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Condensation:  1 

Combining fetal biometry and biomarkers reflective of placental insufficiency will help 2 

developing screening tests able to differentiate between healthy and growth restricted SGA 3 

fetuses  4 

 5 

Short title:  6 

Screening for fetal growth disorders  7 
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Abstract 1 

Fetal growth restriction (FGR) is a major determinant of perinatal morbidity and mortality. 2 

Screening for FGR is a key element of prenatal care but it is recognized to be problematic. 3 

Screening using clinical risk assessment and targeting ultrasound to high risk women is the 4 

standard of care in the USA and UK, but the approach is known to have low sensitivity. 5 

Systematic reviews of randomized controlled trials do not demonstrate any benefit from 6 

universal ultrasound screening for FGR in the third trimester, but the evidence base is not 7 

strong. Implementation of universal ultrasound screening in low risk women in France failed 8 

to reduce the risk of complications among small for gestational age (SGA) infants but did 9 

appear to cause iatrogenic harm to false positives. One strategy to making progress is to 10 

improve screening by developing more sensitive and specific tests with the key goal of 11 

differentiating between healthy small fetuses and those which are small through FGR. As 12 

abnormal placentation is thought to be the major cause of FGR, one approach is to combine 13 

fetal biometry with an indicator of placental dysfunction. In the past, these indicators were 14 

generally ultrasonic measurements, such as Doppler flow velocimetry of the utero-placental 15 

circulation. However, another promising approach is to combine ultrasonic suspicion of an 16 

SGA infant with a blood test indicating placental dysfunction. Thus far, much of the research 17 

on maternal serum biomarkers for FGR has involved the secondary analysis of tests 18 

performed for other indications, such as fetal aneuploidies. An exemplar of this is pregnancy 19 

associated plasma protein A (PAPP-A). This blood test is performed primarily to assess the risk 20 

of Down syndrome, but women with low first trimester levels are now serially scanned in later 21 

pregnancy due to associations with placental causes of stillbirth, including FGR. The 22 

development of "omic" technologies presents a huge opportunity to identify novel 23 

biomarkers for FGR. The hope is that when such markers are measured alongside ultrasonic 24 
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fetal biometry, the combination would have strong predictive power for FGR and its related 1 

complications. However, a series of important methodological considerations in assessing the 2 

diagnostic effectiveness of new tests will have to be addressed. The challenge thereafter will 3 

be to identify novel disease-modifying interventions, which are the essential partner to an 4 

effective screening test in order to achieve clinically effective population based screening. 5 

 6 
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Fetal growth restriction and small for gestational age: differences between two commonly 1 

used terms and clinical implications  2 

Fetal growth restriction (FGR) is defined as the failure of the fetus to reach its genetically 3 

determined growth potential. FGR is a major determinant of perinatal and childhood 4 

morbidity and mortality, and is also associated with the risk of chronic diseases in later life.1-5 

3 An obstacle to the study of FGR is that there are no gold standard definition and diagnostic 6 

criteria for this condition. The size of the fetus or newborn is quantified with reference to the 7 

normal range for gestational age and those with birthweight (BW) less than the 10th percentile 8 

are called small for gestational age (SGA). Inaccurately, the small size of the baby often 9 

becomes synonymous with FGR, and different thresholds for these measurements are used 10 

to “define” a FGR infant (e.g. <2500 g, <10th percentile, or <3th percentile).  11 

Although SGA and FGR are sometimes used interchangeably, the two terms are distinct, as 12 

many SGA infants are constitutionally small and healthy. Hence, clinical research on screening 13 

for FGR has to address two main issues: (i) the sensitive and specific detection of SGA fetuses, 14 

and (ii) the ability to discriminate between FGR and healthy SGA. The causes of FGR can be 15 

broadly categorized into maternal (e.g. pregnancy-associated hypertensive diseases, 16 

autoimmune disease, poor nutrition, substance abuse and teratogen exposure),4-6 fetal (e.g. 17 

multiple gestations, infections, genetic and structural disorders)7, 8 or placental. It is thought 18 

that placental dysfunction accounts for the majority of FGR cases.9 Hence, one the most 19 

promising approaches to screening for FGR is to combine ultrasonic fetal biometry with 20 

measurement of biomarkers of abnormal placentation in the mother's blood.  21 

Current status of screening with fetal biometry 22 
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In many countries, including the UK and USA, ultrasound scanning after the 20 week anomaly 1 

scan is only performed on the basis of clinical indications as universal ultrasound is not 2 

supported by the most recent Cochrane review.10 It is worth noting that the evidence base 3 

can be described as an absence of evidence rather than compelling high-quality evidence of 4 

the absence of clinical effectiveness of screening. This is due to a number of problems with 5 

the 13 studies analyzed in the systematic review, including limited statistical power and lack 6 

of an effective interventional strategy.11 Nevertheless, the current approach to screening for 7 

FGR is to assess the women for pre-existing risk factors, acquired complications of pregnancy 8 

and clinical examination (e.g. symphysis-fundal height [SFH] measurements) (Fig. 1). Women 9 

identified as high risk using these methods are then selected for ultrasonographic 10 

assessment. Screening for FGR is just one element of the universal ultrasound.12 Other 11 

elements include macrosomia, late presentation of fetal anomalies, abnormalities of amniotic 12 

fluid volume and diagnosis of undetected malpresentation. 13 

 14 

Ultrasonic markers of FGR 15 

Fetal biometry and Doppler flow velocimetry are the primary methods used currently to 16 

diagnose FGR. The use of ultrasound markers of FGR is discussed in detail elsewhere in this 17 

issue, and will be only briefly summarized here. An estimated fetal weight (EFW) is derived 18 

from ultrasonic measurements of head size, abdominal circumference and femur length, and 19 

an EFW centile is calculated using a reference standard.13, 14 While a single measurement of 20 

fetal size and the EFW<10th centile cut-off appears to be insufficient to discriminate growth 21 

restricted and healthy small fetuses, serial fetal biometry reveals the growth trajectory of the 22 

fetus, and this helps differentiate between healthy SGA and FGR.15, 16 Doppler flow 23 
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velocimetry provides information on the resistance to blood flow in the feto-placental unit 1 

and it features in several proposed FGR definitions.17 High resistance patterns of flow in the 2 

uterine and umbilical arteries in early and mid-pregnancy have been associated with an 3 

increased risk of preeclampsia, FGR and stillbirth.18-22 Other measurements associated with 4 

adverse pregnancy outcomes are middle cerebral artery (MCA) and ductus venosus flow 5 

resistance, and cerebroplacental ratio (CPR) (reviewed elsewhere).17, 18, 23 6 

 7 

Biochemical biomarkers for FGR 8 

Abnormal placentation leads to inadequate remodeling of maternal spiral arteries, altered 9 

uteroplacental blood perfusion and impaired materno-fetal exchange of nutrients, gases and 10 

waste products. These defects, collectively referred as placental insufficiency, are thought to 11 

be underlying mechanisms of placentally-related complications including FGR, preeclampsia 12 

and stillbirth. Hence, biochemical markers reflective of placental insufficiency become 13 

attractive tools to identify women at risk of these adverse pregnancy outcomes (Figure 1, 14 

Table 1). 15 

First trimester screening 16 

It is increasingly recognized that placental dysfunction leading to disease in the second half 17 

of pregnancy has its origins in the first trimester of pregnancy.24 Studies of associations have 18 

been facilitated by the secondary analysis of first trimester biomarkers derived from the 19 

placenta, which were evaluated in screening studies for aneuploidies. 20 

Down syndrome markers: PAPP-A and fβ-hCG 21 

Low maternal circulating levels of pregnancy associated plasma protein A (PAPP-A) and high 22 

concentrations of the free beta subunit of human chorionic gonadotropin (fβ-hCG) are both 23 
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associated with the risk of Down syndrome.25 PAPP-A determines the availability of the 1 

insulin-like growth factors (IGFs), key pregnancy growth hormones, as it is a protease that 2 

acts on IGF binding proteins. A causal role for PAPP-A in controlling fetal growth has been 3 

established in the PAPP-A knock out mouse.26 In women, low serum concentrations of PAPP-4 

A in the first trimester are associated with an increased risk of FGR, preterm delivery, 5 

preeclampsia and stillbirth.27-33 The last of these associations is particularly strong for stillbirth 6 

associated with placental dysfunction (preeclampsia, FGR and abruption).34 In the UK, and 7 

many other countries, low first trimester PAPP-A levels are an indication for late pregnancy 8 

ultrasonic assessment of fetal growth.35, 36 Human chorionic gonadotrophin (hCG) is 9 

predominantly produced by the placental syncytiotrophoblast cells.37 hCG is a glycoprotein 10 

composed of an α-subunit (common to luteinizing hormone, follicle stimulating hormone and 11 

thyroid stimulating hormone) and a β-subunit (unique to hCG). In first trimester Down 12 

syndrome screening the fβ-hCG is measured.25 In general, extremes of fβ-hCG in the first 13 

trimester are less strongly associated with adverse outcome than low PAPP-A.27, 30-33 14 

Other placental markers: PlGF, sFLT1, sENG, PP-13 and ADAM-12 15 

While many of the largest studies of first trimester markers have focused on secondary 16 

analysis of Down syndrome screening research, other investigators have focused on 17 

measuring proteins on the basis of a known role in placentation. Angiogenic factors play a key 18 

role in the extensive vasculature remodeling of the uterus during pregnancy. The placenta 19 

itself produces several factors with pro- or anti-angiogenic activity and regulation of their 20 

expression and secretion is necessary for optimal placentation, maternal adaptation to 21 

pregnancy and, consequently, fetal development and growth. Preeclampsia-like changes 22 

were induced in pregnant rats by adenoviral mediated expression of soluble fms-like tyrosine 23 
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kinase-1 (sFLT1)38 or soluble endoglin (sENG) alone or in combination with sFLT1.39 Placental 1 

growth factor (PlGF) is a pro-angiogenic factor highly expressed in placenta throughout all 2 

stages of pregnancy. It is readily detectable in maternal circulation where it may have direct 3 

effects on endothelial maintenance and well-being. Consistent with this role, low first 4 

trimester levels of this factor have been shown to be associated with an increased risk of later 5 

adverse perinatal outcome, including preeclampsia and SGA.31, 40, 41 The results are variable 6 

for anti-angiogenic factors. High maternal levels of sENG in the first trimester were associated 7 

with preeclampsia and SGA.41 However, results are less consistent for sFLT1.40, 42, 43 A large 8 

scale study employing correction of analyte levels using multiples of the median actually 9 

demonstrated that low sFLT1 levels were associated with an increased risk of SGA, preterm 10 

birth and stillbirth40 whereas data in later pregnancy indicate the opposite association (see 11 

below). These findings indicate that the commonly used sFLT1:PlGF ratio should be 12 

interpreted cautiously in the first trimester. Finally, increased attention has been paid to 13 

longitudinal changes of these factors during pregnancy, but the results are inconclusive.41, 44, 14 

45  15 

Data exist from a number of other proteins. Low maternal first trimester levels of placental 16 

protein 13 (PP-13), another protein regulating placental vascular development, have been 17 

reported in pregnancies complicated by SGA,31, 46 but results are, again, inconsistent.47, 48 18 

Similarly, A-disintegrin and metalloprotease 12 (ADAM12), a protease with similar function 19 

to PAPP-A, was reduced between 11 and 14 weeks in mothers who subsequently delivered 20 

small infants (BW<5th or <10th centile).31, 49, 50 21 

Second and third trimester 22 
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The screening efficacy of tests performed in the second and third trimester was assessed for 1 

two main reasons: (i) the availability of data collected during screening studies for the 2 

identification of aneuploidies and birth defects during the second trimester; (ii) the idea that 3 

measurements performed in the third trimester may have better predictive ability due to 4 

being temporally closer to the onset of disease.51 5 

Down syndrome and anomaly screening: AFP, total hCG, uE3 and inhibin A 6 

The second trimester quadruple screening is performed at 15-22 weeks of gestation (wkGA) 7 

and includes measurements of alpha fetoprotein (AFP), hCG (intact and/or its β subunit), 8 

unconjugated estriol (uE3) and inhibin A.52 The factors measured may also provide 9 

information on placental permeability (AFP) and endocrine activity (hCG, uE3 and inhibin A). 10 

Hence many studies have addressed the ability of these proteins to predict placentally-related 11 

pregnancy complications. 12 

Elevated maternal serum levels of AFP are associated with SGA (BW<5th centile) with or 13 

without preterm delivery53, 54 and stillbirth due to reduced BW (<5th centile).55 The 14 

combination of low PAPP-A in the first trimester and high AFP in the second trimester is 15 

particularly strongly predictive of severe FGR.56 57 In the FASTER trial, fβ-hCG alone (2.0 16 

MoM) was not associated with any adverse outcome studied. In contrast, maternal circulating 17 

AFP (2.0 MoM), Inhibin A (2.0 MoM) and uE3 (0.5 MoM) were significantly associated 18 

with an increased risk of delivering an SGA infant.58 The risk was particularly high when 19 

measurements were combined. In other studies, women with an elevation of hCG alone 20 

(threshold starting at >2.5 MoM) or in combination with high AFP had an increased risk of 21 

SGA.54, 59 Low levels of unconjugated estriol (uE3) alone or in combination with AFP and/or 22 

hCG were associated with SGA (BW<5th percentile).54, 60 23 
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Other placental markers: sFLT1, PlGF, ENG, hPL, uE3 1 

A number of large scale studies have analyzed biomarkers in the second and third trimester 2 

with the aim of identifying useful candidates for FGR screening. The SCOPE study recruited 3 

>5000 low risk women and has reported that maternal levels of sFLT1 and PAPP-A were 4 

decreased in pregnancies with SGA without maternal hypertension, whereas PAPP-A and PlGF 5 

were decreased in pregnancies with SGA and maternal hypertension.61 Multicenter studies 6 

conducted by Prof Kypros Nicolaides (King's College Hospital, London, UK) have assessed the 7 

predictive associations of a number of circulating biomarkers at different stages in the second 8 

and third trimesters. At 19-24wkGA, maternal PlGF was lower and AFP were higher in women 9 

who subsequently delivered an SGA infant preterm. Term SGA was associated with lower 10 

maternal levels of PlGF, sFLT1 and PAPP-A.53 When measured at 30-34wkGA, low PlGF and 11 

high sFLT1 were associated with delivery of an SGA infant62 and the associations were 12 

stronger for preterm SGA. At 35–37wkGA, PlGF and sFLT1 concentrations in the lowest and 13 

highest 5th centile, respectively, were associated with SGA.63 Moreover, extremes of the ratio 14 

have also been associated with the subsequent risk of intra-uterine fetal death.64 15 

Mothers with a reduced rate of decrease of the anti-angiogenic factor sENG between the first 16 

and second trimesters had a higher risk of adverse pregnancy outcome, including SGA 17 

(BW<10th centile).65 Moreover, as mentioned above, maternal plasma sENG concentrations 18 

remained elevated throughout the second and third trimester in patients destined to deliver 19 

an SGA neonate.41 Maternal serum levels of the hormones human placental lactogen (hPL) 20 

and uE3 were shown to be reduced in pregnancies with SGA fetuses in the second and third 21 

trimesters.66, 67 22 

Strength of prediction 23 
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A systematic review evaluated the strength of association between a wide range of 1 

biomarkers and utero-placental Doppler and different causes of stillbirth. The review 2 

concluded that only high resistance patterns of uterine Doppler in the second trimester and 3 

low PAPP-A in the first trimester had associations which were in the clinically useful range, 4 

with positive likelihood ratios of 5 to 15.68 Moreover, these strong associations were only 5 

observed for the sub-types of stillbirth attributed to placental dysfunction. However, the 6 

review did not report the combination of ultrasound and biomarkers. The same authors also 7 

evaluated 53 studies and 37 potential biomarkers for FGR screening, and suggested that none 8 

of the proposed maternal circulating factors had a high predictive accuracy.69 Their conclusion 9 

was that combining biomarkers with biophysical measurements and maternal characteristics 10 

could be a more effective strategy. Table 2 summarizes the strongest associations identified 11 

in the 2 meta-analyses.  12 

Combined assessment using ultrasonic biometry and biomarkers 13 

An international, prospective, multicenter observational study determined the prediction of 14 

SGA achieved by the combination of ultrasonic fetal biometry and maternal serum PlGF in 15 

women who were identified as clinically small for dates between 24-37wkGA. While the study 16 

demonstrated that median PlGF concentrations were lower in SGA pregnancies70 these 17 

authors reported that the combination of EFW and of PlGF had only modest test performance. 18 

However, it should be borne in mind that many SGA infants are healthy, i.e. they are 19 

constitutionally small. It would not be expected that PlGF, a test for pathology, would be 20 

strongly associated with the delivery of a healthy small infant. One of the studies from the 21 

King’s group reported that placental biomarkers measured at 35-37 weeks performed poorly 22 

as a screening test for perinatal morbidity.63 An important feature of that study was that the 23 
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results of ultrasound scans, performed at the same time as the biomarker, were reported and 1 

would have influenced clinical care. Both of these studies raise important questions about the 2 

methodological approach to future studies attempting to develop novel screening tests for 3 

FGR, and these are discussed below.  4 

We performed a prospective study of unselected nulliparous women, the Pregnancy Outcome 5 

Prediction (POP) study, which combined the use of ultrasound and biochemical markers, 6 

where the results of both were blinded.71, 72 The analysis of this study is on-going. However, 7 

we have published a preliminary report that the combination of ultrasonic EFW<10th 8 

percentile and an elevated sFLT1:PlGF ratio at 36wkGA was strongly predictive for late FGR 9 

(BW<10th centile plus perinatal morbidity and/or preeclampsia), with a positive likelihood 10 

ratio of 17.5 and a sensitivity and specificity of 38% and 98%, respectively.73 11 

 12 

Future directions 13 

Despite years of research, screening for FGR remains clinical. Implementation of ad hoc 14 

screening using ultrasound appears to cause more harm than good.11 This probably reflects 15 

the fact that, currently, the primary intervention to manage FGR is delivery of the infant. In 16 

the event of a false positive diagnosis in the preterm or early term weeks of gestational age, 17 

the effect will be to cause harm through the associations between earlier delivery and 18 

neonatal morbidity. The lack of progress could lead to the perception that the task being 19 

attempted is futile. However, there are a number of issues about the approach to this 20 

problem which have been relatively neglected. We believe that addressing some of the issues 21 

outlined below may help accelerate research into clinically useful tools for screening and 22 

intervention (Figure 3). 23 
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 1 

Identifying populations to screen 2 

One of the most important screening parameters is the positive predictive value (PPV) of the 3 

test. For the individual woman, this might, indeed, be her primary interest: how likely is it that 4 

she will experience an adverse event. The PPV is determined by two factors: the prior odds of 5 

disease and the positive likelihood ratio of the test. Much of the research on screening has 6 

focused on the latter. However, if a woman has a very low prior risk of an outcome, even a 7 

highly predictive test may result in a low absolute risk that she experiences disease. This issue 8 

suggests that screening efforts might initially focus on women who are high risk and 9 

nulliparous women. In the latter group the key marker of risk in pregnancy – previous 10 

pregnancy outcome – is necessarily absent. Screening studies that include a high proportion 11 

of parous women with previous normal pregnancies will tend to yield results with low PPVs. 12 

 13 

High quality studies of diagnostic effectiveness 14 

With the increasing awareness of the importance of Evidence-Based Medicine, it is universally 15 

recognized that new interventions, such as novel drugs, must be evaluated, wherever 16 

possible, by a double blind, randomized controlled trial (RCT). This is due to the biases that 17 

result from patients and their caregivers being aware of allocation to the novel treatment. 18 

The equivalent approach in studies of diagnostic effectiveness is to blind the results of the 19 

new test. If a research study of screening reveals the test result, it ceases to be purely a 20 

research study and becomes an ad hoc screening program. Such an approach may arise from 21 

a perception that it would be unethical to conceal the result of a screening test and is based 22 

on the assumption that revealing the result of the test would produce a net benefit. This is 23 

true for some situations, such as diagnosis of major placenta praevia by ultrasound scan. 24 
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However, given that screening for SGA in France actually seemed to result in net harm11 and 1 

given that routine ultrasound screening has not been shown to be safe and effective,10 it could 2 

equally be argued that revealing the result of an unproven screening test and intervening on 3 

the basis of the result is unethical. Similarly, there are several studies evaluating the 4 

combination of ultrasound and biomarkers where the ultrasound scan result is revealed but 5 

the biochemical tests are not. In these cases, the ability of the biochemical test to predict the 6 

adverse outcome may be underestimated due to interventions initiated by an abnormal 7 

ultrasound result. These issues underline the value of studies where all new elements of the 8 

approach to screening are conducted blind, wherever possible. These examples indicate that 9 

blinding of test results in studies diagnostic effectiveness is justified. Otherwise, it is very hard 10 

to see how progress on screening using new diagnostic tests in pregnancy can be achieved. 11 

 12 

Classification of SGA 13 

SGA is defined on the basis of an arbitrary threshold of birth weight percentile. It follows that 14 

many infants born SGA were healthy. Using unqualified SGA as an outcome may, therefore, 15 

lead to weaker associations with an effective screening test than would have been obtained 16 

if the analysis was focused on cases of SGA where the baby was small due to FGR. A number 17 

of studies of candidate biomarkers have shown stronger associations with preterm compared 18 

to term SGA. These results might indicate that FGR is more common at preterm gestational 19 

ages. However, another interpretation is that the population of SGA infants delivered preterm 20 

is enriched with cases of true FGR compared to SGA births at term. Similarly, the association 21 

between a true test of placental dysfunction and SGA is likely to be stronger when the 22 

outcome of SGA is combined with an indicator of maternal or perinatal morbidity, such as 23 

preeclampsia or asphyxia, respectively. Therefore, studies which simply report the screening 24 
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statistics for all SGA without reference to whether there was evidence supporting a 1 

pathological cause may underestimate the screening performance of an informative test. 2 

Assessment of new biomarkers may also be facilitated by phenotyping SGA using prenatal 3 

ultrasound. We have recently shown an association between SGA and low maternal plasma 4 

levels of the non-canonical NOTCH1 ligand delta-like 1 homolog (DLK1).74 Using genetically 5 

modified mice, it was demonstrated that during pregnancy maternal circulating DLK1 is 6 

mostly of fetal origin. This protein appears to provide a link between fetal demand and 7 

maternal metabolic adaptation to pregnancy. Altered maternal levels of DLK1 were recently 8 

measured in pregnancies complicated with preeclampsia.75 In our cohort, low DLK1 levels 9 

were associated with SGA only in presence of one or more ultrasonic indicators of FGR, and 10 

levels were not different in SGA without such markers (Figure 2). Interestingly, in every case 11 

of SGA with a high resistance pattern of umbilical artery Doppler, maternal serum DLK1 was 12 

lower than in the matched control. This also suggests that biomarkers might help define 13 

subgroups of causes of FGR. Recent studies in human placenta have correlations between 14 

methylation in the DLK1 domain and birth weight.76 15 

 16 

Developing multi-parameter models 17 

It is possible in the future that a single highly informative marker for FGR, or a subtype of FGR, 18 

might be identified on the basis of mechanistic understanding of the cause of the disease. 19 

However, in the meantime, it is more likely that screening tests for FGR will include multiple 20 

measurements, which are derived from both imaging procedures and measurement of 21 

biomarkers. Several studies adopting this approach have been described above.61-63, 73 22 

Development of screening models based on a multi-parameter assessment raises several 23 

challenges. These include measuring and scaling the given parameter to generate consistent 24 
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associations in different centers, combining multiple measures into a single predictive model, 1 

and accounting for interactions between parameters. Approaching this task has a number of 2 

common pitfalls, such as over-fitting statistical models leading to over optimistic prediction. 3 

These issues necessitate the use of statistical methods that account for optimism77 and 4 

underline the value of studies which assess the development and validation of the novel test 5 

in separate groups of patients.78, 79 These issues are particularly important when using "omic" 6 

methods which might yield hundreds or thousands of data points per patient. These methods 7 

carry a high risk of generating over-optimistic prediction and they require a rigorous 8 

methodological approach. Nevertheless, next generation sequencing (NGS) allows for 9 

unbiased interrogation of genomes or transcriptomes in clinical specimens, providing 10 

unprecedented opportunities to accelerate the discovery of novel biomarkers in FGR 11 

screening. A successful application of the NGS techniques to the biomarkers discovery field 12 

has been maternal circulating cell-free fetal DNA (cff-DNA) measurement for Down syndrome 13 

and trisomy 18 screening.80, 81 Elevated maternal cff-DNA levels have also been measured in 14 

pregnancies complicated by FGR compared to normal pregnancies,82 but more recent data 15 

were not always consistent with these initial findings.83, 84  16 

Given the key role of the placenta in the etiology of FGR, an alternative approach is to study 17 

the differences in the placental transcriptome comparing cases of FGR and controls. This may 18 

allow identification of  placental pathways altered in FGR and potential biomarkers for the 19 

condition although, so far, this approach has been extensively utilized in relation to 20 

preeclampsia.85-87 Development of biomarkers would follow either by measurement of 21 

differentially expressed RNA molecules (mRNAs, miRNAs and lncRNAs) or by measurement of 22 

the proteins encoded by the differentially expressed genes. The exemplar of this approach is 23 
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the identification of the role of sFLT1 in preeclampsia: microarray studies identified up-1 

regulation of FLT1 as one of the key changes in the preeclamptic placenta and this was 2 

paralleled by elevated levels of sFLT1 protein in the maternal circulation.38 Prof Stephen 3 

Tong’s group has used the alternative approach of measuring mRNAs in the mother’s plasma 4 

and they have identified a number of placental transcripts measured in maternal blood at 26-5 

30wkGA which were associated with the subsequent risk of term FGR.88, 89 Proteomic and 6 

metabolomic technologies offer theoretical advantages, because proteins and metabolites 7 

are potentially more closely linked to the phenotype under investigation than mRNA. One 8 

example of a validated proteomics study of FGR identified apolipoproteins CII and CIII in 9 

maternal serum of mothers with FGR compared to gestational age matched controls.90 10 

Despite the vast opportunities of “omic” research, there are still many challenges, including 11 

the difficulty related to handling large and highly complex datasets. To date, most “omic” 12 

studies assessing pregnancy disorders display several limitations: small sample sizes, lack of 13 

predictive ability, and the absence of validation experiments. A set of guidelines published by 14 

the Institute of Medicine91 may help standardisation of future “omic” research.  15 

 16 

Identifying novel biomarkers 17 

It is apparent from the summary above that many biomarkers identified for FGR were 18 

originally developed as predictive tests for other conditions, such as Down syndrome and 19 

preeclampsia. A PubMed search yields approximately 3 times the number of citations for 20 

genetic array studies of the placenta in preeclampsia compared with FGR. Moreover, given 21 

the issues of phenotyping discussed above, application of "omic" methods to the placenta in 22 

cases of SGA will require detailed phenotyping of the case. Hence, a further approach to 23 
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improving screening for FGR would be to increase the efforts to identify the biological 1 

pathways involved in the placenta in optimally phenotyped cases of FGR. 2 

 3 

Meaningful clinical outcomes 4 

An extension of the issues relating to phenotyping is the identification of clinically important 5 

outcomes when studying FGR. Studies which focus on SGA have a limited potential as this 6 

would not be a likely primary outcome in trials of screening and intervention until disease 7 

modifying therapies are available. The most serious adverse outcome of FGR is intra-uterine 8 

fetal death. However, this outcome affects about 4 per 1000 pregnancies. Even the highest 9 

estimates only indicate that 50% of stillbirths might be due to FGR.92 Other studies suggest 10 

that the proportion may be lower.93 In order to be powered to study stillbirth related to FGR, 11 

tens of thousands of women or, in the case of a very strongly predictive test, many thousands 12 

of women would need to be recruited. Given the expense involved, many studies use non-13 

lethal proxies of stillbirth due to FGR. While it is likely that true FGR has common features 14 

whether the baby survives or dies, the use of weak proxies will tend to obscure associations. 15 

One commonly used proxy is caesarean section for fetal distress, which is particularly 16 

problematic when it is employed in situations where the novel test result has been revealed. 17 

If the attending clinician is aware that a scan has identified a baby as suspected FGR, this could 18 

lead to an association with antepartum or intrapartum caesarean section for fetal distress 19 

even where the new test is not informative. There are a number of possible approaches to 20 

developing meaningful clinical outcomes. One might be to combine an assessment of the 21 

infant’s birth weight with anthropometric measures which support a diagnosis of FGR. This 22 

would allow some degree of separation between healthy SGA and FGR. However, this 23 

assumes that such measures are reproducible and will correlate with clinically meaningful 24 
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outcomes. One approach we have used is to combine SGA birth weight with clinical 1 

complications which are consistent with FGR. These include signs of fetal asphyxia or 2 

compromise, such as depressed 5 minute Apgar score, the presence of metabolic acidosis in 3 

cord blood gases obtained at delivery and admission to the neonatal intensive care unit.16 The 4 

last of these could reflect asphyxia or it could reflect other complications of FGR, such as 5 

hypoglycaemia. Finally, the co-existence of SGA and maternal preeclampsia is suggestive that 6 

the baby’s small size is more likely to be due to placental dysfunction and this could also have 7 

utility in differentiating between healthy and pathological SGA infants. 8 

 9 

The future for RCTs of screening and intervention 10 

Given the capacity for screening to cause harm, any future program of screening and 11 

intervention will need to be evaluated by an RCT. We have previously discussed some of the 12 

issues around the design of such studies.51, 94 If the primary outcome is clinically important it 13 

is likely that any trial will have to be very large (>10,000 women). Sample size can be reduced 14 

by randomizing screen positive women to revealing the result plus intervention versus 15 

concealing the result. It should also be self-evident that a trial of screening will only improve 16 

outcomes if the screening test is coupled to an effective intervention. At present, the primary 17 

disease modifying intervention is to deliver the baby. Given the strong associations between 18 

preterm birth and perinatal morbidity and mortality, we have suggested that this provides a 19 

rationale for focusing initial efforts on screening for FGR at term. However, mechanistic 20 

understanding of the causes of FGR could lead to the development of novel therapeutic 21 

approaches, such as re-purposing of existing drugs95 and gene therapy.96  22 
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Table 1. Maternal circulating biochemical markers for predicting FGR. 
 

BIOMARKER MAIN FUNCTION 

Changes in maternal circulating levels  
frequently associated with FGR 

1st trimester 2nd trimester 3rd trimester 

Down’s syndrome biomarkers     

 pregnancy associated plasma protein A,  
   PAPP-A 

 Protease activity towards insulin-like growth factor binding proteins (IGFBPs) 

 Decrease of insulin-like growth factors bioavailability and signaling ⬇ ⬇  
 human chorionic gonadotrophin,  
   hCG 

 Maintenance of progesterone secretion from the corpus luteum ⬇ ⬆  
 alpha fetoprotein,  
   AFP 

 Protein of fetal origin with similar function to albumin in the adult 

 Carrier-molecule for several ligands (bilirubin, steroids, and fatty acids)  ⬆  
 unconjugated estriol, 
   uE3 

 Estrogen agonist  ⬇ ⬇ 

 inhibin A 
 Negative feedback on pituitary follicle-stimulating hormone secretion, 

 Preventing ovulation during pregnancy  ⬆  
Angiogenic factors     

 placental growth factor, 
   PlGF 

 Member of the vascular endothelial growth factor (VEGF) family 

 Pro-angiogenic factor ⬇ ⬇ ⬇ 

 soluble fms-like tyrosine kinase-1 
   sFLT1 

 Decrease of plgf and VEGF bioavailability and signaling ⬆ , ⬇ ⬇ , = ⬆ 

 sFLT1:PlGF ratio  ⬆ ⬆ ⬆ 

 soluble Endoglin,  
   sENG 

 Decrease of TGF-β1 and TGF-β3 bioavailability and signaling ⬆ ⬆ ⬆ 

 Placental protein 13  
   PP-13 

 Promoting trophoblast invasion and spiral artery remodeling ⬇ , =   

Hormonal factors     

 A-disintegrin and metalloprotease 12,  
   ADAM12 

 Protease activity towards insulin-like growth factor binding proteins (IGFBPs) 

 Decrease of insulin-like growth factors bioavailability and signaling ⬇   

 human placental lactogen,  
   hPL 

 Induction of maternal insulin resistance and lipolysis 

 Induction of mammary glands development and milk production 
 ⬇ ⬇ 

 delta-like 1 homolog,  
   DLK1 

 Adipose tissue homeostasis  

 Maternal metabolic adaptation to pregnancy 
  ⬇ 
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Table 2. Predictive accuracy of maternal circulating biomarkers for stillbirth and fetal growth restriction. 
 

BIOMARKER Outcome 
Positive LR 

(95% CI) 
Negative LR 

(95% CI) 
Sensitivity (%) 

(95% CI) 
Specificity (%) 

(95% CI) 
Population 

(n) 

Down’s syndrome biomarkers      

 PAPP-A 

Stillbirth 3.3 (1.8–6.0) 0.9 (0.8–1.0) 15 (8–26)  95 (95–96) 2115897, 98 

Placental abruption and/or 
SGA-related stillbirth 

14.1 (9.3–21.4) 0.3 (0.1–0.8) 70 (40–89) 95 (95–96) 791934 

 hCG Stillbirth 2.8 (1.9–4.3) 0.4 (0.2–1.0) 70 (40–89) 75 (73–77) 240699 

 AFP Stillbirth 4.0 (3.4–4.7) 0.9 (0.9–0.9) 9 (8–11)  98 (98–98) 18680260, 100-106 

uE3 Stillbirth 4.0 (3.0–5.3) 0.9 (0.8–0.9) 15 (11–20) 96 (96–96) 5841758, 60, 107 

inhibin A Stillbirth 6.1 (4.0–9.3) 0.8 (0.8–0.9) 19 (12–27) 97 (97–97) 3314558  

PAPP-A + mat. characteristics  
+ US markers 

Stillbirth 3.5 (2.8-4.4) 0.7 (0.6-0.8) 35 (28-43) 90 (90-90) 33452108 

SGA-related stillbirth 4.4 (3.2–5.9) 0.6 (0.5–0.8) 44 (31–57) 90 (90–90) 33365108 

inhibin A + 
mat. characteristics 

Stillbirth 4.1 (2.8–6.0) 0.8 (0.8–0.9) 20 (14–29) 95 (95–95) 35253109 

Angiogenic factors       

PlGF 

FGR 1.3 (1.2–1.5) 0.9 (0.8–0.9) 38 (35–42) 71 (70–72) 570945, 110-118 

FGR with BW<5th centile and 
abnormal UT-Doppler 

2.0 (1.3–3.0) 0.5 (0.3–1.0) 65 (43–82) 67 (58–76) 124119, 120 

FGR with placental pathology 19.8 (7.6–51.3) 0.0 (0.0–0.3) 100 (70–100) 95 (88–98) 88117 

sFLT1 
FGR with BW<5th centile and 
abnormal UT-Doppler 

1.9 (1.3-2.6) 0.4 (0.2-0.9) 75 (53-89) 60 (50-69) 124119, 120 

 sFLT1:PlGF ratio 
FGR with BW<5th centile and 
abnormal UT-Doppler 

1.7 (1.2-2.4) 0.4 (0.2-1.0) 75 (53-89) 57 (47-66) 124119, 120 

sENG FGR with BW<5th centile 1.8 (1.4–2.3) 0.6 (0.5–0.7) 61 (52–69) 67 (60–7  35545 

sENG slope FGR with BW<10th centile 2.4 (1.4–4.3) 0.9 (0.8–1.0) 19 (14–27) 92 (88–95) 34665 
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VEGF FGR with BW≤2SD 4.4 (1.6–12.2) 0.5 (0.2–1.1) 56 (27–81) 88 (74–95) 49121 

Angiopoietin 
FGR with BW<10th centile and 
UA-Doppler 

4.3 (1.9–9.4) 0.1 (0.0–0.7) 92 (67–99) 78 (58–90) 36122 

Hormonal factors,  endothelial stress markers & cytokines     

ADAM12 FGR with BW<5th centile 2.2 (1.6–3.1) 0.9 (0.9–1.0) 12 (10–14) 95 (93–96) 194750, 123, 124 

IGFBP-1 FGR with BW<10th centile 2.7 (1.1–6.5) 0.8 (0.7–1.0) 24 (12–43) 91 (85–95) 172125 

PP-13 FGR with BW<5th centile 3.6 (2.8–4.7) 0.7 (0.6–0.8) 34 (27–42) 91 (90–92) 385446, 126, 127 

Leptin FGR with BW<10th centile 2.2 (1.4–3.5) 0.5 (0.3–0.9) 63 (41–81) 72 (63–79) 139128 

Fibronectin FGR with BW<10th centile 13.3 (5.0–35.0) 0.5 (0.2–0.8) 57 (33–79) 96 (90–98) 130129 

Homocysteine FGR with BW<10th centile 2.3 (1.7–3.1) 0.8 (0.8–0.9) 26 (19–33) 89 (87–90) 2088130, 131 

sVCAM-1 FGR with BW<10th centile 9.0 (3.9–20.7) 0.9 (0.7–1.0) 16 (7–30) 98 (97–99) 1404132 

sICAM-1 FGR with BW<10th centile 19.2 (11.5–32.1) 0.6 (0.5–0.8) 42 (28–58) 98 (97–99) 1404132 

IFN-γ FGR with BW<10th centile 2.8 (1.4–5.6) 0.7 (0.6–0.9) 35 (24–48) 87 (78–93) 128133 

IL-1Ra FGR with BW<10th centile 3.0 (1.7–5.1) 0.6 (0.4–0.8) 54 (42–67) 82 (71–89) 128133 

 
Abbreviations: LR, likelihood ratio; CI, confidence interval; SGA, small for gestational age; FGR, fetal growth restriction; BW, birthweight; UT, 
uterine artery; UA, umbilical artery; SD, standard deviation; PAPP-A, pregnancy associated plasma protein A; hCG, human chorionic 
gonadotropin; AFP, alpha fetoprotein uE3, unconjugated estriol; mat., maternal; PlGF, placenta growth factor; sFLT1, soluble fms-like tyrosine 
kinase-1; sENG, soluble endoglin; VEGF, vascular endothelial growth factor; ADAM12, A-disintegrin and metalloprotease 12; IGFBP, insulin-like 
growth factor binding protein 1; PP-13, placental protein 13; sVCAM, soluble vascular cell adhesion molecule; sICAM, soluble intercellular 
adhesion molecule; IFN-γ, interferon gamma; IL-1Ra, interleukin-1 receptor antagonist. Based on Conde-Agudelo et al (2013) and Conde-Agudelo 
et al (2015).68, 69 
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Figure legends 
 
Figure 1. Standard antenatal care in UK and biochemical markers measured throughout 

pregnancy. Biomarkers measured in clinical and research settings during pregnancy are 

plotted on a time scale representing the standard antenatal care for nulliparous women in 

the UK, which includes 10 routine midwife visits and additional visits for women delivering 

after 40wkGA.  

 

Figure 2. Low maternal DLK1 levels are associated with FGR. Scatterplot of differences in 

maternal plasma concentrations of DLK1. DLK1 concentration was measured in maternal 

plasma from pregnancies with SGA (BW<10th centile) and normally grown infants (n=43 

matched pairs; matching was based on maternal age, BMI, smoking status, fetal sex and mode 

of delivery). FGR indicators are: UT-PI in the 10th decile at 20wkGA (n=8 pairs); UA-PI in the 

10th decile at 36wkGA (n=10 pairs); ACGV in the 1st decile at 20–36wkGA (n=12 pairs). BMI 

indicates body mass index; UT-PI indicates uterine artery pulsatility index; UA-PI indicates 

umbilical artery pulsatility index; ACGV indicates abdominal circumference growth velocity. 

Horizontal bars represent the means of the differences. Modified from Cleaton et al, Nature 

Genetics 201674. 

 

Figure 3. Summary of key points to improve FGR screening.  

 
 
 
 
 
 
 
 
 








