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ABSTRACT 

Relative permeability and capillary pressure curves are crucial inputs for reservoir 

modeling and simulation.  Measuring these quantities on core samples in a laboratory is 

a necessary, but lengthy process.  Wireline Formation Tester (WFT) logging is routinely 

applied in field operations for reservoir evaluation purposes.  Since a historical record of 

WFT data often exists for a field, we propose in our study to estimate multiphase flow 

properties in situ from the acquired WFT data in a relatively short period of time. 

 

The WFT tool records, among other measurements,  bottomhole pressures, water-cuts 

and flow rates by pumping out fluids from a hydrocarbon bearing formation during the 

cleanup process in order to reduce the contamination level near the wellbore.  The 

contamination, which is water based mud (WBM) filtrate in this study, invades from the 

openhole during drilling and changes the saturation of hydrocarbon and water in an 

invaded zone near the wellbore.   

 

The proposed methodology estimates multiphase flow properties occurring near the 

wellbore, such as relative permeability, capillary pressure, damage skin and mud-filtrate 

invasion by inversion of water-cut and bottomhole pressure recorded during the WFT 

cleanup.  Although the mud-filtrate invasion and the WFT cleanup replicate, respectively, 

secondary processes of imbibition and drainage in the reservoir, our study is designed 

under the assumption that a single set of multiphase flow curves represents both 

imbibition and drainage processes.  The study shows that the most important parameters 

are the curvatures of relative permeability and capillary pressure curves during the 

processes.  Although they can be optimized, prior knowledge of saturation endpoints and 

depth of mud-filtrate invasion improves the results.  Noise levels of WFT logging, and 

heterogeneities of reservoir properties should be integrated correctly in the study.  

 

The methodology uses a detailed numerical model of the invasion and cleanup processes, 

and WFT tool geometry coupled with an optimizer for the inversion.  The model 

investigates reservoir and fluid properties, and represents the events accurately occurring 

during drilling, logging, invasion and cleanup.  The results from synthetic and field 

examples demonstrate that relative permeability and capillary pressure, mud-filtrate 

invasion, damage skin can be estimated successfully in the inversion process.    
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CHAPTER 1. INTRODUCTION 

The last three decades have seen significant developments of wireline formation tester 

(WFT) technologies contributing to formation evaluation, which has become an essential 

part of reservoir management.  Although WFT had originally been intended for pressure 

profiling and fluid sampling; with technological advancements and its relatively low cost 

and minimal environmental impact, its role has expanded significantly in the petroleum 

industry.    

 

WFT is currently used for pressure measurements and gradients, formation fluid 

sampling, pressure transient analyses, and micro fracturing applications.  Interpretation 

methodologies originally developed for well testing, drill stem testing (DST), and surface 

measurements are also incorporated into WFT downhole measurements.  The increase of 

WFT use is not only due to its range of measurements, but also due to its relatively shorter 

operational duration and its ability to selectively target desired formation units versus 

depth.  The developments of WFT inlets, such as a dual-packer (DP), a 3D radial probe 

(3DRP), and optical spectroscopy and auxiliary measurements, for example density, and 

viscosity measurements, have also contributed to novel applications.   

 

 Problem Statement 

During drilling of a well, the formation is exposed to mud-filtrate invasion.  In the case 

of water based mud (WBM), the invasion displaces the hydrocarbon in the vicinity of the 

wellbore, much like a small waterflooding experiment; a case of immiscible displacement 

of the native formation fluid.  A WFT sampling operation follows openhole logs and 

reduces the contamination levels near the wellbore.  The initial mud-filtrate invasion and 

the following WFT cleanup provide an opportunity for determining in situ relative 

permeabilities and capillary pressures in an inversion workflow by utilizing data recorded 

downhole conditions. 

 

This dissertation outlines a full interpretation methodology to obtain multiphase flow 

properties with an inversion workflow using openhole and WFT logging data.  The 

methodology has an assumption that a single set of relative permeability and capillary 

pressure curves describes both imbibition and drainage processes.  Although, the model 

uses one set of curves, it still estimates the mud-filtrate invasion volume and its 
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distribution in the reservoir as in imbibition.  The model introduces time dependent 

components of the mud-filtrate invasion starting from drilling to logging and matches the 

invasion profile and the saturation distribution interpreted from openhole logs as an initial 

condition before WFT cleanup starts.  The model later replicates WFT cleanup as in 

drainage.  In order to improve the inversion results, WFT tool geometry, drilling, 

circulation, and logging events are implemented as accurately as possible.  The numerical 

model, which honors openhole logs and WFT cleanup measurements, then generates 

relative permeability and capillary pressure curves, which in fact is a mix process 

covering both imbibition and drainage, but constructing a single set of multiphase flow 

curves.  

 

 Objectives 

The focus of the study is to obtain relative permeability and capillary pressure curves 

from wireline formation tester and openhole logging data.  Measuring relative 

permeabilities and capillary pressures on core samples in a laboratory is an essential, but 

lengthy process.  WFT tools are routinely used in hydrocarbon fields to measure pressures 

and collect fluid samples.  Commonly available data from WFT operations carry 

information about the multiphase flow properties of the formation.  By utilizing in situ 

WFT measurements and openhole logs, together with a flow model and an optimization 

engine, we aim to establish a new methodology for estimation of relative permeability 

and capillary pressure.   

 

 Methodology 

The methodology presented here for the estimation of multiphase flow properties is 

applicable to both oil and gas wells drilled with a water based mud.  The model uses 

accurate WFT tool volume and inlet geometry, which are important for capturing the 

hydrocarbon breakthrough in an inversion process.  In earlier studies, multiphase 

homogenous flow models are used by neglecting the relative motion between the fluid 

phases from the sandface to the DP interval (Zeybek et al., 2001; Malik et al., 2006).  The 

homogenous flow model assumes that fluid properties can be represented by mixture 

properties and single-phase flow techniques can be applied to the mixture.  Damage skin 

and WFT tool storage are not explicitly included in the modeling (Angeles et al., 2008).  
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In this study we introduce a multisegment well model for the DP inlet due to its large 

interval volume.  The DP design in the numerical model is such that it allows for fluid 

segregation in its internal storage volume, which captures correctly the arrival time of 

hydrocarbon at the fluid analyzer.  We consider several different WFT inlets.  For a single 

probe (SP) and a 3D radial probe (3DRP) inlets, internal storage volumes are small and 

can be ignored and the homogenous flow model is suitable to use in their numerical 

modeling.  The SP and DP inlets are studied earlier in the literature with the homogenous 

flow model, while the 3DRP inlet is introduced for the first time in the literature in this 

study. 

 

The proposed methodology consists of a numerical forward model describing the mud-

filtrate invasion and fluid sampling processes while accurately accounting for the effects 

of WFT tool geometry, internal tool storage and fluid segregation.  The forward model is 

embedded in an optimization workflow where relative permeability, capillary pressure, 

damage skin and depth of mud-filtrate invasion are estimated by minimizing a misfit 

function between measured and modeled pressures and water-cuts.  The relative 

permeability and capillary pressure curves are parameterized using the industry accepted 

models, such as Modified Brooks and Corey (Lake, 1989), and LET (Lomeland et al., 

2005) methods.  The optimization workflow uses a distribution function of response 

parameters, water-cut and bottomhole pressure datasets, where the entire parameter range 

is included in the numerical runs, thus ensuring that a global optimum is found.  The 

parameters are related to damage skin, mud-filtrate invasion, saturation endpoints, 

relative permeability endpoints, pore-size distribution index.  Initial estimates of some 

parameters are determined from openhole logs, such as resistivity, dielectric, nuclear 

magnetic resonance, as well as from pressure transient analyses. 

 

In this study, modeling of the near-wellbore invasion and cleanup processes are 

investigated.  The methodology developed is initially applied to synthetic datasets with 

known solutions, and it is subsequently established on actual field datasets from WFT 

sampling jobs.  The results demonstrate that it is possible to estimate multiphase flow 

properties with defined confidence intervals from WFT sampling data.  The key 

contributions of this study are to show the capability of estimating a variety of multiphase 

flow properties from routine WFT cleanup data and to establish an automated approach 

in a novel inversion methodology. 
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 Literature Review 

When the first WFT tool was introduced by Schlumberger in 1955, its objective was to 

collect a fluid sample in a cased hole (Lebourg et al., 1956).  The first version was only 

capable of collecting one fluid sample per trip.  Since then, the WFT tool has experienced 

several advancement cycles; the sampling tool was extended to operate in an uncased 

hole in order to achieve multiple formation pressures and samples in 1975 (Schultz et al., 

1975).   

 

A modular WFT tool emerged later to improve pressure measurements and sample 

qualities in 1990 (Zimmerman et al., 1990).  This evolution has allowed new applications, 

such as low drawdown samples, accurate pressure buildup analyses for permeabilities, 

and skin factors per unit zone.  Multiple inlets were used to identify barriers or obtain 

vertical and horizontal permeabilities (Ayan et al., 1996).  A straddle-packer (dual-

packer) module was introduced enabling the isolation of a 1-m interval to target fractures 

and low permeability formations for pressure transient analyses and sampling (Badry et 

al., 1993; Pop et al., 1993; Kuchuk et al., 1994).   

 

Spectrometric measurements in WFT fluid analyzers have gone through a significant 

development process; originally they were used only for oil and water identifications; 

later improved for hydrocarbon types and compositions with accurate gas-oil ratio (GOR) 

and condensate-gas ratio (CGR) measurements (Badry et al., 1994; Crombie et al., 1998).  

WFT stress testing applications were introduced in 1999 (Desroches and Kurkjian, 1999).  

Auxiliary measurements, such as resistivity, pH, coloration, florescence, salinity, density, 

and viscosity measurements were introduced throughout the years (Ayan et al., 2006; 

Dong et al., 2007).  Mobilities calculated from pressure measurements became an 

important indicator of permeabilities although they use a single phase approach and do 

not account for relative permeabilities or capillary pressures.  Pressure transient analyses 

have provided zonal permeabilities and productivity index (PI) values (Kin et al., 2010).    

 

Openhole logs, meanwhile, such as gamma ray, density, porosity and resistivity, have 

improved their reliability and accuracy since their inception (Galford et al., 1986; Flaum 

et al., 1989; Eyl et al., 1994; Barber et al., 1995).  Nuclear magnetic resonance logs have 

provided rock properties and pore-size distributions as well as capillary pressure 

estimations (Kenyon et al., 1989; Baldwin and Yamanashi, 1991).  Dielectric logging 
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was introduced to deliver fluid, matrix and geological structural analyses; especially 

useful when Archie exponents of m and n are not readily available from core analyses 

(Hizem et al., 2008).  Routine and special core analyses, although these take relatively 

longer time to perform, continue to be the industry standard for measuring the rock and 

fluid properties, such as fluid saturation, wettability, capillary pressure, absolute and 

relative permeabilities, porosity and pore-size distribution (Unalmiser and Funk, 1998). 

 

Single-phase well test interpretations have been widely used in the industry and 

multiphase pressure transient analyses were also presented for complex reservoir systems 

(Perrine, 1956; Al-Khalifah et al., 1987; Ayan et al., 1988; Raghavan, 1989; 

Ramakrishnan et al., 1994; Kuchuk et al., 2010).  Goode and Thambynayagam (1996) 

looked into invaded zone effects on WFT pressure transient analyses.  Gok et al. (2003) 

investigated invaded zone parameters and estimated them from WFT DP and SP inlets in 

an inversion model.   

 

Effects of mud-filtrate invasion and mud-cake growth have been studied extensively and 

forward models have been developed (Dewan and Chenevert, 1993; Carlson et al., 1996; 

Proett et al., 2001; Wu et al., 2005; Zinati et al., 2007).  Studies examined the modeling 

of the mud-filtrate invasion by integrating both resistivity and WFT data.  Semmelbeck 

and Holditch (1988) used a two-phase fluid flow model to generate the mud-filtrate 

invasion integrating mud-cake permeability.  Their approach included induction logging, 

which is sensitive to salt concentration in the porous medium.  Semmelbeck et al. (1995) 

improved their previous study by integrating the fluid flow model with Dewan and 

Chenevert’s mud-cake model, which was an experimental model defining mud-cake 

growth and filtration mechanisms.   

 

Near-wellbore saturation distributions due to mud-filtrate invasion are interpreted with 

novel petrophysical interpretations of openhole logs.  Estimation of relative permeability 

and capillary pressure are related to mud-filtrate invasion and the calculation of the 

saturation distribution in the multiphase flow environment of the near-wellbore region.  

Ramakrishnan and Wilkinson (1997 and 1999) used array induction logging and 

multiphase fluid flow physics to generate fractional flow and relative permeability 

curves.  Their model ignored capillary and gravity effects.  However, their model 

calculated the invasion fluid loss in the reservoir as well as obtained saturation-dependent 
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properties for the first time.  Zeybek et al. (2004) numerically integrated the model of 

Ramakrishnan and Wilkinson and history matched the WFT water-cuts and bottomhole 

pressures from the DP inlet.  In the study of Zeybek et al., capillary pressures were 

ignored; however, pressure transient analyses provided permeabilities and the history 

match of water-cuts and flowing pressures yielded relative permeability curves.  This 

study also ignored phase segregation effects within the isolated DP interval. 

 

Alpak (2006) and Salazar (2009) conducted a study to analyze invasion profiles in an oil 

based mud environment.  Alpak et al. (2004a, 2004b, 2006 and 2008) showed throughout 

several papers that porosity, relative and effective permeabilities could be inverted from 

array induction logs and WFT water-cuts and bottomhole pressures.  Their study 

investigated WBM invasion profiles as well as their petrophysical parameter 

dependencies.  Salazar et al. (2005 and 2006) extended Alpak’s model to gas reservoirs.  

Salazar’s model incorporated the University of Texas at Austin numerical mud invasion 

simulator developed from the studies of Dewan and Chenevert (1993), and later Wu et 

al. (2003 and 2005).  Angeles et al. (2008) enhanced Salazar’s work with accurately 

defined rates from the mud-filtrate invasion.  Malik et al. (2007) quantified the effect of 

oil based mud (OBM) filtrate invasion on WFT measurements and estimated in situ 

petrophysical properties.  Angeles et al. (2009) improved their model later to include 

deviated wells in oil based mud systems.  Liang et al. (2011) estimated multiphase flow 

petrophysical parameters and mud-filtrate volumes by jointly inverting the induction logs 

with the WFT pressure transient data incorporating capillary pressure and gravitational 

effects.  Liang’s work directly inverted the mud-filtrate invasion rates for each flow unit 

instead of using a complex mud-cake buildup model and this approach simplified the 

workflow by eliminating the mud-cake growth modeling.   

 

A literature survey on previous studies shows that WFT tool geometry, including the 

internal tool storage and fluid segregation within the storage volume, has not been 

accurately captured in the modeling.  Different inlet types, such as single probes of 

varying size, 3DRP inlets, and dual packers, are not fully covered in the literature.  Also, 

inclusion of WFT pressure buildup analyses for vertical and horizontal permeabilities, 

and damage skin in an inversion workflow is rarely accounted for.  Mud-filtrate invasion 

dynamics and their effects are included in previous studies.  However, we have extended 

this with DF and SF, and investigated invasion profile effects, especially when both 
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gravity and capillary terms are included.  Finally, our study examines both gradient and 

stochastic based optimization methodologies so as to obtain the parameterized relative 

permeability and capillary pressure curves with relatively low computational cost.  Table 

1.1 summarizes the previous studies presented in the literature and compares with our 

study. 
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Table 1.1: Summary of the literature review for generation of relative permeability and capillary pressure curves 
 

Case Mud Cake  
Growth Model Invasion Model Timeline for  

logging / WFT 
Relative  

Permeability 
Capillary 
Pressure Hysteresis Numerical Model Property handling WFT Design 

Current study No Empirical model of dynamic 
and static filtrations from 
Phelps et al.  Invasion 
volume and radius are 
honored. 

Yes. Time gaps 
between drilling, 
openhole and WFT 
logs affect capillary 
pressures. 

Modified 
Brooks Corey  
and LET 

Modified Brooks 
Corey and Thomeer 

No, but invasion 
saturation profiles are 
matched from 
openhole logs and 
followed by WFT 
cleanup. 

Numerical model is 
stochastic and gradient 
based. Inversion is 
automated including 
gravity and capillarity 
in stochastic model. 

Damage skin, kh, kv, Swi, Sor, 
koro, korw, heterogeneity, 
capillarity, invasion  

Various WFT inlets 
and their tool storage, 
multisegment well 
model for the DP inlet  

Alpak et al. No Time-dependent function, a 
priori information from U. 
of Texas at Austin model 

Yes Modified 
Brooks Corey 

Modified Brooks 
Corey 

No Numerical inversion of 
array induction 
measurements 

Brine conductivity, 
resistivity inversion for 
invasion in an oil reservoir 

Single probe or DP 
inlet without its tool 
storage or segregation  

Angeles et al. No Time-dependent function, a 
priori information from U. 
of Texas at Austin model 

Yes Modified 
Brooks Corey 

Leverett J-function, 
Modified Brooks 
Corey 

No Forward numerical 
model. Parameters are 
assumed or manually 
adjusted. 

Resistivity and initial water 
saturation inversion for 
invasion. No damage skin is 
included. 

Guard and sampling 
probes, DP inlet for 
deviated wells. No 
WFT tool storage 

Liang et al. No Constant volume invasion, 
honoring resistivity inverted 
invasion profile 

Yes Modified 
Brooks Corey 

Modified Brooks 
Corey 

No Numerical model uses 
gradient based 
inversion with gravity 
and capillarity. 

Reservoir properties, 
heterogeneity, resistivity 
inversion for invasion 

Single probe or DP 
inlet without its tool 
storage or segregation  

Malik et al. No Oil based mud invasion with 
known depth of invasion 

No Modified 
Brooks Corey 
and curves are 
kept at Swi . 

Leverett J-function 
modifies Pc with 
permeability and 
porosity. 

No Compositional 
simulator sensitivities 

Oil based mud and 
compositional hydrocarbon 
mixing model to obtain GOR 

Single probe 

Proett et al. Yes, time and 
mud property 
dependent 

Modeled from mud 
properties, overbalance, U. 
of Texas at Austin model 

Yes Modified 
Brooks Corey 

Modified Brooks 
Corey 

No Forward numerical 
model 

Mud properties and 
overbalance are used. 
Saturation profiling is done 
but no damage skin is 
included.  

No WFT tool storage 

Ramakrishnan  
and  
Wilkinson 

No Fractional flow curve is 
generated from array 
induction logs. 

No Modified 
Brooks Corey 

Buckley Leverett 
model, no capillarity 
and no gravity 

No Forward model for 
water based mud 
invasion with oil, water 
and salt transport 

Residual and movable 
saturations, water-cut in the 
cleanup, the fractional flow 
curve as a function of 
saturation are generated. 

No WFT tool design 

Salazar et al. No Time-dependent function, a 
priori information from U. 
of Texas at Austin model 

Yes Modified 
Brooks Corey 

Leverett J-function, 
Modified Brooks 
Corey 

No, only invasion Numerical inversion of 
array induction 
measurements 

Brine conductivity, 
resistivity inversion for 
invasion in a gas reservoir 

No WFT involvement, 
array induction tool 
measurements 

Wu et al. Yes, time and 
mud property 
dependent 

Modeled from mud 
properties, overbalance,  U. 
of Texas at Austin model 

Yes Modified 
Brooks Corey 

Leverett J-function, 
Modified Brooks 
Corey 

No Neural network for 
history matching 

 kh, kv, porosity and mud 
properties are used, but no 
damage skin is included. 

No WFT tool storage 

Zeybek et al. No Manual inputs from 
Ramakrishnan and 
Wilkinson calculations 

No Manual 
modification 

No No Manual forward model 
runs 

Manual relative 
permeability modifications 
and history match, no 
damage skin 

DP inlet without its tool 
storage or segregation  
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 Outline of Chapters 

Chapter 1 presents the study and its objectives.  The methodology of achieving relative 

permeabilities and capillary pressures is introduced.  The literature review investigates 

the previous studies and the developments of the logging tools and the models throughout 

the years.   

 

Chapter 2 describes the theory and assumptions, and their mathematical backgrounds.  

The mud-filtrate invasion is explained.  The model for the WFT cleanup process is 

introduced.  Two-phase immiscible flow equations in black-oil fluid models are briefly 

revisited.  The multisegment well model for the flow segregation and tool storage in WFT 

tool inlets is introduced.  Skin factor and its pseudo components are explained.  The 

relative permeability and capillary pressure models used are illustrated.  The hysteresis 

effects of the relative permeability and capillary pressure are demonstrated.  Finally, 

gradient and stochastic based optimization methods are explained. 

 

Chapter 3 explains the WFT tool and its operational details including cleanup, sampling 

and pressure data acquisition, and inlet types.  The WFT tool pressure and fluid analyzer 

measurements are briefly explained.  The operational aspect of interval pressure transient 

test (IPTT) for vertical and horizontal permeabilities is described. 

 

Chapter 4 presents a synthetic numerical model in detail.  Extensive sensitivity analyses 

are conducted to quantify the model behavior with fluid and rock properties, inlet 

geometries, and invasion and cleanup processes.  The sensitivities have assisted in 

improving the model before implementing it in field examples. 

 

Chapter 5 focuses on the workflow including the interpretation of openhole and WFT 

logs, the preparation of the numerical model and the process of attaining the relative 

permeability and capillary pressure curves.  Detailed analyses of optimization methods 

are included with the synthetic and field examples. 

 

Chapter 6 provides the conclusions of our study that relative permeabilities and capillary 

pressures can be obtained with a novel methodology from WFT cleanup datasets, and 

recommendations for the future research. 



10 

 

CHAPTER 2. THEORY AND ASSUMPTIONS 

In this chapter the theory and assumptions and the preferred methods of the model design 

are introduced with their reasons and limitations.   

 
Mud-filtrate (MF) invasion to and sampling from near-wellbore regions are nonlinear 

multiphase flow processes with salt and particle transportation.  In this study, particle and 

salt transportation of the mud filtrate is ignored.  The study covers two-phase flow of 

water based mud (WBM) filtrate and a single-phase (under-saturated) hydrocarbon, 

which may be oil or gas, and does not implement the mud cake development process.  

Properties of the invading fluid and the reservoir connate water are assumed identical.  

Their mixing provides a single water phase.  Permeability impairment during the invasion 

is controlled by the components of skin factor.   

 

Capillary, gravitational and viscous forces are included in our study.  Low mud-filtrate 

invasion rates and relatively short depth of invasion, the capillary driven flow plays a 

crucial role in determining the near wellbore saturation distribution.  Gravitational forces 

are effective and able to create mud-filtrate slumping depending on the invasion volume 

and time, permeability and its heterogeneity, and the density contrast between mud 

filtrate and hydrocarbon.  Viscous forces are proportional to the velocities of the fluids 

and naturally incorporated in the modeling. 

 

 Invasion Profile 

The invasion of a mud filtrate during drilling is described with spurt loss, dynamic and 

static filtrations in the literature (Allen et al., 1991).  It is assumed that mud-filtrate loss 

is controlled by a filter cake on the sandface of the wellbore.  With this approach, the 

invasion can be introduced explicitly as a parameterized function.  This decouples the 

mud cake buildup event and the invasion.  In our model, filtration occurs in three 

consequent periods as modeled by Phelps et al. (1984a, 1984b): 

 

Spurt loss occurs when the drill bit cuts the fresh rock and the whole mud flows 

internally.  Its maximum rate may be calculated with an overbalance pressure and a rock 

permeability from a pressure drawdown equation for an infinite acting reservoir or a 

pressure drawdown analysis with variable rates (Odeh and Jones, 1965).   
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Dynamic filtration (DF) follows the spurt loss when the mud circulates in the wellbore.  

DF reduces significantly while the mud cake builds up internally in a short time period.  

DF rate reduction may be presented with a power law decline curve: 

 

𝑞𝑞𝐷𝐷𝐷𝐷 = 𝐶𝐶1 ∗ 𝑡𝑡−0.5 + 𝐶𝐶2                                                     (2.1) 

 

where 𝑞𝑞𝐷𝐷𝐷𝐷 is dynamic filtration rate, 𝑡𝑡 is time, 𝐶𝐶1 and 𝐶𝐶2 are constants related to 

environmental effects, such as overbalance, initial invasion rate and mud cake buildup. 

  

Static filtration (SF) starts after the mud cake sets up and restricts the initial filtration.  

SF occurs typically when a drill pipe is out of the hole and mud solids are deposited on 

the cake’s outer surface creating an external mud cake.  The mud cake development and 

its quality affect the SF rates.  SF does not stop even after the mud cake is well 

established, although it is much smaller, it continues throughout openhole logging and 

WFT cleanup.  WFT sampling requires that the mud cake is developed and SF rates are 

lower than WFT cleanup rates.  Since WFT sampling is common, this condition is mostly 

established.  When the mud cake is not established with severe mud losses in a wellbore, 

WFT sampling is not conducted.   

 

SF is presented with a constant rate due to the relatively short time from drilling to 

logging.  During cleanup and sampling, the WFT tool prevents SF across the area covered 

by the sealing packer element of the inlet, while SF continues elsewhere in the openhole 

section.  The continuing SF does not affect the WFT sampling since the SF rate is 

relatively low in comparison to the WFT cleanup rate as explained earlier. 

 

Openhole log interpretations can provide invasion fluid volumes and the depth of 

invasion (DOI) at the time of logging.  It has been demonstrated that array resistivity 

measurements, either induction or laterolog, can be used to establish the radial advance 

of the invasion profile (Ramakrishnan and Wilkinson, 1997).  The method, which uses 

the radial Buckley-Leverett equation for one-dimensional linear immiscible 

displacement, can provide an estimate of the invasion profile around the wellbore.  The 

method inverts simultaneously for the total filtrate loss, saturation endpoints and 

fractional flow.  This allows for relative permeabilities to be estimated initially, ignoring 

effects of gravity and capillarity (Ramamoorthy et al., 2008).    
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We model the entire mud-filtrate invasion with its dynamic and static components and 

the WFT cleanup process to be able to generate multiphase invasion and production data 

as accurately as possible.  We investigate the invasion volume during DF and SF and 

estimate their respective flow rates.  The invasion rates and their profiles for DF and SF 

are based on the experimental data presented in Figure 2.1.  Although DF and SF profiles 

follow their described trends, their magnitudes and durations are parameterized and 

matched to the invasion volumes obtained from openhole logs, which are recorded during 

the mud-filtrate invasion in the imbibition process.  The invasion process implemented 

includes gravity and capillarity and allows the invasion front to be affected by any time-

lag between the logs.  Therefore, accurate schedules of logging runs and well operations, 

such as drilling, wiper trips can be accounted for in the model. 

 

 
Figure 2.1: Experimental fluid loss rates for DF before 12 hours and for SF 

subsequently on the left (Phelps et al., 1984).  The solid and dotted lines in 
the plot on the left are an experimentally observed invasion and a simplified 
approximation respectively.  In our study the invasion rates follow DF rate 
as in solid line and SF rate as in dotted line from the experimental data and 
redrawn on the right. 

 

 Cleanup and Sampling 

The WFT cleanup operation represents a secondary drainage process in which 

hydrocarbon re-saturates the near-wellbore inlet region.  As the invasion of the mud 

filtrate is a water based, the cleanup process is the displacement of the contaminant by 

hydrocarbon in the near-wellbore area.  Although water wet rock examples are mainly 

presented, there is no wettability assumption in the present study for the cleanup 

modeling.  If a dataset from a field history or coring or openhole logs suggests that the 

reservoir is oil wet, the methodology remains unchanged and is applicable.  The resulting 



13 

 

curves after the inversion may suggest an oil or a water wet system without any limitation 

in the process. 

 

Primary drainage curves initially govern the reservoir before drilling in our numerical 

model.  The initial stage represents oil (1-Sor) in the reservoir with irreducible water 

content (Swi) if no transition zone exists.  In the case of a transition zone, the primary 

drainage curves distribute the saturations with an increasing water saturation downward.  

The initialization assumes the vertical equilibrium and includes capillary and gravity 

terms.  During drilling of the reservoir, mud-filtrate invasion occurs due to mud pressure 

overbalance, gravitational, viscous and capillary forces.  As mentioned earlier, the 

invasion acts much like a waterflood and the invasion rates are changed according to the 

mud cake development and overbalance pressure.  The invasion can be observed on the 

saturation distribution in the near-wellbore region during logging and WFT cleanup 

processes.   

 

The gravitational, viscous and capillary forces, when included in 2D (R-Z) or 3D (R-θ-

Z) models, create a saturation smearing before or during cleanup.  The reservoir dynamics 

introduced with the capillary and gravitational forces should be included during the 

history matching of the water-cut and bottomhole pressure since the saturation profile 

changes even after openhole logs and during the cleanup period in the near-wellbore 

region.   

 

The dominance of the gravitational, viscous and capillary forces will depend on the case 

controlled by factors, some of which are listed below: 

• The mud-cake quality and the duration of mud-filtrate invasion, which affect filtration 

rates and volumes, DOI 

• The formation properties, such as formation thickness, vertical and horizontal 

permeabilities, porosity and pore size distribution, which influence DOI and invasion 

fluid slumping, and capillary pressure  

• The WFT cleanup rate, which acts against the SF rate 

• The oil-water density difference, which changes the invasion fluid slumping and the 

cleanup profile along with the WFT cleanup rate 

• The oil-water interfacial tension and wettability, which guide relative permeability and 

capillary pressure behaviors  
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Chapter 4.6 presents synthetic examples how the three forces affect the mud-filtrate 

invasion and the cleanup behaviors. 

 

 Two-Phase Immiscible Flow  

The flow of fluids in the model is governed by the principle of mass conversation together 

with the Darcy’s law.  The model accounts for the physical properties of the rock and 

fluids, including porosity, permeability, density, compressibility, and fluid viscosity.  The 

flow of immiscible oil and water phases in a porous medium is governed by a set of 

partial differential equations.  The mass balance equations are formulated for the fluid 

phases as below (Aziz and Settari, 1979): 

 

𝜕𝜕(𝜌𝜌𝑙𝑙∅𝑆𝑆𝑙𝑙)
𝜕𝜕𝜕𝜕

+ ∇ ⋅ (𝜌𝜌𝑙𝑙𝑢𝑢𝑙𝑙) = −𝑞𝑞𝑙𝑙,     𝑙𝑙 = 𝑜𝑜,𝑤𝑤                                (2.2) 

 

where the subscript 𝑙𝑙 is the index of a phase, which is water or oil, and ∇ indicates the 

differentiation with respect to spatial position (R, θ, Z).   

 

The velocity vector, 𝑢𝑢𝑙𝑙 is written from the Darcy’s law: 

  

𝑢𝑢𝑙𝑙 = −𝑘𝑘 ⋅
𝑘𝑘𝑟𝑟𝑟𝑟
𝜇𝜇𝑙𝑙

(∇𝑝𝑝𝑙𝑙 − 𝛾𝛾𝑙𝑙∇𝑧𝑧)                                               (2.3) 

 

where 𝑘𝑘 is the rock permeability, 𝑘𝑘𝑟𝑟𝑟𝑟 is the saturation-dependent relative permeability 

and 𝜇𝜇𝑙𝑙 is the viscosity of phase 𝑙𝑙,  𝛾𝛾𝑙𝑙 is expressed as  𝜌𝜌𝑙𝑙
𝑔𝑔
𝑔𝑔𝑐𝑐

 ,  𝑔𝑔 is the gravity acceleration, 

and 𝑔𝑔𝑐𝑐 is a unit conversion factor.  The mobility of phase 𝑙𝑙 is defined as 𝜆𝜆𝑙𝑙 = 𝑘𝑘𝑟𝑟𝑟𝑟
𝜇𝜇𝑙𝑙

 . 

 
Saturation relation is given in the case of water and oil:  

 

𝑆𝑆𝑤𝑤 + 𝑆𝑆𝑜𝑜 = 1                                                         (2.4)  

 
Saturation-dependent capillary pressures are: 

  
𝑃𝑃𝑐𝑐(𝑆𝑆𝑤𝑤) = 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛−𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑝𝑝𝑜𝑜 − 𝑝𝑝𝑤𝑤                              (2.5) 
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Two-phase flow for a phase can be written:   

 

∇ ∙ [𝜆𝜆𝑙𝑙(∇𝑝𝑝𝑙𝑙 − 𝛾𝛾𝑙𝑙∇z)] =  
∂
∂t
�∅
𝑆𝑆𝑙𝑙
𝐵𝐵𝑙𝑙
� + 𝑞𝑞𝑙𝑙                                  (2.6) 

 

The total source term and the total Darcy velocity are 𝑞𝑞𝑇𝑇 = 𝑞𝑞𝑤𝑤 + 𝑞𝑞𝑜𝑜 and 𝑢𝑢𝑇𝑇 = 𝑢𝑢𝑤𝑤 + 𝑢𝑢𝑜𝑜 

respectively. The following is obtained from Equation 2.2 in the negligible 

compressibility case: 

∇.𝑢𝑢𝑇𝑇 = −𝑞𝑞𝑇𝑇                                                        (2.7) 

 

Darcy’s velocities are: 

 

𝑢𝑢𝑤𝑤 = 𝑓𝑓𝑤𝑤(𝑆𝑆𝑤𝑤)𝑢𝑢𝑇𝑇 + 𝑘𝑘𝜆𝜆𝑜𝑜(𝑆𝑆𝑤𝑤)𝑓𝑓𝑤𝑤(𝑆𝑆𝑤𝑤)�∇𝑃𝑃𝑐𝑐 − ∆𝛾𝛾∇z�                  (2.8) 

 

𝑢𝑢𝑜𝑜 = �1 − 𝑓𝑓𝑤𝑤(𝑆𝑆𝑤𝑤)�𝑢𝑢𝑇𝑇 − 𝑘𝑘𝜆𝜆𝑜𝑜(𝑆𝑆𝑤𝑤)𝑓𝑓𝑤𝑤(𝑆𝑆𝑤𝑤)�∇𝑃𝑃𝑐𝑐 − ∆𝛾𝛾∇z�            (2.9) 

 

where ∆𝛾𝛾= 𝛾𝛾𝑜𝑜 − 𝛾𝛾𝑤𝑤  and  𝑓𝑓𝑤𝑤(𝑆𝑆𝑤𝑤) = 𝜆𝜆𝑤𝑤
𝜆𝜆𝑤𝑤+𝜆𝜆𝑜𝑜

 

 

Below relations can be written: 

  

∇𝑃𝑃𝑐𝑐 =
𝑑𝑑𝑃𝑃𝑐𝑐
𝑑𝑑𝑆𝑆𝑤𝑤

(𝑆𝑆𝑤𝑤)∇𝑆𝑆𝑤𝑤                                                                     (2.10) 

   

∇. [𝑓𝑓𝑤𝑤(𝑆𝑆𝑤𝑤)𝑢𝑢𝑇𝑇] =
𝑑𝑑𝑓𝑓𝑤𝑤
𝑑𝑑𝑆𝑆𝑤𝑤

(𝑆𝑆𝑤𝑤)∇(𝑆𝑆𝑤𝑤).𝑢𝑢𝑇𝑇 − 𝑓𝑓𝑤𝑤(𝑆𝑆𝑤𝑤)𝑞𝑞𝑇𝑇                       (2.11) 

 

Then the black-oil saturation equation can be obtained as: 

    

𝜕𝜕𝑆𝑆𝑤𝑤
𝜕𝜕𝜕𝜕

+ �
1
∅
𝑑𝑑𝑓𝑓𝑤𝑤
𝑑𝑑𝑆𝑆𝑤𝑤

(𝑆𝑆𝑤𝑤)𝑢𝑢𝑇𝑇� ∙ ∇(𝑆𝑆𝑤𝑤) −  ∇ ∙ �
∆𝛾𝛾𝑘𝑘
∅

 𝜆𝜆𝑜𝑜(𝑆𝑆𝑤𝑤)𝑓𝑓𝑤𝑤(𝑆𝑆𝑤𝑤)∇z� +         

 

∇ ∙ �
𝑘𝑘
∅

 𝜆𝜆𝑜𝑜(𝑆𝑆𝑤𝑤)𝑓𝑓𝑤𝑤(𝑆𝑆𝑤𝑤)
𝑑𝑑𝑃𝑃𝑐𝑐
𝑑𝑑𝑆𝑆𝑤𝑤

(𝑆𝑆𝑤𝑤)∇𝑆𝑆𝑤𝑤� +  
1
∅

[(𝑞𝑞𝑤𝑤 − 𝑓𝑓𝑤𝑤(𝑆𝑆𝑤𝑤)𝑞𝑞𝑇𝑇)] = 0            (2.12) 
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The first term in Equation 2.12 refers to accumulation, the second to material convection, 

the third to gravity, the fourth to capillarity and the last to the source terms.  For analytical 

solutions, the latter can either be included in the differential equations or excluded and 

considered as a boundary condition.  If gravity term and capillary pressure gradients are 

assumed negligible, and 𝑢𝑢𝑇𝑇(𝑥𝑥, 𝑡𝑡) = 𝑄𝑄𝑇𝑇(𝑡𝑡)
𝐴𝐴

= 𝑢𝑢𝑇𝑇(0, 𝑡𝑡) where 𝐴𝐴 is the reservoir cross-

section and 𝑄𝑄𝑇𝑇(𝑡𝑡) is the invasion or sampling flow rate through the cross-section 𝐴𝐴, then 

Buckley-Leverett equation can be obtained as:  

  

𝜕𝜕𝑆𝑆𝑤𝑤
𝜕𝜕𝜕𝜕

+  �
𝑄𝑄𝑇𝑇(𝑡𝑡)
𝐴𝐴∅

𝑑𝑑𝑓𝑓𝑤𝑤
𝑑𝑑𝑆𝑆𝑤𝑤

(𝑆𝑆𝑤𝑤)�
𝜕𝜕𝑆𝑆𝑤𝑤
𝜕𝜕𝜕𝜕

= 0                                    (2.13) 

 

Equation 2.12 is solved numerically with a fully implicit finite-difference based reservoir 

simulator (ECLIPSE Reservoir Simulator Technical Description, 2015).  The standard 

method in the simulator is the fully implicit method in which pressures and saturations 

are solved together.  Our study is conducted in a single well penetrating layered 

hydrocarbon-bearing formations. The well is partially completed and a radial 

axisymmetric model is used only for the DP inlet, but not for the SP and 3DRP inlets. 

 

 Multisegment Well Model 

The black-oil simulation is implemented with a multisegment well model in order to 

describe the fluid flow from sandface to the WFT DP inlet.  The model accounts for fluid 

accumulation and segregation due to the inlet position and geometry and flowline volume 

within the WFT tool.  The fluid flow from the sandface of the wellbore to the fluid 

analyzer in the WFT tool has a path in which there are flowlines, and volumes for the 

tool storage.  When a DP inlet is used for cleanup, the DP interval accumulates and 

segregates the fluid phases due to its volume and the inlet position, which is located at 

one-third from the bottom of its flowing interval.  The pressure drop can be calculated 

from a homogeneous flow model where all the phases are assumed to flow with the same 

velocity, or alternatively with a drift-flux model that permits a slip velocity between the 

phases (Shi et al., 2003 and 2004).  A homogenous model is not suitable for an accurate 

definition of segregation of the phases since fluid velocities are assumed same for all 

phases, even though their flow properties are different.   
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The multisegment well model implemented in the black-oil simulator is described in 

detail by Holmes et al. (1998).  The multisegment well model divides the DP interval 

into a number of segments as shown in Figure 2.2.  The model can also be applicable to 

a single probe inlet if it has a large storage volume.  The number of segments is set up 

depending on the accuracy required and the count of the surrounding grid blocks 

designed.  Each segment has a node and a flow path to its parent segment node.  Each 

segment also includes outlet and inlet junctions.  The former represents a connection in 

the direction of the wellhead and the latter is a connection away from the wellhead.  Each 

segment has physical properties: length, diameter, roughness, area, and volume.  The 

volume is used in wellbore storage calculations and the other properties are used in the 

pressure loss calculations.   

 

 
Figure 2.2: Segment structure of the multisegment well model adapted from Holmes et 

al. (1998).   
 
 
Four variables describe the fluid conditions in each segment:  

 

𝐺𝐺𝑇𝑇 = 𝑔𝑔𝑜𝑜𝑄𝑄𝑜𝑜 + 𝑔𝑔𝑤𝑤𝑄𝑄𝑤𝑤 + 𝑔𝑔𝑔𝑔𝑄𝑄𝑔𝑔                                         (2.14) 

 

𝐹𝐹𝑤𝑤 = 𝑔𝑔𝑤𝑤𝑄𝑄𝑤𝑤/𝐺𝐺𝑇𝑇                                                     (2.15) 

 

𝐹𝐹𝑔𝑔 = 𝑔𝑔𝑔𝑔𝑄𝑄𝑔𝑔/𝐺𝐺𝑇𝑇                                                      (2.16) 

 

where 𝐺𝐺𝑇𝑇 is total fluid flow rate through the segment and is a weighted sum of the oil, 

water and gas flow rates at surface conditions, 𝐹𝐹𝑤𝑤 and 𝐹𝐹𝑔𝑔 are the weighted fractional flows 

of water and gas at the node,  𝑃𝑃 is the pressure in the segment as the fourth variable. 
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The variables are solved for all phases in each segment with material balance equations: 

 

𝑅𝑅𝑝𝑝𝑝𝑝 =
∆𝑚𝑚𝑝𝑝𝑝𝑝

∆𝑡𝑡
−�𝑄𝑄𝑝𝑝𝑝𝑝

𝑖𝑖∈𝑛𝑛

�𝑞𝑞𝑝𝑝𝑝𝑝 +
𝑗𝑗∈𝑛𝑛

𝑄𝑄𝑝𝑝𝑝𝑝 = 0                               (2.17) 

  

where ∆𝑚𝑚𝑝𝑝𝑝𝑝 is the accumulation in the amount of the component 𝑝𝑝 in the segment 𝑛𝑛 over 

the timestep ∆𝑡𝑡, 𝑄𝑄𝑝𝑝𝑝𝑝 is the flow rate through each inlet junction 𝑖𝑖 to segment 𝑛𝑛,  𝑄𝑄𝑝𝑝𝑝𝑝 is 

the flow rate through the outlet junction of the segment 𝑛𝑛,  𝑞𝑞𝑝𝑝𝑝𝑝 is the inflow rate from 

any reservoir grid block 𝑗𝑗, connecting with segment 𝑛𝑛, which is obtained from an inflow 

performance relationship: 

 

𝑞𝑞𝑝𝑝𝑝𝑝 = 𝐽𝐽𝑗𝑗𝜆𝜆𝑝𝑝𝑝𝑝�𝑃𝑃𝑗𝑗 + 𝐻𝐻𝑐𝑐𝑐𝑐 − 𝑃𝑃𝑛𝑛 − 𝐻𝐻𝑛𝑛𝑛𝑛�                                   (2.18)  

 

where 𝐽𝐽 is the connection transmissibility factor of the well’s connection to the grid block 

𝑗𝑗,  𝜆𝜆𝑝𝑝𝑝𝑝 is the mobility of the fluids within the grid block,  𝑃𝑃𝑗𝑗 is the pressure in the grid 

block connecting with the segment, 𝐻𝐻𝑐𝑐𝑐𝑐 is a hydrostatic head correction between the 

center of the grid block and the depth of the completion, which is calculated from an 

average of the mobile fluid densities in the grid block,  𝑃𝑃𝑛𝑛 is the pressure at the node of 

segment 𝑛𝑛,  𝐻𝐻𝑛𝑛𝑛𝑛 is the hydrostatic head between the segment’s node depth and the depth 

of the completion, which depends on the density of the fluid mixture within the segment. 

 

The pressure drop is calculated from the flow rate through its outlet junction with a steady 

state pressure loss equation:  

 
𝑅𝑅4 = 𝑃𝑃𝑛𝑛 − 𝑃𝑃𝑛𝑛−1 − ∆𝑃𝑃𝐻𝐻 − ∆𝑃𝑃𝐹𝐹 − ∆𝑃𝑃𝐴𝐴 = 0                                (2.19) 

 

where 𝑃𝑃𝑛𝑛−1 is the pressure in the neighboring segment in the direction of the wellhead.  

∆𝑃𝑃 terms represent the pressure drops across the segment.  Subscripts 𝐻𝐻, 𝐹𝐹, 𝐴𝐴 denote 

hydrostatic, friction and acceleration terms respectively. 

 

The acceleration pressure loss across a segment is the difference between the velocity 

head of the mixture flowing across the segment’s outlet junction and the velocity heads 

of the mixture flowing through all its inlet junctions.  The friction pressure loss is 
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calculated from the formation derived from the correlation of Hagedorn and Brown 

(1965). 

 

The multisegment well model has three methods for calculating the pressure drop across 

each segment: 

1. A homogeneous flow model, which assumes same flow velocities for all phases.  

2. A drift flux vertical flow model, which allows different flow velocities for all phases.  

The drift flux model allows a countercurrent flow regime, where the heavy and light 

phases flow in opposite directions at low velocities.  Hence it can be used to model the 

segregation of phases in the WFT SP flowlines and DP intervals for cleanup and pressure 

buildup events.  This will allow an accurate oil breakthrough time and a progression of a 

cleanup.   

3. A pre-calculated pressure drop table.  The inputs are outlet pressure, flow rate, water 

fraction and gas fraction in the form of a vertical flow performance table. 

 

 Skin Factor 

The skin factor is defined as an additional pressure drop due to a flow restriction in the 

near wellbore-region, which may be related to formation damage, partial penetration, 

wellbore deviation, multiphase flow, rock compaction around perforation tunnels, and 

more (Cinco-Ley et al., 1975; Yildiz, 2006). 

  

The total skin factor in a multiphase environment was shown by Raghavan in 1989 and 

it was adapted to a partial-entry well by Roadifer and Reynolds in 1993: 

 

𝑠𝑠𝑇𝑇 = 1.151 �
Δ𝑝𝑝𝑤𝑤𝑤𝑤(1ℎ𝑟𝑟)

𝑚𝑚
− 𝑙𝑙𝑙𝑙𝑙𝑙 �

𝜆̅𝜆𝑡𝑡
𝜙𝜙𝑐𝑐𝑡𝑡�𝑟𝑟𝑤𝑤2

� + 3.23�                       (2.20) 

 

where 𝑚𝑚 is the slope of the semilog straight line of the pseudo radial flow and is equal to 

𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤/𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑒𝑒,  Δ𝑝𝑝𝑤𝑤𝑤𝑤(1 ℎ𝑟𝑟) is the difference between the initial pressure and the wellbore 

shut-in pressure at 1 hr, 𝜆̅𝜆𝑡𝑡 is a multiphase thickness-averaged total mobility, 𝑐𝑐𝑡𝑡�  is 

thickness-averaged total compressibility.  In order to obtain the damage skin factor, an 

independent estimate of the pseudo skin factor as a result of limited entry is required 

(Roadifer and Reynolds, 1993).   
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Gok et al. (2003) presented a multiphase skin factor in the presence of a mud-filtrate 

invaded zone in a hydrocarbon reservoir (Equation 2.21).  Their equation is similar to 

Hawkins’ skin factor, which has the radial flow assumption.  In the case of a piston-like 

displacement by ignoring relative permeabilities, the mobilities represent the endpoint 

mobilities in the invaded and uninvaded zones.  The equation is calculated under the 

assumption that the invasion occurs in a fully penetrating well in the radial direction 

under transient conditions:  

 

𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �
1
𝑀𝑀
− 1� 𝑙𝑙𝑙𝑙 �

𝑟𝑟𝑖𝑖
𝑟𝑟𝑤𝑤
�                                              (2.21) 

 

where 𝑀𝑀 =  𝜆𝜆ℎ,𝑖𝑖 / 𝜆𝜆ℎ,𝑢𝑢 , 𝜆𝜆ℎ,𝑖𝑖 and 𝜆𝜆ℎ,𝑢𝑢 are horizontal invaded and horizontal uninvaded 

zone mobilities (𝑘𝑘/𝜇𝜇) respectively,  𝑟𝑟𝑖𝑖 is the invaded zone radius.   

 

The total skin for the full penetration can be written by adding the multiphase skin and 

the damage skin components: 

 

𝑠𝑠𝑇𝑇′ =
1
𝑀𝑀
𝑠𝑠𝑑𝑑 + �

1
𝑀𝑀
− 1� 𝑙𝑙𝑙𝑙 �

𝑟𝑟𝑖𝑖
𝑟𝑟𝑤𝑤
�                                         (2.22) 

 

where 𝑠𝑠𝑑𝑑 is the damage skin.  When 𝑀𝑀 = 1,  𝑠𝑠𝑇𝑇′ = 𝑠𝑠𝑑𝑑   

 

The total skin for a partially completed well is written with the additional skin term for 

the geometry, 𝑠𝑠𝑝𝑝: 

𝑠𝑠𝑇𝑇 = 𝑠𝑠𝑇𝑇′
ℎ
ℎ𝑤𝑤

+ 𝑠𝑠𝑝𝑝                                                      (2.23) 

 

The partial penetration skin, 𝑠𝑠𝑝𝑝 can be obtained from several authors (Odeh, 1980; 

Papatzacos, 1985; Vrbik, 1991).  The partial penetration skin from Odeh is given: 

 

                                    𝑠𝑠𝑝𝑝 = 1.35 �� ℎ
ℎ𝑤𝑤
− 1�

0.825
�𝑙𝑙𝑙𝑙 �ℎ�𝑘𝑘ℎ

𝑘𝑘𝑣𝑣
+ 7� − �0.49 +

                                               0.1𝑙𝑙𝑙𝑙 �ℎ�𝑘𝑘ℎ
𝑘𝑘𝑣𝑣
�� . 𝑙𝑙𝑙𝑙 𝑟𝑟𝑤𝑤𝑤𝑤 − 1.95��                                         (2.24) 
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where 𝑟𝑟𝑤𝑤𝑤𝑤 = 𝑟𝑟𝑤𝑤𝑒𝑒0.2126(𝑧𝑧𝑚𝑚 ℎ⁄ +2.753),  𝑧𝑧𝑚𝑚 = 𝑦𝑦 + ℎ𝑤𝑤 2⁄ ,  y is the distance between the top 

of the sand and the top of the open interval, 𝑧𝑧𝑚𝑚 is the distance between the top of the sand 

and the middle of the open interval. 

 

The total skin for a partially completed well can be written with the pseudo components:  

 

𝑠𝑠𝑇𝑇 = �
1
𝑀𝑀
𝑠𝑠𝑑𝑑 + 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�

ℎ
ℎ𝑤𝑤

+ 𝑠𝑠𝑝𝑝                                         (2.25) 

 

The black-oil simulator uses an individual skin factor to encounter all the pseudo effects 

mentioned including the grid block discretization error.  The skin factor in the simulator 

is defined in the connection factor equation of the inner-most grid block.  The radial form 

of the connection factor equation is presented due to the gridding preference (ECLIPSE 

Reservoir Simulator Technical Description, 2015):   

 

𝑇𝑇𝑤𝑤𝑤𝑤 =
𝑐𝑐𝑐𝑐𝑐𝑐ℎ

𝑟𝑟22
𝑟𝑟22 − 𝑟𝑟𝑤𝑤2

𝑙𝑙𝑙𝑙(𝑟𝑟2 𝑟𝑟𝑤𝑤⁄ ) − 0.5 + 𝑠𝑠
                                      (2.26) 

 

where 𝜃𝜃 is the angle of the grid block in radians, 𝐾𝐾 is permeability, ℎ is thickness, 𝑠𝑠 is 

skin, 𝑟𝑟2 is the block’s outer radius and 𝑐𝑐 is the unit conversion factor. 

 

We keep the skin factor as a constant throughout the invasion and cleanup events in our 

numerical model although it could be altered if required.  We may obtain the total skin 

factor from the pressure transient analyses as an initial input; however, the total skin 

factor from the semilog analysis will not be sufficient to resolve the complexity of all 

skin components during the numerical simulation.  To be specific, the numerical 

simulation will handle the multiphase skin factor naturally due to its capacity to handle 

multiphase flow.  In addition, the partial penetration skin for various flow inlets will be 

handled, provided that a fine enough grid is constructed for numerical modeling.  The 

skin factor obtained from a pressure transient analysis is used as a guide during the 

inversion workflow, after considering the partial penetration skin.  For the cited reasons, 

we choose to always invert for the damage skin factor in our model. 
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 Permeability 

Permeability, being a rock property, is constant, irrespective of the fluid flowing through 

the medium.  This is correct when rock is saturated 100% with the same fluid.  This is 

the definition of the absolute permeability.  When two different types of fluids, such as 

oil and water, flow through a porous medium, each fluid has its own permeability, then 

named as the effective permeability.  These permeabilities are dependent on the 

saturations of the individual fluids.  The effective permeability curves are generally 

normalized by dividing with the absolute permeability to generate the relative 

permeabilities (Dake, 1995). 
 

𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤) =
𝑘𝑘𝑜𝑜(𝑆𝑆𝑤𝑤)
𝑘𝑘

                                                    (2.27) 

 

𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤) =
𝑘𝑘𝑤𝑤(𝑆𝑆𝑤𝑤)

𝑘𝑘
                                                   (2.28) 

 
where  𝑆𝑆𝑤𝑤𝑤𝑤 ≤ 𝑆𝑆𝑤𝑤 ≤ 1 − 𝑆𝑆𝑜𝑜𝑜𝑜 

 

The effective permeability curves can also be normalized with the maximum effective 

permeability to oil, 𝑘𝑘𝑜𝑜(𝑆𝑆𝑤𝑤 =  𝑆𝑆𝑤𝑤𝑤𝑤).  Then the normalized relative permeabilities are 

expressed as: 

𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤) =
𝑘𝑘𝑜𝑜(𝑆𝑆𝑤𝑤)

𝑘𝑘𝑜𝑜(𝑆𝑆𝑤𝑤 =  𝑆𝑆𝑤𝑤𝑤𝑤)
                                               (2.29) 

 

𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤) =
𝑘𝑘𝑤𝑤(𝑆𝑆𝑤𝑤)

𝑘𝑘𝑜𝑜(𝑆𝑆𝑤𝑤 =  𝑆𝑆𝑤𝑤𝑤𝑤)
                                               (2.30) 

 

The latter normalization method is adopted throughout this study.  One reason is our 

ability to obtain 𝑘𝑘𝑜𝑜(𝑆𝑆𝑤𝑤 =  𝑆𝑆𝑤𝑤𝑤𝑤) from the analysis of pressure transients induced by the 

WFT. Note that contemporary numerical models can handle both definitions. 

 

2.6.1 Laboratory Measurements of Relative Permeability 

Unsteady-state and steady-state relative permeability methods are commonly used on 

core samples to measure relative permeabilities under laboratory conditions.  Below 

summarizes the methodologies for oil-water systems. 



23 

 

2.6.1.1 Unsteady State Method 

In a standard unsteady state method, first 𝑆𝑆𝑤𝑤𝑤𝑤 is established on a cleaned core.  Then, the 

core is aged for its wettability restoration for a lengthy period and 𝑘𝑘𝑜𝑜(𝑆𝑆𝑤𝑤𝑤𝑤) is determined.  

Later, water is injected into the core from one end, and oil production is observed from 

the other end.  The differential pressure across the core is also recorded throughout the 

waterflood.  The water breakthrough occurs subsequently at the outlet end and effective 

oil and water permeabilities are calculated based on the oil production and the differential 

pressure.  Progressively water injection rate is increased, and eventually only water is 

produced by reaching 𝑆𝑆𝑜𝑜𝑜𝑜 and 𝑘𝑘𝑤𝑤(𝑆𝑆𝑜𝑜𝑜𝑜) is obtained.  (Jones and Roszelle, 1978).  The 

following equation is considered satisfactory for the horizontal flow at the negligible 

capillary pressure for saturation determination (Welge, 1952): 

 
𝑆𝑆𝑤𝑤,𝑎𝑎𝑎𝑎 −  𝑆𝑆𝑤𝑤2 = 𝑓𝑓𝑜𝑜2 𝑄𝑄𝑤𝑤                                                (2.31) 

 

where 𝑄𝑄𝑤𝑤 is pore volumes of water injected relative to the entire core, 𝑓𝑓𝑜𝑜2  is the fractional 

flow of oil at the outlet end, 𝑆𝑆𝑤𝑤2 is the water saturation at the outlet end, 𝑆𝑆𝑤𝑤,𝑎𝑎𝑎𝑎 is the 

average water saturation, equals to  𝑆𝑆𝑤𝑤,𝑎𝑎𝑎𝑎 =  𝑆𝑆𝑤𝑤𝑤𝑤 +  𝑁𝑁𝑝𝑝 /  𝑉𝑉𝑝𝑝 ,  𝑁𝑁𝑝𝑝 is the volume of oil 

produced, 𝑉𝑉𝑝𝑝 is the pore volume of the core.  

 

𝑓𝑓𝑜𝑜2 is obtained from the slope of the curve defined between 𝑄𝑄𝑤𝑤 and 𝑆𝑆𝑤𝑤,𝑎𝑎𝑎𝑎 , and is 

expressed as: 

 

𝑓𝑓𝑜𝑜2 =
𝑞𝑞𝑜𝑜

𝑞𝑞𝑤𝑤 + 𝑞𝑞𝑜𝑜
                                                       (2.32) 

 

With the negligible capillary pressure and the horizontal flow, the unsteady-state method 

uses the fractional flow of water: 

 

𝑓𝑓𝑤𝑤2 =
1

1 + 𝑘𝑘𝑟𝑟𝑟𝑟
𝜇𝜇𝑜𝑜

𝜇𝜇𝑤𝑤
𝑘𝑘𝑟𝑟𝑟𝑟

                                                    (2.33) 

 

The fractional flow of water at the outlet, 𝑓𝑓𝑤𝑤2  can also be written as  𝑓𝑓𝑤𝑤2 =  1 − 𝑓𝑓𝑜𝑜2 . 
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The following assumptions are applicable: the core sample is homogenous, capillary 

equilibrium in the vertical cross-section is held, fluid viscosities are known, relative 

permeabilities are determined from Equations 2.31 - 2.33, laboratory conditions should 

meet so that the pressure gradient through the core must be sufficiently high to minimize 

the capillary end effects and the pressure difference through the core must be sufficiently 

low in comparison to the total working pressure to make the compressibility effects 

negligible. 

 

2.6.1.2 Steady State Method 

Although there are several steady-state methods available, in the case of a two-phase oil 

and water experiment, the main approach is to inject a fixed relative rate of oil and water 

simultaneously into the core until the equilibrium is reached so that pressure drop and 

fluid saturations across the core do not change.  The rates are assumed sufficiently high 

to minimize the capillary end effects on the flow behavior.  After equilibrium is 

established, two-phase flow rates (𝑞𝑞𝑜𝑜 ,𝑞𝑞𝑤𝑤) and pressure drop (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) are measured 

(Richardson et al., 1952).  Then, the relative permeabilities of each phase are calculated 

from the Darcy’s law with the known absolute permeability (𝑘𝑘), cross-sectional flow area 

(𝐴𝐴), two-phase viscosities (𝜇𝜇𝑜𝑜, 𝜇𝜇𝑤𝑤) and effective permeabilities (𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟,𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟): 

 

𝑞𝑞𝑜𝑜 = −
𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
𝜇𝜇𝑜𝑜

𝐴𝐴 
𝑑𝑑𝑃𝑃𝑜𝑜
𝑑𝑑𝑑𝑑

                                                        (2.34) 

 

𝑞𝑞𝑤𝑤 = −
𝑘𝑘𝑘𝑘𝑟𝑟𝑟𝑟
𝜇𝜇𝑤𝑤

𝐴𝐴 
𝑑𝑑𝑃𝑃𝑤𝑤
𝑑𝑑𝑑𝑑

                                                      (2.35) 

 

The procedure is repeated after increasing the water-oil ratio and reaching the equilibrium 

again until the entire relative permeability-saturation relationship is established.   
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2.6.2 Relative Permeability Models 

There are more than 30 models available for the prediction of two-phase relative 

permeabilities (Siddiqui et al., 1993).   The modified Brooks and Corey model is used 

when a water-wet or oil-wet system is assumed.  The LET model can be used when a 

mixed-wet or weakly water-wet system is present.  The following sections describes the 

relative permeability models used in this study. 

 
2.6.2.1 Modified Brooks and Corey Model 

Modified Brooks and Corey (MBC) model, also called as power law model, is a function 

of endpoint relative permeabilities at their respective saturations (Lake, 1989; 

Semmelbeck et al., 1995) and is given by: 

 

𝑆𝑆 =
(𝑆𝑆𝑤𝑤 − 𝑆𝑆𝑤𝑤𝑤𝑤)

(1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤)
                                                 (2.36) 

 

𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆) = 𝑘𝑘𝑟𝑟𝑟𝑟𝑜𝑜 𝑆𝑆𝑛𝑛𝑛𝑛                                                   (2.37) 

 

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(𝑆𝑆) = 𝑘𝑘𝑟𝑟𝑟𝑟𝑜𝑜 (1 − 𝑆𝑆)𝑛𝑛𝑛𝑛                                            (2.38) 

 

where 𝑆𝑆 is the normalized saturation, and 𝑆𝑆𝑤𝑤𝑤𝑤 and 𝑆𝑆𝑜𝑜𝑜𝑜 are irreducible water and oil phase 

saturations, respectively.  Relative permeabilities of oil and water phases, 𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆) and 

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(𝑆𝑆) are calculated by their respective endpoint relative permeabilities of 𝑘𝑘𝑟𝑟𝑟𝑟𝑜𝑜  and 𝑘𝑘𝑟𝑟𝑟𝑟𝑜𝑜  

and their curvature parameters of 𝑛𝑛𝑛𝑛 and 𝑛𝑛𝑛𝑛.  The curvature parameters are also named 

as Corey exponents.  Equations 2.37 and 2.38 are derived for drainage conditions.  

However, throughout our study, the MBC model is also used for imbibition curves, 

assuming the model is applicable for both imbibition and drainage processes, ignoring 

the saturation-dependent behavior of the curves.  Figure 2.3 depicts the curves generated 

by the MBC model parameters.   
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Figure 2.3: Modified Brooks and Corey model with its parameters. 

 

2.6.2.2 LET Model 

LET model is a three-parameter correlation method to provide wider curvature 

flexibilities.  The correlation is described by three parameters of L, E, T and normalized 

saturation.  Only saturations and relative permeabilities have physical meaning, while L, 

E, and T are empirical parameters.  L and T describe the lower and the upper parts of the 

curves.  E describes the position of the slope (or the elevation) of the curves (Figure 2.4).  

The model is flexible to match the shapes of the curves and is applicable for both 

imbibition and drainage processes (Lomeland et al., 2005):  

 

𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆) = 𝑘𝑘𝑟𝑟𝑟𝑟𝑜𝑜
𝑆𝑆𝐿𝐿𝑤𝑤

𝑆𝑆𝐿𝐿𝑤𝑤 + 𝐸𝐸𝑤𝑤(1 − 𝑆𝑆)𝑇𝑇𝑤𝑤
                                        (2.39) 

 

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(𝑆𝑆) = 𝑘𝑘𝑟𝑟𝑟𝑟𝑜𝑜
(1 − 𝑆𝑆)𝐿𝐿𝑜𝑜

(1 − 𝑆𝑆)𝐿𝐿𝑜𝑜 + 𝐸𝐸𝑜𝑜𝑆𝑆𝑇𝑇𝑜𝑜
                                        (2.40) 

𝒌𝒌𝒓𝒓𝒓𝒓𝒐𝒐  
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Figure 2.4: LET model with its parameters. 

 

 Capillary Pressure 

Capillary pressure is described as a pressure difference between two or more immiscible 

fluids occupying the same porous medium.  This is due to an existing interfacial tension 

at the boundary in a pore space between the immiscible fluids (Brown, 1951).  The 

capillary pressure is expressed as the pressure difference between non-wetting and 

wetting phases in a reservoir (Equation 2.5).   

 

WBM filtrate invasion inevitably occurs in the case of a well drilled with a WBM into a 

hydrocarbon reservoir.  The capillary pressure contributes to a saturation re-distribution 

while the mud-filtrate invades into the hydrocarbon reservoir even if there is no formation 

water movable.  Due to the low invasion rates and relatively short distances over which 

invasion occurs, it is observed that capillary driven flow (capillary dispersion) plays an 

important role in determining the near wellbore saturation distribution.  Hence, the 

standard Buckley-Leverett immiscible displacement theory will not hold for this case 

(Phelps et al., 1984).  SF shows smearing shock fronts due to a relatively larger capillary 

driven flow, and DF displays sharper shock fronts in a near-wellbore region.  Capillary 

pressures differ depending on the imbibition and drainage processes.  Borehole Nuclear 

Magnetic Resonance (NMR) has been established to obtain pore-size distribution and to 

derive primary drainage capillary pressure (Ouzzane et al., 2006; Gyllensten et al., 2008).  

However, in our study a single set of curves represents the imbibition and drainage 

𝒌𝒌𝒓𝒓𝒓𝒓𝒐𝒐  

𝒌𝒌𝒓𝒓𝒓𝒓𝒐𝒐  
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processes and a drainage capillary pressure curve interpreted from openhole logs can only 

be a starting point for our optimization. 

 

2.7.1 Capillary Pressure Models 

Two drainage capillary pressure models, which are the modified Brooks and Corey model 

and the Thomeer model, are explained below.  The modified Brooks and Corey model is 

mostly used due to its simple parametric representation.  The Thomeer model is exercised 

when the reservoir showed a water-oil transitional zone.  

  
2.7.1.1 Modified Brooks and Corey Model 

Brooks and Corey (1964) suggested from a large number of experimental data that 

capillary pressures in a drainage process can be established as a function of normalized 

saturation, pore-size distribution index, 𝜆𝜆 and displacement pressure, 𝑃𝑃𝑑𝑑: 

 

𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑑𝑑𝑆𝑆−1/𝜆𝜆    for  𝑃𝑃𝑐𝑐 ≥ 𝑃𝑃𝑑𝑑                                           (2.41) 

 

where 𝑆𝑆 is the normalized saturation and is obtained from Equation 2.36. 

 

2.7.1.2 Thomeer Model 

Thomeer (1960) presented a curve fit model generated from a relationship of analyzed 

core samples: 
𝑆𝑆𝑏𝑏
𝑆𝑆𝑏𝑏∞

= 𝑒𝑒−𝐹𝐹𝑔𝑔/(log 𝑃𝑃𝑐𝑐/𝑃𝑃𝑑𝑑)                                                 (2.42) 

 

where 𝑆𝑆𝑏𝑏 is fractional bulk volume filled with mercury at pressure 𝑃𝑃𝑐𝑐.  𝑆𝑆𝑏𝑏∞ is the 

fractional bulk volume filled at infinite pressure assuming total porosity.  𝑆𝑆𝑏𝑏/𝑆𝑆𝑏𝑏∞ is equal 

to the non-wetting phase saturation assuming 𝑆𝑆𝑏𝑏∞ = Ø.  𝐹𝐹𝑔𝑔  is pore geometrical factor.  

Equation 2.42 is then written (Wu, 2004): 

 

log  𝑃𝑃𝑐𝑐 = −𝐹𝐹𝑔𝑔/ln (1 − 𝑆𝑆𝑤𝑤) + log 𝑃𝑃𝑑𝑑                                     (2.43) 
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Equation 2.42 is further iterated with the irreducible water saturation by substituting 

 𝑆𝑆𝑏𝑏∞ = Ø(1 − 𝑆𝑆𝑤𝑤𝑤𝑤) (Wu and Berg, 2003):  

 

log  𝑃𝑃𝑐𝑐 = −𝐹𝐹𝑔𝑔/ln ((1− 𝑆𝑆𝑤𝑤)/(1− 𝑆𝑆𝑤𝑤𝑤𝑤)) + log 𝑃𝑃𝑑𝑑                            (2.44) 

 

 Hysteresis 

Hysteresis develops when the direction of the saturation change occurs in different cycles 

during a multiphase flow in a porous medium.  An imbibition cycle is defined as a process 

in which the saturation of the wetting phase increases, and a drainage cycle is defined as 

a process where the saturation of the non-wetting phase increases during a multiphase 

flow (Braun et al., 1995).  Hysteresis can be explained by interfacial properties of solid 

and liquid, such as wetting, surface tension, contact angle, solid surface roughness and 

pore geometry, in which fluid flow may create a bypass, or a snap-off, or an ink-bottle 

effect (Holm, 1986; Melrose, 1965; Roof, 1970). 

 

If an imbibition or a drainage process is reversed, relative permeability and capillary 

pressure curves do not trace their previous values; instead scanning curves are created 

according to hysteresis methods chosen.  The hysteresis methods, such as Killough 

(1976), Carlson (1981) and Jargon (an unpublished study) are available in the black-oil 

simulator (ECLIPSE Reservoir Simulator Technical Description, 2015).  Core analyses 

are conducted to establish the hysteretic behaviors on the rock samples although they are 

more laborious.  In the literature, measurements of hysteresis are investigated with rock 

types, rock consolidations, wettability changes, trapping of a phase and methods chosen 

for the core analyses (Eleri et al., 1995; Dixit et al., 1998; Masalmeh, 2001; Dernaika et 

al., 2012).   

 

Throughout our study, when the hysteresis method is described -instead of a single set of 

relative permeability and capillary pressure curves-, the Killough hysteresis model 

(Killough, 1976) is assumed appropriate and its behavior is explained later.  When the 

hysteresis method is implemented in the study, the aim should be to estimate bounding 

imbibition and drainage curves although scanning curves are generated according to the 

Killough hysteresis model.  Since reaching saturation endpoints in the near-wellbore 

region is difficult due to a limited cleanup time with relatively low multiphase flow rates, 
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the bounding curves are only used for the initialization of the reservoir (primary drainage 

curves), and during the invasion of the mud filtrate (imbibition curves).  The cleanup 

requires scanning drainage curves depending on the particular block saturation at the end 

of the imbibition cycle as detailed in Chapters 2.8.1 and 2.8.2.  

 

2.8.1 Hysteresis of Relative permeability Curves 

When a WBM filtrate invasion occurs in a water wet rock, the imbibition relative 

permeability and capillary pressure curves are used for the increasing water saturation.  

When the cleanup is conducted, the drainage scanning curves are followed according to 

Killough hysteresis model (Killough, 1976). 

 

If the wetting phase saturation decreases down to 𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (the green asterisk point in 

Figures 2.5 and 2.6), the bounding drainage curve is traced.  If the imbibition process 

starts from 𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, then the bounding imbibition curve is used.  The green arrows depict 

the bounding drainage and imbibition paths in Figures 2.5 and 2.6.  If the drainage process 

is reversed at a certain saturation (the red asterisk point in Figures 2.5 and 2.6), the 

relative permeability curve does not follow its previous values, but traces a scanning 

curve as depicted with red arrows in Figures 2.5 and 2.6.  However if the drainage 

scanning curve is reversed, the same scanning curve is retraced until the bounding curve 

is reached and then the bounding curve is used again.   

 

 
Figure 2.5: Killough hysteresis model for the non-wetting phase relative permeability 

behavior. 
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Figure 2.6: Killough hysteresis model for the wetting phase relative permeability 

behavior. 
 
 
The bounding drainage (solid dark green) and imbibition (dashed dark green) curves are 

provided for a numerical run in Figure 2.5.  The trapped critical saturation, 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, of the 

Killough method is given: 

 

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 +
𝑆𝑆ℎ𝑦𝑦 − 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

1 + 𝐶𝐶�𝑆𝑆ℎ𝑦𝑦 − 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�
                                      (2.45) 

 

where 

𝐶𝐶 =
1

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
−

1
𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

                                         (2.46) 

 

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  and 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 are the critical saturations of the imbibition and drainage curves 

respectively,  𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the maximum non-wetting phase saturation,  𝑆𝑆ℎ𝑦𝑦 is the maximum 

non-wetting phase saturation reached in a run, which is presented with a red asterisk point 

in Figure 2.5. 

 

The relative permeability for 𝑆𝑆𝑛𝑛 on the scanning curve is obtained: 

 

𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑛𝑛) =
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(𝑆𝑆ℎ𝑦𝑦)

𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)
                                        (2.47) 
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where 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 are the non-wetting phase relative permeabilities on the bounding 

imbibition and drainage curves respectively and 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is defined: 

 

𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 +
(𝑆𝑆𝑛𝑛 − 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)(𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑆𝑆ℎ𝑦𝑦 − 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
                          (2.48) 

 

The wetting phase relative permeability at the end of scanning curve is calculated: 

 

𝑘𝑘𝑟𝑟𝑟𝑟(1 − 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) = 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(1 − 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) +     

�𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(1 − 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(1 − 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)� �
𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

�
𝐴𝐴

                 (2.49) 

 
where 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟  and 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟 are the wetting phase relative permeabilities on the bounding 

imbibition and drainage curves respectively.  𝐴𝐴 is the curvature parameter. 

 

The relative permeability on the scanning curve for a specific saturation, 𝑆𝑆𝑤𝑤 is calculated: 

 
𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤) = 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟�1 − 𝑆𝑆ℎ𝑦𝑦� +    

�𝑘𝑘𝑟𝑟𝑟𝑟(1− 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) − 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟�1 − 𝑆𝑆ℎ𝑦𝑦��𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(1 − 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)
𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟(1 − 𝑆𝑆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

                   (2.50) 

 

2.8.2 Hysteresis of Capillary Pressure Curves 

Figure 2.7 describes a similar capillary pressure hysteresis process as explained for the 

relative permeabilities.  If wetting phase decreases to 𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 (the green asterisk point in 

Figure 2.7), the bounding capillary drainage curve is traced.  If the imbibition process 

starts from 𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, then the bounding capillary imbibition curve is used until the wetting 

saturation 𝑆𝑆𝑤𝑤ℎ𝑦𝑦.  If the drainage process is reversed at a certain saturation (the red asterisk 

point in Figure 2.7), the capillary pressure curve does not follow its previous values, but 

traces a new scanning curve (as depicted with red arrows following dashed brown curve 

in Figure 2.7).  When the scanning curve reverses second time (at the blue asterisk point), 

unlike relative permeability scanning curves, it does not necessarily re-trace the scanning 

curve and may follow a new scanning curve generated from the previous scanning curve 

and the drainage curve (as depicted with the blue arrow following solid brown curve in 

Figure 2.7). 
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Figure 2.7: Killough hysteresis model for the water capillary pressure. 

 
 
Killough capillary pressure hysteresis is given: 

 

𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑐𝑐𝑐𝑐 + 𝐹𝐹(𝑃𝑃𝑐𝑐𝑐𝑐−𝑃𝑃𝑐𝑐𝑐𝑐)                                            (2.51) 

 

𝐹𝐹 = �
1

𝑆𝑆𝑤𝑤 − 𝑆𝑆𝑤𝑤ℎ𝑦𝑦 + 𝐸𝐸
−

1
𝐸𝐸
� �

1
𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑆𝑆𝑤𝑤ℎ𝑦𝑦 + 𝐸𝐸

−
1
𝐸𝐸
��                    (2.52) 

 

where 𝐸𝐸 is curvature parameter, 𝑆𝑆𝑤𝑤ℎ𝑦𝑦 is the water saturation at the hysteresis reversal 

point (red asterisk), 𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤 is the maximum water saturation achievable for the trapped 

non-wetting saturation, 𝑃𝑃𝑐𝑐𝑐𝑐 is the drainage capillary pressure, 𝑃𝑃𝑐𝑐𝑐𝑐 is the imbibition 

capillary pressure obtained by the capillary pressure on the imbibition curve after scaling 

between the endpoints 𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 and 𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤, 𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is the critical water saturation on the 

imbibition capillary pressure curve. 

 

When the second reversal starts from the blue asterisk point until the drainage curve is 

reached to the red asterisk point as depicted in Figure 2.7, the capillary pressure equation 

is written: 

𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑐𝑐𝑐𝑐 + 𝐺𝐺(𝑃𝑃𝑐𝑐𝑐𝑐−𝑃𝑃𝑐𝑐𝑐𝑐)                                              (2.53) 

 

𝐺𝐺 = �
1

𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑆𝑆𝑤𝑤 + 𝐸𝐸
−

1
𝐸𝐸
� �

1
𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑆𝑆𝑤𝑤ℎ𝑦𝑦 + 𝐸𝐸

−
1
𝐸𝐸
��                     (2.54) 

 

where 𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑 is the departure saturation. 
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 Optimization 

A number of techniques are available to improve the history matching in a numerical 

simulation.  The optimization used for the history matching is a problem of minimization 

of an objective function.  Both gradient and stochastic based optimization techniques are 

used in our study.  The study first investigates the gradient based optimization (GBO) 

with two examples in Appendix A.  The GBO results show that the black-oil simulator 

chosen does not have necessary parameters for relative permeability and capillary 

pressure curvatures.  Then, the stochastic based optimization (SBO) is explored for the 

realistic results in Appendix B.  The SBO methodology with the help of additional 

software programming scripts provides the required parameterization flexibility in 

relative permeability and capillary pressure curvatures, and additional benefits (see 

Chapter 5.4 for details).  

 

2.9.1 Gradient Based Optimization 

The mismatch of simulated vs. observed data is quantified by an objective function.  The 

goal of optimization is to find the solution that minimizes this function.  In the gradient 

based optimization, the optimizer searches for a minimum using a gradient of the 

objective function with respect to the parameters being optimized.  A necessary condition 

for optimality is that the first derivative (gradient) of the objective function is equal to 

zero.  A sufficient condition for optimality is that the Hessian matrix (i.e. matrix of second 

derivatives) is positive definite.   

 

The optimization algorithm works as follows: First, it updates input parameters.  

Secondly, it runs the updated dataset in a numerical simulator and generates newly 

simulated variables.  The gradients of the solution variables, which are required to 

construct the objective function gradient, are also calculated during the model run.  In 

order to solve for the minimum objective function value, both the gradient and the 

Hessian matrix are required.  Hessian matrix calculations are computationally intensive 

and an approximation method, such as the Levenberg-Marquardt (Levenberg 1944; 

Marquardt, 1963) method can be implemented in the optimizer.  Thirdly, the non-linear 

regression algorithm in the optimizer reads the newly calculated gradient values and 

variables, and then calculates the objective function.  Using the gradient information, the 

changes required in the history matching parameters to reduce the objective function are 
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computed.  The process is repeated until an acceptable history match is achieved or 

further progress is unattainable.  The “best” history match is obtained with the smallest 

possible objective function and provides the parameters required for generating the final 

relative permeabilities and capillary pressures from the WFT bottomhole pressures and 

water-cut values. 

 

Optimization parameters used in our study: 

 dynq, dynt, statq, kh, kv, koro, korw, no, nw, Pd , SKIN, Sor, Swi, λ 
 

𝑥𝑥 = [𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑘𝑘ℎ, 𝑘𝑘𝑣𝑣,𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘,𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘,𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛,𝑃𝑃𝑑𝑑 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑜𝑜𝑜𝑜, 𝑆𝑆𝑤𝑤𝑤𝑤, 𝜆𝜆]𝑇𝑇     (2.55)  

 

Observed variables:   

𝑃𝑃𝑖𝑖,                     𝑖𝑖 = 1, … ,𝑛𝑛𝑇𝑇                                             (2.56) 
 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑗𝑗 ,           𝑗𝑗 = 1, … ,𝑛𝑛𝑇𝑇                                             (2.57) 

Objective function: 

 

𝑄𝑄�𝑥𝑥� =
1
2
�𝑤𝑤𝑖𝑖

𝑛𝑛𝑇𝑇

𝑖𝑖

�𝑃𝑃𝑖𝑖�𝑥𝑥� − 𝑃𝑃𝑖𝑖𝑜𝑜�
2

+
1
2
�𝑤𝑤𝑗𝑗

𝑛𝑛𝑇𝑇

𝑗𝑗

�𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑗𝑗�𝑥𝑥� −𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝐽𝐽𝑜𝑜�
2

         (2.58) 

 

𝑄𝑄�𝑥𝑥� =
1
2
�𝑓𝑓𝑘𝑘�𝑥𝑥�

2
=  

1
2

2𝑛𝑛𝑇𝑇

𝑘𝑘

𝑓𝑓𝑇𝑇�𝑥𝑥�𝑓𝑓�𝑥𝑥�                                  (2.59) 

 

Taylor expansion for 𝑄𝑄�𝑥𝑥� yields: 

 

𝑄𝑄�𝑥𝑥 + ℎ� = 𝑄𝑄�𝑥𝑥� + ℎ𝑇𝑇  
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+  
1
2
ℎ𝑇𝑇
𝜕𝜕2𝑄𝑄
𝜕𝜕𝜕𝜕2

ℎ + 0(�ℎ�
3

)                   (2.60) 

 

where �ℎ� is very small. 

 

Necessary condition for optimality: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 , which is the gradient and finds a local minimum (or maximum) of the objective 

function.   
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Sufficient condition for optimality: 
𝜕𝜕2𝑄𝑄
𝜕𝜕𝜕𝜕2

 is positive definite.  

 

2.9.1.1 Solving Non-Linear Least Squares Problems 

When Newton’s method is applied to  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, we have: 

 

0 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

�𝑥𝑥 + ℎ� =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

�𝑥𝑥� +
𝜕𝜕2𝑄𝑄
𝜕𝜕𝑥𝑥2

ℎ + 0(�ℎ�
2

)                         (2.61) 

 

when h is sufficiently small: 

0 ≃
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

�𝑥𝑥� +
𝜕𝜕2𝑄𝑄
𝜕𝜕𝑥𝑥2

 ℎ                                              (2.62) 

 

𝜕𝜕2𝑄𝑄
𝜕𝜕𝑥𝑥2

ℎ = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

�𝑥𝑥�                                               (2.63) 

 

Equation 2.63 is solved to obtain ℎ in an iteration by initially stetting 𝑥𝑥 =  𝑥𝑥𝑜𝑜. Then,          

𝑥𝑥 is updated with 𝑥𝑥 =  𝑥𝑥𝑜𝑜 + ℎ  and a new value of  ℎ is calculated.  The iteration continues 

until the finishing criterion is satisfied (Frandsen et al., 1999).  Equation 2.63 requires 

both the gradient and Hessian matrix of the objective function to solve.  The Hessian 

matrix is particularly difficult to obtain since it requires second derivatives.   

 

The Levenberg-Marquardt method is characterized by a particular way of approximating 

Hessian matrix, which avoids calculating the second derivatives.  Madsen et al. (2004) 

gives the Levenberg-Marquardt equation as: 

 

(𝐉𝐉(𝑥𝑥)T𝐉𝐉(𝑥𝑥) + 𝜇𝜇𝐈𝐈)ℎ = −𝐉𝐉(𝑥𝑥)T𝑓𝑓(𝑥𝑥)   , 𝜇𝜇 ≥ 0                           (2.64) 

 

where 𝐈𝐈 is identity matrix and 𝜇𝜇 is Lagrange parameter. 

 

When 𝜇𝜇 is large, ℎ approximates to: 
 

ℎ ≃ −
𝐉𝐉(𝑥𝑥)T𝑓𝑓(𝑥𝑥)

𝜇𝜇
                                                    (2.65) 
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Equation 2.65 represents a short step in the steepest-descent direction.  If 𝜇𝜇 is very small, 

it means that the iteration is nearly at final stages and quadratic final convergence can be 

obtained. 

 

𝜇𝜇 is updated during the optimization and the initial 𝜇𝜇 value links with the size of the 

elements in the Jacobian matrix:  

 
𝜇𝜇0 =  𝜏𝜏 .𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖{ 𝐉𝐉(𝑥𝑥0)T𝐉𝐉(𝑥𝑥0)}                                        (2.66) 

 

2.9.2 Stochastic Based Optimization 

Stochastic based optimization (SBO) uses the objective function to compare the model 

quality among different simulations.  A partial objective value is calculated for each 

response parameter.  The global objective value of a simulation is the sum of the partial 

objective values for all response parameters that are active.  Tuning the objective function 

is typically performed by applying weight on response parameters.  The optimizer applies 

a sampling strategy to the parameter ranges while attempting the history matching.  The 

parameters are either the model inputs or the functions that calculate the model inputs.  

The parameters typically are damage skin, depth of mud-filtrate invasion, curvature 

exponents and endpoint saturations of relative permeabilities as similarly defined in GBO 

(see Equation 2.55).  The match is obtained when the global objective function value is 

at a minimum. 

 

A common initial parameter sampling strategy is Latin hypercube sampling (LHS), which 

screens the entire parameter ranges in defined compartments and assembles a sample of 

plausible collections of parameter values for the simulation runs (McKay et al., 1979).  

The simulation results are analyzed to observe the global optimum in a minimization 

process.  In some cases, the history matching may contain a number of local optima due 

to a large number of unknown parameters.  In this case, a second cycle of optimization 

can be performed with either Latin hypercube or evolution strategy.  The latter is a direct 

search method and focuses on reducing objective function values to determine a new 

search step, and does not require any gradient information from the optimization problem.  

The advantage of the evolution strategy is that it can be used in cases where no gradient 

information is available and a gradient based algorithm fails because of nonlinearities or 

discontinuities in the search space (Schulze-Riegert et al., 2002).  The Latin hypercube 
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and evolutionary strategies are suitable to use in parallel computing runs in order to speed 

up the numerical optimization processes.   

 

Relative permeability and capillary pressure curves are the product of the “best” history 

match obtained by the minimization of the objective function defined by a strategy.  

Ideally, the best match should come from an optimization run, which provides 

comparably the lowest global objective value, and generates relative permeabilities and 

capillary pressures from its collective set of parameters.  In our study, both Latin 

hypercube and evolution strategy are used.  A Latin hypercube strategy may require a 

larger number of model runs.  The match quality can be checked with model evaluation 

methods, such as R-Squared, Root Mean Square Error (RMSE), Chi-Square Test, and 

Pearson Correlation Coefficient (see Appendix D).  Alternatively, an evolutionary 

strategy uses fewer parallel model runs in generating parent-to-child sequences since it 

updates the search direction with the model results. 

 

Gradient based optimization is generally sensitive to the initial values chosen for the 

optimization parameters, and the minimization process may result in a local minimum of 

the objective function instead of a global minimum.  When the relationships of the 

parameters are more complex, a stochastic optimization method, although it may be more 

expensive in computation, can assist in finding the global minimum with different 

strategies.  A maximization example shows the difference between the stochastic and 

gradient based optimizations in Figures 2.8 and 2.9. 
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Figure 2.8: Evolution strategy in a stochastic optimization initiates a set of simulations, 

which are distributed over the entire parameter range (top image).  It will 
converge gradually around several local optima (in this example maximums 
of an objective function) by using a fitness based process.  It continues by 
eliminating the worst performing datasets and recombines the desirable ones 
as the progress is seen from top to bottom.  It can search discontinuous and 
non-linear spaces (MEPO User Training Materials, 2015).    
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Figure 2.9: Gradient based optimization in a multi-parameter field.  The initial 
condition may lead a local maximum in this maximization example.  Several 
colored optimization paths are depicted with different initial conditions and 
results.    
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CHAPTER 3. WIRELINE FORMATION TESTER LOGGING  

A wireline formation tester (WFT), a modular logging tool, measures pressures, collects 

samples, conducts well tests, and performs stress tests in openhole conditions as depicted 

in Figure 3.1 (Zimmerman et al., 1990).  Logging objectives determine the operational 

modules in the WFT string.  A pressure measurement (pretest) in general requires a 

single-probe inlet with its hydraulic unit.  A cleanup procedure consists of a pump for 

creating a pressure drawdown and flowing fluids from the formation through the WFT 

tool into the wellbore and overcoming the downstream pressure difference; an inlet for 

establishing a hydraulic communication with the formation by isolating the wellbore; and 

a fluid analyzer for differentiating the fluid types passing through the WFT flowline 

(Mullins, 2008).  A sampling objective further demands PVT-quality bottles to fill.  A 

variety of inlet types, such as a single probe (SP), a dual-packer (DP) module, a 3D radial 

probe (3DRP) is available (Dios et al., 2012, Cantini et al., 2013).  A combination of 

operational objectives, reservoir and fluid properties determines the inlet types and sizes.  

A larger flow area of an inlet provides a lower pressure drawdown with a given pump 

rate.  The inlet types are chosen depending on the operational objectives, such as 

formation pressure measurements, pressure drawdown limits during sampling, 

interference testing, or stress testing. 

 

 
Figure 3.1: A typical WFT string for the pressure measurement, cleanup and sampling. 
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 Inlet Types 

The dual-packer (DP), 3D radial probe (3DRP), and single probe (SP) inlets are used in 

this study (Figure 3.2).  The DP inlet has an interval length of 3.33 ft with an inlet port 

located 13 in from the top of the lower rubber element.  The storage volume of the DP 

interval residing in between upper and lower rubbers is approximately 17 L in 8.5 in 

openhole.  The fluid flow from the reservoir enters into the DP interval and segregates as 

hydrocarbon accumulates above water.  This represents a cleanup event in a hydrocarbon 

reservoir with a WBM filtrate invasion.  A sufficient volume of hydrocarbon has to 

accumulate in the DP interval before entering into the flowline from its inlet port.  The 

black-oil numerical simulation using a multisegment well model includes this segregation 

in the DP interval for an accurate cleanup design (see Chapter 2.4). 

 

The 3DRP inlet comprises four elliptically-shaped suction probes, distributed at 90 

degree intervals around the circumference of the WFT tool.  The total flowing surface 

area of the 3DRP inlet is 79.44 in2 (Cig et al., 2014).  The advantage of the 3DRP inlet is 

to have a larger flow area in comparison to a regular single probe and to contain a 

negligible storage volume unlike the DP inlet. 

 

The extra-large diameter (XLD) single probe is a circular-type probe with a flow area of 

2.01 in2.  It is generally used for pressure measurements and for sampling of high 

permeability zones (Cig et al., 2014). 
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Figure 3.2: DP inlet module with an interval length of 3.33 ft (left), 3DRP probe with a 

flow area of 79.44 in2 (middle), XLD single probe with a flow area of 2.01 
in2 (right). 

 

 Pressure Sensors 

A pressure transducer converts a pressure change into a mechanical deformation that is 

transformed later into an electrical signal by a sensing element.  The mechanical 

deformation of the transducer caused by pressure can be detected in several ways: 

capacitive detection (capacitance sensors), piezoresistive detection (strain pressure 

sensors), piezoelectric detection (quartz pressure sensors) (Figure 3.3) (Fundamentals of 

Formation Testing, 2006). 

 

A capacitance sensor contains a variable gap capacitor where the sensing element is 

formed by two metallic or quartz plates.  When external pressure increases, the deflection 

of the sensing plate creates a change in the capacitance related to the pressure applied.  A 

strain pressure sensor consists of a tube with a strain wire wrapped around it.  The exerted 

pressure on the tube initiates the strain wire to stretch and induces a change in electrical 

resistance.  A quartz pressure sensor has a natural frequency of vibration like a tuning 

fork.  When the quartz crystal vibrates in relation to a pressure-induced stress, a precise, 

and detectable sine wave frequency is created.  The strain and quartz pressure gauges 

from Schlumberger Oilfield Services have gauge resolutions of 0.1 psi and 0.01 psi within 
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10000 psi range, respectively (MDT Modular Formation Dynamics Tester, 2005).  Gauge 

resolution is defined as the minimum significant pressure change that a gauge can detect. 

 
Figure 3.3: Capacitance pressure sensor (top), bonded wire strain pressure sensor 

(middle), crystal quartz gauge pressure sensor (bottom) (Fundamentals of 
Formation Testing, 2006). 
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 Pressure Measurement 

When an inlet is set on the sandface, it isolates the wellbore and creates a communication 

with the reservoir.  A formation pressure measurement, called a pretest, is conducted by 

drawing a small amount of fluid to create a pressure drawdown, which is followed by a 

pressure buildup to obtain the formation pressure (Figure 3.4).  A pretest does not require 

a volume of more than 20-cc with a single probe and a couple of liters with a 3DRP or a 

DP inlet.  A pretest also provides a mobility (k/μ) value, which is an indication of 

permeability expected in the formation.  The mobility may not be converted directly to 

the permeability due to its small depth of investigation, effects of relative permeabilities 

and capillary pressures, fluid viscosities and the skin factor introduced by the invasion 

and the inlet geometry.   

 

 
Figure 3.4: A single-probe pretest measurement (Wireline Formation Testing and 

Sampling, 1996). 
 
 
A pressure transient data can be recorded with a preferred inlet for a longer duration.  

Generally a period of cleanup for sampling is used for a pressure drawdown and followed 

by sampling and a pressure buildup.  This operation is referred to as Mini-DST.  The 

pressure transient data is analyzed for the horizontal and vertical permeabilities, and the 

skin factor.  In some occasions two inlets can be set during the entire WFT logging.  The 

advantage of this is to observe the pressure interference between the zones where the 

inlets are set.  The analysis of the interference can yield the barriers between the zones, 

or acquire the vertical and horizontal permeabilities due to the pressure transient between 

the zones if no barriers are observed.  This operation is called as interval pressure 
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transient test (IPTT) or vertical interference test (VIT) as shown in Figure 3.5 (Jackson 

et al., 2003).    

 

 
Figure 3.5: A sketch of pump rates and pressures of a dual-packer (red) and a single-

probe (green) inlets during an IPTT operation.  The dual-packer is the 
pulsing module and the single-probe is the observing module. 

 

 Fluid Analyzer Measurement 

A fluid analyzer measurement is based mainly on the near-infrared (NIR) spectroscopy 

and differentiates between water and hydrocarbon with the absorption spectra (optical 

density vs. wavelength).  Figure 3.6 shows the absorption spectra highlighting water and 

hydrocarbon peaks (top) and focusing on the hydrocarbon peak for its components and 

CO2 (bottom).  Figure 3.6 shows that a sufficiently distinctive hydrocarbon characteristic 

is available to conduct an analysis for the quantitative hydrocarbon composition in terms 

of lumped components of C1, C2, C3-C5, C6+, water fraction, and CO2 in an OBM or 

WBM environment.  GOR, CGR, and water-cut are also calculated from the 

spectrometric analyses during the cleanup (Mullins et al., 2001; Dong et al., 2007).  The 

spectrometric measurement is calibrated for the detection and analysis of hydrocarbon, 

color for relative asphaltene content, and CO2 in crude oil and natural gas, as well as 

determination of water content and its pH.  The fluid analyzer integrates auxiliary sensors 

including fluorescent measurements for a retrograde dew detection, a pressure and 

temperature gauge, a resistivity sensor, and a density and viscosity sensor.   
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Figure 3.6: Absorption spectra displaying signatures of water and different types of 

hydrocarbon (top).  Absorption spectra focusing on the hydrocarbon peak for 
its components and CO2 (bottom). 

 

 Cleanup and Sampling 

A cleanup procedure starts usually after a pretest.  After the formation pressure is 

established, the pump module is turned on to flow the fluid from the reservoir into the 

wellbore.  The pump rate can be adjusted to achieve the pressure drawdown desired.  The 

fluid analyzer starts monitoring the fluid flowing from the reservoir into the WFT tool.  

In the case of hydrocarbon sampling in WBM, initially 100% mud filtrate flows for a 

period of time, later a hydrocarbon breakthrough occurs, and then the cleanup reduces 

the water-cut.  Typically the desired level of cleanup is achieved when the water-cut 

measured is less than or around 10%.  The formation fluid samples can be collected by 

diverting the fluid into the PVT-quality bottles carried on the WFT string. 
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Figure 3.7 shows a WFT station including a cleanup and an IPTT test periods.  The 

sequence contains the pretests of the dual-packer and the single-probe inlets, and it 

follows the DP inlet drawdown, and finally the pressure buildup.  The flowing DP inlet 

is located 9.8 ft deeper than the observer SP inlet in this example.  The pressure 

drawdown is created by a pumpout from the DP inlet.  The measurements of water-cut, 

pump rate, hydrocarbon composition, pressures of the DP and SP inlets are continuously 

recorded along with other auxiliary measurements.   

 

The recorded pressure and water-cut measurements are later used in an inversion process 

to generate multiphase flow properties.  These two measurements during the cleanup are 

relatively independent, and their radius of influence in the reservoir is different and 

depends on the reservoir properties, such as horizontal and vertical permeabilities, 

porosities, fluid compressibilities and viscosities, pressure drawdowns created by pump 

rates.  The measured pressure and water-cut are connected to each other due to the 

multiphase skin, relative permeability, capillary pressure and water-cut development of 

the mud-filtrate invasion.  The pressure pulse travels tens of feet while the oil movement 

reaches several feet into the reservoir.  The mud-filtrate invasion can be a couple of feet 

in the reservoir (see Figure C.23 in the field example in Appendix C).  The pressure 

buildups provide the average horizontal and vertical permeabilities during the IPTT test 

in the flow unit while openhole logs, either with porosity-permeability correlations or 

NMR measurements, present detailed distribution of the reservoir properties.  This step 

is crucial since knowing vertical and horizontal permeabilities along with other reservoir 

properties will establish thorough responses of oil and water velocities, and pressure 

transients in the near wellbore region in a heterogeneous formation. 
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Figure 3.7: WFT measurements during the periods of pretesting, cleanup and IPTT test. 
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CHAPTER 4. NUMERICAL MODEL 

In this chapter we have set up a synthetic numerical model in order to investigate the 

effects of formation and fluid properties, WFT inlets and tool geometry, numerical 

modeling features, and processes taking place during drilling and logging.  The 

sensitivities of the forward numerical runs have assisted in improving the model before 

implementing it in field cases. 

 

The synthetic forward model prepared includes the WFT DP inlet and flowlines.  The 

model consists of a partially completed single well close to the top of the formation.  The 

wellbore is invaded with the mud filtrate from its entire openhole section, but the DP inlet 

isolates its own interval during the cleanup and the model acts like a partially completed 

well.  Outer, top and bottom boundaries of the model have no flow.  The outer boundary 

is sufficiently far away so that the pressure transient response does not experience any 

boundary effects.  The model does not have a fluid transition zone since the oil-water 

contact (OWC) is assumed deeper than the reservoir, hence the numerical model initiates 

water and oil saturations at Swi and (1-Swi) respectively. 

 

A mud-filtrate invasion comprising dynamic and static filtration periods occurs with a 

constant-flux analytical aquifer at the sandface of the wellbore for the entire reservoir 

unit.  The dynamic filtration is 0.5 day.  After the drilling is completed, openhole logs 

and other operations took 3.5 days, it is followed by a WFT cleanup.  The static filtration 

starts after the dynamic filtration and continues with a constant influx rate during the 

WFT cleanup and buildup periods (Figure 4.1).  However the static filtration stops only 

across the sealing element of the inlet during the WFT operation.  The cleanup and 

buildup periods are chosen similar to common field cases as six hours and two hours in 

this order.  Although the DP inlet is used throughout the exercise in this chapter, the 

gridding designs of SP and 3DRP inlets are described in the following sections as a 

reference. 

 

The relative permeability and capillary pressure curves used in the model are displayed 

in Figure 4.2.  Unless stated otherwise, it is assumed that a single set of relative 

permeability and capillary pressure curves is representative of the mud-filtrate invasion 

and cleanup events in our study.  Properties of the forward numerical model are presented 

in Table 4.1 to 4.4.   
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Figure 4.1: Mud-filtrate Invasion design illustrating dynamic (before 0.5 day) and static 

(after 0.5 day) filtration periods of the synthetic numerical model. 
 
 

 
Figure 4.2: Relative permeability and capillary pressure curves of the synthetic 

numerical model assumed for both mud-filtrate invasion and WFT cleanup 
measurements. 
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Table 4.1: Invasion, cleanup and buildup parameters.  The cleanup rate is for the 
circular grid and the radius of invasion is an average value at the end of the 
dynamic filtration. 

 
Properties Input Unit 
Dynamic filtration duration, dynt 0.5 day 
Static invasion influx rate, statq 0.0150 stb/day/ft2 
Cleanup start time 3.5 day 
Cleanup duration, tcleanup 6 hr 
Cleanup rate, qcleanup 53 L/hr 
Pressure buildup duration, tPBU 2 hr 

 
 

Table 4.2: Reservoir properties of the synthetic numerical model. 
 

Properties  Input Unit 
h  53.00 ft 
hw  3.333 ft 
zw  47.55 ft 
rw  0.354 ft 
R  816 ft 
kh  20.00 md 
kv/kh  0.60  
Skin  2.00  
cr  1.25e-6 psi-1 
Pi  3403.6 psia 
Ø  0.30 fraction 
Swi  0.20 fraction 
Sor  0.15 fraction 
nw  2.50  
no  2.80  

 
 
Table 4.3: Fluid properties of the synthetic numerical model.  The fluid viscosities and 

densities are at downhole and surface conditions respectively. 
 

Properties  Input Unit 
μo  0.75 cP 
μw  0.55 cP 
co 10.24e-6 psi-1 
cw  3.00e-6 psi-1 
ρo  0.865 g/cc 
ρw  1.153 g/cc 

 
 

Table 4.4: Grid properties of the synthetic numerical model. 
 

Properties Count 
Cell 71496 
DR  216 
Dϴ  1 
DZ  331 

  



53 

 

 Gridding 

Radial gridding is used for DP, SP, and 3DRP inlets.  The gridding differs for each inlet 

due to the inlet geometry as detailed in the following sections.  A commercial black-oil 

simulator is used in the numerical model (ECLIPSE Reservoir Simulator Technical 

Description, 2015).   

 

4.1.1 Dual-Packer Modeling 

The DP inlet is modeled with a 2D R-Z radial grid due to the full circumferential opening 

of its interval.  The multisegment well model is applied, and it properly accounts for the 

multiphase flow and the segregation in the internal storage volume between the packers.  

The model has a constant cell size of 0.25 cm for the inner 174 radial grid cells in order 

to capture near-wellbore events in detail since the largest pressure drops, the fastest fluid 

velocities, the mud-filtrate invasion, the skin effect due to flow restrictions, damage and 

multiphase flow occur in the near wellbore region.  Beyond these inner cells, the grid 

grows geometrically to the boundary with a factor of 1.3.  The distance between the 

wellbore and the outer boundary is 816 ft.  The azimuthal grid increment is set to 90 

degrees and the rates are reduced accordingly to one-fourth of the actual.  The height of 

the grid cells is 0.5 cm across the open DP interval.  Away from the inlet, the height of 

grid cells grows geometrically toward upper and lower boundaries with a factor of 1.15 

(Figure 4.3).   

 

Sensitivity analyses are conducted over the gridding and timestep intervals.  The 

sensitivity analyses are detailed on the size of the inner radial cells and the height of the 

cells across the DP inlet.  This is a rather important stage because it assists to reduce the 

run time without compromising the data quality.  It is shown that the distribution of 

relatively larger inner radial grid cell sizes makes oil breakthrough earlier and decreasing 

the size makes oil breakthrough later.  The increased inner radial grid size has also a 

larger pressure drawdown.  The effect is minimized with a radial grid size of 0.25 cm.  

The grid size smaller than 0.25 cm increases radial grid counts with an additional 

computational time.  Therefore, the inner radial grid is chosen as 0.25 cm.  Figure 4.4 

shows the bottomhole pressure and water-cut during the cleanup with different innermost 

radial grid sizes and keeping the height of the grid cells as 0.5 cm across the DP inlet.   
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Figure 4.3: Radial gridding of the model is displayed in several sections.  The top left 

and the top right graphs depict the top and the cross-sectional views of the 
entire model respectively.  The bottom left and the bottom right graphs show 
the near wellbore region from the top and the cross-sectional zone where 
the DP inlet is set respectively.  The red lines on the left show the absolute 
locations of the cross sections displayed on the right.   

 
 
Figure 4.5 uses the innermost radial grid size of 0.25 cm, and the height of the grid cells 

across the DP inlet is altered from 0.25 cm to 5 cm.  Vertical gridding affects the 

bottomhole pressure and water-cut calculations when the height of the grid cells across 

the DP inlet is greater than or equal to 5 cm in this synthetic homogenous reservoir.  Since 

the innermost radial grid cell size of 0.25 cm is chosen as the optimum, the height of the 

grid cells across the DP inlet is not suggested to be larger than the innermost radial grid 

cell in order not to distort the flow pattern occurring near the wellbore during the cleanup.  

Therefore, the height of the grid cells across the DP inlet is also set to 0.25 cm for the 

further studies.  This is particularly critical to have a finer scale representation of 
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heterogeneous reservoirs in field examples.  The multisegment well model is not used for 

the DP inlet in Figure 4.5.  Figure 4.10 later compares the same case with and without 

the multisegment well mode in detail. 

 

 
Figure 4.4: Base case runs with different innermost radial grid sizes having an impact 

on the pressure drawdown and the water-cut measurements during the 
cleanup process.  The vertical grid size across the DP inlet is 0.5 cm.  The 
multisegment well model is applied to the DP inlet.    
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Figure 4.5: Base case runs with the innermost radial grid size of 0.25 cm.  The vertical 

grid size across the DP inlet is modified.  When the vertical grid height is 
less than 5 cm, the similar results are obtained.  The multisegment well 
model is not applied to the DP inlet in this case. 

 

4.1.2 3D Radial Probe Modeling 

The 3DRP inlet has four elongated inlets as shown in the middle picture of Figure 3.2.  

Figure 4.6 depicts a snapshot of the numerical model results of 3DRP inlet at the 

sandface.  Figure 4.6 shows a model cross-section corresponding to the unfolded wellbore 

where the 3DRP inlet performs the mud-filtrate cleanup.  Colors in the grid represent the 

fluid saturations.  The 3DRP inlet geometry is radially gridded with fine grid increments 

so that drain shapes are honored and fluid fronts accurately captured.  The model consists 

of a single well at the center of the radial grid.  The well has open connections to the grid 
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corresponding to the shape of the 3DRP inlets.  Prior to the cleanup, the mud-filtrate 

invasion is simulated by using a constant-flux analytical aquifer at the sandface for the 

entire reservoir unit.  Outer, top and bottom boundaries of the model have no flow.  The 

outer boundaries are sufficiently far away, such as 1500 ft or more so that no boundary 

effects are seen during the pressure transients.  The inner radial grid cells have a constant 

cell size of 0.25 cm.  Beyond the inner cells, the grid grows geometrically to the 

boundary.  Azimuthally 45 degrees (a half of one inlet) of the full domain is modeled due 

to the symmetry of the problem, thus greatly reducing the number of cells.  Accordingly, 

all rates in the model are reduced to one-eighth of the actual.  The height of grid cells is 

0.25 cm within the 3DRP inlet and grows geometrically upwards and downwards.  The 

internal tool storage volume is much smaller in comparison to a DP interval so that the 

water-cut behavior during cleanup, as measured by the fluid analyzer, may be 

approximated to the sandface. 

 

 
Figure 4.6: Numerical model results of 3DRP inlet at the sandface.  The image of the 

unfolded wellbore is shown where 3DRP inlet performs the mud-filtrate 
cleanup.  Colors in the grids represent the fluid saturations.  Red color shows 
oil and blue color depicts WBM filtrate at the end of the cleanup period. 

 

4.1.3 Single Probe Modeling 

SP inlets have relatively smaller flow areas in comparison to the DP and the 3DRP inlets.  

SP inlets are preferred in flow units where high permeabilities are observed or large 

pressure drawdowns are allowed during cleanups.  The internal tool storage volume of 

an SP inlet is relatively small so that the water-cut behavior during a cleanup, as measured 

by the fluid analyzer, may be approximated to the sandface.  The inner radial grid cells 
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for the invaded zone have a constant cell size of 0.25 cm.  Beyond these inner cells, the 

grid grows geometrically to the boundary.  Azimuthally 180 degrees (a half of the inlet) 

of the full domain is modeled due to the domain symmetry.  All rates in the model are 

halved accordingly.  The height of grid cells is around 0.20 cm within the SP inlet and 

grows geometrically upwards and downwards.  The height of grid cells within the SP 

inlet is smaller in relation to its flow area (see Figure 3.2 for flow areas of the inlets).  

Figure 4.7 depicts the SP inlet gridding. 

 

 
Figure 4.7: Cross-section (θ-Z) of a numerical grid for a large-diameter (LD) single-

probe.  Green cells represent the flow area (0.85 in2), red cells represent the 
sealing packer around the SP inlet, and blue cells are a part of the sandface. 

 

 Time Stepping 

Results of various simulation timesteps are shown during the cleanup and the pressure 

buildup in Figure 4.8.  The insets in the figure focus on the oil breakthrough and the early 

cleanup periods where larger changes of the water-cuts and the pressures occur during 

the cleanup.  Relatively smaller timesteps are required to capture the changes in the 

periods presented in the insets of the figure.  Timesteps of the mud-filtrate invasion are 

kept identical to have the same invasion profile before the cleanup.  The timesteps in the 

figure represent the maximum allowed values for the particular run.  The timestep starts 

with 0.1 second and grows with a factor less than two until reaching the maximum 

allowed value and continues with the value during the cleanup.  The same is also 

applicable for the pressure buildup.  The forward runs highlight that 60-second or less 

timesteps are reasonable to be able to shorten the run times for the same timestep growth 

factor.  For example, the forward runs having 60-second and 10-second timesteps are 

completed in 195 seconds and 356 seconds, respectively.   
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Figure 4.8: Responses of the bottomhole pressures (above) and the water-cuts (below) 

are shown for the runs having various maximum allowed timesteps.  The 
insets focus on the oil breakthrough and the early cleanup periods where 
larger changes occur.   
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 Multisegment Well Model 

The DP gridding model uses the multisegment well model based on the drift-flux flow 

model (Multisegment Well Model, ECLIPSE Reservoir Simulator Software Technical  

Description, 2015).  The drift-flux flow model enables the fluid phases to flow with 

different velocities within the DP interval, and it is also capable of modeling counter-

current flow, which allows the heavy and light phases to move in opposite directions 

when the overall flow velocity is small or the well is shut in (Shi et al., 2003) (see Chapter 

2.4 for the detailed model). 

 

The behavior of the cleanup, when the DP inlet is used, shows a late arrival of 

hydrocarbon to the fluid analyzer, and then follows a sharp decrease in the water-cut.  

When hydrocarbon flows into the DP interval, it starts segregating and accumulating in 

the upper part of the DP interval due to the fluid density contrast.  This delays the 

hydrocarbon arrival to the entry port close to the bottom inside the DP interval, as the 

lower part of the interval is still filled with the WBM filtrate.  Over time, hydrocarbon 

keeps accumulating and moves downwards in the interval.  The multisegment well model 

allows the entire segregation event and captures the correct volume of the fluids and 

delays hydrocarbon detection due to the storage volume between the sandface and the 

fluid analyzer. 

 

Figure 4.9 shows the multisegment well model representation of the DP interval and its 

flowline.  The implementation of the correct tool geometry generates a detailed behavior 

of the fluid movement from the reservoir into the tool where bottomhole pressures and 

water-cuts are measured.  The segments from 7:1 to 15:2 represent the DP interval, which 

is open to a flow from its entire length of 3.333 ft.  The node at the junction of 4:1 and 

8:2 is the fluid intake into the tool, which is 1.09 ft from the bottom of the interval.  The 

distance to the fluid intake from the top of the interval is approximately 2/3 of the length 

of the entire interval.  The fluid analyzer for the water-cut measurement is located on the 

flowline at the node of 2:1.  The bottomhole pressure is reported at the datum depth. 
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Figure 4.9: Completion schematic of the multisegment well model representing the DP 

interval with its dimensions. 
 
 
Black-oil simulations comparing homogenous and multisegment flows are displayed in 

Figure 4.10.  The homogenous flow represents the contamination measurement at the 

sandface while the multisegment flow with the correct WFT geometry represents the 

contamination level at the fluid analyzer.  The sandface flow is depicted with the orange 

water-cut curve at the top plot in Figure 4.10.  The sandface flow indicates that the water-

cut is detected theoretically by a fluid analyzer at the sandface, which is not the case 

during a WFT DP cleanup.  The curves of the sandface and the multisegment flows merge 

when hydrocarbon reaches to the DP flowline inlet approximately at 2/3 from the top of 

the DP interval.  At this point, the produced concentration will equal the sandface 

concentration.  Prior to reaching this point, hydrocarbon accumulates in the interval and 

only mud filtrate (water) flows as shown with the black water-cut curve at the top plot in 

Figure 4.10.  Although the water-cut behavior is strongly affected by the segregation 

event in the interval volume, the bottomhole pressure measurements are very similar for 

both flow types as presented at the bottom plot in Figure 4.10.  This is because the 

bottomhole pressure in both cases is measured at the same datum depth where the 

pressure gauge is located in the WFT tool.  
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Figure 4.10: Water-cut (top) and bottomhole pressure (bottom) behaviors are displayed 

during the DP cleanup at the sandface and at the fluid analyzer. 
 
 
Figure 4.11 presents a detailed comparison of the water-cut and pressure responses in 8.5 

in hole.  The DP interval contains a 17-liter interval storage at this hole size.  Figure 4.11 

compares the homogenous flow at the sandface, the homogenous flow with the DP 

interval storage, and the multisegment flow incorporating hydrostatic, friction and 

acceleration terms of a properly defined WFT DP inlet completion.  Due to very slow 

flowing rates, friction and acceleration terms are negligible in the multisegment flow; 

hence the curves with the black line, and the blue and green symbols are identical.  The 

multisegment flow incorporating slip velocities and fluid segregation accurately pictures 

the delayed arrival of hydrocarbon to the fluid analyzer, which measures the water-cut in 

the WFT tool.  The homogenous flow, which has no segregation and slip calculations, 

represents the sandface measurements of the flow depicted with the orange curve in 

Figure 4.11.  For the clarification, a homogenous flow with a 17-L wellbore storage is 

added as a brown curve into Figure 4.11.  It shows that simply adding the wellbore storage 
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volume in a homogenous flow will not approximate a solution to the complex segregation 

and slip flow in the DP inlet. 

 

 
Figure 4.11: Comparisons of the DP inlet multiphase and homogenous flow options.  The 

multiphase flow generates a segregated flow while the homogenous flow 
uses an average density of the phases in the inlet storage.  H, F, A are 
hydrostatic, friction, and acceleration terms, respectively and their 
combinations can be used in the multisegment flow runs. 

 
 
The multiphase flow model may be simplified in an analytical model: A complete 

segregation of the fluid phases is assumed in the DP interval for an immiscible 

contamination while the hydrocarbon is above the water due to their density differences.  

When the volume of the hydrocarbon in the DP interval reaches approximately 2/3 of the 

interval volume, the produced concentration will equal the sandface concentration as 

explained earlier.  Prior to that, only WBM filtrate is produced.  Below is the logic of the 

analytical approximation of the multiphase flow model: 
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𝑉𝑉𝑜𝑜𝑛𝑛+1 = 𝑉𝑉𝑛𝑛 + 𝛥𝛥𝑡𝑡𝑛𝑛𝑞𝑞𝑛𝑛�1 − 𝐶𝐶𝑠𝑠𝑠𝑠𝑛𝑛 �,   𝑉𝑉𝑜𝑜(𝑡𝑡𝑜𝑜) = 0                                                                      (4.1) 
 

if  𝑉𝑉𝑜𝑜𝑛𝑛+1 ≥  
2
3
𝑉𝑉                                                                                                                           (4.2) 

 

𝐶𝐶𝑛𝑛+1 = 𝐶𝐶𝑠𝑠𝑠𝑠𝑛𝑛+1                                                                                                                   (4.3) 
 

else 
 

 𝐶𝐶𝑛𝑛+1 = 1                                                                                                                          (4.4) 
 

end  

 

where 𝐶𝐶 is water-cut at the fluid analyzer, 𝐶𝐶𝑠𝑠𝑠𝑠 is water-cut at the sandface, 𝑞𝑞 is production 

rate, 𝑉𝑉 is the DP interval volume, 𝑉𝑉𝑜𝑜 is volume of hydrocarbon in the DP interval. 

 

 Mud-Filtrate Invasion 

The correct representation of the invasion profile is a crucial step for generation of the 

multiphase flow properties.  In this synthetic example, the DF period takes 0.5 day and 

the SF period continues after that.  Radial invasion profiles in relation to saturation and 

pressure are presented in the presence of the capillary pressure near the wellbore in Figure 

4.12 and 4.13.  It is important to note that the DF period displays a sharper shock front 

due to its bigger invasion rate, and the SF period smears the shock front because of the 

capillary pressure and its much smaller invasion rate.   

 

Volumes and durations of the DF and SF periods are not exactly known.  Volume 

estimates will be acquired from the depth of investigation analysis of a 1D or 2D 

resistivity and salinity inversion process or may come from drilling reports.  The total 

invasion time is established from the timeline of drilling and WFT cleanup.  It is also 

recognized that logging times play a crucial role for measurements in capillary pressure 

cases.  The time gap between openhole and WFT logs will change the saturation 

distribution in the near-wellbore region due to the slow, but continuous invasion during 

the SF period.  This saturation change depends on, other than the reservoir and fluid 

properties, the SF rate, the time gap before the WFT cleanup, and the capillary pressure.  

When the mud cake seals, the SF rate is relatively small, and the water saturation 

dissipates due to the capillary pressure around the wellbore as displayed in Figure 4.12 
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(also see Chapter 4.6.6).  Figure 4.13 shows the oil pressure progress during the DF and 

SF periods.  Figure 4.13 also presents the supercharged formation pressures during the 

DF period, and the supercharged pressures quickly dissipate to the near-initial pressure 

in the SF period.  Figure 4.14 displays the difference of water and oil pressures due to the 

capillary pressure during the invasion.  Figure 4.15 is similar to Figure 4.14 and shows 

the difference of the phase pressures as the capillary pressures during the invasion. 

 

 
Figure 4.12: Water saturation progress during the WBM filtrate invasion in the near-

wellbore region at the center of the DP interval in the presence of capillary 
pressure.   

 
 

 
Figure 4.13: Oil pressure progress during the WBM filtrate invasion in the near-wellbore 

region at the center of the DP interval in the presence of capillary pressure. 



66 

 

 
Figure 4.14: Water and oil block pressures during the progress of the WBM filtrate 

invasion in the near-wellbore region at the center of the DP interval in the 
presence of capillary pressure. 

 
 

 
Figure 4.15: Capillary pressures during the progress of the WBM filtrate invasion in the 

near-wellbore region at the center of the DP interval. 
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 Cleanup 

The cleanup process increases the oil saturation in the vicinity of the near-wellbore region 

although SF still occurs.  The cleanup, generally being several hours to reduce the 

contamination, may not bring the water saturation to the initial reservoir saturation 

condition (or it requires an extensive volume of pumpout to achieve that), but this is not 

a requirement since the water-cut level below or around 10% is sufficient for sampling.   

 

The water-cut (represented at the top figure in black) in Figure 4.10 displays the cleanup 

progress with a constant rate of 8 bbl/day conducted until the water-cut reaches 10% just 

before the sampling.  Figure 4.16 to 4.19 show the reservoir properties near the wellbore 

at the specific event times.  Figure 4.17 shows the oil pressure change during the cleanup, 

and the following pressure buildup.  Figure 4.18 shows the water and oil pressures during 

the same period in the presence of the capillary pressure.  Figure 4.19 displays the 

capillary pressures during the DF, SF, cleanup and pressure buildup periods in the near-

wellbore region at the center of the DP interval.   

 

DF creates the majority of the mud-filtrate invasion into the reservoir while the formation 

pressure is increased representing a supercharged pressure (Figure 4.16 and 4.17) as 

explained earlier.  When SF starts and the time delay occurs until WFT logging, the water 

saturation around the wellbore is redistributed.  Meanwhile, the supercharged pressure 

due to DF is reduced, but still higher than the initial formation pressure in this example.  

It is also noticed that the capillary pressure effect from DF to SF periods increases as seen 

in Figure 4.19.  The capillary pressure change is also visual in oil and water block 

pressures in Figure 4.18.  The cleanup decreases the water saturation at the sandface to 

around 40% just before the sampling in this example, while the pre-invasion water 

saturation is 20%.  Depending on the relative permeability and the capillary pressure at 

the cleanup saturation, the flowing pressure reduces, then increases slightly as presented 

in Figure 4.17.  Figure 4.18 also represents the flowing oil and water block pressures 

affected by the capillary pressure, which is determined by the saturation profile at the 

particular timestep.  Figure 4.20 illustrates the saturation profile at the end of the DP 

cleanup zooming to a height of 10.76 ft from the top, and to a distance of 32.73 ft into 

the reservoir from the wellbore.  The saturation profile in Figure 4.20 represents a 

homogenous reservoir cleanup, which is more efficient horizontally due to kv/kh ratio 

creating relatively higher cleanup rates horizontally.  
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Figure 4.16: Water saturation profiles including the invasion, cleanup and pressure 

buildup events depicted in the near-wellbore region at the center of the DP 
interval in the presence of capillary pressure. 

 
 

 
Figure 4.17: Pressure profiles including the invasion, cleanup and pressure buildup 

events illustrated in the near-wellbore region at the center of the DP interval 
in the presence of capillary pressure. 
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Figure 4.18: Water and oil block pressures during the progress of the cleanup in the near-

wellbore region at the center of the DP interval in the presence of capillary 
pressure. 

 
 

 
Figure 4.19: Capillary pressures during the progress of the DF, cleanup, and at the end of 

the pressure buildup in the near-wellbore region at the center of the DP 
interval. 
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Figure 4.20: A radial-vertical (R-Z) cross-sectional view of the near wellbore region at 

the end of the DP cleanup.  The DP is located at the center left (displayed 
as a black vertical line).  The grid is zoomed to a height of 10.76 ft from the 
top, and to a distance of 32.73 ft into the reservoir from the wellbore.  The 
arrows represent the cleanup direction. 

 
 
The bottomhole pressure measured in the wellbore during the cleanup has a very 

distinguished shape shown as the connection pressure in red at the top plot in Figure 4.21.  

The bottomhole pressure drops sharply from the formation pressure in the early period.  

Then it reaches a near plateau followed by a further dip and finally increases gently.  The 

behavior of the bottomhole pressure does not necessarily have the same trend for different 

cases when there are different fluid and rock properties, such as fluid viscosities, capillary 

pressures, relative permeabilities, heterogeneities, pumpout rate, damage skin, and so on.  

However, a detailed answer is provided to improve our confidence level in preparation 

of the numerical simulation process.  It is important to note that the model has a capillary 

pressure implementation.   

 

When the pressure pulse travels within the vicinity of the wellbore at the initial stage of 

cleanup, the water moves with its highest relative permeability and oil moves with its 

lowest behind the displacement front.  Pressure and saturation profiles along the 

production interval are not uniform because of the partial completion (the DP interval) 

and relative permeability effects.  Once oil arrives to the interval, it decreases connection 
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productivity, which depends on the total mobility, and the production is redistributed 

among other connections in the interval since the pumpout rate is constant.  The cleanup 

progresses with decreasing water-cut and increasing oil relative permeability, which has 

an increasing effect over the total mobility.  The WFT bottomhole pressure, which is 

calculated over the time with the changing total mobility, has the same trend as the 

connection pressures of the cells.   The connection production rate of each phase at the 

reservoir conditions are calculated with Equation 2.18.  The progress of the DP cleanup 

is explained in detail within the time intervals as marked with the letters from Figure 4.21 

to 4.24. 

 

Beginning of the cleanup to Point A: The block pressure smoothly goes down because of 

the production.  There is not much change in the total mobility due to very small change 

in the water saturation. 

 

Between A-B: The oil front approaches to the DP interval.  The total mobility decreases 

due to the oil saturation increase and the water saturation decrease in the relative 

permeability curves, which reduces the connection productivity.  The drawdown pressure 

increases, which enhances the connection productivity.  These two effects go with 

different speeds and directions.  The block pressure is recovered as a result because the 

mobility change is faster at this period, which decreases production relatively faster. 

 

Between B-C: The total mobility decreases and then slowly increases while the water 

phase mobility decreases and the oil phase mobility increases.  In the same period the 

drawdown pressure increases.  These two processes increase the connection productivity 

and the block pressure decreases due to more production. 

 

After Point C: The total mobility increases due to a higher oil relative permeability and a 

lower water relative permeability, which decreases drawdown pressure.  
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Figure 4.21: Cleanup event detailing the changes of pressures, rates and relative 

permeabilities at the center of the DP interval.  The periods are marked as 
A, B, C, D, which are before, at, early after and late after the oil 
breakthrough, respectively. 

 

A 

B D 

C 

A 

B 

D 

C 
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Figure 4.22: Cleanup event detailing the oil breakthrough period of Figure 4.21. 
 
 

 
 

Figure 4.23: Cleanup event showing the pressure drawdown, water-cut, and rate across 
the DP interval before (A), at (B), early after (C), late after (D) the oil 
breakthrough. 

 

B 

A 

C 
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Figure 4.24: Cleanup event showing the water saturation, oil and water relative 
permeabilities across the DP interval before (A), at (B), early after (C), late 
after (D) the oil breakthrough. 

 

 Events and Properties Affecting Invasion and Cleanup 

In this section we investigate the events and properties influencing the observed datasets 

during the invasion and cleanup periods. 

 

4.6.1 Dynamic and Static Filtrations 

Following analyses aim to establish sensitivities of DF and SF rates and durations.  The 

total volume of invasion and event times of drilling and logging are assumed to be known.  

The total volume of invasion can be obtained either from openhole logs or accurate 

drilling reports.  Arbitrary estimates of DF and SF rates and durations are used while 

honoring the total volume of invasion.  Forward model results are compared with the base 

case datasets used in this chapter for the history matching of WFT water-cuts and 

bottomhole pressures. 

 

Figures 4.25 through 4.27 show the DF and SF sensitivities, while keeping the cleanup 

start time and the total invasion volume as known parameters.  It can be concluded from 

the sensitivity analyses presented in the figures that not only the total invasion volume 

should be known, but also the DF volume and the SF rate should be estimated.  The total 
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invasion volume can be obtained from DOI analyses of openhole logs at the time of 

logging.  The WFT cleanup is conducted after the openhole logs, and the invasion further 

progresses due to the continuous SF period.  An estimate of the SF rate may be obtained 

by DOI from the openhole logs, and using the time gap between the openhole logs and 

the WFT cleanup.  If the SF rate is estimated and the total invasion volume is known, the 

invasion volume in the DF period can also be estimated due to the known timeline from 

drilling to logging.  By this way, the DF rate and its duration may not be accurately 

required provided that the DF invasion volume is already achieved.  The initial DF rate 

may be estimated with a pressure overbalance and formation properties in a pressure 

drawdown equation for an infinite acting reservoir.  Although, the DF duration is 

generally difficult to estimate, the invasion volume knowledge of the DF period can be 

sufficient as mentioned previously.  This can be seen in Figures 4.25 and 4.27 in which 

incorrect DF durations are compensated by DF rates, while SF rates are reasonably 

correct, and the history matches are fairly good.   

 

The results also indicate that, with the known total invasion volume, the cleanup data is 

mostly sensitive to the SF rate.  Knowing the total invasion volume and matching that 

volume with an incorrect SF rate does not provide a good history match (see Figure 4.26).  

The SF rate accuracy can be improved before the WFT cleanup by time-lapse array 

resistivity logs from which the time-dependent DOI can be obtained.  It is also possible 

to optimize the DF and SF rates and durations without prior knowledge with an additional 

computational cost.  The field examples in Chapter 5 follows the course of optimization 

of the DF and SF properties concurrently.  

 

Figure 4.28 represents the cases where SF is continuous and completely ceased.  No SF 

in an openhole is highly unlikely unless a cased hole sampling operation is conducted 

with a special WFT tool, which does not allow any invasion.  When SF is discontinuous, 

the oil saturation increases in the vicinity of the near-wellbore region due to the capillary 

pressure and the gravitational segregation. 
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Figure 4.25: History match comparison of the 0.1-Day DF vs. the base case.  DF influx rate is increased.  SF influx rate and cumulative invasion 

volume are kept equal to the base case.  The matches of bottomhole pressures and water-cuts are acceptable as seen on the left. 

 
Figure 4.26: History match comparison of the 0.2-Day DF vs. the base case.  DF influx rate is reduced.  Static filtration influx rate is increased 

to match the cumulative invasion of the base case before the cleanup.  The matches of bottomhole pressures and water-cuts are 
not acceptable.  This is due to an increased water saturation profile (red curve in the middle plot) near the wellbore just before the 
cleanup starts. 
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Figure 4.27: History match comparison of the 1-Day DF vs. the base case.  The SF influx rate and the total volume of invasion are kept equal 

to the base case.  The matches of bottomhole pressures and water-cuts are acceptable as seen on the left. 
 

 
Figure 4.28: Comparison of continuous SF vs. no SF, while both cases share the same DF profile. 
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4.6.2 Viscosity 

Viscosities of the mud filtrate and the formation fluids have an impact on the invasion 

and the cleanup.  The base and sensitivity cases assume that the mud filtrate and the 

formation water viscosities are equal.  The base case capillary pressure curve is used in 

the sensitivity cases.  Figure 4.29 shows that when the oil viscosity increases, the invasion 

goes deeper into the formation without a sharp shock-front during the DF period.  The 

base case is represented with the curves having black circular markers.  When lowering 

the mobility ratio, (krw/µw)/(kro/µo), a more efficient displacement occurs, hence less of 

the shock-front smearing is observed during the DF period.  Figure 4.30 shows that the 

shock front slowly dissipates due to capillary pressure and gravity effects during the SF 

period.  Figure 4.31 displays the near-wellbore saturations during the cleanup and 

highlights that a higher oil viscosity establishes more oil saturation around the wellbore 

at the end of the cleanup.  This is due to a higher pressure drawdown observed during the 

cleanup since the pumpout rates are equal in all sensitivity cases (Figure 4.32).  The oil 

breakthrough depends on the mobility ratio, capillary and gravitational forces.  When the 

oil and water viscosities are equal, the oil breakthrough times and the invasion profiles 

are similar if the capillary pressure is ignored.  However, when the capillary pressure is 

implemented, the oil breakthrough is earlier in the same oil and water viscosity cases 

(Figure 4.46).  Also, the lower the viscosities, the earlier the oil breakthrough in the 

capillary pressure cases (Figure 4.32). 
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Figure 4:29: DF saturation profiles with different oil and water viscosities in the near 

wellbore area. 
 
 

 
Figure 4.30: SF saturation profiles with different oil and water viscosities in the near 

wellbore area. 
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Figure 4.31: Water saturation profiles at the end of the cleanup with different oil and 

water viscosities in the near wellbore area. 
 
 

 
Figure 4.32: Viscosity contrasts influencing the oil breakthrough and the bottomhole 

pressure during the cleanup period.  
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4.6.3 Permeability Anisotropy 

Figure 4.33 and 4.34 show the permeability anisotropy cases at the end of the DF period, 

just before the cleanup, and at the end of the cleanup located at the center and the top of 

the DP interval.  The horizontal permeability is not changed, but the vertical permeability 

is altered.  The figures show that water saturation profiles of the DF and SF periods are 

grouped together at near-equal values in the vicinity of the wellbore region.  The figures 

also indicate that during the cleanup, saturation profiles are different, but not with a large 

magnitude for our cases.  This interesting saturation distribution is further investigated at 

the sandface, 8 in, 15 in and 22 in into the reservoir across the DP interval in Figure 4.35.  

The DP interval resides between 3.8 ft and 7.1 ft from the top boundary of the reservoir.  

The center of the DP interval is at 5.5 ft.  The figure confirms that the saturation profiles 

during the DF and SF periods grouped together at near-equal values and the cleanup 

saturation profiles are different.  The invasion periods, although governed by capillary, 

viscous and gravitational forces, are mainly influenced by the influx rate and the 

horizontal permeability since the horizontal permeability is assigned to a layer and the 

invasion occurs across the entire reservoir.  The vertical permeability effect seems less 

than the horizontal permeability during the invasion.  However, during the cleanup from 

the DP interval, reduction in the vertical permeability increases the drawdown and makes 

the hydrocarbon breakthrough earlier with the same flow rate and the horizontal 

permeability, and the opposite is also true as shown in Figure 4.36. 
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Figure 4.33: Water saturation profiles at the end of the DF, at the beginning and the end 

of the cleanup at the center of the DP interval in the anisotropy cases.  
 
 

 
Figure 4.34: Water saturation profiles at the end of the DF, at the beginning and the end 

of the cleanup at the top of the DP interval in the anisotropy cases. 
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Figure 4.35: Water saturations are presented across the DP interval at the sandface (A), 

at 8 in (B), 15 in (C) and 22 in (D).  The center of the DP interval is at 5.5 
ft and the height of the DP interval is 3.3 ft residing between 3.8 ft and 7.1 
ft from the top of the reservoir.  The horizontal permeability is kept 
unchanged, but the vertical permeability is altered in the anisotropy cases. 

 

A 

B 

C 

D 
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Figure 4.36: kh is 20 md and kv/kh is 0.6 in the base case.  kh is not changed, but kv/kh ratio 

is altered to 0.3, 1, and 2. 
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4.6.4 Porosity 

Figure 4.37 displays the WFT bottomhole pressures and water-cuts during the cleanup 

for the three different porosity cases.  All other reservoir properties are kept unchanged 

and the base case has the porosity of 0.3.  Figure 4.38 shows the porosity effect on the 

saturation profiles during the invasion and the cleanup.  The higher the porosity, the 

shallower the depth of invasion, and the quicker the oil breakthrough because the mud-

filtrate invasion volumes and durations are identical in each case.    

 

 
Figure 4.37: Cleanups are conducted with the three different porosities.  The porosity is 

equal to 0.3 in the base case.   
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Figure 4.38: Saturation profiles at the end of the DF period, at the beginning and the end 

of the cleanup for the porosity cases of 0.3, 0.2 and 0.1.  The invasion 
volumes and durations are kept the same as in the base case.   

 

4.6.5 Damage Skin 

A larger damage skin creates a higher pressure drawdown with the same pump rate as 

known and the hydrocarbon breakthrough is earlier although the water-cut trend on the 

cleanup is similar (Figure 4.39).  The connection pressure (CPR), bottomhole pressure 

(WBHP) and block pressure at the sandface (BPR) are displayed for each skin factor in 

Figure 4.39.  If bottomhole and connection pressures are at the same datum depth, they 

are equal to each other.  The block pressures are different (although they are slightly 

different in these cases) for each skin factor due to different wellbore pressures altering 

the block pressures at the sandface.  Figure 4.40 shows the saturation profiles into the 

reservoir with the damage skin cases of 0, 2 and 4.  The base case has the skin factor of 

2.  The invasion profiles are unaltered and the cleanups with the different skin factors 

display minor changes in the saturation profiles.  One might expect that because of a 

larger skin factor, with the same pump rate, the pressure drawdown is more and higher 

oil saturations are expected in the near wellbore region.  WFT pump volumes are 

generally small during the cleanup and sampling; hence, the additional saturation changes 

due to the extra pressure drawdown in the vicinity of the wellbore is relatively small 

(Figure 4.40).   



87 

 

 
Figure 4.39: Damage skin values are compared during the cleanup.  The base case has 

the damage skin of 2. 
 
 

 
Figure 4.40: Water saturation profiles for the skin factors of 0, 2, and 4 at the end of the 

DF period, at the beginning and the end of the cleanup. 
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4.6.6 Capillary Pressure 

The capillary pressure affects the invasion and cleanup processes by altering the 

saturation profiles in the invaded zone.  The same capillary pressure curve is assumed 

applicable for both the invasion (imbibition) and the cleanup (secondary drainage) 

processes in our study.  Figure 4.41 presents the capillary pressure curves on a semilog 

graph used in this section.  The curve with the black markers represents the capillary 

pressure in the base case.  Figures 4.42 to 4.45 illustrate the capillary pressure effects 

during the invasion and the cleanup.  The general trend shows that the capillary pressure 

having a higher maximum value at Swi with a lower pore-size distribution index, λ 

generates more smearing at the invasion front.  The capillary pressure continuously alters 

the saturation distribution in the invaded zone during the DF and SF, and the cleanup 

periods.  The capillary pressure changes the water-cut and bottomhole pressure behaviors 

during the cleanup since the saturation profile is altered in the near-wellbore region.  

Higher Pd and lower λ values create larger capillary pressure values at Swi where the oil 

breakthrough is relatively earlier.  This is because the oil pressure is higher than the water 

pressure, and oil moves towards the wellbore and the progressing mud-filtrate invasion 

is also transported deeper into the formation while near-wellbore water saturations are 

decreased.  If no capillary pressure is introduced in the model, the invasion front is 

sharper and the oil breakthrough occurs relatively later.  The purpose of this comparison 

is to show that the time delays after drilling or between openhole logs play a significant 

role when capillary pressure is included in modeling. 
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Figure 4.41: Capillary pressure curves used for the sensitivity analyses.  The curve with 

the black markers represents the capillary pressure in the base case.  The 
capillary pressures are generated with the modified Brooks and Corey 
capillary pressure correlation.    

 
 

 
Figure 4.42: Water saturation profiles with the capillary pressure curves at the end of the 

DF period displayed from the wellbore to 36 in into the reservoir. 
 



90 

 

 
Figure 4.43: Water saturation profiles with the capillary pressure curves at the beginning 

of the cleanup displayed from the wellbore to 36 in into the reservoir. 
 
 

 
Figure 4.44: Water saturation profiles with the capillary pressure curves at the end of the 

cleanup displayed from the wellbore to 36 in into the reservoir. 
 



91 

 

 
Figure 4.45: WFT bottomhole pressures and water-cuts are displayed with the capillary 

pressure sensitivities.  The black curves represent the base case.  Higher Pd 
and lower λ values create a higher capillary pressure at Swi and generate 
relatively an earlier oil breakthrough.   
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Figure 4.46 compares the effects of viscosities and capillary pressures together.  Two sets 

of viscosities are implemented while the capillary pressure in the base case is applied and 

later ignored.  In both cases oil and water viscosities are kept equal to 0.55 cP and 0.75 

cP.  When the capillary pressure is ignored since the mobility ratio in both viscosity cases 

are equal, the invasion profiles are nearly the same and the invasion generates sharper 

shock fronts (Figure 4.47).  The cleanup profiles are also very similar except that due to 

a larger pressure drawdown when oil and water have higher viscosities, it will create 

slightly better cleanup with the same pump rate.  When the capillary pressure is applied 

for the equal viscosity cases, the lower viscosity case shows an earlier oil breakthrough 

because of larger smearing of the shock-front during the invasion.  This is due to a quicker 

exchange of the fluid phases with the same capillary pressure. 

 

 
 
Figure 4.46: WFT bottomhole pressures and the water-cuts during the cleanup when the 

capillary pressure is applied and later ignored for the two sets of equal fluid 
viscosities.  
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Figure 4.47: Water saturation profiles at the end of DF (top), before the cleanup (middle), 

and after the cleanup (bottom) when the capillary pressure is applied and 
later ignored for the two sets of equal fluid viscosities.    
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Figure 4.48 imitates an operational delay before the WFT cleanup while the capillary 

pressure is implemented as in the base case.  All of the cases have identical DF periods 

and matching SF rates with various SF durations.  Figure 4.1 shows the influx rates for 

the DF and SF periods.  Figure 4.48 indicates that when the cleanup starts right after the 

DF period, the oil breakthrough time is not earlier comparatively although the invasion 

volume is relatively lower (the blue curves in Figure 4.48).  The capillary pressure 

becomes more influential after a short time in the SF period, and the oil breakthrough 

occurs earlier (the green, red and black curves in Figure 4.48).  The relationship of the 

oil breakthrough time depends on the duration and influx rates of the DF and SF periods.  

If the SF period becomes excessively long, then the volume of the mud-filtrate invasion, 

relative to the reservoir volume influencing, increases and the oil breakthrough is delayed 

again (the dashed curves having brown, purple and yellow colors in Figure 4.48).  Figure 

4.49 shows the capillary pressure influence over the water saturation profiles for each 

case displayed at the start of the cleanup.  Figure 4.50 displays the water saturation 

profiles at the end of the cleanup.  When SF duration is extended, the depth of invasion 

is deeper, and also translates to higher sandface water saturations.  In summary, the 

invasion rates and their durations, and the magnitude of the capillary pressure will create 

a different oil breakthrough and saturation profile scenarios.  This could be further 

complicated when heterogeneities are introduced and multiple DF and SF periods are 

forced into the reservoir due to the necessary operations in the wellbore, such as wiper 

trips or movements of tools that scrape the mud-cake.   
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Figure 4.48: WFT bottomhole pressures and water-cuts during the cleanup.  All of the 

cases have identical DF periods and matching SF rates with various SF 
durations. 
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Figure 4.49: Water saturation profiles for each case before the cleanup in the vicinity of 

the wellbore.  All of the cases have identical DF periods as in the blue curve 
and the matching SF rates with various SF durations. 

 
 

 
Figure 4.50: Water saturation profiles for each case at the end of the cleanup in the 

vicinity of the wellbore.  All of the cases have identical DF periods and the 
matching SF rates with various SF durations. 
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4.6.7 Hysteresis 

The hysteresis section is brief since we did not include synthetic or field examples.  When 

the hysteresis of relative permeability and capillary pressure is considered in a numerical 

model, the mud-filtrate invasion follows imbibition curves.  When the cleanup starts as a 

drainage process, scanning drainage curves are generated as a new trend from the current 

block saturation (see Chapter 2.8 for details).  Figure 4.51 shows increasing distances 

specified as shallower to deeper (left to right) from a wellbore into the reservoir.  The 

location near to the wellbore (shallower) has the largest amount of mud-filtrate saturation 

of around 0.60 before the cleanup.  The location stated as deeper in the reservoir is also 

in the invasion zone and shows the maximum mud-filtrate saturation of 0.45 before the 

cleanup.  The location called as deepest represents the uninvaded zone and at the initial 

saturation condition (Swi = 0.20).  Orange arrows show the direction of the imbibition 

process while purple arrows display the direction of the drainage process according to 

the scanning curves.  Black circular marks present the numerical results of progressing 

capillary and oil relative permeability values in both processes.  Black cross marks are 

the numerical results for the water relative permeability curves in both processes.  When 

the cleanup begins, the mud-filtrate saturation starts receding from its maximum value in 

the block following the drainage scanning curves as explained earlier.   

 

The objective of the WFT hysteresis optimization should be to obtain bounding 

imbibition and drainage curves.  This is because generation of the bounding curves from 

core analyses is often performed and preferred for certain simulation scenarios, and 

establishing scanning curves from core analyses is difficult and rare.  Unlike the WFT 

hysteresis process, it is not common for a well to go through waterflood and production 

cycles sequentially.  Reservoirs are initialized with drainage curves, and then imbibition 

curves are applied for the waterflood in the case of water injectors and oil producers.  

Both scanning imbibition and drainage curves as in Figure 4.51 are not generally used 

for the waterflood in a numerical model although these cycles may occur in such 

scenarios: during coning and moving banks of different fluids in space over time, a shut-

in producer with a water-cut is put back on production after oil reinvading the near 

wellbore region, a three-phase case of water-alternating-gas (WAG) scheme.  In the WFT 

hysteresis process, the parameterization method selected should follow the expected 

saturation hysteresis trends, which may require further studies to clarify, and should also 

accurately establish the bounding curves for a general application.  
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 Shallower    Deeper    Deepest 

Figure 4.51: Progress of relative permeabilities and capillary pressures in a hysteretic process at the shallower to deeper locations in the 
reservoir.  Orange arrows show the direction of the imbibition process while purple arrows display the direction of the drainage process. 
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CHAPTER 5. WORKFLOW FOR GENERATION OF RELATIVE 

PERMEABILITIES AND CAPILLARY PRESSURES 

Both gradient and stochastic based optimization methods are used in the synthetic 

examples; however, the stochastic based optimization is chosen for the field examples.  

The reasons are explained in Chapter 5.4 in detail.  The proposed workflow of stochastic 

based optimization for generation of relative permeabilities and capillary pressures is 

valid in hydrocarbon reservoirs for wells drilled with WBM and summarized as follows:  

 

1. Analyze openhole logs for rock and fluid properties, and mud-filtrate invasion: 

i. Obtain initial guess of mud-filtrate invasion profile from inversion of electrical and 

dielectric logs (optional). 

ii. Calculate water and oil saturations (optional). 

2. Prepare simulation data according to geological and petrophysical logs, and their 

accurate timelines: 

i. Interpret horizontal and vertical permeabilities and damage skin from WFT 

pressure transient tests (possible to parameterize). 

ii. Set up WFT tool for its modular configuration and volume calculations.  Verify the 

measurement depths of water-cut and bottomhole pressure for the multisegment 

well model. 

3. Perform sensitivity and optimizer runs with parameters: 

i. Establish ranges for input parameters as realistic as possible from openhole logs 

and WFT pressure transient analyses, (i.e. IPTT). 

ii. Run simulation cases and conduct history matches with mismatch parameters.   

4. Analyze results provided by the optimizer: 

i. Examine the model match for observed vs. modeled with the help of global 

objective values. 

ii. Obtain confidence intervals of individual parameters. 

iii. Perform statistical evaluation methods for goodness of fit and check the uniqueness 

of individual parameters. 

5. Rerun the simulation with final parameters and observed datasets to confirm the 

history match. 

 

Figure 5.1 depicts the workflow of the stochastic based optimization process.  
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Figure 5.1: Diagram of the stochastic based optimization process. 
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 Analysis of Openhole Logs 

Reservoir properties of the uninvaded zone away from the wellbore are required to set 

reservoir initial conditions; therefore logging tools should measure beyond the invaded 

zone in the reservoir.  Alternatively, interpretation techniques must be able to compensate 

for the near-wellbore mud-filtrate contamination.  When possible with the physics of the 

measurement, the logging tools should have a significant depth of investigation.  When 

the physics of the measurement prevents a deep investigation, the interpretation 

techniques must deal with the mud-filtrate invasion.  The mud-filtrate invasion creates a 

flushed zone, but it may not flush the entire hydrocarbon saturation to residual as 

explained earlier in Chapter 4.  The invaded zone creates a transitional zone before 

reaching to the initial undisturbed reservoir conditions, which exhibits a challenge for 

obtaining Swi and Sor values.  The interpretation techniques are applied for approximation 

of saturation values since the flushed zone saturation, Sxo may not be equal to Sor, and Swi 

measurement requires an analysis beyond the invaded zone (Log Interpretation Principals 

/ Applications, 1989).   

 

Triple combo (Gamma-Ray, Neutron, Density, and Resistivity) logs can be used regularly 

in clastic reservoirs.  Lithology and porosity can also be evaluated from the nuclear logs, 

such as Gamma-Ray, Neutron, Density, and Photo Electric Factor (PEF).  Clastic pore 

geometry and lithology are generally correlated.  Absolute permeability may also be 

associated to lithology.  Saturations of the uninvaded and invaded zones can be obtained 

from resistivity logs with the Archie equation and the effect of clays can be incorporated 

in clastic reservoirs.   

 

On the other hand, carbonate reservoirs show several challenges: Carbonate pore 

geometry and lithology generally do not correlate.  Permeability does not have a trend 

with mineralogy.  Saturation becomes challenging since Archie exponents, m and n, are 

not correlated to either mineralogy or porosity.  Evaluating mineralogy is relatively easy 

with PEF except when anhydrite occasionally appears.  Total porosity is solved with 

lithology, density, neutron, and NMR porosity if available.  NMR porosity is later 

partitioned into several pore geometry components for an absolute permeability estimate, 

which is calibrated using WFT data.   
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Capillary pressure curves for a primary drainage process can be obtained from NMR logs.  

NMR pore partitions solve saturation distribution using the deep and shallow resistivity 

logs.  Flushed zone saturations can be verified independently from resistivity logs by 

using Sigma, Dielectric or NMR logs if available.  Dielectric logs can provide Archie 

exponents.  This method will assist in improving the resistivity based saturation estimates 

(Ramamoorthy et al., 2008). 

 

Openhole logs are recorded during the mud-filtrate invasion in an imbibition process.  

Their interpretation can deliver the invasion fluid volumes and the depth of invasion 

(DOI) at the time of logging.  It has been demonstrated that array resistivity 

measurements, either induction or laterolog, can be used to establish the radial 

advancement of the invasion profile (Ramakrishnan et al., 1997).  Array resistivity logs 

can be applied to estimate the imbibition fractional flow and relative permeability curves 

either from 1D (Capillary pressure and gravity terms are not included.) or 2D (Capillary 

pressure and gravity terms are included.) inversion.   

 

The 1D invasion flow model is based on two-phase (water and hydrocarbon) and three-

component (oil, water, and salt) radial transport (Ramakrishnan and Wilkinson, 1997).  

Array resistivity logs are used to characterize the invasion profile with an assumption that 

a single snapshot of radial conductivity variation is sufficient to reconstruct the 

multiphase flow behavior of the formation.  The model is described by the two-phase 

Darcy equation by ignoring capillary pressure and gravity terms.  The inversion results 

can provide fractional flow curves as a function of saturation, and filtrate loss per unit 

depth.   

 

The 2D invasion flow model improves the 1D model by incorporating the capillary 

pressure and gravity terms (Liang et al., 2011).  The model numerically solves the mud-

filtrate invasion process and uses the WFT pressure transient data.  The mud-filtrate 

invasion, although it is uncontrolled, is treated as a water injection process into the 

hydrocarbon-bearing formations.  The 2D fluid flow problem is described by a two-

phase, three-component (oil/gas, water, salt) transport model.  The numerical simulation 

solves the Darcy’s equation for two-phase and salt concentration with the brine tracking 

option in a fully implicit black-oil simulator. 
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The openhole log interpretation for the mud-filtrate invasion and saturations is an 

optional process for our workflow.  However, if the openhole log interpretation is 

available, it can decrease uncertainties on saturations and invasion volumes, which in 

turn reduces counts of parameters and sensitivity runs.  This is especially important if 

saturation endpoints are established from the openhole logs since they may become less 

sensitive in some cases.  Commercial software packages, such as Techlog and GeoFrame 

are used for openhole log interpretations (Techlog and GeoFrame User Manuals, 2015). 

 

 Preparation of Simulation Dataset  

A fully implicit black-oil simulator (ECLIPSE Reservoir Simulator Technical 

Description, 2015) is used for numerical runs.  The numerical simulation dataset is 

prepared with the inputs from fluids, petrophysical and geological properties as well as 

from the WFT tool geometry and the WFT observed data in several days.  Most 

Petrophysical and IPTT inputs are assumed ready a priori from interpretations of all other 

available logs and data.  The inlet volumes are honored and the fluid segregations are 

accounted for.  The mud-filtrate invasion consists of DF and SF periods.  Field time 

records of drilling, logging and WFT cleanup are implemented in order to design the 

invasion accurately.  The depth of invasion is parameterized and the volume of invasion, 

if known, is respected.  Fluid contacts and saturation distribution are initialized according 

to the petrophysical model.  For simplicity, properties of the mud filtrate and the 

formation water are kept identical.  WFT pressure transient test analyses for horizontal 

and vertical permeabilities are incorporated into the dataset.  If absolute permeabilities 

are not known, they can be also put in the iteration loop to be estimated.  The effective 

oil permeability obtained from the WFT pressure transient analysis is later distributed to 

the reservoir for correct heterogeneities with a trend obtained from either WFT pretest 

mobilities or log driven permeabilities, such as NMR logs.  Skin factor is always 

parameterized since knowing each skin component is relatively difficult in a multiphase 

flow environment.  A single set of relative permeability and capillary pressure curves for 

both invasion and cleanup is used unless mentioned specifically that hysteresis is applied.  

WFT flow rates are strictly followed and forward optimization runs are conducted to be 

able to match water-cuts and bottomhole pressures recorded during the WFT cleanup.   
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 Design of Optimization  

As an optimization engine, a commercial software package for assisted history matching 

is used in the workflow (MEPO User Manual, 2015).  The software uses a stochastic 

based optimization (SBO) to reduce the difference between observed data and simulated 

responses as quantified by an objective function.  A standard least-squares objective 

function is implemented in the workflow.  The objective function consists of two 

mismatch contributions: water-cut and bottomhole pressure.  Depending on the 

optimization strategy employed, the objective function is evaluated in a number of 

sampled points covering the input parameter space.  A random sampling strategy such as 

Latin Hypercube sampling (LHS) (McKay et al. 1979) or an evolution strategy (ES) is 

applied.  The LHS process screens the entire parameter ranges in defined compartments 

and prepares forward runs.  The ES process modifies individual parameters in every 

generation of forward runs and exchanges them in the following generation.  While the 

LHS process executes all the prepared forward runs, the forward runs in the ES process 

progress depending on the achievement of the match criteria.  Both strategies provide a 

match when the global objective function value is at its minimum.    

 

While avoiding the need for gradient information, stochastic optimization methods 

require a relatively large number of objective function evaluations, where each evaluation 

in itself requires a forward simulation run.  However, they have significant advantages in 

terms of flexibility in the choice of parameters to optimize and ability to converge to a 

global optimum.  Also, as they are often based on a population concept with multiple 

parents/children in a generation, many simulations can be run concurrently, whereas 

gradient based methods are inherently more sequential in nature (see Chapter 2.9). 

 

The inversion process uses a stochastic optimization methodology allowing relative 

permeability and capillary pressure parameters to be inverted concurrently.  Although 

any parameterization method can be implemented, MBC and LET parameterizations are 

used for the relative permeability curves and the MBC parameterization is chosen for the 

capillary pressure curve.  The optimization includes parameters, such as relative 

permeability and saturation endpoints, pore-size distribution index and displacement 

pressure for capillary pressure, damage skin, horizontal and vertical permeabilities, and 

invasion volumes and durations for DF and SF to establish the depth of invasion.  The 

endpoint saturations and invasion profile can be input from openhole log interpretations 
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or they can be optimized as well.  Horizontal and vertical permeabilities and damage skin 

can be fixed or included in the optimization.  In general, because parameters may 

correlate with each other, when fewer optimization parameters are chosen, fewer 

simulation runs are required and higher confidence levels are obtained for the resulting 

parameters.   

 

 Analysis of Optimization Runs  

SBO is the chosen method for the relative permeability and capillary pressure analysis 

due to advances of computer clusters and their computational cost in SBO, and avoiding 

local minima and software limitations in GBO.  However, GBO is also presented for 

clarity.  SBO and GBO methods use different commercial software packages.  The former 

uses MEPO (MEPO User Manual, 2015), while the latter uses SIMOPT (SIMOPT User 

Manual, 2015) software packages.  Both optimization techniques share a fully implicit 

black-oil simulator (ECLIPSE Reservoir Simulator Technical Description, 2015) for 

numerical runs.   

 

SIMOPT software for GBO can communicate with the simulator by means of altering 

parameter multipliers in the dataset directly.  GBO runs depend on the number of 

predefined parameter multipliers available in the simulator keywords; however, the lack 

of certain parameter multipliers, such as relative permeability and capillary pressure 

curvatures, limits the design of numerical runs (See Appendix A).  Initially the study was 

started with the GBO approach, but due to limiting parameter multipliers, it was shifted 

to the SBO method, and GBO examples were presented for comparison.   

 

The main advantage of MEPO software for SBO is its flexibility to define the input 

parameters directly in the numerical simulator dataset for each run.  MEPO uses Python 

(Lutz, 2010) programming scripts to generate ECLIPSE datasets and controls the runs 

and analyzes the results.  In general, SBO run counts are more than GBO runs, but the 

SBO method allows multiple concurrent runs with available computer clusters, and the 

flexibility of altering the simulator dataset provides a complete freedom during the design 

of forward runs.   
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5.4.1 Analysis of Gradient Based Optimization 

GBO is performed by switching the gradient option in the black-oil simulator (ECLIPSE 

Reservoir Simulator Technical Description, 2015), which uses the endpoint scaling (EPS) 

option to parameterize relative permeabilities and capillary pressures.  The EPS option 

allows modifying the endpoints of the relative permeability and capillary pressure curves 

while interacting with the gradient based optimizer (SIMOPT User Manual, 2015).  The 

gradient option of the simulator provides gradients of the water-cut and the bottomhole 

pressure with respect to the parameters chosen.  The GBO software then uses the 

gradients provided by the numerical simulator to achieve a logical regression during a 

history match, updating the property parameters by modifiers and calling the numerical 

simulator.  It is observed that although local optima may be reached in some cases 

depending on the parameter search direction, the GBO method is faster than the SBO 

method and comparatively fewer regressions are required to reach to a solution.   

 

GBO is a fast optimization technique due to its minimization methodology; however, 

GBO in the SIMOPT software does not have parameters to define mud-filtrate invasion, 

damage skin, curvatures of the relative permeability and capillary pressure curves.  

Damage skin has to be known or interpreted before the optimization.  This may require 

an additional pressure buildup after WFT cleanup.  Damage skin can be introduced as a 

reduction of permeability at the near wellbore region by applying a transmissibility 

multiplier similar to Hawkins’ definition to skin factor.  The depth of invasion cannot be 

used as an optimization parameter and it is fixed before the optimization.  Sensitivities of 

the damage skin and the invasion may be conducted manually by assigning these two 

parameters.  The most limiting factor of GBO with these commercial products is the fact 

that the numerical simulator does not have a way to define the Corey exponents or any 

other relative permeability model parameters.  This means that the curvatures of the 

relative permeability curves have to be known before the optimization as well.  This is a 

software limitation selected rather than the GBO method.   

 

The GBO method is terminated for the SBO method unless a new GBO routine is 

rewritten for the GBO limitations mentioned.  However, for the clarity of the points made, 

two synthetic GBO examples are presented in Appendix A.   
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5.4.2 Analysis of Stochastic Based Optimization 

SBO is implemented with a commercially available software (MEPO), which has a 

flexible setup of defining parameters, generating relative permeability and capillary 

pressure curves with the help of user provided software codes, as explained earlier.  The 

SBO method then generates a list of simulation runs designed by LHS strategy, which is 

the preferred strategy initially since it screens the entire parameter ranges to assemble a 

plausible collection of the parameter values.  The LHS strategy is generally followed by 

another LHS strategy in which known parameters are eliminated and ranges for unknown 

parameters are tightened.  The simulation model is updated automatically with new 

values of parameters.  Each additional parameter may require extra 100-300 SBO runs.  

The result of each forward run is history matched, and partial objective values are 

generated with water-cuts and bottomhole pressures.  The global objective value is then 

constructed by a summation of the partial objective values.  Following three different 

methods are applied for generating final parameters of relative permeabilities and 

capillary pressures.   

 

The first method uses single parameter trends.  SBO runs are conducted for the 

parameter ranges chosen in an LHS strategy.  Least squares based objective function 

values are calculated from each run to determine the goodness of the history matching.  

Partial or global objective values from all SBO runs are plotted against the optimized 

range of the single parameter on a logarithmic scale.  This method focuses on a single 

parameter at a time and the plots are repeated for each parameter.  The method requires 

care that each parameter may not have an impact on the objective value independently 

during the history matching, or non-uniqueness may occur if some parameters are 

correlated with others.  However, the lowest global objective function value for the 

particular parameter on the plot will provide a trend, which may present a solution or 

narrow down the parameter range in a search direction.   

 

The second method benefits from objective function values.  In an ideal scenario is that 

the LHS strategy samples the entire field frequently for each parameter and provides 

enough SBO runs although this requirement may take a large number of runs.  Partial and 

global objective function values are then tabulated in the order from the lowest to the 

highest for each optimization run.  In this case, a single run with the lowest global 

objective value (or the partial objective value depending on its weight function) should 
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be the best history match with its collective set of parameters.  In this method, one run is 

the best match with its entire set of parameters and followed by other runs depending on 

their global or partial objective value.   

 

In some cases SBO runs present that both methods have limitations, such as 

interdependency of parameters in the first method or a number of run requirements due 

to many parameters on the second method.  Therefore, a hybrid approach is suggested as 

a third method.  In this case, single parameter trends with relaxed margins are used for 

a search direction.  The first and the second methods are always conducted and their 

consistencies are checked before the third method.  This is a search method of the runs 

that are already performed and it does not require further forward runs.  An additional 

search is conducted on the parameters in the completed runs by relaxing their margins.  

The method also applies a cutoff for the partial objective values so that the values do not 

increase beyond a limit while relaxing the margins of a single parameter.  The runs falling 

into the category are plotted together to observe their history matches and the relative 

permeability and capillary pressure curves.  The approach keeps relatively low partial 

objective values and provides a trend with a larger band on the relative permeability and 

capillary pressure curves, and the history matches, in which a true solution may be 

expected.  This option should be used as a last resort, it does not provide a single match, 

but it may rather give a band for each curve. 

 

As an example to select the forward runs for swi parameter in the third method, an interval 

search is defined as (swi_min - swi_min * margin%), (swi_max + swi_max * margin%).  

Generally, this method requires more than one parameter with its relaxed margin in order 

to select additional runs.  The method helps comparing the first and the second methods 

and looks into individual parameters versus individual runs with entire sets of parameters.  

This method plots the curves prepared from the collective parameters of each run as in 

the second method but uses a relaxed range for the parameters where the optimal ranges 

of the parameters are widened.   

 

The first two methods are almost always applied sequentially to obtain the designed 

parameters from the forward runs.  Generally, if a sufficient amount of forward runs are 

conducted with respect to the parameter counts, the first two methods should yield similar 

results.  If the first two methods do not deliver desired results for the parameters, then the 
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third method provides a value range for each parameter, which may be treated as a 

confidence interval of its expected solution.  Therefore, the analysis should start with the 

first two methods, and if not satisfactory, then the third method is also executed.  

Appendix B.2 should be visited for the use of the three methods stated here.  Appendix 

B.2 presents a hierarchical approach starting from the first method until the third, and 

compares the results.  

 

 Synthetic Examples 

Synthetic GBO and SBO examples are prepared for oil reservoirs with WBM filtrate 

invasions.  As described earlier, the SBO method is the preferred method for the study; 

however, the synthetic GBO examples are kept as a reference in Appendix A from which 

a future study may be developed.   

 

The three synthetic SBO examples are presented in Appendix B in order to develop and 

explain the methods described in this chapter.  The synthetic examples B.1 to B.3 have 

the same operational setup and model properties, and ignore capillary pressures.  The DP 

inlet is used with the multisegment well model to account for the internal storage volume 

between the packers.  The SBO examples have successively more difficult conditions.  

Example B.1 has seven unknown parameters with known saturation endpoints from 

openhole logs.  Example B2 has nine unknown parameters including saturation 

endpoints.  Example B.3 introduces noisy observed datasets with nine unknown 

parameters.  The LET relative permeability parameterization is used in these examples.  

The analyses are developed from relatively easier to more difficult cases without capillary 

pressures.  Later capillary pressures are added into analyses as in the following synthetic 

example in Chapter 5.5.1.   

 

The following synthetic SBO example uses a different set of operational setup and model 

properties from the SBO examples in Appendix B.  Relative permeabilities and capillary 

pressures are estimated during the optimization.  The synthetic example is similar to field 

cases and paves the way how to approach and optimize actual field cases.   
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5.5.1 Stochastic Based Optimization Synthetic Example  

The synthetic SBO example includes the optimization of relative permeabilities and 

capillary pressures as well as DF and SF rates and their durations.  The DF rate is designed 

with the power law decay as dynq x time-0.5 where time is incremental from the start to 

dynt.  DF is followed by SF during the invasion as described in Chapter 2.1.  The SF rate 

(statq) is included as a constant.  SF is properly designed such that it does not occur across 

the sealed elements and the intakes of the inlets during the cleanup, but SF occurs 

elsewhere in the reservoir.   

 

The MBC parameterization is used in this exercise.  Relative permeability curvature 

exponents for oil (no) and water (nw), saturation and permeability endpoints (swi, sor, 

koro=1, korw), damage skin (SKIN) are implemented.  The invasion parameters, DF 

duration (dynt), DF rate multiplier (dynq), and SF rate (statq) are studied in order to model 

the invasion profile accurately.  The capillary pressure curve is designed with two 

parameters: entry pressure (pd), and pore-size distribution index (lmb). 

 

The model has the following known parameters: horizontal and vertical permeabilities, 

fluid and rock compressibilities, fluid viscosities, porosity, oil relative permeability value 

at the irreducible water saturation (koro), and total invasion duration (totalt) since the 

dates of drilling and WFT cleanup are recorded. 

 

The model has the following unknown parameters: damage skin, relative permeability 

and saturation endpoints and the curvature exponents, except koro, capillary pressure 

parameters of entry pressure and pore-size distribution index, invasion profile parameters 

including dynamic and static filtration rates and their durations.  The unknown 

optimization parameters are: swi, sor, korw, nw, no, pd, lmb, SKIN, statq, dynq, dynt.  

koro is set to unity. 

 

Tables 5.1 through 5.4 detail the numerical simulation setup.  Figure 5.2 depicts the radial 

gridding in an R-Z cross-sectional view.  The DP inlet is designed with the multisegment 

well model.  Figure 5.3 displays the water saturation profile during the mud-filtrate 

invasion and the cleanup. 
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Table 5.1: Parameters of invasion, cleanup and pressure buildup are listed in the 
synthetic SBO example.  The cleanup rate is for the circular radial grid. 

 
Properties Input Unit 
Dynamic filtration duration, dynt 0.5 day 
Static invasion influx rate, statq 0.0150 stb/day/ft2 
Cleanup start time 3.5 day 
Cleanup duration, tcleanup 4 hr 
Cleanup rate, qcleanup 53 L/hr 
Pressure buildup duration, tPBU 2 hr 

 
 

Table 5.2: Reservoir properties of the synthetic model in the synthetic SBO example. 
 

Properties  Input Unit 
h  53.00 ft 
hw  3.333 ft 
zw  47.57 ft 
rw  0.354 ft 
R  816 ft 
kh  20.00 md 
kv/kh  0.60  
Skin  2.00  
cr  1.25e-6 psi-1 
Pi  3403.6 psia 
Ø  0.30 fraction 
Swi  0.20 fraction 
Sor  0.15 fraction 
nw  2.50  
no  2.80  

 
 
Table 5.3: Fluid properties of the synthetic model in the synthetic SBO example.  The 

fluid viscosities and densities are at downhole and surface conditions 
respectively. 

 
Properties  Input Unit 
μo  0.75 cP 
μw  0.55 cP 
co 10.24e-6 psi-1 
cw  3.0e-6 psi-1 
ρo  0.865 g/cc 
ρw  1.153 g/cc 

 
 

Table 5.4: Grid properties in the synthetic SBO example. 
 

Properties Count 
Cell 71496 
DR  216 
Dϴ  1 
DZ  331 
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Figure 5.2: Radial gridding of the synthetic SBO example is displayed in an R-Z cross-

sectional view. 
 

 

 
Figure 5.3: Water saturation progress of the mud-filtrate invasion and the cleanup in the 

near-wellbore region at the center of the DP interval for the model used in 
the synthetic SBO example. 
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5.5.1.1 Analysis of Single Parameter Trends  

Global or partial objective function values of forward runs in each cycle are plotted 

against their single parameter values on a semilog scale (see Chapter 5.4.2 and Appendix 

B for details).  A parameter is realized ideally from its lowest objective function value in 

a minimization process.  An optimal range represents a visually obtained range for each 

parameter when evaluated against objective function values.  The optimal range provides 

lower and upper bounding inputs in the following cycle.  Loosely speaking, it can be used 

as a confidence interval for that parameter.  If the optimal range is a very narrow range, 

a solution is reached with a confidence interval.  If the optimal range is a large range, the 

solution presents uncertainties, and further forward runs are conducted in a following 

cycle after narrowing the ranges of the parameters displaying minimization trends.  

 

The first optimization cycle has very broad ranges of parameters to study their trends.  

The first cycle has a total of 4000 LHS strategy runs.  Then, the second cycle having 

additional 2000 LHS strategy runs are conducted with narrower ranges of parameters 

accomplished from the first cycle.  The forward run counts in the cycles are increased in 

order to reduce the uncertainties in the results created by the extensive amount of 

parameters.  The computational time for each run is approximately 15 minutes and 64 

parallel runs are employed.   

 

The ranges of the parameters in the first cycle are finalized from Figure 5.4 and 

summarized in Table 5.5.  Figure 5.4 presents that the optimal ranges of the partial 

objective values have uncertainties around the observed or true values.  SKIN shows a 

clear minimization trend estimated from both partial objective values.  Ranges of swi and 

sor are minimized from WCUT.  A range of korw can be obtained from both WCUT or 

WBHP.  WBHP and WCUT are the partial objective values of bottomhole pressures and 

water-cuts, respectively.  nw and no have large uncertainties.  dynq, dynt, statq show 

minimization from both partial objective values, while lmb and pd do not display large 

minimization. 

 

All the parameters are included in the second iteration cycle, either with narrower or same 

ranges obtained from the first cycle.  The additional runs, although they have different 

parameter ranges, are combined with the first cycle runs and displayed in Figure 5.5.  The 

optimal ranges of the parameters in the second cycle are finalized from Figure 5.5 and 
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summarized in Table 5.6.  The second cycle shows that the results of the parameters are 

improved, and the final results can be accepted with the confidence intervals of the 

parameters.  The final parameter value and Error% are presented in the final cycle in the 

tables.  Error% is calculated with the optimal ranges and observed values.  The columns 

highlighted as gray display the inactive (known) parameters in the tables.  The resulting 

relative permeability and capillary pressure curves are illustrated with their optimal 

ranges and compared with the true curves in Figure 5.6.  

 
 
Table 5.5: Ranges of the parameters are obtained from the analysis of single parameter 

trends in the first cycle of the SBO example.  The parameters are not fixed 
for the next cycle. The results are finalized from Figure 5.4.   

 
 swi koro sor korw nw no lmb pd SKIN dynq dynt statq totalt 

1Observed 0.200 1.000 0.150 0.350 2.500 2.800 2.807 5.000 2.000 0.066 0.500 0.015 3.500 
2Lower 0.050  0.050 0.100 1.000 1.000 1.000 0.100 0.000 0.030 0.100 0.005  
2Upper 0.350  0.350 0.600 5.000 5.000 10.000 9.000 10.000 0.100 1.000 0.030  

3Final              

Optimal 
Range  

0.139, 
0.282  0.142, 

0.242 
0.256, 
0.400 

1.629, 
4.127 

1.925, 
3.816 

1.995, 
5.154 

2.862, 
6.974 

1.570, 
4.438 

0.052, 
0.086 

0.231, 
0.851 

0.013, 
0.019  

 
 
Table 5.6: Ranges of the parameters are obtained from the analysis of single parameter 

trends in the second cycle of the SBO example.  The results are finalized 
from Figure 5.5.   

 

 swi koro sor korw nw no lmb pd SKIN dynq dynt statq totalt 
1Observed 0.200 1.000 0.150 0.350 2.500 2.800 2.807 5.000 2.000 0.066 0.500 0.015 3.500 

2Lower 
Input 0.139  0.142 0.256 1.629 1.925 1.995 2.862 1.570 0.052 0.231 0.013  

2Upper 
Input 0.282  0.242 0.400 4.127 3.816 5.154 6.974 4.438 0.086 0.851 0.019  

3Final 0.212  0.151 0.320 2.145 2.582 3.034 4.985 2.013 0.068 0.489 0.014  

Optimal 
Range 

0.193, 
0.239  0.142, 

0.238 
0.320, 
0.363 

2.000, 
3.200 

2.256, 
3.033 

2.643, 
4.144 

3.974, 
4.985 

1.877, 
3.468 

0.060, 
0.072 

0.445, 
0.572 

0.014, 
0.017  

4Error% 3.5, 
19.5  5.3, 

58.7 
8.6, 
3.7 

20.0, 
28.0 

19.4, 
8.3 

5.8, 
47.6 

 20.5, 
0.3 

6.2, 
73.4 

9.1, 
9.1 

11.0, 
14.4 

6.7, 
13.3  

 
1Observed values refer to as the setup or true parameters of the synthetic example.  
2Lower and Upper Inputs are the bounding parameter values updated from Optimal Range of a parameter 
form the previous cycle result. 
3Final is the optimization result of a parameter in the cycle.   
4Error% = |(Observed-Optimal Range)|*100 / Observed.   
The columns highlighted as gray represent the parameters that are fixed and not optimized.  
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Figure 5.4: Partial objective functions are plotted against the individual parameters.  
Table 5.5 summarizes the first cycle results from the single parameter 
trends. 
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Figure 5.5: Partial objective functions are plotted against the individual parameters.  

Table 5.6 summarizes the second cycle results from the single parameter 
trends.  The second cycle is conducted with the narrower ranges of the 
parameters obtained from the first cycle analysis. 
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Figure 5.6: Relative permeability curves and capillary pressures are estimated with their 

optimal ranges from the single parameter trends in the second iteration 
cycle. 

 

5.5.1.2 Analysis of Objective Function Values 

Importance of weighting global objective function (GOF) values is exercised in the 

following analyses.  The entire LHS strategy runs are ordered from the lowest to the 

highest with respect to GOF values.  Partial objective function (POF) values are weighted 

to obtain GOF values as: a*WBHP + b*WCUT.  a and b are arbitrary weight factors, and 

WBHP and WCUT are the partial objective values of bottomhole pressures and water-

cuts.  Table 5.7 illustrates the lowest five GOF values without altering their weight 

multipliers; hence, a and b are both one.  Figure 5.7 and 5.8 show the relative permeability 

and capillary pressure curves, and the history matches of the runs respectively as listed 

in Table 5.7. 

 
 
Table 5.7: LHS forward runs having the lowest five GOF values are listed.  WBHP and 

WCUT are not weighted in this section; a and b are both equal to one. 
  
IT* DS* swi sor korw nw no lmb pd SKIN dynq dynt statq totalt GLOBAL WBHP WCUT 

11 1745 0.146 0.151 0.306 1.648 3.033 3.343 4.135 2.013 0.068 0.489 0.014 3.500 19565 4642 14923 

11 758 0.150 0.157 0.268 2.077 2.405 2.643 3.764 2.021 0.055 0.445 0.017 3.500 19762 2774 16988 

11 1753 0.218 0.239 0.307 1.750 3.099 4.144 4.934 1.877 0.065 0.331 0.014 3.500 23876 4065 19811 

11 1706 0.251 0.167 0.332 2.485 1.947 2.901 4.491 2.591 0.062 0.572 0.016 3.500 24398 1407 22990 

11 1533 0.153 0.173 0.361 2.306 2.622 3.957 5.273 2.841 0.060 0.452 0.014 3.500 24427 1365 23061 

 
*IT and DS refer to as iteration and dataset respectively. 
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Figure 5.7: Relative permeability and capillary pressure curves from the LHS forward 

runs having the lowest five GOF values are plotted.  The runs are listed in 
Table 5.7. 

 

 

 
 

Figure 5.8: History match results from the LHS forward runs having the lowest five 
GOF values as listed in Table 5.7.   
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In the next case, a and b are set to 1.0 and 0.01 respectively.  This gives an extra 

weightage over WBHP.  All GOF values are recalculated from a*WBHP + b*WCUT.  

The runs are ordered again from the lowest to the highest with respect to GOF values and 

listed in Table 5.8.  The runs with the lowest five GOF values are plotted for the relative 

permeabilities and capillary pressures in Figure 5.9 and for the history matches in Figure 

5.10. 

 
 
Table 5.8: POF values of bottomhole pressures (WBHP) and water-cuts (WCUT) are 

weighted with a and b, which are set to 1.0 and 0.01 respectively.  The 
resulting GOF values are listed from the lowest to the highest values. 

 
IT* DS* swi sor korw nw no lmb pd SKIN dynq dynt statq totalt GLOBAL WBHP WCUT 

11 1405 0.253 0.157 0.325 2.006 2.438 3.091 3.882 2.831 0.059 0.316 0.018 3.500 816 559 257 

11 1396 0.274 0.215 0.358 1.718 3.601 4.849 6.956 2.243 0.078 0.322 0.014 3.500 957 505 452 

11 519 0.134 0.231 0.372 2.309 2.032 4.082 6.720 3.032 0.076 0.533 0.016 3.500 1132 757 375 

11 531 0.190 0.147 0.300 3.128 2.004 4.012 5.641 2.226 0.062 0.314 0.015 3.500 1133 520 613 

11 145 0.231 0.170 0.304 1.819 2.652 2.437 4.406 2.389 0.078 0.721 0.017 3.500 1193 796 397 

 
*IT and DS refer to as iteration and dataset respectively. 

 
 

 
Figure 5.9: Relative permeability and capillary pressure curves from the LHS forward 

runs having the lowest five GOF values obtained from the calculation of 
1*WBHP + 0.01*WCUT are plotted.  The runs are listed in Table 5.8. 
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Figure 5.10: History matches from the runs having the lowest five GOF values obtained 

from the calculation of 1*WBHP + 0.01*WCUT as listed in Table 5.8. 
 
 
Although the final results may show some non-uniqueness from the history matches, the 

resulting relative permeability and capillary pressure curves are within a range, which 

may be considered as a confidence interval.  Known saturation endpoints, if interpreted 

from openhole logs, can further improve the results obtained in such cases.  



121 

 

 Field Examples 

Four field examples published in SPE conferences are presented in Appendix C.  The 

field examples employ the stochastic based optimization.  The examples show a variety 

of applications from carbonate to clastic reservoirs, including various flow unit 

thicknesses, and a transitional zone.  The field examples involve all major WFT inlet 

types, such as 3DRP, DP and SP inlets.  The examples are displayed in a chronological 

order, and they represent the development of our study with additional features 

introduced in each technical paper.  The first field example in Appendix C.1 does not 

exercise the capillary pressure optimization, but introduces the WFT 3DRP inlet for the 

first time.  The second field example in Appendix C.2 uses the multisegment well model 

for the DP inlet.  The third field example in Appendix C.3 introduces the capillary 

pressure optimization with a detailed mud-filtrate invasion model.  The fourth field 

example in Appendix C.4 uses a single probe in a clastic reservoir.  

 
The field example in Appendix C.1 uses the WFT 3DRP inlet and the cleanup is 

conducted in a transition zone of a carbonate reservoir (SPE170648).  The LET and the 

Thomeer parameterization models are used for relative permeabilities and capillary 

pressures respectively.  Resistivity, density and porosity logs are acquired while drilling 

(LWD), and resistivity micro imaging and dielectric logs are conducted with a wireline 

operation.  An IPTT test is performed after the WFT cleanup.  The example does not have 

a capillary pressure optimization, but rather uses the known capillary pressure curve 

calculated from the observations of fluid sample water-cuts, fluid densities and formation 

pressures in the transition zone.   

 

The field example in Appendix C.2 has the WFT DP inlet designed with the multisegment 

model in an oil bearing carbonate reservoir (SPE171884).  The MBC parameterization 

model is employed for relative permeabilities.  The capillary pressure is ignored.  

Laterolog resistivity, nuclear magnetic resonance, dielectric, and formation imaging logs 

are acquired in a wireline operation.  Permeabilities are analyzed from core plugs and an 

IPTT test.  The match of DOI is achieved from the laterolog.  A sensitivity study is 

performed by varying the final parameters one at a time around their optimum values to 

observe their influence over the history match.  A total of 900 SBO runs are executed in 

the analysis of this field example. 
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The field example in Appendix C.3 includes the WFT DP inlet constructed with the 

multisegment well model in an oil bearing carbonate reservoir having a gas cap 

(SPE174381).  The MBC parameterization model is chosen for relative permeabilities 

and capillary pressures.  Available openhole logs are laterolog resistivity, nuclear 

magnetic resonance, dielectric, formation imaging.  NMR derived permeabilities are 

combined with an IPTT test.  Since the optimization incudes the capillary pressure, the 

analysis focuses DOI and the details of DF and SF mechanisms.  A total of 5000 SBO 

runs are performed in the study of this field example. 

 

The field example in Appendix C.4 contains the WFT large-diameter SP inlet in a clastic 

reservoir (SPE177451). The MBC parameterization model is used for relative 

permeabilities and capillary pressures.  Induction, laterolog and formation imaging logs 

are acquired.  Saturation endpoints are obtained from the openhole logs and excluded 

from the optimization process.  Extensive WFT pressure profiling, sampling and IPTT 

tests are also conducted in order to characterize the reservoir.  A total of 500 SBO runs 

are completed in the analysis of this field example. 

 

 Summary of Stochastic Based Optimization Examples 

The synthetic example in Chapter 5.5.1 is designed with eleven unknown parameters, and 

it is very similar to common field cases.  It introduces capillary pressures and detailed 

mud-filtrate invasion parameters.  The MBC parameterization is used for relative 

permeabilities and capillary pressures.  The SBO synthetic examples in Appendix B 

implement the LET parameterization for relative permeabilities.  Although the MBC and 

LET parameterizations are used in the examples, there is no limitation to implement other 

parameterization methods in our study.  The former is applied for water wet systems and 

the latter is preferred for mixed wet or oil wet systems.   

 

A WFT dataset for a suitable study should have: a cleanup period reducing the water-cut 

down to, or less than 10%, and preferably a follow-up pressure buildup period for IPTT 

analyses.  Relatively a thinner flow unit without a transitional zone and fractures is ideal 

for the SBO analyses.  The flow unit thickness depends on the formation properties, WFT 

pumpout rates, the cleanup and the pressure buildup durations.  Transitional zones and 

fractures can be incorporated into the study with detailed IPTT or openhole log analyses.  
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Carbonate or clastic formations do not affect the outcome of our approach as long as the 

formations have sufficient openhole data.  A longer cleanup duration may occur in a 

thicker flow unit due to a larger amount of mud-filtrate movement expected vertically.   

 

We suggest that vertical and horizontal permeabilities, and damage skin should be 

obtained from IPTT analyses.  Due to complexity of the multiphase flow, we choose to 

always invert for the damage skin (see Chapter 2.5).  The vertical boundaries of the flow 

unit should be well defined from openhole logs for IPTT analyses and numerical 

modeling.  Assigning single values of vertical and horizontal permeabilities will 

underestimate the fluid flow and pressure behavior in the flow unit, and will affect the 

relative permeability and capillary inversion process.  It is strongly suggested that the 

permeabilities interpreted from IPTT analyses are distributed either with correlations or 

log measurements in order to represent heterogeneous formations accurately.  For 

example, porosity-permeability correlations or permeability analyses from NMR based 

logs can be used for this purpose. 

 

The 3DRP probe is an ideal cleanup inlet due to a larger flow area and smaller tool 

storage.  The DP inlet can be used with the multisegment well model with correct tool 

storage and flow geometry.  The DP inlet design without the multisegment well model 

will present the hydrocarbon breakthrough time erroneously, and a large portion of water-

cut data may not be suitable for history matching analyses.  If formation permeabilities 

are relatively high (generally more than 5 md) and drawdown requirements are not strict, 

single probes can also be used for the cleanup and the further study. 

 

The SBO examples show that it may be difficult to independently estimate all the 

unknown parameters of the problem from only bottomhole pressure and water-cut 

observations.  Hence, a hierarchical approach for inversion is chosen.  Generally DOI of 

the mud filtrate and the skin factor are inverted in the first cycle.  This requires prior 

knowledge of vertical and horizontal permeabilities of the flow unit.  Mud-filtrate 

invasion volumes from different sources, such as drilling reports or array resistivity logs 

can help reducing the parameter counts and improve the SBO analyses. 

 

In some cases, final optimization results may show non-uniqueness from history matches.  

Non-uniqueness here means that there may be several relatively good history matches 
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achieved with different combinations of parameters.  This outcome could be due to many 

parameters,  insufficient amount of runs, or noisy datasets.  In such cases, the resulting 

relative permeability and capillary pressure curves should be checked if they remain 

within a close range.  Then, the results may be considered with a confidence interval as 

explained in the third method in Chapter 5.4.2.  Known saturation endpoints, if 

interpreted from openhole logs, can further improve the results obtained in such cases. 

 

It is observed from the examples that the curvatures and the relative permeability 

endpoints, DOI are sensitive to the parameterization, and the saturation endpoints are 

comparatively less sensitive (see Figures C.10 through C.16 in Appendix C.2).  The 

damage skin is sensitive to bottomhole pressure only with the measured pumpout rate.  

Chapter 4.6 explains the effects of the reservoir and fluid properties for history matching 

in detail. 

 

It is possible to include the saturation endpoints in the optimization; however, prior 

knowledge of the saturation endpoints may eliminate non-uniqueness and reduces 

forward run counts.  For example, the non-uniqueness can be observed in Appendix B.3.2 

where Figure B.61 shows acceptable history matches although the saturation endpoints 

change in a large range (Figure B.60).  In the same example, the statistical evaluations 

assist to identify the best history match in Appendix B.3.3.  Figures C.10 and C.11 in the 

field example in Appendix C.2 show that the history match results are insensitive to 

changes of the saturation endpoints.  This is not a general conclusion for the saturation 

endpoints; however, if the insensitivity occurs, the saturation endpoints should be 

obtained from the openhole log interpretations. 

 

Noisy observed datasets and many unknown parameters, for example more than 10 

parameters, increase the chance of overfitting where statistical evaluations from multiple 

forward runs may suggest several good history matches over a large band of noisy 

observed datasets.  In such a case, IPTT and openhole log interpretations become crucial 

and a hierarchical approach for the inversion, as explained earlier, is suggested.  A 

parameterization model with fewer parameters, if it is appropriate, may be selected to 

reduce the unknown parameter counts. 
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The radius of influence of reservoir properties, such as flowing pressures, oil saturations, 

and horizontal and vertical oil velocities during the WFT cleanup varies depending on 

the formation properties, duration of the invasion and cleanup, and the WFT pumpout 

rate and the inlet type.  The radius of influence of the flowing pressure is generally tens 

of feet, while the radius of influence of vertical and horizontal oil velocities is several 

feet into the reservoir (see Figure C.23 in Appendix C).  The additional pressure drop due 

to the skin factor is effective in the near-wellbore region and in the invaded zone.  The 

invasion profile dynamically changes due to capillary forces and gravitational slumping 

of the invasion fluid, and DOI may be up to couple of feet if the mud cake is properly 

established.   

 

A combination of LHS and ES strategies are recommended to accelerate the parameter 

optimization process.  If there is no limitation of computation capacity, the LHS strategy 

may provide better results since it screens the entire parameter ranges to assemble a 

plausible collection of parameter values and allows meaningful statistical analyses.  

 

If DOI of the mud-filtrate and the saturation endpoints are obtained reasonably from 

openhole log interpretations, and the timeline of drilling and logging events are known, 

based on the complexity of the reservoir unit and available interpretations, such as IPTT, 

up to 10 parameters may be hierarchically obtained from fewer than 2000 forward runs, 

which may take 15 to 45 minutes each depending on the WFT inlet type used.  Usually 

64 to 128 concurrent numerical runs are common, the total forward runs may be 

completed in 10 to 24 hours.  Generally fewer parameters are used, fewer forward model 

runs are expected.  Additional parameters may require extra 50 to 200 SBO runs If DOI 

and saturation endpoints are not known prior to the study.   
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE RESEARCH 

 Conclusions 

The study presented here shows that relative permeability and capillary pressure curves 

can be estimated concurrently from WFT cleanup datasets in a relatively short period of 

time.  An inversion workflow based on the stochastic optimization is the chosen method 

for our study.  The general workflow is validated by applications to synthetic examples 

with known solutions, which show that the correct relative permeability and capillary 

pressure curves can be recovered through the inversion of water-cut and pressure 

measurements.  Although basics of hysteresis are explained, the study assumes that a 

single set of multiphase flow curves effectively represents the invasion and cleanup 

events. 

 

Our study introduces the stochastic based optimization for the first time in the literature.  

The SBO method is appropriate due to advances of computer clusters and their 

computational cost.  The method avoids local minima of the parameters and offers a 

statistical approach to the inversion problem.  Additionally, the study develops statistical 

interpretation techniques for the SBO method, which is not readily available in detail in 

the literature.  

 

Increasing the number of unknown parameters introduces the inherent problem of non-

uniqueness on the resulting relative permeability and capillary pressure curves as 

explained previously.  To avoid this problem, a hierarchical SBO approach is developed 

in which a prior interpretation of openhole logs and pressure transient data is used to limit 

the number of unknown parameters to be estimated simultaneously. 

 

The study combines well operational schedules, such as the time of drilling, the duration 

of wiper trips, and the period of openhole logging.  Reservoir and fluid properties are 

extensively investigated in numerical modeling in order to minimize modeling effects, 

and to mimic the well operational schedules.  In the literature, the well operational 

schedules are rarely accounted for.  This part is very essential to capture the near-wellbore 

invasion and cleanup dynamics, capillary pressure and gravitational slumping effects.  
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The complex mud-cake buildup behavior is ignored; instead, a model including dynamic 

and static filtrations is fully incorporated for the first time in the literature.  The mud-

filtrate invasion model, a part of the numerical simulation, accurately imitates the mud-

filtrate invasion rates and the saturation changes near the wellbore.  The realistic invasion 

model is necessary since time-lapse array resistivity logs are not common currently, and 

there is no methodology to provide saturation profiling within the invaded zone, and the 

invasion profile is not static and changes throughout logging periods near the wellbore.  

Although the mud-filtrate invasion can be optimized without prior knowledge, inputs 

from drilling reports and openhole logs can be included as well for the accuracy of the 

invasion volumes.   

 

All commercially available WFT inlet geometries, such as SP, DP and 3DRP are fully 

integrated into the workflow.  Numerical models for different WFT inlet types are 

developed with their wellbore sealing packers, properly defined tool storage volumes and 

fluid segregation effects.  2D gridding for the DP inlet and 3D gridding for the SP and 

3DRP inlets are adopted due to their complexities and flow path requirements.  The 3DRP 

inlet is introduced for the first time for this kind of study.  The detailed DP inlet geometry 

and its interval fluid segregation is also not studied previously before our study.  We 

believe these are important additions to the literature to properly model the fluid flow in 

the WFT tool as well as in the near wellbore region. 

 

The parameterization of the damage skin is included in the inversion process, which is 

not exercised in the previous studies.  It is established that the damage skin can be 

estimated satisfactorily from the inversion process.  The damage skin is always inverted 

in the process since the pressure transient analysis may not solve all skin components 

correctly in a complex multiphase flow environment.  Other components of the skin 

factor, such as the multiphase flow skin and the partial penetration skin naturally occur 

in the numerical model computations.   

 

The use of IPTT analysis for horizontal and vertical permeabilities in the flow unit 

becomes crucial when there is no credible permeability measurements, such as core 

plugs, well testing, or frequent pretesting.  The horizontal and vertical permeabilities 

obtained should be further distributed with other log trends to capture formation 
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heterogeneities.  Our study shows that introducing the log distributed permeabilities 

improves the inversion results because of an improved representation of the formation. 

 

The SBO method does not require prior knowledge of saturation endpoints or depth of 

mud-filtrate invasion from openhole log interpretations; however, we showed in several 

examples that their knowledge reduces the uncertainties of the interpretations.  Although 

fluid viscosities can be inverted in the process, their prior knowledge is suggested to 

reduce the parameter count. 

 

The proposed workflow provides an indirect measurement of multiphase flow properties, 

and it is not a substitute for core analyses.  However, the radius of investigation in the 

field examples shows that WFT cleanup examines further than the invaded zone, and 

covers a larger scale beyond the size of a core plug (the standard size of a core plug 

analyzed in a laboratory is 40 mm by 25 mm (Shafer et al., 2013)), and provides effective 

relative permeabilities and capillary pressures of the particular flow unit. 

 

The study is performed with datasets acquired in an openhole where the mud cake is 

established and basic openhole logs and the following WFT cleanup are conducted.  The 

study is controlled by the time-dependent invasion dynamics, and accurately measured 

or interpreted reservoir properties, and the properly modeled WFT cleanup.  Screening 

of datasets are suggested before starting the study.  For example, if openhole log 

interpretations show a very shallow mud-filtrate invasion, such as 1 to 3 in.  The dataset 

should not be selected for the study.  This is because the invaded zone generates the 

multiphase flow properties and the saturation endpoints may not be reached during the 

short cleanup in such shallow invasion profiles.  Also formation heterogeneities should 

be included as precisely as possible.  Ignored reservoir features, such as thin zones, high 

permeability streaks and conductive fractures may delay the hydrocarbon breakthrough 

unexpectedly in the model.  Additional openhole logs can be run for the this purpose 

alone if required.  In some occasions, transitional zones can complicate the estimation of 

the multiphase flow properties since the differentiation of mud-filtrate invasion and 

formation water, and the initial setup of the reservoir model may be challenging due to 

fluid distribution and capillary forces.  The noise levels of WFT water-cut and pressure 

datasets should be investigated before committing for the study as well.  However, there 

are numerous formations, whose earlier datasets are available and suitable for our study. 
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Besides basic openhole logs, the workflow requires only the data, which are commonly 

available from WFT sampling jobs, and it can be conducted in an almost fully automated 

manner within a short time period.  We believe that the study demonstrates an accurate 

and fast complement to available techniques and a step forward in terms of making better 

use of already available WFT data. 

 

 Recommendations for Future Research 

Extension to relative permeability and capillary pressure along with properly accounting 

for possible hysteretic behavior during the invasion (imbibition) and cleanup (drainage) 

processes constitutes interesting directions for future research.  The hysteretic approach 

can be investigated by a 2D array resistivity log inversion providing imbibition curves 

and WFT cleanup data focusing on drainage curves.  In order to decouple the processes, 

it is also possible to acquire time-lapse openhole logs, for example, earlier LWD logs 

followed by wireline logs before (if possible also during) the WFT cleanup.   

 

Deviated and horizontal wells should be included in a future study.  Although the invasion 

and cleanup processes will be affected by formation bedding, well deviations and 

corresponding reservoir and fluid properties, the additional study does not require any 

advancement over our current study.  The readily available methodology with a proper 

openhole log interpretation and a numerical grid due to deviation and bedding should 

resolve the challenge. 

 

A joint study is suggested for combining ongoing research projects, such as the 2D 

inversion of array resistivity logging for the mud-filtrate invasion, and the gradient and 

the stochastic based optimizations in a common platform. 

 

WFT relative permeability and capillary pressure curves should be compared with the 

core samples taken from the same reservoir interval.  Fullbore or sidewall cores can be 

used for the study.  We know that the depth of investigation of WFT dataset is more 

extensive than the core plug size due to expected WFT cleanup volumes.  We believe that 

the two methodologies can complement each other, especially focusing on facies types, 

and scale versus heterogeneity in a flow unit. 
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Resistivity array tools may be developed to focus on saturation profiling of invaded zones 

in detail.  WFT tools and resistivity logs should be combined to investigate the 

progression of saturation profiles before and after WFT cleanup events.  These 

measurements can supply additional history matching datasets, and they can enhance the 

results obtained from the study.  In theory, this is possible, but such combination logs are 

not preferred to run due to either operational reasons or different logging objectives. 

 

Improvements of numerical simulators, such as additional multiplier developments, are 

suggested in order to use GBO options more efficiently.  Endpoint scaling options in 

black-oil simulators should be improved such that several relative permeability and 

capillary pressure parameterization models can be implemented.  Hysteresis applications, 

although they are used in black-oil simulators, should follow the same course of action if 

SBO and GBO methods should adopt them more often.   
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