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Integration of texture and disparity cues to surface slant in dorsal
visual cortex
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Murphy AP, Ban H, Welchman AE. Integration of texture and
disparity cues to surface slant in dorsal visual cortex. J Neuro-
physiol 110: 190 –203, 2013. First published April 10, 2013;
doi:10.1152/jn.01055.2012.—Reliable estimation of three-dimen-
sional (3D) surface orientation is critical for recognizing and inter-
acting with complex 3D objects in our environment. Human observers
maximize the reliability of their estimates of surface slant by integrat-
ing multiple depth cues. Texture and binocular disparity are two such
cues, but they are qualitatively very different. Existing evidence
suggests that representations of surface tilt from each of these cues
coincide at the single-neuron level in higher cortical areas. However,
the cortical circuits responsible for 1) integration of such qualitatively
distinct cues and 2) encoding the slant component of surface orien-
tation have not been assessed. We tested for cortical responses related
to slanted plane stimuli that were defined independently by texture,
disparity, and combinations of these two cues. We analyzed the
discriminability of functional MRI responses to two slant angles using
multivariate pattern classification. Responses in visual area V3B/KO
to stimuli containing congruent cues were more discriminable than
those elicited by single cues, in line with predictions based on the
fusion of slant estimates from component cues. This improvement was
specific to congruent combinations of cues: incongruent cues yielded
lower decoding accuracies, which suggests the robust use of individ-
ual cues in cases of large cue conflicts. These data suggest that area
V3B/KO is intricately involved in the integration of qualitatively
dissimilar depth cues.

three-dimensional perception; binocular disparity; cue integration;
fMRI; multivoxel pattern analysis

HUMANS EXPERIENCE the solid objects that populate their sur-
roundings from multiple viewpoints. To recognize and physi-
cally interact with such objects, the visual system requires an
estimate of the orientation of the object’s surfaces with respect
to the line of sight. This orientation is composed of tilt (rotation
in the image plane, such as the changing orientation of the
hands of a clock over time) and slant (rotation away from
frontoparallel, such as changes in the steepness of a hillside
road while driving). In estimating slant, the visual system is
faced with the difficult challenge of inferring the three-dimen-
sional (3D) surface structure using the information contained
within a pair of two-dimensional (2D) retinal images. Percep-
tion of surface slant represents a critical step in recognizing and
interacting with 3D objects and has been studied extensively
with psychophysical methods (Backus et al. 1999; Gillam and
Ryan 1992; Hillis et al. 2004; Knill and Saunders 2003;

Norman et al. 2006; van Ee and Erkelens 1998), yet its neural
basis remains poorly understood.

To achieve slant estimation, the human visual system ex-
ploits various sources of information that may be present
within the retinal inputs, such as binocular disparity, motion
parallax, texture, perspective, and shadow (Braunstein 1968;
Gibson 1950; Howard and Rogers 1995; Marr 1982). Given
this range of depth cues, the visual system is believed to
integrate signals to reduce noise and enhance perceptual judg-
ments (Landy et al. 1995). For instance, adults have greater
sensitivity to slant when two cues are available compared with
the individual component cues (Hillis et al. 2004; Knill and
Saunders 2003). However, relatively little is known about the
neural implementation of such cue integration computations.

Here we aimed to test the neural basis of the integration of
disparity and texture slant cues using human fMRI. To this end,
we exploited multivoxel pattern analysis (MVPA) to discrim-
inate patterns of fMRI activity that were evoked by viewing
surfaces with different slants. Thereby, we sought to quantify
the information about differences between the viewed stimuli
in different portions of the visual cortex. Logically, we might
expect a number of different outcomes based on the sensitivity
of a given area to different depth cues. First, consider an area
that is exclusively sensitive to a given cue, for example,
binocular disparity. The presence or absence of other cues
should have little effect on the information about disparity
contained in this area. Moreover, if different stimuli were
presented that contained the same disparity, the area would be
insensitive to stimulus differences. Such an area would consti-
tute a pure disparity-processing module, and while potentially
elegant from an engineering perspective, it would be biologi-
cally unwieldy and is empirically unlikely (Cumming and
DeAngelis 2001; Orban 2011; Parker 2007; Welchman 2011).
Second, an area might be sensitive to different aspects of the
cues that compose a slanted surface but represent this infor-
mation using different subpopulations. In this case, information
about depth from different cues would be colocated but not
integrated. The responses of this area would be expected to
change in line with manipulations of different cues, and stim-
ulus discrimination (based on the area’s activity) would im-
prove when two (or more) cues specified differences in slant
between the stimuli. Finally, an area might integrate informa-
tion from the different depth signals, thereby enhancing dis-
crimination performance when two or more cues specified the
same information about slant. Given that improved discrimi-
nation performance is expected under the second and third
scenarios, how can we differentiate them?
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We can conceptualize the information about different depth
configurations in terms of bivariate probability density distri-
butions for different slanted stimuli (Fig. 1, A and B). One way
for an ideal observer to discriminate between two such distri-
butions would be to use the optimal decision boundary. Under
this solution, slant estimates from the two cues remain inde-
pendent. The improved discrimination performance that this
computation would yield can be calculated from the quadratic
sum of the discriminabilities of the component cues (Fig. 1B).
Alternatively, the visual system might fuse component cue
dimensions into a single depth estimate. Under this solution,
improved discrimination occurs through a reduction in vari-
ance of the depth estimate.

To test which of these computations (independence or fu-
sion) the visual system uses to achieve improved discrimina-
tion performance for combined cues, we assessed changes in
fMRI responses related to independent manipulations of each
cue. Our logic was that fMRI responses to different depth
configurations should be more discriminable when texture and
disparity cues were congruent. Furthermore, the extent of this
improved discriminability provides a means of distinguishing
between the two alternative computations that might underlie
cue integration (Ban et al. 2012). In particular, we expect that
sensitivity to “single-cue” stimuli (Fig. 2; Texture, Disparity
stimuli) should be attenuated by the presence of the conflicting
cue only if depth estimates from the two cues are fused into a
common representation. In that case, performance for congru-
ent-cue stimuli will exceed that predicted by quadratic sum-
mation of performance for single-cue stimuli (Fig. 1C). In
contrast, if depth representations are colocated but remain
independent, then performance for combined-cue stimuli should
be predicted by quadratic summation. Using this logic, we used
MVPA to decode information about surface slants defined by

disparity, texture, and their congruent and incongruent combi-
nations.

While the experimental logic and methods employed here
have previously been used to test for cue fusion (Ban et al.
2012), there are two fundamental differences. First, we test two
qualitatively different types of cue: disparity and texture.
Whereas motion and disparity are computationally similar cues
that can both be used to compute absolute depth (given knowl-
edge of ego-motion, interpupillary distance, and gaze angle),
texture provides only relative depth information (Landy et al.
1995). Outputs from independent texture and disparity process-
ing circuits cannot therefore simply be averaged in order to
estimate depth. It remains an open question as to whether the
integration of qualitatively similar (motion and disparity) and
dissimilar (texture and disparity) cue pairings share a common
neural substrate. Second, the previous study assessed cue
combination for simple depth order relationships between fron-
toparallel surfaces. Here we test neural responses to slanted
surfaces—a far more behaviorally relevant depth structure that
is important for the estimation of extended surfaces and a
critical step in the processing of complex/curved surfaces and
solid 3D objects.

MATERIALS AND METHODS

Observers. Fifteen healthy observers from the University of Bir-
mingham with normal or corrected-to-normal vision participated in
the fMRI experiment. The mean age was 25.8 yr (range � 21–37 yr;
6 women, 9 men). Three participants’ data were excluded from
analysis because of excessive head movements during scanning,
which prevented voxel correspondence necessary for MVPA. Exces-
sive head movement was defined as �10 sharp head movements
(�1-mm displacement between consecutive volumes) or �4-mm total
displacement over the course of a 7-min run. After runs that exceeded
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Fig. 1. Illustration of the stimulus space and predictions for the discrimination performance of mechanisms based on the independent or fused use of depth cues.
A: an observer is presented with 2 different slanted stimuli (anaglyph stereograms at the top), which we denote with red and blue. We can conceptualize detectors
for these stimuli based on independent depth estimates from disparity and texture. These detectors yield an estimate for each stimulus with a certain probability
density function. The outputs of these detectors are conceptualized as bivariate Gaussian probability distributions (3D plot below)—with 1 distribution for the
blue stimulus and 1 for the red stimulus. The marginal projections (i.e., performance of the single-cue detectors) are illustrated on the walls of the 3D plot.
B: a planar projection of the bivariate Gaussians (color saturation indicates probability density) to illustrate 2 possible computations when using the information
from 2 depth cues. The red and blue stimuli could potentially be discriminated using either cue alone, but with some uncertainty (overlapping probability
distributions). Two computations for reducing this uncertainty are illustrated: Independence—separation orthogonal to the optimal discriminating boundary
(negative diagonal) and Fusion—multiplication of the probability densities associated with each cue. C: the idealized performance of a mechanism based on
Fusion (top) or Independence (bottom). Illustrations on right depict neural implementations within single voxels for the extreme cases of these 2 alternative
computations. Each sphere represents a neuronal population that encodes depth from either component cue (yellow and blue) or from a combination of cues
(green). An intermediate implementation (not depicted here) would contain all of these population types within a voxel. T, texture; D, disparity.
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these thresholds were excluded, three participants had fewer than five
remaining runs and so were excluded entirely as there were insuffi-
cient data for MVPA. In general, participants were able to remain still
throughout scanning (the mean maximum head displacement per run
for included participants was 1.2 mm vs. 2.8 mm for excluded
participants). Participants were screened for stereoacuity and contra-
indications to MRI prior to the experiment. All experiments were
conducted in accordance with the ethical guidelines of the Declaration
of Helsinki and were approved by the University of Birmingham
STEM ethics committee.

Stimuli. Stimuli were grayscale stereograms of textured planar
surfaces, with slant (rotation about a central horizontal axis) defined
independently by texture and disparity (Fig. 2, A and C). Surface
textures were generated by Voronoi tessellation of a regular grid of
points (1 � 0.1° point spacing) randomly jittered in two dimensions
by up to 0.3° (Knill and Saunders 2003; Nardini et al. 2010). Each
texture element (texel) was randomly assigned a gray level and shrunk
about its centroid by 20%. This created the appearance of “cracks”
between the texels, the width of which also varied with surface slant
and thus provided additional texture information. Textures were
mapped onto a vertical virtual surface and rotated about the horizontal
axis by the specified texture-defined slant angle, before a perspective
projection consistent with the physical viewing geometry was applied.
From this cyclopean view, binocular disparity was then calculated and
applied to each vertex based on the specified disparity-defined slant
angle.

Surfaces were presented inside a circular aperture with a radius of
3.5° and a cosine edge profile in order to blur the appearance of depth
edges. Stimuli were presented on a mid-gray background, surrounded
by a grid of black and white squares (75% density) designed to
provide an unambiguous background reference. Texture-defined po-
sition in depth—which corresponds to mean texel size—was random-
ized for each stimulus presentation by increasing point spacing in the
initial grid of points by �10%. This reduced the reliability of mean
texel size in a given portion of the stimulus as a cue to surface slant.
Disparity-defined position in depth was kept constant across all
stimulus presentations.

Stimuli in the single-cue conditions (Texture and Disparity) were
intentionally designed to contain a cue conflict for two reasons. First,

the premise of our test for cue fusion was that the presence of cue
conflict would reduce sensitivity to single-cue conditions only if cues
are fused, but not if they remain independent. Second, the presence of
both component cues in all stimulus conditions minimized low-level
differences that would otherwise complicate comparison of responses
to different conditions. For example, monocular presentation (which
is frequently used to isolate texture cues in behavioral studies) is
known to significantly affect both univariate and multivariate fMRI
responses (Büchert et al. 2002; Schwarzkopf et al. 2010). We pre-
sented all stimuli binocularly, and stimuli in the Texture condition
were given a disparity-defined slant of 0°. To attenuate the reliability
of the disparity cue for this condition, the disparity-defined position in
depth of each texel was randomly jittered between �2 arcmin.
Similarly, stimuli in the Disparity condition had a texture-defined
slant of 0°. Stimuli in the Incongruent condition consisted of each cue
signaling one of the two base slant angles (i.e., texture signaled �30°
and disparity signaled �60° or vice versa). For the behavioral exper-
iment, the increments applied to create test stimuli shifted texture- and
disparity-defined slants in opposite directions to each other (i.e., the
absolute slant of both cues either increased or decreased relative to the
base slants).

Stimuli were programmed and presented in MATLAB (The Math-
Works, Natick, MA) with Psychophysics Toolbox extensions (Brain-
ard 1997; Pelli 1997). Stereoscopic presentation in the scanner was
achieved by using two projectors (JVC, D-ILA SX21) containing
separate spectral interference filters (INFITEC). The two projections
were optically combined with a beam splitter and entered the scanner
room through a waveguide. This method produced negligible cross
talk between the two images, since the filtered emission spectra for the
two projectors contained little overlap. Stimuli were back-projected
(1,280 � 1,024, 52 � 41.6 cm) onto a translucent screen inside the
bore of the magnet and viewed via a front-surfaced mirror attached to
the head coil and angled at 45° above the observers’ heads. This
resulted in a viewing distance of 65 cm, from which the entire slanted
plane stimulus was visible within the binocular field of view. In a
separate session, a subset of participants (n � 3) repeated the exper-
iment in the scanner while eye movement data were recorded mon-
ocularly with a CRS limbus eye tracker (Cambridge Research Sys-
tems, Rochester, UK).

+60°

+60°

-30°

-30°

Texture Disparity Congruent Incongruent

A

C

B

1000 ms

1000 ms

500 ms

A

B

Response

A B

ISI
Fig. 2. A: cartoon illustrating the opposing
slanted surfaces tested in the study. The 2
eyes are illustrated fixating the marker at the
center of the display. B: sequence of events
for a single trial in the behavioral experiment.
C: examples of the 2 slant levels for the 4
conditions tested in the experiment. Stimuli are
rendered as red-cyan anaglyphs for stereo-
scopic viewing (red filter over left eye). Note
that for the Incongruent condition, the stimuli
are labeled according to the slant specified by
texture, i.e., in the top (�30°) stimulus, texture
signals �30° and disparity signals �60° slant.
In the bottom stimulus, texture signals �60°
and disparity �30°.
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For the initial psychophysical experiment, binocular presentation
was achieved with a stereoscope setup consisting of a pair of View-
Sonic FB2100x CRT monitors (1,600 � 1,200, 100 Hz) viewed
through front-surfaced mirrors at a viewing distance of 50 cm. A
subset of participants (n � 5) repeated the experiment on a second
stereoscope, which consisted of a pair of Samsung 2233RZ LCD
monitors (1,280 � 1,024, 120 Hz). These monitors were viewed
through front-surfaced mirrors at a viewing distance of 50 cm, and
participants’ head position was stabilized by an eye mask, a head rest,
and a chin rest. For all display devices in all experiments, linearized
gamma tables were calculated based on photometric measurements
(Admesy, Ittervoort, The Netherlands) and paired display devices
were calibrated to produce matched luminance outputs.

Vernier task. During experimental scans, participants performed an
attentionally demanding Vernier task at fixation and were not required
to discriminate slant. This served two purposes. First, it ensured
consistent attentional allocation between conditions, making it un-
likely that systematic differences in attention could modulate decod-
ing performance. Second, it provided a subjective measure of eye
position, allowing us to assess whether there were any systematic
differences in eye vergence between conditions. Participants were
instructed to fixate a central cross hair fixation marker that was present
throughout experimental scans. The fixation marker consisted of a
white square outline (side length 0.5°) and horizontal and vertical
nonius lines (length 22 arcmin) presented inside a mid-gray disk
(diameter 1.25°). One horizontal and one vertical line were presented
to each eye in order to promote stable vergence and to provide a
reference for a Vernier task (Popple et al. 1998). The Vernier target
line subtended 6.4 arcmin in height by 2.1 arcmin in width and was
presented at seven evenly spaced horizontal offsets of between �6.4
arcmin for 500 ms (with randomized onset relative to stimulus) on
50% of TRs. Participants were instructed to indicate, by button press,
which side of the central upper vertical nonius line the target ap-
peared, and the target was presented monocularly to the contralateral
eye. We obtained a subjective measure of observers’ vergence by
fitting a cumulative Gaussian psychometric function to the proportion
of “target on the right” responses against horizontal target offset. Bias
(deviation from the desired vergence position) in participants’ judg-
ments was close to zero.

Psychophysics. In the initial psychophysics experiment conducted
prior to the fMRI scans, participants performed a two-interval forced-
choice discrimination task in which they were sequentially presented
a reference stimulus (1 of the 8 conditions: 2 slants � 4 cue
configurations; Fig. 2C) and a test stimulus in a randomized order
(Fig. 2B). Each stimulus was presented for 1,000 ms (as in the
scanner) with an interstimulus interval of 500 ms between the two.
Participants were instructed to indicate which interval contained the
more slanted surface (i.e., which was further from frontoparallel). The
difference in slant angle (�d and/or �t) between reference and test
stimuli was controlled via an adaptive staircase method (Watson and
Pelli 1983), with a maximum limit of �20°. This limit was chosen in
order to avoid presentation of test slants of greater than 80° [at which
point the surface required to fill the stimulus aperture becomes
prohibitively large and disparities cannot be fused (Burt and Julesz
1980)] or smaller than 10° (at which point textures cannot be reliably
discriminated from frontoparallel). Furthermore, previous studies re-
ported discrimination thresholds of �20° for this type of stimulus
(Knill and Saunders 2003).

In the main behavioral experiment, a staircase consisting of 20
trials was run for each base slant in each condition and all conditions
were interleaved in a pseudorandomized order. Data were then com-
bined to calculate the just noticeable difference (j.n.d.) for the four
different cue configuration conditions (Disparity, Texture, Congruent,
Incongruent). Threshold estimates �125% of the maximum slant
difference (20°) were substituted with a value of 25°, since these
estimates were based on insufficient sampling of the psychometric
function (Wichmann and Hill 2001a). This typically occurred for the

Incongruent cue condition, as observers required �20° difference
between stimulus pairs to reliably judge slant differences. Thus the
mean sensitivity for Incongruent stimuli is likely an overestimate of
the true sensitivity, and the relatively low SE in this condition is due
to capping upper values of the threshold.

To obtain more detailed threshold estimates, a subset of partici-
pants (n � 5) were retested over seven separate sessions, in which
interleaved staircases were programmed to converge at six different
points distributed broadly along the psychometric function. For each
condition tested (Texture, Disparity, and Congruent), data from 820
trials were fitted with a cumulative Gaussian psychometric function
using a bootstrapping method (Psignifit toolbox; Wichmann and Hill
2001a, 2001b). Parameters for lapse rate (�) and guess rate (�) were
constrained to the range 0–0.1, while the point of subjective equality
(�) was constrained to equal the base slant. Threshold estimates from
these data were consistent within participants across sessions and
were used in place of the original threshold estimates for the observers
and conditions that were retested. This method generally produced
slightly lower threshold estimates compared with the single stair-
case method, since incorrect responses early in a session had less
influence on the subsequent sampling range. This was most no-
ticeable for the Texture condition, where all threshold estimates
measured with multiple staircases were less than the maximum
slant difference tested (20°).

To test for behavioral performance compatible with a fusion
computation, we calculated predictions for the minimum bound based
on quadratic summation (Fig. 1B). Quadratic summation was calcu-
lated with the formula

Quadratic � � �SD
2 � ST

2 (1)

where ST and SD are the observer’s sensitivities (1/j.n.d.) in each of
the single-cue conditions. To further contrast observers’ performance
on combined-cue conditions against the performance predicted by
quadratic summation, we calculated a psychophysical integration
index (�):

� �
SD�T

�SD
2 � ST

2
� 1 (2)

A value of zero for this index would indicate that sensitivity to
combined cues was equal to that predicted by quadratic summation of
individual cues (the minimum bound for fusion). Integration indices
were calculated for each observer and then bootstrapped with 10,000
iterations.

Imaging. Data were collected at the Birmingham University Imag-
ing Centre with a 3-T Philips Acheiva MRI scanner with an eight-
channel head coil. Blood oxygen level-dependent (BOLD) fMRI data
were acquired with a gradient echo echo-planar imaging (EPI) se-
quence [echo time (TE) 34 ms; repetition time (TR) 2,000 ms; voxel
size 1.5 � 1.5 � 2 mm, 28 slices covering occipital cortex] for
experimental and localizer scans. Slice orientation was close to
coronal section but rotated about the mediolateral axis with the ventral
edge of the volume more anterior in order to ensure coverage of lateral
occipital cortex (Fig. 3B). A high-resolution T1-weighted anatomical
scan (voxel size 1 mm isotropic) was additionally acquired for each
participant.

Defining regions of interest. We localized regions of interest
(ROIs) for each participant, using standard retinotopic mapping pro-
cedures (Fig. 3A). Retinotopically organized visual areas V1, V2,
V3v, V4, V3d, V3A, V3B, and V7 were defined with polar and
eccentricity maps, which were generated by fMRI responses to rotat-
ing wedge and expanding concentric ring stimulus presentations,
respectively (DeYoe et al. 1996; Sereno et al. 1995). V3 was divided
into dorsal and ventral quadrants in each hemisphere (V3d and V3v)
in line with previous delineation based on both functional and cyto-
architectonic distinctions (Wilms et al. 2010). Area V4 was defined as
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the region of ventral visual cortex adjacent to V3v containing a
representation of the upper quadrant of the contralateral visual field
(Tootell and Hadjikhani 2001; Tyler et al. 2005). Area V7 was defined
as the region of retinotopic activity anterior and dorsal to V3A
(Tootell et al. 1998; Tsao et al. 2003; Tyler et al. 2005).

Area V3B/KO (Tyler et al. 2006; Zeki et al. 2003) was defined as
the area comprising the union of retinotopically mapped V3B and an
area “KO” that was functionally localized by its preference for
motion-defined boundaries compared with transparent motion of
black and white dots (P � 104) (Dupont et al. 1997; Tootell and
Hadjikhani 2001; Tyler et al. 2006; Zeki et al. 2003). This area
contained a full hemifield representation, inferior to V7 and lateral to,
and sharing a foveal confluence with, V3A (Tyler et al. 2005). A
previous study revealed no clustering of voxels selective for cue
integration within V3B/KO that might provide grounds for separating
the two areas (Ban et al. 2012; see their Supplementary Fig. S7).

Human middle temporal complex (hMT�/V5) was defined as the
set of voxels in lateral temporal cortex that responded significantly
more strongly (P � 104) to transparent dot motion compared with a
static array of dots (Zeki et al. 1991). Lateral occipital complex (LOC)
was defined as the set of voxels in lateral occipito-temporal cortex that
responded significantly more strongly (P � 104) to intact compared
with scrambled images of objects (Kourtzi et al. 2005). LOC subre-
gion LO, which extended into the posterior inferotemporal sulcus, was
defined based on the overlap of functional activations and anatomical
structures, consistent with previous studies (Grill-Spector et al. 2000).
For a subset of participants (n � 8), regions of the intraparietal sulcus
(IPS) [ventral intraparietal sulcus (VIPS), parietooccipital IPS
(POIPS), dorsal IPS medial (DIPSM)] were functionally localized
based on significantly stronger responses to 3D structure-from-motion
than for 2D transparent motion (Orban et al. 1999, 2006) and defined
with anatomical landmarks.

fMRI design. In the fMRI experiment, each run consisted of 24
blocks and began and ended with a 16-s fixation period during which
only the background and fixation marker were presented. Each block
was 16 s in duration and consisted of a stimulus from one of the eight
conditions (a new stimulus was created for each trial) being presented
for 1 s followed by a 1-s fixation period. Block order was randomized,

and each of the eight conditions was presented for three blocks per
run. Eleven observers completed nine runs, and one completed eight.

fMRI data analysis. Anatomical scans of each participant were
transformed into Talairach space (Talairach and Tournaux 1988), and
inflated and flattened surfaces were rendered with BrainVoyager QX
(BrainInnovation, Maastricht, The Netherlands). Functional data were
preprocessed with slice timing correction, head motion correction, and
high-pass filtering before being aligned to the participant’s anatomical
scan and transformed into Talairach space. We ran univariate analyses
using random effects (RFX) group GLM analysis to contrast BOLD
responses to the two slant angles, for each of the four conditions.
Additionally, we contrasted the combination of responses to the two
component cue conditions (Texture � Disparity) vs. the Congruent
condition and Incongruent vs. Congruent.

For multivariate analyses, we tested the discriminability of BOLD
responses to the two different slant angles (60° vs. �30°). Since visual
areas differ considerably in size, and ROIs that contain more voxels
could yield higher classification accuracies, we selected the same
number of voxels across ROIs and observers (Haynes and Rees 2005;
Preston et al. 2008; Serences and Boynton 2007). For each ROI we
selected gray matter voxels from both hemispheres and ranked them
on the basis of their response (as indicated by t values calculated with
the standard general linear model) to all stimulus conditions compared
with fixation baseline across experimental runs. Pattern size was
restricted to voxels showing a t value �0 for the contrast of all stimuli
versus fixation. Assessment of the point at which classification accu-
racies tended to saturate as a function of pattern size resulted in the
selection of 300 voxels per ROI. In 11 ROIs (of 120 across all
participants) where �300 voxels reached threshold, all voxels above
threshold were included in the ROI (mean � 199 � 16 SE). This
voxel selection process has been validated by previous studies (Ka-
mitani and Tong 2005; Preston et al. 2008).

We normalized each voxel time course separately for each exper-
imental run (by calculating z scores) to minimize baseline differences
across runs. The multivariate analysis data vectors were produced by
applying a 4-s temporal shift to the fMRI time series to compensate
for the lag time of the hemodynamic response function and then
averaging all time series data points of an experimental condition.
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Fig. 3. A: representative inflated cortical sur-
face reconstructions and flat maps showing the
visual regions of interest from 1 participant.
These include retinotopic areas, V3B/KO, hu-
man middle temporal complex (hMT�), and
the lateral occipital (LO) area. Sulci are ren-
dered a darker gray than gyri. Superimposed on
the maps are thresholded fMRI integration in-
dices (see MATERIALS AND METHODS, Eq. 3).
These were calculated from the results of group
searchlight classifier analyses that moved iter-
atively throughout the measured volume of
cortex, discriminating between stimulus slant
angles (�30° or �60°) for the Congruent con-
dition and each of the component cue condi-
tions. This procedure confirmed that we had not
missed any important areas outside those local-
ized independently. B: sagittal view of a struc-
tural MRI scan of 1 participant, with colored
overlay illustrating slice orientation for func-
tional scans.
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Univariate signals were removed before conducting support vector
machine (SVM) analysis by subtracting the mean response of all
voxels in a given volume from each voxel in that volume. All volumes
therefore had the same mean value across voxels but different patterns
of activity. We used a support vector machine (SVMlight toolbox,
http://svmlight.joachims.org) for classification and performed a
ninefold leave-one-out cross-validation, in which data from eight runs
were used as training patterns (24 patterns, 3 per run for each slant
angle) and data from the remaining run were used as test patterns (3
patterns per slant angle). For each participant, the mean accuracy
across cross-validations was taken.

To quantify differences in SVM prediction accuracies between
combined-cue conditions and the minimum bound prediction, we
calculated an fMRI integration index:

	 �
d=D�T

�d=D
2 � d=T

2
� 1 (3)

where d=D�T, d=D, and d=T are SVM discriminability in d-prime units,
calculated with the formula

d= � 2 
 erfinv�2p � 1� (4)

where erfinv is the inverse error function and p is the proportion of
correct classifications.

To test for transfer of classifier learning between individual cue
conditions, we used recursive feature elimination (RFE) to select the
voxels in each ROI that made the greatest contribution to classifier
performance (De Martino et al. 2008). Voxels were iteratively dis-
carded independently for each cross-validation for each condition, and
the final voxels used for SVM analysis were selected from the
intersection of corresponding validations.

In addition to performing our standard ROI analysis, we used a
“searchlight” MVPA approach (Kriegeskorte et al. 2006), which
sequentially sampled small volumes of cortical voxels within a 9-mm
radius, throughout the entire cortical volume. Prior to analysis, a mask
was applied to exclude voxels located outside of cortex, and voxels
with a t value � 0 for the contrast of all stimuli versus fixation were
excluded. For each sample, we ran three SVM classification analyses
discriminating the activity evoked by different slants in the Texture,
Disparity, and Congruent cue conditions. From these sensitivity val-
ues we then calculated the fMRI integration index (	) for each sample
(Fig. 3A). Using this approach, we sought to determine whether we
had missed any important areas outside of the independently localized
ROIs.

Analysis of variance was performed in SPSS (IBM), and Greenhouse-
Geisser correction was applied where the assumption of sphericity
was not met. We report the results of two different statistical tests that
both assess cue fusion: repeated-measures ANOVA and bootstrapped
fMRI integration indices. The former test estimates variances based
on the sample of SVM sensitivities (12 participants), assuming a
normal distribution. The latter estimates variances in a manner that is
model free, since the population (10,000 data points) is calculated
from permutations of the sample. While ANOVA is a standard
parametric test, we include the bootstrap analysis for a more sensitive
and direct assessment of our key statistic of interest: sensitivity to
Congruent cues relative to quadratic summation of component cue
sensitivities.

RESULTS

Psychophysics. We measured participants’ sensitivity to
small differences in surface slant defined in the Disparity,
Texture, Congruent, and Incongruent conditions. Specifically,
we presented two stimuli and asked observers to decide which
had the greater slant, using an adaptive staircase procedure to
control the slant difference between the two stimuli. We found

significant differences in the ability of observers to judge slant
under the different conditions [F(1.5,16.9) � 7.191, P � 0.01],
with best discrimination performance observed when slant
differences were congruently indicated by both texture and
disparity (Fig. 4A). This performance was significantly better
than that in the two single-cue conditions [Texture condition:
F(1,11) � 8.96, P � 0.01; Disparity condition: F(1,11) � 3.60,
P � 0.042, 1-tailed], confirming the expectation that slant
sensitivity improves for congruent combinations of cues. As
discussed in the introduction, an improvement in performance
per se would be expected on the basis of both a fusion
mechanism and a discrimination based on the outputs of
independent detectors. We were therefore interested in the
extent of the improved performance in the Congruent cue
condition, relative to performance for the single-cue compo-
nent conditions.

To assess whether participants integrated information from
disparity and texture in line with cue fusion, we used a
psychophysical integration index (�) that compared perfor-
mance in the Congruent cue case to the minimum bound
expected for fusion using the quadratic summation of compo-
nent cue accuracies (Fig. 4B). With this index, a value of zero
would suggest performance improvements in line with inde-
pendent access to texture and disparity signals, while a value in
excess of zero suggests that signals from the two cues are fused
to support perceptual judgments. We found that performance in
the Congruent cue condition exceeded the minimum bound for
fusion (P � 0.001). However, when the cues were incongruent,
� did not exceed zero (P � 0.999). Indeed, performance in the
Incongruent condition was, on average, lower than the single-
cue component conditions, although the low variance observed
for this condition was a result of capping maximum threshold
estimates (see MATERIALS AND METHODS). Together, these results
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suggest that participants fused the information from Disparity
and Texture cues to estimate surface slant.

fMRI. We measured fMRI responses in ROIs within the
visual cortex (Fig. 3) while participants were presented with
slanted stimuli (�30° and �60°) defined by Disparity, Tex-
ture, Congruent, or Incongruent cues (Fig. 2). Univariate anal-
yses revealed no significant differences in BOLD response to
different slants in any condition, except for the Texture con-
dition. For this condition, small clusters of voxels in foveal
regions of early visual areas (V1 and V2) showed significant
changes in mean response to different texture-defined slants.
This result likely reflects differences in spatial frequency be-
tween these stimuli. However, we did not find this for any other
conditions, suggesting that differences in BOLD responses
related to spatial frequency were only detectable in the absence
of concomitant differences in disparity gradient. Importantly,
none of the cortical areas for which subsequent multivariate
analysis suggested cue fusion (see below) showed any reliable
differences in univariate response between slants or conditions.

We next quantified the information about the presented
stimuli in each ROI by training a machine learning classifier to
discriminate the patterns of fMRI activity evoked by the
different slants. We were able to reliably decode the presented
stimuli in all ROIs, and decoding accuracy varied by condition
(Fig. 5). Notably, classifier sensitivity to Texture was close to
zero in higher dorsal and ventral areas, yet these same regions
showed improved sensitivity for Congruent compared with
Disparity conditions. This suggests that these areas do process
texture in the absence of cue conflict, and the low classification
accuracies observed for the Texture condition may have been
related to the dominance of disparity signals in that condition.
In contrast, decoding accuracies for Disparity were relatively
high in dorsal areas, in line with previous findings for decoding
of fMRI responses to disparity (Ban et al. 2012; Preston et al.

2008). Our primary interest, however, was not to compare
classification accuracies between ROIs (since these are influ-
enced by various factors besides neural activity) but to assess
the relative performance between conditions within each area.

In early visual cortex (V1 and V2), classifier accuracy was
above chance for all conditions. However, it is unlikely that
these areas explicitly encode representations of surface slant
from texture and/or disparity. Instead, the representations of
local disparities and image features represented in these areas
are likely to provide important inputs to higher areas that
encode depth gradients. This low-level image feature informa-
tion differs between the different stimulus classes, and as such
supports decoding of one slant from the other. Reassuringly,
classifier performance for the Congruent condition did not
exceed quadratic summation in early visual areas, suggesting
that signals related to texture and disparity signals remain
independent at this stage of processing.

In contrast, prediction accuracies for the Congruent condi-
tion were significantly higher than for either component cue in
V3v [F(3,33) � 5.41, P � 0.01] and V3B/KO [F(3,33) �
13.16, P � 0.001]. To assess integration, we calculated the
minimum bound prediction based on quadratic summation of
classifier sensitivities to individual cues (Fig. 5). Classifier
performance for Congruent stimuli was higher than predicted
by quadratic summation in areas V3v, V3B/KO, and V7. This
difference was only statistically significant in area V3B/KO
and—importantly—only when cues were congruent [F(1,11) �
4.16, P � 0.033] but not when they were incongruent [F(1,11) � 1,
P � 0.39; Fig. 5]. The pattern of classifier prediction accura-
cies across conditions in V3B/KO is therefore reminiscent of
the pattern of observers’ behavioral accuracy for discriminat-
ing between slants (Fig. 4).

To quantify the differences between classifier accuracies for
combined-cue conditions and the minimum bound prediction,
we calculated fMRI integration indices (MATERIALS AND METH-
ODS, Eq. 3). In light of previous findings, we anticipated that the
cue integration index would exceed zero in V3B/KO for the
Congruent condition (Ban et al. 2012). This expectation was
confirmed as statistically reliable (after Bonferroni correction
for multiple comparisons) in V3B/KO (P � 0.005). In addi-
tion, we found integration indices for the Congruent condition
above zero (uncorrected significance threshold) in areas V3v
and V7 (Fig. 6; Table 1). These results suggest cortical repre-
sentations that are compatible with the fusion of slant infor-
mation from the disparity and texture signals.

In addition to the ROI-based analysis, we ran searchlight
classification analyses that moved iteratively through the entire
cortical volume, in order to identify areas with positive fMRI
integration indices (Fig. 3). This analysis revealed that a
localized region focused in retinotopically defined area V3B
supported the highest integration indices and confirmed that we
had not missed any important areas involved in cue integration
from our ROIs.

The inclusion of the Incongruent condition afforded an
additional test of the idea that representations were fused,
rather than colocated but independent. Specifically, if the
representations of the two stimulus dimensions (disparity and
texture) remain independent, then the performance predicted
for the Incongruent condition will be equal to the quadratic
sum of the component cues. This can be understood by con-
sidering that the separation between two stimulus distributions
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(as conceptualized in Fig. 1) remains the same, irrespective of
the sign of the differences between component cues (Fig. 1B).
In contrast, fusion predicts one of two possible outcomes,
based on previous theoretical work (Clark and Yuille 1990;
Landy et al. 1995). Under “strict” fusion, the variance of the
combined cue estimate for an Incongruent stimulus would
increase and performance would deteriorate below that of
either component cue. Alternatively, under “robust” fusion,
performance would revert to the level of one of the two
component cues. We found that cue integration indices exceed-
ing the minimum bound were not observed when cues were
highly inconsistent in areas V3B/KO and V3v (Fig. 5), while
results in area V7 were similar for Congruent and Incongruent
cue configurations. In particular, accuracy for Incongruent
stimuli in V3B/KO was slightly below that predicted by qua-
dratic summation and not separable from performance in the
single-cue disparity cue condition. This result is compatible
with the robust fusion of cues in V3B/KO and consistent with
the results of Ban et al. (2012).

To assess the extent to which fMRI responses were related
to depth structure in general, we tested whether training the
classifier on data from one single-cue condition (e.g., Texture)
would allow predictions to be made for data obtained in the
other single-cue condition (e.g., Disparity). Such transfer be-
tween depth signals would suggest generalized depth represen-
tations. However, we failed to find any evidence of transfer
between cues—specifically, accuracies for transfer between
cues were not significantly different from baseline accuracies
obtained by performing within-cue tests when the labels given
to the classifier were randomly permuted. This result suggests
that identical slants in the two single-cue conditions elicited
very different patterns of activity. This might reflect insuffi-
cient generalized representation of depth structure within indi-

vidual voxels in the cortical regions tested. However, it might
equally reflect the cue conflicts present in the single-cue
stimuli. For example, training the classifier to use disparity-
related activity to discriminate between slants would not be
useful for decoding slant in the Texture condition, where
disparity always signaled zero slant.

We also considered the involvement of regions of the IPS.
However, searchlight analyses (Fig. 3) revealed that sensitivity
to Congruent stimuli did not significantly exceed quadratic
summation of sensitivities to component cue stimuli in regions
beyond extrastriate cortex. Correspondingly, we did not find
reliable decoding accuracies in any of the IPS regions tested
(VIPS, POIPS, DIPSM) for the subset of participants for whom
we had independently localized parietal regions (n � 8). This
might indicate that slant representation is sparsely encoded in
these regions (as appears to be the case in inferior temporal
cortex; Liu et al. 2004) and therefore unable to significantly
bias the activity of individual voxels. Furthermore, these pari-
etal regions might be more sensitive to tilt than slant (Shikata
et al. 2001, 2008), or to 3D boundaries than to large surfaces
(Theys et al. 2012), since in-plane orientation and object
segmentation are more critical for guiding eye movements and
grasping responses.

A possible concern is that the decoding accuracies reported
here might reflect fMRI activity not related to sensory pro-
cesses. Our inclusion of control measures was therefore im-
portant. In particular, participants performed an attentionally
demanding Vernier task at fixation during scans, which en-
sured consistent attentional allocation between conditions and
provided a subjective measure of eye position. Using this
method, we found no significant differences in estimated ver-
gence position between conditions (Fig. 7). Although it was not
possible to measure eye vergence directly during the scan, we
measured eye position (monocularly) while participants per-
formed the task in the scanner during separate test sessions.
These measures suggested that observers were able to reliably
maintain fixation and revealed no systematic differences in eye
position between conditions (Fig. 7). Taken together, these
control measures suggest that differential attentional allocation
or differences in eye movements are unlikely to account for our
findings.
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Table 1. Significance tests for integration index 	

Cortical Region

P Value

Congruent 	 � 0 Incongruent 	 � 0

V1 0.373 0.314
V2 0.436 0.929
V3v 0.010 0.081
V4 0.125 0.212
LO 0.099 0.023
V3d 0.533 0.360
V3A 0.818 0.637
V3B/KO 0.005 0.358
V7 0.037 0.051
hMT�/V5 0.077 0.102

Bold P value indicates significance after Bonferroni correction for multiple
comparisons; italicized P values indicate significance at the uncorrected
threshold (P � 0.05). LO, lateral occipital cortex; hMT�, human middle
temporal complex.
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DISCUSSION

Reliable estimation of 3D surface orientation is a critical
step in recognizing and interacting with complex 3D objects
and can be enhanced by integrating information from multiple
depth cues. Binocular disparity and texture are two impor-
tant—but qualitatively very different—cues to surface orien-
tation, yet little is known about the neural processes involved
in integrating these sources of information. Here we assessed
fMRI responses in visual cortex to slanted surfaces defined by
texture and disparity cues using two criteria. First, we used a
quadratic summation prediction to test for regions where per-
formance for congruent cue stimuli exceeded the performance
expected if depth representations from texture and disparity are
colocated but independent. Second, we tested whether this
result was specific to conditions in which the two cues con-
gruently signaled the same depth configuration. We found that
the first criterion was met in visual area V3B/KO and to a
lesser extent in V3v and V7, while the second criterion was
again met most reliably in V3B/KO but to some extent in V3v.
These results suggest that area V3B/KO in particular integrates
texture and disparity cues by fusing depth estimates, while
other extrastriate visual areas (V3v) might also support fusion
computations in addition to independent representations of
these cues. Furthermore, the pattern of slant discriminability
across stimulus conditions in V3B/KO was consistent with the
pattern of behavioral sensitivity to surface slant when observ-
ers were tested on a discrimination task. These findings suggest

that area V3B/KO plays an important role in the integration of
qualitatively and computationally different cues to surface
slant.

Surface orientation components: slant and tilt. Previous
neurophysiological studies have reported neuronal responses to
surface tilt defined by either texture or disparity in both parietal
and temporal cortices (Liu et al. 2004; Tsutsui et al. 2001). In
contrast to our manipulation of surface slant, these studies
manipulated surface tilt by rotating surfaces with a fixed slant
within the plane of the screen. The neural selectivity measured
in these studies was therefore for the orientation of the depth
gradient, rather than the magnitude of that gradient. Behavioral
evidence suggests that sensitivities to tilt and slant components
of surface orientation are independent of one another (Norman
et al. 2006; Stevens 1983), and neurophysiological evidence
also suggests that neural selectivity for these two components
may be mostly independent (Liu et al. 2004; Sanada et al.
2012). It is not clear whether the presence of multiple depth
cues produces comparable enhancements in perceptual judg-
ment of tilt as for slant. Specifically, tilt selectivity might be
less critically dependent on cue integration. Further work is
required to examine how cue integration benefits perception of
surface orientation involving both tilt and slant components.

Surface orientation processing in dorsal visual pathway.
The present findings complement recent evidence that disparity
and relative motion depth cues are integrated in area V3B/KO
(Ban et al. 2012). However, the computations involved in
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Fig. 7. Subjective and objective eye movement analysis. A: participants performed a Vernier task during scanning, in which they reported the perceived direction
of horizontal offset of a small target relative to the central nonius line of the fixation marker. For each participant we fitted a cumulative Gaussian to the proportion
of “right” responses as a function of the horizontal offsets of the targets, to obtain bias and slope measurements. Bias (deviation from the desired vergence
position) in participants’ judgments was close to zero. Repeated-measures ANOVA revealed no significant effect of condition [F(3,33) � 1.15, P � 0.34], slant
angle [F(1,11) � 1, P � 0.95], or interaction [F(3,33) � 2.32, P � 0.09]. Similarly, we found no differences in the slope of the psychometric functions by
condition [F(3,33) � 1, P � 0.41], slant [F(1,11) � 1, P � 0.87], or interaction [F(3,33) � 2.81, P � 0.07]. Performance on the Vernier task therefore suggests
that participants were able to maintain stable eye vergence (Popple et al. 1998). Error bars show SE between subjects (n � 12). B: we recorded horizontal eye
movements for a subset of participants (n � 3) while they lay in the scanner bore, using a monocular eye tracker (Cambridge Research Systems) with a stated
accuracy of �0.25° visual angle. No significant differences were observed across conditions for eye position [F(3,6) � 1.39, P � 0.34], number of saccades
[F(3,6) � 2.26, P � 0.18], or saccade amplitude [F(3,6) � 1.38, P � 0.34]. Traces of mean eye position aligned to the start of each trial showed only small
deviations from fixation, with no systematic differences between conditions.
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extracting depth from motion parallax and disparity cues are
qualitatively similar, requiring integration of retinal informa-
tion across time and space, respectively (Anzai et al. 2001;
Rogers and Graham 1982). Taken together, these findings
suggest that V3B/KO plays a central role in the integration of
depth cues in general, even for qualitatively or computationally
quite different sources of information. More importantly, the
present findings demonstrate that the same cortical circuits
involved in processing simple depth order relations (Ban et al.
2012) also support estimation of more complex and behavior-
ally relevant depth structures, such as surface slant.

Our finding that V3B/KO (and to a lesser extent V7) plays
an important role in the integration of depth cues to surface
slant is consistent with existing evidence that emphasizes
dorsal pathway involvement in depth processing. Other dorsal
areas in extrastriate cortex that have been implicated in the
processing of surface orientation include motion-selective ar-
eas MT/V5 and MSTd (Nguyenkim and DeAngelis 2003;
Sanada et al. 2012; Sugihara et al. 2002; Xiao et al. 1997),
which encode information about surface orientation from both
motion and disparity cues. Recent evidence suggests that single
MT neurons integrate motion and disparity gradient informa-
tion but display comparatively less selectivity for texture
(Sanada et al. 2012). Encoding of depth gradients in these areas
could support higher-level representations of 3D surface ori-
entation that are found further along the dorsal stream in
posterior parietal cortex (Shikata et al. 2001; Tsutsui et al.
2002).

Parietal cortex has previously been implicated in processing
depth from disparity as well as various monocular cues (Du-
rand et al. 2009; Georgieva et al. 2008; Orban 2011; Sereno et
al. 2002; Shikata et al. 2001; Srivastava et al. 2009; Tsutsui et
al. 2002). In the present study, we observed higher classifica-
tion accuracy for congruent cues compared with quadratic
summation in area V7, which may correspond to the caudal
intraparietal area (CIP) in the macaque (although, for more
detailed discussions of human-macaque parietal homology, see
Orban et al. 2006; Shikata et al. 2008; Tsutsui et al. 2002). It
should be noted that VIPS and V7 have been considered to
overlap by other groups (Georgieva et al. 2009; Swisher et al.
2007), and they were differentiated here based on different
localizer tasks (Chandrasekaran et al. 2007; Orban et al. 1999;
Press et al. 2001; Preston et al. 2008). In our study, however,
we did not find reliable decoding of activity in intraparietal
areas. One reason for this may have been because participants
were not required to attend explicitly to the surface slant but
instead performed an unrelated attentionally demanding task at
fixation. Parietal involvement in the processing of 3D surfaces
has previously been shown to be strongly modulated by task
(Chandrasekaran et al. 2007; Shikata et al. 2001). A further
possibility is that surface slant may be sparsely encoded in
parietal cortex, thus precluding the possibility of sufficient
biases within voxels to support accurate fMRI decoding
(Kriegeskorte et al. 2010). Such a finding would be comparable
to the low proportion of single cells that were reported to show
selectivity for slant from texture and disparity in inferior
temporal cortex (Liu et al. 2004).

Ultimately, 3D surface information in the dorsal stream is
likely to facilitate visually guided actions (Cohen and Ander-
sen 2002; Jeannerod et al. 1995; Sakata et al. 1998). Accord-
ingly, various regions of posterior parietal cortex involved in

motor planning respond to depth signals, including anterior
intraparietal area (AIP) (Durand et al. 2007; Shikata et al.
2001; Srivastava et al. 2009; Taira et al. 2000; Theys et al.
2012) for grasping; the parietal reach region (PRR) (Bhattacha-
ryya et al. 2009); and the lateral intraparietal area (LIP)
(Durand et al. 2007; Genovesio and Ferraina 2004), which is
involved in saccadic eye movements. However, responses to
visual depth signals in these areas appear to be more concerned
with 2D retinal shape than 3D shape. For example, AIP
neurons predominantly show selectivity for 3D boundaries
rather than 3D surface shape (Theys et al. 2012), suggesting a
somewhat more rudimentary representation of 3D surfaces
compared with that found in CIP (Sakata et al. 1999; Tsutsui et
al. 2001). Such specialization might enhance efficiency for
computing grasping movements.

Similar distinctions have been reported for areas in inferior
temporal cortex in the ventral pathway. Specifically, the lower
bank of the superior temporal sulcus (TEs) contains neurons
selective for both planar and curved 3D surfaces, whereas
neurons in lateral TE are selective only for 2D shape (Janssen
et al. 1999, 2000; Liu et al. 2004). Recent evidence suggests
communication between cortical areas in higher portions of the
dorsal and ventral streams, in the form of synchronized activity
between anterior parietal and inferior temporal cortical areas
(Verhoef et al. 2011), and anatomical connectivity between
CIP and TEs has also previously been shown (Baizer et al.
1991). Indeed, given the utility of depth information common
to the goals of action and recognition, it is likely that commu-
nication between these two processing pathways occurs at
earlier stages.

Previous fMRI studies have identified the involvement of
visual areas from both the dorsal and ventral pathways in the
processing of 3D surfaces from disparity (Chandrasekaran et
al. 2007; Durand et al. 2007, 2009), monocular cues (Geor-
gieva et al. 2008; Orban et al. 1999; Sereno et al. 2002; Shikata
et al. 2001; Taira et al. 2001), and combinations of the two
(Welchman et al. 2005). We noted that sensitivity to congruent
cues was statistically higher than for the component cues in
area V3v as well as V3B/KO (Fig. 4A). Although subsequent
analysis indicated that V3v does not meet other criteria for cue
integration, it is possible that the increased decoding perfor-
mance (around the level predicted by quadratic summation) is
the result of colocated representations of disparity and texture
information, as has previously been reported (Georgieva et al.
2008; Janssen et al. 1999; Sereno et al. 2002; Welchman et al.
2005). In contrast to our result, a previous study that measured
fMRI adaptation to perspective and disparity cues suggested
that both dorsal and ventral extrastriate cortex (specifically,
areas hMT� and LO) represent depth configurations from a
combination of these cues (Welchman et al. 2005). This dif-
ference might be explained by differences in stimulus config-
uration: we used randomized Voronoi textures on a single
slanted planar surface presented within an aperture, whereas
the previous study used regular grids forming a dihedral angle
without the use of an aperture. The stimuli in the previous
study therefore had a more objectlike structure and appearance
(resembling an upright open book), which might increase
ventral pathway involvement (Kourtzi and Kanwisher 2001).
Another difference is that the size and shape of individual
texture elements were randomized in our stimuli, which re-
duced the reliability of perspective foreshortening and scaling
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(Knill 1998) compared with those in the previous study. It has
previously been reported that both behavioral sensitivity (Ro-
sas et al. 2004) and neural selectivity (Liu et al. 2004) can be
dependent on the type of texture pattern presented (e.g., uni-
form vs. randomized) and might therefore account for differ-
ences in results. Finally, although Welchman et al. (2005) did
not sample from V3B/KO, it is possible that this area provides
important inputs to LO that might convey depth information
from multiple cues, given the proximity of the two areas.

Previous studies have suggested an important role for higher
ventral areas (LO and posterior inferior temporal gyrus) in the
processing of 3D shape from disparity (Chandrasekaran et al.
2007; Georgieva et al. 2009). However, there are several
critical differences that might explain the relatively low clas-
sification accuracy we obtained for the Disparity condition in
area LO. First, our stimuli were slanted planar surfaces, while
the other studies used more complex 3D shapes that appeared
more objectlike. Second, our disparity stimuli contained tex-
ture cue conflicts, while previous studies used random dot
stereograms to minimize the reliability of the texture cue.
Finally, previous studies reported that univariate BOLD re-
sponse in ventral areas corresponded to either shape coherence
or depth structure, whereas surface coherence was consistent
between different slants in our study.

Relation between psychophysical and fMRI results. Re-
cently, Ban and colleagues (2012) found that training a clas-
sifier on fMRI data acquired during the presentation of fron-
toparallel planes defined by one depth cue (e.g., disparity)
produced comparable accuracies whether tested on data from
the same cue (disparity) or another cue (motion) in V3B/KO.
However, using a similar test, we did not find such cross-cue
transfer for texture and disparity cues to surface slant. One
possible explanation for the lack of transfer between texture
and disparity cue depth representations is that the cue conflicts
in our single-cue Texture and Disparity stimuli were more
perceptually salient than those in the stimuli of previous
studies. Although the results of our behavioral experiment
suggested that observers were sensitive to changes in slant for
these stimuli, the Texture condition in particular (which con-
tained a conflicting disparity cue that signaled a frontoparallel
surface orientation) may represent a special case for human
observers. We frequently witness 2D representations of 3D
depth in daily life, such as those projected on a television
screen. In such instances, we perceive the flat surface of the
screen but recognize that the normally informative disparity
signal provides no useful information about the intended depth
representation in the image. We are then able to “suspend our
disbelief” regarding the depiction of depth for the purpose of
interpreting the image (Gibson 1978; Goldstein 1987; Koen-
derink et al. 1992; Vishwanath et al. 2005). Thus while ob-
servers showed sensitivity to changes in Texture stimuli when
required to make perceptual decisions regarding slant during
the behavioral task, changes in slant may have been less
perceptually salient for Texture stimuli during the fMRI ex-
periment, in which participants passively viewed stimuli while
performing an unrelated attention task. Indeed, a previous
fMRI study of texture-defined surface orientation reported
significantly stronger activation of parietal regions when sub-
jects performed an orientation discrimination task compared
with when they performed a comparably attention-demanding
color discrimination task while viewing the same stimuli

(Shikata et al. 2001). Top-down processes have been shown to
influence choice-related neural activity in sensory cortex
(Nienborg and Cumming 2009), and the absence of such
top-down processes in our fMRI experiment might account for
the relative lack of slant-related variation in fMRI activity for
texture in the present study.

The pattern of results across conditions observed in V3B/KO
(Fig. 5) is mainly consistent with performance measured at the
behavioral level (Fig. 4). One notable difference is that observ-
ers exhibited lower perceptual sensitivity to Incongruent stim-
uli than for either component cue in the behavioral experiment,
whereas classifier performance for the Incongruent condition
was either comparable to, or exceeded, performance for the
component cues in all cortical regions. This behavioral result is
consistent with previous reports of mandatory cue fusion in
adult observers (Hillis et al. 2002; Nardini et al. 2010) and
provides evidence against an independence mechanism at the
behavioral level, which would predict performance in the
Incongruent condition that matches quadratic summation.

A further distinction can be made between two possible
forms of fusion based on performance in the Incongruent
condition (Clark and Yuille 1990; Landy et al. 1995). Under
strict fusion, depth estimates are combined via weighted aver-
aging using fixed weights, resulting in relative insensitivity to
highly incongruent cues. In contrast, robust fusion predicts that
one cue (e.g., the less reliable) should be reweighted and can
effectively be “vetoed” (Bülthoff and Mallot 1988). In this
case, performance would therefore revert to the same level as
the more reliable component cue (Ban et al. 2012). While
behavioral performance suggests the former, classifier sensi-
tivity in V3B/KO suggests the latter. One possible explanation
for this divergence between psychophysical sensitivity and
fMRI discriminability in the Incongruent condition is that
observers’ behavioral performance was adversely affected by
the use of an excessively large cue conflict (90°). This has the
potential to produce perceptual bistability (Girshick and Banks
2009; van Ee et al. 2002), whereby perception alternates
between the depth configurations specified by either one of the
two cues. For example, when the disparity signal is perceptu-
ally dominant, the texture on the surface will appear anisotropic
and heterogeneous (Knill 2003; Rosenholtz and Malik 1997).
Failure to consistently select a single cue (e.g., the more reliable)
and veto the other could lead to the observed decrement in
behavioral performance (Girshick and Banks 2009). As Landy et
al. (1995) point out, there is no reason to expect visual perfor-
mance to be optimized outside of the visual system’s normal
operating region, such as in the case of our Incongruent stimuli.

Classifier performance for Incongruent stimuli in V3B/KO
was slightly above performance for the more reliable of the two
single cues (disparity) and slightly below the prediction of
quadratic summation (Fig. 5). This might suggest robust fu-
sion, as was previously reported in area V3B/KO for incon-
gruent motion and disparity stimuli (Ban et al. 2012). How-
ever, simulations performed by Ban et al. (2012) suggest that
it is likely that V3B/KO contains a mixed population of units
tuned to both independent and fused cues, whose outputs may
be selected based on their relative reliabilities. This idea is
consistent with evidence that, even in areas further along the
visual processing pathways, approximately half of the recorded
neurons displayed selectivity for only one cue (Liu et al. 2004;
Tsutsui et al. 2001). By averaging over trials, the block design
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of our fMRI experiment may have aggregated responses to
perceptual interpretations of Incongruent stimuli based alter-
nately on independent and fused estimates. Consistent with this
idea, previous work suggests that activity in area V3B/KO
changes in line with alternating interpretations of ambiguous
3D stimuli (Brouwer et al. 2005; Preston et al. 2009).

Conclusions. Estimation of surface slant is essential for inter-
action with 3D objects, and may be a critical intermediate stage
for processing more complex 3D shapes. By combining informa-
tion from multiple depth cues, observers can increase the reliabil-
ity of their slant estimate. Previous studies have suggested a
variety of locations within visual cortex where representations of
surface orientation from different cues overlap. Here we provide
evidence that area V3B/KO not only contains colocated depth
representations from texture and disparity cues but integrates
these cues by fusing depth estimates. Importantly, this finding
suggests that V3B/KO is capable of integrating qualitatively
different depth cues, which may be important for the enhancement
of depth perception observed for combined cues.
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