, V2(77784555), and a double O adatom

defect, which features an O atom substitution for a C atom. This results in a bro-

ken bond with a neighbouring C atom, as the O atom is only two-fold coordinated.

This neighbouring C atom then bonds with a C–O projection out of the plane of the

graphene layer. The two defects are depicted in Fig. 3.7.

The formation energy for the V2(77784555) is calculated to be relatively high, at

10.50 eV, so its formation is less probable than other V2 double vacancy defects. The

formation energy for the double O adatom defect is just 0.16 eV, suggesting that such

an arrangement may be a metastable configuration resulting from the reaction of an O2

molecule and a graphene sheet. The defect formation energies for these two structures

are summarised in Table 3.3.

3.4 Summary and Conclusions

A random structure searching scheme has been used to look at several types of defects

in graphene layers on a theoretical basis. This method predicted all the defect types

that the searching parameters could have found, and then predicted the formation en-
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(a) V2(77784555)

(b) Double O adatom defect

Fig. 3.7 Illustration of novel graphene defect structures. (a) V2(77784555) double
vacancy defect, with the defect atoms highlighted in red. (b) double O adatom defect,
with an O atom substituting for a carbon atom and a C–O projection. In (b), the O
atoms are highlighted in red, and the C atom in the C–O projection is highlighted in
blue.
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Defect type Specification Ef /eV Supercell size
Double vacancy V2(77784555) 10.50 9 × 9

Double O adatom Substitution and projection 0.16 7 × 7

Table 3.3 Formation energies of novel defects from structure searching calculations,
along with the supercell size used for the converged calculation of the formation energy.

ergies of these known defects in good agreement with previous studies, thus validating

the approach taken.

The structure searching method also predicted two graphene defect structures that

have not previously been described: a V2(77784555) double vacancy structure and a

double O adatom structure featuring an O atom substitution and a C–O projection

from the graphene layer. The formation energies of these structures have been cal-

culated. As these structures have positive formation energies, they can be at most

metastable. Whether these structures are likely to be found in nature depends on the

size of the energy barrier for transformations to a lower-energy structure. This energy

barrier could be calculated computationally using a transition state search.



Chapter 4

Xenon Oxides Under Pressure

In this chapter we explore the chemistry of the noble gas xenon under high pressures, of

the order found in the Earth’s mantle. The xenon-oxygen binary system is examined

using ab initio random structure searching, and stable structures are characterised.

Density functional theory methods are used for both the searches and the characteri-

sation. The work is conducted in collaboration with experimentalists, and the results

from the structure searching and theoretical characterisation are compared with the

experimental results.

4.1 Introduction

The noble gases were for a long time considered to be chemically inert, so that they

would not under any circumstances form chemical bonds with other species, due to

their full outer (valence) electron shells. However, the binding strength of these valence

electrons to the ionic core decreases with increasing atomic number as the outermost

electrons exist further away from the nucleus, opening up the possibility of oxidation

and chemical bonding for the heavier elements. The heaviest known noble gas, radon,

is unstable to radioactive decay for all known isotopes, but the next-heaviest element,

xenon, has stable isotopes. In 1962, Neil Bartlett synthesised the first compound of

xenon, which he identified as Xe+[PtF6]− [145].

Since this discovery, more compounds of xenon have been synthesised, many of

them oxides, featuring xenon in oxidation states of +2, +4, +6 and +8 [146], consistent

with each xenon atom bonding to an integer number of oxygen atoms, or an even

number of fluorine atoms. These compounds include molecular crystal XeF2 [147, 148],

XeO3 [149] and XeO4 [150]. A new xenon oxide, XeO2, has recently been synthesised,

in which Xe-O bonds form an extended disordered network of XeO4 squares, with



94 Xenon Oxides Under Pressure

the squares connected through shared oxygen atoms at the corners [151]. Xenon has

also recently been incorporated into a double perovskite structure [152], again under

ambient conditions.

Under ambient conditions, all known xenon oxides are thermodynamically unstable

to decomposition and are synthesised indirectly using xenon fluorides as reactants. At

moderate pressures, xenon has been shown to form weakly-bonded compounds, such

as with H2O at about 1 GPa [153], and with O2 at about 3 GPa [154, 155]. However,

the properties of xenon change significantly as the pressure is further increased.

Xenon itself undergoes a sluggish martensitic transformation between 3 and 80 GPa

from a face-centred cubic (fcc) to a hexagonal close packed (hcp) structure [156–158].

The hcp structure becomes metallic around 135 GPa [159], although this pressure is

reduced substantially by the presence of a small amount of oxygen impurities [154], to

just 49 GPa for a Xe-0.6 mol.% O2 mixture.

Recently, theoretical proposals and experimental evidence have appeared for the

formation of strongly bonded and stable xenon compounds under pressure. A recent

theoretical study has proposed Xe-Ni and Xe-Fe structures, and found them to be

stable against decomposition under conditions found in the Earth’s inner core [78].

Xenon has been incorporated in quartz at pressures of a few GPa and high tempera-

tures [160]; it is proposed that xenon atoms replace silicon atoms in this structure. The

experimental synthesis of a compound of xenon, oxygen and hydrogen was reported

recently at around 50 GPa [161].

The formation of xenon oxides in the Mbar range has been predicted using an

evolutionary structure searching algorithm [76] and DFT methods [162–164]. In Refs.

162 and 163, only the simple stoichiometries XeO, XeO2, XeO3 and XeO4 suggested by

low-pressure experimental observations were considered. Hermann and Schwerdtfeger

found a Xe3O2 structure in theoretical searches and predicted it to be stable above

75 GPa [164], as well as a Xe2O structure stable at higher pressures and a Xe7O2

structure that they predicted to be metastable. However, experimental data for xenon

oxides have not been reported at the high pressures at which they might become stable.

Studies of xenon chemistry [78, 151, 160–164] have been performed in part to help

in explaining the anomalously low xenon content of the Earth’s atmosphere [165–167]

in comparison with chondrites (stony meteorites). Various resolutions to this so-called

“missing xenon paradox” have been put forward, including loss of atmospheric xenon

into outer space, and a range of proposals for xenon storage within the Earth. One

proposal for resolving the “paradox” is storage in the deep Earth – the mantle or core

– thus motivating a better understanding of the chemistry of xenon under geological
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pressures of up to 350 GPa, the pressure at the centre of the Earth.

Oxygen is both highly reactive and the most abundant element in the Earth’s mantle.

As such, it is a natural focus for investigation as a reagent for xenon at high pressures

of tens to hundreds of gigapascals. To further the understanding of the high pres-

sure xenon-oxygen binary system, we have conducted a theoretical search for stable

compounds of xenon and oxygen in the pressure range 83–200 GPa. This involved a

structure search using AIRSS over a wide range of stoichiometries, with subsequent

theoretical characterisation of the stable structures, both within a DFT framework.

The searches were conducted by the author of this thesis and by Chris Pickard, and

the theoretical characterisation by the author.

The theoretical searches were conducted in collaboration with experimentalists,

principally Agnès Dewaele, with contributions from Sakura Pascarelli, Olivier Mathon,

Mohamed Mazouar and Tetsuo Irifune. This experimental work involved synthesis of

xenon oxides using laser-heated diamond anvil cells (DACs) loaded with a mixture of

xenon and oxygen in a range of stoichiometries, and subsequent experimental character-

isation. The theoretical and experimental components of this research were conducted

in close collaboration, with the results of each feeding into the other. Consequently

the experimental methods and results will be described in this chapter; however, no

experimental work was conducted by the author. Descriptions of the experimental

methods and results are edited versions of summaries written by Agnès Dewaele.

4.2 Methodology

4.2.1 Structure Searches and Theoretical Characterisation

The AIRSS methodology [64], implemented using a set of programs and scripts au-

thored by Chris Pickard, was used to conduct the structure searches for xenon oxides.

Earlier studies [163, 164] had used a restricted range of stoichiometries: Ref. 163 con-

sidered only stoichiometries corresponding to simple oxidation states (even positive

integers) for Xe, while Ref. 164 focussed on xenon suboxides (compounds containing

more xenon atoms than oxygen by number). In this study, a wide range of stoichiome-

tries were considered. In addition to Xe and O, 17 stoichiometries were investigated:

Xe7O2, Xe3O, Xe5O2, Xe2O, Xe3O2, Xe4O3, XeO, Xe4O5, Xe3O4, Xe2O3, XeO2, Xe2O5,

XeO3, XeO4, Xe2O9, XeO5 and XeO11. Up to 28 atoms per unit cell were considered;
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beyond this number the Born-Oppenheimer (BO) surface becomes unfeasible to sur-

vey.

Searches were restricted to those parts of the BO surface likely to contain low-

enthalpy structures by the imposition of several constraints. The volumes of the

randomly-generated unit cells were restricted to being within 25% of a target volume,

which was determined by the pure-species atomic volumes of the contents of the unit

cells at the target pressure. The random atomic positions were subject to a minimum

separation constraint, which was specified separately for each pair of atomic species.

The minimum separation was higher for Xe-Xe and O-O atomic pairs than for Xe-

O pairs, in order to encourage inter-species bonding. Various symmetry constraints

were imposed on the structures, by generating structures belonging to a range of

space groups possessing between 4 and 48 symmetry operations. In addition to these

‘stand-alone’ searches, additional searches with the constraint of the unit cell volume

suggested by experimental measurements were also conducted. The stoichiometries

used for these experimentally-constrained searches were those consistent with this

experimental volume, based on the volumes of low-enthalpy structures from the stand-

alone searches.

In addition to AIRSS, a data mining technique was used to generate low-enthalpy

stoichiometries for comparison with the results from AIRSS. Sets of known structures

for a range of species, which were consistent with the stoichiometries searched for using

AIRSS, were downloaded from the Inorganic Crystal Structure Database (ICSD) 1; the

atomic species were then exchanged as appropriate for Xe and O, the unit cell volume

rescaled and the resulting structure relaxed to the minimum of enthalpy in the same

manner as structures generated using AIRSS.

Electronic structure calculations, including geometry optimisations, phonon and

Raman spectroscopy calculations and band structure calculations, were carried out

using the plane-wave DFT code castep [57], with ultrasoft pseudopotentials [50]

being used for most calculations; norm-conserving pseudopotentials were used for cal-

culations involving Raman intensities or hybrid functionals, as these calculations are

not currently implemented for ultrasoft pseudopotentials in castep. The PBE-GGA

xc functional [24] was used for all calculations except for one band gap calculation,

for which the HSE06 functional [33] was used. The pseudopotential for the O ion

was the default castep pseudopotential generated ‘on-the-fly’, with 2s2 and 2p4 elec-

trons treated as valence. The pseudopotential for Xe was also generated on-the-fly

1URL: https://icsd.fiz-karlsruhe.de/search/index.xhtml. Access provided through the Na-
tional Chemical Database Service (CDS) run by the Royal Society of Chemistry, URL: http://cds.
rsc.org/

https://icsd.fiz-karlsruhe.de/search/index.xhtml
http://cds.rsc.org/
http://cds.rsc.org/
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by castep, but differed from the default castep pseudopotential by the explicit

treatment of the Xe 4d electrons; more details are in the next subsection.

A plane-wave energy cutoff of 400 eV was used for the initial structure searches,

with a higher cutoff energy of 700 eV being used for the final converged results. Monkhorst-

Pack grids [45] were used to sample the BZ, with a maximum spacing between k points

of 2π×0.07 Å−1 for the initial searches and 2π×0.03 Å−1 for the final converged results.

4.2.2 Pseudopotential Description of Xenon

Previous theoretical studies of high-pressure xenon chemistry have generally used a

pseudopotential description of xenon in which only the 5s2 and 5p6 electrons are

treated explicitly within DFT, with xenon’s 4d10 electrons being described as core

electrons by the pseudopotential [163, 164]. This has been verified to be a good

description at low pressures [168]. To investigate whether the implicit treatment of

the Xe 4d electrons is an adequate description of xenon at high pressures, we tested the

default castep ultrasoft pseudopotential for xenon (henceforth referred to as the 5s5p

pseudopotential) against an ultrasoft pseudopotential that does pseudise and explicitly

calculate the 4d10 electrons (henceforth referred to as the 4d5s5p pseudopotential),

which had been developed by Chris Pickard as part of a separate study of xenon’s

high-pressure chemistry with Fe and Ni [78]. To further test the accuracy of the Xe

pseudopotential, a pseudopotential that provided for the explicit treatment of the Xe

4s2 and 4p6 electrons was also used (referred to as the 4s4p4d5s5p pseudopotential).

The pseudopotential was generated by Chris Pickard and tested by the author.

The pseudopotentials were tested against each other in two ways. The first com-

parison was for the equation of state for Xe in the hcp structure. The hcp Xe structure

was relaxed at a large number of external pressures in the range 20–265 GPa with each

pseudopotential. The pressure-volume curves for each pseudopotential are shown in

Fig. 4.1.

At lower pressures, up to about 40GPa, the difference in the calculated unit cell

volume between the pseudopotentials is negligible. At higher pressures, however,

the calculated volume with the 5s5p pseudopotential diverges from those with the

4d5s5p and 4s4p4d5s5p pseudopotentials. By 270 GPa the divergence is substantial,

the atomic volume being approximately 4% smaller with the 4d5s5p and 4s4p4d5s5p

pseudopotentials compared with the 5s5p pseudopotential. However, the 4d5s5p and

4s4p4d5s5p pseudopotentials produce almost indistinguishable results throughout this

pressure range. It is possible they may begin to diverge at higher pressures yet, but

such pressures are beyond the scope of this study.
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Fig. 4.1 Pressure-volume curve for hcp Xe using three different pseudopotentials
and data from two experimental studies. The pseudopotentials treat explicitly the
5s5p electrons (green curve); the 4d5s5p electrons (red curve); and the 4s4p4d5s5p
electrons (blue curve). The 4d5s5p pseudopotential was used in the main calculations.
Experimental data points are included for reference [154, 157]. The equation of state
(EoS) obtained with the 4d5s5p and 4s4p4d5s5p pseudopotentials are almost identical,
but the EoS for the 5s5p pseudopotential is significantly different.

To further examine the importance of the choice of pseudopotential, the 5s5p and

4d5s5p pseudopotentials were also compared following structure searching by relaxing

the lowest-enthalpy structures from a search at 83 GPa using each pseudopotential.

The resulting enthalpies of formation per atom, ∆Hf , were then compared. For a

compound with stoichiometry XemOn, ∆Hf is defined as

∆Hf (XemOn) = [H(XemOn) − (mH(Xe) + nH(O))]/(m + n), (4.1)

where H denotes the enthalpy of each formula unit under the relevant pressure. Fig.

4.2 displays the results of this comparison for the most stable (according to the 4d5s5p

pseudopotential) structure for each stoichiometry at 83 GPa.

As can be seen in the figure, there is a substantial – typically well over 100 meV/atom

– difference in enthalpy of formation for all stoichiometries between these two pseudopo-

tentials, with the 4d5s5p pseudopotential consistently predicting lower enthalpies of

formation. The difference in enthalpy of formation between the two pseudopotentials
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Fig. 4.2 Diagram showing calculated enthalpies of formation per atom from the ele-
ments for xenon oxides at 83 GPa, calculated both with and without explicit treatment
of the d-electrons. The lowest-enthalpy structures for each stoichiometry, according to
calculations with the 4d electrons calculated explicitly, are shown. Green points denote
formation enthalpies calculated with an explicit treatment of the d electrons (4d5s5p
pseudopotential), and purple points denote formation enthalpies without the explicit
treatment of the d electrons (5s5p pseudopotential). Points marked with squares repre-
sent structures stable against decomposition into other structures; structures unstable
to decomposition are marked with circles. x= 0 corresponds to pure xenon and x= 1
to pure oxygen.
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also varies substantially over the different structures, from about 100 meV/atom to

about 400 meV/atom. These differences alter both the relative and absolute stabilities

of structures. For example, calculations in which the 4d electrons are explicitly calcu-

lated predict that lowest-enthalpy structure with Xe2O5 stoichiometry will be stable

to decomposition at 83 GPa, with an enthalpy of formation of -0.37 eV per atom, but

unstable to decomposition into other xenon oxide stoichiometries, with an enthalpy

of formation of only -0.05 eV per atom, when the 4d orbitals are described by the

pseudopotential. In contrast, minimal differences in enthalpy of formation between

the 4d5s5p and 4s4p4d5s5p pseudopotentials were calculated.

Inspection of the orbital wavefunctions of the Xe atom, which are depicted in

Fig. 4.3, suggests a reason for the increasing importance of the Xe 4d orbitals with

pressure. There is a substantial overlap of the 4d orbitals with the outer 5s and 5p

orbitals, suggesting that the ‘semi-core’ 4d orbitals will impact on the chemical bonding

effected by the 5s and 5p valence electrons. As atoms are forced closer together under

increasing pressure, the overlap with the bonding region of the 5s and 5p electrons

becomes greater and so the effect of the 4d orbitals on the bonding becomes more

significant.

Comparison of the results of the three pseudopotentials tested, the 5s5p, 4d5s5p

and 4s4p4d5s5p pseudopotentials, indicates that the Xe 4d10 electrons must be explic-

itly treated within DFT for accurate calculations at high pressures. However, there

is no cost to accuracy of incorporating the 4s and 4p orbitals into the pseudopoten-

tial. Allowing the 4d orbitals to relax within their chemical environment, rather than

enforcing the ‘frozen core’ approximation, permits the xenon atoms so described to

reconfigure their electronic structure to achieve a tighter packing of atoms. Under

high pressures, this results in a reduction in enthalpy, and so greater stability at high

pressures.
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Fig. 4.3 Hartree-Fock orbitals for an isolated Xe atom. The cut-off radius of the
pseudopotential used is shown with the dotted vertical line. There is a significant
extension of the 4d orbital beyond the cut-off radius of the pseudopotential. The
Hartree Fock data were generated by John Trail.
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4.2.3 Experimental Methodology

Membrane DACs were loaded at room temperature with xenon-oxygen mixtures (with

a composition determined using O2 [169] and Xe [170] equations of state) in a high-

pressure vessel. The mixtures were homogenised in the vessel over ∼12 hours before

loading. After loading, the pressure was increased to ∼10 GPa and the sample was

characterised with Raman spectroscopy. The crystallisation of Xe-O2 mixtures under

pressure leads to three different solid phases (Xe with O2 impurities, a Xe(O2)2 Laves

phase [155] and pure O2). The diamond anvil cell was heated at 420 K for several

hours to reduce compositional heterogeneities in the sample chamber. The pressure

was then increased to the required value, and the sample was laser-heated for a few

minutes at the centre of the sample chamber, on one or both sides. The temperature

was estimated to be above 2000 K. The sample was characterised before and after

heating with powder X-ray diffraction (PXRD), X-ray absorption spectroscopy (XAS)

and/or Raman spectroscopy. The reacted zone was detected by mapping PXRD or

XAS spectra. In one run, the rhenium gasket was isolated from the sample chamber

by a gold ring in order to verify that rhenium did not participate in the chemical

reactions.

PXRD experiments were performed on the ID27 beamline of the European syn-

chrotron Radiation Facility, ESRF (λ=0.3738 Å). PXRD spectra were treated using

the Fit2d software [171]. XAS experiments were performed on the BM23 beamline of

the ESRF [172], at the K-edge of xenon (34.561 keV), calibrated using gaseous xenon.

Nano-polycrystalline diamond anvils [173], which do not create any XAS parasitic sig-

nal due to Bragg diffraction, were used. A high quality spectrum was recorded in a

wide range in the reciprocal space (kmax = 18Å−1), which enabled a detailed quantita-

tive analysis of the near-neighbour shells of Xe in the direct space. The XAS spectra

were analysed with the Athena and Artemis softwares [174] to determine the local

structure around xenon atoms. PXRD was also performed on BM23. On ID27 and

BM23, the pressure was measured using the PXRD signal from unreacted xenon or

a gold pressure marker placed at the edge of the sample chamber, and their ambient

temperature equations of state [154, 175] were checked with the rhenium gasket PXRD

signal and equation of state [176]. The pressure was obtained from the high-frequency

Raman edge of the diamond anvil [177] in the Raman spectrum measurements.
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4.3 Results

4.3.1 Structure Searching at 83 GPa

Ab initio random structure searching was carried out on the Xe-O system at a pressure

of 83 GPa as described in the Methodology section. Structures were also generated by

data mining using the ICSD. The most promising structures were re-relaxed using the

more accurate DFT parameters.

The results of the structure searching are displayed in Fig. 4.4. Here, the enthalpies

of formation per atom from the elements (defined in equation (4.1)) for xenon oxide

structures are plotted against the stoichiometric ratio of the structure. A convex

hull is formed; structures lying on the hull are stable against decomposition into other

structures lying on the hull. The xenon oxides that are predicted to form depend on the

stoichiometric ratio of the xenon and oxygen reactants: if the reactant stoichiometry

corresponds to a stable structure, then this will be the only reaction product predicted.

If not, then the two structures on the convex hull with stoichiometric ratios either side

of the reactants’ stoichiometry on the hull will form.

Note that the pure elements, xenon and oxygen, are always present on the hull.

Structure searching was also carried out on the pure elements. The results of this

searching were in agreement with the accepted structures for Xe and O at this pressure:

the hcp structure for xenon [156, 178] and the ǫ-O phase for oxygen [179, 180].

The results presented here are for static-lattice calculations: neither thermal nor

zero-point effects are included. A previous study [163] and our own calculations on

the structures predicted to be stable by the static lattice calculations (discussed later

in this chapter) suggest that these effects are unlikely to alter the relative stability of

the compounds significantly.

The convex hull at 83 GPa suggests that three structures are stable to decomposi-

tion in the binary system: an oxygen-rich Xe2O5 structure belonging to the P4/ncc

space group, and two oxygen-poor structures, Xe3O2 and Xe2O, belonging to the

Immm and C2/m space groups, respectively. The Xe2O5 structure had not been pre-

dicted previously; the Xe3O2 was independently predicted to be stable by Hermann

and Schwerdtfeger [164], who also originally predicted the stability of the Xe2O struc-

ture and investigated its properties; as such, the Xe2O structure will not be described

in detail in this thesis.

The structures of Xe2O5 and Xe3O2 are illustrated in Fig. 4.5. The Xe2O5 structure

is a complex structure incorporating local geometries of both XeO4 rectangles (almost

squares), with oxygen atoms forming the corners, and XeO5 ‘pyramids’. In these
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Fig. 4.4 Convex hull plot for the xenon oxygen binary system at 83 GPa. Black circles
with red centres lying on the convex hull represent structures stable to decomposition.
These are labelled with their stoichiometry and space group. Red dots denote struc-
tures generated by AIRSS that are either higher in enthalpy than other structures
of the same stoichiometry, or unstable to decomposition into structures of other stoi-
chiometries. The black lines connecting the stable structures denote the convex hull.
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pyramids, the base is formed of XeO4 in another almost-square arrangement, but in

this case the Xe atom is slightly displaced below the plane of the oxygen atoms. The

apex of the pyramids are formed by the fifth O atom, which is bonded to the Xe

atom only. The length of the bond between the fifth O atom and the Xe atom is just

1.83 Å, compared with Xe-O bond lengths of 1.97–1.98 Å in the rest of the structure

(see Table 4.6), suggesting that this bond is particularly strong. All other O atoms are

additionally bonded to other Xe atoms, connecting the local geometries. These local

geometries suggest a +4 oxidation state for the Xe atoms in the XeO4 local geometry,

and +6 for those in the XeO5 local geometry. Xe2O5 forms a layered structure, with

each layer being three Xe atoms thick.

Local geometries incorporating XeO4 units have been identified in the XeO2 struc-

ture described by Brock and Schrobilgen [151], while XeO5 local geometries have been

identified previously in [XeF5]+[PtF6]− [181].

Xe atoms connected to each other via an oxygen atom have different oxidation

states. The shortest distance between a Xe6+ ion and the four nearest oxygen atoms

not bonded to it is only 2.29 Å (in contrast, for Xe4+ this distance is 2.49 Å). This small

interatomic separation suggests a weak inter-layer attraction between these atoms, as

in [XeF5]+[PtF6]− [181].

The structure of Xe3O2 is simpler than that of Xe2O5; it consists of planar chains

along the b axis of XeO2 stoichiometry formed of XeO4 ‘squares’ with oxygen-sharing

corners, in a similar manner to the structure proposed by Brock and Schrobilgen for

XeO2 [151]. This suggests a +4 oxidation state for the xenon atoms in the chains.

These chains are intercalated by free xenon atoms. The minimum distances between

free xenon atoms, and between a free xenon atom and the xenon atoms of the chains,

are both comparable to the Xe-Xe distance in pure xenon (3.03 Å) at the same pressure

[154].

The structure of Xe2O is displayed in Fig. 4.6, along with the structures of two

oxides lying very close to the convex hull at 83 GPa – Xe5O2 with a C2/m space group,

and Xe7O2 with an Immm space group (predicted by Hermann and Schwerdtfeger

[164]). Each of these xenon-rich oxides possess a great deal of chemical similarity with

Xe3O2, consisting of long chains of XeO2 stoichiometry intercalated by increasing

numbers of unbonded xenon atoms. These structures – Xe3O2, Xe2O, Xe5O2 and

Xe7O2 – can all be thought of structurally as (XeO2) · Xen, where n
n+1

is the fraction

of unbonded xenon present in the structure.
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Fig. 4.5 Structures of stable xenon oxides at 83 GPa. Top: Xe2O5; bottom: Xe3O2.
Xenon atoms are shown in blue shades and oxygen atoms in red shades. The oxygen
atoms have an oxidation state of -2, and the darker shade of red denotes an oxygen
atom that bonds only to one xenon atom. The oxidation states of the xenon atoms
are indicated by different shades of blue. The lightest blue indicates 0 oxidation state,
the darker shade +4 and the darkest blue the +6 oxidation state. The xenon atoms
in Xe2O5 and Xe3O2 exist in two different oxidation states within each structure, +4
and +6 in Xe2O5 and 0 and +4 in Xe3O2.
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(a)

(b) (c)

Fig. 4.6 Xenon suboxides at 83 GPa. Top: Xe2O-C2/m; bottom left: Xe5O2-C2/m;
bottom right: Xe7O2-Immm. The unit cells are rotated in order to emphasise the
structural similarities. Xenon atoms are in blue: the darker hue indicates the bonded
Xe atoms in the +4 oxidation state, and the lighter hue the unbonded Xe atoms in
the 0 oxidation state. Oxygen atoms are in red.



108 Xenon Oxides Under Pressure

The structural parameters for the xenon oxides predicted to be stable at 83 GPa are

provided in Table 4.1. The lattice parameters are provided in minimal form for the

space group, and the atomic positions are provided in terms of the given Wyckoff

positions.

Stoichiometry Space group Lattice parameters Atomic co-ordinates

Xe2O5 P4/ncc
a=4.983 Å
c=9.955 Å

Xe (4a) 0.000 0.000 0.250
Xe (4c) 0.000 0.500 0.450
O (4c) 0.000 0.500 0.266
O (16g) 0.334 0.311 0.403

Xe3O2 Immm
a=8.536 Å
b=3.217 Å
c=4.964 Å

Xe (2c) 0.500 0.500 0.000
Xe (4e) 0.196 0.000 0.000
O (4j) 0.500 0.000 0.246

Xe2O C2/m

a=10.001 Å
b = 3.206 Å
c=11.081 Å
β=93.32◦

Xe (4i) 0.643 0.000 0.923
Xe (4i) 0.083 0.000 0.688
Xe (4i) 0.634 0.000 0.458
Xe (4i) 0.638 0.000 0.193
O (4i) 0.207 0.000 0.290
O (4i) 0.069 0.000 0.099

Table 4.1 Structural information for stable xenon oxides at 83 GPa. Atomic sites are
given in terms of Wyckoff positions and in fractional co-ordinates.

Xe2O5, Xe3O2 and Xe2O all feature Xe atoms in mixed oxidation states. Xe2O5

has an equal number of atoms in the +4 and +6 oxidation states, while Xe3O2 and

Xe2O possess a mixture of oxidised Xe atoms with a +4 oxidation state and unoxidised

Xe atoms. The ratio of unoxidised to oxidised Xe atoms is 2:1 in Xe3O2 and 3:1 in

Xe2O. The unoxidised Xe atoms in Xe3O2 and Xe2O demonstrate a small transfer of

charge to the XeO2 chains, particularly at higher pressures when the unbonded Xe

atoms are forced closer to the chains.

These oxidation states are assigned on the basis of Hirshfeld [38], Bader [182] and

Mulliken [183] charge analyses. The results of these analyses for Xe2O5 and Xe3O2

at 83 GPa are shown in Tables 4.2 and 4.3. The Bader and Mulliken charge density

analyses would suggest an approximately 50% ionicity for the Xe-O bonding.
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Species Number s p d Charge (e) Oxidation state
O1 16 1.92 5.05 0.00 -0.96 –2
O2 4 1.93 5.09 0.00 -1.02 –2
Xe1 4 1.73 3.30 10.00 2.98 +6
Xe2 4 2.15 3.96 10.00 1.89 +4

(a) Mulliken population analysis

Species Number Charge (e) Oxidation state
O1 16 -0.27 –2
O2 4 -0.33 –2
Xe1 4 0.80 +6
Xe2 4 0.61 +4

(b) Hirshfeld charge analysis

Species Number Charge (e) Oxidation state
O1 16 -1.00 –2
O2 4 -1.12 –2
Xe1 4 2.96 +6
Xe2 4 2.16 +4

(c) Bader charge analysis

Table 4.2 Atomic charges for Xe2O5, with assigned oxidation states.
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Species Number s p d Charge (e) Oxidation state
O 4 1.93 5.10 0.00 -1.03 –2

Xe1 4 2.06 5.76 10.00 0.18 0
Xe2 2 1.92 4.38 10.00 1.71 +4

(a) Mulliken population analysis

Species Number Charge (e) Oxidation state
O 4 -0.31 –2

Xe1 4 0.08 0
Xe2 2 0.46 +4

(b) Hirshfeld charge analysis

Species Number Charge (e) Oxidation state
O 4 -1.00 –2

Xe1 4 0.22 0
Xe2 2 1.57 +4

(c) Bader charge analysis

Table 4.3 Atomic charges for Xe3O2, with assigned oxidation states.

Electronic structure

Density functional theory band structures using the PBE xc functional predict Xe2O5

to be an insulator with a minimum indirect (thermal) band gap of 1.48 eV at 83 GPa.

The minimum direct (optical) band gap at this pressure is slightly larger, at 1.80 eV. As

pressure increases, these band gaps become smaller. The thermal band gap reduces to

0.77 eV by 200 GPa, and the optical band gap to 1.55 eV. In contrast, DFT calculations

with the PBE functional indicate that Xe3O2 is semi-metallic, with no band gap, but

with a greatly reduced density of electronic states (eDoS) around the Fermi energy,

across a wide range of pressures. The calculated minimum direct and indirect band

gaps for Xe2O5 and Xe3O2 using the PBE functional at several pressures between

83 GPa and 200 GPa are shown in Table 4.4.

As the PBE functional is known to underestimate band gaps, the band structure

of Xe3O2 was also calculated using the HSE06 xc functional [33], which usually yields

larger and more accurate band gaps. With this functional, Xe3O2 is predicted to

be a narrow band-gap semiconductor, with a band gap of 0.05 eV, in line with the

calculations of Hermann and Schwerdtfeger [164].
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Structure
Pressure (GPa)

83 100 150 200
Xe2O5-P4/ncc 1.48 1.38 1.04 0.77

Xe3O2-Immm 0.00 0.00 0.00 0.00

(a) Minimum band gap

Structure
Pressure (GPa)

83 100 150 200
Xe2O5-P4/ncc 1.80 1.76 1.65 1.55
Xe3O2-Immm 0.01 0.02 0.07 0.02

(b) Minimum direct band gap

Table 4.4 Minimum (thermal) and minimum direct (optical) band gaps in eV calcu-
lated with the PBE exchange-correlation functional [24].

Band structures along high-symmetry paths and partial electronic densities of

states (PDoS), decomposed by angular momentum channel, are shown for Xe2O5

and Xe3O2 in Figs 4.7a and 4.7b, respectively. Figs 4.7c and 4.7d show the PDoS

decomposed by both angular momentum channel and atomic species, for which the

OptaDOS code [184–186] was used.

As can be seen from Figs 4.7a and 4.7c, the top of the valence band and the bottom

of the conduction band for Xe2O5 is made up predominantly of Xe 5p and O 2p orbitals.

The width of the occupied part of these bands is approximately 12 eV. The width of

the p orbital bands lying above the Fermi level is about 3.5 eV, with an additional

band gap above these bands. Lying immediately below the p-orbital bands in energy

are the Xe 5s and O 2s levels, with a width of about 15 eV. A further ∼30 eV below

the bottom of these bands lie the almost-dispersionless Xe 4d orbitals.

The band structure of Xe3O2 is similar to that of Xe2O5, with the principal differ-

ences being the lack of a band gap at the Fermi level – although the DoS is greatly

reduced in the region of the Fermi energy – and the appearance of a small band gap be-

tween the lower-energy s and higher-energy p orbitals. Again, the bands corresponding

to the p orbitals are partially unoccupied.

The PDoS for Xe2O5 shown in Fig. 4.7c demonstrates a very considerable depletion

of the Xe p states below the Fermi level and a corresponding augmentation of the

density of O p states. This suggests a hybridisation of the Xe and O p orbitals,
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Fig. 4.7 Band structures and partial densities of states for Xe2O5 and Xe3O2. (a)
and (b): band structures along high-symmetry paths and PDoS (resolved by angular
momentum channel) for Xe2O5 and Xe3O2, respectively. The electronic bands are
shown in blue and the Fermi level is shown as a horizontal black dashed line. The
orange line shows the d electron density of states (rescaled to fit on the axes), the
red shows the s density of states, and the green shows the p density of states. The s
and p densities of states include contributions from both Xe and O.(c) and (d): PDoS
(resolved by both atomic species and angular momentum channel; colour keys are in
the figures) for Xe2O5 and Xe3O2, respectively. Vu.c. denotes the unit cell volume.
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resulting in a transfer of charge from the xenon atoms to the oxygen atoms, consistent

with the charge transfer analysis (see Table 4.2).

The PDoS for Xe3O2 plotted in Fig. 4.7d also indicates a depletion of the Xe p

states and corresponding augmentation of the O p states. This effect is less obvious in

Xe3O2 than in Xe2O5, as only one xenon atom in three is involved in chemical bonding

with oxygen atoms (the ‘average’ oxidation state for xenon in Xe3O2 is 4
3
, as opposed

to 5 in Xe2O5). Again, the transfer of charge implied by the partial hybridisation of

the Xe and O p orbitals is consistent with the charge transfer analysis summarised in

Table 4.3.

Vibrational properties

The convex hull plot of Fig. 4.4 is calculated at the static-lattice level of theory, ig-

noring the effect of nuclear motion, both zero-point and thermal, on stability. For the

structures predicted to be stable at 83 GPa at the static level, phonon calculations

were performed at the harmonic level using the finite-displacement method within the

supercell approach, as implemented in the castep code. Supercell sizes were tested for

convergence. Phonon free energies were evaluated using equation (2.111) and added

to the enthalpies from the static-lattice calculations. The resulting free energies are

plotted in Fig. 4.8.

As can be seen from Fig. 4.8, inclusion of phonon effects does not significantly alter

the relative stability of the xenon oxide structures; although the free energies of the

oxygen-poor structures decrease more than the oxygen-rich structures, the difference

is modest compared with the static-lattice enthalpies of formation. The free energy

change of formation from the elemental solids is reduced for all of the compounds,

indicating that thermal effects increase the stability of the oxides. These conclusions

are consistent with those of Zhu et al. [163].

Phonon dispersion curves and densities of states are plotted for Xe2O5 and Xe3O2 in

Fig. 4.9. The vibrational density of states for Xe2O5 shows that vibrational states exist

across the full range of frequencies up to almost 800 cm−1, but with sharp reductions in

the vibrational DoS at about 200, 400 and 700 cm−1. The vibrational DoS for Xe3O2

is divided into four sections: a lower section, with frequencies up to about 300 cm−1,

has a high density of vibrational states, which demonstrate a high degree of dispersion.

After a small gap, there is then a narrow band of low-dispersion states between about

330 and 400 cm−1, followed by a wide band of high-dispersion states between 415 and

580 cm−1. Finally, there is a narrow band of low-dispersion vibrational states between
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Fig. 4.8 Convex hull graph showing the free energies of formation from the elemental
solids at 83 GPa for several temperatures up to 4000 K, as well as the static-lattice
hull for comparison. The convex hull at 0 K includes zero-point effects. Each curve is
shifted by -0.1 eV/atom from the previous curve for ease of visibility.
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Fig. 4.9 Phonon dispersion curves along high-symmetry paths and vibrational densi-
ties of states for (a) Xe2O5 and (b) Xe3O2 at 83 GPa. Phonon curves are calculated
at the harmonic level of theory using the finite displacement and supercell methods.
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600 and 640 cm−1. This maximum frequency is substantially lower than the maximum

frequency in Xe2O5, consistent with weaker bonding in Xe3O2 than in Xe2O5.

The highest frequency vibrational modes in Xe2O5 consist of symmetric stretches of

Xe-O bonds. The lowest-frequency modes in this structure involve motion of the xenon

atoms, with the oxygen atoms barely moving; intermediate-frequency modes feature

Xe-O torsional modes. The low-frequency modes in Xe3O2 involve the motion of the

free xenon atoms, or of the XeO2 chains collectively. The next band of phonon modes

in Xe3O2 (with frequencies between 330 and 400 cm−1) involve motions of the oxygen

atoms out of the plane of the XeO2 chains. The third band (frequencies between 415

and 580 cm−1) demonstrate in-plane motions of oxygen atoms relative to the xenon

atoms. Symmetric Xe-O stretches constitute the highest-frequency phonon modes, as

in Xe2O5.

Comparison with experimental results

In parallel with the theoretical work, experimental collaborators laser-heated Xe-O

mixtures with an O2 content higher than 50 mol.% in a DAC under pressures of

around 80-90 GPa, as described in section 4.2.3. This led to a reaction above ∼77 GPa

with a single reaction product, which was characterised by powder X-ray diffraction,

X-ray absorption and Raman spectroscopies. As a result of our prediction of the

stability of Xe3O2 in this pressure range, additional experiments were later carried

out using xenon-rich starting mixtures. The experiments that were conducted by our

collaborators are summarised in Table 4.5.

Run number Composition Heating P Measurements Products
1 33 % Xe – 67 % O2 83 GPa PXRD + Raman Xe2O5

2 40 % Xe – 60 % O2 77 GPa Raman Xe2O5

3 49 % Xe – 51 % O2 90 GPa PXRD Xe2O5

4 36 % Xe – 64 % O2 82 GPa PXRD + XAS Xe2O5

5 75 % Xe – 25 % O2 92 GPa PXRD Xe3O2 + Xe2O5

6 89 % Xe – 11 % O2 95 GPa PXRD + Raman Xe3O2 + Xe2O5

Table 4.5 Synthesis conditions of the xenon oxides. The starting mixtures (composed
of Xe with O2 impurities, Xe(O2)2 and O2) were laser-heated for several minutes at
the specified pressure. Xe2O5 and Xe3O2 were the only products observed in the
experiments, in co-existence with the reactants. During the second experiment, the
sample was laser-heated on pressure increase, beginning at 40 GPa, with pressure steps
of ∼5 GPa; the reaction was observed at 77 GPa.
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The PXRD pattern of the product subsequently identified as Xe2O5, measured at

around 83 GPa, could be indexed by a tetragonal unit cell of volume V = 247.3 Å3,

with a small amount of unreacted xenon also observed in the spectrum. Although

approximate atomic positions could be deduced from the PXRD pattern for the xenon

atoms, the low atomic scattering power of oxygen relative to xenon meant that the

number and positions of the oxygen atoms could not be determined. The PXRD data

recorded at about 83 GPa following laser heating agree very well with the simulated

PXRD pattern for the Xe2O5 structure, see Fig. 4.10.

In the experiments using mixtures with an O2 content lower than 25 mol.%, PXRD

data indicate the presence of a new phase consistent with the simulated diffraction

pattern for Xe3O2, in agreement with the theoretical prediction. As can be seen in

Fig. 4.10, Xe3O2 co-exists with Xe and Xe2O5 even for the mixture containing only

11% O2, whereas a mixture containing only Xe3O2 and xenon would be expected from

the convex hull. This may be due to the presence of the oxygen-rich Xe(O2)2 phase

in the starting mixture and inhomogeneities in the mixture of reactants.

The equations of state (EoS) for Xe2O5 and Xe3O2 were derived both theoreti-

cally and experimentally from the pressure-volume curves for these structures. The

Rydberg-Vinet equation of state [187] was used in both cases. Fig. 4.11 shows the

pressure-volume curves with both theoretical and experimental data plotted for Xe2O5

and Xe3O2, along with theoretical and experimental data on the ratio of lattice pa-

rameters as a function of pressure. Parameters for the calculated EoS, as well as other

structural data, for both structures are displayed in Table 4.6. The measured and

calculated lattice parameters and atomic separations agree well for both Xe2O5 and

Xe3O2.

The EoS for Xe2O5 predicted by DFT calculations agrees well with the experimen-

tal evidence. The bulk modulus of Xe2O5 at 83 GPa is about 50% higher than the

bulk modulus of pure Xe at this pressure, indicating strong bonding in Xe2O5. The

density of Xe2O5 is significantly higher (17% for DFT calculations, 14% for experi-

mental measurements) than that of a mixture of xenon [154] and O2 [188] with the

same pressure and stoichiometry. Xe2O5 thus represents an efficient packing of xenon

and oxygen atoms.

The EoS for Xe3O2 measured on pressure decrease is in good agreement with that

predicted by DFT close to the synthesis pressure. The measured bulk moduli of Xe3O2

and Xe are similar at high pressures, which is consistent with the presence of large

amounts of unoxidised xenon in the Xe3O2 structure. The bulk modulus of Xe2O5

at 83 GPa is approximately twice that of Xe3O2 at 97 GPa, consistent with stronger
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Fig. 4.10 Powder X-ray diffraction (PXRD) patterns of Xe–O2 mixtures under pres-
sure, before and after laser heating. (a) PXRD patterns of a 33% Xe–67% O2 mix-
ture at about 83 GPa; (b) PXRD patterns of an 89% Xe–11% O2 mixture at about
97 GPa. The insets show the two-dimensional patterns before circular integration.
Prior to laser-heating, in both mixtures the phases were Xe with O2 impurities [154]
and Xe(O2)2[155]. (a), After laser-heating, most of the reactant has transformed into
Xe2O5. The light blue ticks indicate the positions and predicted relative intensities
of the diffraction peaks of Xe2O5 (lattice parameters in Table 4.6). (b) After laser-
heating, Xe3O2 and Xe2O5 appear, in addition to the reactants. The most intense
xenon diffraction peaks were masked during the circular integration. The purple and
light blue ticks indicate the positions and predicted relative intensities of the diffrac-
tion peaks of Xe3O2 (lattice parameters in Table 4.6) and Xe2O5. In both experiments,
the Xe PXRD lines (red ticks) are split after laser-heating, which can be explained as
arising from a variable content of O2 impurities. Figures produced by Agnès Dewaele.
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Fig. 4.11 Pressure-volume curves for (a) Xe2O5 and (b) Xe3O2 in the pressure range
30–100 GPa. The pressure-volume curve obtained from DFT calculations is depicted
by the dash-dot black line. Experimental data points are depicted using red (Xe2O5)
and blue (Xe3O2) filled circles, with the Rydberg-Vinet equation of state [187] fits to
the experimental data shown as dashed lines with the corresponding colour. For com-
parison, the pressure-volume curves for pure xenon are also depicted, using a dashed
grey line. Insets depict lattice parameter ratios for the two structures, with experimen-
tal data points indicated by filled circles and the lattice parameter ratios predicted by
DFT calculations shown with dash-dot black lines. f.u. denotes formula unit. Graphs
were produced by Agnès Dewaele with minor modifications by the author.
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Xe2O5 Experiment Theory
Lattice parameter a (Å) 4.980 4.978
Lattice parameter c (Å) 9.970 9.951

Volume (Å3/4 f.u.) 247.3 246.6
Xe6+ – O(1) bond length (Å) 1.83 1.83
Xe6+ – O(2) bond length (Å) 1.97 1.97

Xe4+ – O bond length (Å) 1.98 1.98
Xe6+ – Xe4+ bond length (Å) 3.19 3.19
Rydberg-Vinet V0 (Å3/4 f.u.) 337.2 ±6 332.8±2.4

Rydberg-Vinet K0 (GPa) 150±20 161±6
Rydberg-Vinet K ′

0 4 (fixed) 4 (fixed)

Xe3O2 Experiment Theory
Lattice parameter a (Å) 8.457 8.388
Lattice parameter b (Å) 3.166 3.195
Lattice parameter c (Å) 4.904 4.880

Volume (Å3/2 f.u.) 131.3 130.8
Xe4+ – O bond length (Å) 1.99 2.01

Xe4+ – Xe4+ bond length (Å) 3.17 3.19
Xe0 – Xe0 bond length (Å) 3.06 3.05
Xe4+ – Xe0 bond length (Å) 2.96–3.01 2.95–3.00
Rydberg-Vinet V0 (Å3/2 f.u.) 262±15 217.8±2.4

Rydberg-Vinet K0 (GPa) 37.2±8 74.5±4
Rydberg-Vinet K ′

0 4 (fixed) 4 (fixed)

Table 4.6 Comparison of experimental and theoretical properties of Xe2O5 and Xe3O2.
Experimental lattice constants were obtained from the PXRD data. Experimental
interatomic distances were obtained using the structures from AIRSS and the experi-
mental lattice constants. Lattice parameters and bond lengths are given at 83 GPa for
Xe2O5 and at 97 GPa for Xe3O2. V0 and K0 denote the zero-pressure volume and bulk
modulus obtained with a Rydberg-Vinet [187] fit of P–V data plotted in Fig. 4.11.
The error bars represent a 95% confidence interval. The fitting of experimental and
theoretical data was performed by Agnès Dewaele.
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interatomic bonding in the extended Xe2O5 structure than in Xe3O2. As expected

from the structure,the b axis parallel to the strong Xe-O chains is less compressible

than the a and c axes. There is good agreement between the experimental and DFT

values of the lattice parameters and interatomic distances of Xe3O2 at the experimental

pressure of 97 GPa. The agreement diverges at lower pressures, as Xe3O2 is predicted

to become unstable. The pressure distribution may also become heterogeneous during

the release of pressure, which may be affecting the experimental measurements.

The density of Xe3O2 at 83 GPa is predicted to be 9% greater than the density

of a stoichiometric mixture of the pure elements at the same pressure, therefore also

indicating a more efficient packing of xenon and oxygen atoms in the oxide compared

with the pure elements, although not to the same extent as for Xe2O5. The experi-

mental density of Xe3O2 was estimated to be about 8% greater than a stoichiometric

mixture of the elements under the same conditions.

XAS at the K-edge of xenon performed on Xe2O5 confirms the presence of Xe-O

bonds. X-ray absorption near edge spectra of the sample compressed to 82 GPa are

presented in Fig. 4.12a. Fig. 4.12b shows the extended X-ray absorption fine structure

function oscillations due to the local environment around the Xe atoms, and Fig. 4.12c

shows the Fourier transform of these oscillations for the heated sample. A simple two-

shell model including just one Xe-O and one Xe-Xe coordination shell provides a good

fit to the data (green dashed lines), with 3.0±0.5 oxygen atoms and 5.0±0.6 xenon

atoms at separations of 1.93 Å and 3.165 Å, respectively. A second model, assuming

the Xe2O5 structure, provided a very good fit to the experimental data. The fitting

parameters for the two models are presented in Appendix B; the fits were performed

by Agnès Dewaele and Sakura Pascarelli. There was no evidence for contamination

of the XAS spectra by unreacted xenon; this was confirmed by PXRD data taken on

the same spot. XAS was not performed on Xe3O2.

The Raman spectrum of Xe2O5 was collected at 88 GPa (Fig. 4.13). The Raman

frequencies and intensities calculated at the experimental volume in Xe2O5 correctly

reproduce the Raman spectrum, although all Raman frequencies are slightly (∼4%)

underestimated, suggesting that the bond strength is slightly underestimated in the

calculations. The Raman spectrum collected in Xe3O2 is in agreement with the pre-

dicted Raman frequencies, apart from one intense extraneous peak (Fig. 4.13).

The experimental evidence from the experimentally measured EoS, and the PXRD,

X-ray absorption and Raman spectroscopies, supports the predictions from theoretical

structure searching of a Xe2O5 structure being formed under oxygen-rich conditions,

and a Xe3O2 structure being formed under oxygen-poor conditions.
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Fig. 4.12 X-ray absorption spectroscopy (XAS) taken at the Xe K-edge for Xe2O5.
The top panel shows the raw spectra before and after laser heating. After laser heating,
a strong absorption line appears at the Xe K-edge absorption onset (around 34.6 keV)
at the centre of the laser-heated area, which indicates depletion due to oxidation of the
5p states of Xe just above the Fermi level. The middle panel shows the extended X-ray
absorption fine-structure function χ(k), weighted by k2 (where k is the photoelectron
wavenumber), extracted from the X-ray absorption spectrum after laser heating (blue
line: experimental data; dashed green: two-shell fit; red: fit assuming the Xe2O5 struc-
ture). The bottom panel shows the |χ(R)|(Å−3) amplitude of the Fourier transform
of this function (with the same key as for the middle panel). The two intense peaks
reflect the presence of two distinct distances for neighbours around xenon atoms. The
abscissa is rigidly shifted by 0.33 Å to account for the photoelectron scattering phase
shift. Figures produced by Agnès Dewaele.
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Fig. 4.13 Raman spectra of Xe2O5 and Xe3O2, measured at 88 GPa and 97 GPa, re-
spectively. Peak frequencies were calculated for Xe2O5 and Xe3O2 at their experimen-
tal volumes and are plotted as red and green ticks, respectively. Peak intensities were
also calculated for Xe2O5. When the frequencies calculated for Xe2O5 are increased
by 4% (bold red ticks), they agree with the experimentally measured frequencies to
within ±15 cm−1. Figure produced by Agnès Dewaele.
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However, no experimental evidence was recorded for the Xe2O structure that is

also predicted (originally by Hermann and Schwerdtfeger [164]) to form under oxygen-

poor conditions, despite an experimental run with an O2 content of just 11 mol.%. In

Fig. 4.4, it is clear that Xe2O only just lies on the convex hull; it is therefore possible

that more accurate calculations – going beyond the DFT level of theory – might not

predict Xe2O to be stable.

4.3.2 Structure Searching at 150 GPa and 200 GPa

In order to investigate the evolution of the xenon-oxygen binary system with increas-

ing pressure, structure searching using the AIRSS methodology combined with data

mining techniques was also carried out at higher pressures of 150 and 200 GPa, us-

ing the same stoichiometries as at 83 GPa. No experiments were conducted at these

higher pressures in the Xe-O binary system, so results are presented for theoretical

calculations only.

Structure searching carried out on the pure elements confirmed that the xenon

continues to take the hcp structure, whereas the structure of pure oxygen at these

pressures is now the experimentally-known ζ-O phase [189, 190], related to ǫ-O by an

isosymmetric phase transition.

The results of the structure searching at 150 and 200 GPa are presented as convex

hull plots in Fig. 4.14. At 150 GPa, the Xe2O5 structure with P4/ncc symmetry is still

predicted to be stable to decomposition within the binary system under oxygen-rich

conditions, as are Xe3O2 (with Immm space group) and Xe2O (with C2/m space

group) under oxygen-poor conditions. Additionally however, a XeO3 structure with

P212121 symmetry is predicted to be stable under oxygen-rich conditions at this pres-

sure.

As the pressure increases further, to 200 GPa, Xe2O and Xe2O5 are no longer

predicted to be stable, both structures lying just off the convex hull. Xe3O2 is still

predicted to be stable under oxygen-poor conditions, and XeO3-P212121 remains stable

to decomposition under oxygen-rich conditions. A new oxygen-rich phase, a XeO2

structure belonging to the Pnma space group, becomes stable by this pressure.

At 150 GPa, the XeO3 structure is 17% denser than a stoichiometric mixture of

the pure elements, and 5% denser than a stoichiometric mixture of Xe2O5 and ζ-O,

suggesting that the origin of its stability at higher pressures is its high atomic packing

density. At 200 GPa, the density of the XeO2 structure is 12% greater than that of a

stoichiometric mixture of the elements, and 3% greater than a mixture of Xe2O5 and

Xe3O2. At this pressure, XeO3 has a density 15% greater than a mixture of the pure
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Fig. 4.14 Convex hull plots from structure searching at (a) 150 GPa and (b) 200 GPa.
As for Fig. 4.4, red circles represent calculated structures, and the larger black circles
represent structures stable to both phase changes to other structures with the same
stoichiometry and to decomposition into a mixture of structures with different stoi-
chiometries. These structures are labelled by stoichiometry and space group. The
black lines connecting these structures denote the convex hull.
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elements, and 6% greater than a mixture of Xe2O5 and ζ-O. These greater densities

may explain why these two oxides have pushed Xe2O5 out of stability by this pressure.

(a) (b)

(c) (d)

Fig. 4.15 Representative views of the structures of higher-pressure xenon oxides. (a),
(b): XeO3 with P212121 symmetry (stable to decomposition at 150 and 200 GPa); (c),
(d): XeO2 with Pnma symmetry (stable to decomposition at 200 GPa).

The two new higher-pressure xenon oxides, XeO3-P212121 and XeO2-Pnma, are

depicted in Fig. 4.15. XeO3 has a compact extended structure consisting of xenon

atoms that bond to six oxygen atoms, each of which is shared with another xenon

atom. XeO2 consists of XeO2 chains, with each xenon atom bonded to four oxygen

atoms. Unlike in Xe3O2, in which the Xe atoms lie along straight lines, the Xe atoms

zig-zag between two parallel lines along the direction of the chain. The XeO2 chains

form layers, with the chains in alternate layers offset from, and at an angle to, each

other. The structural parameters for XeO3 and XeO2 are listed in Table 4.7.
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Stoichiometry Space group Lattice parameters Atomic co-ordinates

XeO3 P212121

a=7.654 Å
b=3.289 Å
c=4.528 Å

Xe (4a) 0.106 0.195 0.491
O (4a) 0.699 0.751 0.715
O (4a) 0.065 0.251 0.074
O (4a) 0.375 0.256 0.272

XeO2 Pnma

a=3.561 Å
b=5.799 Å
c=4.405 Å

Xe (4c) 0.304 0.250 0.965
O (8d) 0.757 0.073 0.092

Table 4.7 Structural information (derived from DFT calculations) for the xenon
oxides that become stable at higher pressures, XeO3 and XeO2. The structural pa-
rameters for XeO3 are reported at 150 GPa, and for XeO2 at 200 GPa. Atomic sites
are given in terms of Wyckoff positions and in fractional co-ordinates.

To better understand the nature of the chemical bonding in the higher-pressure

xenon oxides, several charge analyses were applied to the two phases: Mulliken popula-

tion analysis, as well as the Bader and Hirshfeld charge analyses. The results of these

analyses for XeO3 and XeO2 are displayed in Tables 4.8 and 4.9, respectively. The

results of the charge analyses are consistent and suggest an ionicity of approximately

50% for the bonding in both oxides, with hybridisation of the Xe 5p and O 2p orbitals

leading to a transfer of charge from the xenon atoms to the oxygen atoms, forming

highly polar bonds, similar to those found in Xe2O5 and Xe3O2.

In the XeO3 P212121 phase, all xenon atoms assume a +6 oxidation state. This

supports the structural interpretation of each xenon atom being bonded to six oxygen

atoms, each of which are additionally bonded to a second xenon atom. The xenon

atoms in the XeO2 Pnma phase each assume an oxidation state of +4, also supporting

the structural interpretation of each xenon atom being bonded to four oxygen atoms,

each of which are in turn bonded to a second xenon atom to form XeO2 chains.

The electronic band structures along high-symmetry paths, along with electronic

densities of states, are plotted for XeO3 and XeO2 in Fig. 4.16. The electronic band

structures of the two structures are broadly similar to those of Xe2O5 and Xe3O2.

PDOS calculations projected by angular momentum channel indicate that the states

around the Fermi level are dominated by the p states of Xe and O, the conduction band

portions of which have a width of approximately 13 eV in XeO3 and 15 eV in XeO2.

Unoccupied p states extend immediately above the Fermi level, forming a conduction

band with a width of approximately 6 eV in both structures. Directly below the p

bands in energy are the s bands, which have a width of about 14 eV in both XeO3
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Species Number s p d Charge (e) Oxidation state
O1 4 1.91 5.05 0.00 -0.96 –2
O2 4 1.92 5.02 0.00 -0.94 –2
O3 4 1.91 5.04 0.00 -0.96 –2
Xe 4 1.92 3.22 10.00 2.86 +6

(a) Mulliken population analysis

Species Number Charge (e) Oxidation state
O1 4 -0.27 –2
O2 4 -0.27 –2
O3 4 -0.26 –2
Xe 4 0.79 +6

(b) Hirshfeld charge analysis

Species Number Charge (e) Oxidation state
O1 4 -1.02 –2
O2 4 -1.01 –2
O3 4 -0.99 –2
Xe 4 3.01 +6

(c) Bader charge analysis

Table 4.8 Atomic charges for XeO3, with assigned oxidation states. Results for Mul-
liken population analysis (including populations for each angular momentum channel),
Bader charge analysis and Hirshfeld charge analysis are presented.
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Species Number s p d Charge (e) Oxidation state
O 8 1.90 5.18 0.00 -1.08 –2
Xe 4 1.94 3.89 10.00 2.16 +4

(a) Mulliken population analysis

Species Number Charge (e) Oxidation state
O 8 -0.28 –2
Xe 4 0.57 +4

(b) Hirshfeld charge analysis

Species Number Charge (e) Oxidation state
O 8 -1.10 –2
Xe 4 2.20 +4

(c) Bader charge analysis

Table 4.9 Atomic charges for XeO2, with assigned oxidation states. Results for Mul-
liken population analysis (including populations for each angular momentum channel),
Bader charge analysis and Hirshfeld charge analysis are presented.
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and XeO2. In both oxides, the almost-dispersionless d bands are some 30 eV below the

bottom of the s bands.

The electronic band structure calculations using the PBE functional predict that

XeO3 is a semiconductor, with a minimum band gap of 0.31 eV and a minimum direct

band gap of 0.66 eV at 150 GPa. Calculations at 100 and 200 eV indicate that this band

gap opens up with increasing pressure, in contrast to the closing behaviour of the band

gap of Xe2O5. XeO2 has no band gap in this pressure range, with a greatly reduced

eDoS around the Fermi level indicating that XeO2 may be a semi-metal. However, the

PBE functional is known to underestimate band gaps, and more accurate calculations

may indicate that XeO2 is a narrow band gap semiconductor, like Xe3O2.

Structure
Pressure (GPa)
100 150 200

XeO3 0.26 0.31 0.64

XeO2 0.00 0.00 0.00

(a) Minimum band gap

Structure
Pressure (GPa)
100 150 200

XeO3 0.35 0.66 1.18

XeO2 0.08 0.12 0.07

(b) Minimum direct band gap

Table 4.10 Minimum (thermal) and minimum direct (optical) band gaps in eV calcu-
lated with the PBE exchange-correlation functional for the high-pressure xenon oxides
XeO3 and XeO2.

The experimental work that ran in parallel to the work of this thesis was not

carried out at the higher pressures in the range 150–200 GPa that would be required to

obtain experimental verification of these higher-pressure oxides, and of the continuing

stability of Xe2O5 and Xe3O2. However, these higher-pressure predicted structures

may be experimentally tested in the future.
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Fig. 4.16 Electronic band structures along high-symmetry paths and partial densi-
ties of electronic states (projected by angular momentum channel) for (a) XeO3 with
P212121 symmetry and (b) XeO2 with Pnma symmetry. The electronic bands are
shown in blue and the Fermi level is shown as a horizontal black dashed line. The
orange line shows the d electron density of states (rescaled to fit on the axes), the red
shows the s density of states, and the green shows the p density of states. The s and
p densities of states include contributions from both Xe and O.
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4.4 Discussion

The evolution of the xenon-oxygen binary system with pressure is summarised by the

convex hull of Fig. 4.17. There is a clear increase in the magnitude of the enthalpy

of formation of stable xenon oxides as the external pressure increases. This can be

readily understood in terms of the saving in volume that is achieved by oxides with

Xe-O bonding compared with the pure elements. As the external pressure P increases,

this saving in volume becomes more significant through the minimisation of the PV

term in the enthalpy H (see equation (2.87)). This increasingly compensates for the

Xe-O chemical bonding, which is less preferred energetically to isolated xenon atoms

and diatomic oxygen molecules.
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Fig. 4.17 Convex hull diagram for xenon oxides showing calculated enthalpies of
formation per atom from the elements for the predicted stable phases. The enthalpy
of formation per atom is given by equation (4.1). The three convex hulls shown
are for 83 GPa (green), 150 GPa (red), and 200 GPa (blue). Each coloured circle
denotes a structure that is stable against decomposition. The coloured lines joining
the enthalpies of the stable structures denote the convex hull.
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A comparison of the results of this theoretical study with the previous high-pressure

ab initio studies of Zhu et al. [163] and Hermann and Schwerdtfeger [164] is presented

in Fig. 4.18.

The substantial differences between the hull plots in Fig. 4.17 and those of Zhu et

al. and Hermann and Schwerdtfger arise from two main sources. Firstly, this study

searched over 17 stoichiometries to identify possible stable structures with up to 28

atoms in the primitive unit cell. This involved relaxing about 105 structures. In con-

trast, Zhu et al. considered only the four stoichiometries – XeO, XeO2, XeO3 and XeO4

– consistent with all xenon atoms being in the oxidation states +2, +4, +6 and +8. For

each of the structures predicted in that study, we have found either a lower-enthalpy

structure, or that the structure was unstable to decomposition into compounds on

the convex hull with other stoichiometries. The theoretical searches of Hermann and

Schwerdtfeger were conducted over 8 stoichiometries, including Xe3O2, which they

predicted to be stable, although they did not consider Xe2O5 as a stoichiometry [164].

Secondly, in the two previous theoretical studies, a pseudopotential was used to de-

scribe the Xe 4d orbitals. However, as discussed in section 4.2.2, although accurate

at low pressures, at higher levels of compression this treatment is inaccurate for both

xenon oxides and elemental xenon. Explicit treatment of the xenon 4d electrons results

in a substantial re-ordering of relative stabilities, along with an overall increase in the

magnitude of the enthalpy of formation from the elemental solids across the range of

stoichiometries.

The newly predicted xenon oxides, together with the more accurate treatment of

the semi-core 4d electrons of xenon, means that xenon oxides are predicted to become

stable to decomposition into the elemental solids at a considerably lower pressure

than previously thought. In their study, Zhu et al. predicted that no xenon oxide is

stable against decomposition below 83 GPa [163], while Hermann and Schwerdtfeger

predicted that 75 GPa is the lowest pressure at which xenon oxides may be stable.

In contrast, Xe2O5 is predicted to be stable to decomposition from 50 GPa, with

Xe2O predicted to be stable above 65 GPa and Xe3O2 above 66 GPa. XeO3 and

XeO2 are predicted to be stable above 131 GPa and 186 GPa, respectively. At about

191 GPa, Xe2O becomes unstable to decomposition into Xe3O2 and Xe, and above

about 197 GPa, Xe2O5 becomes unstable to decomposition to XeO2 and XeO3. These

ranges of stability are summarised in Table 4.11.

These pressures of initial stability were predicted using a combination of the linear

projection of equation (2.90), along with explicit calculations at the pressures indicated

by the application of this equation. A full structure search of the binary system was
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Fig. 4.18 Convex hull diagrams for xenon oxides showing the enthalpies of formation
per atom from the elements calculated in Zhu et al. [163] and Hermann and Schw-
erdtfeger [164], and in the current work, at pressures of 100, 150 and 200 GPa. The
different symbols and lines correspond to the different studies (dotted lines and dia-
monds: Zhu et al., dashed lines and squares: Hermann and Schwerdtfeger, continuous
lines and circles: the present work). The enthalpies calculated in Zhu et al. and Her-
mann and Schwerdtfeger agree with each other. The Xe3O2 and Xe2O stoichiometries
were considered by Hermann and Schwerdtfeger but not by Zhu et al. In contrast to
the current work, neither Zhu et al. nor Hermann and Schwerdtfeger explicitly in-
cluded the Xe 4d electrons in their calculations. Including the Xe 4d electrons results
in lower enthalpies of formation (greater stability) for all xenon oxides and in changes
to the relative stabilities of structures (see Fig. 4.2).

Stoichiometry Space group Pressure range (GPa)
Xe2O5 P4/ncc 50–197
Xe3O2 Immm 66–
Xe2O C2/m 65–191
XeO3 P212121 131–
XeO2 Pnma 186–

Table 4.11 Summary of the predicted pressure ranges of stability to decomposition
for xenon oxides. Open pressure ranges indicate that the structure is stable to at least
200 GPa.
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not carried out at each pressure, so these pressures of initial stability serve as estimates

rather than definitive predictions. Nevertheless it is clear that xenon oxides are stable

at substantially lower pressures than has previously been predicted.

Experimentally, the Raman and XRD data show that the Xe2O5 crystal is metastable

down to ≃30 GPa, becoming amorphous at lower pressures. However, the Xe-O bond-

ing can survive the complete release of pressure – a Raman mode with a frequency

similar to metastable XeO4 [191] or XeO3 [192] was recorded at 0 GPa before the di-

amond anvil cell was opened. Xe3O2 was found to be metastable down to ∼38 GPa

before amorphisation.

The requirement of laser heating in order to induce chemical reactions in the Xe-O2

mixtures and the observation that Xe2O5 and Xe3O2 are metastable down to ∼30 GPa

and ∼38 GPa, respectively, implies the existence of substantial kinetic barriers between

phases.

4.5 Conclusions

Our searches for stable xenon oxides at high pressures have yielded a number of struc-

tures and have substantially enhanced our understanding of the Xe-O binary system in

the pressure range 83–200 GPa. The DFT calculations, together with experimental ev-

idence, indicates that xenon is much more reactive under pressure than was previously

believed.

Working in collaboration with experimentalists, we have identified the structure

of one xenon oxide, Xe2O5, and predicted the stability of a second structure, Xe3O2,

which was subsequently confirmed by experiment. The band structures, bonding,

phonon dispersion, thermal stability and Raman spectra of these two structures were

calculated within DFT. Comparison of the theoretically predicted properties of both

Xe2O5 and Xe3O2 with the experimental results for PXRD, XAS and Raman spec-

troscopy yields a good agreement.

Further xenon oxide structures, XeO2 and XeO3, are predicted to become stable

to decomposition into their elements at higher pressures. These structures have also

been characterised theoretically, but have yet to be searched for experimentally.

Our understanding of the chemistry of the binary xenon-oxygen system has been

placed on a firmer foundation, advancing our knowledge of the chemistry of the xenon,

a geologically intriguing element that was once believed to be entirely unreactive.





Chapter 5

Vibrational and Electronic

Properties of the Thermoelectric

Material SnSe

In this chapter, the promising thermoelectric material tin selenide (SnSe) is studied

using first-principles methods. The Born-Oppenheimer energy surface around the nu-

clear equilibrium positions is mapped using density functional theory methods, and

this mapping is used to calculate anharmonic nuclear wavefunctions. The thermal

expansion is calculated using anharmonic methods and the vibrational and electronic

band structures, important factors in the thermoelectric performance of a thermoelec-

tric material, are renormalised with respect to vibrational effects.

5.1 Introduction

5.1.1 Thermoelectricity

The thermoelectric effect encompasses three related bulk effects: the Seebeck, Peltier

and Thomson effects. Each effect is a manifestation of the different energies charge

carriers possess in different materials when carrying a current, and are the results of

this energy being transferred between the electrons and their environment.

The Seebeck effect was first observed by Thomas Seebeck in 1821 [193, 194], when

he noted that if two different materials are joined and a temperature difference ∆T is

applied between the junction of the materials and their ends, then a potential difference
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∆V is produced between the ends, with the potential difference being proportional to

the temperature difference:

∆V = −SAB∆T. (5.1)

SAB is known as the relative or differential Seebeck coefficient, or the thermopower,

and is defined for a pair of joined materials labelled A and B as the difference between

the absolute Seebeck coefficients of the materials, SA and SB:

SAB = SA − SB. (5.2)

The absolute Seebeck coefficients are intrinsic properties of a material, and can be

thought of as the amount of entropy carried per unit charge by an electrical current

running through the material [195]. It is clear that if the two materials that are joined

together have the same Seebeck coefficient (e.g. because they are the same material),

that the Seebeck effect will not be observed. The Seebeck effect was identified as a

“thermoelectric” effect by Hans Christian Ørsted soon after its discovery [196].

The Peltier effect was first described shortly after the Seebeck effect, by Jean

Peltier in 1834 [194, 197]. He observed that passing a current through a joined pair

of different materials (a thermocouple) resulted in either heating or cooling at the

junction, depending on the direction of the current, and the opposite – cooling or

heating – at the two ends of the materials. The current also results in Joule heating,

which can partially obscure the effect. The rate of heating or cooling, q̇, is proportional

to the current passed through the materials, I:

q̇ = ΠABI, (5.3)

ΠAB is the differential or relative Peltier coefficient, which is defined, in a similar

manner to the differential Seebeck coefficient, as the difference between the (intrinsic)

absolute Peltier coefficients of the two materials: ΠAB = ΠA − ΠB.

Despite the fact that the Seebeck and Peltier effects appear to be the inverse of

each other, a connection between the two was not immediately recognised. The two

effects were first connected by William Thomson (later, Lord Kelvin) [194, 198], who

derived the Thomson relation between the Seebeck and Peltier coefficients for a pair

of materials A and B:

ΠAB = SABT. (5.4)
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Thomson also described the third thermoelectric effect, known as the Thomson

effect in his honour. This effect is observed when an electric current is passed through

a homogeneous material, along which is a temperature gradient, as a result of which

reversible heating or cooling occurs. The effect is related to the observation that the

Seebeck coefficient is temperature dependent. The rate of heating, q̇, is given by

q̇ = −K ~J · ~∇T, (5.5)

where K is called the Thomson coefficient, and ~J is a current density. For two conduc-

tors, A and B, the difference in their Thomson coefficients is given by

KA − KB =
dΠAB

dT
− SAB

= T
dSAB

dT
.

(5.6)

Equation (5.6) constitutes the other Thomson relation; in the second line we have made

use of equation (5.4). The Thomson relations of equations (5.4) and (5.6) relate the

three thermoelectric coefficients, S, Π and K, providing a clear connection between the

three effects [194]. The relations allow us to characterise all three of the thermoelectric

coefficients of a material by any one of them; typically, the Seebeck coefficient is used.

Although all pairs of materials with different thermoelectric coefficients may demon-

strate thermoelectric effects, the term ‘thermoelectric materials’ is often used to refer

to materials in which the effects are particularly prominent and may be utilised. Con-

siderable effort has been put into developing devices that utilise thermoelectric effects,

either to generate electricity (thermoelectric generators, TEGs), or to transfer heat

(thermoelectric refrigerators, TERs). The basic design of these devices are discussed

in the next subsection.

So far applications of such devices have been relatively limited. TEGs have been

used in aerospace applications as radioisotope thermoelectric generators, and TERs

have been used in small-scale cooling applications for which conventional cyclic vapour-

compression refrigeration technologies cannot easily be scaled down [199, 200]. Small

thermoelectric devices are currently available relatively cheaply, but the technology

is scalable to a wide range of sizes [200]. Much research effort is being put in to

improving the efficiency and power of thermoelectric devices to allow their use in a

much wider range of situations, such as recovering energy from waste heat produced

by car engines, providing a “green” way of producing electricity from the waste heat
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that accounts for more than 60% of the energy use of the planet [201]. One estimate

suggests that by the year 2026 the global market for TEGs will grow to over US$1

billion [202].

5.1.2 Thermoelectric Devices

The basic design of thermoelectric devices involves connecting two different materials,

which have a large differential Seebeck or Peltier coefficient (TEGs and TERs respec-

tively). In a TEG, a temperature difference is applied between the coupling point of

the two materials and the two ends of the materials, across which an electrical circuit

is completed in which a current results. In a TER, the setup is the same but an

electrical current is passed through the circuit, resulting in transfer of thermal energy

to or from the junction of the two materials, from or to the ends of the materials,

depending on the direction of the current.

Generally, multiple such pairs of materials, known as couples, are connected to-

gether, in serial electrically, but in parallel thermally. Simplified designs of thermo-

electric devices are shown in Fig. 5.1.

Most thermoelectric devices use a semiconducting material, with n and p doping

used to produce oppositely-signed values of the Seebeck coefficient, helping to produce

a large differential Seebeck coefficient [203]. In n-type semiconductors, the dominant

charge carriers are electrons, whereas in p-type semiconductors, the dominant charge

carriers are holes, i.e., the absence of an electron. An electrical conductor is used to

join the different materials. More advanced designs for thermoelectric devices exist:

for example, layers of thermoelectric devices such such as the one depicted in Fig.

5.1 may be stacked to form a ‘cascade’, in which the layers are connected thermally,

but not electrically. Such devices can more efficiently deal with large differences in

temperature between the heat source and the heat sink [194].

The discussion henceforth will focus upon thermoelectric generators, which are

likely to find more areas of application in the future than thermoelectric refrigerators.

A TEG is a form of heat engine, and so its efficiency is limited to that of a Carnot

engine, ηmax, given by

ηmax = (T1 − T2)/T1

= 1 − T2/T1,
(5.7)
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n np p

Load

Heat source, T1

Heat sink, T2

e- h+ e- h+

(a) Thermoelectric generator

n np p

Cooled surface, T1

Heat sink, T2

e-
h+ e-

h+

+-

(b) Thermoelectric refrigerator

Fig. 5.1 Schematic representation of typical thermoelectric devices: (a) a thermo-
electric generator; (b) a thermoelectric refrigerator. In the thermoelectric generator,
a temperature gradient induces a potential difference, while in the refrigerator, an
electrical current induces a temperature difference. Unlabelled arrows indicate the
direction in which the electrons move through the circuit, rather than conventional
current; n and p label respectively n-type and p-type semiconductors, and e− and
h+ denote electrons and holes, respectively. In the generator, T1 > T2, while in the
refrigerator, T1 < T2.
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where T1 and T2 are the absolute temperatures of the heat source and heat sink,

respectively (i.e., T1 > T2). However, real-world devices are not ideal Carnot engines,

and the efficiency is reduced by irreversible heat losses [194]. A more realistic estimate

of the efficiency η of a TEG is

η =
(T1 − T2)

T1

√
1 + ZT̄ − 1

√
1 + ZT̄ + T2/T1

, (5.8)

where T̄ is the mean temperature of the device. Here we make use of a dimensionless

quantity called the figure of merit, ZT̄ (henceforth referred to more simply as ZT ),

which is defined as

ZT =
σS2T

κ
, (5.9)

where σ is the electrical conductivity of the device, S its Seebeck coefficient, and κ

its thermal conductivity [194]. The thermal conductivity can be broken down into

electrical and lattice contributions, denoted κel and κL respectively:

κ = κel + κL. (5.10)

It is clear from equation (5.8) that increasing the value of ZT makes the device more

efficient. There is no upper limit to the value of ZT , but the best thermoelectric

materials currently available yield a value of ZT on the order of unity. This means that

current TEGs have a rather low efficiency. The value of ZT in most materials is highly

temperature-dependent, so that most thermoelectric devices have a rather narrow

range of operating temperatures over which they demonstrate good performance. An

average ZT value of about 2 is thought to be required for TEGs to become viable for

widespread use [200].

The quantity forming part of the numerator of equation (5.9) is known of the power

factor, defined as

Power factor = σS2. (5.11)

The power factor indicates the thermoelectric power that may be generated for a

given ∆T by a TEG, and is the most important aspect of a thermoelectric device

when generating as much electrical power as possible is more important than efficiency.

The figure of merit is this power factor divided by the thermal conductivity, which

indicates how rapidly thermal transport dissipates an initial temperature difference
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across a device – such thermal dissipation constitutes a ‘waste’ of thermal energy from

the point of view of a thermoelectric device.

Much of the effort that has been made over the last few decades to improve the

performance of thermoelectric devices has been focussed on the choice of the thermo-

electric materials used to create the devices [203]. We shall now review the progress

that has been made in recent years to try to produce better thermoelectric materials

through a range of means.

5.1.3 Thermoelectric Materials

Optimisation of the figure of merit ZT , defined in equation (5.9), is made difficult by

the interrelationship between the thermopower S, the electrical conductivity σ and

the electronic thermal conductivity κel. Attempts to optimise the power factor σS2

usually result in a corresponding increase in κel that largely nullifies any potential

improvement to ZT .

Although metals possess excellent electrical conductivity σ, the Wiederman-Franz

law

κel

σ
= LT, (5.12)

where L is a material-specific constant, indicates that the impact of their high electri-

cal conductivity on ZT is counteracted by the concomitant increase in the electrical

contribution to the thermal contribution, which dominates the thermal conductivity

in metals. Furthermore, metals possess relatively small Seebeck coefficients, on the

order of a few µVK−1, due to the continuous existence of conduction states around

the Fermi level.

The very poor electrical conductivity of insulators also makes them unsuitable as

thermoelectric materials. Instead, semiconductors have demonstrated the best perfor-

mance as thermoelectric materials. Semiconductors are typically doped into n and

p type semiconductors to maximise the differential Seebeck coefficient. Light doping

levels maximise the Seebeck coefficient, but heavier doping is typically used to increase

the electrical conductivity and so the power factor. This typically results in Seebeck

coefficients of the order of hundreds of µVK−1.

In addition to maximising the power factor, the figure of merit ZT can be optimised

by minimising the thermal conductivity of the thermoelectric material. Although

the electrical conductivity and the electrical contribution to the thermal conductivity

are closely connected, in semiconductors a significant portion of the total thermal
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conductivity comes from the lattice contribution to the thermal conductivity, κL. κL

can be minimised more independently from σ and S than κel.

Three principle approaches have been used to try to minimise the lattice contribu-

tion to the thermal conductivity:

1) use of materials with heavy atoms, due to their low phonon frequencies;

2) use of materials with structural disorder, which acts to scatter phonons and

reduce the thermal conductivity;

3) use of materials with strongly anharmonic phonons, which also act to increase

phonon scattering and consequently reduce κL.

There now follows brief overviews outlining some of the most promising thermoelectric

materials that have been studied to date.

Bismuth chalcogenides

Bismuth chalcogenides, with stoichiometries Bi2X3, where X is a chalcogenide, have

demonstrated amongst the best bulk thermoelectric performances at room tempera-

ture, with values of ZT between 0.8 and 1.0, having been studied extensively since

1954 [204]. This makes these materials particularly viable for use in TERs, which oper-

ate at about room temperature. The most commonly used chalcogenides are tellurium

and selenium.

The promising bulk properties of bismuth chalcogenides have lead to efforts to

improve ZT by use of nanostructuring methods. In 2008, Cao et al. recorded a ZT

value of 1.47 at about 438 K with a Bi2Te3/Sb2Te3 laminated nanostructure incorpo-

rating nanolayer thicknesses between 5 and 50 nm [205]. In the same year, Poudel et

al. demonstrated a ZT value of about 1.4 for a nano-composite BixSb2−xTe3 p-type

bulk material at 373 K [206]. The following year, Zhao et al. synthesised a proof-of-

concept Bi2Te3 structure using a variable-ratio mixture of coarse (∼ 1µm) and fine

(∼100 nm) grains, and achieved an optimised ZT ratio at a 3:2 fine:coarse grain ratio

[207]. The addition of small amounts (0.2 vol%) of SiC nanoparticles to Bi2Te3 has

been demonstrated to produce a 20% increase in the value of ZT , as well as improving

the durability of the material [204]. Bi2Te3 nanowires have also been synthesised, but

have so far demonstrated poorer performance than the bulk material [208].

Bulk Bi2Te3 has a small band gap of 0.13 eV, with the Fermi level close to the

conduction band minimum, and so has a high intrinsic carrier concentration and a
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significant minority carrier population when doping is light. Carrier concentrations are

usually manipulated through the use of non-stoichiometric compositions (introducing

excess bismuth during the fabrication process) or by dopant impurities such as halogens

and group IV and V atoms [194].

Lead telluride

Lead telluride, PbTe, adopts a simple rocksalt structure yet has been demonstrated

to possess excellent thermoelectric properties, due to strongly anharmonic phonons,

which lead to high phonon scattering rates and consequently low lattice thermal con-

ductivity. This phonon anharmonicity has been studied both experimentally and

theoretically [209–213].

Improvements to the bulk thermoelectric performance of PbTe have been demon-

strated through the use of band engineering and nanostructuring intended to reduce

κL. In 2008, Heremans et al. demonstrated that thallium impurities can be used to

distort the electronic density of states in PbTe, with the effect of approximately dou-

bling the achievable value of ZT , reaching over 1.5 at 773 K in p-type PbTe [214]. The

figure of merit is also improved through band convergence (increasing the electronic

valley degeneracy), which occurs at temperatures above 700 K [215], and which can

be promoted using nanostructuring [216].

Biswas et al. have demonstrated that a “panoscopic” approach to manipulating

the small-scale structure of thermoelectric materials – that is, using different length

scales of micro- and nano-structuring simultaneously [217] – can be used to produce

a ZT value of 2.2 in p-type PbTe at 915 K [218].

Both Bi2Te3 and PbTe may be subject to thermal decomposition at the high tem-

peratures they may be required to work at; furthermore, Bi, Pb and Te are all toxic.

These factors limit the suitability of these two types of material for some operating

conditions.

Silicon-germanium alloys

Alloys of silicon and germanium have been used as thermoelectric materials for several

decades, notably in radioisotope thermoelectric generators in deep space missions,

operating at temperatures between 600 and 1,000 K [219, 220]. Using two chemically

similar elements minimises the scattering of charge carriers, which maintains a high

electrical conductivity σ, with the thermal conductivity suppressed by the alloying.
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ZT values have typically been around unity, but recently an n-type Si-Ge bulk

alloy (Si80Ge20) featuring nanoscale grains has recorded a ZT value of 1.84 at 1073 K.

Silicon nanowires have demonstrated a peak ZT value of about 1, at 200 K [221].

Complex crystalline structures

Thermoelectric materials featuring complex crystalline structures have shown good

thermoelectric efficiency due to low lattice thermal conductivity. The most commonly-

studied classes of these materials are types I and II clathrates and skutterudites. These

materials contain large voids or ‘cages’, which can be partially occupied by loosely-

bound atoms – typically rare-earth elements. These atoms undergo large-amplitude

oscillations in an often highly anharmonic potential. These oscillations are often called

‘rattler’ modes, and they act to scatter phonons and so reduce thermal conductivity,

but they do so without significantly affecting the electrical conductivity. This is a

scenario that is sometimes referred to as ‘phonon-glass electron-crystal’ [222, 223]. A

ZT value of 1.35 has been reported for the Ba8Ga16Ge30 clathrate [224]. Skutterudite

CoSb3 with Ba, La and Yb fillers has demonstrated a ZT value of 1.7 at 850 K [225].

Oxide thermoelectrics

Several oxides have been investigated as potential thermoelectric materials, includ-

ing layered cobaltates such as NaxCoO2 and Ca4Co3O9. Na0.8CoO2 has been shown

to have a thermal conductivity six times smaller than vacancy-free NaCoO2, due to

the sodium atoms moving in highly anharmonic ‘rattler’ modes within the vacancies

[226], acting as a ‘phonon-glass electron-crystal’ type material [227]. Oxide thermo-

electrics are an attractive proposition because they are more chemically stable in the

high-temperature oxidising environments in which thermoelectric materials are often

deployed than thermoelectrics such as bismuth chalcogenides and PbTe, and because

they are mostly composed of abundant, light and non-toxic elements [228]. Other ox-

ide thermoelectrics that have been studied include Bi2Sr2Co2O9, CaMnO3 and SrTiO3

based perovskites and doped ZnO [227, 229].

Half Heusler alloys

Half-Heusler alloys are a class of intermetallics with a particular periodic structure

and stoichiometry XYZ, where X is a transition metal, a noble metal or a rare-earth

element, Y is a transition metal or rare-earth element, and Z is a main group element.

The most studied half-Heuslers are n-type XNiSn and p-type XCoSb, where X is one
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of, or some combination of, the elements hafnium, zirconium and titanium [230]. Fu

et al. have achieved a ZT of about 1.5 in p-type FeNbSb with Hf doping at 1,200 K

[231]. The high Hf doping was found to both optimise the power factor and reduce κL

through acting as phonon-scattering point defects.

Organic thermoelectrics

Some electrically-conductive organic materials have shown some promise as thermo-

electrics, and have the potential to be both low cost and environmentally friendly.

However, with demonstrated ZT values of under 0.5, more development is required

for these types of materials to become competitive with other classes of thermoelectric

materials. Small organic molecules and conducting polymers are of particular interest

[232].

5.1.4 Tin Selenide

Tin Selenide, SnSe, is a stable crystalline solid that has demonstrated considerable

promise as a thermoelectric material. At 1 atm, SnSe takes one of two crystal struc-

tures: a low-temperature Pnma phase and a high-temperature Cmcm phase, which

possesses higher symmetry. The transition between the two phases is a reversible

second-order process that occurs at about 750–800 K [233, 234]. Both the Pnma and

Cmcm structures can be thought of as strong distortions of the rocksalt structure,

and are both layered structures with a highly anisotropic crystal structure. The Pnma

phase features an ‘accordion-like’ folding in one direction along the layers, which is not

present in the Cmcm phase. The Pnma and Cmcm phases are depicted in Fig. 5.2.

The Cmcm phase exists as a high-temperature ‘averaged structure’ over lower-energy

Pnma structures [235].

The band gap of SnSe under ambient conditions, under which the Pnma structure

is adopted, has been measured to be 0.86 eV [233]. Many-body perturbation calcula-

tions within the one-shot GW approximation carried out by Shi and Kioupakis were

in good agreement with this experimental band gap, predicting an indirect band gap

of 0.829 eV for the Pnma phase and a direct band gap of 0.464 eV for the Cmcm

phase [234]. The same study found that in both phases there were multiple local band

extrema lying near in energy to the global extrema, and that this had an impact on

the thermoelectric properties of SnSe.

In a recent experimental study into undoped single-crystal SnSe, Zhao et al. re-

ported an exceptionally high value of ZT , 2.6±0.3, at 923 K along one crystallographic
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(a) (d)

(b) (e)

(c) (f)

Fig. 5.2 Crystal structure of SnSe: (a)–(c) Pnma phase, (d)–(f) Cmcm phase. The
Cmcm phase is shown in a conventional unit cell setting. The three figures for each
phase are projections along (in sequence) the c, a and b crystallographic axes; the unit
cell setting is such that the b axis is the inter-layer direction. Sn atoms are depicted
in blue, Se atoms in green.
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axis (the b axis of the room-temperature orthorhombic cell) [233]. This study reported

a similarly large ZT of 2.3±0.3 along the c axis, but a very much lower ZT of 0.8±0.2

along the a axis. ZT was found to be strongly temperature dependent for all axes.

There were low ZT values below about 700 K, above which ZT increased sharply with

temperature, up to a peak value at about 923 K. At higher temperatures the ZT values

begin to decrease. Zhao and his co-workers attributed the very high figure of merit

to exceptionally low (0.23–0.34 Wm−1 at 973 K) lattice thermal conductivity in SnSe,

which they in turn attributed to a high degree of anharmonicity in the structure. The

achievement of a high ZT in a non-nanostructured material with a simple crystal struc-

ture has prompted a renewed consideration of materials with intrinsic anharmonicity

as thermoelectric materials [236, 237].

Zhao et al. later hole-doped single-crystal SnSe with small amounts of Na, achiev-

ing a high ZT of 2.0 at 773 K [238]. Chen et al. doped polycrystalline SnSe with

1% of Ag, reaching a ZT value of 0.6 at 750 K [239]. Although much lower than

the ZT achieved by Zhao et al., this value is nonetheless double that achieved with

undoped SnSe, indicating that polycrystalline SnSe has much poorer thermoelectric

characteristics than single-crystal SnSe. This is supported by a study by Sassi et al.,

who recorded a maximum ZT value of 0.5 at 823 K in polycrystalline p-type SnSe

[240]. Serrano-Sánchez et al. nanostructured polycrystalline SnSe, which resulted in

an exceptionally low thermal conductivity of less than 0.1 Wm−1K−1 at room tem-

perature and a high Seebeck coefficient of 668µVK−1 at 380 K [241], suggesting that

nanostructuring techniques in conjunction with the very high inherent anharmonicity

in SnSe may result in very promising thermoelectric materials. The theoretical study

of Shi and Kioupakis concluded that the optimum level of doping for thermoelectric

performance in SnSe lies in the range of 1019 – 1020 cm−3 [234], in agreement with the

study of Chen et al. [239].

SnSe is attractive as a prospective thermoelectric materials partly because it is

composed of elements of low toxicity that are abundant in the Earth, making it a viable

material for widespread usage. However, some experiments [239, 240] suggest that the

record-high thermoelectric performance of SnSe requires single crystals to realise, with

polycrystalline SnSe demonstrating substantially poorer thermoelectric characteristics.

This would be problematic for incorporating SnSe into practical thermoelectric devices,

as single crystals tend to be brittle and expensive to synthesise.

A number of theoretical studies have been carried out to try to understand the

origin of the extremely low thermal conductivity in SnSe. Carrete et al. investigated

the thermal conductivity of the Pnma phase of SnSe using a Boltzmann transport
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equation (BTE) formalism with second- and third-order force constants [242]. The

results of this study were in agreement with the experimental work of Zhao et al., in

that they predicted SnSe to have an anisotropic but very low thermal conductivity.

Li et al. carried out inelastic neutron scattering experiments on SnSe in conjunction

with an ab initio study of the thermal conductivity of SnSe using the BTE formalism

with up to third-order interatomic force constants, and mapping of certain phonon

modes to study their anharmonicity [243]. Their results indicate that the phonons

in SnSe demonstrate giant anharmonicity and are highly anisotropic, leading to very

low thermal conductivity. They concluded that the origin of the anharmonicity is

due to a resonant bonding network forming across the layers in SnSe between the Se

4p-states and Sn 5s lone pairs [237]. Hong and Delaire reached similar conclusions,

and determined that the lattice distortion between the Cmcm and Pnma phases is

due to a Jahn-Teller instability in the resonant bonding network [244]. A similar

resonant bonding network has been described in materials such as SnTe and Bi2Te3

[245]. Skelton et al. conducted a similar study, which concluded that the origin of the

low high-temperature thermal conductivity was anharmonic damping, associated with

modes relating to the phase transition, of the low-frequency phonon modes [235].

In this thesis, the structural, electronic and vibrational properties of SnSe are studied

at a range of temperatures between 0 and 1,000 K. The VSCF methodology at the in-

dependent mode level of theory is used to calculate the thermal expansion, vibrational

mode potentials and frequencies (including anharmonic effects), and the temperature

dependence of the band gap, an important quantity for the thermoelectric properties

of a material, for both Pnma and Cmcm phases of SnSe.

5.2 Methodology

Mapping of the Born-Oppenheimer energy surface for both the Cmcm and Pnma

phases was carried out at the independent-mode level at several temperatures: 0, 300,

500, 800, 900 and 1000 K for the Cmcm phase, and 0, 300, 500 and 800 K for the

Pnma phase.

The PBE xc functional [24] was used to describe the effects of exchange and correla-

tion, along with a semi-empirical dispersion correction (SEDC) under the G06 scheme

[36], which was intended to better describe inter-layer interactions. A variety of semi-
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local xc functionals and SEDC schemes were tested, and this combination yielded the

best match to the experimental lattice parameters, bearing in mind thermal expansion.

Pseudopotentials were generated on-the-fly using castep. The Sn pseudopotential

explicitly treated the 4d10, 5s2 and 5p2 electrons, with a core radius of 2.3 bohr, while

the Se pseudopotential explicitly treated the 4s2 and 4p4 electrons, with a core radius

of 1.6 bohr. Thermal (Fermi-Dirac) smearing was applied to the electronic states with

the appropriate electronic temperature.

A plane-wave cutoff energy of 550 eV was used. The electronic Brillouin zone was

sampled using a Monkhorst-Pack grid with a maximum spacing between k-points of

0.025×2πÅ−1. These were tested for convergence such that the difference in energy

at qn,Γ =
√〈

q2
n,Γ

〉
between the highest- and lowest-frequency mode at the Γ point was

converged for both phases to within 10−4 eV/atom. The calculated forces for these

modes were converged to 1 meV/atom, and the stresses to within 10−2 GPa. At each

nuclear configuration, the BO electronic energy was calculated to an SCF tolerance of

10−9 eV/atom, and the forces to within 10−5 eVÅ−1.

A 5×5×5 grid size was used to sample the vibrational BZ of the Cmcm phase,

and a 4×2×4 grid was used for the Pnma phase. This is equivalent to calculating

the normal modes of 5×5×5 and 4×2×4 supercells for the Cmcm and Pnma phases,

respectively.

At each temperature, the phonon normal modes under the harmonic approximation

were calculated for each k-point on the vibrational grid using the finite-displacement

method to calculate the harmonic phonon modes and frequencies. A Fourier interpo-

lation scheme was used to obtain the matrix of force constants from the dynamical

matrices at each calculated k-point. The matrix of force constants was then used to

calculate harmonic properties such as vibrational densities of states by constructing

the dynamical matrix at the required k-points in the vibrational BZ.

The BO surface was then mapped along each normal mode independently, with 10

evenly-spaced sampling points being taken each side of the static lattice configuration

for the Cmcm structure, and 8 for the Pnma structure. Cubic splines were used to

fit a curve to the BO surfaces. These potentials were used as inputs to the programs

implementing the VSCF method, which yielded the anharmonic wavefunctions for

each mode and k-point. The maximum mapping amplitude for the initial mapping

at each temperature was chosen to be 5×
√〈

qn,~k

〉
for each mode and k-point. As for

some normal modes – especially soft modes – the calculated harmonic frequency was

a poor descriptor of the shape of the BO surface, in subsequent iterations of mapping
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each maximum normal mode amplitude was chosen to ensure that the anharmonic

probability density became negligible by 80% of the maximum mapping amplitude.

In the VSCF calculations, numerical integrals were calculated using 3,000 inte-

gration points. The number of harmonic basis functions and anharmonic states to

calculate were converged with respect to the anharmonic free energy, and ranged from

30 at 0 K to 140 at 1,000 K.

Stresses and band gaps were also calculated for each mapped atomic configuration,

and the differences in stress and band gap between the static lattice structure and each

configuration were fitted with a cubic spline. The stresses and band gaps were then

renormalised using the anharmonic wavefunction from the VSCF procedure under

the independent-mode approximation. The renormalised stresses were used to re-

optimise the static lattice structures at each temperature, in an iterative procedure

that continued until lattice parameters were converged to within 10−2Å (2× 10−2 for

the a axis of the Pnma phase at 800 K).

The anharmonic energy eigenvalues were used to construct the anharmonic vibra-

tional partition function, Zanh, for each mode. Zanh is defined as

Zanh =
Ns−1∑

i=0

exp(−βEi), (5.13)

where Ei are the anharmonic energy eigenvalues for the mode and k-point and Ns is

the total number of anharmonic states calculated. The partition function was used

to calculate the individual-mode vibrational free energy, Fvib = −kBT ln Zanh. The

individual mode partition functions were also used to calculate temperature-dependent

effective harmonic frequencies ωeff(T ) for each mode and k-point, determined such

the harmonic partition function Zharm of the effective frequency was equal to the

anharmonic partition function Zanh for each normal mode:

Zharm(ω, β) =
1

2 sinh
(

1
2
βω
)

= Zanh(β),

(5.14)

which yields

ωeff(T ) = 2kBT sinh−1
( 1

2Zanh

)
. (5.15)
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Note that ωeff (T =0) = 2E0, where E0 is the ground-state anharmonic energy for the

mode and k-point.

These effective frequencies were recombined with the eigenvectors of the harmonic

dynamical matrices to form effective dynamical matrices, which were used to calculate

renormalised vibrational densities of state.

The calculations on the Cmcm phase utilised the four-atom primitive cell, rather

than the 8 atom conventional cell, as it was more computationally efficient. The

Cmcm primitive cell is shown in comparison to the conventional cell in Fig. 5.3. The

lattice parameters and atomic positions for the calculated static lattice structures for

the Pnma and Cmcm phases are shown in Table 5.1.

Phase Lattice parameters Atomic positions

Pnma

a=4.300 Å
b=11.613 Å
c=4.191 Å

Sn (4c) 0.057 0.128 0.250
Se (4c) 0.498 0.861 0.250

Cmcm

a=4.201 Å
b=11.643 Å
c=4.222 Å

Sn (4c) 0.000 0.870 0.250
Se (4c) 0.000 0.638 0.250

Table 5.1 Initial static lattice parameters and atomic positions at zero stress and zero
temperature, prior to the application of vibrational stress, for the Pnma and Cmcm
phases of SnSe. The Cmcm conventional cell is described here, but the primitive cell
was used in the calculations.
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(a) (c)

(b) (d)

Fig. 5.3 Primitive and conventional cells for the Cmcm phase of SnSe along axes
parallel to the layers. (a) and (b) depict the primitive cell settings, (c) and (d) the
equivalent conventional cell setting. The black lines denote the unit cell boundaries.
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5.3 Results

5.3.1 Thermal Expansion

The Cmcm phase of SnSe was expanded using the iterative procedure described in

the Methodology section at 0, 300, 500, 800, 900 and 1000 K; the Pnma phase was

expanded at temperatures of 0, 300, 500 and 800 K. The lattice parameters and unit

cell volumes (in the case of the Cmcm phase, converted to the conventional cell setting)

at these temperatures are plotted as blue circles in Figs 5.4 and 5.5 for the Cmcm

and Pnma phases, respectively. A smoothed cubic spline fit was also applied to the

data (plotted as blue lines), to generate a best-fit line in the presence of noise arising

from the uncertainties in the data due to the iterative expansion process. Equation

(2.153) and its linear equivalents were used to calculate the coefficients of expansion

as functions of temperature, plotted in the insets to the figures.

At 0 K, the calculated unit cell volume of the Pnma phase is greater than that of

the Cmcm phase, but the calculated unit cell volumes of the two phases converge at

about 800 K, which is around the phase transition temperature [233].

Each lattice parameter in the Cmcm phase shows comparable expansion behaviour

with temperature: an initially low rate of expansion, growing rapidly between 800 and

900 K, and then dropping rapidly as the temperature approaches 1000 K. The a and c

lattice parameters have approximately twice the coefficient of expansion as the b lattice

parameter. A very minor ‘hump’ in the coefficient of expansion at around 500 K is

likely just an artefact of the uncertainties in the data.

By contrast, the a and c lattice parameters show different expansion behaviours

as a function of temperature in the Pnma phase, with the a parameter showing more

rapid expansion than the c parameter at low temperatures, but with this behaviour

inverting at higher temperatures. As the temperature approaches 800 K, the difference

between the a and c parameters reduces. The expansion of the b parameter is similar

to the c parameter – smaller at lower temperatures, and increasing above 500 K. The

overall volume expansion of the Pnma phase is fairly constant with temperature, and

is in general smaller than the expansion of the unit cell volume of the Cmcm phase.

The appropriate thermally-expanded unit cells are used in the temperature-dependent

calculations in the subsequent sections.
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Fig. 5.4 Lattice parameters and unit cell volumes as a function of temperature for
the Cmcm phase of SnSe, including error bars. (a), (b) and (c): lattice parameters
for the a, b and c parameters, respectively; (d): unit cell volume. Insets show the
coefficients of thermal expansion for the relevant quantities. Lattice parameters and
volumes for the Cmcm phase are given in terms of the conventional (8 atom) unit cell.
Calculated data points are represented by blue circles, while the blue line represents
a smoothed cubic spline fit to these data points. The coefficients of expansion are
calculated through numerical differentiation of the fitted data.
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Fig. 5.5 Lattice parameters and unit cell volumes as a function of temperature for the
Pnma phase of SnSe, including error bars. (a), (b) and (c): lattice parameters for the
a, b and c parameters, respectively; (d): unit cell volume. Insets show the coefficients of
thermal expansion for the relevant quantities. Calculated data points are represented
by blue circles, while the blue line represents a smoothed cubic spline fit to these data.
The coefficients of expansion are calculated through numerical differentiation of the
fitted data.
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5.3.2 Free Energies

The total Gibbs free energies per unit cell (including thermal expansion and vibrational

effects) for the Cmcm and Pnma phases are plotted as a function of temperature in

Fig. 5.6. As expected, the free energy of the Pnma phase is lower at low temperatures,

and the free energy of the Cmcm phase is lower at high temperatures, consistent with

the observed phase transition. In these calculations, the transition is expected to occur

at about 410 K, lower than the experimentally-observed value of 750–800 K [233, 234].

The discrepancy may be due to coupled-mode effects. The anharmonic calculations

are closer to the experimental observation than harmonic calculations, which predict

a transition at about 250 K.
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Fig. 5.6 Total Gibbs free energies of the Cmcm and Pnma phases of SnSe, including
vibrational effects, plotted in red and green, respectively. The energies are plotted
relative to the free energy of the Cmcm phase at each temperature. Energies are
given per conventional unit cell. Note the crossover in the free energies of the phases
at about 410 K.
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5.3.3 Vibrational Properties

Vibrational densities of states (DoS) for both the Pnma and Cmcm phases were calcu-

lated at each temperature using both the harmonic approximation, as implemented in

the lte code, and the anharmonic renormalisation scheme described in the Method-

ology section. Some of these densities of states are shown in Fig. 5.7: illustrative

vibrational densities of states using both schemes are shown for the Cmcm phase

at 900 K. Additionally, the temperature evolution of the vibrational DoS is shown

between 500 and 800 K for the Pnma phase using the harmonic approximation, and

between 800 and 1000 K for the Cmcm phase using the renormalisation scheme, which

is used particularly to deal with the soft phonon modes found in the Cmcm structure.

The vibrational DoS of the Cmcm phase at 900 K (Fig. 5.7a) contains a sharp peak

of high-frequency modes between 5 and 6 THz, corresponding to vibrational modes

involving stretches of the Se-Sn bonds perpendicular to the layers. These bonds are

the shortest found in the structure, suggesting that they are particularly strong. The

strength of these perpendicular Sn-Se bonds is also suggested by a charge density

analysis, which indicates a particularly high electron density over the length of the

bonds. This is consistent with a high vibrational frequency for stretches of these

bonds.

The application of the anharmonic renormalisation scheme does not have a par-

ticularly strong effect across much of the vibrational spectrum in Cmcm, but it does

increase the vibrational DoS over low-frequency modes between about 1 and 2 THz.

This can be traced to the soft modes in the Cmcm structure, which do not appear in

the spectrum under the HA, but which have a positive frequency under the renormal-

isation scheme.

As can be seen in Fig. 5.7b, an increase in temperature from 800 to 1000 K results

in a small reduction in vibrational frequencies across much of the frequency range

in the Cmcm phase, with the exception of the high-frequency modes above 5 THz.

This can be explained by the thermal expansion stretching and so weakening the

interatomic bonds in the structure, although the strong across-layer Sn-Se bonds are

largely unaffected by this.

The Pnma vibrational DoS depicted in Fig. 5.7c features two distinct regions: a

lower-frequency region up to about 3 THz, and a higher-frequency region above 3 THz,

with a substantial reduction in the vibrational DoS inbetween the two regions. The

higher-frequency region corresponds to Se-Sn bond stretches across the width of the

layers, The lower-symmetry accordion-like folding in the Pnma structure results in a

broader range of frequencies for these modes than in the Cmcm structure. The lower-
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Fig. 5.7 Vibrational properties of SnSe. (a) and (b): Cmcm phase; (c): Pnma phase.
(a): vibrational densities of states at 900 K calculated using the harmonic approx-
imation and the anharmonic renormalisation scheme described in the Methodology
section. (b): anharmonic renormalised vibrational density of states at temperatures
of 800 and 1000 K. (c): vibrational density of states at 500 and 800 K calculated using
the harmonic approximation.
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frequency region is comprised of the other vibrational modes. Between 500 and 800 K,

there is again a small shift across the frequency range to lower vibrational frequencies,

which can be explained by the thermal expansion stretching and slightly weakening

interatomic bonds.

5.3.4 Band Gaps

At each calculated temperature, the total renormalised minimum band gap of the

Pnma and Cmcm phases was calculated as the sum of the equilibrium-configuration

band gap for the thermally-expanded unit cell and the vibrational renormalisation to

this equilibrium band gap. The temperature dependence of the equilibrium-configuration

band gap, the vibrational renormalisation to this gap and the resulting overall band

gap are plotted for Pnma and Cmcm in Figs 5.8a and 5.8b, respectively. The calcu-

lated unexpanded static-lattice band gap for each structure is also shown, for compar-

ison. The static-lattice band structures for the Pnma and Cmcm phase are shown in

Fig. 5.9, for reference.

From a 0 K band gap very close to the calculated static-lattice value of 0.77 eV,

the band gap in Pnma initially decreases by 0.15 eV on temperature increase, up to

300 K, as the equilibrium-value band gap decreases slightly and a substantial vibra-

tional renormalisation takes effect. On temperature increase above 300 K, the effect

of thermal expansion begins to increase the equilibrium-value band gap, almost can-

celling out the increase in the magnitude of the vibrational renormalisation, so that

the total band gap decreases only slightly between 300 and 800 K, down to a value of

0.57 eV at 800 K.

In the Cmcm phase, the total band gap is initially 0.27 eV at 0 K, above the

calculated static-lattice value of 0.22 eV. As the temperature increases, there is initially

little change to the total band gap, up to about 800 K, as the effects of an increasing

equilibrium band gap and an increasingly negative vibrational renormalisation largely

cancel each other out. Above 800 K, however, the vibrational renormalisation increases

in magnitude at a faster rate than the equilibrium lattice value increases, resulting in

a decrease in the total band gap down to 0.19 eV at 900 K and 0.16 eV at 1000 K, both

values being smaller than the static lattice band gap. At 800 K, the band gap of the

Cmcm phase (0.24 eV) is significantly smaller than the band gap of the Pnma phase

(0.57 eV), consistent with experimental observation. The size of the band gap in the

Cmcm phase is important in determining the electronic and thermoelectric properties

of SnSe at high temperatures.
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Fig. 5.8 Temperature dependence of band gaps in SnSe: (a) Pnma phase, (b) Cmcm
phase. Band gaps are calculated using the PBE [24] xc functional. The expanded
static-lattice band gap, the vibrational renormalisation to this gap, and the resulting
total band gap are plotted in green, red and blue, respectively. The unexpanded
static-lattice band gaps are shown as a black dashed line, for reference.
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Fig. 5.9 Band structures along a high-symmetry path in the BZ of the Pnma and
Cmcm phases of SnSe: (a): Pnma; (b): Cmcm. The electronic densities of states are
shown alongside. Note the relatively small minimum band gaps for both structures,
especially the Cmcm structure.
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5.3.5 Vibrational Modes

Analysis of the vibrational modes of the Cmcm and Pnma phases confirms that they

possess anharmonic phonon modes. Three BO potentials for modes at the Γ point in

the Cmcm structure at 900 K are plotted in Fig. 5.10. These modes are selected to

illustrate the three principal ‘classes’ of anharmonic modes found in the Cmcm phase:

‘double-well’, ‘quartic’ and ‘cubic’. On the left hand side of the figure, the mapped and

spline-fitted BO potentials are plotted, along with the BO potentials implied under the

harmonic approximation. Also plotted on the same graph are the probability densities

corresponding to both the anharmonic and harmonic energy surfaces. On the right

hand side of the figure are displayed the atomic displacement patterns corresponding

to each mode.

The first mode, depicted in Figs 5.10a and 5.10b, is a soft mode forming a double-

well potential. This mode corresponds to a displacement of atoms in the planar di-

rection, in the direction of a more ‘accordion-like’ folded structure, akin to the Pnma

structure (though not actually the Pnma structure itself). As can be seen from the

anharmonic probability density, there is a significant probability density across both

wells, and in the central q = 0 configuration. This indicates that the Cmcm phase

is a “thermally-averaged” structure, with an average atomic configuration (given by

the configuration at q = 0) that is not statically stable. The negative-energy poten-

tial curve implied by the harmonic approximation is clearly inadequate to describing

the atomic motion in this mode. The soft modes were determined to make a signif-

icant contribution to the vibrationally renormalised stress tensor and so to thermal

expansion in the Cmcm phase.

The second mode, depicted in Figs 5.10c and 5.10d, is a symmetric ‘quartic-type’

anharmonicity. The mapped BO surface agrees well with the harmonic surface close

to q = 0, but diverges from the harmonic curve further away from the equilibrium

position. This results in an anharmonic probability density that is more tightly lo-

calised around q = 0 than the harmonic density. This mode arises from a symmetric

alternating stretch of the Sn-Se bonds across the width of the layers.

The third mode, depicted in Figs 5.10e and 5.10f, is an asymmetric ‘cubic-type’

mode. For q > 0, the atoms at the top and bottom of each layer are pulled apart, and

so closer to the atoms of the adjacent layer. The increase in bonding strength with the

neighbouring layer partially compensate for the energy required to separate the atoms

within each layer, so that the BO energy surface is shallower than would be expected

under the harmonic approximation. By contrast, for q < 0, the Se-Sn bonds across

the width of each layer are pushed closer together. These bonds are already strong, so
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compressing them takes a lot of energy, resulting in a BO energy surface steeper than

that predicted by the HA. As a result, the anharmonic probability density is greater

than the harmonic density for q > 0, and less than the harmonic density for q < 0,

particularly for large absolute values of q.

The Pnma phase demonstrates similar modes to the ‘cubic-type’ and ‘quartic-type’

modes of Cmcm. Two modes selected to illustrate these types of anharmonic potential

are depicted in Fig. 5.11. In the case of the ‘cubic-type’ mode, the atomic motion for

the softer q > 0 direction moves the atoms closer towards a Cmcm-type arrangement,

while the motion for the harder q < 0 motion results in considerable compression of

Sn-Se bonds along the plane of the layers.
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Fig. 5.10 Several illustrative anharmonic modes of SnSe, in the Cmcm phase at ~k
= Γ. (a) and (b): a soft (negative curvature around ~q = 0 “double well potential”
mode corresponding to a Pnma-like atomic motion; (c) and (d): a ‘quartic’ type
symmetric anharmonicity (E~ω

harm = 20.3 meV); (e) and (f) a ‘cubic’ type asymmetric
anharmonicity (E~ω

harm = 20.7 meV). (a), (c) and (e): fitted anharmonic and harmonic
potentials (solid red and dashed blue lines, respectively), along with the corresponding
anharmonic and harmonic equilibrium probability densities (solid black and dashed
green lines, respectively; there is no harmonic probability density in (a) due to the
soft-mode harmonic potential). The y-axis scales refer to the BO surface energies per
unit cell (p.u.c.) only; the probability densities are normalised to unity. The phonon

coordinates used are multiples of the ‘standard deviation’ (s.d.),
〈√

q2
n,~k

〉
, see equation

(2.130). (b), (d) and (f): depiction of the atomic displacement patterns for each mode.
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Fig. 5.11 Several illustrative anharmonic modes of SnSe, in the Pnma phase at ~k =
Γ. (a) and (b): a ‘quartic’ type symmetry anharmonicity (E~ω

harm = 11.9 meV); (c) and
(d): a ‘cubic’ type asymmetric anharmonicity (E~ω

harm = 15.7 meV). (a) and (c): fitted
anharmonic and harmonic potentials (solid red and dashed blue lines, respectively),
along with the corresponding anharmonic and harmonic equilibrium probability den-
sities (solid black and dashed green lines, respectively). The y-axis scales refer to the
BO surface energies per unit cell (p.u.c.) only; the probability densities are normalised
to unity. The phonon coordinates used are multiples of the ‘standard deviation’ (s.d.),〈√

q2
n,~k

〉
, see equation (2.130). (b) and (d): depiction of the atomic displacement

patterns for each mode.
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The vibrational renormalisation of the band gap has contributions – mostly nega-

tive – from all the vibrational modes of the Pnma and Cmcm structures, but analysis

of the contribution from each mode indicates that some vibrational modes contribute

considerably more than others. Two vibrational modes in the Cmcm structure were

found to contribute particularly strongly to the band gap vibrational renormalisation:

the highest (harmonic) frequency mode at ~k =
(
0, 0, 1

5

)
, illustrated in Fig. 5.12a (E~ω

harm

= 24.0 meV), and the third-highest-frequency mode at ~k =
(

1
5
, 0, 0

)
, illustrated in Fig.

5.12c (E~ω
harm = 15.3 meV). Both of these modes correspond to motion of pairs of Sn

and Se atoms towards each other in a direction parallel to the plane of the SnSe layers.

The two highest-frequency modes at ~k =
(
0, 1

2
, 0
)

were the biggest contributors to

the band gap renormalisation in the Pnma phase, although the impact of these modes

is not so much greater than the average for all modes, compared with the illustrated

Cmcm modes. One of these modes is depicted in Fig. 5.12b (E~ω
harm = 23.4 meV); the

mode motion comprises bond stretching and compression in a direction perpendicular

to the SnSe layers.

The soft “double-well” modes of the Cmcm phase, particularly those at reciprocal

space points corresponding to small supercells – and especially at the Γ point, such as

that shown in Fig. 5.10(a) and 5.10(b) – play a very significant role in the thermal ex-

pansion of the Cmcm phase, an intrinsically anharmonic property. These modes have

very low effective mode energies (e.g. 2.1 meV for the mode depicted in Fig. 5.10(a)

at 900 K), leading to very high occupancies. The very high degree of anharmonicity

in these “double-well” modes makes them key to the highly anharmonic properties of

the Cmcm phase, such as its thermal conductivity.
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(a)
(b)

(c)

Fig. 5.12 Several illustrative modes of SnSe, resulting in significant vibrational renor-
malisation of the band gap. (a) and (c): Cmcm phase, (b): Pnma phase. (a): Highest-
frequency mode at ~k =

(
0, 0, 1

5

)
, close to the Γ point; (b): second-highest-frequency

mode at ~k =
(
0, 1

2
, 0
)

(the Y point in the BZ); (c): third-highest-frequency mode at
~k =

(
1
5
, 0, 0

)
, close to the Γ point. The modes depicted in (a) and (c) demonstrate

movement of pairs of Sn and Se atoms towards each other within the planes of the lay-
ers. The mode depicted in (b) demonstrates Sn-Se bond stretching and compression
perpendicular to the planes of the layers.
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5.4 Conclusions

This study has investigated the vibrational properties of SnSe, a promising thermo-

electric material of considerable interest. A first-principles approach to treating the

considerable anharmonicity in SnSe has been applied to study the thermal expansion,

and the temperature dependence of the electronic and vibrational properties of both

the Cmcm and Pnma phases of the material, revealing a reduction in the size of

the band gap in Cmcm at temperatures above 800 K – the region of interest for the

thermoelectric properties of SnSe.

The origin of these anharmonic renormalisations has been explored, and traced

to particular vibrational modes. The considerable anharmonicity in SnSe has been

confirmed, and the role in thermal expansion of the statically unstable but thermally

stabilised soft modes of the Cmcm phase has been identified. This work could be

extended to consider further properties of relevance to thermoelectric materials. The

VSCF method could be coupled with DFPT methods to calculate phonon linewidths,

and hence thermal conductivity, which is a quantity relevant to the calculation of ZT .





Chapter 6

Conclusions and Outlook

6.1 Conclusions

In this thesis, we have explored two key problems in the investigation of materials in

the solid state: the prediction of crystal structure under specified external conditions,

and the calculation of the effects of nuclear motion, particularly when significant an-

harmonicity is present. In Chapter 2, the theoretical basis of these two problems was

laid out, together with approaches for solving these problems. In particular, the ab

initio random structure searching (AIRSS) method for crystal structure prediction,

and the vibrational self-consistent field (VSCF) method for treating nuclear motion

beyond the harmonic approximation, were described. The former method involves a

global search of the Born-Oppenheimer energy surface to determine the low-energy

crystal structures that are most likely to exist in nature; the latter involves a local ex-

ploration of the Born-Oppenheimer energy surface, to explore the potential that nuclei

experience as they move about their equilibrium positions. In both cases, the Born-

Oppenheimer energy surface was explored within density-functional theory, which was

also outlined in this chapter.

In Chapter 3, a random structure seaching approach was applied to the investi-

gation of point defects in graphene, and several novel defects predicted. Although

the point defects are not themselves periodic, a scheme was descibed to predict and

characterise them using periodic calculations. The prediction of previously described

point defects confirmed the validity of the approach taken.

In Chapter 4, the AIRSS approach was applied to predict novel stable structures in

the xenon-oxygen binary system at pressures of 83, 150 and 200 GPa. Five structures

were identified as being stable within parts of this pressure range, and were charac-

terised theoretically. Three of these structures were previously unreported. The work
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was conducted in collaboration with experimentalists investigating the low end of the

pressure range; comparison of the theoretical characterisation of the three xenon ox-

ides predicted to be stable at 83 GPa with the results of the experiments confirmed

the stability of two of the structures.

Finally, in Chapter 5, mapping of the local Born-Oppenheimer energy surface of

two phases of SnSe was carried out to calculate the anharmonic vibrational wavefunc-

tion at a range of temperatures using the VSCF methodology. These wavefunctions

and mapping data were used to calculate the thermal expansion and renormalised

vibrational and electronic properties of SnSe. Finally, the physical origin of the anhar-

monic properties was explored.

In the rest of this chapter, future avenues of study will be briefly discussed.

6.2 Outlook

Further work could be carried out for the graphene point defects predicted in Chapter

3 by exploring possible ways the defects could be put to practical use, such as through

chemical functionalisation. The random structure searching approach could also be

extended to consider other types of defect, such as line defects. AIRSS has already

been used to study point defects in three dimensional materials, such as silicon [246].

As outlined in Chapter 4, the chemistry of xenon under high pressure is of partic-

ular interest in part due to the “missing xenon paradox”. The work in this thesis has

provided a strong, experimentally-backed basis for our understanding of xenon chem-

istry with oxygen at pressures below 1 Mbar, and has made predictions for pressures

up to 2 Mbar, which remain to be experimentally verified. Further progress could be

made by considering the chemistry of xenon with other elements commonly found in

the Earth’s interior, such as magnesium, silicon, iron and nickel. Some such studies

have already been conducted [78], but these have generally been searches in binary

systems. Real progress will be made when searches in ternary and higher-order sys-

tems become computationally feasible: if xenon is trapped inside the Earth, then it

will be in a chemical system of many elements, not just oxygen.

The work of Chapter 4 could also be extended by studying the oxides of other

noble gases. The most obvious candidate for study is krypton, which is the next-

largest noble gas after xenon, and so is likely to be the next most reactive noble gas
1. One such theoretical study, on krypton oxides, has already been carried out, and

1excluding radon, which is unstable to radioactive decay for all its isotopes.
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has predicted several thermodynamically stable Kr-O structures forming at pressures

above about 300 GPa [247].

The study of anharmonicity in SnSe could be extended by going beyond the

independent-modes approximation and considering the coupling of two or more modes

in the mapping of the Born-Oppenheimer energy surface. There is some evidence to

suggest this could have some impact on calculated vibrational properties [235]. At

present, the computational expense of carrying out such a systematic mapping is too

great, but may be feasible in the future with the growth of available computer power.

The extension of the non-diagonal supercell approach to construct supercells periodi-

cally compatible with two or more phonon wavevectors is worthy of consideration, and

could reduce the expense of a coupled-modes mapping.

The computational expense could also be significantly reduced if a computationally

cheaper method of calculating the energy and desired properties at points on the Born-

Oppenheimer surface with the required level of accuracy could be found. Gaussian

approximation potentials are one such attempt to find an approximation to quantum

mechanics with comparable accuracy to, but less cost than, density functional theory

[248]. Consideration of coupled modes can be effected for all combinations of modes

n and k-points ~k on a grid using Monte Carlo integration. This approach requires

an n1×n2×n3 supercell to be used for calculations on an n1×n2×n3 grid in the vi-

brational Brillouin zone, which for the number of calculations required is currently

computationally infeasible.
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Appendix A

The Variational Method

The energy E of a system is the expectation value of the system’s Hamiltonian Ĥ with respect

to its wavefunction |Ψ〉:

E = 〈Ψ|Ĥ|Ψ〉 . (A.1)

We can express |Ψ〉 in the basis of the eigenfunctions of the Hamiltonian, denoted by |ψn〉:

|Ψ〉 =
∑

n

an |ψn〉 . (A.2)

We normalise |Ψ〉 such that 〈Ψ|Ψ〉 =
∑

n|an|2 = 1. By inserting (A.2) into (A.1), we can obtain:

E =
∑

n

∑

n′

a∗
nan′ 〈ψn| Ĥ |ψn′〉

=
∑

n

∑

n′

a∗
nan′En′δn,n′

=
∑

n

|a|2En

= E0 +
∑

n

|a|2 (En − E0) ,

(A.3)

where E0 is the ground-state energy. In the last line we have made use of the normalisation

condition on the coefficients {a}. Since En > E0 (by the definition of the ground state energy),

we conclude that

E0 6 〈Ψ|Ĥ|Ψ〉 (A.4)

for any wavefunction |Ψ〉. Thus the ground state energy is the variational minimum of the the

expectation value of the Hamiltonian with respect to the wavefunction of the system.





Appendix B

Fitting Parameters for XAS Data

The fitting parameters for the Xe2O5 X-ray absorption spectroscopy (XAS) data are provided

in Table B.1 below. Two models were used: a simple two-shell model, and a model assuming

the Xe2O5 structure. The first part of the table lists the parameters for each model, and the

second part of the table lists the values of the fitted parameters. ∆E is the energy offset

parameter; N is the number of neighbours for a given shell, with R being the distance between

the neighbours; ∆σ2 is the mean-squared relative displacement. Reduced χ2 is the statistical

mean square deviation between the data and the fit. The error bars correspond to a 67% level

of confidence in the least square fit. Fitting of experimental data was performed by Agnès

Dewaele and Sakura Pascarelli.

Models
Two-shells fit Xe2O5 fit

Free fitting parameters
∆E, δRO, δRXe, ∆E, δROS

, δROL
, δRXe,

∆σ2
O, ∆σ2

Xe, NO, NXe ∆σ2
O, ∆σ2

Xe

Number of free parameters 7 6
Degrees of freedom 14 15

Fitted parameters values
Two-shells fit Xe2O5 fit

Reduced χ2 55 38
∆E (eV) 10(1) 10.0(9)

N R (Å) ∆σ2 N R (Å) ∆σ2

(×10−3Å2) (×10−3Å2)
Xe-OS 0.5 1.814(8) 3.5(7)
Xe-OS 3.0(5) 1.93(1) 3(1) 4 1.950(8) 3.5(7)
Xe-OS 2 2.269(8) 3.5(7)
Xe-OL 2 2.40(2) 3.5(7)
Xe-OL 2 2.65(2) 3.5(7)
Xe-Xe 5.0(6) 3.165(5) 2.7(5) 4 3.162(4) 2.0(2)

Table B.1 Fitting parameters for Xe2O5 X-ray absorption spectroscopy data
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