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Abstract

This thesis reports investigations of the interactions between the intestinal epithelial barrier

and the intracellular apicomplexan Eimeria spp., both in vivo and in vitro.

Initially, conventional in vivo studies using genetically modified animals were used to

investigate the contribution of innate lymphoid cells (ILCs) to immune protection of the

intestinal barrier. Additionally, to understand complex epithelial host-pathogen interactions

a novel in vitro model of small intestine organoids was developed. Data suggest that im-

munoprotection against Eimeria vermiformis infections is mediated by T cells. Furthermore,

there is an indication that ILCs have a detrimental effect in Eimeria vermiformis-infected

immunocompromised animals. However, the role for ILCs in the regulation of the immune

response remains unclear.

The life cycles of Eimeria vermiformis and Eimeria falciformis are highly complex,

comprising multiple schizogonies followed by a gametogony. In vitro life cycle completion

has not been achieved to date due to the limitations of monolayer cell line models. It is likely

that for a successful parasite development the interaction of the different epithelial cell types

present in intestinal organoids is required.

The development of intestinal organoids by Sato and colleagues gave rise to a break-

through in cellular studies, providing the tools to study complex interactions between host

tissues and invading pathogens in vitro. I showed that small intestine-derived organoids grow

exponentially after passage and that each organoid contains distinct specialised epithelial

cell types, such as Paneth, Goblet or enteroendocrine cells, suggesting that the organoid
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model closely resembles the native intestinal epithelium and that Eimeria spp. benefit from

the three-dimensional structure and physiological characteristics of the organoid model.

Intestinal organoids were infected with E. vermiformis or E. falciformis sporozoites. These

completed several rounds of asexual replication, but did not proceed to the final gametogony.

Despite the need for the development of sensitive techniques applicable to three-dimensional

cell culture models, these results indicate that intestine-derived organoids are a promising

model to study host-parasite interactions at the intestinal epithelial barrier at the cellular and

molecular levels.
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Chapter 1

Introduction

1.1 Anatomy and physiology of the intestine

The intestine is host to a larger number of immune cells than any other organ in the body.

Given its regional organisation and continuous exposure to a large spectrum of antigens

and potential immune stimuli, the intestine mounts diverse immune responses, which differ

amongst other factors, according to the anatomical site of infection.

Typically divided into small and large intestines, the intestine is lined by a barrier of

intestinal epithelial cells (IECs) and it extends from the outlet of the stomach to the beginning

of the anus. The small intestine is divided into 3 segments: duodenum, jejunum and ileum.

The large intestine comprises the caecum, ascending (proximal) colon, transverse colon,

descending (distal) colon and rectum. The small intestine is organised into villi, finger-like

projections that extend into the lumen to increase epithelium surface area; and crypts of

Lieberkühn, invaginations that comprise the intestinal stem cell niche, responsible for the

continuous intestinal self-renewal.

The intestinal immune system must adapt to the constantly changing environment driven

by the nature of lumen contents. To a great extent, immune responses take place in the

mucosa that is organised into epithelium, underlying lamina propria and muscularis mucosa.
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Under the mucosa lies an area of connective tissue, known as the submucosa, important

due to its plexus of parasympathetic nerves. Under the submucosa extends a layer of muscle

tissue, and finally the serosa, which grants a thick fibrous layer that separates the intestine

from the peritoneal cavity.

The different anatomical regions of the intestine provide the organ with the tools to fulfil

different physiological functions. Absorptive epithelial cells of the small intestine have their

apical side covered in microvilli, cell membrane protrusions that increase their surface area

and are involved in the digestion of dietary components and the transport of nutrients. The

large intestine lacks villi and microvilli; however, it also has little nutrient absorptive function

compared to the small intestine, being its main role the absorption of water and the removal

of undigested food. Furthermore, it is the main reservoir of microbiota, essential for the

homeostatic regulation of the intestine.
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1.2 The intestinal epithelial barrier

The intestinal epithelial barrier consists of a single-cell layer of intestinal epithelial cells

(IECs) that protects the host against the external environment. By being selectively permeable,

the barrier allows nutrient and water absorption while maintaining an efficient defence against

enteric microorganisms [1]. The intestinal epithelium is highly dynamic and the IECs are

renewed every 4 to 7 days [2, 3]. The continual turnover creates the opportunity for breaches

in the epithelial barrier. However, this process is accompanied by a redistribution of the

apical junction complex, which is responsible for the formation of an intercellular barrier

between the lateral cell membranes, thus helping to strengthen the barrier function [4].

The maintenance of homeostasis at the intestinal barrier is reliant on the physical and

biochemical properties of the mucus layer, which separate the microbiota from the epithelial

layer [5]. Without the mucus layer, the microbiota would get in direct contact with IECs,

leading to spontaneous development of colitis and an increased susceptibility to intestinal

carcinomas [6, 7].

IECs also exert an important immunoregulatory role which takes advantage of their

ability to sense and respond to microbial stimuli [1]. Compromised intestinal barrier function

and consequent bacterial translocation leads to an increased risk of developing inflammatory

bowel disease [8]. Furthermore, loss of the intestinal barrier function is also associated

with the systemic immune activation, which can contribute to the progression of chronic

infections, such as HIV and hepatitis virus, as well as metabolic disease [9–11]. Additionally,

innate immunity and intestinal microbiota interactions can also contribute to autoimmune and

inflammatory diseases, including type 1 diabetes, rheumatoid arthritis and multiple sclerosis

[12–14].

A thorough understating of the immunoregulatory roles of IECs stemming from their

location and function at the intestinal barrier could be crucial for the development of new

targeted strategies to treat inflammation, infection or metabolic diseases.
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1.2.1 IEC regulation of barrier function

The intestinal epithelium is composed of various cell types, such as: Lgr5+ (leucine-rich-

repeat-containing G-protein-coupled receptor 5, previously called Gpr49) stem cells, ab-

sorptive enterocytes, mucus-secreting goblet cells, antimicrobial peptide-secreting Paneth

cells and hormone-secreting enteroendocrine cells [15, 16]. It is continually renewed by

multipotent Lgr5+ intestinal epithelial stem cells (IESCs), which reside at the base of the

crypts, as part of the stem cell niche. The intestinal stem cell niche promotes the proliferation

of epithelial cell progenitors, giving rise to the various specialised IEC lineages [3].

Enteroendocrine cells

Enteroendocrine cells are secretory IECs which specialise in the epithelium barrier function

by bridging the central and enteric nervous systems through hormone regulators, such as

chromogranin A [17].

Goblet cells

The first line of defence against microbial invasion is provided by the physical and biochemi-

cal protection of the epithelium barrier, which is established through the secretion of mucins

and AMPs by goblet cells and Paneth cells, respectively [1]. Mucin secretion by goblet cells

lubricates the luminal surface and it has been shown to be essential in the organisation of

the intestinal mucus layer. The absolute number of goblet cells increases along the intestinal

tract, being found in highest numbers in the distal colon. Therefore, a thick mucus coating

can be found in the colon - the glycocalyx - that is formed by two different layers: a dense

inner layer attached to the epithelial surface and a loose outer layer, that resembles the

one in the small intestine and in which bacteria can be found (Figure 1.1) [5]. The main

function of the mucus layer is to trap bacterial flora before they attach to the epithelial cells.

Mucus production is regulated by immune mediators like leukotrienes, interferon (IFN)-γ ,
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interleukin (IL)-9 and IL-13 [18, 19]. Defects in mucus synthesis has been shown to increase

the predisposition for the development of both spontaneous colitis and inflammation-induced

colorectal cancers [5–7].

Furthermore, production of trefoil factor 3 (TFF3) and resistin-like molecule-β (RELMβ )

by goblet cells also contributes to the regulation of the barrier function and its integrity

[20, 21].

Paneth cells

Regulation of both commensal and pathogenic bacteria is further strengthened by enterocytes

secreting AMPs into the mucus barrier, such as the C-type lectin regenerating islet-derived

protein IIIγ (REGIIIγ) [22]. Paneth cells can only be found in the small intestine and are

particularly abundant in the ileum. In response to IL-22 or pattern-recognition receptor

(PRR) triggering, Paneth cells secret AMPs including defensins, cathelicidins and lysozyme

[1, 23]. Interactions between AMPs and mucins are often observed. Their combined function

is responsible for a reinforced control of the antimicrobial activity, preventing IEC from

bacterial attachment and invasion (Figure 1.1) [24].

In contrast to the other epithelial cells, Paneth cells are long-lived and, after differentiation,

they migrate downward towards the bottom of the crypt, residing next to the stem cells. Apart

from their antibacterial role, Paneth cells are crucial for the maintenance of stem cell function,

through production of pro-EGF, Wnt3 and Notch ligands [25–27]. Furthermore, it has been

shown that susceptibility to chronic intestinal inflammation can be increased in response to

deregulation of Paneth cell function. Crohn’s disease-associated genes, including ATG16-

like 1 (ATG16L1), transcription factor 4 (TCF4), NOD2 and immunity-related GTPase

family M protein 1 (IRGM1) are expressed by Paneth cells [28]. Ablation of expression of

these genes has been shown to be associated with functional defects in Paneth cells, which
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consequently increase the susceptibility of mice to microbiota-dependent, spontaneous or

experimentally-induced intestinal inflammation [29–33].

Fig. 1.1 The intestinal epithelial barrier

IECs secure the intestinal biochemical and physical barrier which limits the immune reactivity
to luminal contents. The stem cell niche, located at the bottom of the intestinal crypt, is
responsible for the continual renewal of IECs. With exception of Paneth cells that migrate
to the bottom of the crypt, differentiated IEcs migrate along the crypt-villus axis (dashed
arrows). Paneth cells and goblet cells secrete mucus and AMPs into the intestinal lumen,
which, in addition to secretion of secretory IgA (sIgA), restrict the contact between the lumen
microbiota and the intestinal epithelium. Production of trefoil factor 3 (TTF3) by goblet
cells further regulates the function and integrity of the epithelial barrier. M cells, found in
lymphoid follicles, mediate the transport of luminal antigens and bacteria across the intestinal
epithelial barrier to dendritic cells (DCs) and intestinal macrophages. From Peterson and
Artis, 2014 [1]

Collectively, the accumulated evidence shows that IECs are crucial for host protection

from its continuous exposure to potentially inflammatory bacteria present in the microbiota.

Nevertheless, analysis is required to further understand how interactions with the intestinal

lumen contents shape IEC response regulation.
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1.2.2 Stem cell niche

Intestinal self-renewal is driven by multipotent stem cells that reside at the base of the

intestinal crypts. Stem cells give rise to transient-amplifying (TA) daughter cells, which

also reside at the intestinal crypt, and move upwards along the flank of the villi where they

differentiate into absorptive enterocytes, secretory cells or M cells.

Intestinal stem cells, known as crypt base columnar (CBC) cells, were first described

by Cheng and Leblond, in 1974 [34]. CBC cells were shown to reside at the crypt bottom,

intercalated with post-mitotic Paneth cells [34]. Baker and colleagues, using genetic lineage

tracing, further described a CBC cell marker, known as Lgr5 [35]. Hereafter, I will refer to

these cells as Lgr5-CBC cells.

Lgr5+ cells are cycling and long-lived whereas their progeny of epithelial differentiated

cells are renewed every 3 to 5 days. Also, a second quiescent stem cell type has been

identified that resides at position 4 of the crypt, directly above Paneth cells, known as "+4

cells" [3]. These cells can be identified by several markers, including Bmi-1, Hopx, mTert

and Lrig1 [36–39]. An additional an quiescent secretory precursor has also been identified

that co-expresses both Lgr5 and the +4 cell markers. These are located close to the crypt

bottom and undergo terminal differentiation within weeks. Interestingly, after tissue damage,

these cells are able to revert into a cycling Lgr5+ stem cell and differentiate into clones

comprising the main epithelial cell types [40].

Lgr5-CBC cells divide symmetrically, and each daughter cell stochastically develops

into a stem cell or a TA cell, depending on the availability of niche space [41, 2]. Intestinal

homeostasis and Lgr5-CBC cell division are controlled by four well-defined signalling

pathways: Wnt, Notch, EGF and BMP.
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Fig. 1.2 Stem cell niche

(A) Schematic representation of the intestinal epithelial structure and location of stem
cells. Gradients of Wnt, BMP, and EGF signals are formed along the crypt-villi axis. (B)
Representation of the stem cell niche. Lgr5-CBC cells are in close proximity to Paneth cells,
from which they receive signals for their stem cell function. (C) EGF, Notch, and Wnt signals
are essential for maintenance of the Lgr5-CBC stem cell profile, whereas BMP negatively
regulates stemness. R-spondin– Lgr4/5 signalling is required for Wnt activation. The source
of R-spondin is unknown. From Sato et al. 2013 [42]

Wnt signalling

Wnt signalling is a key pathway in the regulation of small intestine stem cell fate which drives

Lgr5-CBC and TA cell proliferation [43]. Wnt is also part of a signalling loop that drives

terminal differentiation of Paneth cells [44]. As Paneth cells provide signals for Lgr5-CBC

cell proliferation, this suggests that stem cell division is a self-sustained and tightly controlled

mechanism [44].

Wnt factors trigger Frizzled-Lrp5/6 co-receptor signalling that drives β -catenin stabilisa-

tion, the latter in turn binding and activating the transcription factor Tcf4. Consequently, a

"stemness" genetic programme gets activated (Figure 1.2) [45].
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Notch signalling

Notch signalling is also indispensable for the maintenance of the Lgr5-CBC undifferentiated

state. Blocking of Notch signalling leads to differentiation of the Lgr5-CBC and TA cells [46].

Notch signalling in Lgr5-CBC is activated by Dll1+/Dll4+ Paneth cells, thus maintaining

intestinal progenitors and stem cells (Figure 1.2) [47]. Once daughter cells lose contact

with Dll1+/Dll4+ Paneth cells, Notch signalling is downregulated whereas Dll1 signalling is

upregulated, thus promoting their secretory differentiation [48]. Secretory precursors present

Dll1 to neighbouring Notch+ TA cells, promoting their development towards the enterocyte

lineage. Thus, the blocking of Notch signalling controls the enterocyte-secretory switch.

EGF signalling

Mitogenic effects are mediated by epidermal growth factor (EGF), which is produced by

Paneth cells. After engagement of EGF receptors, Lgr5-CBC and TA cells Ras/Raf/Mek/Erk

signalling axis is triggered (Figure 1.2) [49].

BMP signalling

Bone morphogenic protein (BMP) signals are triggered in the villi. Noggin inhibition of

BMP signalling leads to the formation of crypt-like structures along the villi, suggesting that

BMP signalling represses de novo crypt formation [50]. Activation of BMP receptors leads

to the formation of Smad1/5/8 and Smad4 complexes that repress stemness genes (Figure

1.2) [51].

Interactions between Lgr5-CBC cells and Paneth cells

Lgr5-CBC cells and Paneth cells are in close proximity at the bottom of the intestinal crypt

(Figure 1.2). Besides the ability to secrete AMPs, Paneth cells also secret EGF and Wnt3.

Furthermore, they also expresse the Dll1 and Dll4 ligands on their cell surfaces. Thus, Paneth
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cell ablation leads to disruption of the intestinal stem cell niche, due to a concomitant loss

of Lgr5-CBC cells [26, 27]. However, it has been observed that in Math1 mice mutants,

Paneth cells are depleted but Lgr5-CBC cells are retained, suggesting that Paneth cells are

dispensable for the Lgr5-CBC cell function [52]. It has been shown that Math1-deficient

crypts prevent Lgr5-CBC stem cell exhaustion in the absence of Paneth cell-derived Wnts,

by preventing their dependence on Notch ligands [53]. Additionally, it has been noted that

Math1-mutant crypts do not grow in vitro, providing an indication that Paneth cell signalling

dependence is not restrict to Notch signals but might also include Wnt3. The authors of this

study further showed that Wnt3-/- crypts were capable of growing in vivo, but failed to grow

in vitro [25]. This suggested that Paneth cells provide Lgr5-CBC cells Notch ligands but are

also a Wnt3 source, even though Wnt3 can also be produced by the surrounding mesenchyme

in vivo [25].
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1.3 Lymphoid structures in the intestine

Priming of adaptive immune responses in the intestine occurs mainly at the gut-associated

lymphoid tissue (GALT) and draining lymph nodes. The GALT is formed by mucosal and

submucosal lymphoid aggregates and is characterised by an overlying follicle-associated

epithelium that contains microfold cells (M cells) (Figure 1.1). M cells are specialised in

the immunosurveillance and transport of antigens from the lumen to immune cells, thus

triggering immune responses or tolerance [54].

Peyer’s patches are one of the best characterised tissues of the GALT, which can be

found particularly concentrated in the distal ileum. They consist of isolated or aggregated B

cell lymphoid follicles, flanked by smaller T cell areas. Peyer’s patches major role consist

in antigen (Ag) uptake and the development of mucosal secretory IgA (S-IgA) antibody

responses [55].

Solitary isolated lymphoid tissues (SILTs) are smaller lymphoid aggregates that can also

be found in the GALT, and can range in size from small cryptopatches to mature isolated

lymphoid follicles (ILFs). SILTs display germinal centres that comprise B cells, suggesting

ongoing humoral immune activation [56].

Mesenteric lymph nodes (MLN) comprise separate nodes that drain separate segments of

the intestine. Given the different food and microbial differences along the intestinal lumen,

MLN may display specialised immunological characteristics through the different sections

of the intestine [57].



12 Introduction

Fig. 1.3 Intestinal lymphoid structures

Intestinal epithelial cells (IECs), together with dendritic cells (DCs), express pattern-
recognition receptors (PRRs), responsible for the local sensing of microbe-associated lym-
phoid patterns (MAMPs). After being triggered, these cells further stimulate the recruitment
of T and B cells from adjacent cryptopatches, which in turn develop into mature isolated lym-
phoid follicles that release IgA-producing plasma cells into the lamina propria. Additionally,
microbes can be transported by M cells through the epithelial barrier into Peyer’s patches,
where they are endocytosed by DCs in the subepithelial dome, leading to the induction of
T-cell differentiation and T-cell-dependent B-cell maturation in the germinal centre. This
leads to the development of IgA-producing plasma cells. MAMPs also stimulate IECs in the
crypt, leading to an increase density of Paneth cells in the small intestine and the release of
antimicrobial peptides. From Maynard et al. 2012 [58]
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1.4 Lymphocyte distribution in the intestine

Given the constant stimulation from microbiota and food, the lamina propria and epithelium

are major effector sites of the intestinal immune system. Lamina propria comprises B

cells, T cells and various other immune cells, including dendritic cells (DCs), macrophages,

eosinophils and mast cells. In this section, I shall address the distribution and function of the

different lymphocytes subsets and their variation along the intestine. For more detail please

refer to table 1.1.

Table 1.1 Lymphocyte distribution in the intestine

Intestinal site Cell type Function
Surface epithelium Enterocytes (MHC II+) Antigen presentation and T cell stim-

ulation
IELs Cytolitic activity
M cells Antigen transport

Peyer’s patches T cells (mainly CD4+TH) Provide help to plasma cells and ef-
fector memory to CD8+ memory T
cells

B cells Generation of memory B cells and
IgA-producing plasma cells

Lamina propria Plasma cells IgA secretion
B cells IgM secretion
T cells provide helper function for B cell Ig

synthesis

1.4.1 Intraepithelial lymphocytes

Intraepithelial lymphocytes (IELs) are tissue-resident T cells that are in direct contact with

IECs where they contribute to maintaining immune homeostasis at the intestinal immune

barrier [59]. IELs represent the first line of defence against invading pathogens, as they

are in direct contact with intestinal lumen antigens. IELs are almost exclusively T cells

and develop from either a TCRγδ or TCRαβ lineage. Intestinal IELs comprise up to 60%

TCRγδ cells [60, 61]. Furthermore, intestinal IELs frequently express CD44 and CD69,
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suggesting that they are antigen-experienced [62–64]. IELs have also been shown to have

cytotoxic properties through the expression of effector cytokines including IFN-γ , IL-2, IL-4

and IL-17 [65–68].

Most TCRαβ IELs express a homodimer of CD8αα , yet dimers can be formed, such as

CD4αβ or CD8αβ [69]. Based both on the mechanism of activation and antigen recognition,

IELs can be classified into two major subsets: ’natural’ IELs and ’induced’ IELs. Natural

IELs develop an activated phenotype during thymus development through contact with self

antigens. Conversely, induced IELs arise from conventional CD4+ or CD8αβ + TCRαβ + T

cells that are activated post-thymically, after encounter with peripheral antigens [70].

Due to their location within the intestinal epithelium, the immune protection provided

by IELs is crucial for the control of invasion and spreading of pathogens. Thus, a stable

equilibrium in IELs immune response to microbial and food components present in the

lumen is required in order to keep a homeostatic intestinal environment. Deregulation of IEL

function can lead to non-specific or exacerbated immune responses, which consequently can

jeopardise the integrity of the intestinal barrier and induce immunopathology. Furthermore,

it may also contribute to an increased susceptibility to intestinal inflammation or cancer [62].

1.4.2 Lamina propria T cells

Both CD4+ T cells and CD8+ T cells can be found in the intestinal lamina propria and are

thought to originate from secondary lymphoid organs. In the secondary lymphoid tissue,

they recirculate through the body before settling into the intestine. They display an effector

memory phenotype and mount rapid responses to infection. Lamina propria CD4+ T cells are

greatly diverse, consisting of TH1, TH2 and TH17 subsets. Additionally, regulatory T (TReg)

cells, either forkhead box P3 (FOXP3)+ or FOXP3- can be found in the lamina propria of the

intestine, being particularly abundant in the colon [71].
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1.4.3 Innate lymphoid cells

Innate lymphoid cells (ILCs) are important regulators of the intestinal epithelial barrier. They

have been shown to have an important role in resistance to invading pathogens, regulation of

autoimmunity, tissue remodelling, cancer and metabolic homeostasis [72]. ILCs are typically

classified into three distinct groups based on their production of TH cell-associated cytokines.

Thus, group 1 comprises IFN-γ-producing ILCs, including NK cells and ILC1 cells. Group 2

comprises IL-5- and IL-13-producing ILCs, which are dependent on GATA-binding protein 3

(GATA3) and retinoic acid receptor-related orphan receptor-α (RORα) for their development.

Group 3 comprises IL-17- and/or IL-22-producing ILCs that are dependent on the transcrip-

tion factor RORγ t for their development [73]. These include LTi cells, NCR+ ILC3 and NCR-

ILC3 cells. ILC development is dependent on the common cytokine receptor γ-chain. While

NK cell development requires IL-15 signalling, the remaining ILCs are dependent on IL-7

signalling [74, 75].

Numbers of ILC1s and ILC2s in the human intestine are very low, ILC3s being the largest

ILC population in the intestine, notably NCR+ILC3 and NCR+ILC3 [76–78]. ILC3s have

been shown to be important producers of IL-22 in the intestinal mucosa and may be involved

in epithelium replenishing and repair, both in steady-state conditions and in response to

infections [79–81]. As referred to above, ILCs are able to produce effector cytokines in

response to infection. Additionally, it has been shown that in response to infection, ILC3s

can express MHC II molecules, thus contributing to the intestinal immune regulation through

suppression of TH17 responses [82].

ILCs were shown to induce protective responses against intracellular pathogens, including

parasites such as Toxoplasma gondii [83–85]. Conversely, ILCs were also shown to be

associated with the pathophysiology of intestine inflammatory diseases [86–88]. Taken

together, these studies show that ILCs can be crucial for protective immunity, but unbalanced

ILC activation can have a pathogenic role in inflammatory diseases.
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1.4.4 Intestinal B cells

The intestinal lamina propria consists of high numbers of predominantly secretory IgA- and

IgG-producing plasma cells, thus contributing to the provision of a first-line of defence

against invading pathogens [89]. These immunoglobulins have shown different roles in

the intestinal immunoprotection. In particular IgA was shown to confer protection through

a non-inflammatory response, whereas IgG triggers a pro-inflammatory response against

invading pathogens [90, 91].

1.4.5 Invariant T cells

Mucosa-associated invariant T (MAIT) cells contains T cells with an invariant TCRα form

that exert an innate and effector function [92]. In response to small organic molecules,

presented by bacteria or fungi, MAIT cells are capable of producing pro-inflammatory

cytokines, including IFN-γ and tumor necrosis factor (TNF), and exerting a cytolytic activity

[93–95]. Furthermore, it has been shown that besides the ability to provide a first-line

of defence against invading pathogens, MAIT cells also contribute to the enhancement of

adaptive immune responses [93].

Intestinal invariant natural killer T (iNKT) cells also express an invariant TCRα-chain and

have an important role in early stages of defence against invading pathogens [96]. In response

to intestinal infections, iNKT cells produce IFN-γ , thus having an important contribution

limiting bacterial spread [97–99].
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1.5 Small Intestine Organoids

In 2009, Sato and colleagues established the first long-term culture for primary adult intestine

tissue. The three-dimensional culture could be maintained and expanded for more than a

year, without introducing genetic transformations [16]. The small intestine organoid culture

was established from a single Lgr5-CBC cell or isolated intestinal crypts cultured in matrigel

and supplemented with a cocktail of R-spondin 1, EGF and Noggin. Matrigel, a three-

dimensional laminin- and collagen-rich matrix that resembles the basal lamina,was required

for the support of the organoid structure [16]. R-spondin 1 is a ligand of Lgr5 and was

shown to increase the Wnt signal strength triggered by the Wnt and Frizzled/Lrp interaction

[100, 101].

The only source of Wnt in the small intestine organoid is the Paneth cells, which induce

sharp Wnt gradients that surround the intestinal crypt [42]. The Wnt gradient also provides

TA cells with the necessary signalling cues for terminal differentiation along the villus flanks,

with Notch lateral inhibition triggering the enterocyte-secretory fate switch.

Furthermore, it has been shown that if Wnt is homogeneously distributed across the

organoid, the crypt-villi architecture is lost and organoids become symmetric cysts comprising

an homogeneous population of stem and progenitor cells [26]. Additionally, Wnt production

by Paneth cells also controls Paneth cell differentiation, through a positive feedback loop and,

consequently, the number of stem cells and crypt expansion [25, 102]. Stem cell proliferation

is also regulated by the strength of EGF signalling [103]. Taken together, this shows that, like

their in vivo counterparts, small intestine organoids are tightly regulated by the interaction

between the different IECs present in the model.

Architecture of the small intestine organoid

Mouse or human crypts can be isolated in conditions involving EDTA-based Ca2+/Mg2+

chelation. Once they are seeded under the conditions described above they start growing
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into cysts with a central lumen and polarised epithelium. Multiple crypt-like structures,

commonly denominated as buds, project outwards. The basal side of the epithelium is

oriented towards the outside in contact with the matrigel, whereas enterocyte microvilli

project into the lumen. Paneth and goblet cells secrete into the organoid lumen [16]. Small

intestine organoid self-renewal kinetics and cell-type composition closely resemble their

in vivo counterparts. Paneth cells, goblet cells and enteroendocrine cells were shown to be

present in the small intestine organoid culture and terminally differentiated cells were shown

to exfoliate into the organoid lumen [16].

Fig. 1.4 Schematic representation of a small intestine organoid

Small intestine organoids comprise a central lumen lined by villus-like epithelium with
multiple crypt-like domains projecting outwards. From Sato et al., 2009 [16].

Interestingly, it has been shown that engrafted epithelial organoids can regenerate epithe-

lial lesions and are indiscernible from surrounding recipient epithelium [104]. These results

demonstrated that organoids are transplantable and a promising tool for the development of

new regenerative and gene-therapy strategies [104].
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1.6 The intestinal Apicomplexan Eimeria spp. parasites

Eimeria spp. are intracellular protozoan parasites specifically adapted to infect and develop

almost exclusively in the intestinal epithelium. Eimeria spp. are the most common causative

agents of coccidiosis, highly prevalent among domesticated animal species, and accounting

for more than US$3 billion annual costs worldwide in the poultry industry [105, 106]. As

Apicomplexan parasites, Eimeria spp. belongs to the phylum that contains major human

pathogens, as Toxoplasma gondii, Plasmodium falciparum and Cryptosporidium parvum,

as well as other parasites of economic relevance to animal husbandry, such as species of

Sarcocystis, Leucocytozoon and Haemoproteus [107, 108].

1.6.1 The life cycle of Eimeria spp.

The monoxenous life cycle of Eimeria spp. comprises exogenous and endogenous phases.

During the exogenous phase, unsporulated multi-layered oocysts are shed into the envi-

ronment (Figure 1.5H). At appropriate temperatures and humidities the oocysts undergo

meiosis and mitosis forming 4 sporocysts that harbour 2 sporozoites each (Figure 1.5A)

[109]. The endogenous phase occurs after host oral uptake of sporulated oocysts. The oocyst

wall is most likely to get digested by the influence of pepsin during stomach passage and

sporocysts get released into the intestinal lumen [110, 111]. Sporozoites actively excyst

from the sporocyst, through mechanical abrasion followed by enzymatic digestion of the

sporocyst wall (Figure 1.5B). Motile sporozoites migrate to the preferred site of development,

the colon and caecum in the case of E. falciformis or the distal small intestine in the case of

E. vermiformis, respectively. Once motile sporozoites invade IECs (Figure 1.5C), several

rounds of schizogony take place, typically 3-4 rounds of asexual replication (Figures 1.5C

and 1.5D), which are followed by sexual differentiation of gametes, known as gametogony

(Figures 1.5E and 1.5F). The unsporulated oocyst results from fertilisation of macro- and

microgametes, and this is then shed in the faeces (Figure 1.5G).
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Fig. 1.5 Eimeria spp. life cycle

Sporulated oocysts (A) harbour sporocysts containing motile sporozoites (B) that undergo
several rounds of schizogony (C) in intestinal epithelial cells. Merozoites (D) develop
into micro- (E) and macrogametes (F) that fuse to form the zygote (G), which eventually
develops into an unsporulated oocyst (H) that gets shed with the faeces and sporulates in the
environment.

1.6.2 Eimeria spp. invasion of host epithelial cells

Invasion of host cells by apicomplexan parasites, such as Eimeria spp. is an active process

that relies on actin-based motility.

Host cell attachment is mediated by a set of organelles that form the apical complex, such

as rhoptries and micronemes, which sequentially secrete proteins - RON and AMA1/MIC,

respectively - necessary for the formation of the moving junction (Figure 1.6) [112, 113].

The moving junction is both responsible for the invagination of the parasite as well as

the simultaneous generation of the parasitophorous vacuole, which originates through the

invagination of the host plasma membrane (Figure 1.6) [114]. In addition to the protection
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that the parasitophorous vacuole membrane confers to the parasites, it also prevents the

acidification of the intracellular environment environment [115].

Fig. 1.6 Eimeria spp. invasion process of host cells

(1) Before invasion, the sporozoite loosely attaches to the target host cell. (2) Intimate
association between the parasite and the host cell is mediated by protein secreted from the
micronemes, such as AMA1 and MIC2. Proteins secreted from micronemes and the rhoptry
neck, such as AMA1 and RON, respectively, lead to the formation of the moving junction
and consequently the parasite invasion is initiated. (3) Simultaneously, vesicular clusters
derived from contents of rhoptries (ROP) are secreted into the host cell. Te parasite moves
into the parasitophorous vacuole through the moving junction. From Shen and Sibley 2012
[116]

In order to penetrate the host cell, the parasite constricts its body through the moving

junction (Figure 1.6[3]). This process is mediated by either forces induced by the host cell

or by forces induced by the parasite by activation of its actin/myosin motors that mediate

invasion at the entry site [117].

The invasion process, exclusively mediated by the parasite, is a fundamental strategy for

immune evasion. Some of the proteins involved in the Eimeria spp. invasion mechanism have

been characterised [118, 114]. For example, a comparative proteomic analysis has shown

the presence and dynamics of proteins involved in the E. tenella invasion process, including

microneme and rhoptry [119, 120].
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1.6.3 Pathology of Eimeria spp. infections

Eimeria infection can cause coccidiosis, a disease of the intestinal tract, usually self-limiting

with spontaneous resolution typically occurring within a few weeks, unless reinfection

occurs [121]. Depending on the dose of infection and the pathogenicity of the Eimeria spp.

involved, animals can develop mild to severe pathologies. Infections with E. falciformis

or E. vermiformis can cause epithelium necrotisation and bloody diarrhea, which typically

results in dehydration and rapid weight loss [122] The symptoms and enteric lesions are

most pronounced from day 8 to 10 post-infection, corresponding to the peak days of oocyst

shedding [122].

Histopathological analysis of E. falciformis- or E. vermiformis-infected intestines has

revealed destruction of the epithelium, submucosal edema and influx of neutrophils and

mononuclear cells to the site of infection [123, 122]. Even though eimerian asexual repli-

cation and merozoite cell invasion may induce the destruction of the intestinal epithelium,

it is likely that intestinal pathology is caused by the inflammatory immune response [122].

For example, TNF-α production was show to correlate with aggravated immunopathology

in infection with E. vermiformis or E. nieschulzi [124, 125]. IFN-γ depletion was shown to

result in exacerbated clinical effects, suggesting an immunoregulatory role for this cytokine

[126]. Epithelium-resident immune cells can also impact pathology development during

Eimeria spp. infections. It has been reported that during E. vermiformis infection, γδ T cells

sense exacerbated intestinal damage due to a failure in the regulation of αβ T cell responses

[127]. Furthermore, it has been shown that in E. vermiformis-infected animals, IELs help

sustain the epithelial barrier function through the expression of junctional molecules [124].

IELs, producers of IFN-γ ad TGF-β , are increased during infection and have been shown

to play an important role in the protection of the epithelium, through cytokine production or

via direct contact with the epithelial barrier [124].
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Information on the mechanisms that regulate protection and maintenance of the intestinal

epithelial barrier against E. vermiformis infections is still very limited. What is known so far,

has been reported based on in vivo descriptive animal models. Therefore, there is limited

knowledge on the molecular mechanisms involving IEC activation in the context of Eimeria

spp. infection.

1.6.4 Host immune response against E. vermiformis

Eimeria spp. infections are typically accompanied by a strong humoral and cellular im-

mune response, essential for the control of primary infection and development of immunity

against challenge infections. In this section I will focus on the immune response against E.

vermiformis, which is known to infect specifically the distal small intestine.

E. vermiformis oocysts was first described by Ernst,Chobotar and Hammond in 1971

[128]. This description was followed by the reports from the same group and Todd and Lepp

for the description of E.vermiformis life cycle [129–131]. One of the first descriptions of

how distinct mouse strains were differently susceptible to E. vermiformis was published

by Rose and colleagues in which was shown that athymic mice were highly susceptible to

primary infections and remained susceptible to reinfection [132]. This is if relevance since

a single E. vermiformis infection can lead to sterile immunity against secondary infections

[126]. The primary E. vermiformis infection is typically characterised by a IFNγ-induced

CD4+ TH1 cell immune response [133, 126, 134]. Thus, αβ + T cells have been shown to

be crucial for immune protection against E. vermiformis primary and challenge infections

[127, 135], whereas CD8+ T cells were shown to play a role in resistance during challenge

infections [133]. Moreover, it has also been shown that athymic (nu/nu) mice were completely

susceptible to both primary and secondary infections [132]. On the contrary, γδ + T cells

are not required to control infection; however, they do support the rapid activation of other
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lymphoid cells during primary infections [136, 137]. Furthermore, γδ + cells have been

shown to be crucial to limit immunopathology [138, 127].

Finally, effector mechanisms against intracellular stages of E. vermiformis, including

production of reactive nitrogen intermediates, Fas ligand-mediated apoptosis of the host cell

and lysis of the host cell by cytotoxicity, do not seem to play an essential role in the control

of infection [139].

Considering recent advances in the understanding of the intestinal immune system,

further research to provide evidence of the contributions of ILCs for the protection against

E. vermiformis is required in order to clarify their immunoregulatory roles at the intestinal

epithelial barrier.

1.6.5 In vitro culture of Eimeria spp.

Most cell lines are successfully invaded by Eimeria spp. but completion of the parasite’s life

cycle does not always occurs. With the exception of E. tenella, attempts to complete Eimeria

endogenous development in vitro have not been successful.

E. tenella

The cultures conditions to grown E. tenella in primary chicken kidney (PCK) cells are very

well established [140, 141]. These allowed for the development of E. tenella endogenous

development in vitro, which successfully resulted in the in vitro production of oocysts

[142, 143]. However, despite the continuous attempt to replace in vivo passage of E. tenella,

the yield obtained from this cell culture system was very low, therefore, it has not proven

suitable for the replacement of the conventional chicken passage of E. tenella stocks [144].



1.6 The intestinal Apicomplexan Eimeria spp. parasites 25

E. vermiformis

The first description of an in vitro cell culture of E. vermiformis was published in 1977 by

Kelley and Youssef [145]. The authors cultured E. vermiformis sporozoites in bovine kidney

cells, Madin-Darby bovine kidney (MDBK) cells and primary cultures of whole mouse

embryos and described the in vitro development of first generation schizonts and merozoites

[145].

Further attempts to culture E. vermiformis were made by Adams and colleges, using

MDBK or PK-15 cells for the study of E. vermiformis sporozoite invasion. However, no

details are given on the in vitro life cycle progression of the parasite [146]. E. vermiformis

in vitro first generation schizonts were also described by Rose and co-workers. Sporozoite

infection of murine fibroblast-like L-929 cells revealed the development of fully matured

first generation schizonts at 45 hours post-infection. First generation schizont development

was also achieved with sporozoite infection of rat epithelial-like cells (RATEC), yet parasite

development was slower [147].

No other attempts to achieve the in vitro development of E. vermiformis have been

reported.

E. falciformis

In vitro completion of E. falciformis first schizogony was described in a mouse intestine

epithelial cell line (CMT-93). After sporozoite invasion, fist generation schizonts were

observed at 39 hours post-infection. However, E. falciformis development did not progress

[110]. To my knowledge there have been no other attempts to establish an in vitro culture

system for the development of E. falciformis.
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E. bovis

Various cell culture models have been established for the in vitro study of E. bovis, including

human and porcine endothelial cell lines, bovine fetal gastrointestinal cells (BFGC), MDBK

cells, African green monkey kidney epithelial (Vero) cells [148], bovine colonic epithelial

cells (BCEC) [149], bovine umbilical vein cells (BUVEC) and bovine spleen lymphatic

endothelial cells (BSLEC) [150, 151]. Successful development of the first asexual generation

was often achieved but completion of E. bovis life cycle was only occasionally seen in BFGC.

However, the E bovis life cycle is considerably different from that of avian or rodent species

of Eimeria.

Hence, in order to achieve in vitro life cycle completion of mouse Eimeria species, the

development of novel culture systems is required.
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1.7 Aims and outlook

The principal aim of this thesis was to investigate whether E. vermiformis or E. falciformis

life cycle could be replicated in vitro. If this could be attained, my goal was to further

determine the molecular mechanisms triggered by intestinal epithelial cells in order to confer

protection against E. vermiformis infection. Furthermore, I also proposed to dissect the

immune cell contributions to the in vivo immune response to E. vermiformis, specifically

the contribution of innate lymphoid cells. To tackle this question, Chapter 3 describes a

series of in vivo studies in which various knock-out mice were infected with E. vermiformis.

The contributions of different cell subsets was determined based on mice susceptibility to

infection in the absence of the respective immune cells.

In Chapter 4, I proposed the establishment of an intestinal organoid primary culture for

Eimeria spp. infections. Small intestine organoids were characterised and infected with E.

vermiformis and E. falciformis, which completed several rounds of asexual replication.

Finally, in Chapter 5 I tested the contribution of different cytokines in the modulation of

protection against E. vermiformis infection by the intestinal epithelial cells.





Chapter 2

Materials and Methods

2.1 Buffers and Media

2.1.1 Basal small intestine organoid medium

Advanced DMEM/F-12 (Life Technologies, Gibco #12634) containing 1% 1M HEPES buffer

solution (Life Technologies, Gibco #15630), 1% GlutaMAX supplement (Life Technologies,

Gibco #35050), 100 U/ml penicillin, and 100 µg/ml streptomycin (Life Technologies, Gibco

#15140).

2.1.2 Complete small intestine organoid medium

Basal organoid medium containing 50 ng/ml recombinant murine EGF (Peprotech #315-

09), 500 ng/ml recombinant murine Noggin (Peprotech #250-38) and 10% R-spondin 1

supernatant or, when specified, 500 ng/ml recombinant human R-spondin 1 (Peprotech #120-

38).
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2.1.3 193T-HA-RspoI-Fc growing medium

DMEM (Life Technologies, Gibco #31966) containing 10% FBS (Life Technologies, Gibco

#12657011), 100 U/ml penicillin and 100 mg/ml streptomycin (Life Technologies, Gibco

#15140).

2.1.4 193T-HA-RspoI-Fc selection medium

193t-HA-RspoI-Fc growing medium containing 300 µg/ml Zeocin (Invitrogen #R25001)

2.1.5 R-Spondin 1 supernatant

An aliquot of the 293T-HA-RspoI-Fc cell line (Calvin Kuo) was cultured in selection medium

with Zeocin, in a 175cm2 flask and incubated at 37º C, 7% CO2. Cells were split when reached

100% confluency, in 6 x 175 cm2 flasks and cultured in growing medium. After 3-4 days in

culture, growing medium was removed and replaced with 50 ml of basal organoid medium.

The medium was harvested after 1 week of incubation and collected into 50 ml Falcon tubes.

The tubes were centrifuged at 500x g for 5 min to spin down non-adherent cells, and the

supernatant was filtered through a 0.2 µm filter under vacuum. The R-spondin 1 supernatant

was frozen in small aliquots. Samples were kept at -80º C for long-term storage or -20º C for

short-term storage.

2.1.6 RIMS mounting medium

To prepare refractive index matching solution (RIMS), 40 g of Histodenz (Sigma #D2158)

were dissolved in 30 ml PBS with 0.1% Tween-20 (Sigma #P2287) and 0.01% (w/v) sodium

azide (VWR chemicals #103692k), resulting in a final concentration of 88% Histodenz

w/v. The solution pH was adjusted to 7.5 with NaOH . Upon immunofluorescence staining,

samples were incubated in RIMS overnight before microscopical analysis [152].
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2.1.7 Sporozoite medium

DMEM (Life Technologies, Gibco #31966) containing containing 1% GlutaMAX supplement

(Life Technologies, Gibco #35050), 1% sodium pyruvate (Life Technologies, Gibco #11360),

100 U/ml penicillin and 100 mg/ml streptomycin (Life Technologies, Gibco #15140).
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2.2 Mice

The mouse work was carried out at Babraham Institute (BI) in accordance with the animals

Scientific Procedures Act 1986, EU Directive 2010/63/EU and the Babraham Research

Campus Animal Welfare and Ethic Review Body, under Home Office Project Licenses

80/2488 and 70/9073. Unless otherwise stated, all animals were maintained under pathogen

free conditions and received standard food pellets and autoclaved sterile water ad libitum.

For details on the mice strains used please refer to Table 2.1.

Mice were bred in a C57BL/6 background at the Babraham Institute Animal Facilities

under specific pathogen-free conditions. Mice were housed in standard cages, maximum of

five per cage, in a temperature-controlled room and under a twelve-hour light/dark cycle.

Wild-type C57Bl/6 female mice, aged 6-12 weeks old, were used to derive intestinal organoids

from intestinal crypts. In vivo experiments were performed on both male and female mice,

sex- and age-matched. Animals were 8-15 weeks old.
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2.3 Eimeria spp.

2.3.1 Oocyst isolation and sporozoite purification

Sporozoites were purified as described before [159]. Briefly, E. vermiformis or E. falciformis

oocysts, stored in 2.5% w/v potassium dichromate (K2Cr2O7), were pelleted the desired

number of oocysts in 50 ml Falcon tubes. Samples were washed three times with water

to remove K2Cr2O7, sterilised and re-suspended in sodium hypochlorite (NaOCl) solution

(Sigma #425044). After this step, all the work was performed under sterile conditions.

Oocysts were floated at 1100x g for 10 min at room temperature. The upper 10 ml supernatant,

which contained the oocysts, was recovered with a 10 ml pipette and transferred to a new tube.

The flotation step was repeated and oocysts were washed in sterile MilliQ water. Sporulation

was scored microscopically, using a Fuchs-Rosenthal chamber, and isolated oocysts were

stored over-night in 5 ml sterile MilliQ water at 4º C.

Oocysts walls were digested in 0.4% pepsin (AppliChem #A4289,0025), pH 3, at 37º C

for 2 to 3 hours. Digestion was monitored microscopically until the oocyst wall was thin and

wrinkled. The oocysts were washed with PBS, the supernatant was decanted and the pellet

was mixed with 50 µ l PBS. An equal volume of sterile glass beads (diam. 0.5 mm) was added

and the sample was vortexed at 2700 rpm for 1.5 sec. This step was monitored microscopically

until the majority of sporocysts was released from the oocysts, while sporozoites were kept

enclosed. To induce excystation of sporozoites, 0.1 g/ml of trypsin (AppliChem #A4148)

and 0.1 g/ml sodium tauroglycocholate (Fisher Chemical #S/6960148) were added to the

parasites that had been re-suspended in sporozoites medium. The sample was incubated

at 37º C for approximately 20 min. Digestion was monitored microscopically and, once it

was completed, free sporozoites were purified in sterile conditions by passage through a

DE-52 cellulose (Whatman) anion exchange chromatography column. For that, a 20 ml

serynge was filled with autoclaved nylon wool (Robbins) up to the 5 ml mark. The nylon
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wool was then soaked in 1% glucose-PBS. Next, the previously washed DE-52 cellulose was

added and the column was calibrated with 50 ml of 1% glucose-PBS. Then, the sporozoites-

containing medium was added to the column, which was further washed with 150-200 ml

of 1% glucose-PBS. Sporozoites were pelleted and re-suspended in 1% glucose-PBS and

kept at room temperature. Sporozoite concentration was determined microscopically using

an Improved Neubauer chamber.

To determine sporozoite viability, a solution of 30 µg/ml of fluorescein diacetate (FDA)-

PBS was freshly prepared and kept protected from light until used. In a separate tube, 10 µ l

of sporozoite suspension was mixed with 5 µl of the pre-prepared FDA solution and 5 µl of

ethidium bromide (EtBr). A 7 µ l droplet was mounted on a slide and at least 100 sporozoites

were counted. Red FDA-stained sporozoites were classified as dead.

2.3.2 Eimeria spp. propagation

The natural life cycle of Eimeria spp. was maintained by continuous passages of the parasite

oocysts in female C57BL/6 mice, and was performed every 3 to 4 months. Oocysts of the

previous passage, stored in K2Cr2O7 at 4º C, were washed in water, sterilised and floated

with NaOCl (as described in 2.3.1). The recovered oocysts were quantified using a McMaster

counting chamber. Eight to 12-week-old animals were orally infected with 1000 sporulated

E. vermiformis or 50 sporulated E. falciformis oocysts in 100 µl water. All animals were

weighed daily to monitor for weight loss during the course of infection. Infected animals

were maintained on sand during the peak days of infection, specifically day 9 to 12 for E.

vermiformis or 8 to 10 for E. falciformis, and faeces were collected daily. Faecal samples

were dissolved in water and, after soaking for a minimum of 4 hours at room temperature,

were suspended in 4% K2Cr2O7 to a final concentration of 2.5%.
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The samples were kept at room temperature with air supply and monitored for sporulation.

Once a minimum of 70% sporulated oocysts had been reached, usually after 6-7 days for E.

vermiformis or 3-4 days for E. falciformis oocyst stocks were stored at 4º C.

2.3.3 E. vermiformis infection

Oocysts of the previous passage, stored in K2Cr2O7 at 4º C, were washed in water, sterilised

and floated with NaOCl. The recovered oocysts were quantified using a McMaster counting

chamber. Animals were infected by oral gavage with 100 E. vermiformis sporulated oocysts

diluted in tap water. At day 7 post infection (just before the patency period starts), mice were

caged singly and bedding was replaced by sand. Faeces were collected daily from day 8 until

the end of the patency period and animals were monitored for weight loss.

2.3.4 Statistical analysis

No statistical methods were use to determine group size. All experiments were performed

with four to six mice per group, and representative data are shown as mean (± SD) for two

independent experiments unless stated otherwise. For the comparison of cumulative oocysts

between groups, a non-parametric t-test with Welch’s correction was performed. A two-way

ANOVA test was used for statistical analysis of oocysts and weight-loss kinetics. Statistical

analysis was performed using Graphpad Prism 7. Statistical significance was defined as

P<0.05. * P < 0.05 ** P < 0.01 *** P < 0.001
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2.4 Cell Culture

2.4.1 Crypt isolation and organoid cell culture

The crypt suspension was constantly kept at 4º C during the following protocol. Mouse

proximal small intestines were isolated and their luminal contents removed. The intestines

were opened longitudinally, washed twice with PBS, and cut into 3-5 mm fragments that were

further washed with PBS by pipetting the fragments up and down five times. The supernatant

was discarded and replaced with fresh PBS. This washing step was repeated approximately

eight times. Crypts were isolated from the intestinal fragments by incubation for 30 min at

4º C in PBS containing 2 mM EDTA. After incubation, EDTA medium was removed and the

intestinal fragments were gently washed in PBS. The samples were re-suspended in PBS in a

final volume of 20 ml. Seven successive supernatant fractions were collected upon vigorous

shaking of the intestinal suspension. The tissue composition of each fraction was determined

microscopically. Fractions that showed an abundant villus concentration were discarded

(typically, fraction 1 and sometimes fraction 2). The remaining crypt-containing fractions

were filtered through a 70 µ l cell strainer (Fisher Scientific #08-771-2), pooled into two 50 ml

Falcon tubes and centrifuged at 500x g for 5 min.

The following work was carried out under sterile conditions. Isolated crypts were re-

suspended in basal organoid medium and centrifuged at 300x g for 3 min. The pelleted

crypts were re-suspended in 50% matrigel (VWR International #734-1100). Droplets of

50 µl were plated in the centre of each well of a pre-warmed 24-well plate. After matrigel

polymerisation at 37º C (approximately 10-15 min), 500 µl of complete organoid medium

was slowly added against the wall of each well. Organoids were incubated at 37º C, 7% CO2.

Medium was renewed every 2-3 days and intestinal organoids were passaged every week.
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2.4.2 Small intestine organoid passage

Every 7-9 days, small intestine organoids were passaged using a 1:2 or 1:3 dilution. The

medium was discarded and organoid droplets were washed in ice-cold PBS. After matrigel

disruption, organoids were collected into a 50 ml Falcon tube and broken into smaller

fragments by passaging five times through a 25G needle. Organoids were washed in PBS

and centrifuged at 300x g for 3 min. Organoids were re-suspended in 50% matrigel and 50 µ l

droplets were plated in the centre of each well of a pre-warmed 24-well plate. After matrigel

polymerisation at 37º C (approximately 10-15 min), 500 µl of complete organoid medium

was slowly added against the wall of each well. Organoids were incubated at 37º C, 7% CO2.

Medium was renewed every 2-3 days until the following passage.
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2.5 Microscopy

2.5.1 Immunofluorescence

For each time point, medium was removed and the well was washed with 200 µl of PBS.

Organoids were fixed using 10% formaldehyde (Sigma-Aldrich #F8775) in PBS for 20 min

at room temperature. Fixation disrupts the matrigel droplet while organoids remain attached

to the bottom of the well or cover slip. If, after 20 min incubation, there was visible

matrigel, samples were washed with PBS and fresh 10% formaldehyde-PBS was added

for an additional 20 min. Upon fixation, organoids were washed twice in PBS for 5 min or

overnight. Organoids were permeabilised with 1% Triton X-100 (Sigma-Aldrich #T8787) in

PBS for 20 min and blocked with blocking buffer [2% BSA (Sigma-Aldrich #A7030) and

1% Triton X-100 in PBS] for 1 hour. Primary antibodies were diluted in blocking buffer,

and samples were incubated for 2 hours at room temperature (for details refer to Table 2.2).

After washing with PBS, secondary antibodies (AF488 goat anti-rabbit IgG #A11008 life

technologies,AF 488 rabbit anti-mouse #A27023 life technologies) were diluted 1:1000 and

incubated with the samples for 45 min at room temperature. Organoids were washed twice in

PBS for 5 min. Samples were mounted and preserved in RIMS medium.
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2.5.2 Quantification of organoid growth

Images of the organoid cultures were taken, using the wide-field Zeiss Microbeam, with

a magnification of 50x. Stitching image tiles generated a "whole-droplet" view. Matrigel

offers a three-dimensional support for organoid growth. As a consequence, when imaging

live organoids, which are displayed in different z planes, it was challenging to get all the

organoids in focus. Every image was taken in the z plane that showed the highest number of

organoids in focus. A total of 35 images was acquired per droplet (5x7), with 10% overlap,

and images were combined using ZEN software (Zeiss).

Phenotype characterisation

To evaluate the outcome of the distinct organoid treatments, I investigated their impact on

organoid growth. Organoids were characterised phenotypically based on their number of

buds. Thus, they were classified into four groups: (i) cysts, (ii) organoids with less than

3 buds, (iii) organoids with 3 to 6 buds and (iv) organoids with more than 6 buds The

quantification of the different organoid types was performed with Fiji software (using the

Cell Counter plugin). Absolute numbers were exported and converted into percentage of that

were further plotted and analysed in GraphPad Prism 6.

Area characterisation

Additionally, organoid surface growth was quantified using Fiji software. Pixel to µm

conversion was set in accordance with the microscope specifications.

2.5.3 Statistical analysis

No statistical methods were used to predetermine sample size. All experiments were per-

formed at least twice with multiple replicates per condition, and sample material coming from
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at least two different mice. In vitro experiments that were technical failures, such as cultures

that did not grow or autofluorescence induced by undigested matrigel were not included for

analysis. All data are mean (± SD). For the comparisons of two groups, a non-parametric

t-test with Welch’s correction was performed. Statistical significance was defined as P<0.05.

For kinetics, linear-regression was determined. Statistical analysis was performed using

Graphpad Prism 7. * P<0.05, ** P<0.01, *** P<0.001.
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2.6 Molecular biology

2.6.1 RNA isolation

Organoid RNA was extracted using the RNeasy extraction kit (Qiagen #74104) according to

the manufacturer’s instructions. In detail, at each time point, medium was removed and each

well was washed once with PBS. Organoids were lysed in the well by adding 300 µ l of RLT

(lysis) buffer. They were stored at -80º C until RNA isolation. Lysates were thawed at 37º C

in a water bath and vortexed at maximum speed during 1 min for sample homogenisation.

To each tube, 350 µl of 70% ethanol were added. Samples were homogenised by pipetting,

transferred to a spin column placed in a 2 ml tube and spun down at 10,000x g for 30 sec.

The flow-through was discarded, 700 µl of RW1 buffer was added and samples were spun

down at 10,000x g for 30 sec. The flow-through was discarded and 500 µ l of RPE buffer was

added and samples were spun down at 10,000x g for 30 sec. The last step was repeated, but

this time samples were spun down for 2 min. The 2 ml tube was exchanged and samples

were spun down at 15,000x g for 1 min, to completely dry the membrane. The spin column

was placed in a fresh 1.5 ml tube and 30 µl RNase-free water was added to each membrane.

The samples were incubated for 3-5 min at room temperature and then were spun down at

13,000x g for 1 min. The spin column was discarded. RNA concentration and purity was

determined using a sample-retention system, NanoDrop (Thermo Scientific). Samples were

stored at -80º C.

2.6.2 cDNA synthesis

The RNA was converted to cDNA using the Quantitect Reverse Transcription kit (Qiagen

#205311) according to the manufacturer’s instructions. In detail, 100 ng of RNA were mixed

with RNase-free water until a final volume of 12 µl. Then, 2 µl of the DNA wipeout was
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added to the RNA and incubated for 2 min at 42º C. Samples were placed on ice and the

reverse transcriptase mix was prepared as follows:

Table 2.3 cDNA synthesis

Reagent Volume per sample
Quantiscript Reverse Transcriptase 1 µl
Quantiscript RT 5x buffer 4 µl
RT Primer mix 1 µl
Total volume 6 µl

The reverse transcriptase mix was added to the "gDNA wipeout" tubes. The samples

were spun down. In the thermocycler, samples were incubated at 42º C for 15 min, followed

by an incubation at 95º C for 3 min to inactivate Quantiscript Reverse Tanscriptase. Finally,

cDNA was diluted 1:10 by adding 180 µl milliQ water and stored at -20º C.

2.6.3 Real-time PCR

Real-time PCR was performing using SYBRgreen. For Platinum SYBRgreen qPCR super

Mix UGD (Invitrogen #165505-7) the mastermix was prepared as follows:

Table 2.4 Real-time PCR mastermix

Reagent Volume per sample
Master mix 10 µl
Quantitect primer assay 1 µl
Water 1 µl
Total volume 12 µl

According to a pre-defined layout, 12 µl of the mastermix were added to the wells of a

96-well plate together with 8 µ l of the cDNA. Technical duplicates were run for each sample.

The 96-well plate was sealed with transparent microseal (Biorad) and spun down for 30 sec at

300x g. Data were acquired on BioRad thermocyclers. For protocol details refer to Table 2.5.
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Table 2.5 RT-PCR program for Platinum SYBR Green qPCR SuperMix

Step Temperature Time
1 50º C 2 min
2 95º C 2 min
3 95º C 5 sec
4 60º C 30 sec

repeat steps 3 and 4 for 40-45 times
5 95º C 10 sec

2.6.4 Statistical analysis

Each value obtained is an average of three independent biological replicates, and the exper-

iment was performed twice for each biological repeat. The relative gene expression was

calculated using the comparative Ct method. Array genes were normalised to the average

value of the housekeeping gene hprt.





Chapter 3

Regulation of the immune response

against E. vermiformis

3.1 Introduction

Intestinal epithelial barrier disruption can lead to bacterial translocation and predisposes the

host to inflammation. The cellular mechanisms that ensure barrier protection and healing in

response to intestinal damage remain poorly understood. Accumulating evidence suggests

that innate lymphoid cells (ILCs) contribute to the maintenance of the intestinal barrier

function through epithelial cell activation and proliferation in response to tissue damage

[160]. This is of particular importance for intestinal barrier homeostasis after infection.

Specifically, it has been shown that ILC1s and ILC3s respond to different pathogens, such as

Listeria monocytogenes and Toxoplasma gondii [84, 85].

In this chapter, I will use E. vermiformis as a model of mouse infection, to study the

contribution of ILCs in a context of site-specific intestinal inflammation. It is well established

that interferon (IFN)-γ-producing CD4+ T cells are crucial in the immunoprotection against

E. vermiformis primary infections. Moreover, CD8+ T cells are also implicated, but to a

lesser extent [133, 135]. Moreover, it has been shown that low NK cell activity relates with
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greater susceptibility to infection, possibly due to their cytolytic activity or secretion of IFN-γ

[132, 161, 162]. However, the contribution of the different ILC subsets to the resolution of

infection is still unclear.

To investigate the role of ILCs in the context of E. vermiformis infection, I used mice

bearing different combinations of genetic modifications affecting genes important to the

immune system. The susceptibility of mice to infection can be reliably evaluated through the

quantification of the number of oocysts shed. Symptoms of severe infection can include diar-

rhoea; however, E. vermiformis infection is self limiting, therefore even immunocompromised

animals are able to clear infection within 3 weeks.
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3.2 The effect of E.vermiformis dose on infection severity

E. vermiformis is a causative agent of coccidiosis, which can lead to weight loss and intestinal

inflammation, especially in immunocompromised animals. An important consideration for

the study of immune responses to E. vermiformis is animal welfare; in order to minimise

animal distress and suffering I started by performing a dose titration of the parasite. Sporu-

lated E. vermiformis oocysts were isolated and administered by oral gavage to age- and

sex-matched mice. To implement the new model of infection in the laboratory, I started by

testing the pathogenicity of a newly established stock of E. vermiformis, which was further

passaged every 3 months. This required an initial dose-ranging study to optimise the initial

dose of E. vermiformis infection (Figure 3.1).

Based on descriptions in different studies, four doses of infection were tested: 250, 500,

1,000 or 2,000 E. vermiformis sporulated oocysts were given to 5 mice per group. Weight-loss

was monitored. At day 6 post-infection, mice were single caged and the total number of shed

oocysts was determined daily. The doses of 250 and 500 E. vermiformis oocysts led to a

lower parasite production compared to 1,000 or 2,000 oocysts (Figures 3.1A and 3.1C). In

terms of absolute numbers of shed parasites, patency (time over which oocyst release occurs)

or weight loss, no differences were seen between the doses of 1,000 and 2,000 E. vermiformis

oocysts, indicating that a plateau was reached at a dose of infection of 1,000 sporulated E.

vermiformis oocysts (Figures 3.1A and 3.1C). This could be due to the ’crowding effect’, as

it has been previously described for E. maxima and E. praecox chicken infections. Johnson

and colleagues investigated if the fecundity of the parasites decreases as the dose of infection

increases [163]. The authors showed that the interaction between the availability of intestinal

enterocytes and immune responses contributed to the observed crowding effect [163].

Additionally, no significant differences in the patency duration or weight loss were

observed among the dose range tested (Figures 3.1B and 3.1D). Therefore, an initial dose of

1,000 sporulated E. vermiformis oocysts was used in the following experiment.



50 Regulation of the immune response against E. vermiformis

A B

Patency (days)
250 500 1000 2000

0

5

10

15

Dose of infection

D
os

e 
of

 in
fe

ct
io

n

Cumulative Oocysts Patency

250 Oocysts 500 Oocysts
1000 Oocysts 2000 Oocysts

C DOocyst Kinetics Weight loss percentage

5 10 15
90

95

100

105

110

115

W
ei

gh
t (

pe
rc

en
ta

ge
)

5 10 15 20
0

5

10

Days after infection Days after infection

N
um

be
r o

f o
oc

ys
ts

pr
od

uc
ed

, m
illi

on
s

N
um

be
r o

f o
oc

ys
ts

sh
ed

 p
er

 d
ay

, m
illi

on
s

0 1 2 3 4 5 6 7 8 9

250

500

1000

2000

Fig. 3.1 The effect of E.vermiformis dose on infection severity

WT mice were infected with 250 (green), 500 (orange), 1,000 (blue) or 2,000 (grey) sporu-
lated E. vermiformis oocysts. (A) Cumulative oocyst count. (B) Patency in days. (C)
Oocyst kinetics during infection patency. (D) Percentage body weight loss. Data shown are
mean (± SD) of five mice per group.
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3.3 Immunocompromised mice are highly susceptible to

E. vermiformis infection

Knowing that the activation of B and T cells is crucial in order to limit E. vermiformis

primary infection [133, 135], I decided to test the pathogenicity of the recently established

E. vermiformis stock in an immunocompromised mouse model, the Rag2-/- mouse. As

Rag2-/- mice fail to develop mature B or T lymphocytes [153], I hypothesised that if my E.

vermiformis stock had been successfully passaged, Rag2-/- would be highly susceptible to

infection. Therefore, WT and Rag2-/- mice were infected with 1,000 E. vermiformis oocysts.

Weight loss was monitored. At day 6 post infection, mice were single caged and the total

number of shed oocysts was determined daily. Rag2-/- mice were reported by the institute

veterinary to developed a severe intestinal inflammation and some animals died due to severe

infection, even though, no more than 10% weight loss was observed (data not shown). This

was a surprising result, as 1,000 E.vermiformis oocysts is a dose of infection widely used in

immunodeficient mice across different groups without reports of fatal consequences.

In response to this observation, WT and Rag2-/- mice were challenged with a lower

initial dose of 100 sporulated E. vermiformis oocysts (Figure 3.2). This infection dose was

kept unchanged during the experimental designs that followed. As expected, Rag2-/- mice

were significantly more susceptible to E. vermiformis infection than WT animals, displaying

significant increases in the number of shed oocysts and the patency duration (Figures 3.2A

to 3.2C). Even though these differences were clearly evident, they were not associated with

major weight loss, as Rag2-/- lost less than 5% of their initial weight throughout the infection

(Figure 3.2D). These data showed that, as previously described, the control of E. vermiformis

primary infection is dependent on a T and/or B cell immune response.

In addition, from a pratical point of view, these results validate the successful propagation

of the newly acquired E. vermiformis stock.



52 Regulation of the immune response against E. vermiformis

A B

Patency (days)

Cumulative Oocysts Patency

WT Rag2-/-

C DOocyst Kinetics Weight loss percentage

W
ei

gh
t (

pe
rc

en
ta

ge
)

WT Rag2-/-
0

20

40

60

80

100 ***

0 5 10 15

WT 

Rag2-/-

6 9 12 15 18
80

90

100

110

120

5 10 15 20
0

10

20

30

Days after infection Days after infection

N
um

be
r o

f o
oc

ys
ts

sh
ed

 p
er

 d
ay

, m
illi

on
s

N
um

be
r o

f o
oc

ys
ts

pr
od

uc
ed

, m
illi

on
s

Fig. 3.2 Development of E. vermiformis pathology in WT and Rag2-/- mice

WT (green) or Rag2-/- (orange) mice were infected with 100 sporulated E. vermiformis
oocysts. (A) Cumulative oocyst count. (B) Patency in days. (C) Oocyst kinetics during
infection patency. (D) Percentage body weight loss. Data shown are mean (± SD) of five
mice per group. Data are pooled from two independent experiments.

Having established an in vivo model for E. vermiformis infection, and using different

knock-out mouse models, I next investigated how different host cell subsets mediate intestinal

immunity against infection.
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3.4 αβ T cells are essential for the immune response against

E. vermiformis

As described by Rose and colleagues and Smith and coworkers [133, 135] T cells are crucial

for the immune response against E. vermiformis. Knowing that Rag2-/- mice are highly

susceptible to infection, I wanted to further dissect the contribution of T cells in the context of

E. vermiformis infection. It is known that T cells can be divided into two groups accordingly

to the T cell receptor (TCR) that they express: αβ T cells or γδ T cells.

In this section I will address the contribution of αβ T cells in the context of E. vermiformis

infection. For that a TCRα -/- mouse model was used. The thymus of TCRα -/- mice contains

normal numbers of CD4-CD8- and CD4+CD8+ thymocytes but it is typically devoid of

CD4+CD8- and CD4-CD8+ cells. WT and TCRα -/- were infected with 100 sporulated E.

vermiformis oocysts and weight loss was monitored. At day 6 post infection, mice were

single-caged and the total number of shed oocysts was determined daily (Figure 3.3). The

results showed that in comparison with WT, TCRα -/- mice have a small but significant

increase in the cumulative number of parasites shed, although not as pronounced as seen

in Rag2-/- mice (Figure 3.3A). There was also an increase in the duration of the patency in

TCRα -/- mice (Figure 3.3B), yet no differences in weight loss were observed (Figure 3.3D).

The data suggests that αβ T cells are required to limit E. vermiformis infection. This result is

in agreement with the work of Roberts and colleagues, that established that αβ T cells have

a protective role against both primary and secondary E. vermiformis infections [127], but

the difference between TCRα -/- and Rag2-/- suggests that other components of the immune

system are involved in protection.
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Fig. 3.3 Development ofE. vermiformis pathology in WT and TCRα -/- mice

WT (green) or TCRα -/- (orange) mice were infected with 100 sporulated E. vermiformis
oocysts. (A) Cumulative oocyst count. (B) Patency in days. (C) Oocyst kinetics during
infection patency. (D) Percentage body weight loss. Data shown are mean (± SD) of five
mice per group.
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3.5 γδ T cells are not essential for the control of E. vermi-

formis replication

Having established that αβ T cells confer immunoprotection against E. vermiformis infection,

I decided to investigate the contribution of γδ T cells. To address this question, a TCRδ -/-

mouse model was used. These mice display deficient γδ TCR expression in all adult

lymphoid and epithelial organs, while there is normal development of the αβ T cell lineage.

WT and TCRδ -/- mice were infected with 100 sporulated E. vermiformis oocysts and

weight-loss was monitored. At day 6 post-infection, mice were single caged and the total

number of shed oocysts was determined daily (Figure 3.4). These results showed no sig-

nificant differences between E. vermiformis-infected TCRδ -/- and WT mice, in terms of

oocyst output or kinetics, patency or weight loss (Figure 3.3). Nonetheless, a smaller non-

significant trend showed an increase in TCRδ -/- cumulative oocysts and day 10 of kinetics,

when compared to the WT control (Figures 3.3A and 3.3C).

As shown before [127, 136], the data suggest that γδ T cells are not crucial mediators in

the control of E. vermiformis infection. OkHowever, Roberts and colleagues described an

important role for γδ T cells in the regulation of the immunopathology against E. vermiformis,

since TCRδ -/- mice displayed weight loss and gastrointestinal haemorrhage [127]. These

symptoms were not observed in my experiments with TCRδ -/- mice, but this could be

explained by the different doses of E. vermiformis infection. Whereas mice in my experiments

were infected with 100 oocysts, in Roberts’ studies an infection dose of 1000 sporulated E.

vermiformis oocysts was used [127]. Thus, further studies would be required to obtain a

fuller picture of the regulatory contribution of γδ T cells for the immunoprotection against E.

vermiformis infection.
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Fig. 3.4 Development of E. vermiformis pathology in WT and TCRδ -/- mice

WT (green) or TCRδ -/- (orange) mice were infected with 100 sporulated E. vermiformis
oocysts. (A) Cumulative oocyst count. (B) Patency in days. (C) Oocyst kinetics during
infection patency. (D) Percentage body weight loss. Data shown are mean (± SD) of five
mice per group. Data are pooled from two independent experiments.
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3.6 The contribution of ILCs to the host immune response

to E. vermiformis

After clarifying the contribution of the different T cell subsets, the role of ILCs in the host

protection against E. vermiformis was investigated. ILCs have been classified into three main

groups based on their functional characteristics and similarity to T helper (TH) cell subsets

[73]. Thus, group 1 ILCs are defined by their ability to produce of IFNγ , and can be divided

into two subgroups: natural-killer (NK) cells and ILC1s. Group 2 ILCs are able to produce

TH2 cell-associated cytokines, including interleukin (IL)-5 and IL-13. Finally, group 3 ILCs,

characterised by the ability to produce TH17 cell-associated cytokines, including IL-22 and

IL-17, can be divided into 3 subgroups: NCR+ILC3, NCR-ILC3 or LTi cells [73].

All ILCs derive from a common lymphoid progenitor and depend on the common cytokine

receptor γ-chain (a component of six different interleukin receptors: IL-2R, IL-4R, IL-7R,

IL-9R, IL-15R and IL-21R) for their development and maintenance. With the exception

of NK cells, which require IL-15 for their development, ILCs depend on IL-7 for their

development and maintenance [73].

Thus in this section, an Il2rγ -/-, Il15r-/- or Il7r-/- mouse model will be used alone or

in combination with a Rag2-/- background to study the role of ILCs in the context of E.

vermiformis infection.
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3.6.1 The impact of Il2rγ signalling on immunoprotection against E.

vermiformis

I started by analysing how the lack of Il2Rγ signalling on a Rag2-sufficient or -deficient

background would impact the immune response against E. vermiformis. In addition to other

cytokines, Il2rγ signalling is a component of the receptors for IL-7, and IL-15, which are

essential for the development of ILCs. As a result, Il2rγ -/- mice lack NK cells and Peyer’s

patches. Their gut-associated ILCs are severely diminished and they show a reduction in the

absolute numbers of lymphocytes. However, they are capable of developing some mature

splenic B and T cells [156].

WT, Il2rγ -/-, Rag2-/- and Il2rγ -/-Rag2-/- mice were infected with 100 sporulated E. vermi-

formis oocysts and their weight loss was monitored. At day 6 post infection, mice were caged

singly and the total number of shed oocysts was determined daily (Figure 3.5). As shown

before, E. vermiformis-infected Rag2-/- were significantly more susceptible to infection than

the WT control. Interestingly, this difference was mitigated in the Il2rγ -/-Rag2-/- mice (Figure

3.5A and 3.5C). Additionally, no significant differences were observed in the output of E.

vermiformis oocysts between Il2rγ -/- and WT control (Figure 3.5A). Il2rγ -/-, Il2rγ -/-Rag2-/-

and Rag2-/- mice had equally longer patency periods when compared to the WT control

(Figure 3.5B). Finally, the results showed no significant differences in weight-loss between

the groups (Figure 3.5D).

Altogether, these data suggest a role for Il2Rγ signalling in the susceptibility to infection

of immunocompromised mice. However, these data are insufficient to extract definitive

conclusions.
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Fig. 3.5 Development of E. vermiformis pathology in WT, Il2rγ -/-, Il2rγ -/-Rag2-/- and Rag2-/-

mice

WT (green), Il2rγ -/- (orange), Il2rγ -/-Rag2-/- (blue) or Rag2-/- (grey) mice were infected with
100 sporulated E. vermiformis oocysts. (A) Cumulative oocyst count. (B) Patency in days.
(C) Oocyst kinetics during infection patency. (D) Percentage body weight loss. Data shown
are mean (± SD) of four mice per group. Data are pooled from two independent experiments.
** P<0.01.
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3.6.2 Impact of Il15r signalling on immunoprotection against E. vermi-

formis

Given the pleiotropic role of IL-15 in immune development and function, Il15r-/- mice show

a lymphopenic profile as a result of decreased proliferation and homing of lymphocytes to

peripheral lymph nodes. Severe reduction in the absolute numbers of NK and NKT cells,

TCRγδ intraepithelial lymphocites and CD8+ cells are also observed [157]. Knowing that the

contributions of γδ T cells or CD8+ cells are not detrimental for immunoprotection against

E. vermiformis primary infections [127, 133], the Il15r-/- mouse model might shed light on

NK involvement in the immune response against this pathogen.

Therefore, WT, Il15r-/-, Rag2-/- and Il15r-/-Rag2-/- mice were infected with 100 sporulated

E. vermiformis oocysts and their weight loss was monitored. At day 6 post infection, mice

were caged singly and the total number of shed oocysts was determined daily (Figure 3.6).

With a more pronounced trend than Il2rγ -/-Rag2-/-, Il15r-/-Rag2-/- show an intermediate

susceptibility to E. vermiformis infection when compared with the Rag2-/- or WT controls

(Figures 3.6A and 3.6C). No differences in absolute numbers of shed oocysts were ob-

served between Il15r-/- and WT mice (Figure 3.6A). Higher oocyst outputs from Rag2-/- or

Il15r-/-Rag2-/- mice seem to correlate with a longer patency (Figure 3.6B). There were no

significant differences in weight loss among the different groups (Figure 3.6D).

The results suggest a role for Il15R signalling in the susceptibility to E. vermiformis

infection of immunodeficient mice. Nonetheless, further research is required to determine

whether if the phenotype observed is due to NK cells and to further investigate how NK cell

activation impacts on the immune response against E. vermiformis infection.
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Fig. 3.6 Development of E. vermiformis pathology in WT, Il15r-/-, Il15r-/-Rag2-/- and Rag2-/-

mice

WT (green), Il15r-/- (orange), Il15r-/-Rag2-/- (blue) or Rag2-/- (grey) mice were infected with
100 sporulated E. vermiformis oocysts. (A) Cumulative oocyst count. (B) Patency in days.
(C) Oocyst kinetics during infection patency. (D) Percentage body weight loss. Data shown
are mean (± SD) of four or five mice per group. Data are pooled from two independent
experiments. ** P<0.01 *** P<0.001.
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3.6.3 Impact of Il7r signalling on immunoprotection against E. vermi-

formis

To investigate the possible roles of the remaining ILC populations (groups 1 to 3, with

the exception of NK cells), an Il7r-/- mouse model was used. Il7r-/- mice display normal

development of NK cells, but lack γδ T cells and show a reduction of αβ T cells [164].

Importantly, Il7r-/- mice have a severe reduction in the absolute number of ILCs [165].

WT, Il7r-/-, Rag2-/- and Il7r-/-Rag2-/- mice were infected with 100 sporulated E. vermi-

formis oocysts and their weight loss was monitored. At day 6 post infection, mice were caged

singly and the total number of shed oocysts was determined daily (Figure 3.7)

Interestingly, the comparison of E. vermiformis-infected Rag2-/- mice with Il7r-/-Rag2-/-

mice showed a similar pattern to that observed for the Rag2-/- to Il2rγ -/-Rag2-/- comparison.

Particularly, Il7r-/-Rag2-/- mice show an increased resistance to E. vermiformis infection

compared with Rag2-/- (Figures 3.7A and 3.7B). No differences in parasite loads were seen

between WT and Il7r-/- (Figures 3.7A and 3.7B). As seen before, patency duration seemed to

be longer in the groups that show higher cumulative oocysts output (Figure 3.7A and 3.7B).

No significant differences were observed between the groups in terms of weight loss (Figure

3.7D).

As previously discussed for Il2rγ -/- and Il15r-/- mice, there also seems to be an adverse

effect induced in immunocompromised mice by Il7R signalling. Further research would be

required to study how the different ILCs play a role in the observed phenotype.
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Fig. 3.7 Development of E. vermiformis pathology in WT, Il7r-/-, Il7r-/-Rag2-/- and Rag2-/-

mice

WT (green), Il7r-/- (orange), Il7r-/-Rag2-/- (blue) or Rag2-/- (grey) mice were infected with
100 sporulated E. vermiformis oocysts. (A) Cumulative oocyst count. (B) Patency in days.
(C) Oocyst kinetics during infection patency. (D) Percentage body weight loss. Data shown
are mean (± SD) of four or five mice per group. Data are pooled from two independent
experiments. ** P<0.01.
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3.7 Discussion

In order to study host-pathogen interactions at the intestinal epithelial barrier, I decided to

use E. vermiformis as an infectious model to induce site-specific intestinal inflammation. E.

vermiformis is known to infect the ileum and jejunum [166] and infection can be initiated via

the natural route by oral gavage. Following infection, the resistance or susceptibility of mice

can be reliably quantified by enumeration of shed oocysts into the faeces and by the length

of the patent period (time over which oocyst release occurs).

First, a titration of the initial dose of infection was performed (Figure 3.1). Interestingly,

no differences in the absolute number of oocysts or oocyst production kinetics were seen

between an initial dose of 1000 or 2000 E. vermiformis oocysts, suggesting that the intensity

of infection reached a plateau. Moreover, no differences were seen in the patency duration

and no weight loss was registered. Therefore it was decided to proceed with the experimental

work using a 1000 sporulated E. vermiformis as the infection dose. However, this dose

of infection proved to be inappropriate when using immunocompromised mice. Although

these did not show severe weight loss, they succumbed to infection around day 8/9. Post-

mortem analysis of intestinal pathology, performed by the Babraham institute veterinary,

revealed a highly inflamed intestine (data not shown). Due to the different susceptibilities of

mice, several authors adjust infection dose accordingly [127, 135, 137]. Therefore, in the

experiments that followed I infected mice with 100 sporulated E. vermiformis oocysts.

Data were pooled from independent experiments for presentation in my figures. As a

consequence, the data sometimes showed big spreads. Even though age- and sex-matched

animals were infected with the same dose of sporulated E. vermiformis oocysts, we also

observed, at times, a big data spread within the same group. Data spread could also be

induced by the researcher while performing gavage. However, because E. vermiformis stocks

were passaged in vivo, their potency inevitably varies between inocula and with storage over

time.
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Secondly, because E. vermiformis was brought to Babraham from Prof. Richard Lucius -

Humboldt Universität zu Berlin, after successfully passage of the stock received, I wanted to

evaluate how the infection induced by the parasite would compare to what is described in

the literature. It is well established that primary immune responses against E. vermiformis

are IFN-γ-induced and CD4+ T cell-dependent [133, 126, 134]. Consequently, immunocom-

promised mice display high susceptibility to E. vermiformis infection as shown by Schito

and colleagues using SCID mice [167]. Therefore, my first experimental design consisted in

assessing how Rag2-/- immunocompromised mice responded to E. vermiformis infection. As

expected, my results showed that Rag2-/- mice are more susceptible than the WT controls

(Figure 3.2). These results were in accordance with what has been previously described [167],

indicating that T and/or B cells are required for protection against E. vermiformis infection.

However, as referred to before, it is known that T cells play a crucial role in immunity against

primary infection with E. vermiformis. Thus, to clarify the involvement of T cells in the

immune response against E. vermiformis, I utilised αβ T cell- or γδ T cell-deficient mice

(Figures 3.3 and 3.4).

Even though I observed a slight increased susceptibility to E. vermiformis infection in the

TCRα -/- mice, my data confirmed previous reports [127, 135] showing that αβ T cells are

important contributors for immunoprotection against E. vermiformis infection (Figure 3.3).

Differences in the TCRα -/- susceptibility of the animals used in my study and the ones used

by other authors [127, 135] could be related with the different background of the transgenic

animals that were used or the differences in the mice housing, which consequently impact

their microbiota, as showed in studies in my lab (data not published) and by different authors

[168, 169]. These microbiota differences play an important role in the induction, priming and

function of the intestinal immunity, consequently being able to impact the immune response

against infections, such as E. vermiformis [170–172].
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can impact the intestinal immune surveillance sensibility and thus impact the mice

response to infection.

On the other hand, γδ T cells, which are commonly abundant within the intestinal

epithelium, did not showed a effective clearance of infection. However, it has been reported

that, in the context of E. vermiformis infection, γδ T cells are increased after infection and

support the activation of other lymphoid cells in the absence of αβ T cells [137]. More

importantly, it has been described that mice lacking γδ T cells display an excessive intestinal

damage, which can be related to a failure in the regulation of the αβ T response [127].

Thus, more studies would be required to study an immunomodulatory role for γδ T cells in

response to E. vermiformis at the small intestine epithelial barrier.

In this chapter, my goal consisted of addressing the contribution of ILCs in the context

of site-specific intestinal inflammation. It it known that in the colon and caecum, during E.

falciformis infection, Depletion of ILCs (Thy1.2) does not increase pathology (like seen in

Rag2-/-Il2rγ -/-) but led to a slight increase in oocyst production (Jörg Stange communication,

data not publish).

E. vermiformis infection of Il15r-/- or Il7r-/- mice, which lack NK cells or ILCs, respec-

tively, showed an effective clearance of the pathogen, compared to the WT control, including

a comparable patency time (Figures 3.6A, 3.6B, 3.7A and 3.7B). Interesting results were

obtained when mice bearing combine deficiencies for interleukin receptor components and

Rag2 were tested. Deficiencies in the interleukin receptors appeared to ameliorate the severe

infection seen in Rag2 deficiency alone. This suggests that ILCs are important regulators

of intestine homeostasis. ILC3s comprise the largest population of ILCs in the intestine,

specifically NCR+ ILC3s, which are able to produce IL-22 [77, 173]. In turn, IL-22 plays

an important role in the maintenance of the intestinal epithelial barrier, being required for

epithelial cell activation and proliferation in response to intestinal damage [160, 79].
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It has been reported that ILCs are capable of responding to apicomplexan pathogens,

such as Toxoplasma gondii [84]. Additionally, several reports have shown that ILCs may

have a detrimental impact on the intestinal pathology induced after infection. For example,

an abnormal increase in the absolute number of NCR- ILC3s in the ileum and colon of

Crohn’s patients has been reported, suggesting a role for these cells in the pathophisiology of

intestinal inflammation, through cytokine production, cell recruitment and organisation of the

inflammatory tissue [86]. Furthermore, ILC1s are also known to be increased in the inflamed

intestinal mucosa of Crohn’s disease patients, which is associated with disease severity [174].

Additionally, similar findings shown in Figure 3.5, less inflammation was observed in the

airway of Il2rγ -/-Rag2-/- than in Rag2-/- in response to protease-induced ling inflammation.

The authors showed that ILC2 engraftment into Il2rγ -/-Rag2-/- led to an increase in airway

inflammation [175].

Altogether, these reports strongly suggest that, in an unregulated environment, ILCs

can induce an aggravation of immunopathologic effects during an inflammatory response.

Further studies would be required to identify which ILCs populations are involved in the

intestinal immune response against E. vermiformis and how they contribute to the pathology

observed in immunocompromised animals.

A remote possibility to explain why Il2rγ -/-Rag2-/-, Il15r-/-Rag2-/- or Il7r-/-Rag2-/- are

less susceptible to infection than Rag2-/- could be related to developmental requirements

that E. vermiformis may have. Restricting the access E. vermiformis to certain factors could

limit parasite development. For example, it is known that the development of sexual stages

is dependent on tryptophan, a metabolite produce by the microbiota [176]. However, to

my knowledge, there are no reports so far on the dependence of E. vermiformis on factors

produced by immune cells.





Chapter 4

Eimeria spp.-infected small intestine

organoids as a model of infection

4.1 Introduction

Coccidiosis, a disease that affects many vertebrates worldwide, can be caused by Eimeria spp.

In this chapter, I describe Eimeria spp. and their use as a model of infection, as they present

several advantages for the study of host-pathogen interactions. Firstly, as an apicomplexan

parasite, Eimeria spp. are closely related to human pathogens such as T. gondii, Plasmodium

spp. or Cryptosporidium spp. [177, 139]. Secondly, infection by Eimeria spp. is site-specific

and it is limited to the intestinal epithelium. In this context, the intestinal epithelium provides

a barrier against harmful agents, including parasites. Loss of intestinal barrier function may

ultimately lead to systemic inflammation or remote organ failure.

To investigate host-pathogen interactions at the intestinal site, the laboratory in which

I have worked has explored the use of mouse E. vermiformis or E. falciformis as models

of in vitro infection. Due to the complexity of their life cycles, which comprise asexual

(schizogony) and sexual (gamatogony) stages, the in vitro study of these parasites has been

limited to the use of cell lines which allow sporozoite development up to their first schizogony
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[147, 110]. To try to overcome this limitation, I have explored the use of three-dimensional

organoids, generated from mouse intestinal crypts.

In 2009, Sato and colleagues reported the establishment of the first long-term in vitro

cultures of intestinal organoids derived from human biopsies or mouse intestinal crypts [16].

According to the authors, these three-dimensional organoids display the main characteristics

of the intestinal epithelial layer, including their biological organisation as crypt- and villus-

like epithelial domains. Containing specialised epithelial intestinal cells, including stem

cells, organoids are capable of self-renewal for more than a year [16]. Moreover, given

this self-renewal ability, the organoid model can be applied to the study of organogenesis,

regenerative medicine or tumorigenesis.

In this chapter, I describe the establishment and characterisation of a stable organoid

culture model, suitable for the study of host-pathogen interactions. Even though Eimeria

spp. infect and replicate mostly in enterocytes [134], the complexity of the organoid culture

will potentially provide additional signals from neighbouring cells as well as structural

organisation cues, such as cellular polarisation, which might be of importance for the

progression of the E. vermiformis or E. falciformis life cycles.

Little is known about the maintenance of tissue integrity during intestinal epithelial

infection. The successful establishment of this organoid model will allow the investigation of

host-pathogen interactions at the intestinal epithelial barrier and dissection of the signalling

mechanisms employed by site-specific epithelial cells in the triggering of an immune response

and/or maintenance of intestinal homeostasis.
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4.2 Characterisation of small intestine organoids

Based on the protocol described by Sato and colleagues [16], the small intestine organoid

model was successfully established. In this section, I shall characterise the preparation,

growth and behaviour of small intestine organoids.

After crypt isolation, organoids were seeded in 50% matrigel and cultured in complete

organoid medium, which contains the required factors for crypt growth, namely EGF, R-

Spondin and Noggin. These cells were described as passage 0 (Figure 4.1). Crypts rapidly

organised into spherical organoids (first seen at 4 hours post-seeding, data not shown), and

from one day post-seeding, organoids grew in a stereotypical manner. During passage 0,

organoids developed mostly on the edges of the matrigel droplet, possibly due to the high

and non-specific cellular content that had been seeded and started to die, which was highly

concentrated in the middle of the droplet (Figure 4.1). Medium was changed at day 2 and

organoids were passaged at day 3 or 4 post crypt seeding. From passage 1 onwards, cellular

debris was washed away and the culture became organoid specific (Figure 4.1). Intestinal

organoids grew faster and at a consistent rate among different passages, compared to passage

0.

Crypts after plating
(Passage 0)

Crypts after passaging
(Passage 1)

D
ay

 1

Fig. 4.1 Small intestine organoids: primary culture

Small intestinal crypts were isolated and cultured in 50% matrigel (left). After 3 to 4 days,
organoids were passaged and kept in culture for 7 to 10 days (right). Image representations
were taken 1 day after seeding. Scale bar = 50 µm
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In detail, after passage, small intestine organoids organised into spherical structures.

Within a day, the lumen sealed and the organoids grew into multi-budded structures that

seemed roughly double in size every 24 hours (Figure 4.2). Additionally, due to continuous

budding events and epithelial turnover, the organoid lumen starts to fill with dead cells and

as a consequence gets darker at day 4 or 5 post-passage (Figure 4.2).

1 2 3 4 5
Days post-passage

Fig. 4.2 Small intestine organoid growth

Representative images showing the progress of organoid growth. Images were taken every
24 hours from day 1 to day 5 after passage.

To further validate this in vitro small intestine organoid model I investigated the presence

of specific specialised epithelial cell types within the cultured organoids. For that, 3 to 4 day

old organoids were stained in order to identify Lgr5+ cells (Sox9), Paneth cells (lysozyme

C), enteroendocrine cells (chromogranin A) and goblet cells (Sox9, mucin 2) (Figure 4.3).

Small intestine organoids showed positive staining for all markers, indicating that they

encompass all the mentioned specialised cells types. Lgr5+ cells, identified by the positive

Sox9high staining, were consistently localised at the base of the organoid crypts (Figure 4.3A).

Similarly, Paneth cells, identified by positive lysozyme C staining, were also localised at the

base of the crypts (Figure 4.3B). The same was observed for enteroendocrine cells, stained

for chromogranin A (Figure 4.3C). Goblet cells were specifically stained with anti-mucin 2

antibody, however, they also expressed Sox9low. These were spread along the crypt and

villous domains of the small intestine organoid (Figure 4.3D). Staining for F-actin with
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phalloidin and cell nuclei with DAPI revealed that organoids were organised in a single cell

layer (Figure 4.3).

D Goblet cells
Mucin 2  
DAPI   Phalloidin

C Enteroendocrine cells
Chromogranin A   
DAPI   Phalloidin

B Paneth cells 
Lysozyme C   
DAPI   Phalloidin

A LGR5/Goblet cells
Sox 9   
DAPI   Phalloidin

Fig. 4.3 Small intestine organoids: cellular characterisation

Immunofluorescence staining of (A) Sox9+ LGR5+ cells and Sox9+ goblet cells, (B)
Lysozyme C+ Paneth cells, (C) Chromogranin A+ enteroendocrine cells and (D) Mucin
2+ goblet cells. DAPI, blue and Phalloidin, red. Scale bar = 30 µm

Altogether, the results showed that small intestinal organoids are complex structures with

close parallels to their in vivo counterparts. By displaying self-renewing capabilities and a

close resemblance to the in vivo crypt-villi architecture, they present many advantages for

the study of host-pathogen and cell-cell interactions.
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4.3 Optimisation of small intestine organoid culture condi-

tions

As stated earlier, the organoid model I established was based on the method described by

Sato and colleagues [16]. Nonetheless, in order to achieve a more efficient culture system for

the study of infection at the intestinal epithelial barrier, I decided to optimise some of the

culture parameters, starting with the matrigel density.

4.3.1 Optimisation of matrigel concentration

Matrigel, a commercial formulation, contains proteins essential for the development of

organoids, as laminin; moreover, it provides a structural scaffold for the three-dimensional

growth of organoids. Knowing this, I decided to test increasing concentrations of matrigel,

ranging from 20% to 90%. Organoids were passaged and the same cellular suspension was

divided into four tubes. The organoids were then re-suspended in 20%, 50%, 70% or 90%

matrigel, respectively. Small intestine organoid growth was recorded every 24 hours by

bright field imaging and organoid surface area (Figure 4.4) or phenotype (Figure 4.5) was

determined using Fiji software.
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Fig. 4.4 Small intestine organoids surface area: optimisation of the matrigel concentration

Small intestine organoids were seeded in 20% (green), 50% (orange), 70% (blue) or 90%
(grey) matrigel. The surface area of 100 organoids from two technical replicates was
determined. Mean (± SD) and linear regression were plotted. Data are representative of two
independent experiments.

Independently of the matrigel concentration, small intestine organoids displayed an

exponential growth over 5 days in culture. Organoid surface area was similar among the

different conditions tested (Figure 4.4).

Next, based on the number of buds, small intestine organoids were classified into 4

groups: (i) cysts (no buds); (ii) organoids with 1 or 2 buds; (iii) organoids with 3 to 6 buds;

(iv) organoids with more than 6 buds (Figure 4.5).
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Fig. 4.5 Phenotypical characterisation of small intestine organoids: optimisation of the
matrigel concentration

Small intestine organoids were seeded in 20%, 50%, 70% or 90% matrigel. For each
condition, 100 organoids were classified as follows: cysts (grey); organoids with 1 or 2 buds
(blue); organoids with 3 to 6 buds (orange); organoids with more than 6 buds (green). The
results are presented as mean (± SD). Data are representative of two independent experiments.

As expected, the results showed a reduction in the number of cysts over time, whereas the

number of multi-budded organoids increased (Figure 4.5). Specifically, at day 1 post-passage,

small intestine organoids that were seeded in 20% matrigel showed 42% of cysts and 54% of

organoids with 1 to 2 buds. However, at day five no cysts could be found and only 12% of

organoids showed a phenotype with 1 to 2 buds. In contrast, the number of organoids with

more than 6 buds increased from 1% to 73% from day 1 to day 5 post-passage (Figure 4.5A;

Supplementary Table A.1). The same trend was observed when organoids were seeded in

higher concentrations of matrigel. (Figure 4.5; Supplementary Tables A.2, A.3 and A.4).
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Nonetheless, from day 3 post-passage, there was a sharp increase in the number of organoids

with more than 6 buds for all tested conditions (Figure 4.5).

In conclusion, these data sets showed no major differences in the development of

organoids under different concentrations of matrigel. However, at day five post-passage,

multi-budded organoids organoids seeded in 20% matrigel displayed large dark centres and

the majority of their lumina had burst (Figure 4.6A). Organoids seeded in 50%, 70% or 90%

matrigel presented dark centres but generally their lumina had not burst and their morphology

was distinct (Figure 4.6).

A 20% Matrigel B 50% Matrigel

C 70% Matrigel D 90% Matrigel

Fig. 4.6 Small intestine organoids: optimisation of the matrigel concentration

Representative brightfield images of 5 day old small intestine organoids seeded in (A) 20%,
(B) 50%, (C) 70% or (D) 90% matrigel. Images are representative of two independent
experiments.
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4.3.2 Optimisation of R-spondin 1 supernatant concentration

R-spondin 1 plays an important role in maintaining a ’stemness’ profile in intestinal epithelial

cells, and therefore it is a crucial growth factor for the maintenance of small intestine

organoids. Having established the small intestine organoid culture system using recombinant

human R-spondin 1, a R-spondin 1 producing cell-line, 293T-HA-RspoI-Fc, was acquired

(from Calvin Kuo, Stanford Univ., USA). The use of R-spondin 1 supernatant would allow me

to expand the small intestine organoid cultures while reducing the cost associated with it. In

order to transition from the recombinant human R-spondin 1 to the R-spondin 1 supernatant,

a series of tests were performed to ensure that the properties of the small intestine organoids

remained unaltered. Therefore, organoids were seeded in 50% matrigel and the complete

organoid medium supplemented with 10% or 20% R-spondin 1 supernatant. As described

before, organoids were imaged every 24 hours, from day 1 to day 5 post-passage. The

organoid area and phenotype were determined using Fiji software (Figure 4.7).

The data showed no differences in the organoid surface area in organoids grown using

R-spondin supernatant compared to those growing using recombinant R-spondin (Figure

4.7A). Furthermore, no differences were observed in the organoid development over time, as

the phenotypes of small intestine organoids grown in 10% or 20% R-spondin 1 supernatant

were identical to each other. Additionally, organoids had comparable dark centres, which

could be an indication that cell turnover is also similar (Figure 4.8). Finally, small intestine

organoids have also exhibited all the major specialised epithelial cells populations: stem

cells, Paneth cells, goblet cells and enteroendocrine cells (data not shown).

These results suggest that small intestine organoids seeded in 500 ng/ml of recombinant

human R-spondin 1 and 10% or 20% R-spondin 1 supernatant are comparable. Thus, unless

stated otherwise, in the experiments that follow, all small intestine organoid cultures were

supplemented with 10% R-spondin 1 supernatant.
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Fig. 4.7 Phenotype characterisation of small intestine organoids: optimisation of R-Spondin 1
supernatant concentration

(A) Small intestine organoids were seeded in 10% (green) or 20% (orange) R-Spondin 1
supernatant. The surface area of 150 organoids from three technical replicates was determined.
Mean (± SD) and linear regression were plotted. (B-C) Small intestine organoids were seeded
in 10% or 20% R-Spondin 1 supernatant. For each condition, 150 organoids were classified
as follows: cysts (grey); organoids with 1 or 2 buds (blue); organoids with 3 to 6 buds
(orange); organoids with more than 6 buds (green). Results are expressed as mean (± SD).
Data are representative of two independent experiments.
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10% R-Spondin Conditioned Medium 20% R-Spondin Conditioned MediumA B

500 ng/ml R-Spondin1C

Fig. 4.8 Small intestine organoids: optimisation of the R-spondin 1 supernatant concentration

Representative brightfield images of 4 day-old small intestine organoids seeded in (A) 10% R-
spondin 1 supernatant (B) 20% R-spondin 1 supernatant (C) 500 ng/ml of human recombinant
R-spondin 1. Images are representative of two independent experiments.
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4.4 Establishment of an Eimeria spp.-infected small intes-

tine organoid model

As shown in the previous chapter, at day 3 or 4 post-passage, organoids show a crypt-villi

three-dimensional structure, in which the major specialised intestinal epithelial cells are

represented. Thus, to use organoids as a recipient model for parasite infection, I let them

grow for at least 3 days post-passage. To establish the co-culture protocol, E. vermiformis

was used as an infectious agent. Small intestine organoids would be expected to provide E.

vermiformis environment for infection matched to its natural intestinal site, as E. vermiformis

is known to specifically infect the lower 2/3 of the small intestine in vivo [129][178].

For all the tested protocols, E. vermiformis sporozoites were freshly isolated on the

infection day, and their viability was higher than 90%. Our first protocol was based on

those described by Rose et al. and Stange et al. [147, 110]. Thus, 100,000 E. vermiformis

sporozoites were added per well to 3 to 4 day-old small intestine organoids (Figure 4.9A).

After 4 hours of incubation, the sporozoite-containing medium was removed, organoids were

washed with PBS and fresh complete organoid medium was added to the wells (Figure 4.9B).

E. vermiformis-infected small intestine organoids were fixed at 4 and 21 hours post-infection,

stained and analysed by immunofluorescence.

3-4 days post-passage
20% or 50% matrigel

 E. vermiformis 
sporozoites

A B

4 hours
37ºC

Fig. 4.9 E. vermiformis-infected small intestine organoids: Protocol 1
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Even though there were occasional organoids infected at 4 hours post-incubation, there

were consistently no intracellular parasites at 21 hours post-incubation. Since E. vermiformis

successfully invades cell lines with this protocol, the lack of infection of small intestine

organoids led us to hypothesise that motile E. vermiformis sporozoites were incapable of

effectively moving through the scaffold of the matrigel, which, typically, is not present in

the two-dimensional cell cultures. In order to overcome this limitation, we repeated the

same protocol, however this time we seeded small intestine organoids in 20% matrigel,

for comparison with 50% matrigel (Figure 5.1). E. vermiformis-infected small intestine

organoids were fixed at 4 and 21 hours, stained and analysed by immunofluorescence.

The results obtained with small intestine organoids seeded in 20% or 50% matrigel were

very similar. Infected organoids seeded in 20% matrigel showed an occasional invasion

of 1 to 2 organoids per well, mostly the ones located at the edge of the matrigel droplet.

Nevertheless, no infected organoids were seen at 21 hours post-incubation.

We wanted to investigate further the hypothesis that matrigel is limiting the accessibility

of E. vermiformis sporozoites to the small intestine organoids. It is known that, besides

providing structural support for growth, matrigel also contains proteins that are crucial for

the development of the organoids. In order to avoid complete matrigel deprivation to the

small intestinal organoids, in the next protocol I recovered and washed 3 to 4 days-old

small intestine organoids (Figures 4.10A and 4.10B), which were then seeded on the top

of a ‘thin’ matrigel layer, that had been previously polymerised for 15 minutes at 37º C.

This polymerisation step was designed to allow organoids to remain on top of the matrigel

layer, thus diminishing the sinking effect. This approach would allow the organoids to be in

direct contact with both the matrigel and the parasite. Subsequently, 100,000 E. vermiformis

sporozoites per well were mixed with fresh complete organoid medium and added to the

top of the organoids (Figure 4.10C). Medium was renewed after 4 hours (Figure 4.10D). E.
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vermiformis-infected small intestine organoids were fixed at 4 and 21 hours, stained and

analysed by immunofluorescence.

The data showed that after 4 hours of incubation, organoids seeded on the top of the

matrigel layer had lost their structure and were becoming flat. At 21 hours post-infection,

both infected and non-infected organoids were dead.

 E. vermiformis 
sporozoites

A B

4 hours
37ºC

3-4 days post-passage
20% or 50% matrigel

C D

Fig. 4.10 E. vermiformis-infected small intestine organoids: Protocol 2

To explore further the hypothesis that matrigel is restricting the access of E. vermiformis

sporozoites to the small intestine organoids, we injected 100,000 E. vermiformis sporozoites

into the matrigel droplet, hence increasing the chance of close contact between the parasite

and the host cells. This experiment was performed with 3 to 4 day-old small intestine

organoids seeded in 20% or 50% matrigel, to test different matrigel resistance and fluid

retention (Figure 4.11). This technique proved to be quite challenging, as the injectable

volume of sporozoite suspension without disrupting the matrigel droplet was limited to

less than 50 µl. E. vermiformis-infected small intestine organoids were fixed at 4 and 21
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hours, stained and analysed by immunofluorescence. Still, it was observed that the infection

efficiency had not been improved. The results, together with the reproducibility issues that

arose from the technical challenges of the protocol, motivated me to identify a more suitable

option.

3-4 days post-passage

 E. vermiformis 
sporozoites

A B

Fig. 4.11 E. vermiformis-infected small intestine organoids: Protocol 3

Next, I decided to completely isolate small intestine organoids from the matrigel and, in

the absence of matrigel, submit the organoid suspension to a short incubation in complete

medium with E. vermiformis. I recovered 3 to 4 day-old small intestine organoids which were

incubated in cell recovery solution (BD Biosciences #354253) for 1 hour, on ice, to completely

digest the matrigel. Organoids were washed and resuspended in complete organoid medium

containing E. vermiformis sporozoites, plated in a 6 well-plate and incubated for 30 minutes

at 37º C (Figure 4.12).

Following the 30-minute incubation, most of organoids were dead, including the non-

infected controls. Thus, we concluded that organoid death was induced by the lack of

matrigel.
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A

3-4 days post-passage

 E. vermiformis 
sporozoites

B

C D

30 minutes
37ºC

E

Fig. 4.12 E. vermiformis-infected small intestine organoids: Protocol 4

We then tried two additional approaches: i) injecting E. vermiformis sporozoites into the

lumen of the organoids or ii) optimising the previous protocol, by submitting organoids to E.

vermiformis infection in the absence of matrigel for a shorter period of time.

Injecting E. vermiformis sporozoites directly into the lumen of the small intestine

organoids would mimic the in vivo conditions of infection. Physiologically, sporozoites are

discharged into the lumen of the small intestine and attach to the epithelial cells through

their apical side [146]. Microinjection with commercially available needles was not possible,

as the sporozoites are 15 µm in length, which is bigger that the largest diameter available.

Therefore, we used a FemtoJet with custom-made needles. Organoids were seeded on a

coverslip post-passage. A coverslip carrying 6 to 7 day-old organoids was placed under

a microscope, allowing us to trace the position of the needle in relation to the organoid.

Approximately 7-9 E. vermiformis sporozoites were injected into the lumen of each organoid

and at least 10 organoids were infected per coverslip (Figure 4.13). After injection, the

organoids kept their structural organisation even though their lumens were slightly expanded.
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E. vermiformis-infected small intestine organoids were fixed at 4 and 21 hours, stained and

analysed by immunofluorescence.

A

6-7 days post-passage

B

C

Fig. 4.13 E. vermiformis-infected small intestine organoids: Protocol 5

My analysis protocol was not suitable for organoids older than 6 days. After 6 days

in culture, small intestine organoids can grow up to 200 µm in diameter and their lumens

become dense. Even though RIMS medium was used as a clearing solution, the increase in

the depth of the field gained was not sufficient to scan the whole organoid. Nevertheless, I

proceeded with my analysis, even though the readout was slightly compromised. However,

no infected organoids could be observed.

Due to the potential failure of infection, the technical complexity of the protocol and the

limitations in the read-out and analysis, I decided to use a different approach.

Simultaneously with the protocol previously described, I had attempted to optimise the

infection protocol in the absence of matrigel. Thus, 3 to 4 day-old small intestine organoids

were recovered and homogenised by repeated aspiration with a 21 G needle (Figure 4.14A

and 4.14B). By doing so, the matrigel scaffold was disintegrated while the organoids were

slightly broken in order to expose their lumen. Then, organoids were washed in PBS until no

traces of matrigel were observed, resuspended in basal medium containing E. vermiformis
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sporozoites and incubated at 37º C for 5 min (Figure 4.14C). Upon incubation, infected

organoids were washed, resuspended in 50 % matrigel and seeded into 8-well ibidi slides.

After a 15-min incubation to allow matrigel polymerisation, 250 µl of complete organoid

medium was added to each well (Figure 4.14D). E. vermiformis-infected small intestine

organoids were fixed at 4, 21 and 45 hours, stained and analysed by immunofluorescence.

A

3-4 days post-passage

 E. vermiformis 
sporozoites

B

C D

2-5 minutes
37ºC

Fig. 4.14 E. vermiformis-infected small intestine organoids: Protocol 6

Immunofluorescent analysis showed that following this time point, at least 50% of the

small intestine organoids were infected with E. vermiformis sporozoites at 4 hours post-

infection. Even though the ratio of infection is lower at 21 or 45 hours post-infection than at

4 hours post-infection, organoids remain infected, showing progression of E. vermiformis

development into first generation schizonts. E. vermiformis life cycle progression in small

intestine organoids will be further described later in this chapter.

Altogether, these observations indicate that the presence of matrigel limits the invasion

capacity of E. vermiformis sporozoites presumably by restricting their access to the small

intestine organoids. To further understand how to increase the E. vermiformis infection
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efficiency and how to manipulate the established infection model, I next performed a series

of experiments to study different protocol variables.
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4.5 Optimisation of small intestine organoid and E. vermi-

formis co-culture

Having established a reproducible protocol to study interactions between E. vermiformis and

intestinal epithelial cells, I went on to investigate and optimise the different variables of the

protocol.

4.5.1 Optimisation of small intestine organoid size prior to infection

I started by analysing how the initial size of the small intestine organoids influences the

effectiveness of invasion by sporozoites and subsequent infection. For that, I recovered

3 to 4 day-old organoids that were divided into two cell suspensions, one of which was

homogenised with a 21 G needle and the other with a 25 G needle, in both cases attached to a

20 ml syringe. The syringe was filled and emptied three times with the organoid suspension.

As expected using a 25 G needle, organoids were broken into considerably smaller fragments

when compared to the homogenised product of a 21 G needle. These two cell suspensions

were incubated with 100,000 E. vermiformis sporozoites per 100 organoids for 5 minutes,

washed and resuspended in 50% matrigel and 25 µ l droplets of suspension were then plated.

E. vermiformis-infected small intestine organoids were fixed at 4 and 21 hours post incubation,

stained and the efficiency of infection was quantified by immunofluorescence. As described

before, the use of a 21 G needle to homogenise organoids prior to infection maintains the

organoid structural organisation while exposing its lumen. This seems to be favourable to

an effective E. vermiformis infection. In contrast to this observation, when we used a 25 G

needle, organoids were broken into small fragments, sometimes single cells, consequently

leading to a considerable reduction in the number of viable organoids. Thus, this was

proved to be an inefficient approach, as only occasional organoids were infected at 4 hours

post-infection and infected organoids were not observed at 21 hours post-infection (data
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not shown). These results suggest that a 21 G needle homogenises organoids to an optimal

experimental size, allowing for an effective E. vermiformis infection and a quick organoid

recovery from the stress induced by the incubation step in the absence of matrigel. Therefore,

unless stated otherwise, organoids were homogenised with a 21 G needle in the following

experiments.

4.5.2 Optimisation of small intestine organoid co-culture time

One of the key variables in the successful establishment of E. vermiformis infected organoids

is the co-culture incubation period. This step is of crucial importance, as organoids will be

under stress due to the lack of matrigel. Thus, we evaluated the impact of different incubation

times, both at the level of organoid distress and infection efficiency. After being homogenised,

3 to 4 days-old small intestine organoids were incubated at 37º C in a ratio of 100,000 E.

vermiformis sporozoites to 100 organoids. These were incubated for 5 or 10 minutes and

time points were collected at 4, 21 and 45 hours post infection. Samples were analysed by

immunofluorescence (Figure 4.15).

The data showed that at 4 and 21 hours both the number of intracellular E. vermiformis

per organoid (Figure 4.15A) and the percentage of infected organoids (Figure 4.15B) were

higher when organoids were incubated with E. vermiformis sporozoites for 10 minutes.

However, these differences were no longer seen at 45 hours post-infection. Given that a

longer incubation period without matrigel induces higher levels of stress to the organoids,

it was determined that during the subsequent experiments the incubation period would be

restricted to 5 minutes.
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Fig. 4.15 E. vermiformis sporozoite invasion is influenced by the duration of the incubation
period but without impact on long-term infection efficiency

Small intestine organoids were recovered at day 3 post-passage and were incubated with
E. vermiformis sporozoites for 5 (green) or 10 (orange) minutes in basal medium at 37º C.
Infected organoids were seeded in 25 µl droplets of 50% matrigel and cultured in complete
organoid medium. (A) The number of intracellular E. vermiformis sporozoites per organoid
was quantified by immunofluorescence at 4, 21 and 45 hours post-infection. Scatter plots
display mean (± SD). Significance was determined by unpaired t test with Welch’s correc-
tion. (B) The percentage of infected organoids was also determined. Mean (± SD) and
linear regression were plotted. * P<0.05 *** P<0.0001. Data pooled from 2 independent
experiments.

4.5.3 Optimisation of the initial infection dose of E. vermiformis

To further optimise our intestinal epithelial infection model, I investigated if reducing the

ratio of E. vermiformis sporozoites to organoids would be beneficial. The first approach

consisted in studying the impact of a initial dose of E. vermiformis infection of 12,500

or 25,000 sporozoites to 100 small intestine organoids (Figure 4.16). Compared to the

initial ratio of infection, these initial doses of infection represented decreases of 87.5% and

75%, respectively. Due to the considerably lower number of parasites, I decided to test

how an incubation period of 5 or 10 minutes would impact the outcome of the experiment
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(Figure 4.16). E. vermiformis-infected small intestine organoids were fixed at 4 and 21 hours

post-incubation, stained and the infection efficiency was quantified by immunofluorescence.

The data showed that even with an initial dose of E. vermiformis infection of 12,500

or 25,000, the incubation period does not lead to significant differences in the outcome of

infection (Figure 4.16A and 4.16B). Additionally, it was observed that an initial dose of E.

vermiformis infection of 12,500 E. vermiformis sporozoites to 100 organoids led to 0-10%

infected organoids at 45 hours post-infection. (Figure 4.16C). In contrast, with an initial

dose of E. vermiformis infection of 25,000 sporozoites to 100 organoids, it was observed that

52-60% of organoids were infected, with an average of 1.09 E. vermiformis sporozoites per

organoid at 4 hours post-infection (Figure 4.16B and 4.16D). However, at 21 and 45 hours

post-infection, the average number of parasites per organoid drops significantly from 1.09

to 0.31 and 0.46 (Figure 4.16B), respectively, accompanied by a decrease in the percentage

of infected organoids to 26-34% (Figure 4.16D). Because there is a decrease in both the

number of parasites per organoid and the percentage of organoids infected from 4 to 21 hours

post infection, and because the infection seems to stabilise at 45 hours, which corresponds

to the E. vermiformis first generation schizonts, it is safe to assume that at this stage the E.

vermiformis infection is well established. Thus, I decided to employ 45 hours post-infection

as a reference time point for the effectiveness of infection.

It was intended to apply this model to study how different proteins impact the small

intestine organoids responses to infection, and this could involve either limiting or exacer-

bating the outcome of infection. In order to see both effects I decided to further optimise

the infection dose of E. vermiformis sporozoites to small intestine organoids and aim for

50% of infected organoids at 45 hours post-infection. As shown before in Figure 4.16D,

an initial dose of E. vermiformis of 25,000:100 would give a maximum of 34% infected

organoids at 45 hours post-infection. Therefore, I tested higher doses of E. vermiformis

infection, specifically 100,000 or 200,000 E. vermiformis sporozoites to 100 small intestine
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Fig. 4.16 E. vermiformis infection efficiency is impacted by the initial co-culture ratio of
sporozoites per organoids

Small intestine organoids were recovered at day 3 post-passage and co-cultured with 12,500
(A, C) or 25,000 (B, D) E. vermiformis sporozoites per 100 organoids for 5 (green) or 10
(orange) minutes in basal medium at 37º C. Infected organoids were seeded in 25 µ l droplets
of 50% matrigel and cultured in complete organoid medium. The number of intracellular E.
vermiformis sporozoites per organoid was quantified by immunofluorescence at 4, 21 and 45
hours post-infection (A, B). Scatter plots display mean (± SD) Significance was determined
by unpaired t test with Welch’s correction. The percentage of infected organoids was also
determined (C, D). Mean (± SD) and linear regression were plotted. ** P<0.01. Data were
pooled from 2 independent experiments.
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organoids (Figure 4.17). E. vermiformis-infected small intestine organoids were fixed at

4, 21 and 45 hours post-incubation, stained and the infection efficiency was quantified by

immunofluorescence.
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Fig. 4.17 E. vermiformis infection efficiency is impacted by the initial co-culture ratio of
sporozoites per organoids

Small intestine organoids were recovered at day 3 post-passage and then co-cultured with
100,000 (green) or 200,000 (orange) E. vermiformis sporozoites per 100 organoids for 5
minutes in basal medium at 37º C. Infected organoids were seeded in 25 µl droplets of 50%
matrigel and cultured in complete organoid medium. (A) The number of intracellular E.
vermiformis sporozoites per organoid was quantified by immunofluorescence at 4, 21 and
45 hours post-infection. Scatter plots display mean (± SD). Significance was determined by
unpaired t test with Welch’s correction. (B) The percentage of infected organoids was also
determined . mean (± SD) and linear regression plotted. *** P<0.001. Data were pooled
from 2 independent experiments. spz = sporozoites

The results showed a correlation between a higher initial dose of E. vermiformis and the

number of sporozoites per organoid. In particular, 200,000 E. vermiformis sporozoites to

100 organoids led to significantly higher numbers of parasites per organoid, across all time

points, when compared to a 100,000:100 ratio (Figure 4.17A). This was accompanied by a

higher percentage of organoids infected over time (Figure 4.17B).

As observed with lower initial doses of E. vermiformis infection, there was a significant

decrease in the number of parasites per organoid from 4 to 21 hours post-infection (Figure



4.5 Optimisation of small intestine organoid and E. vermiformis co-culture 95

4.17A), which correlates with a decrease in the percentage of infected organoids (Figure

4.17B).

Based on my aim to get 50% infected organoids at 45 hours post-infection, we decided

to use an initial infection dose of E. vermiformis of 100,000 sporozoites to 100 organoids

in the following experiments. This would provide a baseline to enable the observation of

susceptibility or protective differences induced by different treatments.

4.5.4 Optimisation of the culture medium for E.vermiformis invasion

Next, I decided to investigate whether the presence of Penicillin-Streptomycin (P/S) in the

culture medium was limiting the invasion ability of the E. vermiformis sporozoites. Therefore,

employing the previously established protocol, 100,000 E. vermiformis sporozoites per 100

organoids were incubated for 5 minutes at 37º C in the presence or absence of P/S (Figure

4.18).
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Fig. 4.18 P/S does not impact E. vermiformis infection efficiency

Small intestine organoids were recovered at day 3 to 4 post-passage and co-cultured with
100,000 E. vermiformis sporozoites per 100 organoids for 5 minutes in basal medium at
37º C in the presence (green) or absence (orange) of P/S. Infected organoids were seeded in
25 µl droplets of 50% matrigel and cultured in complete organoid medium. The number of
intracellular E. vermiformis sporozoites per organoid was quantified by immunofluorescence
at 4 (A) and 21 (B) hours post-infection. Scatter plots display mean (± SD). Significance was
determined by unpaired t test with Welch’s correction. n.s. = non-significant. Data pooled
from 2 independent experiments.
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The data show no significant differences in the number of intracellular parasites per

organoid between the infected organoids cultured in the presence or absence of P/S, either at

4 or 21 hours post-infection (Figure 4.18A and 4.18B). Also, no differences in the percentage

of infected organoids were observed (data not shown). Altogether, these results led to the

conclusion that the use of P/S in culture does not influence the ability of E. vermiformis to

infect small intestine organoids. Therefore, in the following experiments, P/S was added to

the culture medium.
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4.6 Asexual development of E. vermiformis in vitro

After testing major protocol variables (Section 4.5), it was decided to keep E. vermiformis

infected small intestine organoids in culture for 7 days. This time corresponds to the in

vivo pre-patent period: specifically it refers to the E. vermiformis life cycle development,

from the point at which a sporulated oocyst is ingested by the mouse until its release as an

unsporulated oocyst. Because infected organoids were kept in culture for a week, complete

organoid medium was renewed every 2 to 3 days. E. vermiformis-infected small intestine

organoids were fixed at 4, 21, 45, 69, 96, 117 and 141 hours post-incubation, stained and

analysed by immunofluorescence.

It was observed that E. vermiformis sporozoites invaded small intestine epithelial cells at

4 hours post-infection. As observed in vivo [129], the intracellular sporozoites are randomly

localised in the crypts or villi sections of the small intestine organoid (Figure 4.19A).
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Fig. 4.19 E. vermiformis-infected organoids (4 hours post-infection)

Immunofluorescence z-stack of 1 µm slices of E. vermiformis-infected small intestine
organoids. (A) Small intestine organoid infected with E. vermiformis sporozoites. In-
tracellular sporozoite starts to fold back onto itself (white arrows). (B) Dysmorphic small
intestine organoid infected with E. vermiformis sporozoites. Scale bar = 30 µm. Figures are
representative of at least three independent experiments.
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Frequently, I could also observe organoids that were dysmorphic, possibly due to the

stress induced during the infection (Figure 4.19B). These were often infected by multiple E.

vermiformis sporozoites. However, these dysmorphic organoids seemed to die, possibly as a

consequence of infection.

It was observed that, at 21 hours post-infection, endogenous parasites push the nuclei

above, below or to the side of the cell, while sporozoites start to fold back onto themselves.

In multi-budded organoids, we observed that sporozoites are mostly located at the crypt

sites (Figure 4.20A). As shown before, there was a decrease in the number of intracellular

parasites compared to the previous time point (Figure 4.20B).
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Fig. 4.20 E. vermiformis-infected organoids (21 hours post-infection)

Immunofluorescence z-stack of 1 µm slices of E. vermiformis-infected small intestine
organoids. (A) Sporozoite were fold back onto themselves (white arrows) (B) E. vermiformis
sporozoite folding back onto itself with a prominent central nucleus. Scale bar = 30 µm.
Figures are representative of at least three independent experiments.

In vitro, E. vermiformis schizonts were observed at 45 hours post-infection (Figure 4.21).

These were consistently located at the crypt sites of the small intestine organoids. Schizonts

were multinucleated and found in different levels of maturation, typically only one schizont

per organoid bud.
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Fig. 4.21 E. vermiformis-infected organoids (45 hours post-infection)

Immunofluorescence z-stack of 1 µm slices of E. vermiformis-infected small intestine
organoids. (A) Immature E. vermiformis schizonts (B) E. vermiformis are localised at
the crypt site of the organoids (white arrows). Scale bar = 30 µm. Figures are representative
of at least three independent experiments.

At 69 hours post-infection, we occasionally observed the first generation of merozoites,

which were small and curved (Figure 4.22A). These are motile and capable of re-infecting

in neighbouring epithelial cells to further evolve into second generation schizonts. These

are typically organised in clusters and mostly localised at the crypt site of the small intestine

organoids (Figure 4.22A). The nuclei in immature schizonts were randomly arranged, whereas

in mature ones they were bigger and aligned around the periphery of the schizont (Figure

4.22B).

At 96 hours post-infection, second generation schizonts were bigger, multinucleated and

mostly matured (Figure 4.23). Again, schizonts were clustered in the organoid crypts.
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Fig. 4.22 E. vermiformis-infected organoids (69 hours post-infection)

Immunofluorescence z-stack of 1 µm slices of E. vermiformis-infected small intestine
organoids. (A) Second generation E. vermiformis schizonts clustered at the crypt site
of the organoid. (B) E. vermiformis mature schizont show nuclei aligned around its periphery
(white arrows). Scale bar = 30 µm. Figures are representative of at least three independent
experiments.
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Fig. 4.23 E. vermiformis-infected organoids (96 hours post-infection)

Immunofluorescence z-stack of 1 µm slices of E. vermiformis-infected small intestine
organoids. (A and B) Second-generation E. vermiformis schizonts are clustered at the
crypt site of the organoids (white arrows). Scale bar = 30 µm. Figures are representative of
at least three independent experiments.
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Interestingly, at 117 hours post-infection, mature schizonts encompassing well defined

merozoites were still observed. In some cases, these schizonts were observed outside the

organoid, in the matrix (Figure 4.24A). Moreover, the second generation of E. vermiformis

merozoites were observed (Figure 4.24B), which were considerably longer than the ones

observed at 69 hours. These were mostly localised in the matrix and even though they are

known to be motile and capable of infecting neighbouring cells, after 117 hours I could not

detect the presence of intracellular parasites in the small intestine organoids.
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Fig. 4.24 E. vermiformis-infected organoids (117 hours post-infection)

Immunofluorescence z-stack of 1 µm slices of E. vermiformis-infected small intestine
organoids. (A) Mature second generation E. vermiformis extracellular schizonts. (B) Second-
generation E. vermiformis merozoites (white arrows). Scale bar = 30 µm. Figures are
representative of at least three independent experiments.

Altogether, these data show that E. vermiformis sporozoites were able to infect small

intestine organoids epithelial cells and successfully replicate at least two rounds of asexual

development.



102 Eimeria spp.-infected small intestine organoids as a model of infection

4.7 Optimisation of the initial infection dose of E. falciformis

Having established a reliable system to study asexual stages of E. vermiformis infection in

vitro, I asked whether the same protocol would work with a different Eimeria spp., specifically

E. falciformis, which in vivo infects epithelial cells from the colon and caecum.

Variables of the protocol that are directly related to reducing organoid stress, such as

the organoid stage of development, the homogenisation process and the time of incubation,

were kept as previously defined. Specifically, 3 to 4 day-old organoids were recovered

and homogenised with a 21 G needle; the co-incubation period of E. falciformis with small

intestine organoids was kept under 5 minutes. Thus, I proceeded with the optimisation of

the initial infection dose of E. falciformis to small intestine organoids, and the study of P/S

influence in the process of E. falciformis invasion.

Three E. falciformis doses of infection were tested, specifically 500, 2,500 or 5,000

sporozoites per 100 small intestine organoids, in the presence or absence of P/S (Figure

4.25). After a 5 minute incubation at 37º C, infected organoids were washed and plated in

50 % matrigel. E. falciformis-infected small intestine organoids were fixed at 4 and 21 hours

post-incubation, stained and infection efficiency was quantified by immunofluorescence.

As I had observed for E. vermiformis, there were no significant differences when E.

falciformis infected organoids were cultured in the presence or absence of P/S (Figure 4.25A

to 4.25F). So, for the subsequent experiments, P/S was added to the culture medium.

Moreover, the data showed that an initial dose of infection of 2,500 and 5,000 sporozoites

per 100 organoids led to approximately 50% of infected organoids at 4 hours post-infection,

in contrast to what was observed with 500 sporozoites, where there were only about 20% of

infected organoids (Figures 4.25A, 4.25C and 4.25E). The course of E. falciformis infection

from 4 to 21 hours post infection followed the same decay pattern as it was observed

for E. vermiformis infection, both in terms of number of parasites and the percentage of

infected organoids (Figures 4.25A to 4.25D). Exceptionally, this trend was not observed
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Fig. 4.25 E. falciformis infection efficiency is impacted by the initial co-culture ratio of
sporozoites per organoids

Small intestine organoids were recovered at day 3 or 4 post-passage and co-cultured with
5,000 (A, B), 2,500 (C, D) or 500 (E, F) E. falciformis sporozoites per 100 organoids for
5 minutes, in basal medium, at 37º C, in the presence (green) or absence (orange) of P/S.
Infected organoids were seeded in 25 µl droplets of 50% matrigel and cultured in complete
organoid medium. (A, C, E) The number of intracellular E. falciformis sporozoites per
organoid was quantified by immunofluorescence at 4 and 21 hours post-infection. Scatter
plots represent mean (± SD). Significance was determined by unpaired t-test with Welch’s
correction. (B, D, F) The percentage of infected organoids was also determined. Mean (± SD)
and linear regression were plotted. n.s. = non-significant. Data pooled from 2 independent
experiments.
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when infection was induced with 500 E. falciformis sporozoites per 100 organoids (Figure

4.25E and 4.25F). This was probably due to the low number of organoids infected from the

start of the infection, which was also associated with a noticeable low number of parasites

per organoid.

Interestingly, there is no significant differences between the results achieved with an initial

dose of infection of 2,500 or 5,000 E. falciformis sporozoites to 100 organoids (Figure 4.25A

to 4.25D). Higher concentrations were tested, however these led to organoid death (data not

shown). Therefore, it seems that with 2,500 E. falciformis sporozoites per 100 organoids

there is a plateau of the number of cells infected, as we see no significant increase when

organoids are infected with 5,000 sporozoites. Since there were no microscopical differences

that indicated a higher stress level induced in organoids by the highest concentration tested,

compared with 2,500 sporozoites, an initial dose of 5,000 E. falciformis sporozoites per 100

organoids was used in the subsequent experiments.
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4.8 The asexual development of E. falciformis in vitro

Having established the protocol for E. falciformis infection of small intestine organoids,

I wanted to investigate the parasite’s life cycle progression in vitro. For that, infected

organoids were maintained in culture for at least 7 days, which corresponded to the in vivo E.

falciformis pre-patent period [179]. Complete cell culture medium was renewed every 2 to 3

days. E. falciformis-infected organoids were fixed at 4, 32, 69, 93, 117, 140 and 230 hours

post-incubation, stained and analysed by immunofluorescence.

After invading the small intestine organoids, in vitro E. falciformis sporozoites were

rounding-up at 4 hours post-infection. As seen before, the stress induced by the protocol

appeared to damage some organoids, inducing a dysmorphic morphology (Figure 4.26).
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Fig. 4.26 E. falciformis-infected organoids (4 hours post-infection)

Immunofluorescence z-stack of 1 µm slices of E. falciformis-infected small intestine
organoids. (A) Multiple intracellular sporozoites per small intestine organoid (white ar-
rows). (B) Dysmorphic small intestine organoid (white arrow) infected with E. falciformis
sporozoites. Scale bar = 30 µm. Figures are representative of at least three independent
experiments.

At 32 hours post infection the first-generation trophozoites was observed, showing

a central nucleus and two peripheral retractile bodies (Figure 4.27A). Additionally, and
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knowing that E. falciformis development in vivo is not synchronous, first generation schizonts

were also observed, with their nuclei aligned around the periphery of the schizont (Figure

4.27B). Moreover, all intracellular stages pushed the infected epithelial cell nucleus to the

side (Figure 4.27B).
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Fig. 4.27 E. falciformis-infected organoids (32 hours post-infection)

E. falciformis-infected small intestine organoids. (A) Cross-section showing an intracellular
E. falciformis trophozoite with a central nucleus and two peripheral refractile bodies (white
arrows). (B) Cross-section showing a first generation E. falciformis schizont with its nuclei
centrally aligned (white arrows). Scale bar = 5 µm. Figures are representative of at least
three independent experiments.

At 69 hours post-infection, multi-nucleated E. falciformis second generation schizonts

were located mostly at the crypt site of small intestine organoids (Figures 4.28A and 4.28B).

Mature E. falciformis schizonts consisted of merozoites closely packed and intertwined with

each other. The merozoites’ nuclei were located at the same level around the schizont. The

schizonts started bursting out of the epithelial cells at 93 hours post-infection (Figure 4.29A).

They were long, being about 20 µm in length. However, at this time point, mature second

generation E. falciformis schizonts were still observed (Figure 4.29).
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Fig. 4.28 E. falciformis-infected organoids (69 hours post-infection)

Immunofluorescence z-stack of 1 µm slices of E. falciformis-infected small intestine
organoids. (A and B) Second generation E. falciformis schizonts. Scale bar = 10 µm.
Figures are representative of at least three independent experiments.
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Fig. 4.29 E. falciformis-infected organoids (93 hours post-infection)

Immunofluorescence z-stack of 1 µm slices of E. falciformis-infected small intestine
organoids. (A) Second generation E. falciformis merozoites (white arrow) (B) Mature
E. falciformis schizonts. Scale bar = 5 µm. Figures are representative of at least three
independent experiments.
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At 117 hours post-infection I could observe what I hypothesise to be third generation

schizonts, located at the crypt site of the small intestine organoids. These were round and

smaller than the second generation ones. Also, the number of parasites per organoid decreases

substantially (Figure 4.30).
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Fig. 4.30 E. falciformis-infected organoid (117 hours post-infection)

E. falciformis-infected small intestine organoid. Cross-section showing a mature E. falci-
formis schizont. Scale bar = 5 µm. Figures are representative of at least three independent
experiments.

Interestingly, at 140 hours post-infection different E. falciformis stages were observed.

There were second generation merozoites that were still visible in the matrix (Figure 4.31A).

We also observed round schizonts, that probably correspond to the E. falciformis third

round of asexual replication. They were mature and consisted of merozoites with their

nuclei aligned in the centre of the schizont (Figure 4.31B). There were alongated and bigger

schizonts, that possibly belong to the second generation (Figure 4.31C). Finally, merozoites,

which were smaller in size when compared to the second generation ones that could belong

to either first or third generation schizonts, were observed. Because the replication of E.

falciformis is known to be asynchronous, it is difficult to distinguish the first from the third

or the second from the fourth schizogony.
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Fig. 4.31 E. falciformis-infected organoids (140 hours post-infection)

E. falciformis-infected small intestine organoids.(A) Z-stack of 1 µm slices. E. falciformis
merozoites. (B) Cross-section showing a mature E. falciformis schizont. Encapsulated
merozoites show their nuclei centrally aligned within the schizont. (C) Z-stack of 1 µm
slices. Mature intracellular E. falciformis schizonts. (D) Cross-section showing E. falciformis
sporozoites. Scale bar = 5 µm. Figures are representative of at least three independent
experiments.
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At 230 hours post-infection there was a sharp decrease in the number of intracellular

parasite. E. falciformis schizonts could be observed, possibly third generation, at the crypt

site of the small intestine organoids (Figure 4.32). However, I did not observe any of the

E. falciformis sexual stages of development and, after this time point, no parasites were

observed in the small intestine organoids.
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Fig. 4.32 E. falciformis-infected organoid (230 hours post-infection)

Cross-section of a E. falciformis-infected small intestine organoid. Immature E. falciformis
schizont. Scale bar = 30 µm. Figures are representative of at least two independent experi-
ments.

Altogether, data showed that using small intestine organoids as an in vitro infection model

for E. falciformis allows to mimic its in vivo asexual development. However, this model is

not sufficient to allow the study of E. falciformis’ sexual development.
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4.9 Discussion

To create an in vitro system able to meet the needs of Eimeria spp., I started by establishing

a small intestine organoid model. Based on the protocol described by Sato and colleagues

[16], I was able to establish a stable primary cell culture of intestinal epithelial cells. These

small intestine organoids showed self-renewing capabilities, and a crypt-villus architecture

that closely resembled the gut histology. Furthermore, organoids showed an exponential

growth after passage (Figure 4.4), a consequence of the continuous budding events which

are reminiscent of crypt fission [180]. The continuous self-renewal of epithelial cells led to

an accumulation of dying cells in the lumen. The presence of distinct specialised epithelial

cells within the small intestine organoids was also confirmed. As previously described,

Paneth cells constitute the niche for Lgr5+ stem cells, and these were both localised at the

designated "crypt sites" of the organoid (Figures 4.3A and 4.3B) [27, 16]. The presence

of enteroendocrine and goblet cells was also confirmed (Figures 4.3C and 4.3D). Finally,

F-actin and nuclear staining revealed a single epithelial cell layer (Figure 4.3).

Small intestine organoid cultures were kept for up to 6 months, as it has been previously

shown that they are able to retain their characteristics for more than 8 months [16]. In order

to understand better and manipulate the behaviour of small intestine organoids, I optimised

the concentrations of matrigel and R-spondin1 in the culture system.

At the crypt base, there is an enrichment of laminin (α1 and α2), in accordance with

which laminin-rich matrigel has proven to be of greater importance for the support of the

intestinal epithelial growth [181][16]. To my knowledge, there have not been previous reports

showing how different matrigel concentrations impact organoid growth. Thus, a titration

of increasing doses of matrigel was performed. There were no differences in the organoid

surface area among the different culture conditions (Figure 4.6). However, when organoids

were cultured in 20% matrigel, at day 5 post-passage they showed large dark centres, which

sometimes masked the whole organoid. Organoids generally burst and cellular debris was
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found spread across the matrigel layer. This is possibly a consequence of limited access to

laminin and other proteins essential for organoid growth, a result of a low concentration of

matrigel.

Next, recombinant human R-spondin 1 was replaced by R-spondin 1 supernatant for

economic reasons. No significant differences in architectural structure of the organoids were

found between the enrichment of growth medium with human recombinant R-spondin 1 or the

supernatant (Figure 4.8). Therefore, R-spondin 1 supernatant was used for the maintenance

of organoid cultures and experimental work.

Having established a stable small intestine organoid culture, I started applying this model

to the study of host-pathogen interactions.

Most observational studies with Eimeria spp. have, so far, been performed in vivo. In

order to isolate the different variables involved in the immune response against E. vermiformis

or E. falciformis, an in vitro model of infection using small intestine organoids was established.

Many Eimeria spp. have been maintained in different cell culture systems and have shown

varying degrees of development. For example it has been shown that in vitro development

of E. bovis is sustained in bovine, human and porcine endothelial cell lines, bovine foetal

gastrointestinal cells (BFGC), Madin-Darby bovine kidney (MDBK) cells, African green

monkey kidney epithelial (Vero) cells [148], bovine colonic epithelial cells (BCEC) [149],

bovine umbilical vein cells (BUVEC) and bovine spleen lymphatic endothelial cells (BSLEC)

[150, 151]. These systems proved useful to study different properties of the parasite-host cell

interactions, although the completion of the E. bovis life cycle in vitro has not been achieved.

In vitro culture models for the avian parasite E. tenella have also been thoroughly investi-

gated. In 1998, Kelleher and Tomley described the first protocol for transient transfection of

E. tenella sporozoites[182]. This protocol was further developed and transfected parasites

were cultured in primary chicken kidney (PCK) cells. E. tenella showed completion of its

endogenous development in vitro [144, 152].
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Even though Eimeria spp. had been extensively studied, only a few studies reported the

in vitro culture of E. vermiformis or E. falciformis. In 1977, Kelley and Youssef cultured

E. vermiformis sporozoites in bovine kidney cells, Madin-Darby bovine kidney (MDBK)

cells and primary cultures of whole mouse embryos. The authors described the in vitro

development of first generation schizonts and merozoites [145]. Adam and colleagues, used

MDBK or PK-15 cells for the study of E. vermiformis sporozoite invasion. The authors

did not state, however, whether the parasites were able to progress though their life cycle

[146]. Later, Rose and coworkers, described the development of E. vermiformis sporozoites

into fully matured schizonts 45 hours after infection of murine fibroblast-like L-929 cell.

The authors also replicated this result in rat epithelial-like cells (RATEC) but the parasite

development was slower [147]. No further attempts at E. vermiformis development in vitro

have been described. The study of E. falciformis in vitro is also documented. Stange and

colleagues, infected mouse intestinal epithelial cell line CMT-93 cells with E. falciformis

sporozoites and observed the in vitro completion of their first schizogony at 39 hours post-

infection [110]. Altogether, it seems that Eimeria spp. can benefit from a cell culture system

rich in different epithelial cell types, as shown with PCK cells for E. tenella. Therefore,

in our studies, we used small intestine organoids, which encompass the main epithelial

cell types found in the intestinal epithelium in vivo. Additionally, the organoid structural

organisation mimics that present in vivo. In particular, cells are polarised towards the lumen

of the organoid, and are organised into crypts and villi.

I successfully established an infection protocol for E. vermiformis and E. falciformis

infected small intestine organoids. This has proven to be more efficient than using a two-

dimensional cell culture system, as both E. vermiformis and E. falciformis were able to

progress with their life cycle beyond their first schizogony.

Fist, I aimed at standardizing the size of organoids before subjecting them to infection.

For that, a 25 G needle was used, which is employed for organoid passage, or a 21 G needle,
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which would accommodate bigger organoids. The data showed that infection of organoids

homogenised with a 25 G needle was not possible, as organoids were dead after a 5-minute

incubation with E. vermiformis sporozoites. This could be related to a loss of their structural

organisation, and as a consequence the organoids would no longer be fit for sporozoite

invasion. Therefore, a 21 G needle was used to homogenise organoids prior to infection.

Nonetheless, this step appeared to be of importance as it "opens" the organoid, allowing

sporozoites access to their lumen which I hypothesise is a critical event for effective infection.

The data also suggest that matrigel limits the ability of sporozoite invasion, both for E.

vermiformis and E. falciformis. As shown in Section 4.3.1, small intestine organoids were

viable in low matrigel densities, down to 20%. However, even with 20% matrigel, organoids

were not efficiently infected by the parasite. As merozoites seem not to have a motility

problem in the presence of the matrigel, we hypothesised that the "opening" of the matrix

scaffold is not the limiting factor. I could not exclude the possibility of sporozoite interaction

with proteins present in the matrigel, which could misguide and alter the behaviour of the

parasite, thus limiting invasion efficacy. Therefore, the solution consisted in a complete

removal of the matrigel from the organoids followed by a short incubation with the E.

vermiformis or E. falciformis sporozoites. This incubation period was optimised to minimise

organoid stress induced by lack of matrigel since, as shown by the data, uninfected organoids

were dead after 30 minutes’ incubation in the absence of matrigel. Without the matrigel

support, organoids cannot maintain their three-dimensional structure, which may compromise

their physiological organisation and, consequently, their crypt-villi gradients of growth and

development factors would also be disturbed. Additionally, without matrigel, organoids

would have no access to proteins essential for their development which are exclusively present

in the matrix. Hence, I limited the sporozoite-organoid incubation time to 5 minutes (Figure

4.10). Even though this protocol was used among different parasite batches, after each E.

vermiformis or E. falciformis stock passage, the incubation time was tested and had to be
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adjusted to between 2 and 5 minutes. Each batch optimisation took into account the invasion

efficiency of the sporozoites and the damage induced to the small intestine organoids, thus

enabling standardised start conditions among different parasite stocks.

Interestingly, the data shows that the initial infection dose required for an effective E.

vermiformis infection is higher than for E. falciformis, as the organoids are generated from

small intestine crypts, the target site of infection of E. vermiformis. This can be related with

many factors. For example,we know that the colon does not have specialised Paneth cells,

thus we can assume that there are some differences at the cellular level between the two

intestinal regions. In vivo, these differences might give E. falciformis a greater challenge to

invade cells, thus requiring a better adaptation from the parasite. Moreover, the colon has a

protective thick mucus layer, so that the access to epithelial cells here is more difficult when

compared to the access to epithelial cells from the small intestine. Again, E. falciformis

could be better adapted to invade intestinal epithelial cells in adverse conditions.

One question that remains unanswered is why E. falciformis specifically infects cae-

cum and colon in vivo, as in vitro it easily infects epithelial cells that mimic the cellular

composition and structural organisation of the proximal small intestine epithelium.

The results showed that both E. vermiformis and E. falciformis sporozoites were able to

develop in vitro beyond what has previously been described. Specifically, both species are

able to progress though their first schizogony [147, 110].

According to the latest description of the E. vermiformis life cycle by Rose and Millard, E.

vermiformis goes through three schizogonies before initiation of its sexual development [183].

In vivo, after 4 hours inoculation, intracellular E. vermiformis sporozoites were observed

in both the tips of the villi and the crypts of Lieberkühn. However, from 8 to 24 hours

post-inoculation the majority of the sporozoites were localised in the epithelial cells of the

intestinal crypt [178, 183]. This observation could explain why there is a decrease in the

number of parasites per intestinal organoid from 4 to 21 hours post-infection, assuming that
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the remaining parasites are at the crypt site of the organoid. This is difficult to determine

categorically as organoids are in their first stages of development, and their crypt sites (buds)

are not very well defined.

In vivo, from 16 to 24 hours post-inoculation, the E. vermiformis sporozoite starts to fold

back on itself [178, 183]. Similarly, in our culture system, I observed that the sporozoites

started to round-off, and are often enlarged, at 21 hours post-infection (Figure 4.20).

At 48 hours post-inoculation some first generation schizonts have matured in vivo and

contain 40-80 merozoites [183]. In my in vitro model, I was able to observe that most

sporozoites had developed into schizonts at 45 hours post-infection. However, the confocal

analysis did not have sufficient resolution to determine the number of enclosed merozoites

(Figure 4.21). Additionally, I could still observe free first-generation merozoites at 69 hours

post-infection (Figure 4.22 A).

As I observed in vitro, in vivo second-generation schizonts developed in the crypts and

base of the villi (Figure 4.22). In vivo, their mature development was seen at 72 hours

post-inoculation when they contained 50-70 merozoites [183]. In vitro, the maturation

process of second-generation schizonts was seen only at 96 hours post-infection (Figure

4.23) and second-generation merozoites were only observed at 117 hours post-infection

(Figure 4.24). In vivo, mature third generation schizonts were seen at 80 hours post-infection,

and E. vermiformis’ earliest mature gametocysts were seen at 168 hours post-inoculation

[183]. However, I did not observe the development of these stages in the in vitro model of

infection. This could result from many factors. First, organoids might no longer be fit for

infection. As organoids were one week old when I observed second generation schizonts,

their lumen is filled with debris and their growth starts to get compromised by the limited

availability of matrigel proteins. I tried to passage the E. vermiformis infected organoids into

fresh matrigel, both at 69 and 96 hours post-infection. However, even though the parasite is

intracellular at this time points, I did not observe any infected cells after passage. Second,
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the signals involved in the development of E. vermiformis are not very well understood and

could be missing in the system. For example, it is known that E. bovis modulates the host

cell LDL-cholesterol metabolism to increase its growth and success of replication from the

first stages of development [184].

The life cycle of E. falciformis was described in detail by Mesfin and Bellamy, and shown

to consist of four schizogonies followed by a gametogony [179]. In vivo, trophozoites were

initially seen at 18 hours post-inoculation, with a clear definition of their retractile bodies and

eccentric nuclei. Similarly, at 32 hours, I observed some trophozoites present in the small

intestine organoids with an identical morphology (Figure 4.28A).

At 48 hours post-inoculation, a few mature first-generation schizonts were described in

vivo. Their maturation peaked at 60-72 hours post-inoculation, together with the peak of

first-generation merozoites [179]. In my in vitro model, immature first-generation schizonts

were observed at 32 hours post-infection (Figure 4.28B). However, I missed the mature first

generation schizonts as well as the first-generation merozoites.

E. falciformis immature second generation schizonts were observed in vivo at 72 hours

post-inoculation [179]. The peak of maturation and merogony was observed at 96 hours

post-inoculation. Merozoites were small and curved. Similarly, immature second-generation

schizonts were observed at 69 hours post organoid infection (Figure 4.29), whereas maturation

was seen at 93 hours post-infection (Figure 4.30). However, given that first and third

generation merozoites are known to be long and slightly curved, with an average length

of 15.5 µm [179], I believe that the merozoites that I occasionally observed at 93 hours

post-infection belong to the first-generation (Figure 4.30B).

Mature third-generation schizonts were seen in vivo between 108 ad 120 hours post-

inoculation [179]. However I could not tell if the schizonts observed in vitro at 117 hours

post-infection belonged to the second or third generation (Figure 4.32).
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E. falciformis fourth-generation schizonts were seen between 132 and 150 hours post-

inoculation and were morphologically similar to those of the second-generation [179]. In

contrast, I could no longer distinguish between the different stages of E. falciformis devel-

opment in vitro (Figure 4.32). At 140 hours post-infection merozoites were observed that

were long and slightly curved which, according to the in vivo descriptions, could be from the

first or third-generation (Figure 4.32A). Additionally, I observed merozoites that were small

and curved which could be from the second or fourth generation (Figure 4.32D). Several

schizonts were also observed, with different shapes at different levels of maturation (Figure

4.32B and 4.32C). Gametogony stages were first seen in vivo at 144 hours post-inoculation

[179]; however, they were not observed in my in vitro model. Some schizonts were observed

at 230 hours post-infection but, after this time point, I could no longer see any E. falciformis

development stages in the organoid. Again, the interruption of E. falciformis development

could be related to the fitness of the organoid or lack of metabolites. For example, it is known

that xanthurenic acid, a by-product of tryptophan catabolism, is a gametocyte-development

factor and is crucial for E. falciformis development [176]. Nonetheless, supplementation of

the culture medium of infected organoids with various concentrations of xanthurenic acid

at different time points did not reveal any further parasite development. This could be an

indication that E. falciformis gametocyte development is dependent on a combination of

different favourable factors.

Even though I was not able to induce completion of E. vermiformis or E. falciformis life

cycles in vitro, progress was made compared with previous efforts. Multiple schizogonies

were achieved, possible due to the structural and cellular complexity of the small intestine

organoid model. This represents a valuable tool for the study of host-pathogen interactions,

notably the study of maintenance of the epithelial barrier integrity upon infection and the

study of epithelial immunity.



Chapter 5

Intestinal epithelial response against E.

vermiformis infection

5.1 Introduction

After the successful establishment of a small intestine organoid culture system suitable

for the asexual development of E. vermiformis and E. falciformis, I decided to study how

intestinal epithelial cell (IECs) activation can induce protection against E. vermiformis

infection. Knowing that interferon (IFN)-γ plays a crucial role in immunoprotection against

E. vermiformis [126], and knowing that intestinal epithelial homeostasis is regulated by

IFN-γ [185], I started by investigating in detail how the presence of IFN-γ in the system

might influence the host-E. vermiformis interactions. This analysis was complemented with

the investigation of how various cytokines may play a role in the organoid protection against

E. vermiformis.

The role of various cytokines, such as IFN-λ , interleukin (IL)-13, IL-17 and IL-22,

in the maintenance or immunoprotection of the intestinal barrier after infection, are well-

established.
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IFN-λ production by epithelial cells is typically induced by protection of the intestine

viral infections [186, 187]. Furthermore, it has been shown that, after viral infection epithe-

lium is conferred by the synergistic action of IFN-λ and IL-22 signalling the activation of

the transcription factor STAT1 and the induction of IFN-stimulated genes [188].

Besides its role in the regeneration of the intestinal epithelium, IL-13 is known to regulate

the differentiation of goblet cells [189, 190]. Steenwinckel and colleagues showed that IL-13

overexpression is a driver of goblet cell hyperplasia. In addition, goblet cell hyperplasia

induced by IL-23 or IL-9 overexpression leads to an increase in mucin expression regulated

by IL-13-dependent pathways [19].

IL-17 has been implicated in the regulation of the immune response against Eimeria ssp..

It is known that the expression of IL-17A leads to a decrease in E. tenella oocyst shedding,

through an induced impairment in the schizont formation and inhibition of the migration of

infected cells [191, 192]. Furthermore, expression of IL-17A has also been implicated in the

immune response against E. falciformis. It has been observed that an in vitro IL-17A-treated

intestinal epithelial cell line has reduced parasite development [110].

IL-17 and IL-22 can synergise to induce innate immune responses in IECs. However, IL-

17 is known to be an inflammatory cytokine whereas IL-22 induces a protective/regenerative

response [193]. Nonetheless, IL-17 and IL-22 are known to act synergistically to enhance

the production of antimicrobial peptides [194]. IL-22 has also been implicated in protection

against E. falciformis. It has been shown that the expression of IL-22 leads to a significant

reduction of E. falciformis development in vitro [110].

Given the important role of IFN-γ in protection against E. vermiformis infection, an

IFN-λ , IL-13, IL-17 and IL-22 in the maintenance and protection of the intestinal epithelial

barrier, I investigated how these cytokines contribute to the small intestine organoid response

against E. vermiformis infection. Furthermore, I also performed a screen of the innate

response cytokines that are produced by E. vermiformis-infected organoids.
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5.2 Effect of IFN-γ on E. vermiformis-infected organoids

To study the immune activation of IECs, I used the previously established (Chapter 4) E.

vermiformis-infected small intestine system. Immune control of E. vermiformis is mediated by

IFN-γ in vivo [126, 135]. Furthermore, it has been shown that IFN-γ inhibits E. vermiformis

growth in both fibroblasts and epithelial cells [147]. Therefore, I investigated how IFN-γ

impacts E. vermiformis development in the small intestine organoid model.

5.2.1 IFN-γ stimulus leads to IEC activation

First, in order to have a better understanding of the behaviour of small intestine organoids in

comparison with the in vivo intestinal epithelium, I analysed RNA sequencing data acquired

by Middendrop and colleagues on small intestine organoids and small intestine villi or crypts

(GEO: GSE53297) [195]. The FastQ raw data were mapped by TopHat to a reference genome,

GRCm38 (mm10), into a BAM file. Data, including only unique alignments, were analysed

on SeqMonk software. Besides confirming a high level of similarity of gene expression

between organoids and the small intestine, data analysis showed specifically that organoids

express the receptor for IFN-γ at a steady state (data not shown).

Second, I aimed to confirm if IEC signalling in small intestine organoids was triggered by

IFN-γ treatment. As shown before, 3-day old organoids exhibited the presence of different

specialised epithelial cells. Based on this result, infection with E. vermiformis was performed

in 3 or 4 day-old organoids, as it has been shown that at this stage organoid development

resembles the in vivo counterpart. Therefore, 3 and 5 day-old organoids were stimulated with

2 ng/ml of mouse recombinant IFN-γ , for 6 hours.

The expression of both IDO1 and CXCL9 is known to be regulated by IFN-γ and has

been implicated in resistance against pathogens like Toxoplasma gondii [196, 197]. Thus,

the relative expression of Ido1 and Cxcl9 was measured by RT-PCR and normalised against

the non-treated control (Figure 5.1).
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Fig. 5.1 IFN-γ-stimulated small intestine organoids

Three- or five- day old small intestine organoids were stimulated with 2 ng/ml of mouse
recombinant IFN-γ for 6 hours. Technical triplicates were collected for each condition. Data
is representative of gene expression levels, normalised to Hprt. Non-treated control = 1. Data
are representative of two independent experiments.

The results showed that the relative expression of both Ido1 and Cxcl9 is increased after

IFN-γ treatment of day 3 small intestine organoids. Additionally, the expression of both

genes are equally increased in 5 day-old organoids, suggesting that organoids are responsive

in a homogeneous way through their development.
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5.2.2 IFN-γ treatment of E. vermiformis-infected organoids

Having established that organoids were responsive to treatment with mouse recombinant

IFN-γ , I decided to submit E. vermiformis-infected organoids to IFN-γ treatment. Thus,

as previously described, 3 to 4 day-old small intestine organoids were infected with E.

vermiformis sporozoites and seeded in 50% matrigel. After matrigel polymerisation, complete

organoid medium containing 0, 0.5 or 2 ng/ml of recombinant IFN-γ was added to the

wells. To determine the effect of the treatment on the growth of the parasite, the number

of intracellular E. vermiformis was determined for each condition at 4, 21 and 45 hours

post-infection. Additionally, the percentage of infected organoids was calculated (Figure

5.2).

The results showed a significant increase in the number of intracellular parasites in the

0.5 ng/ml IFN-γ-treated organoids when compared to the non-treated control (Figure 5.2A).

This effect was also observed at 4 hours post-infection in the organoids treated with 2 ng/ml

IFN-γ (Figure 5.2A). However, no differences in the percentage of infected organoids were

observed between the different conditions (Figure 5.2B). Again, as seen before (Section 4.6),

the number of infected organoids decreased over time, which also related with a decrease in

the percentage of infected organoids. This was observed for all conditions, independently of

IFN-γ treatment (Figure 5.2).
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Fig. 5.2 IFN-γ-stimulated small intestine organoids after E. vermiformis infection

Three- to four- day old small intestine organoids were infected with E. vermiformis and
treated with 0 (green), 0.5 (orange) or 2 ng/ml (blue) of mouse recombinant IFN-γ . (A) The
number of intracellular E. vermiformis was determined at 4, 21 and 45 hours post-infection.
Mean (± SD) and non-parametric t-test with Welch’s correction was plotted. (B) Percentage
kinetics of infected organoids. Mean (± SD) and linear regression was plotted. Data are
representative of at least two independent experiments. N.S. = Non-stimulated **P < 0.01
***P < 0.001.
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In addition, microscopic analysis of E. vermiformis-infected organoids showed that

despite the differences in the numbers of intracellular parasites, E. vermiformis development

is not compromised. At 4 hours post-infection, multiple intracellular sporozoites were

observed (Figures 5.3A to 5.3C) and, at 21 hours post-infection, E. vermiformis sporozoites

started to fold back onto themselves (Figures 5.3D to 5.3F). At 45 hours post-infection, the

first generation of schizonts was observed (data not shown).
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Fig. 5.3 Development of IFN-γ-stimulated small intestine organoids after E. vermiformis
infection

Immunofluorescence z-stack of 1µm slices. E. vermiformis-infected small intestine organoids
untreated (A, D), treated with IFN-γ 0.5 ng/ml (B, E) or IFN-γ 2 ng/ml (C, F), at 4 and
21 hours post-infection. Data are representative of at least two independent experiments.
Scale bar = 30 µm.
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5.2.3 E. vermiformis infection delays organoid development

In my microscopic analysis there were indications that IFNγ treatment was inducing a de-

crease in the total number of organoids in culture (Section 5.2.1). E. vermiformis-infected

small intestine organoids were seeded among all conditions from a homogeneous cell suspen-

sion. Thus, the number of organoids seeded per well at the day of infection was comparable.

Interestingly, IFN-γ-treated organoids, showed a sharp decrease in the total number of

organoids in culture from 21 to 45 hours post-infection (Figure 5.4).
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Fig. 5.4 Absolute number of E. vermiformis-infected organoids after IFN-γ treatment

Three- to four- day old small intestine organoids infected with E. vermiformis or non-infected
controls were treated with 0 (green), 0.5 (orange) or 2 ng/ml (blue) of mouse recombinant IFN-
γ . The absolute number of organoids was determined. Mean (± SD). Data are representative
of at least two independent experiments.

This result suggested that IFN-γ had a detrimental effect on the viability of the small

intestine organoids. To further evaluate the outcome of IFN-γ stimulation in both infected

and non-infected small intestine organoids, their development was quantified based on their

phenotype (Figure 5.5). Organoids were classified into four groups: (i) cysts, (ii) organoids

with 1 to 2 buds, (iii) organoids with 3 to 6 buds and (iv) organoids with more than 6 buds.
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Fig. 5.5 Development of IFN-γ-stimulated small intestine organoids after E. vermiformis
infection

Three- to four- day old small intestine organoids infected with E. vermiformis or non-infected
controls were treated with 0 (green), 0.5 (orange) or 2 ng/ml (blue) of mouse recombinant
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organoids with 3 to 6 buds (D) organoids with more than 6 buds. Mean (± SD) was plotted.
Data are representative of at least two independent experiments.
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The data showed no developmental differences across the IFN-γ-treated organoids when

compared to the non-treated controls. However, there was a consistent difference between

the E. vermiformis-infected organoids when compared to the non-infected controls. E.

vermiformis-infected organoids had a higher percentage of cysts over the time of infection

(Figure 5.5A), accompanied by a lower number of multi-budded structures (Figures 5.5C

and 5.5D). Altogether, the data suggest that E. vermiformis infection inhibits organoid

development.

Organoid development inhibition and the decrease of the absolute number of organoids af-

ter infection, seemed to correspond to an increase in the number of burst organoids, observed

by microscopy. Thus, I next quantified the number of organoids that were burst. To be consid-

ered a burst organoid, I defined two inclusion criteria: (i) being a multi-budded organoid and

(ii) displaying an open lumen, which could be confirmed by Phalloidin immunofluorescence

staining (Figure 5.6).

The analysis showed that at 21 and 45 hours post-infection, infected organoids display

a higher number of burst organoids compared to the non-infected controls. Yet, this effect

was intensified when infected organoids were treated with IFN-γ . Furthermore, at 45 hours

post-infection, there was a distinct correlation between higher concentration of IFN-γ and a

higher percentage of burst organoids, both in infected or non-infected organoids. Altogether,

these data suggest that IFN-γ was having an adverse effect in the maintenance of organoid

structure integrity.
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Fig. 5.6 Development of IFN-γ-stimulated small intestine organoids after E. vermiformis
infection

Three- to four- day old small intestine organoids infected with E. vermiformis or non-infected
controls were treated with 0 (green), 0.5 (orange) or 2 ng/ml (blue) of mouse recombinant
IFN-γ . The number of burst organoids was determined. Mean (± SD) and non-parametric
t-test with Welch’s correction was plotted. Data are representative of at least two independent
experiments.
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5.3 IL-13 activation of IECs leads to a decreased number

of intracellular E. vermiformis

As previously described, it is well established that IFN-λ , IL-13, IL-17 and IL-22 play

important roles in the maintenance and protection of the intestinal barrier. Therefore, in

this section, small intestine organoids were infected with E. vermiformis and complete

organoid medium was supplemented with 2 ng/ml of IFN-γ , IFN-λ , IL-13, IL-17 or IL-22.

To quantify the effect of the cytokine treatment, the absolute number of intracellular parasites

per organoid and the percentage of infected organoids was determined (Figure 5.7).

As seen before, E. vermiformis organoids treated with 2 ng/ml of IFN-γ showed a signifi-

cant increase in the number of intracellular parasites at 4 hours post-infection. No differences

were seen at 21 and 45 hours post-infection (Figure 5.7). Additionally, there were no dif-

ferences in the number of intracellular parasites in the E. vermiformis-infected organoids

treated with IFN-λ , IL-17 or IL-22, in comparison with the non-treated control (Figures

5.7C, 5.7G and 5.7I). However, in the case of IL-22, inconsistent results were obtained. A

total of 4 experiments were performed, 2 of which showed no differences while the other

2 showed a significant decrease in the number of intracellular parasites at both at 4 and 21

hours post-infection (data not shown).´

Interestingly, treatment with 2 ng/ml of IL-13 led to a significant reduction of the number

of intracellular E. vermiformis across all time points (Figure 5.7E).

Overall, no statical differences were observed in the percentage of infected organoids

between the cytokine-treated conditions and the non-treated control (Figures 5.7B, 5.7D,

5.7F, 5.7H and 5.7J).

Altogether, the screening of the different cytokines suggested a role for IL-13 in epithelial

protection against E. vermiformis infection. Moreover, the data obtained from IL-22-treated

E. vermiformis-infected organoids suggest that IL-22 might also play a role in the interaction
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between the epithelial cells and the parasite. However, further investigation would be required

to confirm if and how IL-22 induces a protective effect against E. vermiformis infection.
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Fig. 5.7 IFN-γ , INFλ , IL-13, IL-17 and IL-22 treated small intestine organoids after E.
vermiformis infection

Three- to four- day old small intestine organoids infected with E. vermiformis (orange) or
non-infected controls (green) were treated with 2 ng/ml of IFN-γ (A, B), IFN-λ (C, D), IL-13
(E, F), IL-17 (G, H) or IL-22 (I, J). The number of intracellular E. vermiformis and their
percentage were determined at 4, 21 and 45 hours post-infection. Data are representative of
at least two independent experiments. Mean (± SD) and non-parametric t-test with Welch’s
correction were plotted. Data are representative of at least two independent experiments.
*P < 0.05.

To further investigate the roles of IL-13 or IL-22 in the context of in vitro E. vermiformis

infection, dose titrations were performed in order to evaluate if the effect seen was dose-

dependent. Thus, E. vermiformis-infected organoids were stimulated with 0, 5, 10 or 20 ng/ml

of mouse recombinant IL-13 or mouse recombinant IL-22. To determine the effects of the

cytokine treatment, the number of intracellular parasites was determined (Figure 5.8).
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Fig. 5.8 Effect of dose titration of recombinant IL-13 or IL-22 on small intestine organoids
after E. vermiformis infection

Three- to four-day old small intestine organoids were infected with E. vermiformis and treated
with 0 ng/ml (green), 5 ng/ml (orange), 10 ng/ml (grey) or 20 ng/ml (blue) of mouse recom-
binant IL-13 (A) or IL-22 (B). The number of intracellular E. vermiformis was determined
at 21 post-infection. Mean (± SD) and non-parametric t-test with Welch’s correction were
plotted. Data are representative of at least two independent experiments. *P < 0.05 **P < 0.01
***P < 0.001.

The results showed that treatment with 5 or 10 ng/ml of mouse recombinant IL-13 led

to a reduction of the number of intracellular parasites per organoid (Figure 5.8A). However,

no significant differences were observed between the organoids treated with 5 or 10 ng/ml

of mouse recombinant IL-13. A significant reduction of the number of intracellular E.

vermiformis was also seen when infected organoids were treated with 10 or 20 ng/ml of

mouse recombinant IL-22 (Figure 5.8B). IL-22 is known to promote intestinal epithelial

proliferation [198]. By supplementing organoid medium with mouse recombinant IL-22 I

induced an acceleration of the organoid growth. Consequently, when the data from 21 hours

post-infection, a high number of organoids was burst in the IL-22-treated conditions (data

not shown). Therefore, the reduction in the number of intracellular parasites could be an

indirect effect of the alterations induced to the organoid by the IL-22 treatment.

Further investigation would be required to dissect the mechanisms involved in the poten-

tial protection against E. vermiformis conferred by both IL-13 or IL-22.
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5.4 Screening of small intestine organoids cytokine produc-

tion after E. vermiformis infection

The intestinal epithelium is exposed to numerous cytokines during inflammation. These

cytokines are typically produced by the cells that are present in the local environment

and by the intestinal epithelial cells themselves [199]. In order to further understand the

interaction between the intestinal epithelium and pathogens, I investigated the ability of

small intestine organoids to produce cytokines. For that, 3- to 4-day old organoids were

infected with E. vermiformis and supernatant was collected at 4, 21, 45, 69 and 96 hours

post-infection. Medium was renewed at 45 hours post-infection. For the quantification

of cytokine production, I used the LEGENDplex mouse inflammatory panel. This assay

provides higher detection sensitivity than traditional ELISA methods, and included the

quantification of 13 cytokines, including: IL-1α , IL-1β , IL-6, IL-10, IL-12p70, IL-17A,

IL-23, IL-27, CCL2(MCP-1), IFN-β , IFN-γ , TNF-α , and GM-CS.

Disappointingly, the data collected showed no production of any of the above-mentioned

cytokines by the E. vermiformis-infected small intestine organoids, at any time point (data

not shown). The assay protocol did not fail to work, as the standard curve was correctly

acquired. This result does not necessarily mean that small intestine organoids are incapable

of producing cytokines after infection. Given the ratio between the number of organoids and

volume of medium per well, there is a possibility that the assay was not sensitive enough for

the detection of protein production by small intestine organoids.
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5.5 Discussion

In this chapter, I wanted to further investigate the interplay between the host intestinal

epithelial cells and E. vermiformis. Therefore, because the importance of IFN-γ in the

protection against E. vermiformis infection had been previously established, both in vivo

and in vitro [147, 134], E- vermiformis-infected small intestine organoids were treated with

mouse recombinant IFN-γ . The results of this showed that treatment with IFN-γ led to

a significant increase in the number of intracellular parasites per organoid; however, the

percentage of infected organoids remains unchanged (Figures 5.2, 5.7A and 5.7B). This

was a surprising result, as previous reports consistently associated IFN-γ with a protective

effect against E. vermiformis infection. Specifically, Rose and colleagues showed that E.

vermiformis development in murine fibroblast-like (L929) cells was inhibited by treatment

with recombinant IFN-γ . Interestingly, cell pretreatment was required for an effective

impairment of E. vermiformis growth, and the length of its duration was directly related to

the reduction in the number of parasites. Furthermore, they showed that if IFN-γ treatment

was given 24 hours post-infection or later, it did not confer protection as it had no effect

on the development of sporozoites [147]. In the E. vermiformis-infected small intestinal

organoid model, IFN-γ treatment was administered after sporozoite invasion of epithelial

cells. Moreover, by the time medium was administered the cells had been incubated with

the sporozoites for 15 min, due to matrigel polymerisation. Therefore, I hypothesise that the

increase in the the number of intracellular E. vermiformis could be the result of an indirect

consequence, a negative effect induced by IFN-γ on the host epithelial cells. Furthermore, it

was shown that IFN-γ has a detrimental effect over the IECs, which is strongly supported

by the fact that non-infected IFN-γ-treated IECs showed an increase in the number of burst

organoids over the first 45 hours post-treatment (Figure 5.6) that is accompanied by a decrease

in the absolute number of organoids (Figure 5.4). IFN-γ is a pleiotropic cytokine with both

pro- and anti-inflammatory roles in the context of intestinal inflammation [200]. Therefore,
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an optimal balance of the levels of IFN-γ might be required to induce a protective response

against E. vermiformis. Additionally, is has been shown that in vivo microbiota can induce

the production of IFN-γ by immune cells at the intestinal barrier, consequently conferring

on the host a higher protection to infection [201]. Therefore, in order to ’mimic’ the in vivo

conditions for E. vermiformis, pre-treatment of small intestine organoids with low doses of

recombinant IFN-γ might be required.

Data also suggest that E. vermiformis infection has a detrimental effect on organoid

viability, shown by the significant increase of burst organoids (Figure 5.6) and decrease

of the absolute number of organoids in culture up to 45 hours post-infection (Figure 5.4),

when compared with the non-infected controls. This could be a result of the sporozoite

invasion process. Alternatively, E. vermiformis could be interfering with the availability of

essential mechanisms for IEC proliferation. It has been shown that a variety of infectious

organisms, including parasites like Giardia intestinalis, are able to induce the up-regulation

host of arginases, consequently leading to a reduction of arginine, which in turn leads to

a reduction in the proliferation of IECs [202]. Furthermore, there are multiple examples

of IEC proliferation arrest by infectious pathogens, through various mechanisms, such as

inhibition of host cell cytokinesis or induction of mitochondrial dysfunction [203, 204].

Further studies would be required to investigate how E. vermiformis induces the suppression

of host proliferation mechanisms.

Treatment of E. vermiformis-infected organoids with mouse recombinant IL-13 led to

a significant reduction of the number of intracellular parasites, suggesting an impairment

of parasite growth. IL-13 is known to induce the production of mucin and the proliferation

of goblet cells [205, 189]. On the other hand, it has been shown that the number of goblet

cells decreases in association with the development of E.vermiformis [166]. Furthermore,

it has been shown that E. acervulina and E. tenella infection is followed by decrease in the

expression of IL-13 mRNA [206]. Specifically for E. tenella, it has been shown that IL-13
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limits the egress of E. tenella sporozoites [207]. In contrast, E. maxima infection induces an

increase in IL-13 mRNA expression [208]. This interplay between the IL-13 production and

the proliferation of goblet cells could be the reason why IL-13-treated organoids show a lower

number of intracellular E. vermiformis. Quantification of mucin production, or absolute

numbers of goblet cells, might be required to provide answers on how IL-13 triggering of

IECs confers protection against E. vermiformis.

IL-22 treatment of E. vermiformis-infected small intestinal organoids provided incon-

sistent results. Nevertheless, IL-22-treated organoids tended to show a lower number of

intracellular E. vermiformis. IL-22 plays a crucial role in the maintenance of the integrity of

the intestinal epithelial barrier. Additionally, IL-22 is known to facilitate the barrier defence

mechanisms against pathogens, such as T. gondii [209]. To further investigate the effects of

recombinant IL-22 on the E. vermiformis-infected organoids, a titration assay was performed.

These results showed a significant decrease of intracellular E. vermiformis which correlated

with the higher concentrations of recombinant IL-22. It is well established that IL-22 induces

proliferation of IECs. A Ki67 proliferation analysis would be useful to further confirm

my observations. Nonetheless, the data have shown that IL-22 activated small intestine

organoids have an increased percentage of burst organoids, compared with the non-treated

controls, which suggests that IL-22 leads to an accelerated proliferation of small intestinal

organoids, ultimately leading to a reduction in the absolute number of organoids. Therefore,

the observations on the reduction of the number of intracellular parasites could be a bias

resulting from the reduction of the total number of organoids or an indirect effect resulting

from the state of fitness of the small intestine organoids after treatment.

Finally, to grasp a better understanding on the epithelial cell response against E. ver-

miformis, I performed a screening analysis of the cytokine production by infected small

intestine organoids. LEGENDplex data analysis of the medium of E. vermiformis-infected

small intestine organoids did not detect the production of any of the target cytokines. This
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result does not necessarily mean that IECs do not produce any of the target cytokines. The

amount of cytokines produced could be below the detection level, given that I had seeded

about 100 organoids per droplet of matrigel, which was supplemented with 500µ l of organoid

complete medium.

Altogether, these data suggest that IEC signalling can be triggered by cytokines. Further

studies would be required to dissect the signalling mechanisms induced by IEC activation

after infection. Specifically, detailed screening of gene expression and protein production

by E. vermiformis-infected small intestine organoids would enable us to grasp a better

understanding of IECs in the context of eimerian infections. Clearly, further technical work

is required to define and design in vitro conditions in which to conduct these experiments.



Chapter 6

General Discussion

There is limited knowledge on how intestinal health is maintained. The intestinal epithelium

represents a dynamic ecosystem in which mutualistic interactions between the host and exter-

nal environment are cultivated. These interactions have a direct effect on immunophysiology

and intestinal homeostasis. As means to perturbing this homeostasis and so revealing more

about the fundamental mechanisms that maintain intestinal immunity at the epithelial barrier,

in this project I investigated how the intestinal epithelium responds to Eimeria spp. infection,

both in vivo and in vitro.

I first took an in vivo approach to the study of intestinal site-specific infection, namely

the distal small intestine, by infecting animals with a mouse-specific intestinal parasite -

E. vermiformis. In the context of mucosal inflammation, innate lymphoid cells (ILCs) have

been reported to contribute to the maintenance of the integrity of the intestinal epithelium

and defence against infection. Therefore, I focused on the ILC contribution to the protection

against E. vermiformis. The deficiency of ILCs alone showed no increased susceptibility

to E. vermiformis infection. Surprisingly, we observed that ILCs have a detrimental effect

on the susceptibility to E. vermiformis infection in immunocompromised mice. Similar

observations had been reported in which ILC2s were reported to have a role in inducing

inflammation in the airway [175]. However, levels of ILC2s are very low in the intestine [78].
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Therefore, in order to further understand the function of ILCs in the context of intestinal

infection and inflammation, studies of the ILC cell subsets involved in the immune responses

against E. vermiformis infection in a Rag2-sufficient or Rag2-deficient background would

be fundamental. These studies could shed light on the protective immunological function

of ILCs and the relevance of their function in parasitic diseases, thus contributing to the

development of new targeting strategies for the defence against infections, when ILCs are

shown to be associated with severe adverse events.

To study the interactions between intestinal epithelial cells (IECs) and pathogens, I

successfully implemented an in vitro model of small intestine organoids that were infected

with mouse E. vermiformis and E. falciformis, which infects distal small intestine and

caecum/colon, respectively. Despite the differences in the intestinal site of infection, here

I showed that by using a three-dimensional epithelium organoid model, which closely

resembles their in vivo counterpart, both Eimeria species completed various rounds of asexual

stages of development in vitro. However, given the complexity of this three-dimensional

model, the development of reliable read-out techniques is required to gather accurate data on

the spatial contribution of the various IECs.

Even though completion of the E. falciformis or E. vermiformis life cycles has not been

achieved, the established small intestine organoid model is a promising tool for the study of

the molecular and signalling mechanisms underlying the host-parasite or host intercellular

interactions. Understanding of IEC function and translation of this understanding to humans,

through the use of human biopsies to generate small intestine organoids, could contribute to

the identification and exploration of new personalised therapeutic al targets.
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Appendix A

Supplementary Data

A.1 Chapter 4: supplementary data

Table A.1 Phenotypic characterization of small intestine organoids: 20% matrigel

Days post-passage Cysts 1 to 2 buds 2 to 3 buds 6+ buds
1 42% 54% 3% 1%
2 17% 62% 12% 9%
3 8% 48% 27/% 17%
4 4% 26% 25% 45%
5 0% 12% 15% 73%

Table A.2 Phenotypic characterization of small intestine organoids: 50% matrigel

Days post-passage Cysts 1 to 2 buds 2 to 3 buds 6+ buds
1 54% 46% 0% 0%
2 26% 42% 25% 7%
3 18% 38% 27% 17%
4 2% 23% 19% 56%
5 2% 17% 11% 70%
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Table A.3 Phenotypic characterization of small intestine organoids: 70% matrigel

Days post-passage Cysts 1 to 2 buds 2 to 3 buds 6+ buds
1 57% 42% 1% 0%
2 45% 43% 10% 2%
3 17% 55% 23% 5%
4 8% 41% 28% 23%
5 3% 19% 21% 57%

Table A.4 Phenotypic characterization of small intestine organoids: 90% matrigel

Days post-passage Cysts 1 to 2 buds 2 to 3 buds 6+ buds
1 59% 39% 2% 0%
2 34% 46% 13% 8%
3 17% 55% 23% 5%
4 4% 26% 31% 39%
5 1% 24% 11% 64%

Table A.5 Phenotypic characterization of small intestine organoids: 10% R-spondin 1 super-
natant

Days post-passage Cysts 1 to 2 buds 2 to 3 buds 6+ buds
1 90% 39.3% 0.7% 0%
2 18% 61.3% 12.7% 8%
3 8% 54% 19.3% 18.7%
4 4.7% 40% 19.3% 36%
5 1.3% 15.3% 20.7% 62.7%

Table A.6 Phenotypic characterization of small intestine organoids: 20% R-spondin 1 super-
natant

Days post-passage Cysts 1 to 2 buds 2 to 3 buds 6+ buds
1 55.3% 44% 0.7% 0%
2 30% 49.3% 17.3% 3.3%
3 11.3% 52.7% 22% 14%
4 6% 25.3% 26% 42%
5 4% 17.3% 16% 62%
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