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Abstract

It has been understood that quantum spacetime may be non-geometric in the sense

that its phase space algebra is noncommutative and nonassociative. It has there-

fore been of interest to develop a formalism to describe differential geometry on

non-geometric spaces. Many of these spaces would fit naturally as commutative al-

gebra objects in representation categories of triangular quasi-Hopf algebras because

they arise as cochain twist deformations of classical manifolds. In this thesis we de-

velop in a systematic fashion a description of differential geometry on commutative

algebra objects internal to the representation category of an arbitrary triangular

quasi-Hopf algebra. We show how to express well known geometrical concepts such

as tensor fields, differential calculi, connections and curvatures in terms of inter-

nal homomorphisms using universal categorical constructions in a closed braided

monoidal category to capture algebraic properties such as Leibniz rules. This in-

ternal description is an invaluable perspective for physics enabling one to construct

geometrical quantities with dynamical content and configuration spaces as large as

those in the corresponding classical theories. We also provide morphisms which lift

connections to tensor products and tensor fields. Working in the simplest setting

of trivial vector bundles we obtain explicit expressions for connections and their

curvatures on noncommutative and nonassociative vector bundles. We demonstrate

how to apply our formalism to the construction of a physically viable action func-

tional for Einstein-Cartan gravity on noncommutative and nonassociative spaces as

a step towards understanding the effect of nonassociative deformations of spacetime

geometry on models of quantum gravity.
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Chapter 1

Introduction

The content of this thesis is based on the work published in three papers [34, 37, 35]

which were completed during this PhD.

1.1 From closed strings to category theory

The topic of this thesis arose from explorations of the interaction between string

theory and noncommutative geometry. String theory is widely believed to provide

a consistent quantization of general relativity but noncommutative geometry, as a

target space approach to quantum gravity, is a very compelling mathematical tech-

nique which lends itself to rigorous and abstract mathematical manipulation. The

part of this interaction in focus for this thesis and wherein lies its main contribution

is on the side of noncommutative geometry.

One can reconstruct a compact Hausdorff space from the commutative algebra

of functions on it; this is the content of the Gelfand-Naimark theorem [38]. If

one quantises the algebra to a noncommutative one, then one imagines that the

noncommutative algebra can be used to reconstruct a noncommutative quantum

space. This is idea behind noncommutative geometry. When one is now inter-

ested to know geometrical data of the compact Hausdorff space, assuming it is a

manifold, one considers vector bundles over the manifold such as its tangent bun-

dle and bundle of one-forms for example. The sections of these vector bundles are

finitely generated projective modules over the commutative algebra of functions on

the manifold and one can reconstruct the vector bundles from this data; this is the

content of the Serre-Swan theorem [63], [62]. If now the function algebra has been

quantised to a noncommutative algebra one can imagine that the noncommutative

finitely generated projective modules over this noncommutative algebra correspond

to noncommutative vector bundles over the corresponding noncommutative quan-
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Chapter 1: Introduction

tum space. In noncommutative geometry one accepts the noncommutative algebra

as corresponding to a valid noncommutative quantum space and develops in an alge-

braic way a theory of differential geometry on the noncommutative algebra with the

finitely generated projective modules over it. There is no unique way to describe

a theory of noncommutative geometry. Different possibilities have been explored

in [23, 54, 33, 32, 51]. The approach in this thesis builds on the approach taken

in [2, 5] (a pedagogical introduction can be found in [4]) which was subsequently

taken forward in [6, 61, 60]. However it attempts to fit this approach into a more

abstract framework so that formulae can be motivated in a more axiomatic and

principled way. The tools of category theory are well-suited to such an axiomatic

and principled approach and are the tools used in this thesis.

The specific topic of this thesis arose from investigations of the interaction be-

tween string theory and noncommutative geometry in the context of flux compact-

ifications of closed string theory and the discovery that there is a more intricate

geometric structure involved in this case: Closed strings propagating and winding

in certain toy-model spacetime backgrounds related by T-dualities to (geometric)

flux compactifications of string theory (where the term flux refers to the three form

H = dB where B is the two-form B-field of string theory) probe a noncommutative

and nonassociative deformation of the phase space geometry. The corresponding

spacetime backgrounds are called R-flux compactifications and are referred to as

non-geometric spaces as there is no ordinary notion of transition function to glue

local trivialisations (cf. e.g. [57, 19, 48, 17, 25, 18, 21, 15]).

In order to understand the effect of these noncommutative and nonassociative

deformations on models of quantum gravity it is imperative to develop a description

of differential geometry on such non-geometric spaces. An understanding of how a

formulation of differential geometry on a phase space may descend to a meaningful

theory on quantum spacetime itself could ultimately be found in the context of

doubled geometry or double field theory (cf. [18, 28, 41]). Other possibilities that

have been explored include the use of membrane sigma models [25] and matrix

theory compactifications [21],

2



Chapter 1: Introduction

Work (in [27]) leading up to this thesis showed that the noncommutativity and

nonassociativity of flux compactifications of closed string theory can be elucidated in

the theory of representations of triangular quasi-Hopf algebras which arise as cochain

twist deformations of cocommutative Hopf algebras. This theory, also referred to as

twist deformation quantisation, was described in [64] and by Drinfel’d in [30, 31]. It

was shown in particular that one could realise the relations for the phase space of the

R-flux compactification if one used a star product in the bracket and that this star

product comes from a cochain twist F ∈ H ⊗ H of a certain cocommutative Hopf

algebra H. The phase space of the R-flux compactification was moreover shown to

be a commutative algebra object in the representation category of the quasi-Hopf

algebra HF which arises as the cochain twist of H.

The theory of representations of a triangular Hopf-algebra has been employed in

e.g. [6, 13] to understand the effect of noncommutative deformations of geometry. In

order to formulate a description of the more intricate nonassociative geometry of the

R-flux compactification, a more general encompassing mathematical framework than

that required for noncommutative geometry is needed. The suitable generalisation

to this framework is the theory of representations of quasi-Hopf algebras.

The framework provided by category theory for the theory of representations of

quasi-Hopf algebras developed in for e.g. [52] then becomes very useful: Cochain

twisting defines a functor between closed braided monoidal categories of represen-

tations of quasi-Hopf algebras related by a cochain twist. This enables one to place

not only the noncommutative and nonassociative algebra of closed string flux com-

pactifications but also its bimodules as commutative and associative objects in a

certain closed braided monoidal category.

The problem then becomes one of extracting the abstract principles behind no-

tions of classical differential geometry and formulating them in the framework of

category theory. Writing out the formulae explicitly on elements of objects in the

category then gives the desired noncommutative and nonassociative geometrical

tools. The categorical formalism enables one to make structurally correct defini-

tions for these tools.

3



Chapter 1: Introduction

A crucial insight at this point is that notions of geometry ought also to be

representations of triangular quasi-Hopf algebras. This is because the triangular

quasi-Hopf algebra HF corresponds to the symmetries of the noncommutative and

nonassociative space which is an algebra object in the representation category of

HF . Notions of geometry built on these algebra objects ought to be able to trans-

form nontrivially under the action of the symmetries HF . Then, since notions of

differential geometry are universal in the sense that we speak of ‘the Leibniz rule’

for example, we can express geometrical concepts in terms of universal constructions

internal to a closed braided monoidal category.

As representations of a quasi-Hopf algebra these notions of geometry are sub-

ject to twist deformation quantisation. Since twist deformation quantisation gives

an equivalence between the representation categories of cochain twist related quasi-

Hopf algebras, this means that the configurations spaces of geometrical quantities in

cochain twist related quasi-Hopf algebras are isomorphic. This solves the problem

of quantum rigidity, which is the phenomenon that configuration spaces of geomet-

rical quantities in quantum theories are in general much smaller than their classical

counterparts. It is critical to observe at this point that although the quantisation

functor gives an isomorphism between configuration spaces, the criteria by which

one selects the critical points of actions describing models of physics based on the

configuration spaces differs in a significant way. In other words this isomorphism

does not correspond to a symmetry of the physical theory.

Exploring the syntax of category theory leads to several insightful reformula-

tions of notions of differential geometry by capturing Leibniz rules, quotients and

fibered products elegantly. In this way we develop in an abstract fashion a the-

ory of noncommutative and nonassociative geometry of the type required for flux

compactifications of closed string theory.

Since the framework is completely general, one is able to apply it to any space

which arises as a cochain twist deformation of a classical manifold. Spaces which are

noncommutative but strictly associative are also accounted for in this framework by

restricting to quasi-Hopf algebras with trivial associator. The restricted framework

4



Chapter 1: Introduction

reproduces results developed in previous work on noncommutative spaces (see e.g.

[6]). Noteworthy examples to which this framework applies include the Moyal-Weyl

plane, the noncommutative torus, the Connes-Landi spheres (see e.g. [24]) and the

Q-flux compactification of closed string theory (which is a noncommutative space

which arises after two successive T-duality transformations in the chain of T-dualities

leading to the R-flux compactification (see e.g. [27])). These are noncommutative

but strictly associative spaces. Our motivating example of R-flux compactifications

of closed string theory of course also fits into this framework as both a noncommu-

tative and nonassociative space.

There are several positive spinoffs that arise from the use of category theory.

One spinoff is that one does not need to check properties of geometric entities; these

are incorporated in the definitions. A second spinoff is that the existence of noncom-

mutative and nonassociative geometry of the type we are considering is guaranteed

by our constructions: The cochain twisting functor is found to be an equivalence

of closed braided monoidal categories which means that geometric entities on non-

geometric flux compactifications are built out of those on classical backgrounds in

a structure preserving way. That is the constructions are functorial and therefore

noncommutative and nonassociative geometry is immediately guaranteed to exist if

the corresponding entities exist on the classical manifolds from which they arise as a

cochain twist. As noted before, this does not correspond to an equivalence of phys-

ical models described by entities in these equivalent categories. Another important

spinoff is that from this abstract perspective one is able to solve technical issues in

noncommutative geometry such as finding the axiomatically correct construction of

lifts of bimodule connections to tensor products.

The main aim of this thesis is then to systematically develop a formalism of

noncommutative and nonassociative differential geometry within the framework of

the theory of representation categories of quasi-Hopf algebras.

The approach we take to developing this toolkit of differential geometry relies on

the programme of noncommutative geometry which extends the Gelfand-Naimark

duality between compact Hausdorff topological spaces and the commutative C∗-

5



Chapter 1: Introduction

algebras of functions on them [38] to noncommutative, and in this case also nonas-

sociative, algebras. Furthermore, it relies on a noncommutative and nonassociative

extension of the Serre-Swan theorem [63],[62] which asserts a duality between vector

bundles over a manifold and the finitely generated projective bimodules of sections

of these vector bundles over the algebra of functions on the manifold.

The main examples to which this formalism applies come as cochain twist defor-

mations of classical differential geometry. Therefore the aim of this thesis is also to

develop the theory of twist deformation quantization of all structures involved. The

role of twist deformation quantization is however simply to confirm existence of ge-

ometrical identities and hence it is sufficient to consider the representation category

of an arbitrary quasi-Hopf algebra and develop notions of geometry on one algebra

object and its bimodule objects internal to such a representation category.

There is a physical motivation and a mathematical motivation behind this work.

The physical motivation is to systematically develop recent observations in string

theory which suggest that stringy quantum geometry involves more complicated

noncommutative structures than those previously encountered. In particular that

quantum spacetime is not only noncommutative but also nonassociative. The math-

ematical motivation is to address some internal technical issues in noncommutative

geometry involving constructions of connections and their lifts to tensor products.

Let us begin by briefly summarizing some of the physical and mathematical

background behind these problems.

1.1.1 Non-geometric string theory

The main physical inspiration behind this work was sparked by the recent obser-

vations from closed string theory that certain non-geometric flux compactifications

experience a nonassociative deformation of the spacetime geometry [57, 19, 48, 17,

25, 18, 21, 15]. We refer to [49, 59, 26, 16] for brief reviews and further references

of the aspects of non-geometric string theory discussed below.

Switching on a nonzero magnetic flux in the extra dimensions of closed string

theory, i.e. in flux compactifications of closed string theory, leads to deformations of

6



Chapter 1: Introduction

the geometry of spacetime: Starting from a geometric frame wherein closed strings

propagate in an H-flux background, after three successive T-duality transformations

one is led into a non-geometric frame in the sense that coordinates and their duals,

together with momentum and winding modes, become intertwined and hence do not

permit transition functions between local trivialisations.

It was found by [19, 48] through explicit string theory calculations that closed

strings which wind and propagate in these non-geometric backgrounds probe a non-

commutative and nonassociative deformation of the spacetime geometry, with de-

formation parameter determined by the non-geometric flux that arises as the third

T-duality transform of the geometric 3-form H-flux.

This property of string geometry was subsequently confirmed by conformal field

theory calculations [17, 20] where the non-geometry finds a concrete interpretation:

In string theory a geometric spacetime emerges from the left-right symmetric con-

formal field theory on the closed string worldsheet, whereas T-duality is a left-right

asymmetric transformation leading to asymmetric conformal field theories which

do not correspond to any geometric target space. In this non-geometric regime of

closed string theory the low-energy dynamics is then expected to be governed by a

noncommutative and nonassociative theory of gravity.

The physical origins underlying this nonassociative deformation have been eluci-

dated in various ways: by regarding closed strings as boundary excitations of more

fundamental membrane degrees of freedom in the non-geometric frame [25], in terms

of matrix theory compactifications [21], and in double field theory [18]; they may

be connected to the Abelian gerbes underlying the generalized manifolds in double

geometry [28, 41].

Nonassociativity in this setting may be encoded by certain triproducts of fields

on configuration space predicted by off-shell amplitudes in conformal field theory [17]

and in double field theory [18], or by nonassociative ?-products from deformation

quantization of twisted Poisson structures in the phase space formulation of nonas-

sociative R-space [25] and by integrating higher Lie algebra structures [25, 9]; the

equivalence between these two approaches was demonstrated and extended in [7]. A

7



Chapter 1: Introduction

general treatment of nonassociative ?-products in this context can be found in [46].

Deformation quantisation was developed in [11], [12]; [65] provides a good introduc-

tion.

In [27] it was observed that these nonassociative star products can be alterna-

tively obtained via a particular cochain twisting of the universal enveloping algebra

of a certain Lie algebra to a quasi-Hopf algebra. In [27, 7] they verified that the

corresponding nonassociative algebras and their basic geometric structures can be

obtained by cochain twist quantization, and hence are commutative and associative

quantities when regarded as objects in a suitable braided monoidal category. This

is the starting point of the work of this thesis.

The cochain twist deformation quantization techniques originally developed by

[27] were motivated by the search for a systematic way to generalize notions of

differential geometry to non-geometric backgrounds, and in particular to construct

nonassociative deformations of field theory and ultimately gravity (see also [7]).

This approach is different in spirit to the nonassociative twist deformation of the

geometric f-flux frame considered in [29], which does not seem to be of relevance

for non-geometric string theory. It does not agree with the string theory inspired

nonassociative torus bundles of [57, 40] either, which reproduce the classical limit

only up to Morita equivalence. Physically consistent models with novel properties

in the context of quantum mechanics were constructed in [27] using this formalism,

and of Euclidean scalar quantum field theory in [55].

In order to extend these considerations to more complicated field theories, it

was desirable to develop a general systematic formalism for differential geometry on

noncommutative and nonassociative spaces internal to the representation category

of any quasi-Hopf algebra.

This is the contribution of this thesis and generalizes and extends earlier work [6,

13, 58].

8



Chapter 1: Introduction

1.1.2 Nonassociative geometry

The study of noncommutative and nonassociative geometry has been referred to as

nonassociative geometry in the literature. This study lies under the mathematically

established field of noncommutative geometry.

Noncommutative geometry extends the usual duality between compact Hausdorff

topological spaces and the commutative C∗-algebras of functions on them (Gelfand-

Naimark theorem [38]) and between vector bundles over a manifold and the finitely

generated projective modules of sections of these vector bundles over the algebra

of functions on the manifold (Serre-Swan theorem [63], [62]) to noncommutative

algebraic structures. The idea is to encode the geometrical content of a space in the

language of algebra and then generalise the algebraic structures to noncommutative

ones (cf. [47, 51, 53]).

The usual approach to noncommutative geometry is to replace all products by

noncommutative ?-products as is done for example in [3]. Although this is often the

correct thing to do, it could yield formulae which do not satisfy axiomatically sub-

stantiated properties. The formalism developed in this thesis provides a foundation

upon which one may build formulae which satisfy properties motivated by abstract

principles.

Elements of differential geometry on classical manifolds may be abstracted to fit

into the framework of a closed braided monoidal category. The infinitesimal diffeo-

morphisms on a classical manifold form a Hopf algebra and act on the commutative

algebra of functions on the manifold and on sections of vector bundles such as the

tangent bundle over the manifold in an equivariant way. Hence the elements of

classical differential geometry are representations of a triangular Hopf algebra. A

triangular Hopf algebra is a special case of the more general notion of triangular

quasi-Hopf algebra, and cochain twists based on quasi-Hopf algebras can be used

to transform one quasi-Hopf algebra into another quasi-Hopf algebra. It is a result

(first shown by Drinfel’d in [31] and in [39] for a subcategory of left modules over

an algebra object) that the representation categories of cochain twist related quasi-

9



Chapter 1: Introduction

Hopf algebras are equivalent. This is a very convenient mathematical fact which

enables one to translate mathematical structures built in one of these representa-

tion categories into another one which is related to it by a cochain twist. On the

other hand, physical models built out of the tools found in equivalent categories do

not describe the same physical system as the rules by which the physical models are

constructed from the tools differs according to the category.

In this thesis we shall show how to build noncommutative and nonassociative

tools of geometry in the representation category of a quasi-Hopf algebra using only

intuition from classical differential geometry and the machinery of twist deformation

quantisation.

1.1.3 Noncommutative connections on bimodules

The notion of connection in noncommutative geometry was first introduced by

Connes in [22] in the mid 1980s. Since then they have been investigated further

by amongst others [54, 33, 32, 51].

Given a differential calculus over a noncommutative algebra A, one can develop in

a purely algebraic fashion a theory of connections on left or right A-modules, see e.g.

[47] for an introduction. Given an A-bimodule V we may “forget” about its left A-

module structure and introduce connections on V as if it were just a right A-module.

The problem with taking right A-module connections on A-bimodules is that there is

in general no procedure to construct from a pair of such connections on A-bimodules

V,W a connection on the tensor product A-bimodule V ⊗A W . The possibility to

induce connections to tensor products of A-bimodules is an inevitable construction

in noncommutative differential geometry, required for the construction of tensor

fields in noncommutative gravity for example. To gain insight into how to solve this

problem concerning tensor products of right A-module connections on A-bimodules,

we note that there is an analogue in the theory of module homomorphisms: Given

two A-bimodule morphisms f : V → X and g : W → Y , one can take their

tensor product as linear maps f ⊗ g and induce an A-bimodule morphism f ⊗A g :

V ⊗AW → X⊗AY which descends to the quotient of equivalence classes of the tensor

10
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product ⊗A. However if f and g are only right A-module morphisms, then there

is in general no procedure to construct from this data a right A-module morphism

V ⊗AW → X⊗A Y . The problem lies in showing the equivalence of elements of the

form f(v a)⊗A g(w) and f(v)⊗A g(aw) for v ∈ V, a ∈ A and w ∈ W since g is not

left A-linear.

To overcome this problem, the notion of bimodule connections was developed

in [54, 33, 32]. To define bimodule connections on an A-bimodule V one needs

the additional datum of an A-bimodule morphism Ω1 ⊗A V → V ⊗A Ω1, where

Ω1 is the A-bimodule of 1-forms. Given two A-bimodules V,W together with bi-

module connections one can construct a bimodule connection on V ⊗A W . From

this construction one obtains a bimodule connection on arbitrary tensor products

V1 ⊗A · · · ⊗A Vn of A-bimodules from the choice of a bimodule connection on each

component Vi. Although bimodule connections are by now regarded as the stan-

dard choice in most treatments of noncommutative differential geometry (see e.g.

[13, 14]), there is a drawback with this concept: We notice that the set of all bi-

module connections on an A-bimodule V forms an affine space over the linear space

of A-bimodule morphisms V → V ⊗A Ω1; this linear space is very small for many

standard examples of noncommutative spaces A, so that generally there are not

many bimodule connections. For example, if V = An and Ω1 = Am are free A-

bimodules, then V ⊗A Ω1 ' Anm and the A-bimodule morphisms V → V ⊗A Ω1

are in one-to-one correspondence with n× (nm)-matrices with entries valued in the

center of A. Taking the specific example where A is the polynomial algebra of the

Moyal-Weyl space R2k
Θ , then the bimodule connections on V = An are parametrized

by the finite-dimensional linear space C2n2 k because the center of A is isomorphic to

C. As a consequence, noncommutative gauge and gravity theories based on the con-

cept of bimodule connections would in general not provide an adequate description

of physics as the space of field configurations in this case is too small.

The question now arises whether the conditions on bimodule connections can be

weakened in such a way that one can still induce connections to tensor products.

A negative answer to this question was given in [42, Appendix A], where it was

11
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shown that in a generic situation the existence of the tensor product connection is

equivalent to requiring that the individual connections are bimodule connections. It

would then appear that there is no way around the concept of bimodule connections

in the case where the algebra A and the bimodules V are generic. However, if one

restricts to certain classes of algebras and bimodules, namely those which are com-

mutative up to a braiding, then a weaker notion of bimodule connection exists; this

weaker notion of bimodule connection was developed in [6] (see also [61, 1] for brief

summaries): Given any quasitriangular Hopf algebra H, one considers algebras and

bimodules on which there is an action of the Hopf algebra. As H is quasitriangular,

i.e. it has an R-matrix, we can restrict to those algebras A for which the product

is compatible with the braiding determined by the R-matrix; we call these alge-

bras braided commutative. Similarly, we can restrict to those A-bimodules for which

the left and right A-actions are identified via the braiding; we call such bimodules

symmetric. In this setting one can prove that any pair of right module connections

on V,W induces a right module connection on V ⊗A W . Many examples fit into

the formalism developed in [6]: First of all any ordinary manifold M and natural

vector bundle E → M give rise to the algebra A = C∞(M) and the A-bimodule

V = Γ∞(E → M), which satisfy the requirements of braided commutativity and

symmetry with trivial R-matrix. (The Hopf algebra H here can be taken to be the

universal enveloping algebra of the Lie algebra of vector fields on M .) Furthermore,

deformations by Drinfel’d twists based on H preserve the braided commutativity

and symmetry properties, and hence give rise to noncommutative algebras and bi-

modules which fit into this framework; the standard noncommutative tori, and more

generally the toric noncommutative manifolds (or isospectral deformations) in the

sense of [24] of which the Moyal-Weyl space together with its bimodules of vector

fields and one-forms are explicit examples of this. Also, the phase space formulation

for the nonassociative deformations of geometry that arise in non-geometric R-flux

backgrounds of string theory [27] fits into this framework.

The first aim of this thesis is to place the formalism developed in [6] on a rigorous

abstract foundation in order to be able to be able to generalise the formalism to

12
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nonassociative structures. To this end, the main starting input for this thesis is the

observation that the weaker notion of bimodule connection developed in [6] would be

described as an internal homomorphism in the representation category [H,M ] of a

triangular Hopf algebra H if the monoidal structure in this representation category

admits an internal hom-functor, i.e. if [H,M ] is a closed monoidal category. The

proof of the latter and the fleshing out of the details of the theory of the closed

monoidal category [H,M ], developed in [52], is the content of Chapter 2.

1.1.4 Internal homomorphisms

Internal homomorphisms play a central role in this thesis. They are the maps by

which all considered notions of geometry are modelled. To understand their signif-

icance we need to consider how the properties of these maps compare to the other

maps present in the category, the morphisms. In the context of differential geom-

etry on a manifold and twist quantisations thereof, the quasi-Hopf algebra present

is the Lie algebra of infinitesimal diffeomorphisms which act via Lie derivatives on

the function algebras and sections of vector bundles of the manifold. The represen-

tation category of this quasi-Hopf algebra of infinitesimal diffeomorphisms has as

morphisms maps which are equivariant with respect to the action of the infinitesimal

diffeomorphisms. Internal homomorphisms on the other hand are not required to

preserve the action of infinitesimal diffeomorphisms but instead can be acted upon

by them in the adjoint representation. For dynamical fields, notions of geometry

ought to be able to transform nontrivially under the action of the infinitesimal diffeo-

morphisms and therefore be modelled as internal homomorphisms in the category.

Furthermore, when the objects in the representation category are bimodules

over the function algebra of the space then morphisms in the representation cate-

gory are bilinear maps with respect to the action of the function algebra. Internal

homomorphisms on the other hand only preserve the right action (in a weak form).

Configuration spaces of geometrical notions would be severely restricted by a left

linearity condition. This is another strong motivation for modelling geometry on
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internal homomorphisms.

To illustrate these concepts let us consider the simple example given by the

Moyal-Weyl space R2k
Θ . The noncommutative algebra A = (C∞(R2k), ?Θ) corre-

sponding to R2k
Θ can be considered as an algebra object in the representation cate-

gory of the universal enveloping algebra H of the 2k-dimensional Abelian Lie algebra

describing infinitesimal translations on R2k. That is there exists an action of the in-

finitesimal translations on A, which is given by the (Lie) derivative. Vector bundles

such as the noncommutative one-forms and vector fields on R2k
Θ are A-bimodules

which are equipped with an action of the infinitesimal translations in terms of the

Lie derivative, and thereby become objects in the category H–Bimod(A) of H-

module A-bimodules. In physical applications one studies geometric structures on

R2k
Θ , which are maps g between such H-module A-bimodules. At this point it differs

drastically if we regard g as a morphism in H–Bimod(A) or as an internal homo-

morphism. In the first case the map g has to be compatible with the left and right

A-actions as well as the left H-action describing infinitesimal translations. If we

express g as a module map (i.e. morphism in the category), its components gµν ∈ A

have to be constant as a consequence of translation invariance. A finer consider-

ation of the example above where bimodule connections are modelled as module

maps reveals that the space of field configurations of the connections in this case

is very small because of the requirement left A-linearity. Therefore, describing geo-

metric structures by morphisms in the category H–Bimod(A) leads to a very rigid

framework which does not permit dynamical fields on R2k
Θ . On the other hand, if

we allow g to be an internal homomorphism, which in the present case means that

g is a right A-linear map which is not necessarily compatible with the left A-action

and the left H-action, the components gµν are much less constrained, leading to a

richer framework for describing noncommutative geometries on R2k
Θ .

Because we are also interested in nonassociative generalisations of noncommu-

tative geometry, in this thesis we extend the constructions developed in [6] to the

context of the representation category of a triangular quasi-Hopf algebra.
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1.2 Overview and Outline

1.2.1 Overview

In this thesis we develop the theory of internal module homomorphisms and con-

nections on bimodules, together with their tensor product structure, for a large

class of noncommutative and nonassociative spaces. For this, we take an approach

based on category theory. The language of category theory systematically high-

lights the general structures involved in a model-independent way. An analogous

approach was taken in [58] to develop the applications of nonassociative algebras to

non-geometric string theory which were discussed in [57]. However, their categories

are completely different from ours, and moreover their algebras have the physically

undesirable feature that the classical limit only coincides with the algebra of func-

tions on a manifold up to Morita equivalence; instead, the constructions in this

thesis always reduce exactly to the classical algebras of functions. We also consider

physical applications to noncommutative and nonassociative Yang-Mills theory and

Einstein-Cartan gravity, as first steps towards more elaborate models relevant to

non-geometric flux deformations of geometry in closed string theory.

From a more technical point of view, we consider the representation category

[H,M ] of a quasitriangular quasi-Hopf algebra H and develop some elements of

differential geometry internal to this category. It is well known that the repre-

sentation category of a quasi-Hopf algebra is a (weak) monoidal category, which

for quasitriangular quasi-Hopf algebras carries the additional structure of a braided

monoidal category. We consider algebra objects in the category [H,M ], which due

to the generally non-trivial associator are nonassociative algebras of the type found

in non-geometric string theory (i.e. they are weakly associative). We also make use

of the braiding determined by the quasitriangular structure on the quasi-Hopf alge-

bra H and consider the algebra object A in [H,M ] to be braided commutative (i.e.

the product is preserved by the braiding in [H,M ]). Given any commutative alge-

bra object A in [H,M ] we then consider symmetric A-bimodule objects in [H,M ]

(the symmetry condition being that the left and right A-module structures are iden-
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tified by the braiding), the collection of which forms a braided monoidal category

H–Bimod(A)sym.

In the spirit of noncommutative geometry the monoidal categoryH–Bimod(A)sym

can be geometrically interpreted as the category of all noncommutative and nonasso-

ciative H-equivariant vector bundles over the noncommutative and nonassociative

space A. The morphisms in this category preserve both the H-module and A-

bimodule structures. In contrast to earlier categorical approaches to nonassociative

geometry pursued in [58, 13], in which geometric quantities such as (Riemannian)

metrics and curvatures are described using morphisms, we describe geometric quan-

tities using the larger class of internal homomorphisms of the monoidal category

H–Bimod(A)sym. As motivated in Subsection 1.1.3 many geometric quantities are

not necessarily H-invariant and hence they cannot be identified with morphisms

in H–Bimod(A)sym. In particular, in situations where the geometric quantities are

dynamical (e.g. the metric field in gravity or the curvature field of a connection in

Yang-Mills theory) the internal homomorphism point of view is indispensable. We

give an explicit description of the internal hom-functor on H–Bimod(A)sym in terms

of the internal hom-functor on the category [H,M ] and an equalizer which formal-

izes a weak “right A-linearity condition”. This internal homomorphism point of view

is inspired by the formalism of [6] and it clarifies and generalises the constructions

in [6] and [45]. For internal homomorphisms in a closed braided monoidal category

there are evaluation, composition and tensor product morphisms which we explicitly

describe in detail. These are the appropriate structures with which to use internal

homomorphisms correctly as map-like objects in [H,M ]. Although in the category

[H,M ] internal homomorphisms are k-linear maps they do not give the correct be-

haviour under the usual structures. Physically the existence of a tensor product

operation for internal homomorphisms means that there is a tensor product opera-

tion for constructing noncommutative and nonassociative tensor fields, which is an

indispensable tool for describing physical theories such as gravity and other field

theories for spaces such as our motivating example of the R-flux compactification.

Promoting the category [H,M ] to a category of bounded Z-graded H-modules
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we develop the notion of differential calculus (A, d) in [H,M ]. We then study

connections on objects in H–Bimod(A)sym from an internal point of view. We for-

mulate the notion of connection on a commutative and associative bimodule in

H–Bimod(A)sym by using the internal hom-functor for the closed monoidal category

[H,M ] together with an equalizer which formalizes a suitable generalization of the

graded Leibniz rule that is consistent with the structures in [H,M ]. The class of

connections this technique produces is much larger than that found by the tech-

nique used in [13] in which connections are assumed to be bimodule connections

equivariant with respect to the H-action. We also develop appropriate morphisms

to lift connections in [H,M ] to tensor products and internal hom-objects in the

closed braided monoidal category H–Bimod(A)sym. It is important to notice that

our notion of tensor product connections differs from the standard one: Although

our techniques are only applicable to braided commutative algebras and their bi-

modules in [H,M ], they are more flexible in the sense that any two connections

can be lifted to a tensor product connection, not only those which satisfy the very

restrictive ‘bimodule connection’ property proposed in [54, 33, 42, 32]. We also de-

velop a lifting prescription for connections to internal homomorphisms homA(V,W )

of objects V,W in H–Bimod(A)sym. These lifts are all important ingredients in

(noncommutative and nonassociative) Riemannian geometry for extending e.g. tan-

gent bundle connections to all tensor fields, and they play an instrumental role in

physical applications of our formalism to noncommutative and nonassociative grav-

ity theories such as those anticipated to arise in non-geometric string theory. All of

these constructions moreover generalize and clarify the corresponding constructions

of [6] in categorical terms.

Throughout we systematically study how each structure deforms under cochain

twisting. This allows us to obtain a large class of examples of noncommutative and

nonassociative geometries by cochain twisting the example of classical differential

geometry. In this case, by fixing any Lie group G and any G-manifold M , there is the

braided monoidal category of G-equivariant vector bundles over M . We construct a

braided monoidal functor from this category to the category H–Bimod(A)sym, where
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A = C∞(M) is the algebra of functions onM andH = Ug is the universal enveloping

algebra of the Lie algebra g of G (with trivial R-matrix). Then choosing any cochain

twist based on H we twist the braided monoidal category H–Bimod(A)sym into

a braided monoidal category which describes noncommutative and nonassociative

vector bundles over a noncommutative and nonassociative space.

We show that cochain twisting can be understood as a categorical equivalence of

closed braided monoidal categories preserving all limits and colimits (and in partic-

ular equalisers) between the undeformed and deformed categories. This equivalence

then includes the internal homomorphisms, which in our physical interpretation

implies that the configuration spaces of deformed geometric quantities are in bijec-

tive correspondence with the undeformed ones. This solves the problem of quantum

rigidity encountered in the usual approach using bimodule connections. We note that

this equivalence is purely on the structural level. Since the deformed Lagrangians

should be constructed out of ?-products (cf. Chapter 4), while the undeformed ones

out of ordinary products, the selection criteria for which physical quantities are re-

alized in nature (e.g. as a critical point of an action) will differ in the deformed and

the undeformed case.

We conclude by unpacking and making explicit the somewhat abstract cate-

gorical constructions of our formalism in a less formal language. We focus on the

special case of most physical relevance: the cochain twist quantization of a classi-

cal manifold. The formalism is powerful enough to capture the cases of constant

non-geometric fluxes as well as non-constant ones such as those which arise in the

flux formulation of double field theory [18]; in fact, our constructions are completely

general and can be applied to a much broader framework without specific reference

to string theory. We further restrict to trivial vector bundles over these noncom-

mutative and nonassociative spaces with an action of the pertinent Hopf algebra of

symmetries of the non-geometric background. This simplification enables us to give

very explicit “local” descriptions of the noncommutative and nonassociative geom-

etry while still retaining generic features and indicating how the general formalism

developed in the rest of the thesis may be applied to constructions of physically vi-
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able field theories. As a starting point for building more elaborate models describing

the low-energy effective dynamics of closed strings in non-geometric backgrounds, we

demonstrate how to apply our formalism to the constructions of physically sensible

action functionals for Yang-Mills theory and Einstein-Cartan gravity on noncommu-

tative and nonassociative spaces; our considerations are based on Einstein-Cartan

geometry and its noncommutative generalization which was developed in [3].

1.2.2 Outline

Let us now give a brief outline of the contents of this thesis. Chapter 2 is a tech-

nical chapter based on [34]. Chapter 3 contains the core contribution of this thesis

and is based on [37]. Chapter 4 contains examples and concrete realisations of the

formalism developed in Chapters 2 and 3 and is based on [35]. Definitions in cate-

gory theory of specific relevance to the constructions of this thesis are collected in

Appendix A and Appendix B contains additional calculations. We conclude with a

brief summary and outlook in Chapter 5.

In Chapter 2 we systematically study noncommutative and nonassociative alge-

bras A and their bimodules as algebras and bimodules internal to the representation

category of a quasitriangular quasi-Hopf algebra. We enlarge the morphisms of the

monoidal category of A-bimodules by internal homomorphisms, and describe ex-

plicitly their evaluation, composition and tensor product morphisms. We show that

for braided commutative algebras A the subcategory of symmetric A-bimodule ob-

jects is also a braided closed monoidal category. We systematically describe how

these structures deform under cochain twisting of the quasi-Hopf algebra. These

constructions set up the basic ingredients for the development of differential geom-

etry internal to a quasi-Hopf representation category and applications to models

of noncommutative and nonassociative gravity such as those anticipated from non-

geometric string theory.

Throughout we make all of our constructions explicit, even when they follow

easily from abstract arguments of category theory, in order to set up a concrete com-

putational framework for Chapter 4. In particular, in contrast to what is sometimes
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done in the literature, we pay careful attention to associator insertions: Although

by the coherence theorems there is no loss of generality in imposing the strictness

property on a monoidal category (i.e. strong associativity of the monoidal structure),

for our computational purposes we are careful not to mix up equality and isomorphy

of objects.

In Section 2.1 we describe the closed symmetric monoidal category M of k-

modules (for an arbitrary ring k) which is the category on which the constructions

in Chapter 2 are based. We also discuss the subcategory of bimodules over an

algebra object in M . We end the section by recalling the definition of a quasi-Hopf

algebra H and of cochain twisting of quasi-Hopf algebras.

In Section 2.2 we recall the definition of the monoidal category of (left) H-

modules [H,M ] over k. By explicitly constructing an internal hom-functor for this

category, we show that [H,M ] is also a closed monoidal category, and we describe

explicitly the canonical evaluation and composition morphisms for the internal hom-

objects. By restricting to quasi-Hopf algebras H which are quasitriangular, we

endow the representation category [H,M ] with the additional structure of a braiding

with which we define commutative algebra objects in [H,M ] and explicitly describe

the canonical tensor product morphisms for the internal hom-objects. We also define

an internal commutator which endows the algebra of internal endomorphisms on an

object with the structure of a Lie algebra and show how the morphisms in [H,M ]

are embedded in the internal homomorphisms in [H,M ].

In Section 2.3 we introduce symmetric bimodules over commutative algebra

objects A in the category [H,M ]. We show that the category of symmetric A-

bimodules in [H,M ] also forms a braided closed monoidal category H–Bimod(A)sym:

We explicitly construct a monoidal functor and internal hom-functor for the cate-

gory H–Bimod(A)sym and show that the braiding in [H,M ] descends to a braiding in

H–Bimod(A)sym. We show also that cochain twisting by a cochain twisting element

F ∈ H⊗H leads to an equivalence between the monoidal categories H–Bimod(A)sym

and HF–Bimod(AF )sym with the deformed algebra AF in [HF ,M ] functorially as-

signed to the algebra A in [H,M ].
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In Chapter 3 we promote the category M to a category of bounded Z-graded

k-modules which we denote by the same symbol M . The algebra objects in Chapter

2 then lie in degree 0 of the commutative algebra objects in the graded category

M . Bimodules over these algebra objects are symmetric bimodules inM . We sys-

tematically proceed to formulate notions of classical differential geometry internal

to the representation category [H,M ] of an arbitrary triangular quasi-Hopf algebra

H. We describe differential calculi and connections using universal categorical con-

structions to capture algebraic properties such as Leibniz rules. Our main result is

the construction of morphisms which provide prescriptions for lifting connections to

tensor products and to internal homomorphisms. We also describe the curvatures

of connections within this formalism.

We begin in Section 3.1 with a brief review of the categorical framework which

was developed in Chapter 2 but now in the context of Z-graded modules; this allows

us later on to regard graded objects such as differential calculi naturally as objects

in the category.

In Section 3.2 we introduce derivations der(A) on braided commutative algebras

A in [H,M ] by formalizing the Leibniz rule in terms of an equalizer in [H,M ]. We

analyse structural properties of der(A) and in particular prove that, in the case where

H is triangular, der(A) together with an internal commutator [ · , · ] is a Lie algebra in

[H,M ]. We then introduce differential operators diff(V ) on symmetric A-bimodules

V in [H,M ] by again using a suitable equalizer in [H,M ] to capture the relevant

algebraic properties. We show that diff(V ) is an algebra in [H,M ] and we also

prove that the zeroth order differential operators are the internal endomorphisms

endA(V ) in the category of symmetric A-bimodules H–Bimod(A)sym. Using the

product structure on differential operators to formalize nilpotency of a differential,

we then give a definition of a differential calculus in [H,M ].

In Section 3.3 we develop a notion of connections con(V ) on objects V in

H–Bimod(A)sym. The idea is to formalize a generalization of the usual Leibniz

rule with respect to a differential calculus in terms of an equalizer in [H,M ]. The

resulting object con(V ) is analysed in detail and it is shown that the usual affine

21



Chapter 1: Introduction

space of ordinary connections arises as a certain proper subset of con(V ). Our more

flexible definition of connections has the advantage that con(V ) also forms an object

in [H,M ] in addition to being an affine space. We then develop a lifting prescrip-

tion for connections to tensor products V ⊗AW of objects V,W in H–Bimod(A)sym.

We also develop a lifting prescription for connections to internal homomorphisms

homA(V,W ) of objects V,W in H–Bimod(A)sym and show that cochain twist quan-

tisation preserves structurally these constructions by the same isomorphism which

preserves the internal endomorphism objects in H–Bimod(A)sym.

Finally, in Section 3.4 we assign curvatures to connections and show that they

are internal endomorphisms in the category H–Bimod(A)sym, provided that H is

triangular. We also obtain a Bianchi tensor, which in classical differential geometry

would identically vanish; in general it is not necessarily equal to 0, and hence in this

sense it characterises the noncommutativity and nonassociativity of our geometries.

We further observe that the curvature of any tensor product connection is the sum

of the two individual curvatures, which means that curvatures behave additively in

an appropriate sense.

In Chapter 4 we apply the constructions in Chapter 2 to the concrete exam-

ples of deformation quantization of G-equivariant vector bundles over G-manifolds

where G is the Lie group obtained by exponentiating the Lie algebra of (a subset

of the) infinitesimal diffeomorphisms of a manifold, and provide examples of non-

commutative and nonassociative spaces which fit into this framework which include

the Q and R-flux compactifications of closed string theory. We also consider how

the constructions in Chapter 3 may be applied in the simplest model of cochain

twist deformations of trivial vector bundles over noncommutative and nonassocia-

tive spaces and provide physically viable action functionals for Yang-Mills theory

and Einstein-Cartan gravity on noncommutative and nonassociative spaces, as first

steps towards more elaborate models relevant to non-geometric flux deformations of

geometry in closed string theory.

In Section 4.1 we construct concrete examples for the categories H–Algcom and

H–Bimod(A)sym for a given braided commutative algebra A ∈ H–Algcom starting
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from ordinary differential geometry. In these examples the algebras A and bimodules

V are commutative, i.e. braided commutative with respect to the trivial R-matrix

R = 1 ⊗ 1. Deformation quantization by cochain twists then leads to examples of

noncommutative and also nonassociative algebras and bimodules.

In Sections 4.2 we restrict to trivial vector bundles over noncommutative and

nonassociative spaces with diagonal action of the pertinent Hopf algebra of symme-

tries of the non-geometric background. We give concrete realizations of the perti-

nent bimodule operations for homomorphism bundles. In Section 4.3 we apply this

framework to obtain explicit expressions for connections and their curvatures on

noncommutative and nonassociative vector bundles and in Section 4.4 we demon-

strate how to apply our formalism to the constructions of physically sensible action

functionals for Yang-Mills theory and Einstein-Cartan gravity on noncommutative

and nonassociative spaces.
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Chapter 2

Mathematical foundations

This chapter sets up the basic framework for the formalism of noncommutative and

nonassociative differential geometry to be developed in Chapter 3. In Section 2.1

we review the theory of closed braided monoidal categories for the category of k-

modules and the theory of cochain twisting of quasitriangular quasi-Hopf algebras.

In Sections 2.2 and 2.3 we interpret the theory of Section 2.1 in the monoidal cate-

gory [H,M ] for an arbitrary quasitriangular quasi-Hopf algebra H showing how all

structures are preserved by cochain twisting. We also show the important result for

physics that the morphisms in [H,M ] are contained in the internal homomorphisms

in a structure preserving way.

2.1 Preliminaries

2.1.1 k-modules

Throughout this Chapter k denotes a commutative and associative ring with unit

1 ∈ k. In examples k = K[~] where ~ is a formal deformation parameter and K is

either R or C.

The constructions in this Chapter are based on the category of k-modules M :=

Modk. The objects in M are k-modules and the morphisms are k-linear maps.

The category M is (strict) monoidal with monoidal functor given by the tensor

product of k-modules simply denoted by ⊗ : M ×M →M without any subscript.

To any M ×M -morphism (f : V → V ′, g : W → W ′ ) the monoidal functor assigns

the k-linear map

f ⊗ g : V ⊗W −→ V ′ ⊗W ′ , v ⊗ w 7−→ f(v)⊗ g(w) . (2.1.1)

24



Chapter 2: Mathematical foundations

The unit object in M is the one-dimensional k-module k. The associator in M is

the natural isomorphism

Φ : ⊗ ◦
(
⊗ ×idM

)
=⇒ ⊗ ◦

(
idM ×⊗

)
, (2.1.2)

given by the identity maps. For the rest of this section the associator will be trivial.

The unitors in M are the natural isomorphisms

λ : k ⊗ – =⇒ idM and % : –⊗ k =⇒ idM , (2.1.3)

where idM : M → M is the identity functor and k ⊗ – : M → M is the functor

assigning to an object V in M the k-module k ⊗ V and to an M -morphism f :

V → W the k-linear map idk ⊗ f : k⊗ V → k⊗W , c⊗ v 7→ c⊗ f(v). The functor

–⊗ k : M →M is defined similarly. The V -components of the unitors are given by

λV : k ⊗ V → V , c⊗ v 7→ c v and %V : V ⊗ k → V , v ⊗ c 7→ c v.

The monoidal category M of k-modules admits an internal hom-structure which

we shall describe below. This internal hom-structure plays a central role in the rest

of this thesis. Internal homomorphisms are similar to morphisms in a category, but

whereas morphisms preserve every structure on the objects of the category, internal

homomorphisms are not subject to this strict requirement.

Proposition 2.1.1 (Hom functor). The assignment of Hom-sets in a locally small

category C is functorial: The Hom-functor is the functor

HomC : C op × C → Set , (V,W ) 7→ HomC (V,W ) ,

(f op, g) 7→ g ◦ – ◦ f . (2.1.4)

Proof. HomC clearly preserves the identity morphisms hom(idop
V , idW ) = idhom(V,W ).

It also preserves compositions

hom(f op ◦op f̃ op, g ◦ g̃)( · ) = g ◦ g̃ ◦ ( · ) ◦ f̃ ◦ f =
(
hom(f op, g) ◦ hom(f̃ op, g̃)

)
( · ) ,

(2.1.5)
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for any two composable morphisms (f op, g) and (f̃ op, g̃) in C op × C .

Definition 2.1.2 (Representable functor). Let C be a locally small category. An

object X ∈ C represents the functor G : C → Set if

G ∼= HomC (– , X) , (2.1.6)

are equivalent as functors (cf. Definition A.2.5). G is then said to be representable.

Definition 2.1.3 (Internal homomorphism). Given a (locally small) monoidal cate-

gory C and any two objects V,W ∈ C , an internal homomorphism object hom(V,W )

in C is an object in C which represents the functor HomC

(
–⊗ V,W

)
: C op → Sets.

Definition 2.1.4 (Closed monoidal category). A closed monoidal category is a

monoidal category C which permits internal hom-objects: For any two objects

V,W ∈ C , there is an object hom(V,W ) which represents the functor HomC

(
– ⊗

V,W
)

: C op → Sets. The natural bijection

ζ–,V,W : HomC

(
–⊗ V,W

)
−→ HomC

(
–, hom(V,W )

)
. (2.1.7)

is traditionally referred to as the currying bijection. From this equation and Defini-

tion 2.1.1 it is clear that the internal hom-objects assign objects in C to objects in

C op ⊗ C . The assignment of internal hom-objects is functorial and we denote the

corresponding functor by

hom : C op ⊗ C −→ C . (2.1.8)

(We shall use a subscript later on to distinguish internal hom-functors in different

categories.)

M is a closed monoidal category with internal hom-functor

hom : M op ×M −→M , (2.1.9)
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which assigns to any object (V,W ) in M op ×M , the object

hom
(
V,W

)
:= HomM

(
V,W

)
, (2.1.10)

where HomM (V,W ) is the k-module of k-linear maps between V and W (in M

there is no distinction between internal homomorphisms and morphisms because M

is enriched over itself). To any M op ×M -morphism (f op : V → V ′, g : W → W ′ )

the internal hom-functor assigns the M -morphism

hom(f op, g) : hom
(
V,W

)
−→ hom

(
V ′,W ′ ) , L 7−→ g ◦ L ◦ f . (2.1.11)

Functoriality of hom follows from that of HomM : HomM clearly preserves the iden-

tity morphisms HomM (idop
V , idW ) = idHomM (V,W ). It also preserves compositions

HomM (f op ◦op f̃ op, g ◦ g̃)( · ) = g ◦ g̃ ◦ ( · ) ◦ f̃ ◦ f

=
(
HomM (f op, g) ◦ HomM (f̃ op, g̃)

)
( · ) , (2.1.12)

for any two composable morphisms (f op, g) and (f̃ op, g̃) in M . The natural currying

bijection

ζ : HomM (–⊗ –, –) =⇒ HomM (–, hom(–, –)) (2.1.13)

has (V,W,X)-component

ζV,W,X(f) : V −→ hom(W,X) , v 7−→ f
(
v ⊗ ( · )

)
, (2.1.14)

for all M -morphisms f : V ⊗ W → X, and the inverse currying bijection has

(V,W,X)-component

ζ−1
V,W,X(g) : V ⊗W −→ X , v ⊗ w 7−→ g(v)(w) , (2.1.15)

for all M -morphisms g : V → hom(W,X). A straightforward calculation shows
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that ζ−1
V,W,X is indeed the inverse of the map ζV,W,X . To confirm that ζV,W,X is

the (V,W,X)-component of a natural isomorphism ζ between the two functors

HomM (– ⊗ –, –) and HomM (–, hom(–, –)) from
(
M
)op ×

(
M
)op ×M to the cate-

gory of sets, take any morphism
(
f op
V : V → V ′, f op

W : W → W ′, fX : X → X ′
)

in(
M
)op ×

(
M
)op ×M ; one has that the diagram (in the category Sets)

Hom
(
V ⊗W,X

)
Hom(fopV ⊗f

op
W ,fX)

��

ζV,W,X
// Hom

(
V, hom(W,X)

)
Hom(fopV ,hom(fopW ,fX))

��

Hom
(
V ′ ⊗W ′, X ′

)
ζ
V ′,W ′,X′

// Hom
(
V ′, hom(W ′, X ′ )

)
(2.1.16)

commutes. Indeed, for any M -morphism f : V ⊗W → X

Hom(f op
V , hom(f op

W , fX))
(
ζV,W,X(f)

)
= fX ◦ f

(
fV ( · ) ⊗ ( · )

)
◦ fW

= fX ◦ f
(
fV ⊗ fW

(
( · ) ⊗ ( · )

))
= ζV ′,W ′,X′

(
Hom(f op

V ⊗ f
op
W , fX)(f)

)
. (2.1.17)

For any closed monoidal category C there exist canonical evaluation and com-

position morphisms for the internal hom-objects [52, Proposition 9.3.13]. These

morphisms are derived using the currying bijection, see e.g. [52, Proposition 9.3.13],

and they induce important structures on the internal homomorphisms which give

them map-like properties compatible with the structure of an object in the category.

Proposition 2.1.5. Let C be any (locally small) closed monoidal category with

internal hom-functor hom : C op × C → C . Then there are C -morphisms

evV,W : hom(V,W )⊗ V −→ W , (2.1.18a)

•V,W,X : hom(W,X)⊗ hom(V,W ) −→ hom(V,X) , (2.1.18b)

for all objects V,W,X in C .
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Proof. To construct the C -morphism evV,W let us notice that, due to the currying,

there is a bijection of Hom-sets

HomC

(
hom(V,W ), hom(V,W )

) ζ−1
hom(V,W ),V,W

// HomC

(
hom(V,W )⊗ V,W

)
,

(2.1.19)

for all objects V,W in C . Choosing the identity idhom(V,W ) in the Hom-set on the

left-hand side, we obtain via this bijection the C -morphism

evV,W := ζ−1
(
idhom(V,W )

)
: hom

(
V,W

)
⊗ V −→ W , (2.1.20)

for all objects V,W in C . Considering the following composition of C -morphisms

(
hom(V,W )⊗ hom(X, V )

)
⊗X

Φ
hom(V,W ),hom(X,V ),X

��

hom(V,W )⊗
(
hom(X, V )⊗X

)
idhom(V,W )⊗evX,V

��

hom(V,W )⊗ V
evV,W
��

W

(2.1.21)

we define the C -morphism

•V,W,X := ζ
(

ev ◦
(
idhom(V,W ) ⊗ ev

)
◦ Φ
)

: hom
(
V,W

)
⊗ hom

(
X, V

)
−→ hom

(
X,W

)
,

(2.1.22)

for all objects V,W,X in C .

The evaluation and composition of internal homomorphisms in M are given by
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the usual operations: For any three objects V,W,X in M

evV,W : hom(V,W )⊗ V −→ W ,

L⊗ v 7→ L(v) , (2.1.23a)

•V,W,X : hom(W,X)⊗ hom(V,W ) −→ hom(V,X) ,

L⊗K 7→ L ◦K . (2.1.23b)

The properties of the evaluation and composition morphisms correspond to the usual

properties for k-linear maps:

g(v)(w) = evW,X ◦ (g ⊗ idW )(v ⊗ w) = ζ−1
V,W,X(g)(v ⊗ w) = g(v)(w) , (2.1.24a)

L ◦ L′(v) = ev(L • L′ ⊗ v) = ev(L⊗ ev(L′ ⊗ v)) = L ◦ L′(v) , (2.1.24b)

(L′′ ◦ L) ◦ L′ = (L′′ • L) • L′ = L′′ • (L • L′) = L′′ ◦ (L ◦ L′) , (2.1.24c)

for any M -morphism g : V → hom(W,X), v ∈ V and w ∈ W , and for internal

homomorphisms L′′ ∈ hom(X, Y ), L ∈ hom(W,X), L′ ∈ hom(V,W ).

Finally, M can be equipped with a braiding natural isomorphism

σ : ⊗ =⇒ ⊗op , (2.1.25)

(where the opposite tensor product ⊗op is defined in Definition A.3.6) with (V,W )-

component given by

σV,W : V ⊗W −→ W ⊗ V , v ⊗ w 7−→ w ⊗ v , (2.1.26)

which trivially satisfies the hexagon relations.

Remark 2.1.6. Note that the M -morphism σW,V ◦σV,W : V ⊗W → V ⊗W coincides

with the identity morphism idV⊗W , hence the braiding is symmetric.

For any closed braided monoidal category C there exist canonical tensor product

morphisms for the internal hom-objects [52, Proposition 9.3.13].
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Proposition 2.1.7. Let C be any braided monoidal category with internal hom-

functor hom : C op × C → C . Then there is a C -morphism

⊗• V,W,X,Y : hom(V,W )⊗ hom(X, Y ) −→ hom(V ⊗X,W ⊗ Y ) , (2.1.27)

for all objects V,W,X, Y in C .

Proof. Considering the following composition of C -morphisms

(
hom(V,W )⊗ hom(X, Y )

)
⊗ (V ⊗X)

Φ
hom(V,W ),hom(X,Y ),V⊗X
��

hom(V,W )⊗
(
hom(X, Y )⊗ (V ⊗X)

)
idhom(V,W )⊗Φ−1

hom(X,Y ),V,X
��

hom(V,W )⊗
(
(hom(X, Y )⊗ V )⊗X

)
idhom(V,W )⊗(τ

hom(X,Y ),V
⊗idX)

��

hom(V,W )⊗
(
(V ⊗ hom(X, Y ))⊗X

)
idhom(V,W )⊗Φ

V,hom(X,Y ),X

��

hom(V,W )⊗
(
V ⊗ (hom(X, Y )⊗X)

)
Φ−1

hom(V,W ),V,hom(X,Y )⊗X
��(

hom(V,W )⊗ V
)
⊗
(
hom(X, Y )⊗X

)
evV,W⊗evX,Y
��

W ⊗ Y

(2.1.28)

we define the C -morphism

⊗• := ζ
(

(ev ⊗ ev) ◦ Φ−1 ◦ (id⊗ Φ) ◦ (id⊗ (τ ⊗ id)) ◦ (id⊗ Φ−1) ◦ Φ
)

:

hom
(
V,W

)
⊗ hom

(
X, Y

)
−→ hom

(
V ⊗ X,W ⊗ Y

)
, (2.1.29)

for all objects V,W,X, Y in C .

The tensor product of internal homomorphisms in M is given by the usual
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operation: For any four objects V,W,X, Y in M

⊗• V,W,X,Y : hom(V,W )⊗ hom(X, Y ) −→ hom(V ⊗X,W ⊗ Y ) ,

L⊗K 7→ L⊗K . (2.1.30)

The compatibility between the composition and tensor product morphism cor-

responds to the usual properties for k-linear maps: Let V,W,X, Y, Z be any five

objects in M . Then

(K • L)⊗• (K ′ • L′) = (K ⊗• K ′) • (L⊗• L′) , (2.1.31)

for all L ∈ hom(V,W ), K ∈ hom(W,X), L′ ∈ hom(X, Y ) and K ′ ∈ hom(Y, Z).

The tensor product morphisms satisfy an associativity property which coincides

with the usual property for k-linear maps:

(L⊗• K)⊗• M = L⊗• (K ⊗• M) . (2.1.32)

In this chapter M will denote the closed symmetric monoidal category of k-

modules equipped with the braiding defined in equation (2.1.26).

2.1.2 Algebras in M

An algebra in M is a monoid object (A, µA, ηA) in the (monoidal) category M . In

other words

Definition 2.1.8 (Algebra). An algebra in M is an object A in M together with

two M -morphisms µA : A⊗ A→ A (product) and ηA : k → A (unit) such that the
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diagrams

(A⊗ A)⊗ A
ΦA,A,A

��

µA⊗idA // A⊗ A

µA

��

A⊗ (A⊗ A)

idA⊗µA
��

A⊗ A µA
// A

(2.1.33a)

k ⊗ A
ηA⊗idA

��

λA

''

A⊗ k
%A

ww

idA⊗ηA
��

A⊗ A µA
// A A A⊗ AµA

oo

(2.1.33b)

in M commute. We shall denote by Alg the category with objects all algebras in

M and morphisms given by all structure preserving M -morphisms, i.e. an Alg-

morphism f : A → B is an M -morphism such that µB ◦ (f ⊗ f) = f ◦ µA and

f ◦ ηA = ηB.

Given an algebra A in M it is convenient to use a short-hand notation to denote

the product of elements by µA(a ⊗ a′ ) = a a′, for all a, a′ ∈ A. In this short-hand

notation, since the associator in M is trivial, the first diagram in Definition 2.1.8

implies that

(a a′ ) a′′ = a (a′ a′′ ) , (2.1.34)

for all a, a′, a′′ ∈ A, and denoting the unit element in A by 1A := ηA(1), the last two

diagrams in Definition 2.1.8 imply that

1A a = a = a 1A , (2.1.35)

for all a ∈ A. Then an Alg-morphism f : A→ B is a k-linear map that satisfies

f(a a′ ) = f(a) f(a′ ) , f(1A) = 1B , (2.1.36)
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for all a, a′ ∈ A.

Example 2.1.9. Given any object V in M we can consider its internal endomor-

phisms end(V ) := hom(V, V ), which is an object in M . By Proposition 2.1.5 there

is an M -morphism

µend(V ) := •V,V,V : end(V )⊗ end(V ) −→ end(V ) . (2.1.37)

Explicitly, the composition morphism is given in (2.1.23). Furthermore, due to the

currying ζ in (2.1.14) we can assign to the M -morphism λV : k ⊗ V → V the

M -morphism

ηend(V ) := ζk,V,V (λV ) : k −→ end(V ) . (2.1.38)

Explicitly, evaluating this morphism on 1 ∈ k we find 1end(V ) := ηend(V )(1) =

1endk(V ) ∈ end(V ). Using (2.1.24) it is clear that
(
end(V ), µend(V ), ηend(V )

)
satis-

fies the axioms for an algebra in M .

Remark 2.1.10. For any object V in M the algebra end(V ) in M describes the

algebra of linear operators on V . A representation of an object A in Alg on V in

M is then defined to be an Alg-morphism πA : A→ end(V ).

There is an internal commutator for the internal endomorphisms (to simplify

notation we drop indices on morphisms in this definition and its consequences):

Definition 2.1.11 (Internal commutator). Let V be an object in M . The internal

commutator in the algebra of internal endomorphisms end(V ) is the M -morphism

[ · , · ] : end(V )⊗ end(V )→ end(V ) defined by

[ · , · ] := • − • ◦ σ .

That is [L,L′] = L ◦ L′ − L′ ◦ L for all L,L′ ∈ end(V ).

Remark 2.1.12. Notice that the target of a morphism is an object, so the commu-

tator of internal endomorphisms is indeed an internal endomorphism.
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Proposition 2.1.13. Let V be an object in M . The internal commutator in end(V )

satisfies the following properties:

(i) [ · , · ] is braided antisymmetric

[ · , · ] = −[ · , · ] ◦ σ , (2.1.39)

i.e.
[
L,L′

]
= −

[
L′, L

]
for all L,L′ ∈ end(V ).

(ii) [ · , · ] satisfies the braided Jacobi identity Jac = 0, with Jacobiator given by the

M -morphism Jac : (end(V )⊗ end(V ))⊗ end(V ) −→ end(V ) defined as

Jac := [ · , · ] ◦
(
[ · , · ]⊗ id

)
◦
(
((id⊗ id)⊗ id) + (σ ◦ Φ) + (Φ−1 ◦ σ)

)
,

(2.1.40)

i.e.
[[
L,L′

]
, L′′

]
+
[[
L′, L′′

]
, L
]

+
[[
L′′, L

]
, L′
]

for all L,L′, L′′ ∈ end(V ).

(iii) [ · , · ] satisfies the braided derivation property

[ · , · ] ◦ (• ⊗ id) = • ◦
((

id⊗ [ · , · ]
)

+
(
[ · , · ]⊗ id

)
◦ Φ−1 ◦

(
id⊗ σ

))
◦ Φ ,

(2.1.41)

i.e.
[
L ◦ L′, L′′

]
= L ◦

[
L′, L′′

]
+
[
L,L′′

]
◦ L′ for all L,L′, L′′ ∈ end(V ).

Proof. Item (i) follows from a short calculation

[ · , · ] = • − • ◦ σ = −(• ◦ σ − •) = −(• − • ◦ σ−1) ◦ σ = −(• − • ◦ σ) ◦ σ

= −[ · , · ] ◦ σ , (2.1.42)

using the obvious result that σ−1 = σ. The proofs of items (ii) and (iii) involve

standard manipulations using the associativity of the internal composition.

Corollary 2.1.14. Let V be any object in M . Then the object in M given by the

internal endomorphisms end(V ), together with the internal commutator [ · , · ] given

in (2.1.39), is a Lie algebra object in M .
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A commutative algebra in M is an abelian monoid object (A, µA, ηA) in the

(symmetric monoidal) category M . In other words

Definition 2.1.15 (Commutative algebra). An algebra (A, µA, ηA) in M is called

commutative if

A⊗ A

µA
##

σA,A
// A⊗ A

µA
{{

A

(2.1.43)

in M commutes. We denote the full subcategory of Alg of commutative algebras in

M by Algcom.

In the short-hand notation the product in a braided commutative algebra satisfies

a a′ = a′ a , (2.1.44)

for all a, a′ ∈ A.

2.1.3 Bimodules in M

In what follows we shall simply denote by A the algebra (A, µA, ηA) in M . Given

an algebra A in M we can consider objects in M which are also A-bimodules in a

compatible way.

Definition 2.1.16 (Bimodule). Let A be an algebra in M . An A-bimodule in M is

an object V in M together with two M -morphisms lV : A⊗ V → V (left A-action)

and rV : V ⊗ A→ V (right A-action), such that

(V ⊗ A)⊗ A
ΦV,A,A

��

rV ⊗idA // V ⊗ A

rV

��

A⊗ (A⊗ V )

Φ−1
A,A,V

��

idA⊗lV // A⊗ V

lV

��

V ⊗ (A⊗ A)

idV ⊗µA
��

(A⊗ A)⊗ V
µA⊗idV

��

V ⊗ A rV
// V A⊗ V

lV

// V

(2.1.45a)
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A⊗ (V ⊗ A)

Φ−1
A,V,A

��

idA⊗rV // A⊗ V

lV

��

(A⊗ V )⊗ A
lV ⊗idA

��

V ⊗ A rV
// V

(2.1.45b)

I ⊗ V
ηA⊗idV

��

λV

''

V ⊗ I
idV ⊗ηA
��

%V

ww
A⊗ V

lV

// V V V ⊗ ArV
oo

(2.1.45c)

in M commute. We shall denote by Bimod(A) the category with objects all A-

bimodules in M and morphisms given by all structure preserving M -morphisms,

i.e. a Bimod(A)-morphism f : V → W is an M -morphism such that lW ◦(idA⊗f) =

f ◦ lV and rW ◦ (f ⊗ idA) = f ◦ rV .

Given an A-bimodule V in M it is convenient to denote the left and right A-

actions on elements simply by lV (a ⊗ v) = a v and rV (v ⊗ a) = v a, for all a ∈ A

and v ∈ V . In this short-hand notation, the first three diagrams in Definition 2.1.16

imply that

(v a) a′ = v (a a′) , (2.1.46a)

a (a′ v) = (a a′) v , (2.1.46b)

a (v a′ ) = (a v) a′ , (2.1.46c)

for all a, a′ ∈ A and v ∈ V , and the remaining two diagrams imply that

1A v = v = v 1A , (2.1.47)

for all v ∈ V . Then a Bimod(A)-morphism f : V → W is a k-linear map that
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satisfies

f(a v) = a f(v) , f(v a) = f(v) a , (2.1.48)

for all a ∈ A and v ∈ V .

Example 2.1.17. Given any algebra A in M we can construct the n-dimensional

free A-bimodule An in M , where n ∈ N. Elements ~a ∈ An can be written as columns

~a =


a1

...

an

 , ai ∈ A , i = 1, . . . , n . (2.1.49)

The left and right A-actions lAn and rAn are defined componentwise by

a′~a :=


a′ a1

...

a′ an

 , ~a a′ :=


a1 a

′

...

an a
′

 , (2.1.50)

for all a′ ∈ A and ~a ∈ An. The A-bimodule properties of An follow from the algebra

properties of A.

Definition 2.1.18. [Symmetric bimodule] Let A be a braided commutative algebra

in M . An A-bimodule V in M is called symmetric if for the left and right A-actions

the diagrams

A⊗ V

lV ##

σA,V
// V ⊗ A

rV
{{

A⊗ V

lV ##

V ⊗ A

rV
{{

σV,A
oo

V V

(2.1.51)

in M commute. We denote the full subcategory (cf. Definition A.1.3) of Bimod(A)

of symmetric A-bimodules by Bimod(A)sym.

In the short-hand notation, the left and right A-actions in a symmetric A-
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bimodule V in M satisfy

a v = v a , (2.1.52a)

v a = a v , (2.1.52b)

for all a ∈ A and v ∈ V .

Example 2.1.19. For any braided commutative algebra A in Algcom the free A-

bimodules of Example 2.1.17 are symmetric A-bimodules.

2.1.4 Monoidal structure on bimodules in M

The monoidal structure on M induces a monoidal structure ⊗A (the tensor product

over the algebra A) on Bimod(A) by a construction which we shall now describe.

First, by using the forgetful functor Forget : Bimod(A)→M we can define a functor

⊗ ◦ (Forget× Forget) : Bimod(A)× Bimod(A) −→M . (2.1.53)

For any object (V,W ) in Bimod(A)×Bimod(A) we can equip the object V ⊗W in

M with the structure of an A-bimodule in M (here and in the following we suppress

the forgetful functors). Let us define the left and right A-action on V ⊗W by the

M -morphisms

lV⊗W :=
(
lV ⊗ idW

)
◦ Φ−1

A,V,W : A⊗
(
V ⊗W

)
−→ V ⊗W , (2.1.54a)

rV⊗W :=
(
idV ⊗ rW

)
◦ ΦV,W,A :

(
V ⊗W

)
⊗ A −→ V ⊗W . (2.1.54b)

In the short-hand notation, the left and right A-actions on V ⊗W read as

lV⊗W
(
a⊗ (v ⊗ w)

)
= (a v)⊗ w =: a (v ⊗ w) , (2.1.55a)

rV⊗W
(
(v ⊗ w)⊗ a

)
= v ⊗ (w a) =: (v ⊗ w) a , (2.1.55b)

for all a ∈ A, v ∈ V and w ∈ W . From these explicit expressions it is immediate

that lV⊗W and rV⊗W satisfy the properties in Definition 2.1.16 and hence equip
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V ⊗W with the structure of an A-bimodule in M . Given a morphism
(
f : V →

X, g : W → Y
)

in Bimod(A) × Bimod(A), it is also clear from the definitions that

the M -morphism f ⊗ g : V ⊗W → X ⊗ Y preserves this A-bimodule structure,

i.e. it is a morphism in Bimod(A). As a consequence, the functor in (2.1.53) can

be promoted to a functor with values in Bimod(A), which we shall denote with an

abuse of notation by

⊗ : Bimod(A)× Bimod(A) −→ Bimod(A) . (2.1.56)

We point out some relevant properties which follow directly from the definition of

the A-bimodule structure on ⊗ and the properties of an A-bimodule in M :

Lemma 2.1.20. (i) For any three objects V,W,X in Bimod(A) the M -morphism

ΦV,W,X : (V ⊗W )⊗X → V ⊗ (W ⊗X) is a Bimod(A)-morphism with respect

to the A-bimodule structure described by the functor (2.1.56).

(ii) For any object V in Bimod(A) the M -morphisms lV : A ⊗ V → V and rV :

V ⊗A→ V are Bimod(A)-morphisms with respect to the A-bimodule structure

described by the functor (2.1.56). (In the domain of these morphisms A is

regarded as the one-dimensional free A-bimodule, see Example 2.1.17.)

The functor (2.1.56) is not yet the correct monoidal functor on the category

Bimod(A) as it does not take the tensor product over the algebra A. We modify

this functor as follows: For any object (V,W ) in Bimod(A) × Bimod(A) we have

two parallel morphisms in M given by

(V ⊗ A)⊗W
rV ⊗idW

//

(idV ⊗lW )◦ΦV,A,W
//
V ⊗W . (2.1.57)

Due to Lemma 2.1.20, the two morphisms in (2.1.57) are Bimod(A)-morphisms.

We define the object V ⊗AW in Bimod(A) to be the coequalizer of the two parallel

Bimod(A)-morphisms (2.1.57), i.e. there is an epimorphism πV,W : V ⊗W → V ⊗AW
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in Bimod(A) and the following diagram is a coequaliser

(V ⊗ A)⊗W
rV ⊗idW

//

(idV ⊗lW )◦ΦV,A,W
//
V ⊗W

πV,W
// V ⊗AW . (2.1.58)

We can give an explicit characterization of the coequalizer: Let us denote the image

of the difference of the Bimod(A)-morphisms in (2.1.57) by

NV,W := Im
(
rV ⊗ idW − (idV ⊗ lW ) ◦ ΦV,A,W

)
, (2.1.59)

and notice that NV,W ⊆ V ⊗W is an object in Bimod(A) with respect to the induced

A-bimodule structures. Then the object V ⊗A W in Bimod(A) can be represented

explicitly as the quotient

V ⊗AW =
V ⊗W
NV,W

, (2.1.60)

and the epimorphism πV,W : V ⊗ W → V ⊗A W is given by the quotient map

assigning equivalence classes.

In the spirit of our short-hand notation, we shall denote elements in V ⊗A W

by v ⊗A w, which one should read as the equivalence class in V ⊗A W defined by

the element v ⊗ w ∈ V ⊗W , i.e. v ⊗A w = πV,W (v ⊗ w). As a consequence of the

equivalence relation in V ⊗AW , one has the identity

(v a)⊗A w = v ⊗A (aw) , (2.1.61a)

for all a ∈ A, v ∈ V and w ∈ W . The A-bimodule structure on V ⊗A W in this

notation reads as

a (v ⊗A w) = (a v)⊗A w , (2.1.61b)

(v ⊗A w) a = v ⊗A (w a) , (2.1.61c)

for all a ∈ A, v ∈ V and w ∈ W .
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It can be easily checked that the construction of V ⊗A W is functorial: Given

any morphism
(
f : V → X, g : W → Y

)
in Bimod(A) × Bimod(A) we obtain an

Bimod(A)-morphism f ⊗A g : V ⊗AW → X ⊗A Y by setting

f ⊗A g
(
v ⊗A w

)
:= f(v)⊗A g(w) , (2.1.62)

for all v ∈ V and w ∈ W . We shall denote this functor by

⊗A : Bimod(A)× Bimod(A) −→ Bimod(A) . (2.1.63)

By Lemma 2.1.20, the (V,W,X)-component ΦV,W,X of the associator in M are

Bimod(A)-morphisms if V,W,X are in Bimod(A). With a simple computation using

the bimodule properties in Definition 2.1.16 one checks that ΦV,W,X descends to the

quotients for any V,W,X in Bimod(A), and thereby induce an associator ΦA for

the monoidal functor ⊗A on Bimod(A). Explicitly, the (V,W,X)-component of ΦA

reads as

ΦA
V,W,X : (V ⊗AW )⊗A X −→ V ⊗A (W ⊗A X) ,

(v ⊗A w)⊗A x 7−→ v ⊗A (w ⊗A x) . (2.1.64)

Finally, by declaring A (regarded as the one-dimensional free A-bimodule, cf. Exam-

ple 2.1.17) as the unit object in Bimod(A), we can define unitors for the monoidal

functor ⊗A on Bimod(A) by using the fact that lV : A⊗V → V and rV : V ⊗A→ V

are Bimod(A)-morphisms (cf. Lemma 2.1.20) that descend to the quotients (by the

bimodule properties in Definition 2.1.16). Explicitly, the V -component of the unitors

λA and %A read as

λAV : A⊗A V −→ V , a⊗A v 7−→ a v , (2.1.65a)

%AV : V ⊗A A −→ V , v ⊗A a 7−→ v a . (2.1.65b)

In summary, this shows
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Proposition 2.1.21. For any algebra A in Alg, the category Bimod(A) of A-

bimodules in M is a monoidal category with monoidal functor ⊗A (cf. (2.1.60)

and (2.1.62)), associator ΦA (cf. (2.1.64)), unit object A (regarded as the one-

dimensional free A-bimodule, cf. Example (2.1.17), and unitors λA and %A (cf.

(2.1.65)).

Lemma 2.1.22. Let A be any braided commutative algebra in M . Then the category

Bimod(A)sym is a full monoidal subcategory of the monoidal category Bimod(A).

Explicitly, the monoidal functor on Bimod(A) restricts to the functor (denoted by

the same symbol)

⊗A : Bimod(A)sym × Bimod(A)sym −→ Bimod(A)sym . (2.1.66a)

Proof. First, notice that the unit object A (regarded as a free A-bimodule) in

Bimod(A) is an object in Bimod(A)sym, cf. Example 2.1.19 (i). Next, we shall show

that V ⊗AW is a symmetric A-bimodule for any two objects V,W in Bimod(A)sym.

We have

a (v ⊗A w) = (a v)⊗A w

= (v a)⊗A w

= v ⊗A (aw)

= v ⊗A (w a)

= (v ⊗A w) a , (2.1.67)

for all v ∈ V , w ∈ W and a ∈ A. In the first, third and fifth equalities we

used (2.1.61), and in the second and fourth equalities we used (2.1.52). Hence,

Bimod(A)sym is a monoidal subcategory. It is straightforward to see that the restric-

tion of any Bimod(A)-morphism to an object in Bimod(A)sym is an Bimod(A)sym-

morphism and hence Bimod(A)sym is a full subcategory of Bimod(A).
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2.1.5 Bimodule internal homomorphisms in M

Let A be an algebra in M . Let us consider the monoidal category Bimod(A)

(cf. Proposition 2.1.21) and notice that, by using the forgetful functor Forget :

Bimod(A)→M , we can define a functor

hom ◦
(
Forgetop × Forget

)
:
(
Bimod(A)

)op × Bimod(A) −→M . (2.1.68)

For any object (V,W ) in
(
Bimod(A)

)op×Bimod(A) the object hom(V,W ) in M can

be equipped with the structure of an A-bimodule in M (here and in the following

we suppress the forgetful functors). As preparation for this, we require

Lemma 2.1.23. For any object V in Bimod(A) the M -morphism

l̂V := ζA,V,V (lV ) : A −→ end(V ) (2.1.69)

is an Alg-morphism with respect to the algebra structure on end(V ) described in

Example 2.1.9.

Proof. Acting with l̂V on the unit element 1A = ηA(1) ∈ A and using the expression

for the currying map (2.1.14) we obtain

l̂V (1A) = lV (1A ⊗ ( · )) = 1end(V ) . (2.1.70)

To show that l̂V preserves the product, notice that

µend(V )

(
l̂V (a)⊗ l̂V (a′ )

)
= l̂V (a) •V,V,V l̂V (a′ )

= lV (a⊗ lV (a′ ⊗ (·)))

= (a a′) (·)

= lV ((a a′)⊗ (·))

= l̂V (a a′ ) , (2.1.71)

for all a, a′ ∈ A. Hence l̂V is an Alg-morphism.
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Due to Lemma 2.1.23 and the associativity of •, the M -morphisms defined by

the diagrams

A⊗ hom(V,W )

l̂W⊗idhom(V,W )
��

l
hom(V,W )

// hom(V,W )

end(W )⊗ hom(V,W )

•V,W,W

44
(2.1.72a)

hom(V,W )⊗ A
idhom(V,W )⊗l̂V

��

r
hom(V,W )

// hom(V,W )

hom(V,W )⊗ end(V )

•V,V,W

44
(2.1.72b)

in M induce an A-bimodule structure on hom(V,W ). It will be convenient to use

the short-hand notation

lhom(V,W )(a⊗ L) = l̂W (a) •V,W,W L =: aL , (2.1.73a)

rhom(V,W )(L⊗ a) = L •V,V,W l̂V (a) =: La , (2.1.73b)

for all a ∈ A and L ∈ hom(V,W ).

It it useful to note that

Lemma 2.1.24. The left A-linearity of a Bimod(A)-morphism f : V → W , viewed

as an internal homomorphism, can be written as

f • l̂V (a) = l̂W (a) • f , (2.1.74)

for all a ∈ A.

Given any morphism
(
f op : V → X, g : W → Y

)
in
(
Bimod(A)

)op × Bimod(A),

the M -morphism hom(f op, g) : hom(V,W )→ hom(X, Y ) preserves the A-bimodule

structure on hom(V,W ), hence it is an Bimod(A)-morphism: using equation (2.1.74)

and the short-hand notation above, we find that hom(f op, g) preserves the left A-
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action since

hom(f op, g)
(
aL
)

= g ◦
(
l̂W (a) •V,W,W L

)
◦ f

= (g •W,W,Y l̂W (a)) ◦ (L ◦ f)

= (l̂Y (a) •W,Y,Y g) ◦ (L ◦ f)

= l̂Y (a) •X,Y,Y hom(f op, g)
(
L
)

= a hom(f op, g)
(
L
)
, (2.1.75)

for all a ∈ A and L ∈ hom(V,W ). By a similar calculation one shows that

hom(f op, g) preserves the right A-action. As a consequence, the functor in (2.1.68)

can be promoted to a functor with values in the category Bimod(A) which we shall

denote with an abuse of notation by

hom :
(
Bimod(A)

)op × Bimod(A) −→ Bimod(A) . (2.1.76)

Intuitively, the internal hom-objects in Bimod(A) should satisfy conditions which

generalise the A-bilinearity of morphisms in Bimod(A). Now we notice that the

condition in (2.1.74) generalises the notion of left A-linearity for internal homomor-

phisms and that if the monoidal category is symmetric this condition gives auto-

matically also the correct generalisation of right A-linearity. So for the remainder of

this section we restrict ourselves to the full subcategory Bimod(A)sym of symmetric

A-bimodules in M (recall that in this case A must be an object in Algcom).

A key observation for this part is that condition (2.1.74) can be translated into

a commutator equation.

In the full subcategory Bimod(A)sym of symmetric A-bimodules in M for a

braided commutative algebra A in Algcom, the construction of the internal hom-

functor in Bimod(A)sym involves a generalisation of the internal commutator [ · , · ]

from Definition 2.1.11. For A an object in Algcom and V,W any two objects in

Bimod(A)sym we define an M -morphism (denoted with abuse of notation by the

same symbol as the internal commutator) [ · , · ]V,W,A : hom(V,W )⊗A→ hom(V,W )
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by

[ · , · ]V,W,A := •V,W ◦
((

idhom(V,W ) ⊗ l̂V
)
−
(
l̂W ⊗ idhom(V,W )

)
◦ σhom(V,W ),A

)
,

(2.1.77)

where l̂ was defined in (2.1.69). For ease of notation we shall drop indices on the

internal commutator in future. Then

[L, a] = L ◦ l̂V (a)− l̂W (a) ◦ L , (2.1.78)

for all L ∈ hom(V,W ) and a ∈ A.

Definition 2.1.25. We define an object homA(V,W ) in M by the equalizer

homA(V,W ) // hom(V,W )
0

//

ζhom(V,W ),A,hom(V,W )([ · , · ])
//
hom(A, hom(V,W ))

(2.1.79)

in M . This equalizer can be realized explicitly in terms of the M -subobject

homA(V,W ) = Ker
(
ζhom(V,W ),A,hom(V,W )([ · , · ])

)
⊆ hom(V,W ) (2.1.80)

of the internal hom-object hom(V,W ) in M .

For a simpler characterisation of the object homA in M we note the following

technical

Lemma 2.1.26. Let V,W,X be any three objects in M . Let f : V ⊗W → X be

any M -morphism. Then ζV,W,A(f) ◦ j = 0 if and only if f ◦ (j ⊗ idW ) = 0, for all

M -morphisms j : U → V .

Proof. Let us first suppose that ζV,W,A(f) ◦ j = 0. Then (dropping indices)

0 = ev ◦
((
ζ(f) ◦ j

)
⊗ id

)
= ev ◦

(
ζ(f)⊗ id

)
◦ (j ⊗ id) = f ◦ (j ⊗ id) , (2.1.81)

where in the last equality we have used equation (2.1.24a). Let us now assume that
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f ◦ (j ⊗ id) = 0. Then (dropping indices)

0 = ζ
(
f ◦ (j ⊗ id)

)
= ζ
(
HomM (jop ⊗ idop, id)

(
f
))

= HomM (jop, hom(idop, id))
(
ζ(f)

)
= ζ(f) ◦ j , (2.1.82)

where in the third equality we have used naturality of the currying bijection, see

equation (2.1.17).

Lemma 2.1.27. Let A be any object in Algcom and let V,W be any two objects in

Bimod(A)sym. An M -subobject U ⊆ hom(V,W ) is an M -subobject of homA(V,W )

if and only if

[L, a] = 0 , (2.1.83)

for all L ∈ U and a ∈ A.

Proof. We have to show that ζ([ · , · ]) ◦ j = 0 if and only if [ · , · ] ◦ (j ⊗ id) = 0

where j : U → hom(V,W ) is the inclusion M -morphism. This is a consequence of

Lemma 2.1.26 with f := [ · , · ] : hom(V,W )⊗ A→ hom(V,W ).

The object homA(V,W ) in M given by (2.1.80) carries a natural left and right

A-action given by the M -morphisms (which are the restriction of those in equation

(2.1.72) dropping indices)

l := • ◦ ( l̂ ⊗ id) : A⊗ homA(V,W ) −→ homA(V,W ) , (2.1.84a)

r := • ◦ (id⊗ l̂ ) : homA(V,W )⊗ A −→ homA(V,W ) . (2.1.84b)

It is moreover an object in Bimod(A)sym because the result of Lemma 2.1.27 is

precisely the symmetry condition for the left and right A-action given in (2.1.84) (see

also (2.1.77)). Moreover, the assignment of the objects homA(V,W ) in Bimod(A)sym
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is functorial and we denote the corresponding functor by

homA :
(
Bimod(A)sym

)op × Bimod(A)sym −→ Bimod(A)sym . (2.1.85)

To any
(
Bimod(A)sym

)op × Bimod(A)sym-morphism (f op : V → V ′, g : W →

W ′ ) this functor assigns homA(f op, g) : homA(V,W ) → homA(V ′,W ′ ) , L 7→ g ◦

L ◦ f . Using the biderivation property of the internal commutator (c.f. (2.1.41))

and noticing that an Bimod(A)-morphism f viewed as an internal homomorphism

satisfies [f, a] = 0 for all a ∈ A, we have that [g◦L◦f, a] = 0 whenever [L, a] = 0, i.e.

the image of homA(f op, g)(L) is contained in homA(V ′,W ′ ) for all L ∈ homA(V,W ).

By the same calculation as in (2.1.75), homA(f op, g) is an Bimod(A)-morphism.

Finally, we show that (2.1.85) is an internal hom-functor in Bimod(A)sym.

Proposition 2.1.28. The monoidal category Bimod(A)sym is closed: There is a

natural bijection ζA : HomBimod(A)sym(– ⊗A –, –) ⇒ HomBimod(A)sym(–, homA(–, –))

with components given by

ζAV,W,X(f) : V −→ homA(W,X) ,

v 7−→ f
(
v ⊗A ( · )

)
, (2.1.86)

for all Bimod(A)sym-morphisms f : V ⊗A W → X. The components of its inverse

are

(ζAV,W,X)−1(g) : V ⊗AW −→ X ,

v ⊗A w 7−→ g(v)(w) , (2.1.87)

for all Bimod(A)sym-morphisms g : V → homA(W,X).

Proof. It is a straightforward calculation to show that the M -morphism ζAV,W,X(f) :

V → hom(W,X) is a Bimod(A)-morphism, for all Bimod(A)-morphisms f : V ⊗A
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W → X. We have

ζAV,W,X(f)(a v) = f
(
a v ⊗A ( · )

)
= f

(
a (v ⊗A ( · ))

)
= a f

(
v ⊗A ( · )

)
= a ζAV,W,X(f)(v) , (2.1.88)

for all v ∈ V and a ∈ A. Notice that left A-linearity of ζAV,W,X(f) is a consequence

of the left A-linearity of f : V ⊗A W → X. For right A-linearity we have by the

symmetry of the modules V, homA(W,X) that

ζAV,W,X(f)(v a) = ζAV,W,X(f)(a v)

= a ζAV,W,X(f)(v)

= ζAV,W,X(f)(v) a , (2.1.89)

for all v ∈ V and a ∈ A. Now it must be shown that the image of ζA(f) is

contained in homA(W,X) for all Bimod(A)sym-morphisms f : V ⊗A W → X. Due

to Lemma 2.1.27 this is shown by the calculation

(
ζAV,W,X(f)(v)

)
a = ζAV,W,X(f)(v a)

= ζAV,W,X(f)(a v)

= a ζAV,W,X(f)(v) , (2.1.90)

for all a ∈ A and v ∈ V . In the first equality we have used the right A-linearity of

ζA(f), in the second equality the symmetry of the A-bimodule V , and in the last

equality the left A-linearity of ζA(f).

Next, notice that (ζAV,W,X)−1(g) is well-defined as a consequence of the right A-
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linearity of g. Indeed

(ζAV,W,X)−1(g)(v a⊗A w) = g(v a)(w)

= (g(v) a)(w)

= g(v)(aw)

= (ζAV,W,X)−1(g)(v ⊗A aw) . (2.1.91)

It is straightforward to check that left A-linearity of g implies that (ζAV,W,X)−1(g) is

also left A-linear. Indeed

(ζAV,W,X)−1(g)(a (v ⊗A w)) = g(a v)(w)

= (a g(v))(w)

= a (g(v)(w))

= a (ζAV,W,X)−1(g)(v ⊗A w) . (2.1.92)

Notice that this calculation also implies that the M -morphism

ev := ζ−1(idhom(V,W )) (2.1.93)

is left A-linear for V,W ∈ Bimod(A). (ζA)−1(g) is also a right A-linear map for all

Bimod(A)sym-morphisms g : V → homA(X, Y ) as is shown by a short calculation

(ζA)−1(g)
(
(v ⊗A w) a

)
= (ζA)−1(g)(v ⊗A w a)

= ev
(
g(v)⊗A (w a)

)
= ev

(
(g(v)⊗A w) a

)
= a ev

(
g(v)⊗A w

)
=
(
(ζA)−1(g)(v ⊗A w)

)
a , (2.1.94)

for all a ∈ A, v ∈ V and w ∈ W . The second equality holds by direct inspection. In
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the fourth equality we have used the symmetry of the A-bimodule homA(V,W )⊗AW

and the fact that the M -morphism ev is left A-linear (c.f. (2.1.92)). The last

equality uses the symmetry of the A-bimodule X.

Naturality of ζA and the fact that (ζAV,W,X)−1 is the inverse of ζAV,W,X is easily seen

and completely analogous to (2.1.17).

We conclude this section by showing that Bimod(A)sym is a braided closed

monoidal category for any braided commutative algebra A in M .

2.1.6 Braiding for bimodules in M

Theorem 2.1.29. Let A be any braided commutative algebra in M . Then the

braiding σ in the closed monoidal category M descends to a braiding σA in the

closed monoidal category Bimod(A)sym. Explicitly, the (V,W )-component is

σAV,W : V ⊗AW −→ W ⊗A V , v ⊗A w 7−→ w ⊗A v , (2.1.95)

As a consequence, Bimod(A)sym is a braided closed monoidal category.

Proof. We have to show that (2.1.95) is a well-defined Bimod(A)-morphism, which

is equivalent to proving that

πW,V ◦ σV,W : V ⊗W −→ W ⊗A V (2.1.96)

is a Bimod(A)-morphism that vanishes on NV,W (cf. (2.1.59)). This follows from the

symmetry of the left and right A-actions on V,W (c.f. the properties (2.1.52)):

πW,V ◦ σV,W (v ⊗ aw) = aw ⊗A v

= w a⊗A v

= w ⊗A a v

= w ⊗A v a

= πW,V ◦ σV,W (v a⊗ w) , (2.1.97)
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for all a ∈ A, v ∈ V and w ∈ W .

2.1.7 Quasi-Hopf algebras

The infinitesimal diffeomorphisms on a classical manifold form a Hopf algebra. The

coproduct structure exists because of the Leibniz rule for differentiation, the an-

tipode structure exists because of adjoint action of Lie derivatives and the counit

structure exists because of the differentiation of constant functions being trivial (cf.

Subsection 4.1).

The nonassociative algebras we consider in this thesis possess a type of nonasso-

ciativity structure whose properties are captured exactly by the axioms of a more

general type of Hopf algebra-like object called a quasi-Hopf algebra. Quasi-Hopf

algebras were first studied by Drinfel’d in [31].

Definition 2.1.30 (Quasi-bialgebra). Let H be an algebra over the ring k with

strictly associative product µ : H ⊗ H → H and unit η : k → H. H is a quasi-

bialgebra if it is further equipped with two algebra homomorphisms ∆ : H → H⊗H

(coproduct) and ε : H → k (counit), and an invertible element φ ∈ H ⊗ H ⊗ H

(associator), such that

(ε⊗ idH) ∆(h) = h = (idH ⊗ ε) ∆(h) , (2.1.98a)

(idH ⊗∆) ∆(h) · φ = φ · (∆⊗ idH) ∆(h) , (2.1.98b)

(idH ⊗ idH ⊗∆)(φ) · (∆⊗ idH ⊗ idH)(φ) = (1⊗ φ) · (idH ⊗∆⊗ idH)(φ) · (φ⊗ 1) ,

(2.1.98c)

(idH ⊗ ε⊗ idH)(φ) = 1⊗ 1 , (2.1.98d)

for all h ∈ H.

Remark 2.1.31. In order to simplify the notation, the unit element in H (given

by η(1) ∈ H) is denoted simply by 1 and the product is written µ(h ⊗ h′ ) = h · h′

or simply hh′. Sweedler notation is used for the coproduct ∆(h) = h(1) ⊗ h(2) for

h ∈ H, and the associator is written φ = φ(1) ⊗ φ(2) ⊗ φ(3) and its inverse φ−1 =
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φ(−1)⊗φ(−2)⊗φ(−3) (with summations understood). If a second copy of the associator

is needed its components are decorated with a tilde, e.g. φ = φ̃(1)⊗ φ̃(2)⊗ φ̃(3). From

(2.1.98a), (2.1.98c), (2.1.98d) it follows that

(ε⊗ idH ⊗ idH)(φ) = 1⊗ 1 = (idH ⊗ idH ⊗ ε)(φ) . (2.1.99)

Whenever φ = 1 ⊗ 1 ⊗ 1 the axioms for a quasi-bialgebra reduce to those for a

bialgebra.

The antipode structure of a Hopf algebra is modified in a quasi-Hopf algebra to

that of a quasi-antipode. The properties of a quasi-antipode enable one to preserve

the properties of a quasi-Hopf algebra and its representations under cochain twisting

(discussed later in this chapter). The compatibility conditions between the associa-

tor and quasi-antipode become important in the definition of the currying bijection

for the internal hom-structure in the category of representations of a quasi-Hopf

algebra (discussed in Subsection 2.2.5).

Definition 2.1.32 (Quasi-antipode). A quasi-antipode for a quasi-bialgebra H is

a triple (S, α, β) consisting of an algebra anti-automorphism S : H → H and two

elements α, β ∈ H such that

S(h(1))αh(2) = ε(h)α , (2.1.100a)

h(1) β S(h(2)) = ε(h) β , (2.1.100b)

φ(1) β S(φ(2))αφ(3) = 1 , (2.1.100c)

S(φ(−1))αφ(−2) β S(φ(−3)) = 1 , (2.1.100d)

for all h ∈ H.

Definition 2.1.33 (Quasi-Hopf algebra). A quasi-Hopf algebra is a quasi-bialgebra

with a quasi-antipode.

Remark 2.1.34. If (S, α, β) is a quasi-antipode for a quasi-bialgebra H and u ∈ H

54



Chapter 2: Mathematical foundations

is any invertible element, then

S ′( · ) := uS( · )u−1 , α′ := uα , β′ := β u−1 (2.1.101)

defines another quasi-antipode (S ′, α′, β′ ) for H. In the case where φ = 1⊗1⊗1 the

conditions (2.1.100c,2.1.100d) imply that α = β−1. Setting u = β in (2.1.101)

there is an algebra anti-automorphism S ′ : H → H, which by the conditions

(2.1.100a,2.1.100b) satisfies the axioms of an antipode for the bialgebra H. Hence

for φ = 1 ⊗ 1 ⊗ 1 the axioms for a quasi-Hopf algebra reduce to those for a Hopf

algebra (up to the transformations (2.1.101) which fix α = 1 = β).

2.1.8 Quasitriangular structures

The algebras in our motivating examples are not only nonassociative but also non-

commutative. They possess a type of noncommutativity structure whose properties

are captured exactly by the axioms of a quasitriangular structure on a quasi-Hopf

algebra. Quasitriangular structures were first studied by Drinfel’d in [30]. The

definitions in the section are taken from [52].

Notation Let H be a quasi-Hopf algebra and X = X(1)⊗ · · · ⊗X(p) ∈ H⊗p (with

p > 1 and summation understood). For any p-tuple (i1, . . . , ip) of distinct elements

of {1, . . . , n} (with n ≥ p), denote by Xi1,...,ip
the element of H⊗n given by

Xi1,...,ip
= Y (1) ⊗ · · · ⊗ Y (n) (with summation understood) , (2.1.102)

where Y (ij) = X(j) for j ∈ {1, · · · , p} and Y (k) = 1 otherwise. In other words X(m)

is placed in the ithm position for m = 1, · · · , p and 1 is placed in all the other positions

of the tensor product Xi1,...,ip
∈ H⊗n. For example, if X = X(1) ⊗X(2) ∈ H⊗2 and

n = 3, then X12 = X(1) ⊗X(2) ⊗ 1 ∈ H⊗3 and X31 = X(2) ⊗ 1⊗X(1) ∈ H⊗3.

Definition 2.1.35 (Quasitriangular quasi-Hopf algebra). A quasitriangular quasi-

Hopf algebra is a quasi-Hopf algebra H together with an invertible element R ∈
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H ⊗H, called the universal R-matrix, such that

∆op(h) = R∆(h)R−1 , (2.1.103a)

(idH ⊗∆)(R) = φ−1
231R13 φ213R12 φ

−1
123 , (2.1.103b)

(∆⊗ idH)(R) = φ312R13 φ
−1
132R23 φ123 , (2.1.103c)

for all h ∈ H. ∆op denotes the opposite coproduct, i.e. if ∆(h) = h(1) ⊗ h(2) for

h ∈ H, then ∆op(h) = h(2) ⊗ h(1).

Definition 2.1.36 (Triangular quasi-Hopf algebra). A triangular quasi-Hopf algebra

is a quasitriangular quasi-Hopf algebra such that

R21 = R−1 . (2.1.104)

For brevity in this thesis the adjective ‘universal’ is dropped and R is simply

referred to as an R-matrix. It will be convenient to denote the R-matrix R ∈ H⊗H

of a quasitriangular quasi-Hopf algebra by R = R(1)⊗R(2) and its inverse by R−1 =

R(−1) ⊗R(−2) (with summations understood).

Remark 2.1.37. Whenever H is a quasitriangular quasi-Hopf algebra with R-

matrix R ∈ H ⊗ H, then R′ := R−1
21 ∈ H ⊗ H is also an R-matrix, i.e. it sat-

isfies the conditions in (2.1.103) using that ∆(h)21 = ∆op(h), (idH ⊗ ∆)(R−1
21 ) =

[(∆ ⊗ idH)(R)]−1
312 and (∆ ⊗ idH)(R−1

21 ) = [(idH ⊗ ∆)(R)]−1
312. If H is a triangular

quasi-Hopf algebra then the two R-matrices R and R′ coincide, cf. (2.1.104).

Lemma 2.1.38. If H is a quasitriangular quasi-Hopf algebra with R-matrix R ∈

H ⊗H, then

(ε⊗ id)(R) = 1 = (id⊗ ε)(R) . (2.1.105)

Proof. We have (ε ⊗ id ⊗ id)(∆ ⊗ id)(R) = R23 by (2.1.98a), and also that (ε ⊗

id ⊗ id)(∆ ⊗ id)(R) = (ε ⊗ id ⊗ id)(R13)R23 by (2.1.103c) and (2.1.99). Since

R23 is invertible, it follows that (ε ⊗ id)(R) = 1. By a similar calculation with
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(id⊗ id⊗ ε)(id⊗∆)(R) we obtain (id⊗ ε)(R) = 1.

2.1.9 Cochain twisting of quasi-Hopf algebras

It is possible to modify the structures of a quasi-Hopf algebra (in particular its

coproduct and antipode structures) in such a way that the deformed object continues

to satisfy the axioms of a quasi-Hopf algebra. This is done via the method of cochain

twisting which we shall describe in this section. Cochain twisting of quasi-Hopf

algebras is defined in such a way that the representation categories of cochain twist

related quasi-Hopf algebras are equivalent. This will be shown in the next section,

but here we collect definitions for future reference.

The theory of cochain twisting of quasi-Hopf algebras is explained in terms of

a cohomology structure in [52], but the concept was first described by Drinfel’d in

[31].

Definition 2.1.39 (Cochain twist). A cochain twist based on a quasi-Hopf algebra

H is an invertible element F ∈ H ⊗H satisfying

(
ε⊗ idH

)
(F ) = 1 =

(
idH ⊗ ε

)
(F ) . (2.1.106)

It is convenient to introduce the following notation: a cochain twist shall be

denoted by F = F (1) ⊗ F (2) ∈ H ⊗ H and its inverse by F−1 = F (−1) ⊗ F (−2) ∈

H ⊗ H (with summations understood). We note that F (1), F (2), F (−1) and F (−2)

are elements in H. Then the counital condition (2.1.106) reads as

ε(F (1))F (2) = 1 = ε(F (2))F (1) (2.1.107a)

and its inverse reads as

ε(F (−1))F (−2) = 1 = ε(F (−2))F (−1) . (2.1.107b)

The following result is due to Drinfel’d in [31].
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Theorem 2.1.40 (Twisting of Hopf algebras). Given any cochain twist F ∈ H⊗H

based on a quasi-Hopf algebra H there is a new quasi-Hopf algebra HF . As an

algebra, HF equals H, and they also have the same counit εF := ε. The coproduct

in HF is given by

∆F ( · ) := F ∆( · )F−1 (2.1.108)

and the associator in HF reads as

φF := (1⊗ F ) · (idH ⊗∆)(F ) · φ · (∆⊗ idH)(F−1) · (F−1 ⊗ 1) . (2.1.109)

The quasi-antipode (SF , αF , βF ) in HF is given by SF := S and

αF := S(F (−1))αF (−2) , βF := F (1) β S(F (2)) . (2.1.110)

Proof. This result can be seen with a direct check of the relations (2.1.98) and

(2.1.100) for the quasi-Hopf algebra HF (i.e. in (2.1.98) and (2.1.100) one has to

replace ∆ by ∆F , φ by φF , α by αF and β by βF ). The proof involves elementary

calculations making use of the corresponding conditions for the untwisted quasi-Hopf

algebra and properties of the cochain twist, see e.g. [43, Proposition XV.3.2].

Remark 2.1.41. If F is any cochain twist based on H, then its inverse F−1 is a

cochain twist based on the quasi-Hopf algebra HF . By twisting HF with the cochain

twist F−1 one obtains the original quasi-Hopf algebra H, i.e. (HF )F−1 = H. More

generally, if F is any cochain twist based on H and G is any cochain twist based on

HF , then the product GF is a cochain twist based on H and HGF = (HF )G. (See

B.1 for details of a proof.)

This is a very important result for this thesis; the fact that cochain twisting

defines an equivalence of categories (discussed in the next section) is a consequence

of this result.

Remark 2.1.42. If H is a Hopf algebra, i.e. φ = 1 ⊗ 1 ⊗ 1, and F is a cochain

twist based on H, then in general HF is a quasi-Hopf algebra since φF need not be
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trivial. The condition that HF is again a Hopf algebra, i.e. that also φF = 1⊗ 1⊗ 1,

is equivalent to the 2-cocycle condition on F

(1⊗ F ) · (idH ⊗∆)(F ) · (∆⊗ idH)(F−1) · (F−1 ⊗ 1) = 1 , (2.1.111)

and in this case F is called a cocycle twist based on H. The noncommutative but

strictly associative spaces discussed in the motivation of this thesis are representa-

tions of a quasitriangular Hopf algebra. The twists which perform the deformation

quantisation in these examples satisfy the cocycle condition above.

When a (quasi-)Hopf algebra possesses the additional structure of a quasitrian-

gular structure, then the R-matrix is also modified under the cochain twist. The

following result is due to Drinfel’d [30], [31].

Theorem 2.1.43 (Twisting of quasitriangular (quasi-)Hopf Algebras). If F ∈

H ⊗ H is any cochain twist based on a quasitriangular quasi-Hopf algebra H with

R-matrix R ∈ H ⊗H, then the quasi-Hopf algebra HF of Theorem 2.1.40 is quasi-

triangular with R-matrix

RF := F21RF
−1 . (2.1.112)

Moreover, HF is triangular if and only if H is triangular.

Proof. Similarly to the proof of Theorem 2.1.40, the first part of the proof can be

seen with a direct check of the relations (2.1.103) for RF in the quasi-Hopf algebra

HF (i.e. in (2.1.103) replacing ∆ by ∆F , φ by φF and R by RF ). For the second

part, notice that (RF )21 = F R21 F
−1
21 and R−1

F = F R−1 F−1
21 , hence (RF )21 = R−1

F

if and only if R21 = R−1 since F is invertible (and hence can be cancelled from the

equation).

2.2 A quasi-Hopf representation category

In this section we study the representation category [H,M ] of a quasitriangular

quasi-Hopf algebra H in the category M of k-modules. The properties of a quasitri-
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angular quasi-Hopf algebra are such that the structures on M discussed in Section

2.1 descend to structures on the category [H,M ]. That is [H,M ] is also a closed

braided monoidal category: it admits a monoidal structure as well as an internal

hom-functor and can be equipped with a braiding. We show the important result for

physics that the morphisms in [H,M ] are contained in the internal homomorphisms

in a way that preserves the map-like structures of composition and tensor product.

We also consider algebras ρA in the monoidal category [H,M ]. Furthermore given

any cochain twist based on H, we deform the quasitriangular quasi-Hopf algebra

H into a new quasitriangular quasi-Hopf algebra HF , and show that [H,M ] and

[HF ,M ] are equivalent as closed braided monoidal categories. It is important to

note that although these categories are equivalent, the physical models built out of

the structures in the categories are not equivalent; the selection criteria for physically

realisable data from the models based on different categories would be different. We

also show that the assignment of twisted algebras ρAF in [HF ,M ] to algebras ρA in

[H,M ] is functorial.

2.2.1 The quasi-Hopf representation category

Definition 2.2.1 (Representation). Let H be a quasi-Hopf algebra over k and let

V be an object in the category M . A representation of H on V is an Alg-morphism

ρV : H −→ end(V ) . (2.2.1)

In particular

ρV (hh′) = ρV (h) ρV (h′) , ρV (1) = idend(V ) , (2.2.2)

for all h, h′ ∈ H.

Using the currying bijection in M

ζ : HomM (H ⊗ V, V ) −→ HomM (H, end(V )) , (2.2.3)
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we can define the M -morphism

.V := ζ−1(ρV ) : H ⊗ V −→ V . (2.2.4)

An equivalent but different perspective on the notion of representation of H, and

which is more conventional in the physics literature, is the notion of H-action.

Definition 2.2.2. [H-action] Let H be a quasi-Hopf algebra in M and let V be an

object in M . An action of H or H-action on V is an M -morphism (conventionally

written with infix notation)

.V : H ⊗ V → V , h⊗ v 7→ h .V v , (2.2.5)

such that for all h, h′ ∈ H and v ∈ V

h .V
(
h′ .V v

)
=
(
hh′

)
.V v , 1 .V v = v . (2.2.6)

Remark 2.2.3. Although it is less cumbersome to use the infix action notation, it

is more convenient for computational purposes to use representation notation be-

cause it is less amenable to inserting elements of objects than the action notation

is. The representation notation also makes it more evident that proofs only entail

the manipulation of properties of a quasitriangular quasi-Hopf algebra and its rep-

resentations. This is an advantage in that one is able to see the abstract structures

involved more clearly. In Chapter 4, which is aimed at a physics audience, we use

mainly the conventional action notation.

Definition 2.2.4 (Representation category of H). Viewing a quasi-Hopf algebra in

M as a one-object category (with morphisms given by elements of H and compo-

sition of morphisms given by the product in H) the representation category of the

quasi-Hopf algebra H is the functor category (cf. Definition A.2.10)

[H,M ] . (2.2.7)

In the language of actions, [H,M ] is the category of left H-modules.
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In the rest of this section we show how the structures together with their prop-

erties on the closed braided monoidal category M discussed in Section 2.1 descend

to the category [H,M ].

Objects in [H,M ] are functors: For an object V in M we denote, with an abuse

of notation, the corresponding functor in [H,M ] by ρV . Denoting by ∗ the single

object of the category H, the functor ρV is defined by

ρV (∗) := V , ρV (h) := .V (h, –) , (2.2.8)

for any h ∈ H where .V is an H-action on V (cf. Definition 2.2.2). Functoriality of

.V corresponds to the representation properties (2.2.2). Morphisms in [H,M ] are

natural transformations

f : ρV =⇒ ρW , (2.2.9)

with single component given by the M -morphism (denoted with abuse of notation

by the same symbol)

f : V −→ W , (2.2.10)

satisfying the naturality condition

V

ρV (h)

��

f
//W

ρW (h)

��

V
f

//W

(2.2.11)

for any h ∈ H. This property is called H-equivariance of the k-linear map f and on

elements v ∈ V it reads as

f
(
ρV (h) v

)
= ρW (h) f(v) , (2.2.12)

for all h ∈ H.
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2.2.2 Cochain twisting the category

We consider a cochain twist F based on H and twist H to the quasi-Hopf algebra

HF in the manner described in theorem 2.1.40 and note that any left H-module is

also a left HF -module as the HF -action on an HF -module is only sensitive to the

algebra structure underlying HF , which agrees with that of H. So there is a functor

F : [H,M ] −→ [HF ,M ] , (2.2.13)

between the representation categories of H and HF , defined by

F(ρV ) = ρV , F(f) = f , (2.2.14)

for any object V ∈M and any natural transformation f in [H,M ]. We shall denote

by F(ρV )(∗) = F(V ) or F(ρV )(∗) = VF the corresponding object in M .

Theorem 2.2.5. If H is a quasi-Hopf algebra and F ∈ H ⊗H is any cochain twist

based on H, then [H,M ] and [HF ,M ] are equivalent as categories.

Proof. From (2.1.107b) and the definition of a cochain twist it is clear that F−1 ∈

HF⊗HF is a cochain twist based onHF . So we can define a functor F−1 : [HF ,M ]→

[H,M ] in the same way as above. Using that (HF )F−1 = H and (HF F−1)F = HF ,

cf. Remark 2.1.41, we have that F ◦ F−1 ∼= id[HF ,M ] and F−1 ◦ F ∼= id[H,M ].

2.2.3 The monoidal structure

The monoidal structure in M is modified in the following way in [H,M ]: We define

a functor ⊗ : [H,M ] × [H,M ] → [H,M ] (denoted with abuse of notation by the

same symbol as the monoidal functor on the category M ) as follows: For any object

(ρV , ρW ) in [H,M ]× [H,M ]

ρV ⊗ ρW (∗) := V ⊗W ,

ρV ⊗ ρW (h) := (ρV ⊗ ρW )(∆(h)) = ρV (h(1))⊗ ρV (h(2)) , (2.2.15)
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for any h ∈ H where V ⊗ W is the tensor product of the underlying k-modules.

This is a representation of H because ∆ is an algebra map (c.f. Definition 2.1.30).

Indeed

ρV ⊗ ρW (h k) = (ρV ⊗ ρW )(∆(h k))

= ρV (h(1) k(1))⊗ ρW (h(2) k(2))

=
(
ρV (h(1))⊗ ρW (h(2))

) (
ρV (k(1))⊗ ρW (k(2))

)
=
(
ρV ⊗ ρW (h)

) (
ρV ⊗ ρW (k)

)
,

for any h, k ∈ H, and

ρV ⊗ ρW (1H) = ρV (1H)⊗ ρW (1H)

= idV ⊗ idW = idV⊗W . (2.2.16)

Having shown that ρV ⊗ ρW is an object in [H,M ] corresponding to the tensor

product object V ⊗W in M we may write

ρV⊗W := ρV ⊗ ρW . (2.2.17)

For a morphism
(
f : ρV ⇒ ρX , g : ρW ⇒ ρY

)
in [H,M ]× [H,M ] we set

f ⊗ g : ρV ⊗ ρW =⇒ ρX ⊗ ρY , (2.2.18)

with single component the tensor product k-linear map f ⊗ g : V ⊗W → X ⊗ Y

given by the monoidal structure on M (c.f. (2.1.1)). The H-equivariance of f and

g ensures that the k-linear map f ⊗ g is H-equivariant and hence a morphism in
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[H,M ]. Indeed, for any v ∈ V , w ∈ W and h ∈ H

f ⊗ g (ρV⊗W (h) (v ⊗ w)) = f(ρV (h(1)) v)⊗ g(ρW (h(2))w)

= ρX(h(1)) f(v)⊗ ρY (h(2)) g(w)

= (ρX⊗Y (h) (f ⊗ g (v ⊗ w)) . (2.2.19)

The unit object in [H,M ] is the functor ρI defined by

ρI(∗) := k , ρI(h) := ε(h) , (2.2.20)

for any h ∈ H. This is a representation of H since ε is an algebra map (c.f. Definition

2.1.30). Indeed ρI(h k) = ε(h k) = ε(h) ε(k) = ρI(h) ρI(k) for any h, k ∈ H, and

ρI(1H) = ε(1H) = 1k = idk.

The associator Φ : ⊗ ◦ (⊗ × id[H,M ]) ⇒ ⊗ ◦ (id[H,M ] × ⊗) in [H,M ] is given in

terms of the associator φ in the quasi-Hopf algebra H by the natural transformation

with (ρV , ρW , ρX)-component

ΦρV ,ρW ,ρX
: (ρV ⊗ ρW )⊗ ρX =⇒ ρV ⊗ (ρW ⊗ ρX) , (2.2.21)

whose single component is the k-linear map

ΦV,W,X := (ρV ⊗ (ρW ⊗ ρX)
)
(φ) . (2.2.22)

The naturality condition follows by the coassociativity condition (2.1.98b) and the

functoriality of representations. The pentagon relations for Φ follow from the 3-

cocycle condition (2.1.98c). (See B.2 for proofs.)

The unitors λ and % in the monoidal category M canonically induce unitors

λ : ρI ⊗ – ⇒ id[H,M ] and % : – ⊗ ρI ⇒ id[H,M ] in [H,M ] with ρV -components the
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natural transformations

λρV : ρI ⊗ ρV =⇒ ρI , %ρV : ρV ⊗ ρI =⇒ ρI , (2.2.23)

whose single components are given by the k-linear maps λV = λV and %V = %V in

M . The H-equivariance for (2.2.23) follow from the condition (2.1.98a) and the

k-linearity of representations. The triangle relations for λ and % follow from the

counital condition (2.1.98d). (See B.2 for proofs.)

In summary,

Proposition 2.2.6. For any quasi-Hopf algebra H the category [H,M ] of left H-

modules is a monoidal category.

Remark 2.2.7. If H is a Hopf algebra, i.e. φ = 1⊗ 1⊗ 1, then the components of

Φ are identity maps and [H,M ] is a strict monoidal category.

2.2.4 Cochain twisting the monoidal structure

The functor F : [H,M ]→ [HF ,M ] between the representation categories of H and

HF is a monoidal functor. To keep track of which quasi-Hopf algebra is acting, we

denote the monoidal functor on [HF ,M ] by ⊗F .

The coherence maps for the monoidal functor F : [H,M ]→ [HF ,M ] are given

by the natural isomorphism ϕ : ⊗F ◦ (F ⊗ F) ⇒ F ◦ ⊗ of functors from [H,M ]×

[H,M ] to [HF ,M ], with (ρV , ρW )-component

ϕρV ,ρW : F(ρV )⊗F F(ρW ) =⇒ F(ρV ⊗ ρW ) , (2.2.24a)

and the natural isomorphism

ψ : ρIF =⇒ F(ρI) . (2.2.24b)

The single component of ϕρV ,ρW is the k-linear map

ϕV,W := (ρV ⊗ ρW )(F−1) , (2.2.25)
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with inverse given by replacing F−1 with F . Naturality (H-equivariance) holds by

the calculation

(ρV ⊗ ρW )(∆(h)) ◦ ϕV,W = (ρV ⊗ ρW )(∆(h))(ρV ⊗ ρW )(F−1)

= (ρV ⊗ ρW )(F−1)(ρV ⊗ ρW )(∆F (h))

= ϕV,W ◦ (ρV ⊗ ρW )(∆F (h)) , (2.2.26)

using (2.1.108). Since the inverse of a cochain twist is a cochain twist it is evident

by a similar calculation to that in (2.2.26) that the inverse of ϕρV ,ρW is also an

[HF ,M ]-morphism. The single component of ψ is the identity map on k (since the

counit in HF is equal to that in H).

It is a straightforward check using the counital condition (2.1.107b) that the

coherence diagrams (denoting the unitors in [HF ,M ] by λF and %F )

F(ρV )⊗F ρIF
%FF(ρV )

��

idF(ρV )⊗Fψ +3 F(ρV )⊗F F(ρI)

ϕρV ,ρI
��

F(ρV ) F(ρV ⊗ ρI)F(%ρV
)

ks

(2.2.27a)

ρIF ⊗F F(ρV )

λFF(ρV )

��

ψ⊗F idF(ρV ) +3 F(ρI)⊗F F(ρV )

ϕρI ,ρV
��

F(ρV ) F(ρI ⊗ ρV )
F(λρV

)
ks

(2.2.27b)

in H,M commute for any object ρV in [H,M ]. Indeed by the inverse of (2.1.106)

F(λρV ) ◦ ϕI,V ◦ (ψ ⊗F idF(ρV )) = F(λρV ) ◦ (ρI ⊗ ρV )(F−1) ◦ (idρ
IF
⊗F idF(ρV ))

= λV ◦ (idI ⊗ ρV )(ε⊗ idH)(F−1)

= λV ◦ (idρI ⊗ ρV (1H))

= λV = λFF(V ) . (2.2.27c)

And similarly for the first diagram. Furthermore, by the definition of the associator
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in HF in terms of the associator in H (2.1.109) the coherence diagram (denoting the

associator in [HF ,M ] by ΦF )

(
F(ρV )⊗F F(ρW )

)
⊗F F(ρX)

ϕρV ,ρW
⊗F idF(ρX )

��

ΦFF(ρV ),F(ρW ),F(ρX ) +3 F(ρV )⊗F
(
F(ρW )⊗F F(ρX)

)
idF(ρV )⊗FϕρW ,ρX

��
F(ρV ⊗ ρW )⊗F F(ρX)

ϕρV ⊗ρW ,ρX

��

F(ρV )⊗F F(ρW ⊗ ρX)

ϕρV ,ρW⊗ρX
��

F
(
(ρV ⊗ ρW )⊗ ρX

)
F(ΦρV ,ρW ,ρX

)
+3 F
(
ρV ⊗ (ρW ⊗ ρX)

)
(2.2.27d)

commutes for any three objects ρV , ρW , ρX in [H,M ]. Indeed, we have by (2.2.25),

(2.2.22) and (2.1.109) that

ϕV,W⊗X ◦
(
idF(V ) ⊗F ϕW,X

)
◦ ΦF

F(V ),F(W ),F(X)

= (ρV ⊗ (ρW ⊗ ρX))((idH ⊗∆)(F−1) · (1⊗ F−1) · φF )

= ((ρV ⊗ ρW )⊗ ρX)(φ · (∆⊗ idH)(F−1) · (F−1 ⊗ 1))

= F(ΦV,W,X) ◦ ϕV⊗W,X ◦
(
ϕV,W ⊗F idF(X)

)
. (2.2.28)

Note that the above diagrams commute with arrows reversed too because of the

property that the inverse of a cochain twist is a cochain twist. This proves

Theorem 2.2.8. If H is a quasi-Hopf algebra and F ∈ H⊗H is any cochain twist,

then [H,M ] and [HF ,M ] are equivalent as monoidal categories.

2.2.5 The internal hom-structure

The internal hom-structure in M is modified in the following way in [H,M ]: For

any object (ρV , ρW ) in [H,M ]op × [H,M ] we set

hom(ρV , ρW )(∗) := HomM (V,W ) , (2.2.29a)

hom(ρV , ρW )(h) := ρW (h(1)) ◦ idHomM (V,W )(–) ◦ ρV (S(h(2)))

= ◦3
(
(ρW ⊗ idHomM (V,W ) ⊗ ρV )

(
[(1⊗ S) ·∆(h)]13

))
, (2.2.29b)
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for any h ∈ H where HomM (V,W ) is the k-module of k-linear maps between the

k-modules V and W and we have denoted by ◦3 the (associative) composition of

three k-linear maps.

We note that H is represented via the adjoint representation on internal hom-

objects in [H,M ] and the adjoint representation makes use of the quasi-antipode in

H.

Lemma 2.2.9. If (ρV , ρW ) is an object in [H,M ]op × [H,M ] then hom(ρV , ρW ) is

an object in [H,M ].

Proof. It must be shown that (2.2.29b) defines a representation of H, i.e. that the

conditions in (2.2.2) are satisfied. This is a consequence of the fact that ρV ⊗ ρW

is a representation, that the coproduct ∆ is an algebra map and that the antipode

S is an anti-algebra map: From ∆(1) = 1⊗ 1 and S(1) = 1 and the representation

property of ρV ⊗ ρW we obtain the second equality and from

(1⊗ S)
(
∆(hh′)

)
= (1⊗ S) = (hh′ )(1) ⊗ S((hh′ )(2))

= h(1)

(
h′(1) ⊗ S(h′(2))

)
S(h(2))

= (1⊗ S)
(
∆(h)

)
· (1⊗ S)

(
∆(h′)

)
, (2.2.30)

for all h, h′ ∈ H and the representation property of ρV ⊗ρW together with the result

that [XY ]13 = X13Y13 for any X, Y ∈ H⊗3, we obtain the first equality.

Having now shown that hom(ρV , ρW ) is an object in [H,M ] corresponding to

the object hom(V,W ) in M we may write

ρhom(V,W ) := hom(ρV , ρW ) . (2.2.31)

Given now any morphism
(
f op : ρV ⇒ ρX , g : ρW ⇒ ρY

)
in [H,M ]op × [H,M ],

the map of functors

hom(f op, g) : hom(ρV , ρW ) =⇒ hom(ρX , ρY ) , (2.2.32)
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with single component the k-linear map

hom(f op, g) : HomM (V,W ) −→ HomM (X, Y ) , L 7−→ g ◦ L ◦ f . (2.2.33)

is an [H,M ]-morphism. Naturality is a consequence of the naturality of f and g:

(ρW ⊗ idHomM (V,W ) ⊗ ρV )
(
[(1⊗ S) ·∆(h)]13

)
◦
(
g ⊗ –⊗ f

)
= (g ⊗ –⊗ f) ◦ (ρW ⊗ –⊗ ρV )

(
[(1⊗ S) ·∆(h)]13

)
. (2.2.34)

Lemma 2.2.10. There is a functor

hom : [H,M ]op × [H,M ] −→ [H,M ] , (2.2.35)

defined on objects by (2.2.29) and on morphisms by (2.2.33).

Proof. We have shown in Lemma 2.2.9 and (2.2.34) that hom assigns to objects (resp.

morphisms) in [H,M ]op×[H,M ] objects (resp. morphisms) in [H,M ]. Functoriality

of hom follows from that of HomM (cf. (2.1.12)).

With these preparations one can now show that [H,M ] is a closed monoidal

category.

Theorem 2.2.11. For any quasi-Hopf algebra H the representation category [H,M ]

is a closed monoidal category with internal hom-functor hom : [H,M ]op× [H,M ]→

[H,M ] described above.

Proof. The currying map in M is modified in the following way in [H,M ]: For any

three objects ρV , ρW , ρX in [H,M ] we define the map of functors

ζρV ,ρW ,ρX
: HomM

(
ρV ⊗ ρW , ρX

)
=⇒ HomM

(
ρV , hom(ρW , ρX)

)
(2.2.36)

on any [H,M ]-morphism f : ρV ⊗ ρW ⇒ ρX by

ζρV ,ρW ,ρX
(f) : ρV =⇒ hom(ρW , ρX) , (2.2.37)
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with single component ζV,W,X(f) : V → hom(W,X) defined by

ζV,W,X(f) := f ◦
(
ρV (φ(−1))⊗ ρW (φ(−2) β S(φ(−3)))

)
= f ◦ (ρV ⊗ ρW ) ◦ (1⊗ µ3

H)
(
[(1⊗ 1⊗ S)(φ−1)]124β3

)
, (2.2.38)

where we have denoted by µ3
H the (associative) multiplication of three elements in H.

The map ζV,W,X(f) is clearly k-linear. Naturality holds by the following calculation

(dropping for computational purposes the triple compositions ◦3 and multiplications

µ3
H and adding aˆon indices in their stead)

hom(ρW , ρX)(h) ◦ ζV,W,X(f) = (ρX ⊗ idHomM (W,X) ⊗ ρW )
(
[(1⊗ S) ·∆(h)]1̂3

)
◦

◦ f ◦ (ρV ⊗ ρW )
(
[(1⊗ 1⊗ S)(φ−1)] ˆ124 β3̂

)
= f ◦ (ρV ⊗ ρW )

[
(1⊗ 1⊗ S)(∆⊗ id) ◦∆(h) · φ−1

]
ˆ124
β3̂

= f ◦ (ρV ⊗ ρW )
(
[(1⊗ 1⊗ S)(φ−1)] ˆ124 β3̂

)
◦ ρV (h)

= ζV,W,X(f) ◦ ρV (h) , (2.2.39)

where the second equality follows from the naturality of f and the third from

the calculation [(1 ⊗ 1 ⊗ S) · (∆ ⊗ idH) ◦ ∆(h) · φ−1] ˆ124β3̂ = [(1 ⊗ 1 ⊗ S) · φ−1 ·

(idH ⊗∆) ◦∆(h))] ˆ124β3̂ = (φ(−1) h(1) ⊗ φ(−2) h(2)(1) β S(h(2)(2))S(φ(−3))) = (φ(−1) h⊗

φ(−2) β S(φ(−3))) = [(1⊗ 1⊗ S)(φ−1)] ˆ124β3̂ (h⊗ 1H) using the coassociativity of the

coproduct (2.1.98b), the property that S is an algebra anti-automorphism and the

property (2.1.100b) of the quasi-antipode together with the property (2.1.98d) of

the associator. Hence (2.2.36) is an [H,M ]-morphism.

The inverse ζ−1
ρV ,ρW ,ρX

: HomM (ρV , hom(ρW , ρX))→ HomM (ρV ⊗ρW , ρX) is given

on any [H,M ]-morphism g : ρV ⇒ hom(ρW , ρX) by the natural transformation

ζ−1
ρV ,ρW ,ρX

(g) : ρV ⊗ ρW =⇒ ρX , (2.2.40)
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with single component ζ−1
V,W,X(g) : V ⊗W → X defined by

ζ−1
V,W,X(g) := ρX(φ(1)) ◦ g(–) ◦ ρW (S(φ(2))αφ(3))

= ◦3
(

(ρX ⊗ g(–)⊗ ρW )
([

(1⊗ µ3
H)
(
[(1⊗ S ⊗ 1)(φ)]124 α3

)]
13

))
.

(2.2.41)

A calculation similar to that in (2.2.39) shows that ζ−1
ρV ,ρW ,ρX

(g) is an [H,M ]-

morphism. That ζ−1
ρV ,ρW ,ρX

is the inverse of ζρV ,ρW ,ρX
follows from

ζ(ζ−1(g)) = ζ−1(g) ◦
(
ρV (φ(−1))⊗ ρW (φ(−2) β S(φ(−3)))

)
= ρX(φ̃(1)) ◦ g

(
ρV (φ(−1))

)
◦ ρW

(
S(φ̃(2))αφ̃(3) φ(−2) β S(φ(−3))

)
= ρX(φ̃(1) φ

(1)
(1)) ◦ g(–) ◦ ρW (S(φ̃(2) φ

(1)
(2))α φ̃

(3)φ(−2) β S(φ(−3)))

= g , (2.2.42)

where in the third equality we have used the H-equivariance of g and in the final

equality we have used the properties (2.1.98c), (2.1.100a), (2.1.100b) and (2.1.100d)

and the property that S is an anti-algebra morphism, and

ζ−1(ζ(f)) = ζ−1
(
f ◦
(
ρV (φ(−1))⊗ ρW (φ(−2) β S(φ(−3)))

))
= ρX(φ̃(1)) ◦ f ◦

(
ρV (φ(−1))⊗ ρW (φ(−2) β S(φ(−3)))

)
◦ ρW (S(φ̃(2))α φ̃(3))

= f ◦
(
ρV (φ̃

(1)
(1) φ

(−1))⊗ ρW (φ̃
(1)
(2) φ

(−2) β S(φ̃(2) φ(−3))α φ̃(3))
)

= f , (2.2.43)

where in the third equality we have used the H-equivariance of f and in the final

equality we have used the properties (2.1.98c), (2.1.100a),(2.1.100b) and (2.1.100c)

and the property that S is an anti-algebra morphism.

It remains to prove naturality, which means that ζρV ,ρW ,ρX
is the (ρV , ρW , ρX)-

component of a natural isomorphism ζ between the two functors HomM (– ⊗ –, –)

and HomM (–, hom(–, –)) from [H,M ]op× [H,M ]op× [H,M ] to the category of sets.
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Explicitly, given any morphism
(
f op
V : ρV ⇒ ρ′V , f

op
W : ρW ⇒ ρ′W , fX : ρX ⇒ ρ′X

)
in

[H,M ]op × [H,M ]op × [H,M ] one has to show that the diagram (in the category

Sets)

Hom
(
ρV ⊗ ρW , ρX

)
Hom(fopV ⊗f

op
W ,fX)

��

ζρV ,ρW ,ρX +3 Hom
(
ρV , hom(ρW , ρX)

)
Hom(fopV ,hom(fopW ,fX))

��
Hom

(
ρ′V ⊗ ρ′W , ρ′X

)
ζ
ρ′
V
,ρ′
W
,ρ′
X

+3 Hom
(
ρ′V , hom(ρ′W , ρ

′
X )
)

(2.2.44)

commutes. For any [H,M ]-morphism f : ρV ⊗ ρW ⇒ ρX one obtains

HomM (f op
V , hom(f op

W , fX))
(
ζV,W,X(f)

)
= fX ◦

(
f ◦ (ρV ⊗ ρW )

(
[(1⊗ 1⊗ S)(φ−1)] ˆ124β3̂

)
◦ fV

)
◦ fW

= fX ◦ f ◦ (fV ⊗ fW ) ◦ (ρV ⊗ ρW )
(
[(1⊗ 1⊗ S)(φ−1)] ˆ124β3̂

)
= ζV ′,W ′,X′

(
Hom(f op

V ⊗ f
op
W , fX)(f)

)
, (2.2.45)

where the second equality follows from H-equivariance of both fV and fW .

The definition of the currying bijection for the internal hom-structure in [H,M ]

can be found in [52]. However it is useful to understand where this definition comes

from. We give an explanation at the end of the following section on the cochain

twisting of the internal hom-structure.

2.2.6 Cochain twisting the internal hom-structure

Given any cochain twist F ∈ H⊗H based on H, we denote the internal hom-functor

on [HF ,M ] by homF . One can define for any object (ρV , ρW ) in [H,M ]op× [H,M ]

a map of functors

γρV ,ρW : homF

(
F(ρV ),F(ρW )

)
=⇒ F

(
hom(ρV , ρW )

)
, (2.2.46)
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with single component γV,W : HomM

(
V,W

)
→ HomM (V,W ) given by

γV,W := ◦3
(
(ρW ⊗ idHomM (V,W ) ⊗ ρV )

(
[(1⊗ S) · F−1]13

))
. (2.2.47)

γρV ,ρW is an [HF ,M ]-isomorphism: The inverse of (2.2.47) is given by replacing F−1

with F and for any h ∈ H

γV,W ◦ homF (F(ρV ),F(ρW ))(h) = (ρW ⊗ id⊗ ρV )
(
[(1⊗ S) · F−1∆F (h)]1̂3

)
= (ρW ⊗ id⊗ ρV )

(
[(1⊗ S) ·∆(h)F−1]1̂3

)
= hom(ρV , ρW )(h) ◦ γV,W , (2.2.48)

using that SF = S and ∆F (h) = F ∆(h)F−1 for all h ∈ H. Since the inverse of

a cochain twist is a cochain twist it is evident that the inverse of γρV ,ρW is also an

[HF ,M ]-morphism.

A straightforward calculation shows that γρV ,ρW is the (ρV , ρW )-component of a

natural isomorphism γ : homF ◦ (Fop×F)⇒ F ◦ hom of functors from [H,M ]op×

[H,M ] to [HF ,M ]. The coherence diagram

homF

(
F(ρV ),F(ρW )

)
homF (Fop(fop),F(g))

��

γρV ,ρW +3 F
(
hom(ρV , ρW )

)
F(hom(fop,g))
��

homF

(
F(ρX),F(ρY )

)
γρX,ρY

+3 F
(
hom(ρX , ρY )

)
(2.2.49)

commutes for all morphisms
(
f op : ρV ⇒ ρX , g : ρW ⇒ ρY

)
in [H,M ]op × [H,M ].

Indeed by the H-equivariance of f and g

F(hom(f op, g)) ◦ γX,Y

= ◦3
(
(g ⊗ –⊗ f) ◦ (ρW ⊗ idHomM (V,W ) ⊗ ρV )

(
[(1⊗ S) · F−1]13

))
= ◦3

(
(ρW ⊗ idHomM (V,W ) ⊗ ρV )

(
[(1⊗ S) · F−1]13

)
◦ (g ⊗ –⊗ f)

)
= γV,W ◦ homF (Fop(f op),F(g)) . (2.2.50)
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Note that the diagram above also commutes with arrows reversed. This shows

Theorem 2.2.12. If H is a quasi-Hopf algebra and F ∈ H⊗H is any cochain twist

based on H, then [H,M ] and [HF ,M ] are equivalent as closed monoidal categories.

We can gain insight into the way in which the currying map for the internal

hom-functor in [H,M ] is constructed by considering how the currying map for the

internal hom-functor in [HF ,M ] arises as described below, where F is a cochain

twist based on H. We consider the sequence of morphisms necessary to rebracket the

following tensor product in [HF ,M ] by using the coherence maps for the monoidal

and internal hom-structures between the representation categories of H and HF and

using the associator in H:

F(V )⊗F
(
homF (F(W ),F(X))⊗F F(W )

)
id⊗F (γW,X⊗F id)

��

F(V )⊗F
(
F(hom(W,X))⊗F F(W )

)
id⊗Fϕhom(W,X),W

��

F(V )⊗F F
(
hom(W,X)⊗W

)
ϕV,hom(W,X)⊗W
��

F
(
V ⊗ (hom(W,X)⊗W )

)
Φ−1

��

F
(
(V ⊗ hom(W,X))⊗W

)
ϕ−1
V⊗hom(W,X),W
��

F
(
V ⊗ hom(W,X)

)
⊗F F(W )

ϕ−1
V,hom(W,X)

⊗F id

��(
F(V )⊗F(hom(W,X))

)
⊗F F(W )

(2.2.51)

Recalling that representations of H on internal hom-objects contain the antipode,

the above sequence of morphisms corresponds to the following element of H

(id⊗ µH)
[
(1⊗ 1⊗ S)(F ⊗ 1) · (∆⊗ 1)(F ) · φ−1 · (1⊗∆)(F−1) · (1⊗ F−1)

]
124

· (1⊗ S)(F )3 = φ
(−1)
F ⊗F φ(−2)

F βF S(φ
(−3)
F ) ,

where φ−1
F and βF = F (1) β S(F (2)) (with β = 1 here) were defined in (2.1.109) and
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(2.1.110). This gives the core content of the currying map defined in (2.2.38). For

the inverse we note that by the properties of the quasi-antipode and associator in

HF we have

(
φ̃

(1)
F

)
φ

(−1)
F

(
S(φ̃

(2)
F αF φ̃

(3)
F )
)
φ

(−2)
F βF S(φ

(−3)
F ) = 1 , (2.2.52)

where αF = S(F (−1))αF (−2) with α = 1 here (cf. the calculation (2.2.42)) and we

have that φ̃
(1)
F ⊗F S(φ̃

(2)
F αF φ̃

(3)
F ) is the core content of the inverse currying map

defined in (2.2.41).

2.2.7 Evaluation and composition

For any two objects ρV , ρW in the monoidal category [H,M ], we calculate from

Proposition 2.1.5 and (2.2.41) the internal evaluation evV,W : hom(ρV , ρW )⊗ ρV ⇒

ρW to be

evV,W = ζ−1
hom(V,W ),V,W

(
idhom(V,W )

)
= ρW (φ(1)) ◦ (–) ◦ ρV

(
S(φ(2))αφ(3)

)
. (2.2.53)

We recall from Proposition 2.1.5 that for any three objects ρV , ρW , ρX in [H,M ] the

internal composition •V,W,X : hom(ρW , ρX)⊗hom(ρV , ρW )⇒ hom(ρV , ρX) is defined

in terms of the internal evaluations by

•V,W,X :=

ζhom(W,X)⊗hom(V,W ),V,X

(
evW,X ◦

(
idhom(W,X) ⊗ evV,W

)
◦ Φhom(W,X),hom(V,W ),V

)
.

(2.2.54)

The properties of the internal evaluation and composition morphisms given in

(2.1.24) are modified as follows in [H,M ]: (here and in the following subscripts are

occasionally dropped for ease of notation)

Proposition 2.2.13. Let H be a quasi-Hopf algebra.

(i) For any three objects ρV , ρW , ρX in [H,M ] and any [H,M ]-morphism g :
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ρV ⇒ hom(ρW , ρX) the diagram

ρV ⊗ ρW

ζ−1(g) &.

g⊗id +3 ρhom(W,X) ⊗ ρW
ev

��
ρX

(2.2.55)

commutes. That is

ev ◦ (g ⊗ id) = ζ−1(g) . (2.2.56)

(ii) For any three objects ρV , ρW , ρX in [H,M ] the diagram

(
ρhom(W,X) ⊗ ρhom(V,W )

)
⊗ ρV

Φ
��

•⊗id +3 ρhom(V,X) ⊗ ρV

ev

��

ρhom(W,X) ⊗
(
ρhom(V,W ) ⊗ ρV

)
id⊗ev

��
ρhom(W,X) ⊗ ρW ev

+3 ρX

(2.2.57)

commutes. That is

ev ◦ (• ⊗ id) = ev ◦ (id⊗ ev) ◦ Φ , (2.2.58)

(iii) The composition morphisms are weakly associative, i.e. for any four objects

ρV , ρW , ρX , ρY in [H,M ] the diagram

(
ρhom(X,Y ) ⊗ ρhom(W,X)

)
⊗ ρhom(V,W )

Φ
��

•⊗id +3 ρhom(W,Y ) ⊗ ρhom(V,W )

•

��

ρhom(X,Y ) ⊗
(
ρhom(W,X) ⊗ ρhom(V,W )

)
id⊗•

��
ρhom(X,Y ) ⊗ ρhom(V,X) •

+3 ρhom(V,Y )

(2.2.59)
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commutes. That is

• ◦ (• ⊗ id) = • ◦ (id⊗ •) ◦ Φ . (2.2.60)

Proof. The commutative diagram in item (i) follows directly from the definitions

(2.2.53) and (2.2.41):

evW,X ◦ (g ⊗ idW ) = ρX(φ(1)) ◦ (–) ◦ ρW
(
S(φ(2))αφ(3)

)
◦ (g ⊗ idW )

= ρX(φ(1)) ◦ g(–) ◦ ρW
(
S(φ(2))αφ(3)

)
= ζ−1

V,W,X(g) . (2.2.61)

Item (ii) follows from item (i) and the definition of the internal composition (2.2.54):

evV,X ◦ (•V,W,X ⊗ idV ) = ζ−1
hom(W,X)⊗hom(V,W ),V,X(•V,W,X)

= evW,X ◦ (idhom(W,X) ⊗ evV,W ) ◦ Φhom(W,X),hom(V,W ),V .

(2.2.62)

In order to prove item (iii), we notice that due to the fact that the components of

the currying are bijections, it is enough to prove that (dropping indices from the

currying)

ζ−1
(
•V,W,Y ◦(•W,X,Y ⊗ idhom(V,W ))

= ζ−1
(
•V,X,Y ◦(idhom(X,Y ) ⊗ •V,W,X) ◦ Φhom(X,Y ),hom(W,X),hom(V,W )

)
. (2.2.63)

This equality is shown by applying item (i) and (ii) and using the 3-cocycle condition

(2.1.98c) and the H-equivariance of the internal composition (see B.3).

78



Chapter 2: Mathematical foundations

2.2.8 The braiding

Using the (invertible) R-matrix R = R(1) ⊗ R(2) ∈ H ⊗ H of H, one can define a

natural isomorphism τ : ⊗ ⇒ ⊗op by setting

τρV ,ρW : ρV ⊗ ρW ⇒ ρW ⊗ ρV , (2.2.64)

with single component

τV,W := (ρW ⊗ ρV )(R21) ◦ σV,W , (2.2.65)

where σ is the braiding in M . It follows from (2.1.103a) that τρV ,ρW is an [H,M ]-

morphism. We have (suppressing σ)

ρW ⊗ ρV (h) ◦ τV,W = (ρW ⊗ ρV )(∆(h)) ◦ (ρV ⊗ ρW )(R21)

= (ρV ⊗ ρW )(∆op(h) ·R21)

= (ρV ⊗ ρW )(R21 ·∆(h))

= (ρV ⊗ ρW )(R21) ◦ (ρV ⊗ ρW )(∆(h))

= τV,W ◦ ρV ⊗ ρW (h) , (2.2.66)

where the third step follows from the equalities ∆op(h) · R21 = [∆(h) · R]21 =

[R·∆op(h)]21 = R21 ·∆(h). As a direct consequence of (2.1.103b), (2.1.103c) the com-

ponents of the natural isomorphism τ satisfy the hexagon relations. Using (2.1.103c)

(and suppressing σ)

τV⊗W,Z = (ρV ⊗ ρW )⊗ ρZ(R21)

= ((ρV ⊗ ρW )⊗ ρZ)[(∆⊗ id)(R)]231

= ((ρV ⊗ ρW )⊗ ρZ)
[
φ312R13 φ

−1
132R23 φ123

]
231

= ΦZ,V,W ◦ (τV,Z ⊗ idW ) ◦ Φ−1
V,Z,W ◦ (idV ⊗ τW,Z) ◦ ΦV,W,Z , (2.2.67)
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where in the last step we have used the functoriality of representations. By a similar

calculation using (2.1.103b) (see B.4)

τV,W⊗Z = Φ−1
W,Z,V ◦ (idW ⊗ τV,Z) ◦ ΦW,V,Z ◦ (τV,W ⊗ idZ) ◦ Φ−1

V,W,Z . (2.2.68)

In summary,

Proposition 2.2.14. For any quasitriangular quasi-Hopf algebra H the category

[H,M ] of left H-modules is a braided monoidal category with braiding given by

(2.2.65).

Remark 2.2.15. In general the [H,M ]-morphism τW,V ◦τV,W : ρV ⊗ρW ⇒ ρV ⊗ρW

does not coincide with the identity morphism idV⊗W , hence the braided closed

monoidal category [H,M ] is not symmetric: The inverse of τV,W is given by the

braiding τ ′W,V induced by the second R-matrix R′ := R−1
21 , cf. Remark 2.1.37. How-

ever for a triangular quasi-Hopf algebra there is the additional property (2.1.104),

which implies that R = R′ and hence τW,V ◦ τV,W = idV⊗W . Thus the representa-

tion category [H,M ] of a triangular quasi-Hopf algebra H is a symmetric monoidal

category.

2.2.9 Cochain twisting the braiding

For a quasitriangular quasi-Hopf algebra H, it follows from Theorem 2.1.43 that HF

is a quasitriangular quasi-Hopf algebra with R-matrix RF . Proposition 2.2.14 then

implies that [HF ,M ] is also a braided monoidal category.

Theorem 2.2.16. For any quasitriangular quasi-Hopf algebra H and any cochain

twist F ∈ H ⊗ H, the equivalence of monoidal categories in Theorem 2.2.8 is an

equivalence between the braided monoidal categories [H,M ] and [HF ,M ].

Proof. Denoting the braiding in [H,M ] by τ and that in [HF ,M ] by τF , it is
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required to show that the diagram

F(ρV )⊗F F(ρW )

ϕρV ,ρW
��

τFF(ρV ),F(ρW ) +3 F(ρW )⊗F F(ρV )

ϕρW ,ρV

��
F(ρV ⊗ ρW )

F(τρV ,ρW
)

+3 F(ρW ⊗ ρV )

(2.2.69)

commutes for any two objects ρV , ρW in [H,M ]. This is a direct consequence of the

definition of the twisted R-matrix (2.1.112), together with (2.2.65) and (2.2.25): we

have (suppressing σ)

ϕW,V ◦ τFF(V ),F(W ) = (ρW ⊗ ρV )(F−1) ◦ (ρW ⊗ ρV )(RF 21)

= (ρW ⊗ ρV )(F−1 ·RF 21)

= (ρW ⊗ ρV )(R21 · F−1
21 )

= (ρW ⊗ ρV )(R21) ◦ (ρV ⊗ ρW )(F−1)

= F(τV,W ) ◦ ϕV,W . (2.2.70)

2.2.10 Algebras in [H,M ]

Definition 2.2.17 (Algebra). Let H be a quasi-Hopf algebra. An algebra in [H,M ]

is a monoid object (ρA, µA, ηA) in the monoidal category [H,M ] (c.f. Definition

2.1.8). Here µA : ρA ⊗ ρA ⇒ ρA and ηA : ρI ⇒ ρA are the multiplication and unit

[H,M ]-morphisms.

Definition 2.2.18 (Category of algebras). Let H be a quasi-Hopf algebra. The

collection of algebra objects in [H,M ] together with [H,M ]-morphisms f : ρA ⇒ ρB

which preserve the product µA and unit ηA, i.e. such that

f ◦ µA = µB ◦ (f ⊗ρI f) , f ◦ ηA = ηB ◦ idρI , (2.2.71)

constitute a subcategory of [H,M ]. This subcategory is equal to the pair of comma
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categories (⊗ρI ⇒ id[H,M ]) and (id[H,M ] ⇒ id[H,M ]) whose objects are pairs of triples

(ρA × ρA, µA, ρA) and (ρI , ηA, ρA) with (ρA, µA, ηA) a monoid object in [H,M ] and

whose morphisms are pairs of tuples of morphisms (f × f, f) and (idρI , f) satisfying

(2.2.71). We shall denote by

H-Alg , (2.2.72)

the category of algebras in [H,M ]. And with an abuse of notation denote objects

in H-Alg by the corresponding objects in [H,M ].

We note that since the associator in [H,M ] is not trivial an algebra ρA in H-Alg

is in general not an associative algebra, but only weakly associative, i.e. associative

up to the associator in H.

Before considering the important example 2.1.9 in the context of [H,M ] we

collect some useful properties involving the element β of the quasi-antipode.

Lemma 2.2.19. Let H be a quasi-Hopf algebra and ρV any object in [H,M ]. Noting

that ρV (β) ∈ end(V ), we have

ρend(V )(h)
(
ρV (β)

)
= ρV (ε(h)β) (2.2.73a)

evV,V (ρV (β)⊗ –) = ρV (1H) , (2.2.73b)

for any h ∈ H.

Proof. By the functoriality of representations and property (2.1.100b) of the quasi-

antipode

ρend(V )(h)
(
ρV (β)

)
= ρV (h(1)) ◦ ρV (β) ◦ ρV (S(h(2))) = ρV (ε(h)β) , (2.2.74)

and again by the functoriality of representations and property (2.1.100c) of the

quasi-antipode

evV,V (ρV (β)⊗ –) = ρV (φ(1)) ◦ ρV (β) ◦ ρV
(
S(φ(2))αφ(3)

)
= ρV (1H) . (2.2.75)
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Example 2.2.20. Given an object ρV in [H,M ] its internal endomorphisms end(ρV ) :=

hom(ρV , ρV ) is an object in [H,M ]. Since by Proposition 2.2.13 (iii) the internal

composition is weakly associative (i.e. associative up to the associator as in the first

diagram of Definition 2.1.8) it defines a weakly associative product on the internal

endomorphisms

µend(V ) := •V,V,V : end(ρV )⊗ end(ρV ) =⇒ end(ρV ) . (2.2.76)

Furthermore due to the currying ζ in (2.2.36) we can assign to the [H,M ]-morphism

λV : ρI ⊗ ρV ⇒ ρV the [H,M ]-morphism

ηend(V ) := ζI,V,V (λV ) : ρI =⇒ end(ρV ) . (2.2.77)

Explicitly, evaluating the single component of this morphism on 1 ∈ I we find

ηend(V )(1) = ρV (β) . (2.2.78)

Using the properties in Lemma 2.2.19, we have for any L ∈ end(V )

ρV (β) • L = ζ(ev ◦ (id⊗ ev) ◦ Φ)
(
(ρV (β)⊗ L)

)
= ev ◦ (id⊗ ev) ◦ Φ ◦ ((ρend(V ) ⊗ ρend(V ))⊗ ρV )(
(∆⊗ 1⊗ S)(φ−1) ˆ124β3̂

)
(ρV (β)⊗ L⊗ –)

= ev ◦ (id⊗ ev) ◦ ((1End(V ) ⊗ ρend(V ))⊗ ρV )(
(1⊗ 1⊗ S)(φ−1) ˆ124β3̂

)
(ρV (β)⊗ L⊗ –)

= ev ◦ (ρend(V ) ⊗ ρV )
(
(1⊗ 1⊗ S)(φ−1) ˆ124β3̂

)
(L⊗ –)

= ζend(V ),V,V (evV,V )(L)

= ζend(V ),V,V ◦ ζ−1
end(V ),V,V (idend(V ))(L)

= L , (2.2.79)
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where in the third and fourth equality we have used (2.2.73a) and property (2.1.98a)

and (2.1.99) respectively. In the fifth equality we have used (2.2.73b) and in the sixth

equality follows from (2.2.38) and (2.2.53). By a similar calculation we have

L • ρV (β) = L . (2.2.80)

Hence

ηend(V )(1) = 1end(V ) , (2.2.81)

and
(
end(ρV ), µend(V ), ηend(V )

)
is an algebra in [H,M ].

Remark 2.2.21. Given an object ρV in [H,M ], the algebra end(ρV ) in [H,M ]

describes the (nonassociative) algebra of linear operators on V . A representation of

an object ρA in H-Alg on V is then defined to be an H-Alg-morphism πA : ρA ⇒

end(ρV ).

In the following let us fix a quasitriangular quasi-Hopf algebra H and denote the

R-matrix by R = R(1) ⊗R(2) ∈ H ⊗H.

Definition 2.2.22 (Braided commutative algebra). Let H be a quasitriangular

quasi-Hopf algebra. An algebra ρA in [H,M ] is called braided commutative if it

is a commutative algebra in [H,M ] (cf. Definition 2.1.15). We denote the full

subcategory of H-Alg of braided commutative algebras in [H,M ] by H-Algcom.

Remark 2.2.23. Recall that the braiding τ ′ which is determined by the second

R-matrix R′ := R−1
21 (cf. Remark 2.1.37) is related to the original braiding τ by

τ ′V,W = τ−1
W,V . As a consequence, the commutative diagram (2.1.43) is equivalent

to the same diagram with τ replaced by τ ′. In other words, braided commutative

algebras in [H,M ] are braided commutative with respect to both quasitriangular

structures R and R′ on H.

84



Chapter 2: Mathematical foundations

2.2.11 Cochain twisting algebras

Given any cochain twist F ∈ H ⊗ H, recall that there is a monoidal functor F :

[H,M ] → [HF ,M ]. Thus given any algebra ρA in [H,M ] F(ρA) is an object in

[HF ,M ]. For this object define the [HF ,M ]-morphisms µAF : F(ρA) ⊗F F(ρA) ⇒

F(ρA) and ηAF : ρIF ⇒ F(ρA) via the coherence maps (2.2.24) and the diagrams

F(ρA)⊗F F(ρA)

ϕρA,ρA
��

µρAF +3 F(ρA) ρIF

ψ
��

ηρAF +3 F(ρA)

F(ρA ⊗ ρA)

F(µρA
)

19

F(ρI)
F(ηρA

)

2:
(2.2.82)

in [H,M ]. That is

µAF = F(µA) ◦ ϕA,A , ηAF = F(ηA) ◦ ψ . (2.2.83)

It is easy to see that F(ρA), together with the [HF ,M ]-morphisms µAF and ηAF ,

is an algebra in [HF ,M ]. Denote this algebra also by F(ρA)(∗) = AF . For any

H-Alg-morphism f : ρA ⇒ ρB the [HF ,M ]-morphism F(f) : F(ρA) ⇒ F(ρB) is

also an HF–Alg-morphism with single component (denoted by the same symbol) the

k-linear map F(f) : AF → BF . Thus one obtains a functor F : H-Alg → HF–Alg,

which is invertible by using the cochain twist F−1 based on HF (cf. Remark 2.1.41).

In summary,

Proposition 2.2.24. If H is a quasi-Hopf algebra and F ∈ H ⊗H is any cochain

twist based on H, then the categories H-Alg and HF–Alg are equivalent.

The braided symmetry property is preserved under cochain twisting.

Proposition 2.2.25. Let H be a quasitriangular quasi-Hopf algebra and F ∈ H⊗H

any cochain twist based on H. Then the equivalence between the categories H-Alg

and HF–Alg of Proposition 2.2.24 restricts to an equivalence between the full sub-

categories H-Algcom and HF–Algcom.

Proof. This is an immediate consequence of the definition of the twisted R-matrix

(2.1.112) and the twisted algebra product (2.2.82): For any object ρA in H-Algcom
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we have

µF = µ ◦ (ρA ⊗ ρA)(F−1)

= µ ◦ (ρA ⊗ ρA)(R21 F
−1
21 ) ◦ σ

= µ ◦ (ρA ⊗ ρA)(F−1 · F R21 F
−1
21 ) ◦ σ

= µF ◦ (ρA ⊗ ρA)(RF 21) ◦ σ

= µF ◦ τA,A . (2.2.84)

Hence F(ρA) is an object in HF–Algcom.

Example 2.2.26. If H is any cocommutative quasi-Hopf algebra with trivial R-

matrix R = 1⊗1 then commutative algebras ρA in [H,M ] are braided commutative.

Such examples arise in ordinary differential geometry, see Chapter 4. From Proposi-

tion 2.2.25 any cochain twisting of such examples satisfies the braided commutativity

condition. This will be our main source of examples.

2.2.12 The internal tensor product

By Proposition 2.2.14 and Theorem 2.2.11 the representation category [H,M ] of a

quasitriangular quasi-Hopf algebra H is a braided closed monoidal category. So by

Proposition 2.1.7 there is a tensor product morphism for the internal hom-objects

⊗• V,W,X,Y : hom(ρV , ρW )⊗ hom(ρX , ρY ) =⇒ hom(ρV ⊗ ρX , ρW ⊗ ρY ) , (2.2.85)

for all objects ρV , ρW , ρX , ρY in [H,M ] given by (dropping indices)

⊗• := ζ
(

(ev ⊗ ev) ◦ Φ−1 ◦ (id⊗ Φ) ◦ (id⊗ (τ ⊗ id)) ◦ (id⊗ Φ−1) ◦ Φ
)

(2.2.86)

The most general formula for the internal tensor product morphism is imprac-

tically lengthy. When one of the internal homomorphisms is the unit of an in-

ternal endomorphism algebra, i.e. for internal tensor products of the following form

L⊗• V,W,X,X 1end(X) or 1end(V )⊗• V,V,X,Y L′, for any L ∈ hom(V,W ) and L′ ∈ hom(X, Y ),
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the formulae are considerably simpler. Recall Example 2.2.20, for any object ρV in

[H,M ] there is the internal endomorphism algebra end(ρV ) = hom(ρV , ρV ) with

product given by µend(V ) = •V,V,V and unit 1end(V ) = ρV (β).

We now explicitly compute the internal homomorphisms L⊗• V,W,X,X 1end(X) and

1end(V )⊗• V,V,X,Y L′, for any L ∈ hom(V,W ) and L′ ∈ hom(X, Y ), from which we later

derive properties of L⊗• V,W,X,Y L′.

Using (2.1.28) and the fact that the identity element 1end(X) is H-invariant (cf.

(2.2.73a) recalling that 1end(X) = ρX(β) from (2.2.81), (2.2.78)), we obtain (dropping

indices on the currying and evaluation)

ζ−1(⊗• )(L⊗ 1end(X) ⊗ – ⊗ – )

= ev
(
ρhom(V,W )(φ

(−1))(L)⊗ ρV (φ(−2))
)
⊗ ev

(
1end(X) ⊗ ρX(φ(−3))

)
= ev

(
ρhom(V,W )(φ

(−1))(L)⊗ ρV (φ(−2))
)
⊗ ρX(φ(−3))

= (ev ⊗ idX) ◦
(
(ρhom(V,W ) ⊗ ρV )⊗ ρX

)
(φ−1)(L⊗ – ⊗ – ) , (2.2.87)

where in the second equality we have used (2.2.73b).

Lemma 2.2.27. Let H be a quasi-Hopf algebra and F ∈ H ⊗H any cochain twist

based on H. If f is an [H,M ]-morphism, then

ζ(f) = f ◦ ζ(id) . (2.2.88)

Proof. (2.2.88) follows directly from (2.2.38).

We therefore have

L⊗• 1end(X) =

(ev ⊗ idX) ◦
(
(ρhom(V,W ) ⊗ ρV )⊗ ρX

)
(φ−1) ◦ ζ(id)(L⊗ idV ⊗ idX) . (2.2.89)
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By a similar calculation

ζ−1(⊗• )(1end(V ) ⊗ L′ ⊗ – ⊗ – )

= ρV (φ̃(1)R(2) φ(−2))⊗ ev
(
ρhom(X,Y )(φ̃

(2) R(1) φ(−1))(L′)⊗ ρX(φ̃(3) φ(−3))
)

= (idV ⊗ ev) ◦ (ρV ⊗ (ρhom(X,Y ) ⊗ ρX))(φ ·R21 · φ−1
213)( – ⊗ L′ ⊗ – ) , (2.2.90)

and therefore

1end(V ) ⊗• L′ =

(idV ⊗ ev) ◦ (ρV ⊗ (ρhom(X,Y ) ⊗ ρX))(φ ·R21 · φ−1
213) ◦ ζ(id)(idV ⊗ L′ ⊗ idX) .

(2.2.91)

As a consequence of (2.2.89) (or (2.2.91)) we have

1end(V ) ⊗• V,V,X,X 1end(X) = (ρV ⊗ ρX)(∆(β)) = ρV ⊗ ρX(β) = 1end(V⊗X) . (2.2.92)

where in the last step we have used (cf. (2.2.81), (2.2.78), (2.2.17))

1end(V⊗X) = ηend(V⊗X)(1) = ρV⊗X(β) = ρV ⊗ ρX(β) . (2.2.93)

We now study compatibility properties between the internal tensor product ⊗•

and the composition •. We begin by clarifying these properties for four special cases.

Lemma 2.2.28. For any L ∈ hom(V,W ), L′ ∈ hom(X, Y ), K ∈ hom(W,X) and

K ′ ∈ hom(Y, Z) one has

(L • 1end(V ))⊗• V,W,X,Y (1end(Y ) • L′) =(
L⊗• V,W,Y,Y 1end(Y )

)
•V⊗X,V⊗Y,W⊗Y

(
1end(V ) ⊗• V,V,X,Y L′

)
, (2.2.94a)

(
K •V,W,X L

)
⊗• V,X,Y,Y 1end(Y ) =(
K ⊗•W,X,Y,Y 1end(Y )

)
•V⊗Y,W⊗Y,X⊗Y

(
L⊗• V,W,Y,Y 1end(Y )

)
, (2.2.94b)
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1end(V ) ⊗• V,V,X,Z
(
K ′ •X,Y,Z L′

)
=(

1end(V ) ⊗• V,V,Y,Z K ′
)
•V⊗X,V⊗Y,V⊗Z

(
1end(V ) ⊗• V,V,X,Y L′

)
, (2.2.94c)

(
1end(W ) •

(
R(2) .hom(V,W ) L

))
⊗• V,W,X,Y

((
R(1) .hom(X,Y ) L

′ ) • 1end(X)

)
=(

1end(W ) ⊗•W,W,X,Y L′
)
•V⊗X,W⊗X,W⊗Y

(
L⊗• V,W,X,X 1end(X)

)
. (2.2.94d)

Proof. By Proposition 2.2.13 (i) and bijectivity of the currying maps, It is enough to

prove that the equalities hold after evaluation on generic elements. The evaluation

of the left-hand side of the equality (2.2.94a) is easily computed from (2.1.28), while

the evaluation of the right-hand side can be simplified by first using Proposition

2.2.13 (ii) and then (2.2.90),(2.2.87). It is then easy to check that both expressions

agree.

The equality (2.2.94b) is easily proven by first evaluating both sides and then us-

ing Proposition 2.2.13 (ii), (2.2.87) and the 3-cocycle condition (2.1.98c) to simplify

the expressions.

The equality (2.2.94c) is slightly more complicated to prove. We again evaluate

both sides and use Proposition 2.2.13 (ii) together with (2.2.90) to simplify the

expressions. The problem then reduces to proving that

[
(idH ⊗ idH ⊗∆)(φ)

]
3124

R13

[
(idH ⊗ idH ⊗∆)(φ−1)

]
1324

· φ324R23 φ
−1
234

[
(idH ⊗ idH ⊗∆)(φ)

]
1234

(2.2.95a)

is equal to

φ124

[
(idH ⊗∆⊗ idH)(φ)

]
3124

[
(∆⊗ idH)(R)

]
123

[
(∆⊗ idH ⊗ idH)(φ−1)

]
1234

.

(2.2.95b)

Multiplying the expressions in (2.2.95) from the left by
[
(idH⊗∆⊗idH)(φ−1)

]
3124

φ−1
124

and from the right by
[
(∆ ⊗ idH ⊗ idH)(φ)

]
1234

, the expression (2.2.95b) becomes[
(∆ ⊗ idH)(R)

]
123

. Simplifying the expression (2.2.95a) by applying the 3-cocycle
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condition (2.1.98c) three times, the R-matrix property (2.1.103a) twice and then

the R-matrix property (2.1.103c) it also becomes
[
(∆ ⊗ idH)(R)

]
123

. This proves

(2.2.94c).

To prove the equality (2.2.94d) we again evaluate both sides and use Proposition

2.2.13 (ii), (2.2.94a) and (2.2.90),(2.2.87) to simplify the expressions. The problem

then reduces to proving that

[
(∆⊗ idH ⊗ idH)(φ)

]
2314

[
(idH ⊗∆)(R)

]
123

·
[
(idH ⊗∆⊗ idH)(φ−1)

]
1234

φ−1
234

[
(idH ⊗ idH ⊗∆)(φ)

]
1234

(2.2.96a)

is equal to

[
(idH ⊗ idH ⊗∆)(φ−1)

]
2314

φ314R13 φ
−1
134

[
(idH ⊗ idH ⊗∆)(φ)

]
2134

R12 . (2.2.96b)

This follows from the 3-cocycle condition (2.1.98c) and the R-matrix properties

(2.1.103a), (2.1.103b).

To simplify the notation throughout the rest of this section we shall drop all

labels on ⊗• , •, Φ.

With this preparation we have

Proposition 2.2.29. Let H be a quasitriangular quasi-Hopf algebra. Then the

internal tensor product ⊗• satisfies the braided composition property, i.e.

• ◦ (⊗• ⊗⊗• ) = ⊗• ◦ (• ⊗ •) ◦ Φ−1 ◦ (id⊗ Φ) ◦ (id⊗ (τ ⊗ id)) ◦ (id⊗ Φ−1) ◦ Φ .

(2.2.97)

Proof. This is a direct calculation using Lemma 2.2.28 and weak associativity of the

internal composition •, cf. Proposition 2.2.13 (iii).

It remains to prove that the internal tensor product ⊗• is weakly associative.

Proposition 2.2.30. Let H be a quasitriangular quasi-Hopf algebra. Then the
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internal tensor product ⊗• is weakly associative, i.e.

Φ ◦ ( · ) ◦ Φ−1 ◦ ⊗• ◦ (⊗• ⊗ id) = ⊗• ◦ (id⊗⊗• ) . (2.2.98)

Proof. On the left hand side of (2.2.98) we obtain

Φ ◦
(
(L⊗• L′ )⊗• L′′

)
◦ Φ−1

= Φ ◦
(((

(L⊗• 1) • (1⊗• L′ )
)
⊗• 1
)
•
(
(1⊗• 1)⊗• L′′

))
◦ Φ−1

= Φ ◦
(((

(L⊗• 1)⊗• 1
)
•
(
(1⊗• L′ )⊗• 1

))
•
(
(1⊗• 1)⊗• L′′

))
◦ Φ−1

=
((

Φ ◦
(
(L⊗• 1)⊗• 1

)
◦ Φ−1

)
•
(
Φ ◦

(
(1⊗• L′ )⊗• 1

)
◦ Φ−1

))
•

(
Φ ◦

(
(1⊗• 1)⊗• L′′

)
◦ Φ−1

)
. (2.2.99)

In the first and second equalities we used equation (2.2.92) and Lemma 2.2.28. The

third equality follows from the H-equivariance of • which enables one to introduce

id = Φ−1 ◦Φ and split it on either side of •. By a straightforward computation using

(2.2.90), (2.2.87) one checks the equalities

Φ ◦
(
(L⊗• 1)⊗• 1

)
◦ Φ−1 = L⊗•

(
1⊗• 1

)
, (2.2.100a)

Φ ◦
(
(1⊗• L′ )⊗• 1

)
◦ Φ−1 = 1⊗•

(
L′ ⊗• 1

)
, (2.2.100b)

Φ ◦
(
(1⊗• 1)⊗• L′′

)
◦ Φ−1 = 1⊗•

(
1⊗• L′′

)
, (2.2.100c)

which together with (2.2.99) and weak associativity of the composition morphisms

• (cf. Proposition 2.2.13 (iii)) implies the equation (2.2.98).

2.2.13 The internal commutator

Proposition 2.2.31. Let H be a triangular quasi-Hopf algebra. The internal com-

mutator in the category M (cf. Definition 2.1.11) restricts to an internal commu-

tator satisfying the braided antisymmetry, Jacobi and biderivation properties inter-

preted in the category [H,M ].
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Proof. First we note that the target of the commutator is an H-module since the

commutator is an H-module morphism. The braided antisymmetry follows from

the same calculation as in Definition 2.1.11 noting that from the triangularity of the

R-matrix we have τ−1 = τ . The proofs of the Jacobi identity and biderivation prop-

erties involve standard manipulations using the weak associativity of the internal

composition (2.2.60) and standard properties of the triangular R-matrix.

Remark 2.2.32. The biderivation property above holds for an arbitrary quasitri-

angular quasi-Hopf algebra.

Corollary 2.2.33. Let H be a triangular quasi-Hopf algebra and ρV any object in

[H,M ]. Then the [H,M ]-object given by the internal endomorphisms end(ρV ), to-

gether with the internal commutator [ · , · ] given in (2.1.39) in the context of [H,M ],

is a Lie algebra in [H,M ].

2.2.14 Cochain twisting the map-like structures

The evaluation ev, internal composition •, internal tensor product ⊗• and internal

commutator [ · , · ] described in the previous subsections are the appropriate struc-

tures with which to use internal homomorphisms correctly as map-like objects in

[H,M ]. Although in the category [H,M ] internal homomorphisms are k-linear

maps they do not give the correct behaviour under the usual structures of evalua-

tion, composition and tensor product.

The results in the following lemma are very useful for proving properties of the

cochain twisting of map-like structures for internal homomorphisms.

Lemma 2.2.34. Let H be a quasi-Hopf algebra and F ∈ H ⊗H any cochain twist

based on H. The currying bijection ζF for internal hom-objects in [HF ,M ] can be

written in terms of the currying bijection ζ for internal hom-objects in [H,M ] by

ζF (id) = ϕ−1 ◦ (γ−1 ⊗F id) ◦ F(ζ(id)) , (2.2.101)

where F is the equivalence between the categories [H,M ] and [HF ,M ] (cf. Theorem

2.2.5).
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Proof. Starting with (2.2.38) in the category [HF ,M ] we notice that the properties

of the quasi-antipode, coproduct and associator in HF are such that:

[
(1⊗ 1⊗ S)φ−1

F

]
124
βF 3

=
[
(1⊗ 1⊗ S)(F ⊗ 1) · (∆⊗ idH)(F ) · φ−1 · (idH ⊗∆)(F−1) · (1⊗ F−1)

]
124
βF 3

=
[
(1⊗ 1⊗ S)(F ⊗ 1) · (∆⊗ idH)(F ) · φ−1 · (1⊗ F−1) · (idH ⊗∆F )(F−1)

]
124
βF 3

=
[
(1⊗ 1⊗ S)(F ⊗ 1) · (∆⊗ idH)(F ) · φ−1 · (1⊗ F−1)

]
124
βF 3

=
[
(1⊗ 1⊗ S)(F ⊗ 1) · (∆⊗ idH)(F ) · φ−1

]
124
β3 . (2.2.102)

The first equality follows from (2.1.109), the second equality follows from (2.1.108),

the third equality follows from (2.1.100b) and (2.1.106), and the fourth equality

follows from (2.1.110). Now including the representations in (2.2.38) we obtain the

result (cf. (2.2.47) and (2.2.25)).

Since for H a quasi-Hopf algebra and F ∈ H ⊗ H a cochain twist based on

H, HF is a quasi-Hopf algebra (cf. Theorem 2.1.40), there exist [HF ,M ]-morphisms

evFF(ρV ),F(ρW ) and •FF(ρV ),F(ρW ),F(ρX) by Proposition 2.1.5, for any three objects F(ρV ),F(ρW ),F(ρX)

in the closed monoidal category [HF ,M ]. These morphisms are related to the cor-

responding [H,M ]-morphisms evρV ,ρW and •ρV ,ρW ,ρX
by

Proposition 2.2.35. If ρV , ρW , ρX are any three objects in [H,M ], then the dia-

grams

ρhomF (F(V ),F(W )) ⊗F F(ρV )

γ⊗F id

��

evF +3 F(ρW )

F
(
ρhom(V,W )

)
⊗F F(ρV )

ϕ

��
F
(
ρhom(V,W ) ⊗ ρV

)
F(ev)

3;
(2.2.103a)
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ρhomF (F(W ),F(X)) ⊗F ρhomF (F(V ),F(W ))

γ⊗F γ
��

•F +3 ρhomF (F(V ),F(X))

γ

��

F
(
ρhom(W,X)

)
⊗F F

(
ρhom(V,W )

)
ϕ

��
F
(
ρhom(W,X) ⊗ ρhom(V,W )

)
F(•)

+3 F
(
ρhom(V,X)

)

(2.2.103b)

in [H,M ] commute. That is (without subscripts)

evF = F(ev) ◦ ϕ ◦ (γ ⊗F id) , (2.2.104a)

•F = γ−1 ◦ F(•) ◦ ϕ ◦ (γ ⊗F γ) . (2.2.104b)

Proof. (2.2.104a) is derived in a similar way to (2.2.101): Starting with evF =

ζF
−1(id) (cf. (2.2.41)) in [HF ,M ] we notice that the properties of the quasi-antipode,

coproduct and associator in HF are such that:

[(1⊗ S ⊗ 1)(φF )]124 αF 3

= [(1⊗ S ⊗ 1)((1⊗ F ) · (1⊗∆)(F ) · φ · (∆⊗ 1)(F−1) · (F−1 ⊗ 1))]124 αF 3

= [(1⊗ S ⊗ 1)((1⊗∆F )(F ) · (1⊗ F ) · φ · (∆⊗ 1)(F−1) · (F−1 ⊗ 1))]124 αF 3

= [(1⊗ S ⊗ 1)(φ · (∆⊗ 1)(F−1) · (F−1 ⊗ 1))]124 α3 . (2.2.105)

The second equality follows from (2.1.108), and the third equality follows from

(2.1.100a) in [HF ,M ], i.e. S(h(1)F )αF h(2)F = ε(h)αF (with h equal to the second

leg of the cochain twist), the counitality of the twist (2.1.106), and the definition of

αF in terms of α (2.1.110). Now including the representations in (2.2.41) we obtain

the result (cf. (2.2.47) and (2.2.25)).

In order to prove commutativity of the second diagram, first notice that, due to

Proposition 2.2.13 (i) and the bijectivity of the currying maps, it is enough to show

that

ζF
−1(•F ) = ζF

−1
(
γ−1 ◦ F(•) ◦ ϕ ◦ (γ ⊗F γ)

)
. (2.2.106)
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After using Proposition 2.2.13 (i) in the category [HF ,M ] together with equation

(2.2.104a) and cancelling an instance of γ with its inverse, the right hand side of

(2.2.106) is equal to

= F(ev) ◦ ϕ ◦
(
F(•) ◦ ϕ ◦ (γ ⊗F γ)⊗F id

)
= F(ev ◦ (id⊗ ev) ◦ Φ) ◦ ϕ ◦

(
ϕ ◦ (γ ⊗F γ)⊗F id

)
= F(ev ◦ (id⊗ ev)) ◦ ϕ ◦ (id⊗ ϕ) ◦ ΦF ◦

(
γ ⊗F (γ ⊗F id)

)
= F(ev) ◦ ϕ ◦ (γ ⊗F id) ◦

(
id⊗F F(ev) ◦ ϕ ◦ (γ ⊗F id)

)
◦ ΦF

= evF ◦ (id⊗ evF ) ◦ ΦF . (2.2.107)

The second equality follows from the HF -equivariance of F(•) and the property

2.2.58 of the internal composition. The third equality follows from the defini-

tion of the twisted associator (2.1.109). The fourth equality follows from the HF -

equivariance of γ and ev and the last equality follows by using (2.2.104a). The final

equality is equal to ζF
−1(•F ) which proves (2.2.104b).

The cochain twisting of the internal commutator is derived from that of the

braiding and the internal composition.

Lemma 2.2.36. The braiding natural transformations and internal commutators in

the closed braided monoidal categories [H,M ] and [HF ,M ] are related by

τF = ϕ−1 ◦ F(τ) ◦ ϕ , (2.2.108a)

[ · , · ]F = γ−1 ◦ F
(
[ · , · ]

)
◦ ϕ ◦ (γ ⊗F γ) . (2.2.108b)

Proof. Equation (2.2.108a) follows directly from the definition of the twisted quasi-

triangular R-matrix RF = F21RF
−1 (cf. (2.1.112)). The equality (2.2.108b) follows
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from (2.2.104b) and (2.2.108a)

[ · , · ]F = •F − •F ◦ τF

= γ−1 ◦ F(•) ◦ ϕ ◦ (γ ⊗F γ)(id⊗F id− ϕ−1 ◦ F(τ) ◦ ϕ)

= γ−1 ◦ F
(
[ · , · ]

)
◦ ϕ ◦ (γ ⊗F γ) , (2.2.109)

where the final step follows from the HF -equivariance of γ ⊗F γ.

For the braided closed monoidal category [HF ,M ] one has by Proposition 2.1.7

the internal tensor product ⊗• F for the internal hom-objects homF . It is related to

the corresponding internal tensor product ⊗• in [H,M ] by

Proposition 2.2.37. If ρV , ρW , ρX , ρY are any four objects in [H,M ], then the

diagram in (2.2.111) commutes.

Proof. The strategy for this proof is similar to that of the proof of Proposition

2.2.30. In the special case where the objects X and Y are the same, one can prove

directly that the diagram in (2.2.111) commutes when acting on elements of the

form L⊗F 1F ; this computation makes use of Proposition 2.2.35 to express evF and

F(ev) in terms of each other. Similarly, one can prove that in the case where the

objects V and W are the same the diagram in (2.2.111) commutes when acting on

elements of the form 1F ⊗F L′. In the generic situation recall that by Lemma 2.2.28

one has

L⊗• F L′ =
(
L⊗• F 1F

)
•F
(
1F ⊗• F L′

)
, (2.2.110)

which reduces the problem of proving commutativity of the diagram in (2.2.111) to

the two special cases above. The relevant step here is to use Proposition 2.2.35 in

order to express •F and F(•) in terms of each other.
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h
om

F
(F

(ρ
V

),
F

(ρ
W

))
⊗
F

h
om

F
(F

(ρ
X

),
F

(ρ
Y

))

γ
ρ
V
,ρ
W
⊗
F
γ
ρ
X
,ρ
Y

��

⊗•
F F
(ρ
V

),
F
(ρ
W

),
F
(ρ
X

),
F
(ρ
Y

)
+3 h

om
F

(F
(ρ
V

)
⊗
F
F

(ρ
X

),
F

(ρ
W

)
⊗
F
F

(ρ
Y

))

ϕ
ρ
W
,ρ
Y
◦(
·)
◦ϕ
−
1

ρ
V
,ρ
X

��
F

(h
om

(ρ
V
,ρ

W
))
⊗
F
F

(h
om

(ρ
X
,ρ

Y
))

ϕ
h
o
m
(ρ
V
,ρ
W

),
h
o
m
(ρ
X
,ρ
Y

)

��

h
om

F
(F

(ρ
V
⊗
ρ
X

),
F

(ρ
W
⊗
ρ
Y

))

γ
ρ
V
⊗
ρ
X
,ρ
W
⊗
ρ
Y

��
F

(h
om

(ρ
V
,ρ

W
)
⊗

h
om

(ρ
X
,ρ

Y
))

F
(⊗•

ρ
V
,ρ
W
,ρ
X
,ρ
Y

)
+3 F

(h
om

(ρ
V
⊗
ρ
X
,ρ

W
⊗
ρ
Y

))

(2
.2

.1
11

)
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2.2.15 H-invariant internal homomorphisms

In this thesis the notion of internal homomorphism is central. This is a consequence

of the result which we shall show in this subsection that the internal homomorphisms

in [H,M ] extend the morphism sets in [H,M ] in a structure preserving way.

Given any object (ρV , ρW ) in
(
[H,M ]

)op × [H,M ], one can assign to it the set

of H-invariant internal homomorphisms

homH(ρV , ρW )(∗) :=
{
L ∈ HomM (V,W ) : ρhom(V,W )(h)(L) = ε(h)L , ∀h ∈ H

}
.

(2.2.112)

homH :
(
[H,M ]

)op × [H,M ] → Sets is a functor (in fact, it is a subfunctor of

the internal hom-functor composed with the forgetful functor from [H,M ] to the

category of sets): we have by the H-equivariance of g

ρhom(V,W )(h)(g ◦ L ◦ f) = ε(h) g ◦ L ◦ f . (2.2.113)

Furthermore we notice that the functor homH has the same source and target as

the functor Hom :
(
[H,M ]

)op × [H,M ] → Sets assigning the morphism sets. The

next proposition shows that the morphisms in [H,M ] can be identified with the

H-invariant internal homomorphisms.

Proposition 2.2.38. Let H be a quasitriangular quasi-Hopf algebra.

(i) There is a natural isomorphism ϑ : Hom[H,M ] ⇒ homH of functors from(
[H,M ]

)op× [H,M ] to Sets. Explicitly, the (ρV , ρW )-component of ϑ is given

by

ϑρV ,ρW : Hom[H,M ](ρV , ρW ) =⇒ homH(ρV , ρW ) , f 7−→ ρW (β) ◦ f ,

(2.2.114)

with single component

ϑV,W : HomM (V,W ) −→ HomM (V,W ) , f 7−→ ρW (β) ◦ f , (2.2.115)
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with the property that

evV,W
(
ϑV,W (f)⊗ v

)
= f(v) , (2.2.116)

for all f ∈ Hom[H,M ](ρV , ρW ) and v ∈ V .

(ii) The natural isomorphism ϑ : Hom[H,M ] ⇒ homH preserves compositions and

tensor products, i.e. there are identities

•V,W,X ◦ (ϑW,X ⊗ ϑV,W ) = ϑV,X ◦ (◦) , (2.2.117a)

⊗• V,W,X,Y ◦ (ϑV,W ⊗ ϑX,Y ) = ϑV⊗X,W⊗Y ◦ (⊗) . (2.2.117b)

(iii) For all f ∈ Hom[H,M ](ρV , ρW ), g ∈ Hom[H,M ](ρW , ρX), L′ ∈ hom(V,W ) and

L ∈ hom(W,X) one has

ϑW,X(g) •V,W,X L′ = g ◦ L′ , L •V,W,X ϑV,W (f) = L ◦ f . (2.2.118)

Proof. It is easy to see that ϑV,W (f) is H-invariant for any f ∈ Hom[H,M ](ρV , ρW ):

for all h ∈ H one has by a similar calculation to (2.2.74)

ρhom(V,W )(h)
(
ϑV,W (f)

)
= ρW (h(1)) ◦ ρW (β) ◦ f ◦ ρV (S(h(2)))

= ρW (h(1) β S(h(2))) ◦ f

= ε(h)ρV (β) ◦ f

= ε(h)ϑV,W (f) , (2.2.119)

where the second equality follows from the naturality of f and the functoriality of

representations and the third equality follows by property (2.1.100b). One can now

show that the map ϑV,W is invertible via

ϑ−1
ρV ,ρW

: homH(ρV , ρW ) =⇒ Hom[H,M ](ρV , ρW ) (2.2.120)
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with single component

ϑ−1
V,W : HomM (V,W ) −→ HomM (V,W ) ,

L 7−→ ev(L⊗ –) . (2.2.121)

Since ev is H-equivariant it is easy to see that ϑ−1
V,W (L) is H-equivariant for any

H-invariant L ∈ HomM (V,W ): for all h ∈ H one has

ρW (h)
(
ev(L⊗ – )

)
= ev(ρhom(V,W )(h(1))(L)⊗ ρV (h(2))) = ev(L⊗ – ) ◦ ρV (h) ,

(2.2.122)

since ε(h(1))h(2) = h. The fact that ϑ−1
V,W is the inverse of ϑV,W can be checked as

follows: by a similar calculation to (2.2.73b) one has

ϑ−1
V,W ◦ ϑV,W (f) = ev(ϑV,W (f)⊗ – )

= ρW (φ(1)) ◦ ρW (β) ◦ f ◦ ρV
(
S(φ(2))αφ(3)

)
= f , (2.2.123)

for all f ∈ Hom[H,M ](ρV , ρW ), where the final step follows from the naturality of f ,

the functoriality of representations and the property (2.1.100c). For any H-invariant

L ∈ HomM (V,W ) one has

ϑV,W ◦ ϑ−1
V,W (L) = ρW (β) ◦ ev(L⊗ – )

= ev(L⊗ ρV (β))

= ρW (φ(1)) ◦ L ◦ ρV (S(φ(2))αφ(3) β)

= ρW (φ(1)) ◦ ρhom(V,W )(φ̃
(−1)) ◦ L ◦ ρV (S(φ(2))αφ(3) φ̃(−2) β S(φ̃(−3)))

= ρW (φ(1) φ̃
(−1)
(1) ) ◦ L ◦ ρV (S(φ(2) φ̃

(−1)
(2) )αφ(3) φ̃(−2) β S(φ̃(−3)))

= L ◦ ρV (S(φ(−1))αφ(−2) β S(φ(−3))

= L . (2.2.124)
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The second equality follows from (2.2.122), the third equality follows from (2.2.112)

and ε(φ̃(−1)) φ̃(−2) ⊗ φ̃(−3) = 1 ⊗ 1, and the fourth equality follows from applying

(2.1.98c) and then using (2.1.100a), (2.1.100b) and (2.1.99) to eliminate two of the

three factors of φ.

For item (ii) one has

•V,W,X ◦ (ϑW,X ⊗ ϑV,W ) = ζ(ev ◦ (id⊗ ev) ◦ Φ) ◦ (ϑW,X ⊗ ϑV,W )

= ev ◦ (id⊗ ev) ◦ (ϑW,X ⊗ ϑV,W ⊗ ρV (β))

= (◦) ◦ ρV (β)

= ϑV,X ◦ (◦) . (2.2.125)

Here the second equality follows from the H-invariance of the image of ϑ, the third

equality follows from result (2.2.116) and the fourth by the naturality of [H,M ]-

morphisms. By a similar calculation one has ⊗• V,W,X,Y ◦(ϑV,W ⊗ϑX,Y ) = ϑV⊗X,W⊗Y ◦

(⊗).

For (iii) one has

ϑ(g) • L′ = ζ(ev ◦ (id⊗ ev) ◦ Φ) ◦ (ϑ(g)⊗ L′)

= ev(ϑ(g)⊗ ev ◦ ζ(id)(L′))

= g ◦ ev ◦ (ζ(id)(L′)⊗ id)

= g ◦ ζ−1(ζ(id))(L′)

= g ◦ L′ , (2.2.126)

for all g ∈ Hom[H,M ](ρW , ρX) and L′ ∈ hom(V,W ), where the second equality

follows from the H-invariance of ϑ(g) and property (2.1.98a), the third equality

follows from the property (2.2.116) and the fourth equality follows from Proposition

2.2.13 (i). By a completely analogous calculation one has L • ϑ(f) = L ◦ f for all

f ∈ Hom[H,M ](ρV , ρW ) and L ∈ hom(W,X).

Remark 2.2.39. Both functors HomM and homH can be promoted to functors with
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values in the category of k-modules M . The components of the natural isomorphism

ϑ in Proposition 2.2.38 are obviously k-linear isomorphisms, hence ϑ also gives a

natural isomorphism between HomM and homH when considered as functors with

values in M .

2.3 The subcategory of symmetric bimodules

The sections of a vector bundle over a classical manifold form a symmetric bimodule

over the algebra of functions on the manifold. We shall see in this section that twist

deformation quantisation preserves the symmetry of the left and right bimodule

actions. Since our aim is to provide descriptions of differential geometry for spaces

of the type arising from twist deformation quantisation of classical manifolds we

focus attention on the subcategory of symmetric bimodules over an algebra object

in [H,M ].

Fixing any quasitriangular quasi-Hopf algebraH and any algebra ρA inH–Algcom,

the category H–Bimod(A)sym of symmetric ρA-bimodules in [H,M ] is a closed

braided monoidal category. In this section we show how all structures in the closed

braided monoidal category [H,M ] systematically descend to the closed braided

monoidal category H–Bimod(A)sym of symmetric bimodule objects over some alge-

bra ρA in H–Algcom. Cochain twisting leads to an equivalence between the closed

braided monoidal categories H–Bimod(A)sym and HF–Bimod(AF )sym, where AF is

a commutative algebra in [HF ,M ] which is given by a cochain twist of the original

algebra A.

2.3.1 The category of symmetric bimodules

In the following let us fix a quasitriangular quasi-Hopf algebra H and denote the

R-matrix by R = R(1) ⊗R(2) ∈ H ⊗H.

Definition 2.3.1 (Symmetric bimodule). Let H be a quasitriangular quasi-Hopf

algebra and let ρA be an algebra in H-Algcom. A symmetric A-bimodule in [H,M ]

is an object ρV in [H,M ] together with two [H,M ]-morphisms lV : ρA ⊗ ρV ⇒ ρV
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(left ρA-action) and rV = lV ◦τV,A (right ρA-action), such that the following diagrams

ρA ⊗ (ρA ⊗ ρV )

Φ−1
ρA,ρA,ρV

��

idρA
⊗lρV +3 ρA ⊗ ρV

lρV

��

(ρA ⊗ ρA)⊗ ρV
µρA
⊗idρV

��
ρA ⊗ ρV lρV

+3 ρV

(2.3.1a)

ρI ⊗ ρV
ηρA
⊗idρV

��

λρV

$,
ρA ⊗ ρV lρV

+3 ρV

(2.3.1b)

commute.

Definition 2.3.2. [Category of symmetric bimodules] Let H be a quasitriangular

quasi-Hopf algebra and let ρA be an algebra in H-Algcom. The collection of symmet-

ric ρA-bimodules in [H,M ] together with [H,M ]-morphisms f : ρV ⇒ ρW which

preserve the left (and hence automatically also the right) ρA-actions lV and rV , i.e.

such that

f ◦ lV = lW ◦ (idρA ⊗I f) , (2.3.2)

constitute a subcategory of [H,M ]. This subcategory is equal to the comma cate-

gory (⊗ρI ⇒ id[H,M ]) whose objects are triples (ρA×ρV , lV , ρV ) with (ρV , lV , lV ◦τV,A)

a symmetric A-bimodule in [H,M ] and whose morphisms are tuples of morphisms

(idρA ⊗ρI f, f) satisfying (2.3.2). We shall denote by

H-Bimod(A)sym , (2.3.3)

the category of symmetric ρA-bimodules in [H,M ]. And with an abuse of notation

denote objects in H-Bimod(A)sym by the corresponding objects in [H,M ].
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Remark 2.3.3. If f : ρV ⇒ ρW is an H-Bimod(A)sym-morphism between two

objects ρV , ρW in H-Bimod(A)sym, then

f ◦ rV = f ◦ lV ◦ τV,A

= lW ◦ (idA ⊗ f) ◦ τV,A

= lW ◦ τW,A ◦ (f ⊗ idA)

= rW ◦ (f ⊗ idA) . (2.3.4)

The second equality follows from the left ρA-linearity of f and the third equality

follows from the H-equivariance of f . This shows that any [H,M ]-morphism of

objects in H-Bimod(A)sym preserving the left ρA-action automatically also preserves

the right ρA-action.

The right ρA-action in a symmetric ρA-bimodule ρV in [H,M ] is defined in terms

of the left ρA-action by

rV = lV ◦ τV,A = lV ◦ (ρA ⊗ ρV )(R21) ◦ σ . (2.3.5)

The first diagram in Definition 2.1.16 implies that

lV ◦ (idA ⊗ lV ) = lV ◦ (µA ⊗ idV ) ◦ Φ−1
A,A,V , (2.3.6a)

rV ◦ (rV ⊗ idA) = lV ◦ (idV ⊗ µA) ◦ ΦV,A,A , (2.3.6b)

lV ◦ (idA ⊗ rV ) = rV ◦ (lV ⊗ idA) ◦ Φ−1
A,V,A . (2.3.6c)

The last two equations follow from definition of the right ρA-action in terms of the

left ρA-action and properties of the R-matrix. These are weak versions (i.e. up to

associator) of the usual bimodule properties (cf. Definition 2.1.16).

Example 2.3.4. The n-dimensional free A-bimodule An in M of Example 2.1.17

becomes a symmetric ρA-bimodule ρnA in [H,M ] when A is a braided commutative
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algebra in [H,M ] with left H-action defined componentwise by

ρAn(h)~a :=


ρA(h)a1

...

ρA(h)an

 , (2.3.7)

for all h ∈ H and ~a ∈ ρnA(∗) = An.

2.3.2 Cochain twisting the category

In complete analogy to the result in Subsection 2.2.11 we find that the categories

H-Bimod(A)sym and HF -Bimod(AF )sym are equivalent for any quasitriangular quasi-

Hopf algebra H, braided commutative algebra ρA in [H,M ] and cochain twist F ∈

H⊗H. Using the monoidal functor F : [H,M ]→ [HF ,M ] we obtain for any object

ρV in H-Bimod(A)sym an object F(ρV ) in [HF ,M ]. For this object we define the

[HF ,M ]-morphism lVF : F(ρA)⊗F F(ρV )⇒ F(ρV ) via the coherence maps (2.2.24)

and the diagram

F(ρA)⊗F F(ρV )

ϕρA,ρV
��

lρVF +3 F(ρV )

F(ρA ⊗ ρV )

F(lρV
)

19 (2.3.8)

in [HF ,M ] and the [HF ,M ]-morphism rVF by

rVF := lVF ◦ τ
F
F(V ),F(A) . (2.3.9)

It is straightforward to check that F(ρV ), together with the [HF ,M ]-morphisms lVF

and rVF is an F(ρA)-bimodule in [HF ,M ]: Using

lVF = lV ◦ ϕA,V , (2.3.10)

rVF = rV ◦ ϕV,A (2.3.11)
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((2.3.11) follows from a short calculation using RF = F21RF
−1) we have by (2.3.8)

and the definition of the associator in HF in terms of the associator in H that

lVF ◦ (idAF ⊗ lVF ) = lVF ◦ (µAF ⊗ idVF ) ◦ ((ρA ⊗ ρA)⊗ ρV )(φ−1
F ) , (2.3.12)

and, since RF is an R-matrix for the quasitriangular quasi-Hopf algebra HF , that

the last two conditions in (2.3.6) are satisfied with the right AF -action (2.3.9). By

the counital condition of the twist we have that

lVF ◦ (ηAF ⊗ idVF ) = λVF . (2.3.13)

We shall denote this AF -bimodule also by F(ρV )(∗) = VF . If f : ρV ⇒ ρW is an

H-Bimod(A)sym-morphism, then the [HF ,M ]-morphism F(f) : F(ρV ) ⇒ F(ρW )

preserves the left (and right) F(ρA)-action, i.e. it is an HF -Bimod(AF )sym-morphism

with single component (denoted by the same symbol) F(f) : VF → WF . In summary,

we have shown

Proposition 2.3.5. If H is a quasitriangular quasi-Hopf algebra, ρA is a braided

commutative algebra in [H,M ] and F ∈ H ⊗ H is any cochain twist based on H,

then the categories H-Bimod(A)sym and HF -Bimod(AF )sym are equivalent, where

F(ρA)(∗) = AF is the algebra obtained by applying the functor described in Propo-

sition 2.2.24 on ρA.

2.3.3 The monoidal structure

Interpreting the theory of Subsection 2.1.4 in the monoidal category [H,M ] makes

sense:

Taking ρA to be a commutative algebra in H–Algcom, the properties of a qu-

asitriangular quasi-Hopf algebra are such that objects ρV ⊗ ρW ∈ [H,M ], where

(ρV , ρW ) ∈ H-Bimod(A)sym ×H-Bimod(A)sym, obtained by using the functor

⊗ ◦ (Forget× Forget) : H-Bimod(A)sym ×H-Bimod(A)sym −→ [H,M ] . (2.3.14)
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with the forgetful functor Forget : H-Bimod(A)sym → [H,M ], can be equipped

with the structure of a symmetric bimodule object in [H,M ] with left and right

ρA-actions given by the [H,M ]-morphisms

lV⊗W = (lV ⊗ idW ) ◦ ((ρA ⊗ ρV )⊗ ρW )(φ−1) , (2.3.15a)

rV⊗W := lV⊗W ◦ τV⊗W,A

= lV⊗W ◦ (ρA ⊗ (ρV ⊗ ρW ))(idH ⊗∆)(R21) ◦ σ . (2.3.15b)

Using (2.1.98c) one easily checks that lV⊗W satisfies the properties of a left A-

action. The right and left-right properties in Definition 2.1.16 follow by the same

calculations as for (2.3.6). Also given a morphism
(
f : ρV ⇒ ρX , g : ρW ⇒ ρY

)
in H-Bimod(A)sym ×H-Bimod(A)sym, it is clear that the [H,M ]-morphism f ⊗ g :

ρV ⊗ ρW ⇒ ρX ⊗ ρY preserves this ρA-bimodule structure, i.e. it is a morphism in

H-Bimod(A)sym. So the functor in (2.3.14) is promoted to a functor with values in

H-Bimod(A)sym.

Furthermore the properties of a quasitriangular quasi-Hopf algebra are such that

the properties in Lemma 2.1.20 hold when interpreted in the category [H,M ]: Item

(i) follows by using (2.1.98c) and item (ii) follows by the bimodule properties of

an H-Bimod(A)sym-object. So one obtains the monoidal functor for the category

H-Bimod(A)sym

⊗A : H-Bimod(A)sym ×H-Bimod(A)sym → H-Bimod(A)sym (2.3.16)

which assigns to any two objects ρV , ρW in H-Bimod(A)sym the object

ρV ⊗A ρW =
ρV ⊗ ρW

Im
(
rρV ⊗ id− (id⊗ lρW ) ◦ ΦρV ,ρA,ρW

) (2.3.17)
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in [HM ], together with left and right A-actions given by the [H,M ]-morphisms

lV⊗AW = (lV ⊗A idW ) ◦ ((ρA ⊗ ρV )⊗A ρW )(φ−1) , (2.3.18a)

rV⊗AW = lV⊗AW ◦ (ρA ⊗ (ρV ⊗A ρW ))(idH ⊗∆)(R21) ◦ σ . (2.3.18b)

For notational convenience we refer to the denominator of the quotient in (2.3.17)

by

NρV ,ρW := Im
(
rρV ⊗ id− (id⊗ lρW ) ◦ ΦρV ,ρA,ρW

)
. (2.3.19)

As a consequence of the equivalence relation in (2.3.17), one has the identity

rV ⊗A idW = (idV ⊗A lW ) ◦ (ρV ⊗A (ρA ⊗ ρW )(φ) , (2.3.20)

for any ρV , ρW in H-Bimod(A)sym.

By the same calculation as in Section 2.1 given any morphism
(
f : ρV ⇒ ρX , g :

ρW ⇒ ρY
)

in H-Bimod(A)sym ×H-Bimod(A)sym, f ⊗A g : ρV ⊗A ρW ⇒ ρX ⊗A ρY

with single component defined as in Section 2.1 is an H-Bimod(A)sym-morphism

which we define by setting

(f ⊗A g) ◦ πρV ,ρW = πρX ,ρY ◦ (f ⊗ g) . (2.3.21)

The properties of a quasi-bialgebra (2.1.98c) and symmetric bimodule (2.3.6)

ensure that the associator Φ in [H,M ] descends to the quotients and thereby induces

an associator ΦA : ⊗A ◦
(
⊗A ×idH-Bimod(A)sym

)
⇒ ⊗A ◦

(
idH-Bimod(A)sym ×⊗A

)
with

(ρV , ρW , ρX)-component

ΦA
ρV ,ρW ,ρX

: (ρV ⊗A ρW )⊗A ρX =⇒ ρV ⊗A (ρW ⊗A ρX) ,

in H-Bimod(A)sym.

Again, declaring ρA (regarded as the one-dimensional free A-bimodule, cf. Ex-

ample 2.3.4) as the unit object in H-Bimod(A)sym, the unitors %A : – ⊗A ρA ⇒
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idH-Bimod(A)sym and λA : ρA ⊗A –⇒ idH-Bimod(A)sym with ρV -components

λAρV : ρA ⊗A ρV =⇒ ρV , (2.3.22a)

%AρV : ρV ⊗A ρA =⇒ ρV , (2.3.22b)

in H-Bimod(A)sym are defined as in Section 2.1 by using the fact that lV : ρA⊗ρV ⇒

ρV and rV : ρV ⊗ ρA ⇒ ρV are H-Bimod(A)sym-morphisms that descend to the

quotients (the properties in Lemma 2.1.20 hold when interpreted in the category

[H,M ]). In summary, this shows

Proposition 2.3.6. For any quasitriangular quasi-Hopf algebra H and any braided

commutative algebra ρA in [H,M ], the category H-Bimod(A)sym of symmetric ρA-

bimodules in [H,M ] is a monoidal category with monoidal functor ⊗A (cf. (2.3.16)

and (2.3.17)), associator ΦA (cf. (2.3.22a)), unit object ρA (regarded as the one-

dimensional free ρA-bimodule, cf. Example 2.3.4), and unitors λA and ρA (cf. (2.3.22)).

2.3.4 Cochain twisting the monoidal structure

The monoidal category developed in Proposition 2.3.6 behaves nicely under cochain

twisting.

Theorem 2.3.7. If H is a quasitriangular quasi-Hopf algebra, ρA is any braided

commutative algebra in [H,M ] and F ∈ H⊗H is any cochain twist based on H, then

the equivalence of categories in Proposition 2.3.5 can be promoted to an equivalence

between the monoidal categories H-Bimod(A)sym and HF -Bimod(AF )sym. Explicitly,

the coherence maps are given by the HF -Bimod(AF )sym-isomorphisms

ϕAρV ,ρW : F(ρV )⊗AF F(ρW ) =⇒ F
(
ρV ⊗A ρW

)
,

with single component

ϕAV,W := (ρV ⊗A ρW )(F−1) ,

109



Chapter 2: Mathematical foundations

for any two objects ρV , ρW in H-Bimod(A)sym, and

ψA : ρAF =⇒ F(ρA) , (2.3.23a)

with single component the identity on A.

Proof. The only non-trivial step is to prove that ϕAV,W is well defined, which amounts

to proving that the singe component of theHF -Bimod(AF )sym-morphism F(πρV ,ρW )◦

ϕρV ,ρW descends to the quotient by NF
F(ρV ),F(ρW ) (cf. (2.3.19)). We have

F(πV,W ) ◦ ϕV,W ◦ (rVF ⊗F idW )

= (rV ⊗A idW ) ◦ ((ρV ⊗ ρA)⊗A ρW )
(
(∆⊗ 1)(F−1) · (F−1 ⊗ 1)

)
= (idV ⊗A lW ) ◦ (ρV ⊗ (ρA ⊗ ρW ))

(
φ · (∆⊗ 1)(F−1) · (F−1 ⊗ 1)

)
= (idV ⊗A lW ) ◦ (ρV ⊗ (ρA ⊗ ρW ))

(
(1⊗∆)(F−1) · (1⊗ F−1) · φF

)
= F(πV,W ) ◦ ϕV,W ◦ (idV ⊗F lWF

) ◦ (ρV ⊗ (ρA ⊗ ρW ))(φF ) . (2.3.24)

In the first equality we have used (2.2.25) and (2.3.11), in the second equality we

have used (2.3.20) and in the third equality we have used (2.1.109). This im-

plies that F(πρV ,ρW ) ◦ ϕρV ,ρW vanishes on NF
F(ρV ),F(ρW ) and hence it descends to

the desired coherence map ϕAρV ,ρW on the quotient F(ρV ) ⊗AF F(ρW ) = F(ρV ) ⊗F

F(ρW )/NF
F(ρV ),F(ρW ). By a similar calculation to above using (2.3.18) it is straight-

forward to check that ϕAρV ,ρW is an HF -Bimod(AF )sym-isomorphism and that the

analogues of the coherence diagrams in (2.2.27) commute.

2.3.5 The internal hom-structure

Interpreting the theory of Subsection 2.1.5 in the closed braided monoidal category

[H,M ] makes sense.

We fix ρA to be a commutative algebra object in [H,M ]. The properties of a

quasitriangular quasi-Hopf algebra are such that the statement of Lemma 2.1.23

holds true in [H,M ]:
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Lemma 2.3.8. For any object ρV in H-Bimod(A)sym the [H,M ]-morphism

l̂V := ζρA,ρV ,ρV (lV ) : ρA =⇒ end(ρV ) (2.3.25)

is an H-Alg-morphism with respect to the algebra structure on end(ρV ) described in

Example 2.2.20.

Proof. Acting with l̂V on the H-invariant unit element 1A = ηA(1) ∈ A and using the

explicit expression for the currying map (2.2.36) together with (ε⊗1⊗1)(φ) = 1⊗1

we obtain

l̂V (1A) = ζA,V,V (lV )(1A) = ρV (β) = 1end(V ) . (2.3.26)

To show that l̂V preserves the product, we notice that from Proposition 2.2.13 (i)

we have that

ev ◦ (l̂V ⊗ id) = lV . (2.3.27)

Using this and (2.2.88) we have

• ◦ (l̂V ⊗ l̂V ) = ζ(ev ◦ (id⊗ ev) ◦ Φ) ◦ (l̂V ⊗ l̂V )

= ev ◦ (id⊗ ev) ◦ (l̂V ⊗ l̂V ⊗ id) ◦ (ρA ⊗ (ρA ⊗ ρV ))(φ) ◦ ζ(id)

= lV ◦ (idA ⊗ lV ) ◦ (ρA ⊗ (ρA ⊗ ρV ))(φ) ◦ ζ(id)

= lV ◦ (µA ⊗ idV ) ◦ ζ(id)

= l̂V ◦ µA . (2.3.28)

The second equality follows from (2.2.88) and the H-equivariance of l̂V . The third

equality follows from (2.3.27). The fourth equality follows from (2.3.6a) and the

last equality follows from (2.2.88) and the H-equivariance of µA. Hence l̂V is an

H-Alg-morphism.
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Hence the [H,M ]-morphisms defined by

lhom(V,W ) := •ρV ,ρW ,ρW
◦ (l̂W ⊗ idhom(ρV ,ρW )) , (2.3.29a)

rhom(V,W ) = •ρV ,ρV ,ρW ◦ (idhom(ρV ,ρW ) ⊗ l̂V ) , (2.3.29b)

equip the object hom(ρV , ρW ) ∈ [H,M ], where (ρV , ρW ) ∈
(
H-Bimod(A)sym

)op ×

H-Bimod(A)sym, obtained by using the functor

hom ◦
(
Forgetop × Forget

)
:
(
H-Bimod(A)sym

)op ×H-Bimod(A)sym −→ [H,M ] ,

(2.3.30)

with the forgetful functor Forget : H-Bimod(A)sym → [H,M ], with the structure

of an ρA-bimodule in [H,M ] (cf. Definition 2.1.16). The result of Proposition

2.2.13 (iii) provides the weak associativity of the ρA-actions.

Before considering the properties of the functor (2.3.30) on H-Bimod(A)sym-

morphisms we need to consider Lemma 2.1.24 in the context of [H,M ]. The cor-

rect statement of this Lemma involves the use of the map ϑ which sends [H,M ]-

morphisms into H-invariant internal homomorphisms in [H,M ] (in the context of

M this is the identity):

Lemma 2.3.9. Given any two objects ρV and ρW in H-Bimod(A)sym and any

H-Bimod(A)sym-morphism f : ρV ⇒ ρW , we have

[ϑV,W (f), a] = 0 , (2.3.31)

for any a ∈ A where ϑV,W is defined in Proposition 2.2.38.
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Proof. We have

rhom(V,W )(ϑ(f)⊗ a) = ϑ(f) • l̂V (a)

= f ◦ l̂V (a)

= f ◦ lV ◦ ζ(id)(a)

= lW ◦ (idA ⊗ f) ◦ ζ(id)(a)

= lW ◦ ζ(id)(a) ◦ f

= l̂W (a) ◦ f

= l̂W (a) • ϑ(f)

= lhom(V,W ) ◦ τhom(V,W ),A(ϑ(f)⊗ a) . (2.3.32)

The second and penultimate steps follow from Proposition 2.2.38 (iii). The third

step follows from (2.2.88). The fourth step follows from left ρA-linearity of f (2.3.2)

and the fifth step follows from (2.2.88) and also H-equivariance of f . The last

step follows from the H-invariance of ϑ(f) and the counitality of the R-matrix

(2.1.105).

Now, using the functor (2.3.30), the [H,M ]-morphism hom(f op, g) with
(
f op :

ρV ⇒ ρX , g : ρW ⇒ ρY
)

in
(
H-Bimod(A)sym

)op×H-Bimod(A)sym preserves the left

and right ρA-actions in (2.3.29): We have

hom(f op, g)
(
lhom(V,W )(a⊗ L)

)
= g ◦

(
l̂W (a) •V,W,W L

)
◦ f

=
(
ϑW,Y (g) •W,W,Y l̂W (a)

)
•X,W,Y

(
L •X,V,W ϑX,V (f)

)
=
(
l̂Y (a) •W,Y,Y ϑW,Y (g)

)
•X,W,Y

(
L •X,V,W ϑX,V (f)

)
= l̂Y (a) •X,Y,Y hom(f op, g)

(
L
)

= lhom(X,Y )

(
a⊗ hom(f op, g)

(
L
))
, (2.3.33)

for all a ∈ A and L ∈ hom(V,W ). In the third equality we have used Lemma 2.3.9,

while the second and fourth equalities follow from H-invariance and the properties
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of ϑW,Y (g) and ϑX,V (f), cf. Proposition 2.2.38 (iii). By a similar argument, one

shows that hom(f op, g) also preserves the right ρA-action in (2.3.29).

In order to restrict the target category of the functor (2.3.30) to H-Bimod(A)sym

we consider the [H,M ]-morphism

[ · , · ] := rhom(V,W ) − lhom(V,W ) ◦ τhom(V,W ),A , (2.3.34)

Using this bracket, for any two objects ρV , ρW in H-Bimod(A)sym Definition 2.1.25

becomes

Definition 2.3.10. We define an object homA(ρV , ρW ) in [H,M ] by the equalizer

homA(ρV , ρW ) +3 hom(ρV , ρW )
0

+3

ζ([ · , · ]) +3
hom(ρA, hom(ρV , ρW ))

(2.3.35)

in [H,M ]. This equalizer can be realized explicitly in terms of the [H,M ]-subobject

homA(ρV , ρW ) := Ker
(
ζ([ · , · ])

)
⊆ hom(ρV , ρW ) (2.3.36)

of the internal hom-object hom(V,W ) in [H,M ].

Furthermore the result of Lemma 2.1.26 holds by the same calculations and we

have the important

Lemma 2.3.11. Let ρA be any object in H–Algcom and ρV , ρW be any two objects

in H-Bimod(A)sym. An [H,M ]-subobject ρU ⊆ hom(ρV , ρW ) is an [H,M ]-subobject

of homA(ρV , ρW ) if and only if

[L, a] = 0 , (2.3.37)

for all L ∈ U and a ∈ A.

It follows that

rhomA(V,W ) = lhomA(V,W ) ◦ τhomA(V,W ),A . (2.3.38)
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That is when restricted to homA(ρV , ρW ), the left and right ρA-actions agree up to

the braiding. Hence equations (2.3.29) endow the object homA(ρV , ρW ) in [H,M ]

in (2.3.36) with the structure of an object in H-Bimod(A)sym.

Furthermore, for any
(
H-Bimod(A)sym

)op × H-Bimod(A)sym-morphism (f op :

ρV ⇒ ρX , g : ρW ⇒ ρY ) we have that homA(f op, g)(L) is an H-Bimod(A)sym-

morphism for any L ∈ homA(V,W ): First we notice that the target is correct since

[
homA(f op, g)(L), a

]
=
[
g ◦ L ◦ f, a

]
= g ◦ L ◦ [ϑ(f), a] + 2 g ◦

[
L, a

]
◦ f + [ϑ(g), a] ◦ L ◦ f

= 0 , (2.3.39)

where we have used the mapping of morphisms to H-invariant internal homomor-

phisms given in Proposition 2.2.38, the quasi biderivation property given in item

(iii) of Proposition 2.1.13, the composition property given in item (ii) of Proposition

2.2.38 and the result of Lemma 2.3.9. That homA(f op, g)(L) preserves the left and

right ρA-actions follows from the calculation (2.3.33) and the general result that

morphisms preserving the left action of symmetric bimodules automatically also

preserve the right action (cf. Remark 2.3.3).

So the assignment of the objects homA(ρV , ρW ) in H-Bimod(A)sym is functorial

and we denote the corresponding functor by

homA :
(
H-Bimod(A)sym

)op ×H-Bimod(A)sym −→ H-Bimod(A)sym . (2.3.40)

Finally, we show that (2.3.40) is an internal hom-functor in H-Bimod(A)sym.

Proposition 2.3.12. The braided monoidal category H-Bimod(A)sym is closed:

There is a natural bijection

ζA : HomH-Bimod(A)sym(–⊗A –, –) =⇒ HomH-Bimod(A)sym(–, homA(–, –)) , (2.3.41)
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with components given by

ζA(f) := f ◦
(
ρV (φ(−1))⊗A ρW (φ(−2) β S(φ(−3)))

)
: ρV =⇒ homA(ρW , ρX) ,

(2.3.42)

for all H-Bimod(A)sym-morphisms f : ρV ⊗A ρW ⇒ ρX . The components of its

inverse are

(ζA)−1(g) := ρX(φ(1)) ◦ g(–) ◦ ρW (S(φ(2))αφ(3)) : ρV ⊗A ρW =⇒ ρX , (2.3.43)

for all H-Bimod(A)sym-morphisms g : ρV ⇒ homA(ρW , ρX).

Proof. We show that (1) the image of ζA(f) is contained in homA(ρW , ρX) for

all H–Bimod(A)sym-morphisms f : ρV ⊗A ρW ⇒ ρX , (2) if f : ρV ⊗A ρW ⇒

ρX is an H–Bimod(A)sym-morphism, then ζAV,W,X(f) : ρV ⇒ hom(ρW , ρX) is an

H–Bimod(A)sym-morphism, (3) (ζAV,W,X)−1(g) is well-defined, and (4) if g : ρV ⇒

homA(ρW , ρX) is an H–Bimod(A)sym-morphism, then (ζA)−1(g) : ρV ⊗A ρW ⇒ ρX

is an H–Bimod(A)sym-morphism.

For (1) we have

rhom(W,X) ◦ (ζA(f)( – )⊗ idA) = • ◦ (ζA(f)( – )⊗ l̂W ( – ))

= ev
(
ζA(f)( – )⊗ ev(l̂W ( – )⊗ –

)
◦ ΦV,A,W ◦ ζ(id)

= f ◦ (idV ⊗A lW ) ◦ ΦV,A,W ◦ ζA(id)

= ζA(f) ◦ (rV ⊗A idW ) . (2.3.44)

The first equality follows from (2.3.29b), the second equality follows from the defini-

tion of • together with (2.2.88), the third equality follows from (2.3.27) and Propo-

sition 2.2.13 (i) and the fourth equality follows from (2.3.20) and (2.2.88). On the

116



Chapter 2: Mathematical foundations

other hand, by a similar calculation we have

lhom(W,X) ◦ τhom(W,X),A ◦ (ζA(f)( – )⊗ idA)

= • ◦ (l̂X( – )⊗ ζA(f)( – )) ◦ (τV,A ⊗A idW )

= lX ◦ (idA ⊗ f) ◦ ΦA,V,W ◦ (τV,A ⊗A idW ) ◦ ζA(id)

= f ◦ lV⊗AW ◦ ΦA,V,W ◦ (τV,A ⊗A idW ) ◦ ζA(id)

= f ◦ (lV ⊗A idW ) ◦ (τV,A ⊗A idW ) ◦ ζA(id)

= ζA(f) ◦ (rV ⊗A idW ) . (2.3.45)

The first equality follows from the H-equivariance of l̂X and ζA(f). The third

equality follows from the left ρA-linearity of f . The fourth equality follows from

(2.3.18a) and the fifth equality follows from the definition of the right ρA-action in

a symmetric bimodule. This shows that

(rhom(W,X) − lhom(W,X) ◦ τhom(W,X),A) ◦ (ζA(f)( – )⊗ idA) = 0 . (2.3.46)

Due to Lemma 2.3.11 ζA(f)( – ) ∈ homA(ρW , ρX).

For (2) we have

ζA(f) ◦ lV = f ◦ ζA(id) ◦ (lV ⊗A idW )

= f ◦ (lV ⊗A idW ) ◦ ζA(id)

= f ◦ lV⊗AW ◦ ΦA,V,W ◦ ζA(id)

= lX ◦ (idA ⊗ f) ◦ ΦA,V,W ◦ ζA(id) . (2.3.47)

The first equality follows from (2.2.88), the second equality follows from the H-

equivariance of lV , the third equality follows from (2.3.18a) and the fourth equality

follows from the H-equivariance of f . On the other hand we have by a similar
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calculation to that for (1) that

lhomA(W,X) ◦ (idA ⊗ ζA(f)( – )) = • ◦ (l̂X( – )⊗ ζA(f)( – ))

= lX ◦ (idA ⊗ f) ◦ ΦA,V,W ◦ ζA(id) . (2.3.48)

The first equality follows from (2.3.29a), the second equality follows from the def-

inition of • together with (2.2.88) and the third equality follows from (2.3.27) and

Proposition 2.2.13 (i). This shows that ζA(f) is left ρA-linear, i.e.

ζA(f) ◦ lV = lhom(W,X) ◦ (idA ⊗ ζA(f)( – )) . (2.3.49)

Right ρA-linearity follows by the fact that ρV and homA(ρW , ρX) are symmetric

bimodules and the general result in Remark 2.3.3.

In the following two proofs we suppress the elements of H appearing in the

definition of the inverse currying (2.3.43).

For (3) we have

(ζA)−1(g) ◦ (rV ⊗A idW ) = ρX() ◦ g ◦ rV ◦ ρW ()

= ρX() ◦ rhom(W,X) ◦ (g( – )⊗A idA) ◦ ρW ()

= ρX() ◦ • ◦ (g( – )⊗A l̂W ( – )) ◦ ρW ()

= ρX() ◦ ev ◦ (g( – )⊗A lW ) ◦ ρW () ◦ ΦV,A,W ◦ ζ(id)

= ρX() ◦ g( – ) ◦ ρW () ◦ (idV ⊗A lW ) ◦ ΦV,A,W

= (ζA)−1(g) ◦ (idV ⊗A lW ) ◦ ΦV,A,W . (2.3.50)

The second equality follows from the right ρA-linearity of g, the fourth equality

follows from the definition of •, and the fifth equality follows from theH-equivariance

of lW and ev = ζ−1(id) together with (2.2.88). So (ζA)−1(g) is well defined on

equivalence classes of the monoidal functor ⊗A in H-Bimod(A)sym.
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(4) follows from the calculation

(ζA)−1(g) ◦ lV⊗AW = ρX() ◦ g( – ) ◦ ρW () ◦ lV⊗AW

= ρX() ◦ g( – ) ◦ ρW () ◦ (lV ⊗A idW ) ◦ Φ−1
A,V,W

= ρX() ◦ g ◦ lV ◦ ρW () ◦ Φ−1
A,V,W

= ρX() ◦ lhom(W,X) ◦ (idA ⊗ g( – )) ◦ ρW () ◦ Φ−1
A,V,W

= ρX() ◦ • ◦ (l̂X( – )⊗ g( – )) ◦ ρW () ◦ Φ−1
A,V,W

= ρX() ◦ lX ◦
(
idA ⊗ ev(g( – )⊗ idW )

)
◦ ρW () ◦ ζ(id)

= lX ◦ ρA⊗X() ◦
(
idA ⊗ ev(g( – )⊗ idW )

)
◦ ρW () ◦ ζ(id)

= lX ◦
(
idA ⊗ ρX() ◦ g( – ) ◦ ρW ()

)
= lX ◦

(
idA ⊗ (ζA)−1(g)

)
. (2.3.51)

The second equality follows from (2.3.18a), the fourth equality follows from the left

ρA-linearity of g, the sixth equality follows from the definition of • and (2.3.27),

the seventh equality follows from the H-equivariance of lX and the eighth equality

follows from the fact that ρA() ◦ ζ(id) ◦ ρW () = ζ−1(ζ(id)) = id and ev = ζ−1(id)

together with (2.2.88). This proves the left ρA-linearity of (ζA)−1(g). The right

ρA-linearity follows by Remark 2.3.3.

Remark 2.3.13. We notice that this calculation also implies that the [H,M ]-

morphism

ev := ζ−1(idhom(ρV ,ρW )) (2.3.52)

is left ρA-linear for ρV , ρW ∈ H–Bimod(A) and also right ρA-linear for ρV , ρW ∈

H–Bimod(A)sym.

Naturality of ζA and the fact that (ζA)−1 is the inverse of ζ is easily seen and

completely analogous to (2.1.17).
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2.3.6 Cochain twisting the internal hom-structure

Given any cochain twist F = F (1) ⊗ F (2) ∈ H ⊗ H based on H with inverse

F−1 = F (−1) ⊗ F (−2) ∈ H ⊗H, Theorem 2.3.7 implies that the monoidal categories

H-Bimod(A)sym and HF -Bimod(AF )sym are equivalent; recall that we have denoted

the corresponding monoidal functor by F : H-Bimod(A)sym → HF -Bimod(AF )sym.

We now prove that this equivalence also respects the internal hom-functors.

First we require the following technical

Lemma 2.3.14. Let F ∈ H ⊗ H be any cochain twist and ρV any object in

H–Bimod(A)sym. Denoting by l̂VF : ρAF ⇒ endF (F(ρV )) the HF–Alg-morphism

ζF (lVF ) (cf. (2.3.8)). Then the diagram

F(ρA)

F( l̂V ) $,

l̂V
F +3 ρendF (F(V ))

γ

��
F
(
ρend(V )

)
(2.3.53)

commutes. That is

F(l̂V ) = γ ◦ l̂VF . (2.3.54a)

As a consequence the bracket (2.3.34) is twisted to

[ · , · ]F = γ−1 ◦ F
(
[ · , · ]

)
◦ ϕ ◦ (γ ⊗F id) . (2.3.54b)

Proof. We use (2.2.101) and (2.3.10) and (2.2.88) to show that

γ ◦ l̂VF = γ ◦ lVF ◦ ζF (id)

= γ ◦ F(lV ) ◦ (ϕ⊗ id) ◦ (ϕ−1 ⊗ id) ◦ γ−1 ◦ ζ(id)

= F(ζ(lV ))

= F(l̂V ) . (2.3.55)
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Equation (2.3.54b) now follows directly from (2.2.108b), (2.3.34) and (2.3.54a).

Proposition 2.3.15. Let ρA be any object in H–Algcom and let F be any cochain

twisting element based on H. Then the coherence map γ : homF (F(ρV ),F(ρW ))⇒

F(hom(ρV , ρW )) restricts to an [HF ,M ]-isomorphism

γ : homAF (F(ρV ),F(ρW )) =⇒ F(homA(ρV , ρW )) . (2.3.56)

Proof. The braided closed monoidal functor F : [H,M ] → [HF ,M ] is an equiva-

lence of categories, hence it preserves all limits and colimits. It then follows that

F(homA(ρV , ρW )) is the equalizer of the [HF ,M ]-diagram

F(hom(ρV , ρW ))
0

+3

F(ζ([ · , · ])) +3 F(hom(ρA, hom(ρV , ρW ))) . (2.3.57)

On the other hand, the object homF(A)(F(ρV ),F(ρW )) in [HF ,M ] is defined ac-

cording to Definition 2.3.10 as the equalizer of the [HF ,M ]-diagram

homF (F(ρV ),F(ρW ))
0

+3

ζF ([ · , · ]F ) +3
homF (F(ρA), homF (F(ρV ),F(ρW ))) .

(2.3.58)

A straightforward calculation shows that the [HF ,M ]-diagrams (2.3.57) and (2.3.58)

are isomorphic: The [HF ,M ]-diagram

homF (F(ρV ),F(ρW ))

γ

��

0
+3

ζF ([ · , · ]F ) +3
homF (F(ρA),F(hom(ρV , ρW ))

γ◦( · )
��

homF (F(ρA), homF (F(ρV ),F(ρW )))

γ

��
F(hom(ρV , ρW ))

0
+3

F(ζ([ · , · ])) +3 F(hom(ρA, hom(ρV , ρW )))

(2.3.59)

commutes (i.e. the diagram obtained by taking either both upper or lower horizontal

arrows commutes) and the vertical arrows are all [HF ,M ]-isomorphisms. Indeed we
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have

γ ◦ (γ ◦ ( · )) ◦ ζF ([ · , · ]F ) = γ ◦ (γ ◦ ( · )) ◦ [ · , · ]F ◦ ζF (id)

= γ ◦ (γ ◦ ( · )) ◦ γ−1 ◦ F
(
[·, ·]
)
◦ ϕ ◦ (γ ⊗F id) ◦ ϕ−1 ◦ (γ−1 ⊗F id) ◦ F(ζ(id))

= F
(
ζ([·, ·])

)
◦ γ . (2.3.60)

The second equality follows from (2.3.54b) and (2.2.101) and the third equality fol-

lows from theHF -equivariance of γ. Due to the universality of limits there is a unique

isomorphism between homF(A)(F(ρV ),F(ρW )) and F(homA(ρV , ρW )). The asser-

tion now follows from the fact that the internal hom-objects in H–Bimod(A)sym are

subobjects of the internal hom-objects in [H,M ] (cf. (2.3.35)) and hence the unique

isomorphism between homF(A)(F(ρV ),F(ρW )) and F(homA(ρV , ρW )) is the one

induced by the isomorphism between homF (F(ρV ),F(ρW )) and F(hom(ρV , ρW )),

which is precisely γ.

We say that the twist deformation quantisation functor preserves internal homo-

morphisms in H–Bimod(A)sym. What we mean by this is that there is a structural

isomorphism and the H-actions required to construct this isomorphism are precisely

those which preserve the internal homomorphism objects in [H,M ].

It remains to prove

Lemma 2.3.16. For any two objects ρV and ρW in H-Bimod(A)sym the (ρV , ρW )-

component of γ (cf. (2.2.47)) induces to the HF -Bimod(AF )sym-isomorphism

γAρV ,ρW : homAF
(F(ρV ),F(ρW )) =⇒ F

(
homA(ρV , ρW )

)
, (2.3.61)

for all objects (ρV , ρW ) in
(
H–Bimod(A)sym

)op ×H–Bimod(A)sym.
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Proof. We have

γ ◦ lhomAF
(VF ,WF ) = γ ◦ •F ◦ (l̂WF

⊗F id)

= γ ◦ γ−1 ◦ F(•) ◦ ϕ ◦ (γ ⊗F γ) ◦ (γ−1 ◦ F(l̂W )⊗F id)

= F(•) ◦ (F(l̂W )⊗F id) ◦ ϕ ◦ (idA ⊗F γ)

= lF(hom(V,W )) ◦ (idA ⊗F γ) . (2.3.62)

The second equality follows from (2.2.104b) and (2.3.54a) and in the third equality

we have used the HF -equivariance of ϕ. In the final step we have used the property

lF(hom(V,W )) = lhom(V,W ) ◦ ϕ (cf. (2.3.8) with hom(V,W ) in place of V ). This proves

left ρA-linearity. Right ρA-linearity follows from the general result (cf. Remark

2.3.3).

In summary, we have shown

Theorem 2.3.17. If H is a quasitriangular quasi-Hopf algebra, ρA is a braided

commutative algebra in [H,M ] and F ∈ H ⊗ H is any cochain twist based on

H, then H-Bimod(A)sym and HF -Bimod(AF )sym are equivalent as closed monoidal

categories.

2.3.7 The braiding

Theorem 2.3.18. Let H be a quasitriangular quasi-Hopf algebra and ρA any braided

commutative algebra in [H,M ]. Then the braiding τ in the closed monoidal category

[H,M ] descends to a braiding τA in the closed monoidal category H–Bimod(A)sym.

Explicitly, the single component of the (ρV , ρW )-component of τA is given by

τAρV ,ρW : (ρV ⊗A ρW )(R21) ◦ σ . (2.3.63)

As a consequence, H–Bimod(A)sym is a braided closed monoidal category.
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Proof. We have to show that

τAρV ,ρW = πρW ,ρV
◦ τρV ,ρW (2.3.64)

is a well-definedH–Bimod(A)sym-morphism, i.e. that the single component of (2.3.64)

vanishes on NρV ,ρW
(cf. (2.3.19)) as an H–Bimod(A)sym-morphism. That πρW ,ρV

◦

τρV ,ρW is anH–Bimod(A)sym-morphism follows by standard calculations using (2.3.15a)

lV⊗W = (lV ⊗ idW ) ◦Φ−1
A,V,W , (2.3.20) rV ⊗A idW = (idV ⊗A lW ) ◦ΦV,A,W , the braided

symmetry of ρW , the bimodule properties (2.3.6) and the property of the R-matrix

(2.1.103c) (∆ ⊗ idH)(R) = φ312R13 φ
−1
132R23 φ123. Due to the properties of the as-

sociator and R-matrix in a quasitriangular quasi-Hopf algebra, this is shown by

a calculation identical to that in (2.1.97) but inserting actions of the associator

and R-matrix upon re-bracketing and flipping arguments respectively. The relevant

properties are (2.1.103b) and (2.1.103c), the property of the braiding τ 2 = id which

implies that rW = lW ◦ τW,A, and the property (2.3.20).

2.3.8 Cochain twisting the braiding

We now show that H–Bimod(A)sym is a braided closed monoidal category, for any

quasitriangular quasi-Hopf algebra H and any braided commutative algebra ρA in

[H,M ].

Let H be a quasitriangular quasi-Hopf algebra, ρA any braided commutative al-

gebra in [H,M ] and F ∈ H ⊗ H any cochain twist based on H. By Proposition

2.2.25 the twisted algebra ρAF is a braided commutative algebra in [HF ,M ]. Recall-

ing Theorem 2.3.17, we have an equivalence F of closed monoidal categories between

H–Bimod(A)sym and HF–Bimod(AF )sym. Since the braiding τA on H–Bimod(A)sym

is canonically induced by the braiding τ on [H,M ], the same argument as in The-

orem 2.2.16 shows

Theorem 2.3.19. For any quasitriangular quasi-Hopf algebra H, any braided com-

mutative algebra ρA in [H,M ] and any cochain twist F ∈ H⊗H, the equivalence of

closed monoidal categories in Theorem 2.3.17 restricts to an equivalence of braided
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closed monoidal categories between H–Bimod(A)sym and HF–Bimod(AF )sym.

2.4 Summary

In this chapter we have described a categorical framework for representations of

triangular quasi-Hopf algebras. We have found that the constructions in Section 2.1

for the category M of k-modules descend to the category [H,M ] of representations

of H if one simply inserts the R-matrix and associator of H upon flipping or re-

bracketing expressions respectively and uses with some insight the structure which

relates H-invariant internal homomorphisms to morphisms in the category [H,M ].

This follows from the various representations of a quasi-Hopf algebra H in terms

of its structure maps, the definition of the currying bijection in [H,M ], and the

properties of the triangular quasi-Hopf algebra (H,R).

More significantly from the point of view of physics, this chapter has provided us

with the notions of commutative algebras ρA and symmetric ρA-bimodules ρV in the

category [H,M ] and established that fixing any triangular quasi-Hopf algebra H

and any commutative algebra ρA in [H,M ], the category H–Bimod(A)sym of sym-

metric ρA-bimodules in [H,M ] is a braided monoidal category with a tensor product

operation ⊗A. This chapter has also provided us with the construction of an inter-

nal hom-functor homA :
(
H–Bimod(A)sym

)op×H–Bimod(A)sym → H–Bimod(A)sym

together with appropriate structures with which to use internal homomorphisms in

H–Bimod(A)sym correctly as map-like objects in [H,M ]. These are the basic ingre-

dients with which to build a theory of differential geometry on algebra objects in

[H,M ].

For any cochain twisting element F ∈ H ⊗ H, we constructed in Subsection

2.2.2 a functor F : [H,M ] → [HF ,M ] between the representation category of

the triangular quasi-Hopf algebra H and its cochain twist HF . With insightful

use of the structures of the triangular quasi-Hopf algebra HF in terms of those in

H, in subsequent subsections we systematically constructed coherence maps for F

in such a way as to make F a braided closed monoidal functor. In other words to
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make the constructions in the closed braided monoidal category [HF ,M ] structurally

isomorphic to those in [H,M ]. In Subsections 2.2.11, 2.3.2 we saw that the braided

closed monoidal functor F : [H,M ] → [HF ,M ] induces a functor (denoted with

abuse of notation by the same symbol) F : H–Algcom → HF–Algcom which allows us

to twist quantize algebras in [H,M ] to algebras in [HF ,M ], and a closed braided

monoidal functor F : H–Bimod(A)sym → HF–Bimod(AF )sym, which allows us to

twist quantize bimodules together with their tensor products and internal hom-

objects in [H,M ] to bimodules together with their tensor products and internal hom-

objects in [HF ,M ]. Having established this structural isomorphism between the

closed braided monoidal categories H–Bimod(A)sym and HF–Bimod(AF )sym, we can

focus on developing notions of differential geometry in an arbitrary triangular quasi-

Hopf representation category and restrict to that of HF in physical applications.

In the next chapter we focus on developing notions of differential geometry in

the representation category of an arbitrary triangular quasi-Hopf algebra using the

constructions of this chapter. Of particular importance is the endomorphism algebra

of Example 2.2.20 which together with the internal commutator (cf. Subsection

2.2.13) is promoted to a Lie algebra in Corollary 2.2.33.
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Geometry in quasi-Hopf represen-

tation categories

This chapter is based on [37] and contains the main contribution of this thesis.

In the previous chapter we constructed commutative algebras ρA and symmetric

ρA-bimodules ρV in the category [H,M ] for H a triangular quasi-Hopf algebra. We

constructed a tensor product operation⊗A for symmetric ρA-bimodules and an inter-

nal hom-functor homA :
(
H–Bimod(A)sym

)op×H–Bimod(A)sym → H–Bimod(A)sym

together with appropriate structures with which to use internal homomorphisms in

H–Bimod(A)sym correctly as map-like objects in [H,M ]. In this chapter we de-

velop the notion of differential calculus starting from the notions of derivations of

commutative algebras ρA and differential operators in [H,M ]. We then describe con-

nections on symmetric ρA-bimodules ρV together with their lifts to tensor product

objects and internal hom-objects in H–Bimod(A)sym. To allow for geometric entities

which are not H-invariant, we build all geometric entities out of internal homomor-

phisms rather than morphisms. Geometric quantities which are H-invariant are then

simply H-invariant internal homomorphisms (cf. Subsection 2.2.15 in Chapter 2).

Although we can build up these notions directly in the category [HF ,M ] we consider

the cochain twisting of all structures. The role of twist deformation quantisation

is to show existence of geometric entities on noncommutative and nonassociative

spaces obtained via cochain twisting of classical manifolds.

3.1 Preliminaries

Let k be an associative and commutative ring with unit 1 ∈ k. In contrast to

Chapter 2, in this chapter we shall work with Z-graded k-modules. This will have

the advantage later on that naturally graded objects such as differential calculi can
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be described as objects in the categories we define below, and also that minus signs

will be absorbed into the formalism. Since in physical examples grading will usually

be bounded, we furthermore work in a category of bounded Z-graded k-modules.

(This enables us to use direct sums instead of direct products in the definitions of

objects.) The goal of this section is to adapt the material developed in Chapter 2

to the graded setting.

3.1.1 Z-graded k-modules

The category M (denoted with abuse of notation by the same symbol as that of

ungraded objects in Chapter 2) of bounded Z-graded k-modules is defined as follows:

The objects in M are the bounded Z-graded k-modules

V =
⊕
n∈Z

Vn , (3.1.1)

where the k-modules Vn = 0 for all but finitely many n. The morphisms in M are

the degree preserving k-linear maps f : V → W , i.e. f(Vn) ⊆ Wn for all n ∈ Z. For

any object V in M there is a map

| · | :
⊔
n∈Z

Vn −→ Z , (3.1.2)

which assigns to elements v ∈ Vn their degree |v| = n. Elements of Vn are said to

be homogeneous of degree n.

The category M is a closed, braided monoidal category: The constructions of

Chapter 2 extend by k-linearity and distributivity of addition to the graded setting.

We therefore denote all constructions with an abuse of notation by the same symbols

as those in Chapter 2.

The monoidal functor⊗ : M×M →M is given by the Z-graded tensor product:

V ⊗W :=
⊕
n∈Z

(
V ⊗W

)
n

:=
⊕
n∈Z

⊕
m+l=n

Vm ⊗W l , (3.1.3)

for any two objects V,W in M , where Vm ⊗ W l is the usual tensor product of
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k-modules. We note that |Vm ⊗ Wl| = |Vm| + |Wl|. To any M ×M -morphism

(f : V → V ′, g : W → W ′ ) the monoidal functor assigns the M -morphism

f ⊗ g : V ⊗W −→ V ′ ⊗W ′ . (3.1.4)

Since M -morphisms are degree preserving there is no sign acquired upon evaluation:

(f ⊗ g)(–⊗ –) = f(–)⊗ g(–) . (3.1.5)

The unit object in M is given by the ring k, but regarded as a Z-graded k-

module with kn = 0, for all n 6= 0, and k0 = k. The associator and unitors in M are

defined componentwise from those in Chapter 2 because there are decompositions

(
V ⊗W

)
⊗ X =

⊕
n∈Z

( ⊕
i+j+l=n

((
Vi ⊗Wj

)
⊗ Xl

))
, (3.1.6)

and

k ⊗ V =
⊕
n∈Z

(k ⊗ Vn) , V ⊗ k =
⊕
n∈Z

(Vn ⊗ k) . (3.1.7)

The pentagon and triangle relations for monoidal categories hold because they hold

on homogeneous elements and the results can be extended by the k-linearity of the

associator and unitors to general elements.

We equip M with the braiding natural isomorphism σ : ⊗ ⇒ ⊗op defined

componentwise from that in Chapter 2 by the flip functor (cf. A.3.6) but now with

the additional sign

(−1)nm (3.1.8)

in front of elements of flip(Vn × Wm ). The hexagon relations hold on homogeneous

elements and therefore on general elements by k-linearity.
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The internal hom-functor

hom : M op ×M −→M , (3.1.9)

is defined for any object (V,W ) in M op ×M by

hom
(
V,W

)
:=
⊕
n∈Z

hom
(
V,W

)
n

:=
⊕
n∈Z

⊕
l−m=n

Homk

(
Vm,W l

)
, (3.1.10)

where Homk(Vm,W l) denotes the k-module of k-linear maps between the homoge-

neous components Vm and W l (note that these are not the morphisms in the graded

category M ).

Remark 3.1.1. In contrast to the ungraded case, here we have that the M -

morphisms lie in a k-subspace of the internal hom-objects: To see this visually,

we note that any internal hom-object hom(V,W ) can be decomposed into a sum of

homogeneous Z-graded k-module maps which can be arranged in a matrix with Z-

graded k-module maps of degree δ lying on lower or upper diagonals starting either

at column δ (when δ > 0) or at row δ (when δ < 0) respectively. Only the diagonal

elements of the matrix are M -morphisms:



Homk

(
V0,W0

)
Homk

(
V0,W1

)
· · · Homk

(
V0,Wn

)
Homk

(
V1,W0

)
Homk

(
V1,W1

)
· · · Homk

(
V1,Wn

)
...

...
...

...

Homk

(
Vn,W0

)
Homk

(
Vn,W1

)
· · · Homk

(
Vn,Wn

)


(3.1.11)

For any M op×M -morphism (f op : V → V ′, g : W → W ′ ) and L ∈ hom
(
V,W

)
g ◦ L ◦ f (3.1.12)

is an element of hom
(
V ′,W ′ ). In other words

hom(f op, g) : hom
(
V,W

)
−→ hom

(
V ′,W ′ ) , (3.1.13)
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defined componentwise from that in Chapter 2 and is clearly k-linear and degree

preserving:

hom(f op, g)
(

hom
(
V,W

)
n

)
⊂
⊕
l∈Z

hom
(
V ′l ,W

′
l+n

)
= hom

(
V ′,W ′)

n
. (3.1.14)

The currying natural isomorphism ζ : HomM (– ⊗ –, –) ⇒ HomM (–, hom(–, –))

of functors from M op ×M op ×M → Sets is defined componentwise from that in

Chapter 2: Given any three objects V,W,X in M and f ∈ HomM

(
V ⊗ W,X

)
we

have that ζ(f) is degree preserving since f is degree preserving:

ζ(f)
(
Vn
)

= f
(
Vn ⊗ –

)
⊂
⊕
l∈Z

Homk

(
Wl, Xn+l

)
= hom

(
W,X

)
n
. (3.1.15)

Given g ∈ HomM

(
V, hom

(
W,X

))
, we have that g

(
Vn
)
⊂ hom

(
W,X

)
n

since g is

degree preserving and hence ζ−1(g) is degree preserving:

ζ−1(g)(Vn ⊗Wm) = g
(
Vn
)(
Wm

)
⊂ Xm+n . (3.1.16)

Here and in the following we refrain from writing indices on the components of

natural transformations.

Since the evaluation, internal composition and internal tensor product mor-

phisms for internal hom-objects are defined by compositions of M -morphisms they

are degree preserving.

We note that due to the grading, the internal tensor product of internal homo-

morphisms evaluates on homogeneous elements as (cf. Equation (2.1.28))

evV⊗X(L⊗• P ⊗ ( – ⊗ – ) = (−1)|P | |compV |ev(L⊗ ( – ))⊗ ev(P ⊗ ( – )) , (3.1.17)

where compV denotes the homogeneous component of V on which L may be evalu-

ated, and that

(L⊗• P ) • (L′ ⊗• P ′) = (−1)|P ||L
′|(L • L′ ⊗• P • P ′) , (3.1.18)
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(cf. Proposition 2.2.29). The degrees on either side match recalling that |P ◦ P ′| =

|P |+ |P ′|.

Definition 3.1.2. Denote by V [m] the object shifted in Z-degree by m. That is

V [m] =
⊕
n∈Z

Vn−m . (3.1.19)

3.1.2 Algebras and bimodules

The theory for algebras and bimodules in Chapter 2 extends exactly to the graded

setting with the additional property that every instance of the braiding on homoge-

nous elements of degree n and m gives rise to a sign

(−1)nm . (3.1.20)

Remark 3.1.3. We note that an algebra in M is a graded differential algebra (see

e.g. [32]) since the multiplication is a morphism, i.e. it is degree preserving.

3.1.3 Z-graded quasi-Hopf representation categories

In this chapter we shall view any quasitriangular quasi-Hopf algebra H as being

Z-graded and sitting in degree 0. A representation of H on an object V in M is an

Alg-morphism

ρV : H −→ End(V ) . (3.1.21)

The bounded Z-graded representation category [H,M ] of H is defined completely

analogously to Chapter 2: The objects in [H,M ] are functors ρV where now ρV (∗) =

V is a bounded Z-graded k-module. The morphisms in [H,M ] are the H-equivariant

M -morphisms f : V → W .

The closed braided monoidal structures discussed in Chapter 2 on [H,M ] and on

H–Bimod(A)sym, the category of symmetric bimodules over a commutative algebra
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ρA inH–Algcom, extend exactly to the graded setting. We take note that the braiding

on homogeneous elements of degree n and m in [H,M ] now gives rise to a sign

(−1)nm (3.1.22)

recalling the definition of σ in Subsection 3.1.1.

The map-like structures for internal homomorphisms in [H,M ] satisfy the prop-

erties discussed in Chapter 2. We note the following useful result derived from

Lemma 2.2.28.

Lemma 3.1.4. Let ρV , ρW , ρX , ρY , ρZ be any five objects in [H,M ]. Then for any

L ∈ hom(V,W ) and K ∈ hom(W,X) we have

[K ⊗• 1Z , L⊗• 1Z ] = [K,L]⊗• 1Z , (3.1.23a)

[1Z ⊗• K, 1Z ⊗• L] = 1Z ⊗• [K,L] , (3.1.23b)

[1W ⊗• K,L⊗• 1W ] = 0 , (3.1.23c)

[L⊗• 1X , 1V ⊗• K] = 0 . (3.1.23d)

where 1V := ρV (β) ∈ hom(V, V ), for all objects ρV in [H,M ], are the unit internal

homomorphisms.

Proof. The proof follows directly from Lemma 2.2.28 and also using the triangularity

of the R-matrix for the last identity.

Remark 3.1.5. To simplify notation, in what follows we shall drop the labels on

the unit internal homomorphisms and simply write 1 := ρV (β), for any object ρV in

[H,M ].

3.2 Derivations and differential operators

In the remainder of this chapter we shall systematically build up notions of differ-

ential geometry internal to the bounded Z-graded representation category [H,M ]

of a triangular quasi-Hopf algebra H. In this section we shall address the notions of
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derivations, differential operators and differential calculi. We describe derivations

and differential operators as subobjects of the internal endomorphisms in [H,M ]

by expressing the algebraic properties which characterize them in terms of universal

categorical constructions. See A.4 or [50] for the definition of limit and colimit in a

category.

3.2.1 Derivations

We give a description of the derivations on an object ρA in H–Algcom by using

universal constructions in the braided closed monoidal category [H,M ] to formalize

a suitable version of the Leibniz rule, that is compatible with the structures in

[H,M ], in terms of an equalizer.

In order to reformulate the notion of derivation on an algebra in the framework

of the closed braided monoidal category [H,M ], we note the following basic prop-

erties of derivations: (1) Derivations of a graded algebra belong to the collection of

endomorphisms of the algebra. (2) Derivations of a graded algebra obey a graded

Leibniz rule.

We also have the following requirement when there is an action of a quasi-Hopf

algebra H on the algebra: we do not wish the derivations to preserve the H-module

structure of the algebra ρA but rather to be able to be transformed under it i.e.

the derivations ought to be an H-module and hence condition (1) above should be

refined to der(ρA) ⊂ hom(ρA, ρA) =: end(ρA).

Now we notice that the graded Leibniz rule in M can be written as an operator

equation (viewing D now as it should be as an internal homomorphism in M and

recalling that the commutator contains a sign from the braiding):

[D, x](y) := [D, l̂A(x)](y) = l̂A(ev(D ⊗ x))(y) , (3.2.1)

with lA : A⊗A→ A the left A-action induced by the product in A. We recall that
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for any object ρV in H–Bimod(A)sym the [H,M ]-morphism

l̂V := ζ(lV ) : ρA =⇒ end(ρV ) , (3.2.2)

which is obtained by currying the left ρA-action lV : ρA ⊗ ρV ⇒ ρV is an H–Alg-

morphism to the algebra of internal endomorphisms, cf. Example 2.2.20.

The graded Leibniz rule can therefore be captured by the following equality of

maps

[ · , · ] ◦ (id⊗ l̂A) = l̂A ◦ ev : end(ρA)⊗ ρA =⇒ end(ρA) . (3.2.3)

The maps [ · , · ], l̂A and ev need to preserve the H-module structure, i.e. be

morphisms if their target objects are to be H-modules as we require. So the Leibniz

rule is captured by equating two morphisms in [H,M ]. We organise this information

as follows: The space of derivations is a subset of the internal endomorphisms on

ρA for which there are two equal (parallel) morphisms

end(ρA)⊗ ρA
l̂A◦ev

+3

[ · , · ] +3
end(ρA) (3.2.4)

where for brevity we denote by [ · , · ] the composition [ · , · ] ◦
(
id⊗ l̂A

)
. We use the

currying map for internal homomorphisms to rewrite this as

end(ρA)
ζ(l̂A◦ev)

+3

ζ([·,·]) +3
hom(ρA, end(ρA)) (3.2.5)

We have the following

Definition 3.2.1 (Derivations). Let ρA be an object in H–Algcom. The derivations

of ρA is the object der(ρA) in [H,M ] which is defined by the equalizer

der(ρA) ι +3 end(ρA)
ζ(l̂A◦ev)

+3

ζ([·,·]) +3
hom(ρA, end(ρA)) (3.2.6)

in [H,M ] where ι is the inclusion morphism.
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In the category [H,M ] equalizers may be computed by taking the kernel of the

difference of the two parallel morphisms. In particular, der(ρA) can be represented

explicitly as the kernel

der(ρA) = Ker
(
ζ
(
[ · , · ]− l̂ ◦ ev

))
. (3.2.7)

The following lemma allows us to establish a relation between our definition of

derivations and the standard definition in terms of a Leibniz rule.

Lemma 3.2.2. Let ρA be any object in H–Algcom. An [H,M ]-subobject ρU ⊆

end(ρA) is an [H,M ]-subobject of der(ρA) if and only if

[L, a] = l̂(ev(L⊗ a)) , (3.2.8)

for all L ∈ U and a ∈ A.

Proof. Denoting by f := [ · , · ] − l̂ ◦ ev : end(ρA) ⊗ ρA ⇒ end(ρA) and j : ρU ⇒

end(ρA) the inclusion [H,M ]-morphism, we have to show that ζ(f) ◦ j = 0 if and

only if f ◦ (j ⊗ id) = 0. This is a consequence of item (ii) of Lemma 2.1.26.

In summary we have (1) der(ρA) is an [H,M ]-object and (2) elements of der(ρA)

satisfy a suitable generalization of the graded Leibniz rule that is consistent with

the structures in the braided closed monoidal category [H,M ]. That is we have

correctly formulated the notion of derivation in the framework of the closed braided

monoidal category [H,M ].

Finally, we prove a structural result for derivations.

Proposition 3.2.3. Let H be a triangular quasi-Hopf algebra and ρA any object in

H–Algcom. Then the [H,M ]-object given by the derivations der(ρA), together with

the internal commutator [ · , · ] given in (2.1.39) interpreted in the closed braided

monoidal category [H,M ] in Chapter 2, is a Lie algebra in [H,M ].

Proof. We already know from Corollary 2.1.14 in Chapter 2 that, under our hy-

potheses, end(ρA) together with the internal commutator [ · , · ] is a Lie algebra in
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[H,M ]. Moreover, der(ρA) is by construction an [H,M ]-subobject of end(ρA), so

it remains to prove that the image of the restricted internal commutator

[ · , · ] : der(ρA)⊗ der(ρA) =⇒ end(ρA) (3.2.9)

is an [H,M ]-subobject of der(ρA). Using Lemma 3.2.2 this is the case if and only if

[ · , · ] ◦ ([ · , · ]⊗ idA) = l̂ ◦ ev ◦ ([ · , · ]⊗ id) , (3.2.10)

One can easily show that this equality holds true by using the braided Jacobi identity

and antisymmetry (cf. items (ii) and (i) of Proposition 2.1.13) and the derivation

property of Lemma 3.2.2:

[ · , · ] ◦ ([ · , · ]⊗ idA) = −[ · , · ] ◦
(
[ · , · ]⊗ id

)
◦
(
(τ ◦ Φ) + (Φ−1 ◦ τ)

)
= [ · , · ] ◦

(
[ · , · ]⊗ id

)
◦
(
Φ + (Φ−1 ◦ τ1,3 ◦ Φ)

)
= [ · , · ] ◦

(
l̂ ◦ ev ⊗ id

)
◦
(
Φ + (Φ−1 ◦ τ1,3 ◦ Φ)

)
= [ · , · ] ◦

(
id⊗ l̂ ◦ ev

)
◦
(
Φ− (τ1,23 ◦ Φ ◦ τ1,2)

)
= l̂ ◦ ev ◦

(
id⊗ ev

)
◦
(
Φ− (Φ ◦ τ1,2)

)
= l̂ ◦ ev ◦

(
id⊗ ev

)
◦ Φ ◦

(
id⊗ id⊗ id− τ1,2

)
= l̂ ◦ ev ◦

(
• ⊗id

)
◦
(
id⊗ id⊗ id− τ1,2

)
= l̂ ◦ ev ◦

(
[ · , · ]⊗ id

)
. (3.2.11)

The first equality follows from the braided Jacobi identity item (ii) of Proposi-

tion 2.1.13, the second equality follows from the braided antisymmetry item (i)

of Proposition 2.1.13 and the R-matrix properties (2.1.103b), (2.1.103c), the third

equality follows from Lemma 3.2.2, the fourth equality follows from inserting id =

τ−1 ◦ τ and using the braided antisymmetry item (i) of Proposition 2.1.13, the fifth

equality follows from Lemma 3.2.2, the R-matrix properties (2.1.103c) together with

triangularity of the R-matrix (τ 2 = id), the seventh equality follows from item (ii)
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of Proposition 2.2.13. (Subscripts on the braiding indicate which components of the

tensor products are being braided.)

3.2.2 Cochain twisting of derivations

We shall briefly study the deformation of derivations under cochain twisting.

Let H be a quasitriangular quasi-Hopf algebra and F a cochain twisting ele-

ment. In Chapter 2 we saw that the braided closed monoidal functor F : [H,M ]→

[HF ,M ] induces functors (denoted with abuse of notation by the same symbols)

F : H–Algcom → HF–Algcom and F : H–Bimod(A)sym → HF–Bimod(AF )sym, which

allow us to twist quantize algebras and bimodules in [H,M ] to algebras and bimod-

ules in [HF ,M ].

Proposition 3.2.4. Let ρA be any object in H–Algcom and F any cochain twisting

element based on H. Then the coherence map γ : endF (F(ρA)) ⇒ F(end(ρA))

restricts to an [HF ,M ]-isomorphism

γ : derF (F(ρA)) =⇒ F(der(ρA)) . (3.2.12)

Proof. The proof follows that of Proposition 2.3.15 in Chapter 2 and it requires

showing commutativity of the HFM -diagram

endF (F(ρA))

γ

��

ζF (l̂F ◦evF )

+3

ζF ([ · , · ]F ) +3
homF (F(ρA), endF (F(ρA)))

γ◦( · )
��

homF (F(ρA),F(end(ρA)))

γ

��
F(end(ρA))

F(ζ(l̂◦ev))

+3

F(ζ([ · , · ])) +3 F(hom(ρA, end(ρA)))

(3.2.13)

Showing the commutativity of diagram (3.2.13) entails showing that

γ ◦ ζF ([·, ·]F ) = F(ζ([·, ·])) , (3.2.14a)

γ ◦ ζF (l̂AF ◦ evF ) = F(ζ(l̂A ◦ ev)) . (3.2.14b)
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(Note that due to the HF -equivariance of ζF ([·, ·]F ) and ζF (l̂AF ◦ evF ) two instances

of γ in the diagram (3.2.13) cancel.) Note that (3.2.14a) was shown in (2.3.60) in the

section on cochain twisting of internal hom-objects in H–Bimod(A)sym in Chapter

2. To prove equation (3.2.14b) we observe that

γ ◦ ζF (l̂AF ◦ evF ) = γ ◦ l̂AF ◦ evF ◦ ζF (id)

= γ ◦ γ−1 ◦ F(l̂A) ◦ F(ev) ◦ ϕ ◦ (γ ⊗F id) ◦ ϕ−1 ◦ (γ−1 ⊗F id) ◦ F(ζ(id))

= F(l̂A ◦ ev ◦ ζ(id))

= F(ζ(l̂A ◦ ev)) . (3.2.15)

The first and last equalities follows from (2.2.88), the second equality follows from

(2.3.54a), (2.2.104a) and (2.2.101), and the third equality follows from the functori-

ality of F .

In summary, the twist deformation quantisation functor preserves derivations.

That is there is a structural isomorphism between derivations in the closed braided

monoidal category [H,M ] and the closed braided monoidal category [HF ,M ], and

the H-actions required to construct this isomorphism are precisely those which pre-

serve the internal endomorphism objects.

3.2.3 Differential operators and calculi

We provide in this section a description of differential calculus in [H,M ] as a first

step towards a description of connection in [H,M ]. We already have the notion of

exterior graded algebra (this is simply a commutative algebra object in [H,M ], cf.

Remark 3.1.3). In order to provide a categorical description of exterior derivative

we require the notion of differential operator in [H,M ]. As a basis for a categori-

cal formulation we use the abstract definition of differential operators provided by

Grothendieck: See [44, pp. 15 - 18] for a detailed discussion. Although this is a very

abstract definition, it captures the essential properties of a differential operator and

is equivalent to the usual definition in a local coordinate basis. Since coordinate
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transformations preserve the order of differential operators, it is possible to give a

basis-independent definition of differential operators of different orders.

Let ρA be an object in H–Algcom and ρV any object in H–Bimod(A)sym. We

define the internal multi-commutator of order n ∈ Z>0 to be the [H,M ]-morphism

[ · , · ](n) :
(
· · ·
(
(end(ρV )⊗ ρA)⊗ ρA

)
· · ·
)
⊗ ρA =⇒ end(ρV ) , (3.2.16a)

where the source contains n factors of ρA, given by the composition

[ · , · ](n) := [ · , · ] ◦
(
[ · , · ]⊗ id

)
◦ · · · ◦

(
(· · · (([ · , · ]⊗ id)⊗ id) · · · )⊗ id

)
.

(3.2.16b)

We have suppressed as before the precomposition of the internal multi-commutator

with (· · · ((id ⊗ l̂ ) ⊗ l̂ ) · · · ) ⊗ l̂ , where l̂ is the H–Alg-morphism given in (3.2.2).

We further denote by Φ(−n) the combination of associators required to re-bracket

the expressions

end(ρV )⊗
(
ρA ⊗ (ρA ⊗ (· · · (ρA ⊗ ρA) · · · ))

)
Φ(−n)

��(
· · ·
(
(end(ρV )⊗ ρA)⊗ ρA

)
· · ·
)
⊗ ρA

(3.2.17)

where again the source and target contain n factors of ρA. We shall denote the

source of this [H,M ]-isomorphism by end(ρV )⊗ ρ⊗nA .

Definition 3.2.5 (Differential operators). Let ρA be an object in H–Algcom and ρV

any object in H–Bimod(A)sym. The differential operators of order n ∈ Z≥0 of ρV is

the object diffn(ρV ) in [H,M ] which is defined by the equalizer

diffn(ρV ) +3 end(ρV )
0

+3

ζ([ · , · ](n+1)◦Φ(−(n+1))) +3
hom(ρ⊗nA , end(ρV )) (3.2.18)

in [H,M ]. This equalizer can be realized explicitly in terms of the [H,M ]-subobject

diffn(ρV ) = Ker
(
ζ
(
[ · , · ](n+1) ◦ Φ(−(n+1))

))
(3.2.19)
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of the internal endomorphism object end(ρV ) in [H,M ].

Remark 3.2.6. Comparing the Definitions 3.2.5 and 2.3.10 we observe that the

order 0 differential operators diff0(ρV ) are the internal endomorphisms endA(ρV ) in

the category H–Bimod(A)sym.

Lemma 3.2.7. Let ρA be any object in H–Algcom and let ρV be any object in

H–Bimod(A)sym. An [H,M ]-subobject ρU ⊆ end(ρV ) is an [H,M ]-subobject of

diffn(ρV ) if and only if

[[
· · ·
[
[L, a1], a2

]
, · · ·

]
, an+1

]
= 0 , (3.2.20)

for all L ∈ U and a1, a2, . . . , an+1 ∈ A.

Proof. Denoting by f := [ · , · ](n+1) ◦ Φ(−(n+1)) : end(ρV ) ⊗ ρ⊗nA ⇒ end(ρV ) and

j : ρU ⇒ end(ρV ) the inclusion [H,M ]-morphism, it follows from Lemma 2.1.26 (ii)

that ζ(f) ◦ j = 0 if and only if f ◦ (j ⊗ id) = 0. The latter condition is equivalent

to [ · , · ](n+1) ◦
(
(· · · ((j ⊗ id)⊗ id) · · · )⊗ id

)
◦ Φ(−(n+1)) = 0, and the assertion now

follows because Φ(−(n+1)) is an isomorphism.

There is an [H,M ]-subobject relation diffn(ρV ) ⊆ diffm(ρV ) for all n ≤ m, which

immediately follows from Lemma 3.2.7 and (3.2.19). These subobject relations give

rise to the sequence of [H,M ]-monomorphisms

diff0(ρV ) +3 diff1(ρV ) +3 diff2(ρV ) +3 · · · +3 diffn(ρV ) +3 · · · .

(3.2.21)

We shall now show that differential operators can be composed with respect to

the internal composition.

Proposition 3.2.8. The internal composition • : end(ρV ) ⊗ end(ρV ) ⇒ end(ρV )

restricts to an [H,M ]-morphism

• : diffn(ρV )⊗ diffm(ρV ) =⇒ diffn+m(ρV ) , (3.2.22)

for all n,m ∈ Z≥0.
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Proof. Restricting • : end(ρV ) ⊗ end(ρV ) ⇒ end(ρV ) to the corresponding [H,M ]-

subobjects of differential operators yields an [H,M ]-morphism • : diffn(ρV ) ⊗

diffm(ρV )⇒ end(ρV ) and we have to prove that its image lies in diffn+m(ρV ). As the

image of this [H,M ]-morphism is an [H,M ]-subobject of end(ρV ), by Lemma 3.2.7

it is enough to show that

[[
· · ·
[
[L • L′, a1], a2

]
, · · ·

]
, an+m+1

]
= 0 , (3.2.23)

for all L ∈ diffn(V ), L′ ∈ diffm(V ) and a1, a2, . . . , an+m+1 ∈ A. This equality follows

by iteratively using the derivation property of the internal commutator, cf. item (iii)

of Proposition 2.1.13, and applying Lemma 3.2.7 to L and L′. See B.5 for further

details.

Forming the colimit in [H,M ] of the diagram given in (3.2.21) we can define

the object diff(ρV ) of differential operators on ρV . This colimit can be represented

explicitly as the union of differential operators of all orders n ∈ Z≥0, i.e.

diff(ρV ) =
⋃

n∈Z≥0

diffn(ρV ) ⊆ end(ρV ) . (3.2.24)

Corollary 3.2.9. The differential operators diff(ρV ) is an H–Alg-subobject of the

algebra of internal endomorphisms end(ρV ) (cf. Example 2.2.20).

Proof. By Proposition 3.2.8 the internal composition closes on diff(ρV ), i.e. there is

an [H,M ]-morphism

• : diff(ρV )⊗ diff(ρV ) =⇒ diff(ρV ) . (3.2.25)

The unit η : ρI ⇒ end(ρV ) has its image in the degree 0 differential operators
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because of the calculation

[ · , · ] ◦ (1⊗ idA) = ϑ(id) • l̂( – )− l̂( – ) • ϑ(id)

= l̂( – )− l̂( – )

= 0 , (3.2.26)

recalling that 1 = ρV (β) = ϑ(id) from 2.2.15, and Lemma 3.2.7; here we used the

normalization (ε ⊗ id)(R) = 1 of the R-matrix and the property in item (iii) of

Proposition 2.2.38.

Remark 3.2.10. Combining Lemmas 3.2.2 and 3.2.7 we see that for any object ρA

in H–Algcom, der(ρA) ⊆ diff1(ρA) is an [H,M ]-subobject, i.e. the derivations of ρA

are differential operators of order 1.

With the techniques developed above we can now introduce the notion of exte-

rior derivative for a graded differential algebra in [H,M ]. To begin with, we require

to understand the type of object in [H,M ] the correct generalisation of exterior

derivative is: The classical exterior derivative commutes with the Lie derivative and

since in applications any H-action is implemented by Lie derivatives, the exterior

derivative commutes with H-actions; in this formalism, it is H-equivariant. However

the exterior derivative cannot be a morphism in the graded category [H,M ] since it

is by definition a linear map of degree 1. We have already seen in Subsection 2.2.15

that H-invariant internal homomorphisms (of degree 0) can be identified with mor-

phisms and the same constructions show that H-invariant internal homomorphism

of any degree can be identified with H-equivariant maps (of the corresponding de-

gree). Hence the correct categorical structure with which to describe an exterior

derivative in [H,M ] is an H-invariant internal homomorphism. In order to fit later

into the definition of connection in terms of an equaliser of morphisms in [H,M ], we

define below a morphism whose target contains the exterior derivative in [H,M ].

Recalling Definition 3.1.2 we denote by I[1] the object in M which is obtained

by shifting the unit object I = k in Z-degree by 1: I[1]1 = k and I[1]n = 0, for all

n 6= 1.

143



Chapter 3: Geometry in quasi-Hopf representation categories

Definition 3.2.11 (Differential calculus). Let H be a quasitriangular quasi-Hopf

algebra. A differential calculus (ρA, d) in [H,M ] is an object ρA in H–Algcom to-

gether with an [H,M ]-morphism d : ρI[1] → der(ρA) which is nilpotent in the sense

that the composition of [H,M ]-morphisms

ρI[1] ⊗ ρI[1]
d⊗d +3 der(ρA)⊗ der(ρA) +3 diff(ρA)⊗ diff(ρA) • +3 diff(ρA) (3.2.27)

is 0; here the second arrow is defined using Remark 3.2.10.

Remark 3.2.12. Given a differential calculus (ρA, d) in [H,M ] there is a distin-

guished H-invariant derivation of Z-degree 1, which is given by d(1) ∈ der(ρA) and

is called the differential.

3.2.4 Cochain twisting of differential operators and calculi

The cochain twist deformation quantization functor preserves differential operators

and differential calculi.

Proposition 3.2.13. Let ρA be any object in H–Algcom, let ρV be any object in

H–Bimod(A)sym and let F be any cochain twisting element based on H. Then the

coherence map γ : endF (F(ρV ))⇒ F(end(ρV )) restricts to an [HF ,M ]-isomorphism

γ : diffnF (F(ρV )) −→ F(diffn(ρV )) , (3.2.28)

for all n ∈ Z≥0.

Proof. The proof is analogous to the proof of Proposition 3.2.4. One is required to

show that

γ ◦ ζF
(
[ · , · ](n+1) ◦ Φ

−(n+1)
F

)
◦ ϕ(n+1) = F

(
ζ
(
[ · , · ](n+1) ◦ Φ

−(n+1)
F

))
. (3.2.29)

We recall equation (2.3.54b) in which the [HF ,M ]-morphisms [·, ·]F and F([·, ·]) are

shown to be isomorphic to each other according to

[·, ·]F = γ−1 ◦ F
(
[·, ·]
)
◦ ϕ ◦ (γ ⊗F id) . (3.2.30)
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It follows that the n-th order commutators [·, ·](n)
F and F

(
[·, ·](n)

)
can be written in

terms of each other by iteratively applying the formula (3.2.30). We use the fact

that the commutator acts on H-modules (which close under the action of H) to

complete the proof.

Proposition 3.2.14. Let
(
ρA, d : ρI[1] → der(ρA)

)
be a differential calculus in

[H,M ] and let F be a cochain twisting element based on H. Then F(ρA) together

with the [HF ,M ]-morphism

dF := γ−1 ◦ F(d) ◦ ψ : ρIF [1] =⇒ derF (F(ρA)) (3.2.31)

is a differential calculus in [HF ,M ], where ψ is the coherence morphism in (2.2.24b).

Proof. By Proposition 3.2.4, the target of dF is as claimed in (3.2.31). Moreover,

dF is nilpotent (in diffF (F(ρA))) because of the short calculation

•F ◦(dF ( – )⊗F dF ( – ))

= γ−1 ◦ F(•) ◦ ϕ ◦ (γ ⊗F γ) ◦ (γ−1 ⊗F γ−1) ◦ (F(d)( – )⊗F F(d)( – ))

= γ−1 ◦ F
(
• ◦(d( – )⊗ d( – )

)
= 0 , (3.2.32)

In the first equality we have used (2.2.104b) and the definition of dF (3.2.31) (noting

that ψ is the identity), in the second equality we have used the definition of the

coherence map (2.2.24a) and in the last equality the nilpotency of d.

3.3 Connections

For a given differential calculus (ρA, d) in [H,M ], we shall develop the notion of con-

nections on objects in H–Bimod(A)sym by again using universal constructions in the

category [H,M ]. We show that connections of objects ρV , ρW in H–Bimod(A)sym

can be canonically lifted to connections on the tensor product object ρV ⊗A ρW and

on the internal hom-object homA(ρV , ρW ).
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3.3.1 Connections on symmetric bimodules

In order to place the notion of connection in the framework of the closed braided

monoidal category [H,M ], we recall that (1) connections are linear maps ∇ : V →

V ⊗Ω1 of modules over a commutative algebra Ω0 where Ω =
⊕

n Ωn is a graded dif-

ferential algebra which (2) satisfy a graded Leibniz rule with respect to an exterior

differential d for Ω: ∇(a v) = a∇(v) + v ⊗A d a for all v ∈ V, a ∈ Ω0. In our frame-

work, graded differential algebras are commutative algebra objects ρA in [H,M ]

(cf. Remark 3.1.3) and the tensor product ⊗A for ρA-bimodules objects in [H,M ]

comes equipped with a right unitor which enables one to identify ρV ⊗A ρA ∼= ρV .

Therefore in [H,M ] connections are (1) endomorphisms on a symmetric bimodule

object ρV in H–Bimod(A)sym over a commutative algebra object ρA in H–Algcom

which (2) satisfy a suitable generalisation of the Leibniz rule compatible with the

structures in [H,M ] with respect to the exterior differential d(1) in Definition 3.2.11

(cf. equation (3.2.1))

[∇ , a] := [∇, l̂V (a)] = l̂V (ev(d(1)⊗ a)) , (3.3.1)

for a ∈ A. Upon analysing this equation we notice that d(1) is not a morphism,

but if we allow for nilpotent derivations d(c) for arbitrary c ∈ k, then (3.3.1) can be

written as an equation of [H,M ]-morphisms:

[ · , · ] : end(ρV )⊗ ρA =⇒ end(ρV ) , (3.3.2)

(given by the bracket (2.3.34)) from the left hand side, and

l̂V ◦ ev ◦ (d⊗ idρA) : ρI[1] ⊗ ρA =⇒ end(ρV ) , (3.3.3)

from the right hand side. We write this equality with a unified source object

(end(ρV )× ρI[1])⊗ ρA (3.3.4)
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using the projection [H,M ]-morphisms

pr1 : end(ρV )× ρI[1] =⇒ end(ρV ) , pr2 : end(ρV )× ρI[1] =⇒ ρI[1] . (3.3.5)

(These are morphisms since we define theH-action componentwise on the categorical

product × in [H,M ].) There are two parallel [H,M ]-morphisms

(
end(ρV )× ρI[1]

)
⊗ ρA

l̂◦ev◦(d⊗id)◦(pr2⊗id)

+3

[ · , · ]◦(pr1⊗id) +3
end(ρV ) . (3.3.6)

Definition 3.3.1 (Connections). Let
(
ρA, d : ρI[1] ⇒ der(ρA)

)
be a differential

calculus in [H,M ] and ρV any object in H–Bimod(A)sym. The connections of ρV is

the object con(ρV ) in [H,M ] which is defined by the equalizer

con(ρV ) +3 end(ρV )× ρI[1]

ζ(l̂◦ev◦(d⊗id)◦(pr2⊗id))

+3

ζ([ · , · ]◦(pr1⊗id)) +3
hom(ρA, end(ρV ))

(3.3.7)

in [H,M ]. This equalizer can be realized explicitly in terms of the [H,M ]-subobject

con(ρV ) = Ker
(
ζ
(
[ · , · ] ◦ (pr1 ⊗ id)− l̂ ◦ ev ◦ (d⊗ id) ◦ (pr2 ⊗ id)

))
(3.3.8)

of the object end(ρV )× ρI[1] in [H,M ].

Lemma 3.3.2. Let (ρA, d) be a differential calculus in [H,M ] and ρV an object in

H–Bimod(A)sym. An [H,M ]-subobject ρU ⊆ end(ρV )× ρI[1] is an [H,M ]-subobject

of con(ρV ) if and only if

[L, a] = l̂
(
ev(d(c)⊗ a)

)
, (3.3.9)

for all (L, c) ∈ U and a ∈ A.

Proof. Denoting by f := [ · , · ] ◦ (pr1⊗ id)− l̂ ◦ ev ◦ (d⊗ id) ◦ (pr2⊗ id) : (end(ρV )×

ρI[1])⊗ ρA ⇒ end(ρV ) and j : ρU → end(ρV )× ρI[1] the inclusion [H,M ]-morphism,

we have to show that ζ(f)◦j = 0 if and only if f ◦(j⊗ id) = 0. This is a consequence
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of item (ii) of Lemma 2.1.26.

Remark 3.3.3. By Lemma 3.3.2, any element (L, c) ∈ con(V ) satisfies the condition

(3.3.9) for all a ∈ A. In particular, the Z-degree 1 elements ∇ = (L, 1) ∈ con(V )

satisfy the Leibniz rule with respect to the differential d(1). Hence, our notion of

connections contains the standard notion of connections as distinguished points.

It is important to notice that our definition has the advantage that con(ρV ) is by

construction an object in [H,M ] while the subset of all ordinary connections ∇ =

(L, 1) ∈ con(V ) is just an affine space over the k-module of all Z-degree 1 elements

(L, 0) ∈ con(V ), hence it is not an object in [H,M ]. In particular [H,M ] provides

a framework in which one can add and rescale connections ∇ = (L, 1) ∈ con(V ) and

∇′ = (L′, 1) ∈ con(V ) according to

c∇+ c′∇′ = c (L, 1) + c′ (L′, 1) := (c L+ c′ L′, c+ c′) , (3.3.10)

for c, c′ ∈ k and also act with the triangular quasi-Hopf algebra H according to

ρ(h)(∇) = ρ(h)(L, 1) :=
(
ρ(h)(L), ε(h)1

)
, (3.3.11)

for h ∈ H. Although in general these are not connections (ε(h)1 is in general not

equal to 1) it is essential, as we shall see later on, to have these operations for lifting

connections to tensor products and internal hom-objects in H–Bimod(A)sym.

Finally, we prove an important structural result for connections.

Proposition 3.3.4. Let (ρA, d) be any differential calculus in [H,M ] and let ρV be

any object in H–Bimod(A)sym. Then con(ρV ) is an [H,M ]-subobject of diff1(ρV )×

ρI[1].

Proof. The object con(ρV ) is by construction an [H,M ]-subobject of end(ρV )×ρI[1]

and hence the image of pr1 : con(ρV )⇒ end(ρV ) is an [H,M ]-subobject of end(ρV ).
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We have

[ · , · ] ◦ ([ · , · ] ◦ (pr1 ⊗ id)⊗ idA) = [ · , · ] ◦ (l̂ ◦ ev ◦ (d⊗ id) ◦ (pr2 ⊗ id)⊗ idA)

= 0 , (3.3.12)

where in the last equality we have used Lemma 2.3.11 for internal homomorphisms

in H–Bimod(A)sym since in fact that l̂ : ρA ⇒ endA(ρV ) because ρA is braided

commutative and l̂ is an algebra morphism (cf. Lemma 2.3.8). By using Lemma 3.2.7

this shows that the image of pr1 : con(ρV ) ⇒ end(ρV ) is an [H,M ]-subobject of

diff1(ρV ) and hence that con(ρV ) is an [H,M ]-subobject of diff1(ρV )× ρI[1].

In other words connections on an object ρV in H–Bimod(A)sym are distinguished

differential operators of order 1 in [H,M ].

3.3.2 Connections on tensor products

We now develop a lifting prescription for connections to tensor products of objects

in H–Bimod(A)sym. We begin with the observation that a connection on the tensor

product module V ⊗AW ought to be constructed from connections on the compo-

nents V,W according to a Leibniz rule. Therefore to start with we look for [H,M ]

morphisms with source end(ρV ) resp. end(ρW ) and target end(ρV ⊗ ρW ). The in-

ternal tensor product morphism in [H,M ] is an obvious ingredient.

For any two objects ρV , ρW in H–Bimod(A)sym there are two [H,M ]-morphisms

�• L and �• R given by the compositions

�• L : end(ρV )
ρ−1

+3 end(ρV )⊗ ρI
id⊗ηend(W ) +3 end(ρV )⊗ end(ρW )

⊗•
��

end(ρV ⊗ ρW )

�• R : end(ρW ) λ−1
+3 ρI ⊗ end(ρW )

ηend(V )⊗id
+3 end(ρV )⊗ end(ρW )

⊗•
KS

(3.3.13)

The single components of these [H,M ]-morphisms are given explicitly by the map-
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pings

�• L(L) = L⊗• 1 , (3.3.14)

for L ∈ end(V ) and

�• R(M) = 1⊗• M , (3.3.15)

for M ∈ end(W ).

Definition 3.3.5. For any two objects ρV , ρW in H–Bimod(A)sym we define the

[H,M ]-morphism

�• :=
(
�• L ◦pr1 + �• R ◦ pr3 , pr2

)
:(

end(ρV )× ρI[1]

)
×
(
end(ρW )× ρI[1]

)
=⇒ end(ρV ⊗ ρW )× ρI[1] . (3.3.16)

On the level of elements of objects the single component of the [H,M ]-morphism

�• in Definition 3.3.5 gives

(L, c) �• (L′, c′ ) =
(
L⊗• 1 + 1⊗• L′, c

)
, (3.3.17)

for any (L, c) ∈ end(V )× I[1] and (L′, c′ ) ∈ end(W )× I[1].

In order to prove that �• restricts to connections, i.e. to an [H,M ]-morphism

�• : con(ρV )× con(ρW )→ con(ρV ⊗ ρW ), we require the following technical lemma.

Lemma 3.3.6. Let ρA be an object in H–Algcom and let ρV , ρW be any two objects

in H–Bimod(A)sym.

(i) The left ρA-action on the internal endomorphism object end(ρV ⊗ρW ) is given

in terms of the left ρA-action on end(ρV ) by

l̂V⊗W ( – ) = ⊗• ◦ (l̂V ( – )⊗ 1) , (3.3.18)
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i.e.

l̂V⊗W (a) = l̂V (a)⊗• 1W , (3.3.19)

for a ∈ A.

(ii) The commutator on end(ρV ⊗ ρW ) × ρA is given in terms of the commutator

on end(ρV )× ρA by

[ · , · ] ◦ (pr1 ◦�• ⊗ idA) = �• L ◦ [ · , · ] ◦ (pr1 ⊗ idA) , (3.3.20)

i.e.

[
L⊗• 1 + 1⊗• M ,a

]
=
[
L , a

]
⊗• 1 , (3.3.21)

for any a ∈ A, (L, c) ∈ end(V )× I[1] and (M, c′) ∈ end(W )× I[1].

Proof. For item (i) by the invertibility of the currying bijection it is enough to show

that

lV⊗W ( – ) = ζ−1(⊗• ◦ (l̂V ( – )⊗ 1W )) , (3.3.22)

Using the definition of ⊗• given in (2.1.28) and the H-invariance of the unit endo-

morphism 1W we have

ζ−1(⊗• ◦ (l̂V ( – )⊗ 1W )) = (ev ⊗ idW ) ◦ (l̂V ⊗ idV ⊗ idW ) ◦ Φ−1
A,V,W

= (lV ⊗ idW ) ◦ Φ−1
A,V,W

= lV⊗W . (3.3.23)

The first equality follows from (2.2.87) using that l̂V is H-equivariant, second equal-

ity follows from Proposition 2.2.13 (i) and the last equality follows from (2.3.15a).
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Item (ii) is a consequence of item (i) and Lemma 3.1.4 as

[
L⊗• 1 + 1⊗• L′, a

]
=
[
L⊗• 1 + 1⊗• L′, l̂V⊗W (a)

]
=
[
L⊗• 1 + 1⊗• L′, l̂V (a)⊗• 1

]
= [L, a]⊗• 1 , (3.3.24)

for any a ∈ A,L ∈ end(V ) and L′ ∈ end(W ), and the assertion follows.

Proposition 3.3.7. Let (ρA, d) be a differential calculus in [H,M ] and let ρV , ρW

be two objects in H–Bimod(A)sym. Then �• restricts to an [H,M ]-morphism

�• : con(ρV )× con(ρW ) =⇒ con(ρV ⊗ ρW ) . (3.3.25)

Proof. We have to show that the image of �• : con(ρV )×con(ρW )⇒ end(ρV ⊗ρW )×

ρI[1] is an [H,M ]-subobject of con(ρV ⊗ρW ). Using Lemma 3.3.2 this can be shown

by the computation

[
L⊗• 1 + 1⊗• L′, a

]
= [L, a]⊗• 1 = l̂V

(
ev(d(c)⊗ a)

)
⊗• 1 = l̂V⊗W

(
ev(d(c)⊗ a)

)
,

(3.3.26)

for all (L, c) ∈ con(V ), (L′, c′ ) ∈ con(W ) and a ∈ A. In the first equality we used

item (ii) and in the last equality item (i) of Lemma 3.3.6.

The [H,M ]-morphism (3.3.25) describes the construction of connections on the

object ρV ⊗ ρW but not on the object ρV ⊗A ρW , which is obtained by using the

correct monoidal functor ⊗A in H–Bimod(A)sym. As ρV ⊗A ρW can be obtained

by taking a quotient of ρV ⊗ ρW (cf. (2.3.21)), we may ask if (3.3.25) induces an

[H,M ]-morphism with target given by con(ρV ⊗A ρW ). For this to hold true, we

have to restrict the source of (3.3.25) to the fibred product con(ρV ) ×I[1] con(ρW )

given by the pullback

con(ρV )×I[1] con(ρW )

��

+3 con(ρW )

pr2

��
con(ρV ) pr2

+3 ρI[1]

(3.3.27)
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in the category [H,M ]. Then con(ρV ) ×I[1] con(ρW ) is the [H,M ]-subobject of

con(ρV ) × con(ρW ) with elements given by pairs ((L, c), (L′, c′ )) such that c = c′.

We can now state one of the main results of this section.

Theorem 3.3.8. Let (ρA, d) be a differential calculus in [H,M ] and let ρV , ρW be

two objects in H–Bimod(A)sym. Then �• induces an [H,M ]-morphism

�• : con(ρV )×I[1] con(ρW ) =⇒ con(ρV ⊗A ρW ) . (3.3.28)

Proof. Let ((L, c), (L′, c)) ∈ con(V )×I[1] con(W ) be an arbitrary element. Applying

�• gives the element

(
L⊗• 1 + 1⊗• L′, c

)
∈ con(V ⊗W ) ⊆ end(V ⊗W )× I[1] , (3.3.29)

where we regard L ⊗• 1 + 1 ⊗• L′ : V ⊗ W → V ⊗ W simply as a k-linear map.

We have to prove that L ⊗• 1 + 1 ⊗• L′ descends to a well-defined k-linear map

L ⊗• 1 + 1 ⊗• L′ : V ⊗A W → V ⊗A W on the quotient (2.3.21). Denoting by

π : V ⊗W → V ⊗AW the quotient map, this amounts to showing that

π ◦ (L⊗• 1 + 1⊗• L′) ◦ (rV ⊗ idW ) = π ◦ (L⊗• 1 + 1⊗• L′) ◦ (idV ⊗ lW ) ◦ ΦV,A,W ,

(3.3.30)

The result follows by using (2.2.89) and (2.2.91), the braided symmetry of ρV , of

ρV ⊗A ρW and of ρW , the Leibniz rule (3.3.9) for the connections (L, c) and (L′, c′),

and the equivalence relation (2.3.20) of ⊗A together with properties of the associator

and R-matrix. We also require to use |L| = |L′ |.

The following result allows us to consistently lift connections to tensor products

of an arbitrary (finite) number of objects in H–Bimod(A)sym.

Theorem 3.3.9. Let (ρA, d) be a differential calculus in [H,M ] and let ρV , ρW , ρX
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be three objects in H–Bimod(A)sym. Then the [H,M ]-diagram

con(ρV )×I[1] con(ρW )×I[1] con(ρX)

�• ◦
(

id×�•
)
��

�• ◦
(
�• ×id

)
+3 con

(
(ρV ⊗A ρW )⊗A ρX

)
Φ◦( · )◦Φ−1nv

con
(
ρV ⊗A (ρW ⊗A ρX)

)
(3.3.31)

commutes.

Proof. Let
(
(L, c), (L′, c), (L′′, c)

)
∈ con(V )×I[1] con(W )×I[1] con(X) be an arbitrary

element. Applying �• ◦ (�• × id) yields

�• ◦(�• × id)
((

(L, c), (L′, c), (L′′, c)
))

=(
(L⊗• 1)⊗• 1 + (1⊗• L′ )⊗• 1 + (1⊗• 1)⊗• L′′, c

)
(3.3.32a)

while applying �• ◦ (id×�• ) yields

�• ◦(id×�• )
((

(L, c), (L′, c), (L′′, c)
))

=(
L⊗• (1⊗• 1) + 1⊗• (L′ ⊗• 1) + 1⊗• (1⊗• L′′ ), c

)
. (3.3.32b)

The assertion then follows by using Proposition 2.2.30.

3.3.3 Connections on internal homomorphisms

We now develop a lifting prescription for connections to the internal hom-objects in

H–Bimod(A)sym. This is an important construction in differential geometry because

if V is an object in H–Bimod(A)sym then the internal hom-object homA(V,A) is the

dual object to V . One may take V to be the module of sections of the tangent

bundle of a manifold and then homA(V,A) is the module of sections of the bundle

of one-forms. It is of importance in differential geometry to know how to construct

a connection on the one-forms from a connection on the tangent bundle (see e.g.

[60]).

Let (ρA, d) be a differential calculus in [H,M ] and ρV , ρW any two objects in
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H–Bimod(A)sym. We require to construct a connection on homA(ρV , ρW ) from con-

nections on ρV and ρW . Similarly to the lifting of connections to tensor products

we start by looking for [H,M ] morphisms with source end(ρV ) resp. end(ρW ) and

target end(hom(ρV , ρW )). We observe that it is possible to take the internal tensor

product of end(ρV ) resp. end(ρW ) with hom(ρV , ρW ) in [H,M ] and then by using the

currying map for internal homomorphisms in [H,M ] obtain two [H,M ]-morphisms

with the desired source and target objects which we denote by:

L := ζ(•) : end(ρW ) =⇒ end(hom(ρV , ρW )) , (3.3.33a)

R := ζ(• ◦ τ) : end(ρV ) =⇒ end(hom(ρV , ρW )) . (3.3.33b)

Definition 3.3.10. For any two objects ρV , ρW in H–Bimod(A)sym we define the

[H,M ]-morphism

ad• :=
(
L ◦ pr1 − R ◦ pr3 , pr2

)
:(

end(ρW )× ρI[1]

)
×
(
end(ρV )× ρI[1]

)
=⇒ end(hom(ρV , ρW ))× ρI[1] , (3.3.34)

On the level of elements of objects the single component of the [H,M ]-morphism

ad• in Definition 3.3.10 gives

ad•
(
(L′, c′ ), (L, c)

)
=
(
L (L′ )−R(L), c′

)
, (3.3.35)

for any (L, c) ∈ end(V )× I[1] and (L′, c′ ) ∈ end(W )× I[1].

We shall require the following two technical lemmas.

Lemma 3.3.11. Let ρA be an object in H–Algcom and ρV , ρW any two objects in

H–Bimod(A)sym. One has

l̂hom(V,W ) = L ◦ l̂W , (3.3.36)
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Proof. Recalling (2.3.29) and using naturality of the currying bijection yields

l̂hom(V,W ) = ζ
(
• ◦( l̂W ⊗ id)

)
= ζ

(
Hom[H,M ]( l̂

op
W ⊗ idop, id)(•)

)
= Hom[H,M ]

(
l̂ op
W , hom(idop, id)

)(
ζ (•)

)
= ζ(•) ◦ l̂W = L ◦ l̂W , (3.3.37)

Lemma 3.3.12. Let ρV , ρW be any two objects in H–Bimod(A)sym. Then

• ◦ (L ⊗L ) = L ◦ • , (3.3.38a)

• ◦ (R ⊗L ) = • ◦ (L ⊗R) ◦ τ , (3.3.38b)

Proof. By invertibility of the natural currying bijections, equation (3.3.38a) holds

true if ζ−1(• ◦ (L ⊗L )) = ζ−1(L ◦ •) as morphisms from (end(ρW )⊗ end(ρW ))⊗

hom(ρV , ρW ) ⇒ hom(ρV , ρW ). This can be shown by using Lemma 2.1.26 (i) and

the calculation

ζ−1(• ◦ (L ⊗L )) = ev ◦ (• ◦ (ζ(•)⊗ ζ(•))⊗ id)

= ev ◦ (id⊗ ev) ◦
(
(ζ(•)⊗ ζ(•))⊗ id

)
◦ Φ

= • ◦ (id⊗ •) ◦ Φ , (3.3.39)

where we have used the H-equivariance of ζ(•) in the third step, and

ζ−1(L ◦ •) = ev ◦
(
(ζ(•) ◦ •)⊗ id

)
= • ◦ (• ⊗ id) . (3.3.40)

These equations agree due to the weak associativity of the internal composition (cf.

Proposition 2.2.13 (iii)). The equality (3.3.38b) can be shown similarly. By a similar
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calculation to (3.3.39) we have

ζ−1(• ◦ (R ⊗L )) = (• ◦ τ) ◦ (id⊗ •) ◦ Φ

= • ◦ (• ⊗ id) ◦ τ1,23 ◦ Φ

= • ◦ (id⊗ •) ◦ Φ ◦ τ1,23 ◦ Φ , (3.3.41)

using weak associativity of the internal composition • in the final step, and

ζ−1(• ◦ (L ⊗R) ◦ τ) = • ◦ (id⊗ (• ◦ τ)) ◦ Φ ◦ (τ ⊗ id)

= • ◦ (id⊗ •) ◦ τ23 ◦ Φ ◦ τ12

= • ◦ (id⊗ •) ◦ Φ ◦ τ1,23 ◦ Φ , (3.3.42)

using (2.1.103b) in the final step.

Proposition 3.3.13. Let (ρA, d) be a differential calculus in [H,M ] and let ρV , ρW

be two objects in H–Bimod(A)sym. Then ad• restricts to an [H,M ]-morphism

ad• : con(ρW )× con(ρV ) =⇒ con(hom(ρV , ρW )) . (3.3.43)

Proof. It must be shown that the target of the [H,M ]-morphism ad• : con(ρW ) ×

con(ρV ) ⇒ end(hom(ρV , ρW )) × ρI[1] is an [H,M ]-subobject of con(hom(ρV , ρW )).

Using Lemma 3.3.2 this can be shown by the computation

[
L (L′ )−R(L), a

]
=
[
L (L′ )−R(L), l̂hom(V,W )(a)

]
=
[
L (L′ )−R(L),L ( l̂W (a))

]
= L

(
[L′, a]

)
= L

(
l̂W (ev(d(c′ )⊗ a))

)
= l̂hom(V,W )

(
ev(d(c′ )⊗ a)

)
, (3.3.44)

for all (L′, c′ ) ∈ con(W ), (L, c) ∈ con(V ) and a ∈ A. In the second and last equality
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we have used Lemma 3.3.11 and in the third equality we have used Lemma 3.3.12.

Restricting the source of ad• to the fibred product con(ρW )×I[1]con(ρV ) we obtain

a lifting prescription of connections to the internal hom-objects homA(ρV , ρW ) in the

category H–Bimod(A)sym.

Theorem 3.3.14. Let (ρA, d) be a differential calculus in [H,M ] and let ρV , ρW be

two objects in H–Bimod(A)sym. Then ad• induces an [H,M ]-morphism

ad• : con(ρW )×I[1] con(ρV ) =⇒ con(homA(ρV , ρW )) . (3.3.45)

Proof. Let ((L′, c), (L, c)) ∈ con(W )×I[1] con(V ) be an arbitrary element. Applying

ad• gives the element

(
L (L′ )−R(L), c

)
∈ con(hom(V,W )) ⊆ end(hom(V,W ))× I[1] , (3.3.46)

where we regard L (L′ ) − R(L) : hom(V,W ) → hom(V,W ) as a k-linear map.

We have to prove that L (L′ ) −R(L) restricts to a k-linear map L (L′ ) −R(L) :

homA(V,W )→ homA(V,W ) on the k-submodules homA(V,W ) ⊆ hom(V,W ) given

in (2.3.36). This amounts to showing that

[ · , · ] ◦
(
(L (L′ )−R(L))⊗ idA

)
= 0 , (3.3.47)

(cf. Lemma 2.3.11). We have

[ · , · ] ◦
(
L (L′ )⊗ idA

)
= [ · , · ] ◦ (• ⊗ idA) ◦ (ζ(L′ )⊗ idA)

= • ◦
((

id⊗ [ · , · ]
)

+
(
[ · , · ]⊗ id

)
◦ Φ−1 ◦

(
id⊗ τ

))
◦ Φ ◦ (ζ(L′ )⊗ idA)

= • ◦
(
l̂ ◦ ev ◦

(
d(c)⊗ idA

)
⊗ id

)
◦ τ ◦

(
ζ(id)⊗ idA

)
= • ◦ (id⊗ l̂ ◦ ev ◦ (d(c)⊗ idA)

)
◦ (ζ(id)⊗ idA) , (3.3.48)

where in the second equality we have used the biderivation property of the com-
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mutator (2.1.41), the first term of the second equality vanishes due to the braided

symmetry of the H–Bimod(A)sym-object homA(ρV , ρW ), the third equality then fol-

lows from the Leibniz rule for the connection (L′, c) together with (3.3.11) and the

property (ε⊗1⊗1)(φ) = 1⊗1, the last equality again follows from the braided sym-

metry of the H–Bimod(A)sym-object homA(ρV , ρW ) together with the triangularity

of the R-matrix. On the other hand we have

[ · , · ] ◦
(
R(L )⊗ idA

)
= [ · , · ] ◦ (• ◦ τ ⊗ idA) ◦ (ζ(L )⊗ idA)

= • ◦
((

id⊗ [ · , · ]
)

+
(
[ · , · ]⊗ id

)
◦ Φ−1 ◦

(
id⊗ τ

))
◦ Φ ◦ (τ ⊗ idA) ◦ (ζ(L )⊗ idA)

= • ◦
(
id⊗ [ · , · ]

)
◦ Φ ◦ (τ ⊗ idA) ◦ (ζ(L )⊗ idA)

= • ◦
(

id⊗ l̂ ◦ ev ◦ (d(c)⊗ idA)
)
◦ (ζ(id)⊗ idA) , (3.3.49)

where we again use the biderivation property of the commutator (2.1.41) in the

second equality and in this case the second term vanishes due to the braided sym-

metry of the H–Bimod(A)sym-object homA(ρV , ρW ), the fourth equality follows from

the Leibniz rule for the connection (L, c) together with (3.3.11) and the properties

(ε⊗ 1⊗ 1)(φ) = 1⊗ 1 and (ε⊗ 1)(R) = 1. This completes the proof.

3.3.4 Cochain twisting of connections

The cochain twist deformation quantization functor preserves connections.

Proposition 3.3.15. Let (ρA, d) be any differential calculus in [H,M ], let ρV be any

object in H–Bimod(A)sym and F any cochain twisting element based on H. Then

the coherence map γ × ψ : endF (F(ρV )) × ρIF [1] ⇒ F(end(ρV )) × F(ρI[1]) restricts

to an [HF ,M ]-isomorphism

γ × ψ : conF (F(ρV )) =⇒ F(con(ρV )) . (3.3.50)

Proof. The proof follows that of Proposition 3.2.4 and it requires showing commu-
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tativity of the diagram

endF (F(ρV ))× ρIF [1]

γ×ψ

��

ζF (l̂F ◦evF ◦(dF⊗F id)◦(pr2⊗F id))

+3

ζF ([ · , · ]F ◦(pr1⊗F id)) +3
homF (F(ρA), endF (F(ρV )))

γ◦( · )
��

homF (F(ρA),F(end(ρV )))

γ

��
F(end(ρV ))×F(ρI[1])

F(ζ(l̂◦ev◦(d⊗id)◦(pr2⊗id)))

+3

F(ζ([ · , · ]◦(pr1⊗id))) +3 F
(
hom(ρA, end(ρV ))

)
(3.3.51)

in [HF ,M ]. The upper set of arrows commute by the same calculation as in (3.2.14a)

(equivalently (2.3.60)). For the lower set of arrows, we have

γ ◦ γ ◦ ( · ) ◦ ζF (l̂F ◦ evF ◦ (dF ⊗F id)) = γ ◦ γ ◦ ( · ) ◦ ζF (l̂F ◦ evF ) ◦ dF

= γ ◦ F(ζ(l̂ ◦ ev)) ◦ γ−1 ◦ F(d) ◦ ψ

= F(ζ(l̂ ◦ ev ◦ (d⊗ id))) ◦ ψ . (3.3.52)

The first equality follows from the HF -equivariance of dF , the second equality follows

from (3.2.14b) and (3.2.31), and the final equality follows from the HF -equivariance

of F(ζ(l̂ ◦ ev)).

Remark 3.3.16. The isomorphism in Proposition 3.3.15 extends to an isomorphism

between connections on tensor product objects and also on internal hom-objects in

HF–Bimod(AF )sym. For tensor product objects, diagram (3.3.51) contains addition-

ally in each vertical arrow the composition with the isomorphism ϕ and, likewise

for the internal hom-objects, the isomorphism γ ◦ (·). The HF -equivariance of mor-

phisms in diagram (3.3.51) ensures that these additional isomorphisms cancel each

other out.

3.4 Curvature

We develop the notion of curvature of connections on objects in H–Bimod(A)sym

and compute explicitly the curvatures of tensor product connections given by the
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construction in Theorem 3.3.8.

3.4.1 Definition and properties

For any object ρV in H–Bimod(A)sym, we define the [H,M ]-morphism

[[ · , · ]] := [ · , · ] ◦
(
pr1 ⊗ pr3

)
: (end(ρV )× ρI[1])⊗ (end(ρV )× ρI[1]) =⇒ end(ρV ) .

On the level of elements

[[(L, c) , (L′, c′ )]] = [L,L′ ] , (3.4.1)

for all (L, c) and (L′, c′ ) in end(V )× I[1].

Lemma 3.4.1. Let H be a triangular quasi-Hopf algebra. Let (ρA, d) be a differential

calculus in [H,M ] and ρV any object in H–Bimod(A)sym. Then (3.4.1) restricts to

an [H,M ]-morphism

[[ · , · ]] : con(ρV )⊗ con(ρV ) =⇒ endA(ρV ) . (3.4.2)

Proof. By Lemma 2.3.11 it is sufficient to show that

[[[
(L, c), (L′, c′ )

]]
, a
]

=
[
[L,L′ ], a

]
= 0 , (3.4.3)

for all (L, c), (L′, c′ ) ∈ con(V ) and a ∈ A. We have

[ · , · ] ◦
(
[ · , · ]⊗ idA

)
= [ · , · ] ◦

(
[ · , · ]⊗ idA

)
◦ (− τ ◦ Φ − Φ−1 ◦ τ)

= [ · , · ] ◦
(
id⊗ ev ◦ (d⊗ idA)

)
· 2

= ev ◦ (d⊗ idA) ◦
(
id⊗ ev ◦ (d⊗ idA)

)
· 2

= ev ◦ (• ⊗ id) ◦ (d⊗ d⊗ idA) · 2

= 0 , (3.4.4)

where the first equality follows from the braided Jacobi identity in Proposition 2.1.13,
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the second equality follows from Lemma 3.3.2, the H-invariance of d : ρI[1] ⇒

der(ρA) together with the normalization (ε ⊗ ε ⊗ id)(φ) = 1 of the associator and

of the R-matrix (ε⊗ id)(R) = 1 and also the braided antisymmetry of the internal

commutator in Proposition 2.1.13 together with the triangularity of the R-matrix

and |L| = 1 = |L′|, the third equality follows from Lemma 3.3.2, the fourth equality

follows from Proposition 2.2.13 (ii), the last equality follows from the nilpotency of

d from Definition 3.2.11.

With these techniques we can now define the curvature of a connection. Since

the curvature is supposed to be quadratic in the connections, we cannot realize the

assignment of curvatures as an [H,M ]-morphism. We shall employ the following

element-wise left-right symmetric definition.

Definition 3.4.2 (Curvature). Let (ρA, d) be a differential calculus in [H,M ] and

let ρV be an object in H–Bimod(A)sym. The curvature of a connection ∇ := (L, 1) ∈

con(V ) is the element

Curv(∇) :=
[[
∇,∇

]]
∈ endA(V ) . (3.4.5)

Remark 3.4.3. Given any connection ∇ := (L, 1) ∈ con(V ), we can define the

Bianchi tensor corresponding to ∇ as

Bianchi(∇) := ev
(
ad•(∇,∇)⊗ Curv(∇)

)
∈ endA(V ) . (3.4.6)

In contrast to the situation in classical differential geometry, here the Bianchi ten-

sor in general does not vanish. Hence, it may be interpreted as a measure of the

noncommutativity and nonassociativity of ρA, ρV and ∇.

Remark 3.4.4. Flat connections are in general not twisted to flat connections

unless the connection is invariant under the action of the cochain twist, since for a

connection ∇ = (L, c) ∈ con(V ) and using (2.2.108b) and the isomorphism (3.3.50)
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we have

CurvF ((γ−1 × ψ−1)(∇)) = γ−1 ◦ F([ · , · ]) ◦ ϕ ◦ (L⊗ L) . (3.4.7)

which may not vanish even if Curv(∇) = [L , L] = 0.

Finally, we observe an additive property of the curvature of the tensor product

connections constructed in Theorem 3.3.8.

Proposition 3.4.5. Let H be a triangular quasi-Hopf algebra, (ρA, d) a differential

calculus in [H,M ] and ρV , ρW two objects in H–Bimod(A)sym. Given any two con-

nections ∇V := (L, 1) ∈ con(V ) and ∇W := (L′, 1) ∈ con(W ), the curvature of their

sum satisfies

Curv(∇V �• ∇W ) = Curv(∇V )⊗• 1 + 1⊗• Curv(∇W ) . (3.4.8)

Proof. The proof follows from a simple calculation

Curv(∇V �• ∇W ) = [L⊗• 1 + 1⊗• L′, L⊗• 1 + 1⊗• L′ ]

= [L,L]⊗• 1 + 1⊗• [L′, L′ ]

= Curv(∇V )⊗• 1 + 1⊗• Curv(∇W ) , (3.4.9)

where we have used the properties in Lemma 3.1.4.

3.5 Summary

In this chapter we have formulated the notions of differential calculus, connection

and curvature in the representation category of an arbitrary triangular quasi-Hopf

algebra H on bounded Z-graded k-modules. We have made use of equalisers in the

category [H,M ] to formulate the notions of derivations on ρA, and differential op-

erators and, because the unit object for the monoidal structure in H–Bimod(A)sym

is a graded differential algebra ρA in [H,M ] also connections on symmetric bi-

modules over ρA as subobjects of internal endomorphism objects in the category
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[H,M ]. Most importantly we have found appropriate morphisms to lift connec-

tions in [H,M ] to tensor products and internal hom-objects in the closed braided

monoidal category H–Bimod(A)sym. We have also shown that cochain twist quanti-

sation preserves structurally all these constructions by the same isomorphism which

preserves the internal endomorphism objects in H–Bimod(A)sym. In the next chap-

ter we apply this framework to obtain explicit expressions for connections and their

curvatures on noncommutative and nonassociative vector bundles in the simplest ex-

ample of cochain twist deformations of trivial vector bundles over noncommutative

and nonassociative spaces.
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Chapter 4

Working with Nonassociative Ge-

ometry and Field Theory

This chapter is based on the last section of [34] and [35].

In the previous chapter we described notions of differential geometry in the rep-

resentation category of an arbitrary triangular quasi-Hopf algebra. The categorical

formalism enabled us to make structurally correct definitions for the notions of con-

nections together with their tensor product structure in particular. This chapter

is divided into two parts. In Section 4.1 we apply the constructions in Chapter

2 to the concrete examples of deformation quantization of G-equivariant vector

bundles over G-manifolds. In particular we construct concrete examples for the

categories H–Algcom and H–Bimod(A)sym for a given braided commutative algebra

ρA ∈ H–Algcom starting from ordinary differential geometry. In these examples

the algebras ρA and bimodules ρV are commutative, i.e. braided commutative with

respect to the trivial R-matrix R = 1 ⊗ 1. Deformation quantization by cochain

twists then leads to examples of noncommutative and also nonassociative algebras

and bimodules. In Sections 4.2 - 4.4 we consider concrete realizations of the notions

of geometry developed in Chapter 3 in the simplest example of cochain twist de-

formations of trivial vector bundles over noncommutative and nonassociative spaces

with the R-flux and Q-flux compactification of closed string theory as the main

motivating examples. We conclude by providing physically viable action function-

als for Yang-Mills theory and Einstein-Cartan gravity on such noncommutative and

nonassociative spaces, as first steps towards more elaborate models relevant to non-

geometric flux deformations of geometry in closed string theory.
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4.1 Quantization of equivariant vector bundles

Let Man denote the category of C∞, finite-dimensional, Hausdorff and second count-

able manifolds with smooth maps.

Recall that associated to any manifold M in Man is the Lie algebra Vec(M) of

vector fields on M (with Lie bracket [ · , · ] given by the vector field commutator),

which plays the role of the infinitesimal diffeomorphisms of M . This Lie algebra

gives rise to a Hopf algebra UVec(M), the universal enveloping algebra of Vec(M),

which is characterized as follows: As an algebra, UVec(M) is the free unital algebra

generated by Vec(M) modulo the relations v w−w v = [v, w], for all v, w ∈ Vec(M).

The coproduct ∆, counit ε and antipode S on UVec(M) are defined on generators

by

∆(v) = v ⊗ 1 + 1⊗ v , ∆(1) = 1⊗ 1 , (4.1.1a)

ε(v) = 0 , ε(1) = 1 , (4.1.1b)

S(v) = −v , S(1) = 1 , (4.1.1c)

for all v ∈ Vec(M). The maps ∆ and ε are extended as algebra homomorphisms and

S as an anti-algebra homomorphism to all of UVec(M). There is then an exponential

map exp : Vec(M)→ G where G is a (complex) Lie group.

Let us fix any (complex) Lie group G and denote its Lie algebra by g. We view

G as a one-object category (cf. Definition A.3.4 for the definition of a group as a

one-object category) and consider the functor category [G,Man] defined as follows:

The objects in [G,Man] are functors

ρM : G −→ Man , (4.1.2)

with ρM(∗) = M a manifold and ρM(g) := .M(g, · ) where .M( · , · ) : G×M → M

is a smooth left G-action on M . The morphisms in [G,Man] are natural transfor-
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mations

f : ρM =⇒ ρN , (4.1.3)

for some manifolds M,N . The naturality condition implies that f is a G-equivariant

smooth map, i.e. a smooth map (denoted by the same symbol) f : M → N , such

that the diagram

M

ρM (g)

��

f
// N

ρN (g)

��

M
f

// N

(4.1.4)

commutes in Man for any g ∈ G.

Next we view the universal enveloping algebra of the Lie algebra g as a one-

object category with morphisms the elements of Ug and composition given by the

multiplication in Ug, and consider the functor category [Ug,M ] defined as follows:

The objects in [Ug,M ] are functors

ρV : Ug −→M . (4.1.5)

with ρV (∗) = V a C-module and ρV (ξ) := .V (ξ, -) where .V (-, · ) : Ug × V → V is

a left Ug-action on V . We recall that the category of C-modules M is a braided

monoidal category with monoidal functor ⊗C the tensor product of C-modules and

unit C. The category [Ug,M ] is also a monoidal category. The unit object is given

by ρC(∗) = C and ρC(ξ) = .C(ξ, –) where .C(ξ, c) = ε(ξ)c is given by the counit ε

in Ug, and the monoidal structure ⊗ρC : [Ug,M ]× [Ug,M ]→ [Ug,M ] is given by

ρV ⊗ρC ρW (∗) = V ⊗CW and ρV ⊗ρC ρW (ξ) = .V⊗CW (ξ, –) where .V⊗CW (ξ, v⊗Cw) =

(ξ(1) .V v)⊗C (ξ(2) .W w) (summation understood) is given by the coproduct ∆ in Ug.

Because ε and ∆ are algebra morphisms, these are valid Ug-actions. The associator

and unitors are trivial since Ug is a Hopf algebra. The morphisms in [Ug,M ] are
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natural transformations

f : ρV =⇒ ρW , (4.1.6)

for some C-modules V ,W . The naturality condition implies that morphisms in

[Ug,M ] are Ug-equivariant C-module maps. Two morphisms of particular interest

are the product µA : ρA ⊗ρC ρA ⇒ ρA and unit ηA : ρC ⇒ ρA which endow a C-

module A with an algebra structure: (ρA, µA, ηA) is an algebra object in [Ug,M ].

The collection of commutative algebra objects in [Ug,M ] together with [Ug,M ]-

morphisms f : ρA ⇒ ρB which preserve the product µA and unit ηA, i.e.

f ◦ µA = µB ◦ (f ⊗ρC f) , f ◦ ηA = ηB ◦ idρC , (4.1.7)

constitute a subcategory of [Ug,M ]. This subcategory of commutative algebra ob-

jects is equivalent to the pair of comma categories (⊗ρC ⇒ id[Ug,M ]) and (id[Ug,M ] ⇒

id[Ug,M ]) whose objects are pairs of triples (ρA × ρA, µA, ρA) and (ρC, ηA, ρA) with

(ρA, µA, ηA) is a commutative monoid object in [Ug,M ], and whose morphisms are

pairs of tuples of morphisms (f ×f, f) and (idρC , f) satisfying (4.1.7) (see Definition

A.2.11 for the definition of a comma category). We shall denote by

Ug-Algcom , (4.1.8)

the category of commutative algebras in [Ug,M ]. And with an abuse of notation

denote objects in Ug-Algcom by the corresponding objects in [Ug,M ].

We now construct a functor

C∞ : [G,Man]op −→ Ug-Algcom . (4.1.9)

For any object ρM in [G,Man] we set C∞(ρM) := ρC∞(M). We denote by ρC∞(M)(∗) =

C∞(M) the C-vector space of smooth complex-valued functions on M . The left Ug-
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action is induced by the G-action as

ρC∞(M)(ξ)(a) := ξ .C∞(M) a :=
d

dt

(
a ◦ ρM(exp(−t ξ))

)∣∣∣
t=0

, (4.1.10)

for all ξ ∈ g and a ∈ C∞(M). By exp : g → G we denote the exponential map of

the Lie group G. The product µC∞(M) : C∞(ρM) ⊗ C∞(ρM) ⇒ C∞(ρM) has single

component the usual pointwise multiplication of functions and the unit ηC∞(M) :

ρC ⇒ C∞(ρM) has single component c 7→ c 1C∞(M) (the constant functions).

Using (4.1.10) and (4.1.1), it is easy to check that µC∞(M) and ηC∞(M) are

[Ug,M ]-morphisms: As a consequence of the Leibniz or product rule for differ-

entiation

ξ .C∞(M) (a a′) = (ξ .C∞(M) a) a′ + a (ξ .C∞(M) a
′)

= (ξ(1) .C∞(M) a) (ξ(2) .C∞(M) a
′) , (4.1.11)

for all a, a′ ∈ C∞(M) and as a consequence of derivatives on constant functions

being zero

ξ .C∞(M) 1C∞(M) = 0 = ε(ξ) 1C∞(M) . (4.1.12)

Hence ρC∞(M) is an object in Ug-Alg. For any morphism f op : ρM ⇒ ρN in

[G,Man]op (i.e. a smooth G-equivariant map f : N →M) we set

C∞(f op) := f ∗ : C∞(ρM) =⇒ C∞(ρN) , (4.1.13)

with single component

f ∗ : C∞(M) =⇒ C∞(N) , a 7−→ a ◦ f (4.1.14)

to be the pull-back of functions along f . Since f is G-equivariant, i.e

f ◦ ρN(g) = ρM(g) ◦ f , (4.1.15)
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it follows that f ∗ = C∞(f op) is Ug-equivariant:

ξ .C∞(N)

(
f ∗(a)

)
= ξ .C∞(N) (a ◦ f)

=
d

dt

(
(a ◦ f) ◦ ρN(exp(−t ξ))

)∣∣∣
t=0

=
d

dt

(
a ◦ ρM(exp(−t ξ))

)∣∣∣
t=0
◦ f

= (ξ .C∞(M) a) ◦ f

= f ∗(ξ .C∞(M) a) . (4.1.16)

Since pull-backs also preserve the products and units (f ∗(a a′) = a a′ ◦ f = (a ◦

f) (a′ ◦ f) = f ∗(a) f ∗(a′) and f ∗(1C∞(M)) = 1C∞(M) ◦ f = 1C∞(M)) and clearly

is commutative, we have that C∞(f op) : C∞(ρM) ⇒ C∞(ρN) is a morphism in

Ug-Algcom. In summary, we have shown

Proposition 4.1.1. There exists a functor C∞ : [G,Man]op → Ug-Alg. Taking into

account the triangular structure R = 1 ⊗ 1 on Ug, the functor C∞ is valued in the

full subcategory Ug-Algcom of braided commutative algebras in [Ug,M ].

Fixing any object ρM in [G,Man], we can consider the slice category (see A.2.12)

G-VecBunM := ([G,Man]⇒ ρM) , (4.1.17)

together with the condition that

ρE(g) : E x −→ E ρM (g) (x) , (4.1.18)

is a C-linear map, for any (ρE, πE) ∈ G-VecBunM and for all g ∈ G and x ∈M . This

is the category of G-equivariant vector bundles over M . The objects in G-VecBunM

are then pairs (ρE, πE) consisting of a finite-rank complex vector bundle E
πE−→ M
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over M . The G-equivariance of πE : ρE ⇒ ρM is that the diagram

E

πE
��

ρE(g)
// E

πE
��

M
ρM (g)

//M

(4.1.19)

commutes for any g ∈ G (cf. (4.1.4)). A morphism in G-VecBunM is a [G,Man]-

morphism

f : ρE =⇒ ρE′ , (4.1.20)

with single component f : E → E ′ (denoted by the same symbol) such that the

diagram

E

πE ��

f
// E ′

π
E′~~

M

(4.1.21)

commutes in Man. The naturality condition of f is that

E

f
��

ρE(g)
// E

f
��

E ′
ρ
E′ (g)

// E ′

(4.1.22)

commutes for any g ∈ G. In other words morphisms inG-VecBunM areG-equivariant

vector bundle maps covering the identity idM .

Remark 4.1.2. Combining the conditions (4.1.21) and (4.1.22) in a single commu-
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tative diagram

E

πE   

f

��

ρE(g)
// E

f

��

πE~~

M

E ′

π
E′

>>

ρ
E′ (g)

// E ′
π
E′

``

(4.1.23)

gives the additional condition that (cf. (4.1.18))

ρE(g) : E x −→ E ρM (g) (x)
!

= E x . (4.1.24)

(from the top and bottom triangles). Forgetting the linearity of the maps, this would

force the bundle to be a principle bundle.

We now review the definition of the category of symmetric bimodules over an

algebra object in [Ug,M ]: Choosing one particular algebra ρA ∈ Ug-Algcom there is

a morphism (left ρA-action) lV : ρA ⊗ρC ρV ⇒ ρV which endows a C-module V with

a left A-module structure. The morphism rV := lV ◦ τV,A, where τV,A is the braiding

morphism in the braided monoidal category [Ug,M ], is a right action of A on the

C-module V . (ρV , lV , rV ) satisfies the axioms of a symmetric bimodule object in

[Ug,M ].

The collection of symmetric bimodule objects in [Ug,M ] together with [Ug,M ]-

morphisms f : ρV ⇒ ρW which preserve the left ρA-action, i.e. such that

lW ◦ (idρA ⊗ρC f) = f ◦ lV , (4.1.25)

(the right ρA-action is automatically preserved) constitute a subcategory of [Ug,M ].

This subcategory of bimodule objects is equal to the comma category (⊗ρC ⇒

id[Ug,M ]) whose objects are triples (ρA×ρV , lV , ρV ) and whose morphisms are tuples

of morphisms (idρA × f, f) satisfying (4.1.25) with (ρV , lV , lV ◦ τV,A) is a symmetric
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bimodule object in [Ug,M ]. We shall denote by

Ug-Bimod(C∞(M))sym , (4.1.26)

the category of symmetric bimodules in [Ug,M ]. And with an abuse of notation

denote objects in Ug-Bimod(C∞(M))sym by the corresponding objects in [Ug,M ].

We shall now construct a functor Γ∞ : G-VecBunM → Ug-Bimod(C∞(M)). For

any object (ρE, πE) inG-VecBunM we set Γ∞((ρE, πE)) := ρΓ∞(E), where ρΓ∞(E)(∗) =

Γ∞(E
πE−→ M) is the C-vector space of smooth sections of E

πE−→ M and the left

Ug-action is induced by the G-actions as

ρΓ∞(E)(ξ)(s) := ξ .Γ∞(E) s :=
d

dt

(
ρE(exp(t ξ), · ) ◦ s ◦ ρM(exp(−t ξ), · )

)∣∣∣
t=0

,

(4.1.27)

for all ξ ∈ g and s ∈ Γ∞(E
πE−→ M). Notice that ξ .Γ∞(E) s is an element of

Γ∞(E
πE−→M), i.e. it satisfies πE ◦ (ξ .Γ∞(E) s) = idM , since

πE ◦ ρE(g, · ) ◦ s ◦ ρM(g−1, · ) = ρM(g, · ) ◦ πE ◦ s ◦ ρM(g−1, · )

= ρM(g, · ) ◦ idM ◦ ρM(g−1, · )

= idM , (4.1.28)

for all s ∈ Γ∞(E
πE−→ M) and g ∈ G. In the first step we used the G-equivariance

condition (4.1.19) and in the second step the fact that s is a section. The left and

right ρC∞(M)-actions lΓ∞(E) : C∞(ρM) ⊗ρC Γ∞(ρE, πE) ⇒ Γ∞(ρE, πE) and rΓ∞(E) :

Γ∞(ρE, πE) ⊗ρC C∞(ρM) ⇒ Γ∞(ρE, πE) have single component defined as usual

pointwise. Using (4.1.10) and (4.1.27) it is easy to check that lΓ∞(E) and rΓ∞(E) are
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[Ug,M ]-morphisms:

ξ .Γ∞(E) (a s) =
d

dt

(
ρE(g(t), · ) ◦ (a s) ◦ ρM(g(−t), · )

)∣∣∣
t=0

=
d

dt

(
ρE(g(t), · ) ◦

((
a ◦ ρM(g(−t), · )

)
·
(
s ◦ ρM(g(−t), · )

)))∣∣∣
t=0

= (ξ .C∞(M) a) s+ a (ξ .Γ∞(E) s) , (4.1.29)

for any a ∈ C∞(M), s ∈ Γ∞(E
πE−→ M) where the second equality follows from

the definition of the pointwise product of functions and the last equality from the

product rule for differentiation (the right action follows automatically). It is also

simple to check that Γ∞(ρE, πE) is an object in Ug-Bimod(C∞(M))sym. For this

we need to show that the bimodule axioms hold. This is a simple consequence of

the associativity of the pointwise multiplication of functions. For any morphism

f : ρE ⇒ ρE′ in G-VecBunM we set

Γ∞(f) : Γ∞(ρE, πE) −→ Γ∞(ρE′ , πE′ ) , (4.1.30)

to have single component given by s 7−→ f ◦s. By the commutative diagram (4.1.21)

it follows that Γ∞(f)(s) is a section of E ′
π
E′−→M (since πE′ ◦Γ∞(f)(s) = πE′ ◦f ◦s =

πE ◦s = idM for all s ∈ Γ∞(E
πE−→M)) and the diagram (4.1.22) implies that Γ∞(f)

is Ug-equivariant (since Γ∞(f)(ρE(g)) = f ◦ ρE(g) = ρE′(g) ◦ f = ρE′(g) ◦ Γ∞(f)).

One easily checks that Γ∞(f) preserves the left and right C∞(ρM)-module structures

(by the left C∞(M)-linearity of f , Γ∞(f)(a s) = f(a s) = a f(s) = aΓ∞(f)(s) for all

a ∈ C∞(M) and s ∈ Γ∞(E
πE−→M), and similarly for the right C∞(M)-action) and

that these are commutative. Hence we find that Γ∞(f) : Γ∞(ρE, πE)→ Γ∞(ρE′ , πE′ )

is a morphism in Ug–Bimod(C∞(M))sym. In summary, we have shown

Proposition 4.1.3. For any G-manifold ρM ∈ [G,Man] with g the Lie algebra of

G there exists a functor Γ∞ : G-VecBunM → Ug–Bimod(C∞(M))sym.

The functor Γ∞ in Proposition 4.1.3 is in fact a braided closed monoidal func-

tor with respect to the braided closed monoidal structure on G-VecBunM that we

shall now describe. Firstly, notice that G-VecBunM is a monoidal category: The
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(fibrewise) tensor product E ⊗ E ′ of two G-equivariant vector bundles E,E ′ is

again a G-equivariant vector bundle with respect to the diagonal left G-action

.E⊗E′ : G × (E ⊗ E ′ ) → E ⊗ E ′ , (g, e ⊗ e′ ) 7→ ρE(g, e) ⊗ ρE′(g, e
′ ). We there-

fore have a functor ⊗ : G-VecBunM × G-VecBunM → G-VecBunM . The trivial line

bundle C ×M (with trivial G-action on the fibres) is the unit object ρC × ρM in

G-VecBunM , the components of the associator are the identities and the unitors are

the obvious ones. Hence G-VecBunM is a monoidal category. The (fibrewise) flip

map τE,E′ : E⊗E ′ → E ′⊗E turns G-VecBunM into a braided (and even symmetric)

monoidal category. Secondly, notice that G-VecBunM has an internal hom-functor

which turns it into a braided closed monoidal category: For any two G-equivariant

vector bundles ρE, ρE′ we can form the homomorphism bundle hom(ρE, ρE′ ) which is

a G-equivariant vector bundle with respect to the left adjoint G-action .hom(E,E′ ) :

G × hom(E,E ′ ) → hom(E,E ′ ) , (g, L) 7→ ρE′(g) ◦ L ◦ ρE(g−1). The currying

maps ζE,E′,E′′ : HomG-VecBunM
(ρE ⊗ ρE′ , ρE′′ ) ⇒ HomG-VecBunM

(ρE, hom(ρE′ , ρE′′ ))

are given by assigning to any G-VecBunM -morphism f : ρE ⊗ ρE′ ⇒ ρE′′ the

G-VecBunM -morphism

ζE,E′,E′′(f) : ρE =⇒ hom(ρE′ , ρE′′ ) , (4.1.31)

with single component e 7→ f(e ⊗ · ). Making use now of the standard natural

isomorphisms

Γ∞(E ⊗ E ′ ) ' Γ∞(E)⊗C∞(M) Γ∞(E ′ ) , (4.1.32a)

Γ∞(C×M) ' C∞(M) , (4.1.32b)

Γ∞(hom(E,E ′ )) ' homC∞(M)(Γ
∞(E),Γ∞(E ′ )) , (4.1.32c)

we obtain

Proposition 4.1.4. The functor Γ∞ : G-VecBunM → Ug–Bimod(C∞(M))sym of

Proposition 4.1.3 is a braided closed monoidal functor.

Before we can deform the categories Ug–Algcom and Ug–Bimod(C∞(M))sym via
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cochain twists F , we have to introduce formal power series extensions in a de-

formation parameter ~ of all C-vector spaces involved, which then become C[[~]]-

modules. For details on formal power series and the ~-adic topology see [43, Chapter

XVI]. We shall denote the ~-adic topological tensor product by ⊗̂ and recall that

it satisfies V [[~]] ⊗̂W [[~]] ' (V ⊗ W )[[~]], where V ,W are C-vector spaces and

V [[~]],W [[~]] are the corresponding topologically free C[[~]]-modules. Let us denote

by Ug[[~]] the formal power series extension of the cocommutative Hopf algebra Ug

(the product and coproduct here involves the topological tensor product ⊗̂) and by

[Ug[[~]],M ] the braided closed monoidal category of left Ug[[~]]-modules over C[[~]]

(with monoidal structure given by ⊗̂). There is a braided closed monoidal functor

[[~]] : [Ug,M ] → [Ug[[~]],M ]: To any object ρV in [Ug,M ] we assign the object

ρV [[~]] in [Ug[[~]],M ] and to any [Ug,M ]-morphism f : ρV ⇒ ρW we assign the

[Ug[[~]],M ]-morphism f : ρV [[~]] ⇒ ρW [[~]] with single component (denoted by the

same symbol)

f : V [[~]] −→ W [[~]] , v =
∞∑
n=0

~n vn 7−→ f(v) =
∞∑
n=0

~n f(vn) . (4.1.33)

The functor [[~]] is a braided closed monoidal functor due to the natural isomor-

phisms

V [[~]] ⊗̂W [[~]] ' (V ⊗W )[[~]] , (4.1.34a)

hom[[~]](V [[~]],W [[~]]) ' hom(V ,W )[[~]] . (4.1.34b)

Here we have denoted by hom[[~]] the internal hom-functor in [Ug[[~]],M ]. As

a consequence of (4.1.34a) this functor induces a functor [[~]] : Ug–Algcom →

Ug[[~]]–Algcom and a braided closed monoidal functor [[~]] : Ug–Bimod(C∞(M))sym →

Ug[[~]]–Bimod(C∞(M)[[~]])sym.

Given now any cochain twist F ∈ Ug[[~]] ⊗̂Ug[[~]] based on Ug[[~]], Proposition

2.2.25 implies that there is a functor

F : Ug[[~]]–Algcom −→ Ug[[~]]F–Algcom (4.1.35a)
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and Proposition 2.3.5 and Theorem 2.3.19 imply that there is a braided closed

monoidal functor

F : Ug[[~]]–Bimod(C∞(M)[[~]])sym −→ Ug[[~]]F–Bimod(C∞(M)[[~]]F )sym .

(4.1.35b)

Precomposing these functors with the functors of Propositions 4.1.1 and 4.1.3 to-

gether with [[~]] yields the main result of this section.

Corollary 4.1.5. Given any cochain twist F ∈ Ug[[~]] ⊗̂Ug[[~]] there is the functor

G-Manop

C∞

��

C∞F // Ug[[~]]F–Algcom

Ug–Algcom

[[~]]
// Ug[[~]]–Algcom

F

OO
(4.1.36a)

and the braided closed monoidal functor

G-VecBunM

Γ∞

��

Γ∞F // Ug[[~]]F–Bimod(C∞(M)[[~]]F )sym

Ug–Bimod(C∞(M))sym

[[~]]
// // Ug[[~]]–Bimod(C∞(M)[[~]])sym

F

OO
(4.1.36b)

describing the formal deformation quantization of G-manifolds and G-equivariant

vector bundles.

The functors in Corollary 4.1.5 enable us to make the following definitions in the

usual spirit of noncommutative geometry:

Definition 4.1.6 (Nonassociative space). By nonassociative space we mean a non-

commutative and nonassociative algebra.

Definition 4.1.7 (Nonassociative vector bundle). By nonassociative vector bundle

we mean a noncommutative and nonassociative bimodule over a noncommutative

and nonassociative algebra.

Algebra objects ρA in H–Algcom are to be interpreted as noncommutative and

nonassociative spaces with symmetries modelled on the quasi-Hopf algebra H, while
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the ρA-bimodules ρV in H–Bimod(A)sym are to be thought of as noncommutative

and nonassociative vector bundles over ρA.

4.1.1 Examples

As we have seen above, classical examples of braided commutative algebras are given

by function algebras C∞(M) on G-manifolds M , where G is a Lie group with Lie

algebra g, the relevant triangular quasi-Hopf algebra in this case being the universal

enveloping Hopf algebra Ug (with trivial R-matrix and associator). These examples

and cochain twist deformations thereof are our main examples of interest.

Example 4.1.8. Let G = Tn be the n-dimensional torus, with n ∈ N. Taking a

basis {ti ∈ g : i = 1, . . . , n} of the Abelian Lie algebra g and a skew-symmetric

real-valued n× n-matrix Θ =
(
Θij
)n
i,j=1

, we have the Abelian twist

F = exp
(
− i ~

2
Θij ti ⊗ tj

)
(4.1.37)

based on Ug[[~]] (with implicit sums over repeated upper and lower indices). The

twisted Hopf algebra Ug[[~]]F is cocommutative (in fact ∆F = ∆), and since F is

a cocycle twist the algebras and bimodules obtained from the functors in Corollary

4.1.5 are strictly associative; however in general they are not strictly commutative

as the twisted triangular structure is given by RF = F−2. This is the triangular

Hopf algebra relevant to the standard noncommutative tori, and more generally to

the toric noncommutative manifolds (or isospectral deformations) in the sense of

[24].

Example 4.1.9. Fix n ∈ N and let g be the non-Abelian nilpotent Lie algebra over

C with generators {ti, t̃ i,mij : 1 ≤ i < j ≤ n} and Lie bracket relations given by

[ t̃ i,mjk] = δij tk − δik tj , (4.1.38)

and all other Lie brackets equal to zero. Let us denote by G the Lie group obtained

by Lie-integration of g and notice that G is a Lie subgroup of ISO(2n). We fix a
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rank-three skew-symmetric real-valued tensor R =
(
Rijk

)n
i,j,k=1

and introduce the

non-Abelian cochain twist (with implicit summation over repeated upper and lower

indices)

F = exp
(
− i ~

2

(
1
4
Rijk (mij ⊗ tk − ti ⊗mjk) + ti ⊗ t̃ i − t̃ i ⊗ ti

))
. (4.1.39)

The twisted quasi-Hopf algebra Ug[[~]]F is non-cocommutative: the twisted coprod-

uct on primitive elements is given by

∆F (ti) = ∆(ti) , (4.1.40a)

∆F ( t̃ i) = ∆( t̃ i) + i ~
2
Rijk tj ⊗ tk , (4.1.40b)

∆F (mij) = ∆(mij)− i ~ (ti ⊗ tj − tj ⊗ ti) . (4.1.40c)

Generally the algebras and bimodules obtained from the functors in Corollary 4.1.5

are noncommutative and nonassociative: the twisted triangular structure is given

by RF = F−2, while a straightforward calculation of (2.1.109) with φ = 1 ⊗ 1 ⊗ 1

using the Baker-Campbell-Hausdorff formula yields the associator

φF = exp
(~2

2
Rijk ti ⊗ tj ⊗ tk

)
. (4.1.41)

This is the triangular quasi-Hopf algebra relevant in the phase space formulation

for the nonassociative deformations of geometry that arise in non-geometric R-flux

backgrounds of string theory [27].

4.2 Nonassociative spaces and vector bundles

In this section we review aspects of our formalism for differential geometry on non-

commutative and nonassociative spaces which arise from cochain twist deformation

quantization of manifolds by working in the simplest setting of trivial vector bun-

dles. We use mainly the infix action notation rather than representation notation

as is conventional in the physics literature.
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4.2.1 Spaces

Let M be a manifold in Man. In the following we fix a choice of sub-Hopf algebra

H ⊆ UVec(M), which we shall interpret as the symmetries of M along which we

want to perform the deformation quantization. See Examples 4.2.1 and 4.2.2 below

for typical choices in the context of flux compactifications of closed string theory.

Let us denote by A := C∞(M) the algebra of complex-valued smooth functions

on M . The action of vector fields on A as derivations can be extended to an H-action

. : H ⊗ A→ A, which preserves the product and unit in A, i.e.

h . (a b) =
(
h(1) . a

) (
h(2) . b

)
, h . 1 = ε(h) 1 , (4.2.1)

for all h ∈ H and a, b ∈ A. Here we have used the Sweedler notation ∆(h) =

h(1)⊗ h(2) (with summations understood) to abbreviate the coproduct. In technical

terms (4.2.1) states that A is an H-module algebra.

The commutative and associative algebra A can be deformed by using a cochain

twist F of H into a noncommutative cochain twist F and nonassociative algebra

A?. The product µ in the algebra A is deformed using the cochain twist F to a

noncommutative and nonassociative ?-product

µ? := µ ◦ F−1 . (4.2.2)

We denote the resulting noncommutative and nonassociative algebra by A? and

abbreviate the ?-product as a ? b := µ?(a ⊗ b), for a, b ∈ A?. In the spirit of

noncommutative geometry, we interpret the algebra A? as (the algebra of functions

on) a noncommutative and nonassociative space.

By construction, the original H-action . : H ⊗ A → A induces an HF -action

. : HF ⊗ A? → A?, which preserves the product and unit in A?, i.e.

h . (a ? b) =
(
h(1)F . a

)
?
(
h(2)F . b

)
, h . 1 = εF (h) 1 , (4.2.3)
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for all h ∈ HF and a, b ∈ A?. Indeed we have by the definition of the twisted

coproduct ∆F in HF that

h . (a ? b) = µ ◦ (ρA ⊗ ρA)(∆(h)F−1)(a⊗F b)

= µ ◦ (ρA ⊗ ρA)(F−1 F∆(h)F−1)(a⊗F b)

= µ ◦ (ρA ⊗ ρA)(F−1 ∆F (h))(a⊗F b)

= µ? ◦ (ρA ⊗ ρA)(∆F (h))(a⊗F b)

=
(
h(1)F . a

)
?
(
h(2)F . b) . (4.2.4)

and by the definition εF = ε that

h . 1 = ε(h) 1 = εF (h) 1 , (4.2.5)

for any h ∈ HF and a, b ∈ A?. Here we have used the Sweedler notation ∆F (h) =

h(1)F ⊗ h(2)F (with summations understood) to abbreviate the deformed coproduct.

It is important to observe that the noncommutativity of A? is controlled by the

triangular R-matrix

RF = F21RF
−1 = R

(1)
F ⊗R

(2)
F (4.2.6)

in HF ⊗HF , where R = 1⊗ 1 in the original Hopf algebra H and F21 = F (2) ⊗ F (1)

is the twist with flipped legs. Explicitly, the ?-product is commutative up to the

action of RF , i.e.

a ? b =
(
R

(2)
F . b

)
?
(
R

(1)
F . a

)
, (4.2.7)

for all a, b ∈ A?. Similarly, the nonassociativity of A? is controlled by the associator

φF = φ
(1)
F ⊗φ

(2)
F ⊗φ

(3)
F in HF ⊗HF ⊗HF given by (2.1.109) with φ = 1⊗1⊗1 in the

original Hopf algebra H. Explicitly, the ?-product is associative up to the action of
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φF , i.e.

(a ? b) ? c = (φ
(1)
F . a) ?

(
(φ

(2)
F . b) ? (φ

(3)
F . c)

)
, (4.2.8)

for all a, b, c ∈ A?. In technical terms (4.2.3) together with (4.2.2), (4.2.7) and

(4.2.8) states that A? is a braided commutative HF -module algebra.

We revisit examples 4.1.8 and 4.1.9 in the context of flux compactifications of

closed string theory.

Example 4.2.1 (Q-flux compactification). Let M = Rm and consider the Abelian

cocycle twist (with summation over i, j, . . . understood here and in the following)

F = exp
(
− i ~

2
Θij Pi ⊗ Pj

)
(4.2.9)

based on the cocommutative Hopf algebra H = Ug, where g is the Abelian Lie alge-

bra of infinitesimal translations {Pi : 1 ≤ i ≤ m} and Θ = (Θij)mi,j=1 = (Qij
k w

k)mi,j=1,

with wk coordinates on the phase space, is an antisymmetric real-valued m × m-

matrix which arises from a constant non-geometric Q-flux of closed string the-

ory [20, 10]. In this example we have

RF = F−2 = exp
(
i ~Θij Pi ⊗ Pj

)
, φF = 1⊗ 1⊗ 1 . (4.2.10)

In particular A? is strictly associative for this choice of twist.

Example 4.2.2 (R-flux compactification). Let M = R2n = Rn × Rn and consider

the non-Abelian cochain twist

F = exp
(
− i ~

2

(
1
4
Rijk (Mij ⊗ Pk − Pi ⊗Mjk) + Pi ⊗ P̃ i − P̃ i ⊗ Pi

))
(4.2.11)

based on the cocommutative Hopf algebra H = Ug, where g is the non-Abelian

nilpotent Lie algebra of infinitesimal translations and Bopp shifts {Pi, P̃ i,Mij :

1 ≤ i < j ≤ n}; the nontrivial Lie bracket relations are given by [ P̃ i,Mjk] =

δij Pk − δik Pj. Here R = (Rijk)ni,j,k=1 is a completely antisymmetric real-valued
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tensor of rank 3 which arises from a constant non-geometric R-flux of closed string

theory [27]. In this example we have

RF = F−2 , φF = exp
(~2

2
Rijk Pi ⊗ Pj ⊗ Pk

)
. (4.2.12)

In particular A? is not strictly associative for this choice of twist.

4.2.2 Vector bundles

Given any (complex) vector bundle E → M over the manifold M , we can consider

its smooth sections Γ∞(E), which is a bimodule over A = C∞(M) with respect

to the usual pointwise module structures. To simplify our considerations in this

section, we assume that E → M is a trivial complex vector bundle of rank n, i.e.

E = M × Cn →M with bundle projection given by projecting on the first factor.

The sections of a trivial vector bundle over M of rank n can be described by a

free A-bimodule V = An. Elements v ∈ V are thus given by column vectors with

entries in A (cf. Examples 2.1.17 and 2.3.4), i.e.

v =


v1

...

vn

 , vi ∈ A , i = 1, . . . , n . (4.2.13)

Alternatively, we can make use of the standard basis {ei}ni=1 and write

v = ei v
i , vi ∈ A , i = 1, . . . , n . (4.2.14)

The left and right A-actions on V are given componentwise, i.e.

a v := ei (a v
i) , (4.2.15a)

v a := ei (v
i a) , (4.2.15b)

for all a ∈ A and v ∈ V . Similarly, we equip V with a componentwise H-action
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. : H ⊗ V → V , i.e.

h . v := ei (h . v
i) , (4.2.16)

for all h ∈ H and v ∈ V . It follows that

h . ei = ε(h) ei , (4.2.17)

for all h ∈ H and i = 1, . . . , n, i.e. the basis {ei}ni=1 is H-invariant. As a consequence

of (4.2.1), we obtain further that

h . (a v) =
(
h(1) . a

) (
h(2) . v

)
, (4.2.18a)

h . (v a) =
(
h(1) . v

) (
h(2) . a

)
, (4.2.18b)

for all a ∈ A, v ∈ V and h ∈ H. In technical terms (4.2.18) states that V is an

H-module bimodule over the H-module algebra A.

We have explained how a twist F ∈ H⊗H can be used to deform the Hopf algebra

H to a quasi-Hopf algebra HF , and the commutative and associative algebra A to

a noncommutative and nonassociative algebra A?. Similarly, we can deform V into

an HF -module A?-bimodule V? by introducing the HF and A?-actions

h . v := ei (h . v
i) , (4.2.19a)

a ? v := ei (a ? v
i) , (4.2.19b)

v ? a := ei (v
i ? a) , (4.2.19c)

for all h ∈ HF , a ∈ A? and v ∈ V?. One easily verifies the compatibility conditions

between the HF and A?-actions

h . (a ? v) =
(
h(1)F . a

)
?
(
h(2)F . v

)
, (4.2.20a)

h . (v ? a) =
(
h(1)F . v

)
?
(
h(2)F . a

)
, (4.2.20b)
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for all h ∈ HF , a ∈ A? and v ∈ V?. In the spirit of noncommutative geometry, we

interpret V? as (the module of sections of) a vector bundle over A?.

Noncommutativity of the A?-bimodule structure is controlled as in (4.2.7) by the

R-matrix RF , i.e.

a ? v =
(
R

(2)
F . v

)
?
(
R

(1)
F . a

)
, (4.2.21a)

v ? a =
(
R

(2)
F . a

)
?
(
R

(1)
F . v

)
, (4.2.21b)

for all a ∈ A? and v ∈ V?, while nonassociativity is controlled as in (4.2.8) by the

associator φF , i.e.

(a ? b) ? v = (φ
(1)
F . a) ?

(
(φ

(2)
F . b) ? (φ

(3)
F . v)

)
, (4.2.22a)

v ? (a ? b) =
(
(φ

(−1)
F . v) ? (φ

(−2)
F . a)

)
? (φ

(−3)
F . b) , (4.2.22b)

for all a, b ∈ A? and v ∈ V?. Here we have denoted the components of the inverse

associator by φ−1
F = φ

(−1)
F ⊗ φ(−2)

F ⊗ φ(−3)
F (with summations understood).

4.2.3 Homomorphism bundles

Many interesting objects in differential geometry are described by maps between

vector bundles. For example, the curvature of a connection on a vector bundle

E → M is a map E → E ⊗
∧2 T ∗M where

∧2 T ∗M is the exterior bundle of

alternating 2-forms on the tangent bundle. Recall that vector bundle maps be-

tween two vector bundles E → M and E ′ → M can be equivalently described by

sections of the homomorphism bundle hom(E,E ′) → M (cf. (4.1.21)). The mod-

ule of sections Γ∞(hom(E,E ′)) of the homomorphism bundle is isomorphic (as a

C∞(M)-bimodule) to the module of right module maps homC∞(M)(Γ
∞(E), Γ∞(E ′))

(cf. (4.1.32c)); the latter are linear maps L : Γ∞(E)→ Γ∞(E ′) which satisfy addi-

tionally the right C∞(M)-linearity condition

L(v a) = L(v) a , (4.2.23)
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for all v ∈ Γ∞(E) and a ∈ C∞(M).

Our goal now is to describe the analog of homomorphism bundles in our noncom-

mutative and nonassociative framework. Given two modules V? = An? and W? = Am? ,

we first consider the vector space of linear maps homF (V?,W?) from V? to W?. This

vector space comes together with a natural HF -action . : HF ⊗ homF (V?,W?) →

homF (V?,W?) given by the adjoint action

h . L :=
(
h(1)F . ·

)
◦ L ◦

(
SF (h(2)F ) . ·

)
, (4.2.24)

for all h ∈ HF and L ∈ homF (V?,W?). It is important to stress that we do not require

the linear maps L : V? → W? to preserve the HF -action. As explained in Chapter

2, this would lead to an overly rigid framework for studying noncommutative and

nonassociative geometry.

The standard operations of evaluating linear maps homF (V?,W?) on elements

in V? and composing or tensoring linear maps with each other are in general not

compatible with the HF -action given in (4.2.24). In particular, for generic cochain

twists F we have the non-equality

h .
(
L(v)

)
6=
(
h(1)F . L

)(
h(2)F . v

)
, (4.2.25)

for some h ∈ H, L ∈ homF (V?,W?) and v ∈ V?. Using internal homomorphism

techniques from category theory, one can show that there exist deformations of the

evaluation, composition and tensor product operations which are compatible with

the HF -actions (cf. Subsections 2.2.7 and 2.2.12. We denote these by

evF : homF (V?,W?)⊗? V? −→ W? , (4.2.26a)

•F : homF (W?, X?)⊗? homF (V?,W?) −→ homF (V?, X?) , (4.2.26b)

⊗• F : homF (V?, X?)⊗? homF (W?, Y?) −→ homF (V? ⊗?W?, X? ⊗? Y?) . (4.2.26c)

The ?-tensor product V? ⊗? W? is the ordinary tensor product of vector spaces
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equipped with the HF -action

h . (v ⊗? w) =
(
h(1)F . v

)
⊗?
(
h(2)F . w

)
, (4.2.27)

for all h ∈ HF , v ∈ V? and w ∈ W?. For the example of the evaluation evF ,

compatibility with the HF -actions means that

h . evF (L⊗? v) = evF
(
(h(1)F . L)⊗? (h(2)F . v)

)
, (4.2.28)

for all h ∈ H, L ∈ homF (V?,W?) and v ∈ V?, which resolves the problem encountered

in (4.2.25).

The HF -compatible version of the right A-linearity condition (4.2.23) is given by

the weak right A?-linearity condition

evF
(
L⊗? (v ? a)

)
= evF

(
(φ

(−1)
F . L)⊗? (φ

(−2)
F . v)

)
? (φ

(−3)
F . a) , (4.2.29)

for all v ∈ V? and a ∈ A?. This formula arises from the following calculation: From

Lemma 2.3.11 we have the braided left A?-linearity condition [L, a]? = 0 which we

argued is the correct generalisation of right A-linearity to internal homomorphisms.

Evaluating this equation on some v ∈ V?, we obtain

evF
(
[L, a]? ⊗? v

)
= 0 . (4.2.30)

Using now the evaluation identity (2.2.58) together with the left A?-linearity of evF

(cf. Remark 2.3.13), we can simplify this equation and obtain

evF

(
(φ

(1)
F . L)⊗?

(
(φ

(2)
F . a) ? (φ

(3)
F . v )

))
= (φ

(1)
F R

(2)
F . a) ? evF

(
(φ

(2)
F R

(1)
F . L)⊗? (φ

(3)
F . v)

)
, (4.2.31)

for all homogeneous a ∈ A and v ∈ V . Finally using the braided symmetry of W?

and the R-matrix axioms (2.1.103b) and cancelling an occurrence of the associator

from both sides we obtain equation (4.2.29). We denote by homA?(V?,W?) the vec-
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tor space of all linear maps L ∈ homF (V?,W?) which satisfy the condition (4.2.29).

It can be shown that homA?(V?,W?) is an HF -module A?-bimodule, and hence a

noncommutative and nonassociative vector bundle in its own right (cf. Subsection

2.3.5). We interpret homA?(V?,W?) as (the module of sections of) the homomor-

phism bundle from V? to W?.

As V? = An? and W? = Am? are by assumption free A?-bimodules (as are X? and

Y?), we can make use of the corresponding bases {ei}ni=1 and {ej}mj=1 to find simple

expressions for the homomorphisms homA?(V?,W?), and in particular the operations

(4.2.26). In the following, we shall denote (with an abuse of notation) all bases by

the same symbols.

Evaluation: Because of the weak right A?-linearity condition (4.2.29), any L ∈

homA?(V?,W?) is specified by its evaluation on the basis {ei}ni=1 of V?. Using also

the basis {ej}mj=1 of W?, we have the expansion

evF (L⊗? ei) = ej L
j
i , (4.2.32)

which allows us to characterize L in terms of an m×n-matrix with coefficients given

by Lj i ∈ A?. Hence we have established an isomorphism of vector spaces

homA?(V?,W?) −→ Am×n? , L 7−→ (Lj i) , (4.2.33)

which assigns to any L its matrix representation. For a generic element v = ei v
i ∈ V?

the evaluation of L ∈ homA?(V?,W?) on v can then be expressed as

evF (L⊗? v) = evF (L⊗? (ei v
i))

= evF
(
(φ

(−1)
F . L)⊗? (φ

(−2)
F . ei)

)
? (φ

(−3)
F . vi)

= evF
(
L⊗? ei

)
? vi

= (ej L
j
i) ? v

i = ej (Lj i ? v
i) . (4.2.34)
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In the second step we have used (4.2.29) and ei v
i = ei ? v

i, which follows from

HF -invariance of the basis and normalization of the twist. The third step follows by

using again HF -invariance of the basis and also normalization of the associator.

Because the evaluation operation is compatible with the HF -actions, it follows

that

evF
(
(h . L)⊗? ei

)
= evF

(
h . (L⊗? ei)

)
= h . evF

(
L⊗? ei

)
= ej

(
h . Lj i

)
,

(4.2.35)

for all h ∈ HF and L ∈ homA?(V?,W?), where in the first step we have used again

HF -invariance of the basis. It follows that, by equipping Am×n? with the componen-

twise HF -action, the isomorphism (4.2.33) is an isomorphism of HF -modules. By

equipping Am×n? further with the componentwise A?-bimodule structure, the map

(4.2.33) is an isomorphism of HF -module A?-bimodules.

Composition: Given V? = An? , W? = Am? and X? = Al?, one can show by similar

calculations that the composition L′•FL ∈ homA?(V?, X?) of any L ∈ homA?(V?,W?)

and L′ ∈ homA?(W?, X?) is given by the components

evF
((
L′ •F L

)
⊗? ei

)
= ek

(
L′ kj ? L

j
i

)
. (4.2.36)

Hence the isomorphism (4.2.33) sends the composition operation •F to the ?-matrix

product

? : Al×m? ⊗? Am×n? −→ Al×n? , (L′ kj)⊗? (Lj i) 7−→ (L′ kj ? L
j
i) . (4.2.37)

In the special case where V? = W? = X?, it follows that the endomorphism algebra

endA?(V?) := homA?(V?, V?) (with product •F ) is isomorphic to the ?-matrix product

algebra An×n? .

Tensor product: Given V? = An? , W? = Am? , X? = Al? and Y? = Ap?, one can show

by similar calculations that the tensor product L′⊗• ?L ∈ homA?(V?⊗?W?, X?⊗? Y?)
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of any L ∈ homA?(V?, X?) and L′ ∈ homA?(W?, Y?) is given by the components

evF
(
(L⊗• F L′)⊗? (ei ⊗? ej)

)
= (ek ⊗? er) (Lki ? L

′ r
j) . (4.2.38)

Hence the isomorphism (4.2.33) sends the tensor product operation ⊗• ? to the ?-outer

product

⊗? : Al×n? ⊗? Ap×m? −→ A(l p)×(nm)
? , (Lki)⊗? (L′ rj) 7−→ (Lki ? L

′ r
j) . (4.2.39)

4.2.4 Form-valued homomorphism bundles

As we shall see in more detail in the next sections, many homomorphisms in dif-

ferential geometry are valued in the exterior algebra of differential forms Ω]
? on A?,

i.e. they are maps L ∈ homA?(V?,W? ⊗A? Ω]
?) for some modules V? and W? where

V? ⊗A? W? is the quotient of V? ⊗?W? by the relations

(v ? a)⊗? w = (φ
(1)
F . v)⊗?

(
(φ

(2)
F . a) ? (φ

(3)
F . w)

)
, (4.2.40)

for all a ∈ A?, v ∈ V? and w ∈ W?. In Chapter 3 we made an identification

W? ⊗A? Ω]
?
∼= W? using the right unitor in a monoidal category wherein Ω]

? is the

unit object. This was done for formal convenience. Here we do not make this

identification but rather, as is more natural in a physics context, keep the tensor

product with Ω]
? explicit.

The differential forms Ω]
? on A? are obtained by twisting, with respect to the

cochain twist F ∈ H ⊗H, the differential forms Ω](M) on the underlying classical

manifold M : As vector spaces Ω]
? = Ω](M), while the product on Ω]

? is given by the

?-exterior product

∧? := ∧ ◦ F−1 : Ωp
? ⊗? Ωq

? −→ Ωp+q
? . (4.2.41)

The relevant H-action on Ω](M) is given by the Lie derivative of vector fields on

forms. Similarly to (4.2.7), the (graded) noncommutativity of the ?-exterior product
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is controlled by the R-matrix,

ω ∧? ω′ = (−1)|ω| |ω
′| (R(2)

F . ω′
)
∧?
(
R

(1)
F . ω

)
, (4.2.42)

for all homogeneous forms ω, ω′ ∈ Ω]
?. Nonassociativity is controlled as in (4.2.8) by

the associator

(
ω ∧? ω′

)
∧? ω′′ = (φ

(1)
F . ω) ∧?

(
(φ

(2)
F . ω′) ∧? (φ

(3)
F . ω′′)

)
, (4.2.43)

for all ω, ω′, ω′′ ∈ Ω]
?. The differential

d : Ωp
? −→ Ωp+1

? (4.2.44)

on Ω]
? is given by the ordinary de Rham exterior derivative and it satisfies the graded

Leibniz rule

d(ω ∧? ω′) = dω ∧? ω′ + (−1)|ω| ω ∧? dω′ , (4.2.45)

for all homogeneous forms ω, ω′ ∈ Ω]
?. (Note that d here satisfies the properties of

d(1) in the categorical formalism described in Chapter 3.)

Because Ω]
? is a graded HF -module algebra and not only an HF -module A?-

bimodule, the modules of homomorphisms homA?(V?,W? ⊗A? Ω]
?) may be equipped

with additional structures, which we shall now briefly describe. For this, we intro-

duce the notation

V ]
? := V? ⊗A? Ω]

? (4.2.46)

to denote the tensor product of the module V? with the module of differential forms

Ω]
?. A generic element in V ]

? is of the form ei⊗A?ωi, where ωi ∈ Ω]
?. Notice that V ]

? is

a graded module, with V p
? = V?⊗A? Ωp

?. Because Ω]
? is a graded HF -module algebra,

V ]
? is moreover a graded HF -module Ω]

?-bimodule with left and right Ω]
?-action given
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by the ?-exterior product, i.e.

(ei ⊗A? ωi) ∧? ω′ := ei ⊗A?
(
ωi ∧? ω′

)
, (4.2.47a)

ω′ ∧? (ei ⊗A? ωi) := ei ⊗A?
(
ω′ ∧? ωi

)
, (4.2.47b)

for all ωi, ω′ ∈ Ω]
?. (Notice that this definition uses HF -invariance of the basis ei.)

We shall now show that the module of homomorphisms homA?(V?,W?⊗A? Ω]
?) is

isomorphic (as an HF -module A?-bimodule) to the module homΩ]?
(V ]

? ,W
]
?) of weak

right Ω]
?-linear maps, which is characterized by the condition (compare with (4.2.29))

evF

(
L⊗?

(
(ei ⊗A? ωi) ∧? ω′

))
=

evF

(
(φ

(−1)
F . L)⊗?

(
ei ⊗A? (φ

(−2)
F . ωi)

))
∧? (φ

(−3)
F . ω′) , (4.2.48)

for all ωi, ω′ ∈ Ω]
?. In fact, following the same arguments as before, we use the

bases of V? = An? and W? = Am? to show that there is an isomorphism of HF -module

Ω]
?-bimodules

homΩ]?
(V ]

? ,W
]
?) −→ Ω]

?

m×n
, L 7−→ (Lj i) . (4.2.49)

The matrix coefficients are defined by

evF
(
L⊗? (ei ⊗A? 1)

)
= ej ⊗A? Lj i , (4.2.50)

where 1 ∈ A? ⊆ Ω]
? is the unit element. Any element L ∈ homA?(V?,W? ⊗A? Ω]

?)

has exactly the same expansion in the bases of V? and W?, hence we can define an

isomorphism

( · )] : homA?(V?,W? ⊗A? Ω]
?) −→ homΩ]?

(V ]
? ,W

]
?) (4.2.51)

by going via the matrix representations.

Given V? = An? , W? = Am? and X? = Al?, we use the isomorphisms (4.2.51) and
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(4.2.49) to define a composition operation

•F : homA?(W?, X? ⊗A? Ω]
?)⊗? homA?(V?,W? ⊗A? Ω]

?) −→ homA?(V?, X? ⊗A? Ω]
?)

(4.2.52a)

in terms of the ∧?-matrix product

∧? : Ω]
?

l×m ⊗A? Ω]
?

m×n −→ Ω]
?

l×n
, (L′ kj)⊗A? (Lj i) 7−→ (L′ kj ∧? Lj i) .

(4.2.52b)

Given V? = An? , W? = Am? , X? = Al? and Y? = Ap?, we define a tensor product

operation

⊗• ? : homA?(V?, X? ⊗A? Ω]
?)⊗? homA?(W?, Y? ⊗A? Ω]

?) −→

homA?

(
V? ⊗A? W?, (X? ⊗? Y?)⊗A? Ω]

?

)
(4.2.53a)

in terms of the ∧?-outer product

⊗? : Ω]
?

l×n ⊗A? Ω]
?

p×m −→ Ω]
?

(l p)×(nm)
, (Lki)⊗A? (L′ rj) 7−→ (Lki ∧? L′ rj) .

(4.2.53b)

These operations generalize (4.2.37) and (4.2.39) to form-valued homomorphisms.

4.3 Nonassociative connections and curvature

4.3.1 Connections

A nonassociative connection on a module V? is a linear map∇ ∈ homF (V?, V?⊗A?Ω1
?)

which satisfies the Leibniz rule

evF
(
∇⊗? (v ? a)

)
= evF

(
(φ

(−1)
F .∇)⊗? (φ

(−2)
F . v)

)
? (φ

(−3)
F . a) + v ⊗? d a ,

(4.3.1)
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for all v ∈ V? and a ∈ A?, where d is the exterior derivative of the differential

calculus Ω]
?. Again equation (4.3.1) follows by a similar calculation to that in (4.2.31)

from the condition [L, a]? = l̂?(ev?(d(1) ⊗? a)) in Lemma 3.3.2 for a connection

∇ = (L, 1) ∈ con(V?). One also has to use item (i) of Lemma 2.1.26 together with

the braided symmetry of V? ⊗A? Ω]
? and the the braided symmetry of V? (viewed as

a right Ω]
?-module) and ev

(
ρΩ1

?
(β) ◦ d(1)⊗ a

)
= d a.

We denote the space of connections on V? by conF (V?) and note that it is an

affine space over the module of homomorphisms homA?(V?, V? ⊗A? Ω1
?).

As V? = An? is by assumption a free A?-bimodule, we can describe any connection

∇ ∈ conF (V?) in terms of its coefficients Γj i ∈ Ω1
? defined by

evF (∇⊗? ei) =: ej ⊗A? Γj i . (4.3.2)

Using (4.3.1), after a short calculation we obtain

evF (∇⊗? v) = ei ⊗A?
(
dvi + Γij ? v

j
)
, (4.3.3)

for all v = ei v
i ∈ V?.

As conF (V?) ⊆ homF (V?, V? ⊗A? Ω1
?) is an affine subspace, we can act with any

h ∈ HF on a connection ∇ and obtain an element h . ∇ ∈ homF (V?, V? ⊗A? Ω1
?),

which however in general does not lie in conF (V?): In contrast to the Leibniz rule

(4.3.3), h .∇ satisfies

evF
(
(h .∇)⊗? v

)
= ei ⊗A?

(
εF (h) dvi + (h . Γij) ? v

j
)
, (4.3.4)

for all v = ei v
i ∈ V?. In particular, if h ∈ HF satisfies εF (h) = 1 then h . ∇ ∈

conF (V?), while if εF (h) = 0 then h .∇ ∈ homA?(V?, V? ⊗A? Ω1
?).

Similarly to the case of homomorphisms (4.2.51), we can lift connections ∇ ∈

conF (V?) to linear maps ∇] ∈ endF (V ]
? ), which then satisfy the condition

evF
(
∇] ⊗? (ei ⊗A? ωi)

)
= ei ⊗A?

(
dωi + Γij ∧? ωj

)
, (4.3.5)
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for all ωi ∈ Ω]
?. Notice that (4.3.5) implies the graded Leibniz rule

evF
(
∇] ⊗? (s ∧? ω′)

)
=

evF
(
(φ

(−1)
F .∇])⊗? (φ

(−2)
F . s)

)
∧? (φ

(−3)
F . ω′) + (−1)|s| s ∧? dω′ , (4.3.6)

for all homogeneous forms s = ei ⊗? ωi ∈ V ]
? and ω′ ∈ Ω]

?. This follows from the

calculation

evF
(
∇] ⊗? (s ∧? ω′)

)
= ei ⊗A?

(
d(ωi ∧? ω′) + Γij ∧? (ωj ∧? ω′)

)
= ei ⊗A?

(
dωi ∧? ω′ + ωi ∧? dω′ +

(
(φ

(−1)
F . Γij) ∧? (φ

(−2)
F . ωj)

)
∧? (φ

(−3)
F . ω′)

)
= evF

(
(φ

(−1)
F .∇])⊗? (φ

(−2)
F . s)

)
∧? (φ

(−3)
F . ω′) + (−1)|s| s ∧? dω′ . (4.3.7)

The first equality follows from (4.3.3), the second equality follows from (4.2.45) and

(4.2.43), and the third equality follows from (4.3.4) together with the normalisation

of the associator.

4.3.2 Connections on tensor products

Given V? = An? and W? = Am? , together with connections ∇ ∈ conF (V?) and ∇′ ∈

conF (W?), we can construct a connection on V? ⊗A? W? by taking their sum ∇ �• F

∇′ (cf. Subsection 3.3.2). In terms of the coefficients Γki,Γ
′ l
j ∈ Ω1

?, the sum of

connections takes a simple form and it is specified by the coefficients

evF
(
(∇�• F ∇′)⊗? (ei ⊗A? ej)

)
= (ek ⊗A? el)⊗A?

(
Γki δ

l
j + δki Γ′ lj

)
. (4.3.8)

On a generic element v⊗A?w = ei⊗A?ej (vi?wj) ∈ V?⊗A?W?, the sum of connections

acts as

evF
(
(∇�• F ∇′)⊗? (v ⊗A? w)

)
=

(ek ⊗A? el)⊗A?
(
d(vk ? wl) + Γki ∧? (vi ? wl) + Γ′ lj ∧? (vk ? wj)

)
. (4.3.9)
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This follows directly from (4.3.3) with (4.3.8) for the connection ∇�• F ∇′.

The sum of connections can be consistently extended to tensor products of finitely

many modules by inductively using (4.3.8). For example, given V? = An? , W? = Am?

and X? = Al?, together with connections ∇ ∈ conF (V?), ∇′ ∈ conF (W?) and ∇′′ ∈

conF (X?), then (∇ �• F ∇′) �• F ∇′′ ∈ conF ((V ⊗A? W?) ⊗A? X?) is specified by the

connection coefficients

evF

((
(∇�• F ∇′) �• F ∇′′

)
⊗?
(
(ei ⊗A? ej)⊗A? ek

))
=(

(ei′ ⊗A? ej′)⊗A? ek′
)
⊗A?

(
Γi
′
i δ

j′
j δ

k′
k + δi

′
i Γ′ j

′
j δ

k′
k + δi

′
i δ

j′
j Γ′′ k

′
k

)
. (4.3.10)

Moreover, (∇ �• F ∇′) �• F ∇′′ and ∇ �• F (∇′ �• F ∇′′) are related by adjoining the

associator

(∇�• F ∇′) �• F ∇′′ = φ−1
F ◦

(
∇�• F (∇′ �• F ∇′′)

)
◦ φF . (4.3.11)

4.3.3 Connections on homomorphism bundles

Given V? = An? and W? = Am? , together with connections ∇ ∈ conF (V?) and

∇′ ∈ conF (W?), we can construct a connection on homA?(V?,W?) by taking their

adjoint ad•F (∇′,∇) (cf. 3.3.3). In terms of the coefficients Γki,Γ
′ l
j ∈ Ω1

?, the ad-

joint connection takes a simple form: Denoting by {ej i} the basis of homA?(V?,W?)

given by the isomorphism (4.2.33) and the standard basis of Am×n? , the coefficients

of ad•F (∇′,∇) are given by

evF
(
ad•F (∇′,∇)⊗? ej i

)
= ej′

i′ ⊗A?
(
Γ′ j

′
j δ

i
i′ − δj

′
j Γii′

)
. (4.3.12)

This follows from the calculation

evF
(
ad•F (∇′,∇)⊗? ej i

)
= ∇′ • ej i − ej i • ∇

= ev(∇′ ⊗ ev(ej
i ⊗ – ))− ev(ej

i ⊗ ev(∇⊗ – ))

= ej′
i′ ⊗A?

(
Γ′ j

′
j δ

i
i′ − δj

′
j Γii′

)
, (4.3.13)
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using the definition of ad•F and •F together with the H-invariance of the standard

basis and the normalisation of the R-matrix and associator, and (4.3.2) with the

definition of the basis {ej i} in the final step.

On a generic element L = ej
i Lj i ∈ homA?(V?,W?), the adjoint connection acts

as

evF
(
ad•F (∇′,∇)⊗? L

)
=

ej′
i′ ⊗A?

(
dLj

′
i′ + Γ′ j

′
j ? L

j
i′ − (R

(2)
F . Lj

′
i) ? (R

(1)
F . Γii′)

)
, (4.3.14)

where in the last term we have used the R-matrix to rearrange the term Γii′ ? L
j′
i

so that ?-matrix multiplication is obvious. This follows directly from (4.3.3) with

(4.3.12) for the connection ad•F (∇′,∇).

For any two vector bundles V? and W? the adjoint connection ad•F extends to

form-valued homomorphisms L ∈ homA?(V?,W? ⊗A? Ω]
?). The resulting expression

evF
(
ad•F (∇′,∇)⊗? L

)
=

ej′
i′ ⊗A?

(
dLj

′
i′ + Γ′ j

′
j ∧? Lj i′ − (−1)|L| (R

(2)
F . Lj

′
i) ∧? (R

(1)
F . Γii′)

)
(4.3.15)

is very similar to (4.3.14) whereby we simply replace ?-products by ∧?-products and

include a degree-dependent sign factor in front of the last term.

4.3.4 Curvature

The curvature of a connection ∇ ∈ conF (V?) is given by the graded R-matrix com-

mutator

R(∇) := 1
2

[∇],∇]]F := 1
2

(
∇] •F ∇] + (R

(2)
F .∇]) •F (R

(1)
F .∇])

)
(4.3.16)

of its lift ∇] ∈ endF (V ]
? ) defined in (4.3.5). Due to the graded Leibniz rule (4.3.6),

it follows that R(∇) ∈ homA?(V?, V?⊗A? Ω2
?) is a homomorphism valued in 2-forms.
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The coefficients of the curvature are given by

evF
(
R(∇)⊗? ei

)
= ej ⊗A? Rj

i = ej ⊗A?
(
dΓj i + 1

2
[Γ , Γ]?

j
i

)
, (4.3.17a)

where

[Γ , Γ]?
j
i := Γjk ∧? Γki +

(
R

(2)
F . Γjk

)
∧?
(
R

(1)
F . Γki

)
. (4.3.17b)

This follows from (4.3.2), (4.3.3) and (4.3.5) together with Proposition 2.2.13 (ii).

On the sum of connections ∇ ∈ conF (V?) and ∇′ ∈ conF (W?), the curvature

R(∇�• F ∇′) has the desired additive behavior

evF
(
R(∇�• F ∇′)⊗? (ei ⊗A? ej)

)
= (ek ⊗A? el)⊗A?

(
Rk

i δ
l
j + δki R

′ l
j

)
. (4.3.18)

This follows from the result R(∇�• F ∇′) = R(∇)⊗• F 1+1⊗• F R(∇′)) (cf. Proposition

3.4.5) together with (4.2.38).

The Bianchi tensor of a connection ∇ ∈ conF (V?) is defined by acting with the

adjoint connection on the curvature using (4.3.15) to get

Bianchi(∇) := evF
(
ad•F (∇,∇)⊗? R(∇)

)
. (4.3.19)

By definition, it follows that Bianchi(∇) ∈ homA?(V?, V?⊗A?Ω3
?) is a homomorphism

valued in 3-forms. Using (4.3.15) we find

evF
(
Bianchi(∇)⊗? ei

)
= ej ⊗A? Bianchij i = ej ⊗A?

(
dRj

i + [Γ, R]?
j
i

)
, (4.3.20a)

where

[Γ, R]?
j
i := Γjk ∧? Rk

i −
(
R

(2)
F . Rj

k

)
∧?
(
R

(1)
F . Γki

)
. (4.3.20b)

This follows by a simple calculation using (4.3.15).

An interesting consequence of the noncommutativity and nonassociativity of A?
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(which is controlled by the R-matrix and associator) is that in general the Bianchi

tensor does not vanish, i.e. the Bianchi identity is generally violated. However, for

trivial R-matrix and associator we recover the usual Bianchi identity in classical

differential geometry for any connection ∇.

4.4 Nonassociative field theory

4.4.1 Yang-Mills theory

Let M be an oriented m-dimensional manifold equipped with an H-invariant Rie-

mannian or Lorentzian metric. Then the classical Hodge operator ∗M : Ωp(M) →

Ωm−p(M) is H-equivariant, i.e. ∗M ◦ (h . · ) = (h . · ) ◦ ∗M for all h ∈ H. We

equip the deformed differential forms with the same Hodge operator, leading to an

HF -equivariant map

∗M : Ωp
? −→ Ωm−p

? . (4.4.1)

Given any module V? = An? and any connection ∇ ∈ conF (V?), let L(∇) ∈

homA?(V?, V? ⊗? Ωm
? ) be the homomorphism valued in top-forms which is given by

the components

Lj i = 1
2
F j

k ∧? ∗MF k
i , (4.4.2)

where as usual we denote the curvature of a gauge connection by F j
i = dΓj i +

1
2

[Γ , Γ]?
j
i. The action functional for Yang-Mills gauge theory is given by tracing

and integrating L(∇), i.e.

SYM(∇) :=

∫
M

Tr
(
L(∇)

)
=

1

2

∫
M

F j
k ∧? ∗MF k

j . (4.4.3)

We shall now show that, under certain natural conditions on the twist F ∈ H ⊗H

and the connection ∇, the Yang-Mills action (4.4.3) is real-valued.

The first condition is that F is Hermitean, i.e. it defines a Hermitean star-
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product on A?. This means that (a ? b)∗ = b∗ ? a∗, where ∗ denotes the involution

given by pointwise complex conjugation of functions on M . This is clearly the case

for Examples 4.2.1 and 4.2.2 (indeed F ∗ = F21 for the twist in both examples due to

the antisymmetry of Θij resp. Rijk). We extend the involution ∗ on A? to a graded

involution on the differential forms Ω]
? by setting

(ω ∧? ω′)∗ = (−1)|ω| |ω
′| ω′ ∗ ∧? ω∗ , (dω)∗ = dω∗ , (4.4.4)

for all homogeneous forms ω, ω′ ∈ Ω]
?.

The second condition is that ∇ is unitary, i.e. the corresponding connection

coefficients satisfy

Γj i
∗

= −Γij . (4.4.5)

Using (4.3.17) one easily shows that the curvature of a unitary connection is an

anti-Hermitean matrix, i.e.

F j
i
∗

= −F i
j . (4.4.6)

The third condition is the graded 2-cyclicity property

∫
M

ω ∧? ω′ = (−1)|ω| |ω
′|
∫
M

ω′ ∧? ω , (4.4.7)

for all homogeneous forms ω, ω′ ∈ Ω]
?. This property holds for Abelian twists, as

in Example 4.2.1, and also for the nonassociative deformation of Example 4.2.2, see

[27].

The first two conditions imply that the complex conjugate of the action (4.4.3)
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can be simplified as

SYM(∇)∗ =
1

2

∫
M

(
F j

k ∧? ∗MF k
j

)∗
=

1

2

∫
M

∗MF k
j
∗ ∧? F j

k
∗

=
1

2

∫
M

∗MF j
k ∧? F k

j , (4.4.8)

where in the second step we have also used compatibility between the Hodge operator

and the complex conjugation involution. The third condition then implies that we

can interchange the two terms in the last equality of (4.4.8), and hence find that

the noncommutative and nonassociative Yang-Mills action is real, i.e.

SYM(∇)∗ = SYM(∇) . (4.4.9)

In particular, the noncommutative and nonassociative Yang-Mills action (4.4.3) is

real-valued for all unitary connections in Examples 4.2.1 and 4.2.2.

4.4.2 Einstein-Cartan gravity

The field content of Einstein-Cartan gravity is a spin connection ∇ and a vielbein

field E. Let M be an oriented m-dimensional manifold which admits a trivial Dirac

spinor bundle

S = M × C2b
m
2 c −→M . (4.4.10)

We denote the module of sections of the spinor bundle by V := Γ∞(S) = A2b
m
2 c .

Without loss of generality, here we can take H = UVec(M) to be the Hopf

algebra of all infinitesimal diffeomorphisms of M . Then given any cochain twist

F ∈ H⊗H, we twist A = C∞(M) to a noncommutative and nonassociative algebra

A? and V to an HF -module A?-bimodule V? = A2b
m
2 c

? .

A spin connection on V? is a connection ∇ ∈ conF (V?) for which the coefficients
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take the special form

Γj i = 1
4
ωab γab

j
i , (4.4.11)

where ωab ∈ Ω1
? is antisymmetric in ab and γab = 1

2
[γa, γb] is given by the commutator

of the gamma-matrices γa; here the indices a, b, . . . run from 1 to m, the dimension

of M , while i, j, . . . run from 1 to 2b
m
2
c, the rank of the Dirac spinor bundle S.

The curvature (4.3.17) of a spin connection can be computed with some standard

gamma-matrix algebra and it reads as

Rj
i = 1

4
Rab γab

j
i = 1

4

(
dωab + ωac ∧? ωcb

)
γab

j
i , (4.4.12)

where the c-index was lowered by the flat metric ηab. (This follows from properties

of the gamma matrices and the antisymmetry of ωab.)

A vielbein is a homomorphism E ∈ homA?(V?, V? ⊗? Ω1
?) valued in 1-forms for

which the coefficients take the special form

Ej
i = Ea γa

j
i , (4.4.13)

where Ea ∈ Ω1
?.

Let us assume for the moment that the dimension m of M is even. We propose

the noncommutative and nonassociative generalization of the Einstein-Cartan action

functional given by

Seven
EC (∇, E) :=

∫
M

(
E
a1···am

2 −1

left ∧? Ram
2
am

2 +1

)
∧? E

am
2 +2···am

right εa1···am , (4.4.14)

where εa1···am is the antisymmetric tensor and

Ea1···ak
left :=

(
· · ·
(
(E[a1 ∧? Ea2) ∧? Ea3

)
· · ·
)
∧? Eak] , (4.4.15a)

Ea1···ak
right := E[a1 ∧?

(
· · ·
(
Eak−2 ∧? (Eak−1 ∧? Eak])

)
· · ·
)
, (4.4.15b)

is the ∧?-product of k vielbeins in Ωk
? with special bracketing conventions and totally
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antisymmetrized (with weight 1) in the indices a1 · · · ak. This choice of bracketing

allows us to show that the Einstein-Cartan action (4.4.14) is real-valued, under

similar assumptions as for the Yang-Mills action.

Let us now assume that the twist F is Hermitean and further demand the reality

conditions

ωab
∗

= −ωba = ωab , Ea∗ = Ea , (4.4.16)

for the spin connection and vielbein. As a consequence, we obtain

Rab∗ = −Rba = Rab , Ea1···ak
left

∗
= Ea1···ak

right . (4.4.17)

The complex conjugate of the action (4.4.14) can now be simplified as

Seven
EC (∇, E)∗ = (−1)

m
2
−1

∫
M

E
am

2 +2···am
left ∧?

(
R
am

2
am

2 +1 ∧? E
a1···am

2 −1

right

)
εa1···am

=

∫
M

E
a1···am

2 −1

left ∧?
(
R
am

2
am

2 +1 ∧? E
am

2 +2···am
right

)
εa1···am , (4.4.18)

where the sign factor in the first equality is due to (4.4.4). In the second equality

we have reordered the indices of εa1···am by using its total antisymmetry property.

We further assume the 3-cyclicity property

∫
M

(ω ∧? ω′) ∧? ω′′ =
∫
M

ω ∧? (ω′ ∧? ω′′) , (4.4.19)

for all ω, ω′, ω′′ ∈ Ω]
?. This property obviously holds for Abelian twists as in Exam-

ple 4.2.1, because they give strictly associative deformations. For the nonassociative

deformation of Example 4.2.2 the 3-cyclicity property is shown in [27]. We can then

rebracket the expression after the last equality of (4.4.18) and find that the non-

commutative and nonassociative Einstein-Cartan action in even dimensions (4.4.14)

is real, i.e.

Seven
EC (∇, E)∗ = Seven

EC (∇, E) . (4.4.20)
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In the case of an odd-dimensional manifold M , one way to obtain a real-valued

Einstein-Cartan action functional is to modify (4.4.14) as

Sodd
EC (∇, E) :=

1

2

∫
M

(
E
a1···am−1

2 −1

left ∧? R
am−1

2
am−1

2 +1

)
∧? E

am−1
2 +2

···am
right εa1···am

+
1

2

∫
M

(
E
a1···am−1

2
left ∧? R

am−1
2 +1

am−1
2 +2

)
∧? E

am−1
2 +3

···am
right εa1···am , (4.4.21)

where in the first line the form degree of Eright is larger by 1 than the form degree

of Eleft and vice versa in the second line. Under the same assumptions as in the

even-dimensional case, one can show that the action (4.4.21) is real-valued, i.e.

Sodd
EC (∇, E)

∗
= Sodd

EC (∇, E) . (4.4.22)

In fact, the second term in (4.4.21) is the conjugate of the first term and vice versa.

In particular, the noncommutative and nonassociative Einstein-Cartan gravity

action in even dimensions (4.4.14) and in odd dimensions (4.4.21) is real-valued in

Examples 4.2.1 and 4.2.2.

4.5 Summary

In this chapter we have applied the constructions in Chapter 2 to the concrete exam-

ples of deformation quantization of G-equivariant vector bundles over G-manifolds.

In particular we constructed a functor between the category of G-manifolds and the

category of commutative algebra objects in the representation category of the quasi-

Hopf algebra obtained by cochain twisting the universal enveloping algebra of the

Lie algebra g of G. This clarified what we mean by a noncommutative and nonasso-

ciative space as a commutative algebra object in [UgF ,M ]. We also constructed a

closed braided monoidal functor between the category of G-equivariant vector bun-

dles over a manifold M and the category of symmetric bimodules over C∞(M)F the

twisted function algebra on M . This clarified what we mean by a noncommutative

and nonassociative vector bundle as a symmetric bimodule object in [UgF ,M ]. We
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also provided examples of noncommutative and nonassociative spaces which fit into

this framework which include the Q and R-flux compactifications of closed string

theory. Finally we considered how the constructions in Chapter 3 may be applied

in the simplest model of cochain twist deformations of trivial vector bundles over

noncommutative and nonassociative spaces and provided physically viable action

functionals for Yang-Mills theory and Einstein-Cartan gravity on noncommutative

and nonassociative spaces. This concludes the technical part of this thesis.
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Conclusion

5.1 Summary and main contributions

This thesis aimed to provide a rigorous mathematical framework for noncommuta-

tive geometry that could be generalised also to nonassociative structures. Within

this framework it aimed to provide an abstractly motivated procedure to lift non-

commutative connections to tensor products of vector bundles and also to tensor

fields. In this sense it aimed to clarify and generalise the formalism developed in [6]

in an approach similar to that taken in [13] but making use of internal homomor-

phisms rather than morphisms for the construction of geometric entities in order to

solve the problem of quantum rigidity for the configuration space of noncommuta-

tive connections. It also aimed to provide a first step towards understanding the

effect of noncommutative and nonassociative deformations of spacetime geometry

on models of quantum gravity.

The key insight in Chapter 2 was that, in addition to being braided monoidal,

the representation category of a triangular quasi-Hopf algebra is closed. This is an

important observation since it enables us to enlarge the morphisms of the represen-

tation category of a quasi-Hopf algebra by internal homomorphisms and ultimately

provide sufficiently large configuration spaces for noncommutative connections with

also more potential for dynamical field content. A minor technical point in this

chapter was to find the correct form of the coherence map for the cochain twisting

of the internal hom-structure and also, importantly, the form of the tensor product

morphism for internal homomorphisms with which connections are lifted to tensor

products in Chapter 3.

We saw in Chapter 2 that the internal homomorphisms carry an adjoint action of

H and come equipped with a currying map from which the non-trivial structures of
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evaluation, composition and tensor product morphisms for internal homomorphisms

are built. Regarding all geometric quantities as internal hom-objects means they

can transform non-trivially under the adjoint H-action (not like morphisms which

must preserve H-action) and must be evaluated, composed and tensor producted

with the internal operations of evaluation, composition and tensor product which

differ from the standard operations.

In Chapter 2 we aimed to make all proofs element-independent in order to see

that our results are model independent and generalisable to other closed braided

monoidal categories which are complete (have all limits) and cocomplete (have all

colimits). This element-independent approach also made proofs simpler usually

reducing them to simply manipulating the axioms of a triangular quasi-Hopf alge-

bra and its representations. This model-independence may open possible directions

for future work. We also understood twist deformation quantisation as a diagram-

matic program. In particular we understood that the twist deformation quantisation

functor is determined by the structures of the representation category. From this

perspective we could understand the origin of the explicit expression for the curry-

ing map in the category [H,M ] as the structure which arises under applying the

coherence maps to cochain twisting the evaluation of internal homomorphisms.

To summarise, the important contributions of Chapter 2 were to show that the

morphisms in [H,M ] are contained in the internal homomorphisms, to find a tensor

product operation for internal homomorphisms which was used in Chapter 3 for

defining the lift of connections to tensor products, and to build a commutator for

the internal endomorphism algebra of an object which endows it with the structure

of a Lie algebra. This structure is used in many proofs of properties of geometric

quantities in Chapter 3.

In Chapter 3 we formulated notions of classical differential geometry on one al-

gebra object and its bimodule objects using universal constructions internal to the

representation category of an arbitrary triangular quasi-Hopf algebra. Most impor-

tantly we were able to make use of the categorical formalism developed in Chapter

2 to make structurally correct definitions for the notions of connections together
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with their tensor product structure. Rather than simply replacing operations by

?-products the framework explicitly indicates where to insert instances of the asso-

ciator and R-matrices. In Chapter 4 we saw that the correct formulae are indeed

in general obtained simply by replacing operations by ?-products, but this is in the

very simplest setting of trivial vector bundles and it is not expected to remain true

for arbitrary vector bundles. Our formalism has nonetheless justified the replacing

of operations by ?-products in the setting of trivial vector bundles used most often

in noncommutative geometry.

To summarise, the main contributions of Chapter 3 were to provide morphisms

for lifting connections to tensor products and internal homomorphisms, and also to

provide a categorical description of a left-right symmetric definition of curvature.

In Chapter 4 we applied the framework developed in Chapter 3 to obtain explicit

expressions for connections and their curvatures on noncommutative and nonasso-

ciative vector bundles in the simplest example of cochain twist deformations of

trivial vector bundles over noncommutative and nonassociative spaces and we pro-

vided physically viable action functionals for Yang-Mills theory and Einstein-Cartan

gravity. The latter was inspired by the work in [3]. In that paper extra terms had

to be added to the curvature and spin connection. Using our categorical formalism

we have shown that these additional terms are unnecessary. Although Chapter 4

attempted to make the work of the previous chapters in this thesis more accessible

to a physics audience it was a very preliminary step in that direction.

5.2 Future work

Other possible avenues which could be explored together with projects which have

already been derived from this work include:

From Chapter 2. One can view the representation category of a quasi-Hopf alge-

bra as a duoidal category and consider further properties such as the compatibility

of the internal tensor product with the action of an algebra object in this setting.

The formalism also begs a generalisation to higher categorical structures.
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From Chapter 3. One can view geometrical quantities such as derivations and

connections as functors and consider what might be understood from this generalisa-

tion (cf. [44]). One can also consider the categorical construction of other important

notions of geometry such as gauge groups and principal bundles (see below).

From Chapter 4. One may consider other types of vector bundles over non-

commutative and nonassociative spaces, in particular arbitrary finitely generated

and projective modules permitted by the Serre-Swan theorem for noncommutative

geometry. In the case of trivial vector bundles much of the nonassociativity and

noncommutativity is lost due to the H-invariance of the standard basis. One may

also calculate the field equations as in [3] arising from the Yang-Mills and Einstein-

Cartan actions for non-geometry after establishing the correct form of the gauge

group.

Structure group and principle bundles. With the tools developed in this

thesis we have no control over the structure group of the frame bundle for Einstein-

Cartan gravity. In order to reduce the structure group to the correct subgroup it is

necessary to have a framework capable of dealing with principle bundles. Subsequent

work that has been done involves generalisations of our approach to noncommutative

and nonassociative vector bundles to the case of principal bundles (i.e. Hopf-Galois

extensions) (cf. [56]). An interesting problem is the correct definition of the gauge

group of a noncommutative and nonassociative principal bundle. Motivated by our

internal point of view, the gauge group should arise as a certain subspace of a

‘mapping space’, which one can formalise by using topos theoretic techniques such

as those appearing in synthetic differential geometry.

Quantum rigidity or noncommutative symmetry breaking. In this thesis

we have solved the problem of quantum rigidity of geometrical notions such as

connections, where by quantum rigidity we mean the effect that configuration spaces

of quantities in noncommutative geometry are in general much smaller than those

of their commutative counterparts. One can also address the problem of quantum
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rigidity of the structure group of noncommutative principle bundles understood via

Hopf Galois extensions.

Additional project The work in this thesis gave rise to another project in [36].

The internal description of geometry described in this thesis can also be accom-

modated by the use of Topos Theory with techniques from Synthetic Differential

Geometry. In order to view an automorphism group of a space as an object in a

category it is imperative to use a topos. This is because the category of commu-

tative algebras is not closed, but the presheaf category based on the category of

commutative algebras, which is a topos, is closed.

In this project we have developed a sheaf theory approach to toric noncommuta-

tive geometry which allows us to formalize the concept of mapping spaces between

two toric noncommutative spaces. As an application we have studied the ‘internal-

ized’ automorphism group of a toric noncommutative space and shown that its Lie

algebra has an elementary description in terms of braided derivations.

We consider the Gros Topos of sheaves of H-module (finitely presented) com-

mutative algebras with a Zariski topology where H is the Hopf algebra on the torus

and exhibit a fully faithful embedding of the internal derivations into a suitable

notion of tangent bundle in the functor of points using the techniques of synthetic

differential geometry. This generalised notion of a tangent bundle in the functor of

points can thus be seen as the global version of the infinitesimal diffeomorphisms of

toric noncommutative spaces. The topos perspective could offer an interpretation

for physics for what a noncommutative space is via an understanding of how various

types of structures map into it.
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Category Theory

All definitions in this chapter are standard and can be found in [50, 8].

A.1 Categories, subcategories and isomorphism

Definition A.1.1 (Category). A category C consists of a collection of objects Ob(C )

together with a collection of morphisms Morph(C ). Morph(C ) is specified in terms

of pairs of objects in Ob(C ) which can be identified using a source s : Morph(C )→

Ob(C ) and target t : Morph(C )→ Ob(C ). In this thesis, the following notation is

used: For any two objects V,W in Ob(C ), HomC (V,W ) is the collection of elements

f of Morph(C ) with s(f) = V and t(f) = W . Then Morph(C ) is the class of

all HomC (V,W ) such that V,W ∈ Ob(C ). In the case that V = W the notation

EndC (V ) is used. HomC (V,W ) may be empty for (some) V 6= W ∈ Ob(C ), however

EndC (V ) contains at least the identity morphism idV for all V ∈ Ob(C ). The

constituents HomC (V,W ) of Morph(C ) are referred to as Hom-classes. For each

pair of Hom-classes for which the source of all morphisms in one coincides with

the target of all morphisms in the other, there is defined a composition law ◦ :

HomC (W,Z) × HomC (V,W ) → HomC (V, Z), for example, and the composition

law is associative. It will sometimes be convenient to use the short-hand notation

C1
t
//

s //
C0 to denote a category, where C0 := Ob(C ) and C1 := Morph(C ).

Definition A.1.2 (Subcategory). A category B1
t
//

s //
B0 is a subcategory of an-

other category C1
t
//

s //
C0 if B0 ⊂ C0 and B1 ⊂ C1 with the same identity mor-

phisms and composition of morphisms.

Definition A.1.3 (Full subcategory). A category B1
t
//

s //
B0 is a full subcategory

of a category C1
t
//

s //
C0 if B0 ⊂ C0 and if for any f ∈ C1 we have s(f) ∈ B0 then
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t(f) ∈ B0 also.

All categories mentioned in this thesis are locally small.

Definition A.1.4 (Locally small). A locally small category is a category C for which

HomC (V,W ) is a set for all V,W ∈ C0. In this case the constituents HomC (V,W )

of C1 are referred to as Hom-sets. C is a small category if in addition C0 is a set.

Definition A.1.5 (Isomorphism). Let C be a category. V,W ∈ C0 are isomorphic

if there are morphisms f ∈ HomC (V,W ) and g ∈ HomC (W,V ) such that f ◦g = idW

the identity morphism on W and g ◦ f = idV the identity morphism on V .

The following categories feature in this thesis:

Example A.1.6 (Sets). The category Set has the role as the category underlying

all other categories in this thesis with Ob(Set) sets and Morph(Set) maps between

sets. Set also features as a category in itself.

Example A.1.7 (Modules). The category M := Modk is the category of modules

over a ring or field k.

Example A.1.8 (Algebras). The category Alg is the category of algebras over the

ring or field k.

Example A.1.9 (Bimodules). For a given algebra A over k, the category Bimod(A)

is the category of bimodules over A.

A.2 Functors, natural transformations and func-

tor categories

Definition A.2.1 (Functor). Given two categories B,C , a functor from B to C

denoted by F : B → C assigns to an object V ∈ B0 an object F (V ) ∈ C0, and to a

morphism f : V → W in B1 a morphism F (f) : F (V )→ F (W ) in C1 in such a way

that F (idV ) = idF (V ) and F (f ◦ g) = F (f) ◦ F (g) for any composable morphisms

f, g in B1. We say that the assignment of objects F (V ) in B to objects V in C is

functorial if F is a functor.
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Objects in a category can be endowed with additional structure. A way to keep

track of this is to use the forgetful functor:

Definition A.2.2 (Forgetful functor). Suppose B and C are categories such that

B0 is equal to C0 but has some additional structure. Then there is a forgetful functor

Forget : B → C which ‘forgets’ this additional structure.

Remark A.2.3. That Set is the locally small category underlying all categories

means that there is a forgetful functor from all these categories to the category Set.

That is there are forgetful functors Forget : M → Set, Forget : Alg → Set and

Forget : Bimod(A)→ Set.

Remark A.2.4. Since functors preserve compositions (cf. Definition A.2.1) they

preserve commutative diagrams.

Definition A.2.5 (Equivalence of functors). Given two categories B and C . Two

functors F,G : B → C are said to be equivalent if

F (V ) ∼= G(V ) , (A.2.1)

are isomorphic as objects in C for all V ∈ B0.

Several functors have domain in the product of categories:

Definition A.2.6 (Product category). Given two categories B,C , the product cat-

egory B × C is the category whose objects are pairs (V,X) in the product of sets

B0 × C0 and whose morphisms are pairs (f, g) in the product of sets B1 × C1.

Definition A.2.7 (Opposite category). Given a category C , the opposite category,

which we denote by C op, is defined as follows: the objects in C op are the same as

the objects in C and the morphisms in C op are the morphism in C with reversed

arrows; explicitly, a C op-morphism f op : V → W is a C -morphism f : W → V and

the composition with another C op-morphism gop : W → X is gop ◦op f op = (f ◦g)op :

V → X.

Definition A.2.8 (Natural transformation). Let B and C be categories and F,G :

B → C be functors. A natural transformation α : F ⇒ G is a collection of
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morphisms {αV : F (V )→ G(V )}V ∈B in C such that for any morphism f : V → V ′

in B the diagram

F (V )

F (f)

��

αV // G(V )

G(f)

��

F (V ′)
αV ′ // G(V ′)

(A.2.2)

in C commutes. α is said to be a natural isomorphism if (αV )−1 exists for each

V ∈ B.

Definition A.2.9 (Equivalence of categories). Two categories B and C are said to

be equivalent if there is a functor F : B → C and a functor G : C → B such that

F ◦G⇒ 1C and G ◦ F ⇒ 1B are natural isomorphisms.

Definition A.2.10 (Functor category). Given two categories B and C the func-

tor category [B,C ] is the category whose objects are functors from B → C and

whose morphisms are natural transformations between functors from B → C . Nat-

ural transformations are composed associatively and there is an identity natural

transformation from any functor to itself.

Definition A.2.11 (Comma category). Given categories B,C ,D and two functors

F : B → C , G : D → C the comma category (F ⇒ G) has as objects triples

(V, h, Y ) where V ∈ B, Y ∈ D and h : F (V ) → G(Y ) is a C -morphism, and as

morphisms ((V, h, Y )→ (V ′, h′, Y ′)) pairs (f : B → B′ , g : D → D′) in B×D such

that

F (V )

h
��

F (f)
// F (V ′)

h′

��

G(Y )
G(g)

// G(Y ′)

(A.2.3)

commutes in C .

Definition A.2.12 (Slice category). Given a category C and an object W ∈ C the

slice category (C ⇒ W ) has as objects pairs (V, h) where V ∈ C and h : V → W

is a C -morphism, and as morphisms ((V, h) → (V ′, h′)) a C -morphism f : V → V ′
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such that

V

h
  

f
// V ′

h′~~

W

(A.2.4)

commutes in C .

A.3 Monoids and monoidal categories

The concept of monoid appears in various forms throughout this thesis:

Definition A.3.1 (Monoid). A monoid is an algebraic structure with a single as-

sociative binary operation and an identity element.

Example A.3.2. The Hom-set of a small category with a single object, equipped

with the structure of its unit morphism (unit object) and (associative) composition

of morphisms is a monoid. A functor is thus a monoid map on each Hom-set of a

category.

Definition A.3.3 (Group). A group is a monoid in which every element is invertible.

Remark A.3.4. In light of example A.3.2, one can model a group as a one object

category in which all the morphisms are invertible.

Definition A.3.5 (Monoidal category). A monoidal category C = (C ,⊗,Φ, I, λ, %)

consists of the following data: a bifunctor ⊗ : C ×C → C called the tensor product,

a natural isomorphism Φ : (⊗× id) ◦ ⊗ ⇒ (id×⊗) ◦ ⊗ called the assoiator and an

object I ∈ C together with natural isomorphisms λ : I⊗idC ⇒ idC , % : idC⊗I ⇒ idC

called the unit object. The natural isomorphisms Φ, λ, % are required to satisfy the
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following coherence conditions: the pentagon relations

(
(Z ⊗ Y )⊗X

)
⊗W

Φ

**

Φ⊗id

tt(
Z ⊗ (Y ⊗X)

)
⊗W

Φ
��

(Z ⊗ Y )⊗ (X ⊗W )

Φ
��

Z ⊗
(
(Y ⊗X)⊗W

) id⊗Φ
// Z ⊗

(
Y ⊗ (X ⊗W )

)
(A.3.1)

commutes for all Z, Y,X,W ∈ C , and the triangle relations

(I ⊗ Y )⊗X

λ⊗id ''

Φ // I ⊗ (Y ⊗X)

λww

Y ⊗X

(A.3.2)

and

(Y ⊗X)⊗ I

%⊗id ''

Φ // Y ⊗ (X ⊗ I)

%
ww

Y ⊗X

(A.3.3)

commute for all Y,X ∈ C . Due to Maclane’s coherence theorem, the pentagon

relations are sufficient to ensure that any pair of morphisms constructed as a se-

quence of associators from an object which all brackets collected on the left hand

side (((· · · (V1 ⊗ V2)⊗ · · · )⊗ Vn−1)⊗ Vn) to an object with all brackets collected on

the right hand side (V1 ⊗ (V2 ⊗ (· · · ⊗ (Vn−1 ⊗ Vn) · · · ))), are equal.

Definition A.3.6 (Opposite tensor product). Given a monoidal category C , in

addition to the monoidal functor ⊗ there is the functor describing the opposite

tensor product ⊗op := ⊗◦ flip : C ×C → C , where flip : C ×C → C ×C is the flip

functor assigning to objects (V,W ) in C ×C the object flip(V,W ) = (W,V ) and to

morphisms
(
f : V → X, g : W → Y

)
in C × C the morphism flip

(
f : V → X, g :

W → Y
)

=
(
g : W → Y, f : V → X

)
Definition A.3.7 (Braided monoidal category). A braided monoidal category C is
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a monoidal category equipped with a braiding or commutativity constraint ψ which

is a natural isomorphism ψ : ⊗ ⇒ ⊗op, where ⊗op is the opposite tensor product

defined in Definition A.3.6, which satisfies the hexagon relations

ψV⊗W,Z = ΦZ,V,W ◦ (ψV,Z ⊗ idW ) ◦ Φ−1
V,Z,W ◦ (idV ⊗ ψW,Z) ◦ ΦV,W,Z , (A.3.4a)

ψV,W⊗Z = Φ−1
W,Z,V ◦ (idW ⊗ ψV,Z) ◦ ΦW,V,Z ◦ (ψV,W ⊗ idZ) ◦ Φ−1

V,W,Z , (A.3.4b)

for all V,W,Z ∈ C .

Definition A.3.8 (Strict (braided) monoidal category). A strict (braided) monoidal

category is a (braided) monoidal category for which the components of the associator

and unitor (and braiding) natural transformations are the identity maps.

A.4 Limits and colimits

Given some objects and morphisms in a category C , one may wish to form out of

them another object which lies in C . The notions of limit and colimit in a category

give one such an object.

Definition A.4.1 (Diagram). Let C be a category and S a small category. A

diagram of shape S in C is a functor D : S→ C .

Definition A.4.2 (Cone). Let C be a category, S a small category and D a diagram

of shape S in C . A cone on D consists of an object C ∈ C together with a family

of C -morphisms

(C
fS−→ D(S))S∈S , (A.4.1)
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such that for each S-morphism f : S → T the following diagram in C commutes

D(S)

D(f)

��

C

fT ""

fS
<<

D(T )

(A.4.2)

Definition A.4.3 (Limit). Let C be a category, S a small category and D a diagram

of shape S in C . A limit of D is a cone

(L
pS−→ D(S))S∈S , (A.4.3)

in C such that for any other cone (A.4.1) there is a unique C -morphism u : C → L

such that

pS ◦ u = fS , (A.4.4)

for all objects S ∈ S.

Remark A.4.4. From the definition it follows that a limit of a diagram is unique

up to a unique isomorphism. Hence with an abuse of notation we shall simply refer

to the object L in the definition above as the limit of the diagram D.

Example A.4.5 (Equaliser). The equaliser of two C -morphisms g1 and g2 in a

category C is the limit of a diagram of the shape

a
g2

//

g1
//
b . (A.4.5)

So if D is a diagram of shape (A.4.5) in the category C , then the limit of D is the

equaliser of the C -morphisms D(g1) and D(g2) which is an object L ∈ C together
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with two C -morphisms i, j such that the following two diagrams in C commute

L
i

}}

j

""

D(a)
D(g2)

//

D(g1)
//
D(b) .

(A.4.6)

This is usually depicted diagrammatically by

L i // D(a)
D(g2)

//

D(g1)
//
D(b) , (A.4.7)

with the understanding that D(g1) ◦ i = D(g2) ◦ i.

Example A.4.6 (Equaliser in M ). In the category of k-modules M equalisers are

kernels. In other words, the equaliser of two M -morphisms g1 and g2 is the kernel

L = Ker
(
g1 − g2

)
. (A.4.8)

Example A.4.7 (Pullback). Let C be a category. The pullback of two C -morphisms

g1 and g2 is the limit of a diagram of the shape

a

g1

��
b g2

// c

(A.4.9)

So if D is a diagram of shape (A.4.9) in the category C , then the limit of D is the

pullback of the C -morphisms D(g1) and D(g2) which is an object L ∈ C together

with three C -morphisms p1, p2, g such that the following two diagrams in C commute

L
g

##

p2

��

p1
// D(a)

D(g1)
��

D(b)
D(g2)

// D(c)

(A.4.10)

This translates to the condition that D(g1) ◦ p1 = D(g2) ◦ p2 and hence in depicting

a pullback the C -morphism g is usually dropped.
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Example A.4.8 (Pullback in M ). In the category of k-modules M the concept of

a pullback coincides with that of fibred product; the M -morphisms p1 and p2 are

the projections onto the first and second components of the product.

Definition A.4.9 (Cocone). Let C be a category, S a small category and D a

diagram of shape S in C . A cocone on D consists of an object C ∈ C together with

a collection of C -morphisms

(D(S)
fS−→ C)S∈S , (A.4.11)

such that for each S-morphism f : S → T the following diagram in C commutes

D(S)
fS

""
D(f)

��

C

D(T )

fT

<<

(A.4.12)

Definition A.4.10 (Colimit). Let C be a category, S a small category and D a

diagram of shape S in C . A colimit of D is a cocone

(D(S)
pS−→ L)S∈S , (A.4.13)

in C such that for any other cocone (A.4.11) there is a unique morphism u : L→ C

such that

u ◦ pS = fS , (A.4.14)

for all objects S ∈ S.

Remark A.4.11. From the definition it follows that a colimit of a diagram is unique

up to a unique isomorphism. Hence with an abuse of notation we shall simply refer

to the object L in the definition above as the colimit of the diagram D.

Example A.4.12 (Coequaliser). Let C be a category. The coequaliser of two C -
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morphisms g1 and g2 is the colimit of a diagram of shape (A.4.5) in C . So if D is a

diagram of shape (A.4.5) in the category C , then the colimit of D is the coequaliser

of the C -morphisms D(g1) and D(g2) which is a C -object L together with two

C -morphisms p, q such that the following two diagrams in C commute

D(a)

p
!!

D(g2)
//

D(g1)
//
D(b)

q
}}

L

(A.4.15)

This is usually depicted diagrammatically by

D(a)
D(g2)

//

D(g1)
//
D(b)

q
// L , (A.4.16)

with the understanding that q ◦D(g1) = q ◦D(g2).

Example A.4.13 (Coequaliser in M ). In the category of k-modules M the concept

of a coequaliser coincides with that of a quotient and the M -morphism q is the

quotient map.

221



Appendix B

Additional proofs and notes

B.1 Cochain twisting of quasi-Hopf algebras

We fill in the details of Remark 2.1.41: The structure maps of a quasi-Hopf algebra

H twisted by a cochain twist F followed by a cochain twist G satisfy

∆GF ( · ) = G∆F ( · )G−1 = GF ∆( · )F−1G−1 = (GF ) ∆( · ) (GF )−1 . (B.1.1)

Denoting by ∂ G := (1 ⊗ G) · (idHF ⊗ ∆F )(G), ∂ F := (1 ⊗ F ) · (idH ⊗ ∆)(F ) and

by ∂ G−1 := (∆F ⊗ idHF )(G−1) · (G−1 ⊗ 1), ∂ F−1 := (∆⊗ idH)(F−1) · (F−1 ⊗ 1) we

have

∂ G · ∂ F = (1⊗G) · (idHF ⊗∆F )(G) · (1⊗ F ) · (idH ⊗∆)(F )

= (1⊗GF ) · (idH ⊗∆)(GF ) , (B.1.2)

where in the second equality we used the property (2.1.108) and the fact that ∆ is

an algebra morphism. By a similar calculation we have

∂ G−1 · ∂ F−1 = (∆⊗ idH)((GF )−1) · ((GF )−1 ⊗ 1) . (B.1.3)

Hence

φGF = ∂ G · φF · ∂ G−1

= ∂ G · ∂ F · φ · ∂ F−1 · ∂ G−1

= (1⊗GF ) · (idH ⊗∆)(GF ) · φ · (∆⊗ idH)((GF )−1) · ((GF )−1 ⊗ 1) .
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Finally

αGF = S(G(−1))αF G
(−2)

= S(F (−1)G(−1))αF (−2)G(−2)

= S((GF )(−1))α (GF )(−2) , (B.1.4)

and by a similar calculation βGF = (GF )(1) β S((GF )(2)).

B.2 Proofs of H-equivariance

The naturality condition (or H-equivariance condition) for the associator Φ in

(2.2.21) is satisfied since by the coassociativity condition (2.1.98b) (and the functo-

riality of representations)

ρV ⊗ (ρW ⊗ ρX)(h) ◦ ΦV,W,X

=
(
ρV ⊗ (ρW ⊗ ρX)

)
((idH ⊗∆) ∆(h))

(
ρV ⊗ (ρW ⊗ ρX)

)
(φ)

=
(
ρV ⊗ (ρW ⊗ ρX)

)
((idH ⊗∆) ∆(h) · φ)

=
(
ρV ⊗ (ρW ⊗ ρX)

)
(φ · (∆⊗ idH) ∆(h))

=
(
(ρV ⊗ ρW )⊗ ρX

)
(φ)
(
ρV ⊗ (ρW ⊗ ρX)

)
((∆⊗ idH) ∆(h))

= ΦV,W,X ◦ (ρV ⊗ ρW )⊗ ρX(h) , (B.2.1)
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while the pentagon relations for Φ follow from the 3-cocycle condition (2.1.98c)

ΦV,W,X⊗Z ◦ ΦV⊗W,X,Z

=
(
ρV ⊗ (ρW ⊗ (ρX ⊗ ρZ))

)
((idH ⊗ idH ⊗∆)(φ))

·
(
(ρV ⊗ ρW )⊗ (ρX ⊗ ρZ)

)
((∆⊗ idH ⊗ idH)(φ))

=
(
ρV ⊗ (ρW ⊗ (ρX ⊗ ρZ))

)
((idH ⊗ idH ⊗∆)(φ) · (∆⊗ idH ⊗ idH)(φ))

=
(
ρV ⊗ (ρW ⊗ (ρX ⊗ ρZ))

)
((1⊗ φ) · (idH ⊗∆⊗ idH)(φ) · (φ⊗ 1))

=
(
ρV ⊗ (ρW ⊗ (ρX ⊗ ρZ))

)
(1⊗ φ)

·
(
ρV ⊗ ((ρW ⊗ ρX)⊗ ρZ)

)
((idH ⊗∆⊗ idH)(φ))

·
(
(ρV ⊗ (ρW ⊗ ρX))⊗ ρZ

)
(φ⊗ 1)

= (id⊗ ΦW,X,Z) ◦ ΦV,W⊗X,Z ◦ (ΦVW,X ⊗ id) . (B.2.2)

The naturality conditions for the left unitor λ in (2.2.23) are satisfied because of the

unital condition (2.1.98a) and the k-linearity of representations

ρV (h) ◦ λV (c⊗ v) = ρV (h)(c v) = c ρV (h)(v) , (B.2.3)

for any c ∈ k, v ∈ V and h ∈ H, while

λV ◦ (ρI ⊗ ρV )(∆(h))(c⊗ v) = λV (ε(h(1)) c⊗ ρV (h(2)) v) = c ρV (h)(v) , (B.2.4)

for any c ∈ k, v ∈ V and h ∈ H. And similarly for the right unitor. The triangle

relations for the left and right unitors λ and % follow from the counital condition
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(2.1.98d).

(id⊗ %) ◦ Φ = (idV ⊗ %W )(ρV ⊗ (ρW ⊗ ρI))(φ)

= (idV ⊗ %W )(ρV ⊗ (ρW ⊗ idk))(idH ⊗ idH ⊗ ε)(φ)

= idV ⊗ %W

= %V⊗W . (B.2.5)

And similarly for the left unitor.

B.3 Weak associativity of internal composition

Using items (i) and (ii) of Proposition 2.2.13 we have

ζ−1
(
• ◦(• ⊗ id)

)
= ev ◦ (• ◦ (• ⊗ id)⊗ id)

= ev ◦ (• ⊗ id) ◦ ((• ⊗ id)⊗ id)

= ev ◦ (id⊗ ev) ◦ Φ ◦ ((• ⊗ id)⊗ id)

= ev ◦ (• ⊗ id) ◦ ((id⊗ id)⊗ ev) ◦ (∆⊗ id⊗ id)(Φ)

= ev ◦ (id⊗ ev) ◦ Φ ◦ ((id⊗ id)⊗ ev) ◦ (∆⊗ id⊗ id)(Φ)

= ev ◦ (id⊗ ev) ◦ ((id⊗ id)⊗ ev) ◦ (id⊗ id⊗∆)(Φ) ◦ (∆⊗ id⊗ id)(Φ) , (B.3.1)
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and on the other hand (using also the H-equivariance of the internal composition)

ζ−1
(
• ◦(id⊗ •) ◦ Φ

)
= ev ◦ (• ◦ (id⊗ •)

)
◦ Φ⊗ id)

= ev ◦ (• ⊗ id) ◦ (id⊗ • ⊗ id) ◦ (Φ⊗ id)

= ev ◦ (id⊗ ev) ◦ Φ ◦ (id⊗ • ⊗ id) ◦ (Φ⊗ id)

= ev ◦ (id⊗ ev) ◦ (id⊗ • ⊗ id) ◦ (id⊗∆⊗ id)(Φ) ◦ (Φ⊗ id)

= ev ◦ (id⊗ (ev ◦ (• ⊗ id)) ◦ (id⊗∆⊗ id)(Φ) ◦ (Φ⊗ id)

= ev ◦ (id⊗ ev ◦ (id⊗ ev) ◦ Φ) ◦ (id⊗∆⊗ id)(Φ) ◦ (Φ⊗ id)

= ev ◦ (id⊗ ev ◦ (id⊗ ev)) ◦ (id⊗ Φ) ◦ (id⊗∆⊗ id)(Φ) ◦ (Φ⊗ id)

= ev ◦ (id⊗ ev) ◦ ((id⊗ id)⊗ ev) ◦ (id⊗ Φ) ◦ (id⊗∆⊗ id)(Φ) ◦ (Φ⊗ id) .

(B.3.2)

These two equations agree because of the 3-cocycle condition (2.1.98c).

B.4 Hexagon relations

The second Hexagon relations in Subsection 2.2.8 follows from (2.1.103b) by the

calculation

τV,W⊗Z = (ρV ⊗ ρW )⊗ ρZ(R21)

= (ρV ⊗ (ρW ⊗ ρZ))[(id⊗∆)(R)]312

= ((ρV ⊗ ρW )⊗ ρZ)
[
φ−1

231R13 φ213R12 φ
−1
123

]
312

= ((ρV ⊗ ρW )⊗ ρZ)(φ−1R32 φ132R31 φ
−1
312)

= ((ρW ⊗ ρZ)⊗ ρV )(φ−1) (ρW ⊗ (ρV ⊗ ρZ))(R32)

((ρW ⊗ ρV )⊗ ρZ)(φ132) ((ρV ⊗ ρW )⊗ ρZ)(R31) ((ρV ⊗ ρW )⊗ ρZ)(φ−1
312)

= Φ−1
W,Z,V ◦ (idW ⊗ τV,Z) ◦ ΦW,V,Z ◦ (τV,W ⊗ idZ) ◦ Φ−1

V,W,Z . (B.4.1)
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B.5 Differential operators

Here we show the details omitted in the proof of Proposition 3.2.8.

We note first that in the case of a trivial associator (Φ = 1⊗1⊗1) and R-matrix

(R = 1⊗ 1)

[X • Y, a](k) =
k∑
j=0

(
k

j

)
[X, a](j) • [Y, a](k−j) . (B.5.1)

Since we are only interested in knowing when an instance of the multibracket is zero

and since the arguments of the multibracket are modules over H it will suffice to

use the above formula even in the nonassociative and noncommutative case. Now if

V ⊂ diffn(W ) and U ⊂ diffm(W ) it follows from Lemma 3.2.7 that [X, a](j) = 0 for

all X ∈ V and all n+ 1 ≤ j ≤ n+m+ 1, and that [Y, a](n+m+1−j) = 0 for all Y ∈ U

and all m+ 1 ≤ n+m+ 1− j ≤ n+m+ 1, that is for all 0 ≤ j ≤ n. This implies

that [X •Y, a](n+m+1) = 0 for all X ∈ V and all Y ∈ U . Therefore, again by Lemma

3.2.7, it follows that V •U ⊂ diff(n+m)(W ) where V •U := {X •Y : X ∈ V, Y ∈ U}.

B.6 Endomorphisms of the unit object

Lemma B.6.1. Let ρA be a commutative algebra in H–Algcom. The internal en-

domorphism algebra (endA(ρA), •) is isomorphic to the braided commutative algebra

(ρA, µ) in the category H–Algcom.

Proof. We define the [H,M ]-morphism

λ : ρA =⇒ endA(ρA) , (B.6.1)

with single component

λ : A −→ endA(A) , a 7−→ l̂A(a) , (B.6.2)

for all a ∈ A. λ(a) is indeed in endA(A) for all a ∈ A since l̂A is an H–Alg-morphism
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by Lemma 2.3.8 with source an algebra in H–Algcom and hence [l̂A(a), a′] = l̂A
(
a a′−

ρA(R(2))(a′) ρA(R(1))(a)
)

= 0. λ has an inverse given by

λ−1 : endA(ρA) =⇒ ρA , (B.6.3)

with single component

λ−1 : endA(A) −→ A , L 7−→ ev(L⊗ 1A) , (B.6.4)

for all L ∈ endA(A). We have that

λ−1 ◦ λ = idA , (B.6.5)

because ev(l̂A(a)⊗ 1A) = a for all a ∈ A and on the other hand,

λ ◦ λ−1(L) = l̂A(ev(L⊗ 1A)) = lA ◦
(
ζ(id) ◦ ζ−1(id)(L⊗ 1A)⊗ id

)
= L . (B.6.6)

Hence

λ ◦ λ−1 = idendA(A) . (B.6.7)

This completes the proof.

B.7 Derivations are differential operators of order

one

Proposition B.7.1. Let ρA be a braided commutative algebra in H–Algcom. The

differential operators of order 1 on ρA decomposes as follows

diff1(ρA) = der(ρA)⊕ diff0(ρA) . (B.7.1)

Proof. Using Lemma 3.2.7 we note first that if V ⊂ der(A) ⊕ diff0(A) and X ∈ V ,
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then [[X, a], b] = [l̂A
(
ev
(
X ⊗ a

))
, b] = 0 (recalling that diff0(A) = endA(A) ∼= A)

and therefore V ⊂ diff1(A). Now to prove the other inclusion we shall see that if X

is a differential operator of order 1, then X can be decomposed into the sum

X = X̃ + l̂A
(
ev
(
X ⊗A 1A

))
, (B.7.2)

where X̃ ∈ der(A) is a derivation. In other words we shall see that if X is a

differential operator of order 1, then

X̃ := X − l̂A
(
ev
(
X ⊗A 1A

))
, (B.7.3)

is a derivation. Using Lemma 3.2.2 we note that

[
X̃, a

]
=
[
X − l̂A

(
ev
(
X ⊗A 1A

))
, a
]

=
[
X, a

]
. (B.7.4)

and on the hand

l̂A
(
ev
(
X̃ ⊗ a

))
= l̂A

(
ev
(
X ⊗ a

))
− l̂A

(
ev
(
l̂A
(
ev
(
X ⊗A 1A

))
⊗ a
))

= l̂A
(
ev
(
X ⊗ a

))
− l̂A

(
ev
(
X ⊗A 1A

)
a
)

= l̂A
(
ev
(
X a⊗ 1A

))
− l̂A

(
(−1)|a||X|(R(2) . a)

(
R(1) . ev

(
X ⊗A 1A

)))
= l̂A

(
ev
(
X a⊗ 1A

))
− l̂A

(
ev
(
(−1)|a||X|(R(2) . a) (R(1) . X)⊗A 1A

))
= l̂A

(
ev
(
[X, a]⊗ 1A

))
= [X, a] , (B.7.5)

where in the third step we have used that the action of H on the unit in A is the

trivial action and in the fourth step that the evaluation map is left A-linear.

B.8 Diagrammatic cochain twisting

The use of diagrams for proving results in category theory is essential.
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The coproduct and HF -equivariance We saw in Chapter 4 by the calculation

in (4.2.4) that the formula for the twisted coproduct ∆F (·) = F ∆(·)F−1 and the

?-product in a twisted algebra F(A) is such that ? = µ ◦ F−1 is HF -equivariant.

Twisting the monoidal structure. From the definition of the coherence map

for the monoidal structure in (2.2.24) we can interpret the formula ? = µ ◦ F−1 (cf.

(4.2.2)) to mean that we use the inverse twist F−1 to “untwist” the tensor product in

[HF ,M ] to that in [H,M ] so that we can use the multiplication for the “untwisted”

algebra in [H,M ]. Hence the coherence map can be read as a formula for untwisting

a tesnor product: F(V )⊗F F(W )
F−1

→ F(V ⊗W ).

From this reasoning we infer the following strategy for deriving formulae in the

category [HF ,M ] from formulae in [H,M ]:

The strategy. Beginning with a tensor product object which is twisted, we un-

twist it with the inverse of the (or the appropriate number of) twist(s), then we

perform the required operation in the untwisted category, and finally re-twist the

structure with the (or the appropriate number of) twist(s).

Applying this strategy now to the braiding and associator in HF we have:

Braiding and the RF -matrix. The formula for RF comes from the following

diagram

AF ⊗F AF
F−1

��

τF // AF ⊗F AF

A⊗ A σ
// A⊗ A

F21

OO
(B.8.1)

i.e. τF = F21 ◦ σ ◦ F−1.
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Associator and φF . The formula for φF comes from the following diagram

(AF ⊗F AF )⊗F AF
F−1⊗1

��

φF // AF ⊗F (AF ⊗F AF )

(A⊗ A)F ⊗F AF
(∆⊗1)(F−1)

��

AF ⊗F (A⊗ A)F

1⊗F

OO

(A⊗ A)⊗ A φ
// A⊗ (A⊗ A)

(1⊗∆)(F )

OO

(B.8.2)

i.e. φF = (1⊗ F ) ◦ (1⊗∆)(F ) ◦ φ ◦ (∆⊗ 1)(F−1) ◦ (F−1 ⊗ 1)

The correct formula for the coherence map for the internal hom-structure can be

derived using the same strategy:

Twisting internal homomorphisms. Since the quasi-Hopf algebra H acts via

the adjoint representation on internal homomorphisms ρhom(V,W )(id ⊗ S)(∆(h)) for

h ∈ H, the correct coherence map for the internal hom-structure is

homF (F(V ),F(W ))
(id⊗S)(F−1)

// F(hom(V,W )) .
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