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Abstract

This thesis comprises a number of inter-related parts. For most of the thesis we are

concerned with developing a new statistical technique that can enable the identifica-

tion of the optimal control by comparing competing control strategies for stochastic

epidemic models in real time. In the second part, we develop a novel approach for

modelling the spread of Peste des Petits Ruminants (PPR) virus within a given coun-

try and the risk of introduction to other countries.

The control of highly infectious diseases of agriculture crops, animal and human

diseases is considered as one of the key challenges in epidemiological and ecological

modelling. Previous methods for analysis of epidemics, in which different controls

are compared, do not make full use of the trajectory of the epidemic. Most methods

use the information provided by the model parameters which may consider partial

information on the epidemic trajectory, so for example the same control strategy

may lead to different outcomes when the experiment is repeated. Also, by using

partial information it is observed that it might need more simulated realisations when

comparing two different controls. We introduce a statistical technique that makes full

use of the available information in estimating the effect of competing control strategies

on real-time epidemic outbreaks. The key to this approach lies in identifying a suitable

mechanism to couple epidemics, which could be unaffected by controls. To that end,

we use the Sellke construction as a latent process to link epidemics with different

control strategies.

The method is initially applied on non-spatial processes including SIR and SIS

models assuming that there are no observation data available before moving on to

more complex models that explicitly represent the spatial nature of the epidemic

spread. In the latter case, the analysis is conditioned on some observed data and

inference on the model parameters is performed in Bayesian framework using the

Markov Chain Monte Carlo (MCMC) techniques coupled with the data augmentation

methods. The methodology is applied on various simulated data sets and to citrus

canker data from Florida. Results suggest that the approach leads to highly positively

correlated outcomes of different controls, thus reducing the variability between the

effect of different control strategies, hence providing a more efficient estimator of their

expected differences. Therefore, a reduction of the number of realisations required to
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compare competing strategies in term of their expected outcomes is obtained.

The main purpose of the final part of this thesis is to develop a novel approach

to modelling the speed of Pest des Petits Ruminants (PPR) within a given country

and to understand the risk of subsequent spread to other countries. We are inter-

ested in constructing models that can be fitted using information on the occurrence

of outbreaks as the information on the susceptible population is not available, and use

these models to estimate the speed of spatial spread of the virus. However, there was

little prior modelling on which the models developed here could be built. We start

by first establishing a spatio-temporal stochastic formulation for the spread of PPR.

This modelling is then used to estimate spatial transmission and speed of spread. To

account for uncertainty on the lack of information on the susceptible population, we

apply ideas from Bayesian modelling and data augmentation by treating the transmis-

sion network as a missing quantity. Lastly, we establish a network model to address

questions regarding the risk of spread in the large-scale network of countries and

introduce the notion of ‘first-passage time’ using techniques from graph theory and

operational research such as the Bellman-Ford algorithm. The methodology is first

applied to PPR data from Tunisia and on simulated data. We also use simulated

models to investigate the dynamics of spread through a network of countries.
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Chapter 1

Introduction

1.1 Motivation

Throughout history, through the twentieth century until the present day, epidemics

have been arguably the most important cause of suffering and death in human, an-

imal and plant populations impacting on the politics and economics of many coun-

tries (Schumann, 1991, Chap 1). Therefore, finding the best understanding of the

mechanism of epidemic spread and its control has become the biggest challenge that

epidemiologists, statisticians and mathematicians face. Much work has been done in

modelling and validating a variety of epidemiological models including models where

hosts in the population are subdivided into different compartments. Relatively less,

however, is known about how to design optimal controls given the available resources.

The current Ebola epidemic in west Africa, the 2001 food and month disease in Britain

(Ferguson et al., 2001; Chis-Ster et al., 2009) and the 1995 citrus canker outbreak in

Miami (Graham et al., 2004) provide some illustrations of how problematic and con-

troversial policy decisions for control might be.

Reducing the risk of propagation by targeting the best control strategies is there-

fore crucial for any disease. The aim of this thesis is to provide a general methodology

for designing cost-effective control strategies so as to reduce or minimise the impact

on a target population. In particular, we wish to answer two main questions:

1. How can we design computationally efficient approaches to assessing controls so

that optimal approaches can be identified?

2. Given the available resources at our disposal, what is the best design that opti-

mises their deployment across the population?
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1.2 Structure of the Thesis

This thesis is divided into two parts. The principal part is mainly concerned with

providing real-time control tools for any potential infectious disease outbreak based

on removal/replacement of hosts in a spatially distributed population. This is par-

ticularly relevant to arboreal pathogens. Specifically, in the first chapter, we explain

why in general it is important to provide mathematical models to explain the spread

of an epidemic and ultimately help in identifying optimal controls. We briefly give

the background of the type of models used in the literature covering deterministic

and stochastic models. We then review how control has been carried out in previous

work.

Chapter 2 begins by describing the specific models of interest in this framework.

We mainly focus on stochastic models where hosts may or may not be spatially dis-

tributed. We then review two important approaches (the Gillespie algorithm and the

Sellke construction) used to analyse and implement stochastic models for epidemics.

We focus on representing different aspects of an epidemic process using the Sellke

representation where the outcome is a deterministic function of the model parameters

and the set of Sellke thresholds.

Chapter 3 is mainly focussed on reviewing the Bayesian approach. We review

some of the previous applications of Bayesian data-augmentation methods particulary

Markov Chain Monte Carlo (MCMC) using the general SIR epidemic model, and we

consider a particular implementation of the approach that allows the imputation of

additional events beyond the observation period.

Chapter 4 begins by motivating the coupling of epidemics using Sellke thresholds.

In particular we develop and compare different control strategies based on removal

or replacement of hosts using the idea of Sellke thresholds introduced in Chapter 2.

This chapter is concerned with models taking account of the temporal dynamics of the

epidemic process. We initially assume that no observation is available for inference

and that the model parameters are known. Two different stochastic compartmental

epidemics models are considered: Susceptible-Infective-Removed (SIR) and a not-

typical Susceptible-Infective-Susceptible (SIS). We adopt a stochastic optimisation

method for identifying the optimal control strategies among competing strategies

using the Simulated Annealing algorithm. The methodology is applied on different

simulated data using fixed parameters. We illustrate how such an algorithm could

be applied to epidemic data. We show empirically the benefit of coupling epidemics

when comparing competing control strategies.

Chapter 5 is an extension of Chapter 4 to the case where the control is based on

some partially observed epidemic data. In addition, this chapter is concerned with

models that take account of both time and space which are more applicable to arboreal
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diseases. Inference is carried out in the Bayesian framework using the Markov Chain

Monte Carlo (MCMC) coupled with data augmentation. Given that the intervention

will always lie at some future time, we construct a number of alternative MCMC

algorithms differing in the extent to which they impute explicit infection times beyond

the observation period. Similar to the chapter 4, epidemics are coupled under different

control strategies using the Sellke construction. At the level of the individual host, we

construct different measures including the risk, the challenge, the threat defined as the

expectation of the product of risk and challenge and other measures. These measures

are then used for prioritising hosts for consideration under a putative control strategy.

Different designs spaces are constructed and compared. The approach is applied to

simulated data and on a population representative of citrus population in Florida. We

compare the effectiveness of different prioritisation measures and quantify the benefit

of using the Sellke construction in this context. We show that a control design based

on the threat measure is more cost-effective compared to other measures.

Chapter 6 is concerned with modelling and designing control strategies using

the coupling idea developed in Chapter 5 with an emphasis on real-life epidemic data

regarding the spread of Citrus canker from Florida in 1995. A retrospective analysis on

the performance of the control strategies is also performed. This chapter also includes

an extension to a two-level mixing population where susceptibilities and infectivities

of hosts vary.

In the final part of this thesis, we develop a mathematical model that can pro-

vide insight into likelihood of spread between countries of the disease Peste des Petits

Ruminants (PPR) and risk of introduction across boundaries and that might be ap-

plicable more generally. In particular, we first describe how model parameters can be

estimated in the Bayesian setting when there is uncertainty on both the transmission

network between infected hosts and the susceptible population. Then, we establish

a network model to address questions regarding the risk of spread in the large-scale

network of countries and introduce the notion of “first-passage time” using techniques

from graph theory and operational research such as the Bellman-Ford algorithm. This

chapter also includes a first attempt to provide a real-time risk assessment tool for the

spread of PPR at the continental scale. The methodology is also applied on simulated

data. Moreover, we compare our findings with those presented in the literature.

1.3 Epidemic modelling

1.3.1 Motivation for modelling epidemics

To provide a best control during a disease outbreak, it is important to understand and

be able to describe the underlying process. However, data from epidemic outbreaks
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make the analysis difficult due to their incomplete nature (e.g. the exact times of

infections or the number of infectious hosts are mostly unknown). Recent outbreaks

of plant diseases such as Citrus canker (Gottwald and Timmer, 1995; Gottwald et al.,

2002) and Cassava mosaic disease in Sub-Saharan Africa (Hillocks and Thresh, 2000;

Alabi et al., 2011), human diseases like Ebola in west Africa and SARS (Severe Acute

Respiratory Syndrome) (Lipsitch et al., 2003; Wallinga and Teunis, 2004), the world-

wide emerging animal diseases like influenza H1N1 (Boender et al., 2007; Fraser et al.,

2009) and FMD (Ferguson et al., 2001; Chis-Ster et al., 2009) and many more show

how challenging it is to understand the mechanism underlying the spread of such

diseases. However, relating models to epidemic data is crucial when it comes to

understanding the processes that govern the dynamics of the epidemic. Models could

be used to provide a better understanding of the epidemiological quantities of interest

such as the infection process and the transmission dynamic, and to express scientific

hypotheses (O’Neill, 2010). To facilitate a clear understanding of the disease dynamics

at the population or individual level, it is vital to keep the model as simple as possible

with a manageable number of parameters.

It is then apparent that not only are epidemic models essential for providing

an adequate description of the mechanism that generate the data, they have also

the ability to predict the future course of the outbreak conditioned on its current

state. This contributes to determining the effect of different control strategies which

lead to identification of effective control policies and therefore prevent major spread.

In addition, models can help in designing optimal controls for future outbreaks by

providing tools to target high-risk regions (Woolhouse, 2011). Models are therefore

important in any data analysis and fundamental to answering important questions

regarding the underlying process specially the question of epidemic control.

1.3.2 Compartment models

To represent the spread of disease through a finite population of size N , epidemiol-

ogists commonly use compartmental models. In one such model, individuals in the

population are categorized by disease status. Individuals who are able to contract the

disease are Susceptible (S) until they become infected. In this case, if they cannot yet

transmit the disease, they are said to be Exposed (E). After a period of time, they

may become infectious but not present any symptoms i.e. they are Cryptic (C). Then

they become symptomatic and still Infectious (I). An infected host can recover from

the disease or be immunized, or be isolated or removed through death or control. Such

individuals play no further role in the epidemic spread. A range of commonly studied

epidemic models can be represented in this framework including SEIR, SECIR, SCIR,

SCI, SI and SIR depending on the biology of the disease under study. Although our

focus is mainly on the SCI and SI, below we give a brief overview on how epidemics
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can be modelled considering the SIR model. In addition, throughout this thesis, we

assume that the population is closed i.e. the size N of the population is fixed at each

time (N = S(t) + E(t) + C(t) + I(t) + R(t)), where S(t), E(t), C(t), I(t) and R(t)

are the numbers of individuals in the compartment S, E, C, I and R respectively at

time t ≥ 0.

There are two standard approaches to implementing compartment models of this

form: stochastic and deterministic modelling.

1.3.3 Deterministic models

Early approaches to epidemic were focused on specific human diseases and adopted

the deterministic approach. The first contribution by Bernoulli (1760) aimed to mea-

sure the effectiveness of a certain technique, namely variolation (a technique that

usually confers immunity to patient), against smallpox. This analysis can be found in

(Daley and Gani, 1999). Later, Ross (1911) used deterministic models to explain the

transmission of Malaria. The first general mathematical model for studying epidemics

was the deterministic model introduced in (Kermack and McKendrick, 1927). They

assumed a closed population and used the homogeneous mixing principle for contin-

uous time t ≥ 0. That is, the size of population is fixed and individuals randomly

mix together which, in terms of disease, means that any infected individual is equally

likely to infect any currently susceptible individual.

Deterministic models, used since the 19th century, considered a set of differential

equations which describe the temporal evolution of the state of the system. This

description ensures that the future state of the process can be precisely determined

if the initial conditions are known. Considering the typical general epidemic (SIR)

model with susceptible, infective and removal S(t), I(t) andR(t) at time t respectively,

the deterministic epidemic model (Bailey, 1975, Chap 6.2) is defined by the following

set of differential equations:

dS

dt
=− βS(t)I(t) (1.3.1)

dI

dt
=βS(t)I(t)− γI(t) (1.3.2)

dR

dt
=γI(t) (1.3.3)

where β is the contact parameter and γ the removal rate. A common initial condition

typically used is (S(0), I(0), R(0)) = (s0, i0, 0) where i0 is usually small. Note that in

some literature, β is replaced by β
s0

which is more appropriate when dealing with a

varying initial susceptibility size. This parametrisation leads to the branching process
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approximation for the initial stage of a stochastic epidemic in a large population

(Andersson and Britton, 2000, Chapter 3).

It follows that
dS

dR
= −β

γ
S (1.3.4)

therefore,

S(t) = S0 exp

(
−β
γ
R(t)

)
(1.3.5)

so that I(t) = N −R(t)− s0 exp

(
−β
γ
R(t)

)
(1.3.6)

where N is the size of the population. Furthermore, from 1.3.2, we have

dI

dt
= βI(t)

(
S(t)− γ

β

)
. (1.3.7)

Kermack and McKendrick (1927) show that, if the epidemic is ever to take off, s0 >
γ
β
.

In other words the initial number of susceptibles must exceed the quantity γ
β
.

The ratio R0 = s0β
γ

is indeed of fundamental importance in epidemic modeling

and is defined as the expected number of secondary infections produced by a typical

infected individual during its entire infectious period in a completely susceptible pop-

ulation (Heesterbeek and Dietz, 1996). This is referred to as the basic reproduction

number originally used in demography to state the average number of individuals

that one individual reproduces (Britton, 2010). By analogy to the threshold result of

Kermack and McKendrick (1927) stated previously, when R0 > 1 the epidemic takes

off while there is a minor outbreak when R0 ≤ 1.

Note that this quantity is also useful when considering the stochastic version of

the model.

1.3.4 Stochastic models

A first genuinely stochastic approach to epidemics models goes back to McKendrick

(1926). But the one that received more interest was the unpublished work on the

chain-binomial model of Reed and Frost presented in series of lectures in 1928. More

details of this model can be found in (Wilson and Burke, 1942, 1943). Moreover, the

model was extended by Greenwood (1946, 1949) and Bailey (1953).

Advances made in early 1940′s in the application of mathematics to stochastic pro-

cesses have led to some important developments in computational modelling. During

that period, Barlett (1949) formulated the stochastic version of the model described by

Kermack and McKendrick (1927) and thereafter followed a rapid increase of stochastic

models for epidemics (Dietz and Schenzle, 1985), especially during the last 50 years

mainly due to the increases in available computing power.
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The stochastic version of the model considered in Section 1.3.3 in the deterministic

case is defined as a continuous-time Markov process {(S(t), I(t)); t ≥ 0} and known

as the standard (Markov) stochastic SIR model. Here, the transition between states

occurs according to a random process. In particular, the transition probability from

S to I i.e. an infection in a small time interval (t, t+ dt) is defined as

P [S(t+ dt) = s− 1|S(t) = s] = βS(t)I(t)dt+ o(dt), (1.3.8)

while the transition from I to R i.e a removal is governed by

P [I(t+ dt) = i− 1|I(t) = i] = γI(t)dt+ o(dt). (1.3.9)

This description of the process implies that new infection occurs at a point of a non-

homogeneous Poisson process (Grimmett and Stirzaker, 2001) with rate βS(t)I(t).

In addition, the infectious periods are defined to be independent exponentially dis-

tributed with mean 1
γ
. However, other prescribed distributions could be considered

such as the Gamma or Weibull (O’Neill and Becker, 2001; Streftaris and Gibson,

2004). For now, we only focus on this brief definition of the stochastic model as the

main body of the thesis is based on this approach. Additional details are given at the

appropriate points.

The above definition of the basic reproduction number could be generalized as

R0 = βs0E(I), where E(I) is the expectation of the infectious period I. For stochastic

model, the behaviour of R0 for large populations (Whittle, 1955; Williams, 1971;

Andersson and Britton, 2000) is analogous to that of the deterministic model. Indeed,

from the threshold theorem (Whittle, 1955) in a population with a large number of

susceptibles, R0 ≤ 1 implies that only a small number of susceptibles will become

infected with probability one whereas if R0 > 1 there is a positive probability of a

major outbreak.

1.3.5 Deterministic versus stochastic

Deterministic models considered a set of differential equations which describe the fu-

ture state of an epidemic process. This description ensures that the future state of the

process can be precisely determined if the initial conditions are known. However, real-

life epidemics are more complex. Indeed, in a large population, a real-life epidemic

can go extinct or lead to a major outbreak infecting more or less a large number of

the population. Also, in a small population with one individual who has a cold, some

will catch the disease while others will not (Daley and Gani, 1999). In other words,

chance plays a part in the spreading of the disease. Therefore, only stochastic models

can describe effectively these processes underlying the transmission of an epidemic
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and the consequent variability in the outcomes of epidemics that proceed under iden-

tical conditions. Moreover, one of the most important advantages of using stochastic

models concerns estimation. In fact, there is little value in estimating an unknown

quantity without considering its uncertainty. Stochastic models are appropriate in

accommodating uncertainty in the epidemic outcomes therefore allowing a likelihood

approach to estimate model parameters.

It is now widely known by researchers that, both deterministic and stochastic

models have their strengths and are very important in modelling any given system

(Renshaw, 1991; Isham, 2005). Although stochastic models are more natural and

realistic models to be used when modelling epidemics their analysis can be difficult.

In this case deterministic models may provide a useful alternative. In addition, deter-

ministic models could be used as a starting point when dealing with a new pathogen

(Andersson and Britton, 2000). In this thesis, however we focus on stochastic models

in order to incorporate intrinsic stochasticity in many ways.

1.4 Background on epidemic control

The most practical reason for modelling an epidemic lies in the need to design an

optimal control in order to reduce or to eradicate the disease impact. In this section,

we review some approaches designed in that regard.

This goal was already evident in Bernouilli’s pioneering work on smallpox

(Bernoulli, 1760). He used epidemic models to demonstrate that inoculation with

material taken directly from patients with a mild case of smallpox to immunize an

individual, in the hope that it would reduce the death rate, ultimately increased the

population of France. The same idea is shared by VanderPlank (1960, 1963) who

introduced the concept of monocyclic (primary inoculum) and polycyclic (primary

and secondary inoculum) pathogens and developed two simple models of plant dis-

eases to model these two types of pathogens. This concept leads to a quantification

of various parameters included in the models, to predict how disease will occur and

identify controls to reduce the impact of the pathogen. As a result, he elaborated the

concept of horizontal and vertical resistance (resistances conferred by genes) to show

that coupling appropriately different varieties of plants could reduce both the initial

and the secondary inoculum.

These approaches provide motivation for disease modelling. In this section, we

present various approaches used to prevent or to control epidemics.
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1.4.1 Control by educational campaign

When there is no recognised cure or effective vaccine, the education campaign becomes

the most reliable control program. During the course of an epidemic, a change in be-

haviour of the host population could have an impact on the transmission dynamics.

These behaviours include susceptible hosts avoiding contact with infected individuals

or avoiding public gatherings, in the case of human diseases for example, or by simply

following some prescribed rules or guidance. These practices have been successful

at times including the 1918 influenza epidemic (Bootsma and Ferguson, 2007), the

“STOP-AIDS” campaign lunched by the Swiss AIDS foundation in 1987 (Daley and

Gani, 1999, chapter 7), and the Ebola prevention campaign by differents health or-

ganisation (Centre for Disease Control-CDC, World Health Organisation-WHO and

Médecin Sans Frontières-MSF).

Such campaigns always come with a cost in addition to the benefits. The cost

can take the form of resources (money) or it can be the number of infections at the

end of an epidemic. Therefore, controls that are optimal with regard to this cost are

then sought. There is a comprehensive literature devoted to this topic. (Daley and

Gani, 1999, chapter 7) showed that the education campaign is 4% of the cost of an

HIV treatment by representing the number of new infectives as Poisson process and

assuming that condoms provide total protection from HIV infection. On the other

hand, Castilho (2006) designed optimal controls through education campaigns for an

epidemic based on the simple SIR model by reducing the contact rate and increasing

the removal rate simultaneously.

In the case of high within-herd transmission rate, education can advise avoiding

contacts between flocks through common grazing for example. The strategy is ef-

fective in animal and plant epidemics where owners or actors are sensitized to take

some actions either by reporting some suspect cases or by disinfecting equipment and

storage facilities (Gottwald and Timmer, 1995).

While educating the population has proved to be a valuable strategy to limit the

impact of an epidemic, it is necessary to couple it with other measures.

1.4.2 Control by immunization

This strategy is commonly used with human and animal diseases. It is certainly the

most widespread control policy given that it creates an artificial immunity amongst

the current susceptible population. A vaccination program against smallpox is known

to be the most efficient control for eradicating the disease entirely (Fenner et al.,

1988). However, the complete eradication is not always achieved for certain epidemics

(measles, malaria, polio, avian influenza for instance) due to the fact that it is not

always possible to vaccinate every individual for practical and ethical reasons. Various
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control schemes for human and animal epidemics can be found in (Knox, 1980; Dietz,

1981) and (Anderson, 1982).

In controlling the spread of a disease by immunisation or other means, the question

of how to distribute the resources (which and how many individuals to vaccinate) to

minimise the risk of a large outbreak, remains of critical importance. These questions

have been answered in various published papers. In the remainder of this section, we

discuss different models considered for the purpose of answering these questions.

In a homogeneous population, the previous question becomes that of determining

how many susceptibles need to be immunised so that an optimal reduction in the

final epidemic size is obtained. In (Smith, 1964), it was shown that, for the general

epidemic model, vc = 1− 1/R0 is the level of immunisation required to avoid a major

outbreak. The quantity vc is known as the critical immunisation level, where R0 is

the basic reproduction number.

In general, Anderson (1982) shows that if θ is the threshold parameter, then the

proportion vaccinated v satisfies v ≥ (1 − 1/θ)r, where r is relative reduction in

the rate at which vaccinated individuals become infected, compared with the rate

for unvaccinated individuals. This means that vc = 1
r

(
1− 1

θ

)
. In particular, if the

vaccine is perfect (i.e. giving 100% immunity (r = 1)) vc is equivalent to the version in

(Smith, 1964). When r is small and θ is large, vc > 1; this implies that the population

is not safe from a major outbreak.

However, assuming homogeneously mixing populations prior to determining the

vaccination strategy is unrealistic since most strategies in practice are implemented

on a heterogeneous community. In this case, the two questions stated previously are

relevant, since the effect of vaccination depends not only on the sample to vaccinate

but also on which groups of host are prioritised. In trying to answer these questions

Anderson and May (1991, Chap. 12) describe an optimal immunisation strategy

within a spatially heterogeneous population and Becker and Dietz (1995, 1996) have

considered subgroups consisting of population with small size (Households, Schools).

In their analysis, they considered four different strategies:

1. Households chosen at random and all their members are immunised

2. Random vaccination of individuals

3. Preferential selection of large households for immunisation

4. Strategies for households of equal size (imunisation of a fixed fraction of members

in every household).

Anderson and May (1991) showed that in a two-level mixing population (where hosts

mix at a higher level within a group than with hosts in other groups), the optimal vac-

cination strategy is such that the proportion of non-immunised susceptible members
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in each group are identical. Becker and Dietz (1995), through considering a severe

disease spreading in a population consisting of households (the whole household is

infected once an individual is infected), showed that the optimal strategies in that

case is the one that immunises the same fraction of individuals in each household.

Ball et al. (1997a) then generalised this result to a more realistic within-group

distribution where a group with an infected host may still contain some susceptibles.

They named it an “equalising” strategy which consists of leaving the number of sus-

ceptibles in each group as similar as possible. This is done by picking sequentially

individuals from groups with the largest number of remaining susceptibles.

It is important to note that in a heterogeneously mixing population where in-

fectivity varies, there is no simple solution for controls. The natural solution is to

find a trade-off between high susceptibility and high infectivity when dealing with an

optimal strategy.

1.4.3 Control by screening and quarantine

Another approach in controlling the spread of disease is by screening the at-risk hosts

and quarantining those likely to propagate the epidemic. This approach gives a means

of stopping the disease from entering a region believed to be disease free. This pro-

cedure has been adopted to prevent the introduction of malaria in countries free

of malaria (Daley and Gani, 1999), and severe acute respiratory syndrome (SARS)

adopted by the WHO (2003). It was recently applied to the Ebola outbreak where

individuals flying from high-risk countries including Liberia, Guinea and Sierra Leone

were screened and quarantined if there were any suspicion of Ebola symptoms by the

CDC (2014, 2015).

However, Selvey et al. (2015) showed that this measure is not always cost-effective

and used the 2003 SARS pandemic and the 2009 influenza pandemic as exemplar case

studies to demonstrate this.

For diseases of plants and animals however, this strategy is shown to slow the

spread from the source of infection for a given period of time but may potentially

fail to stop the introduction of a pathogen into a previously disease-free region. This

is due to the difficulties of controlling the importation of plant or animal via illegal

trade as pointed out by EFSA (2015).

1.4.4 Control based on host diversity

The dynamic of infectious diseases can be impacted by host diversity within a pop-

ulation. Even over a century ago, there was a suggestion that species diversity and

transmission of vector-borne diseases of humans were correlated (Service, 1991). This

idea has long been appreciated by Macdonald (1957) who singled out the role of cat-
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tle in diverting mosquitoes from transmitting malaria to humans. This concept is

later referred to as Zooprophylaxis (WHO, 1982) and has been successfully used in

environmental management of vector-borne diseases (Ault, 1994). Elton (1958) has

extended this idea to plant diseases. He estimated that reducing the density of the

host plant for a disease by introducing new resistant plant species could influence

the behaviour of the pathogen vectors. This was supported by Burdon and Chilvers

(1982) and Boudreau and Mundt (1982) through their empirical research on plant dis-

eases and by Anderson and May (1981) who demonstrated the sensitivity of disease

transmission to host density using epidemiological models.

In plant populations, removing hosts has been the common strategy in order to

create a barrier between healthy and infected hosts. However, some plant varieties are

self-evidently resistant to a pathogen, and therefore can be used to slow the spread

of disease in a plant population. Previous work in crop diversification strategies for

epidemic control (Finckh and Wolfe, 1997, 2006) showed that one way to slow the

spread of disease in an agricultural crop is the construction and deployment of crop

multilines and cultivar mixtures (Mundt, 2002).

1.4.5 Pre-emptive culling in livestock and plants disease

Preemptive culling refers to a procedure of culling or removing high-risk exposed hosts

either by direct contact or at a certain geographical distance from a potential source

(Keeling et al., 2001; Tildesley et al., 2009; Ferguson et al., 2001; Klinkenberg et al.,

2003; Donnelly et al., 2006). This strategy has been widely used during the last decade

in Europe, USA, Asia and elsewhere, to control highly infectious diseases in animal

populations such as avian influenza, bovine tuberculosis, classical swine fever, FMD

(Keeling et al., 2001; Morris et al., 2001), and in plant populations such as citrus

canker, dutch elm disease, sudden oak death (Gottwald et al., 2001a, 2002).

Most often in practice, culling is carried out in a ring (ring culling) around a de-

tected infection. However, implementing this form of control is invariably challenging

given that it requires an accurate estimate of how far the epidemic is likely to spread

ahead of symptomatic hosts. Nonetheless, there has been a comprehensive literature

showing the effectiveness of such a control approach.

Using the approach followed by the joint USDA, APHIS/Florida Department of

Agriculture and Consumer Services Citrus Canker Eradication Program (CCEP) in

Florida between 1995 and 2005 (Gottwald et al., 2001a) whereby culling of all hosts

around a detected infective was carried out, Parnell et al. (2009); Cunniffe et al.

(2015) showed how this type of control can be optimized by matching the spatial

scale of control with the spatial scale of epidemic spread. Dybiec et al. (2004); Stacey

et al. (2004); Dybiec and Gilligan (2005); Gilligan et al. (2007); Dybiec et al. (2009)

extended this idea to the process where spread of the disease occurs non-locally and
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through a more complex network.

As stated above, once a ring is defined, all hosts in that ring are culled. However,

culling all hosts simultaneously may not be feasible given the limited resources that are

available during any outbreak. To this end, other strategies may focus on sampling

hosts according to some measures or metrics. Theses measures are often used to

construct a geographical map from which hosts may be prioritized for culling.

Boender et al. (2007) defined the basic reproduction number (R) as the number

of new infections that each infected farm is expected to generate, which allow map-

ping out transmission geographically for the spread of the 2003 Netherlands Avian

influenza (H7N7). A similar idea is used by Tildesley et al. (2009) where they devel-

oped spatial maps to quantify the effect of contiguous premises culling on outbreaks

from each infectious source. In both, it was shown that culling based on this measure

outperformed the most used random sampling strategy. Later, te Beest et al. (2011)

introduced a risk-based culling to account for both the distance of susceptible farms

to the infectious and the number of secondary cases that a susceptible was expected

to cause if it became the focus of a new local epidemic. They defined an approxi-

mation of the expected number of infections caused by farm i as E∗i = Riq
∗
i where

q∗i is the approximate probability that farm i was infected. Although their model

did not account for cryptic hosts, they showed that culling hosts with the highest

expected number of infections is more cost-effective compared to the traditional ran-

dom culling. However, approaches of this kind carry various limitations. First, cryptic

hosts might not have been taken into account; second the methods always assume a

fixed infectious period which is unrealistic in most real-life epidemics and finally this

type of approximation is feasible only for epidemics with a relatively short infectious

period. For an epidemic such as citrus canker where hosts can be infectious for a long

period of time, this approximation of the probability of being infected will be close to

unity, even for hosts located at a long range from the foci. Similar approaches have

been used (DEFRA, 2013) to predict spread of the ash die-back by 2017 in the UK

by jointly considering the likelihood of infection at any given location within the UK

and the hazard value for a particular location. Handel et al. (2011) considered a sim-

ilar approach to tackle the problem of post-epidemic surveillance; they combined the

transmission model with an estimate of farm-specificity of being detected infectious.

Again, their risk-targeted model is shown to be more efficient than random sampling.

In the next chapters of this thesis, we will extend this idea of prioritisation de-

scribed previously. In particular, we will investigate how prioritisation could be done

using a range of measures systematically in the Bayesian framework. In addition, we

will look at how optimal controls might be identified with the minimum of computa-

tion using coupled epidemics.
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Chapter 2

Statistical models: Structure and

implementation

2.1 Structure of models

In epidemiology, the risk of a host contracting a disease often depends on three factors:

location, time, and characteristics of the host, such as genetic factors. However, all

this information is not always available when collecting epidemic data. Therefore the

choice of models for making inference on the epidemic depends on the factors contained

in the data or, more precisely, on what is essential to understand the relationship

between exposure and contraction of the disease. Two common model structures

are used in that regard, namely non-spatial (time-dependent) and spatio-temporal

models.

2.1.1 Non spatial models

The term non-spatial model in epidemiology refers to models that do not explicitly

represent the spatial pattern of the spread of the disease on the spatial distribution of

the host population. These models are commonly used to analyse the impact of dis-

eases in a community and at a particular location. The smallpox epidemic in Abakaliki

(Nigeria) (Bailey, 1975), the October/November 1967 epidemic of respiratory disease

on the island of Tristan da Cunha (Shibli et al., 1971) are some illustrations. The

probability that a host is infected in an infinitesimal time interval is usually repre-

sented as

P (i infected in [t, t+ dt]) = βI(t)dt+ o(dt). (2.1.1)

where β is the contact rate and I(t) the epidemic size at time t.
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2.1.2 Spatial models

Epidemiological studies are very often spatial and temporal (Shaddick, 2013). One

of the principal reasons for using a spatio-temporal epidemic model is to “reduce

the initial variability of disease risk by using and exchanging information between

neighbouring spatial locations and proximal temporal moments” (Iftimia et al., 2015).

These spatial locations can be small areas or any geographical locations, networks of

sampling positions or economic and social structures. However, the consideration of

models involving time and space has been hampered by the difficulty in collecting,

managing, processing and analysing data regarding space and time. In recent years,

advances in technology, computing power and techniques such as Geographical Infor-

mations System (GIS) have made possible the collection and storage of epidemic data

over time and geographical scales.

Analytic tools such as spatio-temporal distance class analysis (Nelson, 1995;

Gottwald et al., 1996), spatio-temporal autoregressive integrated moving average

(STARIMA) methods (Gottwald et al., 1992; Reynolds and Madden, 1988a,b) and

ordinal regression (Besag, 1997; McCullach, 1980) have been used in the past. How-

ever, spatio-temporal stochastic models have been successfully used in recent years

to represent the transmission from infection sources (individuals in the population

or sources outside the population). In this framework, the inclusion of space and

time into an epidemic model occurs through the introduction of a dispersal kernel

characterising the challenge posed by an infected host to a susceptible. Considering

a stochastic SIR model for instance, the probability of contracting the disease in an

infinitesimal time interval can be modelled as:

P (i infected in [t, t+ dt]) = λi(t)dt+ o(dt). (2.1.2)

where λi is the hazard rate or the force of infection on host i at time t which depends

on the transmission kernel characterising the spatial nature of the dispersal of the

pathogen.

2.1.2.1 Dispersal kernel in two dimensions

The kernel characterises the spatial nature of the dispersal of the pathogen from

infected hosts to susceptible hosts. It plays an important role in modelling any control

strategy; especially when the control involves culling hosts in an appropriate range

around a detected infection. Here, we define a kernel in two dimensions.

Assume that the inoculum emitted from a given source infects a susceptible

individual located at a random distance from the source, drawn from a density

r ∼ f(r|θ, α) with parameter α and placed at a uniformly distributed bearing θ

(Figure 2.1).
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r ∼ f(r;α)

θ ∼ U(0, 2π)

Figure 2.1: Schematic representation of the epidemic transmission.

Following Clark et al. (1999), the probability that an inoculum from a source falls

in a small area at distance r and angle θ, delimited in polar coordinates by dr and

subtending an arc of angle dθ is given by

P (dS) =

∫ r+dr

r

∫ θ+dθ

θ

f(r′, ψ|α)dr′dψ (2.1.3)

where f(r, ψ) is the dispersal kernel and ψ is the direction.

P (dS) =

∫ r+dr

r

∫ θ+dθ

θ

f(r′|ψ, α)g(ψ)dr′dψ (2.1.4)

where g(θ) is the density of θ assumed to be uniform over (0, 2π). Assuming an

isotropic kernel density,

P (dS) =

∫ r+dr

r

f(r′;α)g(θ)dr′dθ

∝f(r;α)

r
dS

since dS = rdrdθ. Defining the two dimensional kernelK(r;α) as P (dS) = K(r;α)dS,

we can derive the kernel as

K(r;α) ∝ f(r;α)

r
(2.1.5)

In this case, the parameter α is known as the dispersal parameter.

2.1.2.2 Representation of the hazard rate

The hazard rate λi(t) defined in Equation (2.1.2) depends on the underlying assump-

tion made. For example, when the transmission is assumed to occur from only indi-

viduals in the population i.e. by the process of a secondary infection as in the models

considered in (Gibson, 1996; Gibson and Austin, 1996; Chis-Ster et al., 2009; Parnell

et al., 2009; Demon et al., 2011; Cunniffe et al., 2014), the rate of infection is given
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by

λi(t) =

β ∑
j∈I(t)

K(dji, α)

 (2.1.6)

whereas in a more complex setting where the disease transmission occurs from both

individuals from the population (secondary infection) and sources outside the popula-

tion (primary infection) (Gibson, 1997; Parry et al., 2014; Cook et al., 2008; Cunniffe

et al., 2015), the rate of transmission is

λi(t) =

β ∑
j∈I(t)

K(dji, α) + ε

 (2.1.7)

where ε is the rate at which the inoculum is transmitted from the external source to

susceptibles.

2.2 Implementation of stochastic models

Let us denote by E the state space of the system. By trajectory of the epidemic

X : [0,∞)→ E we mean the number of individuals in each compartment at a given

time t ∈ [0,∞). Note that here, E = Nn where n is the number of compartments.

2.2.1 Gillespie algorithm

The Gillespie algorithm developed by Gillespie (1976, 1977) is an exact stochastic sim-

ulation approach initially designed for chemical kinetics to address the intractability of

analytical solutions to stochastic time-evolution equations. In essence, the algorithm

generates the time-evolution of trajectories of finite populations in continuous time.

The algorithm has become the standard simulation approach for any continuous-time

Markovian system including epidemic models. The implementation of the algorithm

for an epidemic model is described below:

Consider n moves with respective rates β1, β2, . . . , βn and let X(t) denote the

trajectory.

Algorithm 1

1. Initialise t = t0 and X = X0.

2. Evaluate the probabilities Pi = βi∑n
j=1 βj

i = 1, . . . , n.

3. Draw u1 and u2 from U(0, 1)
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4. The time ∆t to the next event is given by

∆t =
1∑n
j=1 βj

log

(
1

u1

)
(2.2.1)

5. The next event is the jth event where

j = inf{k,
k∑
i=1

Pi > u2} (2.2.2)

6. The system next state is t = t+ ∆t and X → X ′, where X ′ corresponds to

the updated state according to the chosen move.

7. Repeat 2− 6 till the stopping criterion is reached, usually when t ≥ T .

It is important to note that the rates β could be a function of time. The parametri-

sation described here implies that the same set of parameters will lead to different

outcomes; in other words the epidemic outcome is a stochastic function of the param-

eters.

2.2.2 Sellke construction

The Sellke construction is one way to specify stochastic dynamics for standard stochas-

tic epidemic models, which preserves the sampling properties of the Gillespie algo-

rithm. Sellke (1983) showed that each susceptible individual has a degree of tolerance

Qi ∼ Exp(1) to the disease. A susceptible individual i becomes infected at time t

when the total infection pressure exerted on it up to t defined by Ai(t) =
∫ t

0
λi(s)ds

reaches its threshold, i.e. when Qi = Ai(t).

In practice, to generate a realisation of an epidemic process through the Sellke

construction, we start by drawing random thresholds for each host. We then compute

the time to the next infection by computing a potential infection time for each host.

More specifically, if the latest infection occurs at tk and ∆ti is the subsequent period

it takes for the next individual i to become infected, the infection pressure on each

individual in period [tk, tk + ∆ti] is given as Ai(t) = λi(tk)∆ti. Then we change the

disease status of relevant hosts and proceed until no event occurs or until a stopping

criterion is reached. By doing so, the outcome of the epidemic is a deterministic

function of the thresholds and the parameter. That is x = h(θ,Q) at least for an SI

model where h is a one-to-one function. The application of the Sellke approach to an

SIR epidemic model is now described as follows:
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Assume that initially, there are S(0) susceptibles, I(0) infective and R(0) removed

individuals.

Calculation of x = h(θ,Q, I) for SIR model with only secondary infection.

Notation

• I = (I1, ...., IN) the infectious periods for the N individuals in the population

(all initially susceptible).

• Q = (Q1, ..., QN−nI ), the Sellke thresholds for the individuals (all initially

susceptible).

• β, the secondary infection rate.

Calculation

• Set t = 0, number of infections nI = 1, infection rate λ(t) = βnI . Set

initial state of each individual, si = 0, i = 1, ..., N − nI , si = 1, i = N −
nI + 1, ..., N and time till next transition ri = Qi/λ(t). Set final time T .

si =


0 if i = 1, ..., N − nI

1 if i = N − nI + 1, ..., N

and ri =


Qi/λ(t) if si = 0

Ii if si = 1

• While t < T do the following {

Identify next event: Let t∗ = min{r1, ..., rN} and j = arg min{r1, ..., rN}.

Implement event.

– case sj = 0 (infection event), set sj = 1, nI = nI + 1, rj = Ij.

– case sj = 1 (removal event), nI = nI − 1, delete row j from tableau

and move lower rows up, set nI = nI − 1.

Finally update remaining Sellke thresholds and waiting times in the tableau.

– R′ = λ(t), t = t+ t∗, λ(t) = βnI .

– If si = 0, Qi = Qi −R′t∗, ri = Qi/λ(t).

If si = 1, ri = ri − t∗ }

It is important to notice that the choice of Exp(1) distribution for the threshold

is motivated by the Equation (2.2.5). Indeed dealing with each individual separately,

the transition probability of being infected in an infinitesimal time period dt is given
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as:

P [i infected in (t+dt)|i is susceptible at time t] = P [A(t+ dt) ≥ Qi|Qi > A(t)]

= (1− P [Qi ≥ A(t+ dt)|Qi > A(t)])

=
(
1− e−(A(t+dt)−A(t))

)
=
(

1− e−A′(t)dt
)

= (A′(t)dt+ o(dt))

= βI(t)dt+ o(dt)

Hence we obtain the equivalence between the Sellke thresholds and the epidemic

model. It is important to notice that the third line of the above equation is possible

due to the memoryless property of the exponential distribution, while the fourth

line is obtained merely by using a Taylor expansion. However, Ball and O’Neill

(1999) discussed an extension to a Gamma(s, β) distribution when a given infective

contacts a given susceptible according to Poisson process with rate β but a susceptible

becomes infected after making a total of s contacts with infectious individuals. Ball

and Britton (2005) assumed different exponentially distributed thresholds with rate

not necessary equal to one and later Streftaris and Gibson (2012) showed that the

choice of the thresholds could be extended to a more general distribution using the

Weibull distribution.

It is worth noting that the Sellke construction is a particular example of a

functional-model representation in the sense of Dawid and Stone (1982), or a non-

centred parametrisation (Papaspiliopoulos and Roberts, 2013). The benefit of using

such a construction lies in its application to design control strategies where epidemics

can be coupled by matching latent processes, thereby inducing a strong correlation

between the outcome of competing controls. We will discuss this throughout the

thesis.

2.2.3 Simulation of an epidemic process using Sellke thresh-

olds

2.2.3.1 Standard stochastic SIR model

The standard stochastic SIR model is defined as a continuous-time Markov chain.

That is, given the whole history of the epidemic up to time t the probability distri-

bution of the process at time t′ > t depends only on the state of the process at time
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t. The transition probability from S to I i.e., an infection in a small time interval

(t, t+ dt) is defined as follows:

P [S(t+ dt) = s− 1|S(t) = s] = βS(t)I(t)dt+ o(dt), (2.2.3)

while the transition from I to R i.e. a removal is described as:

P [I(t+ dt) = i− 1|I(t) = i] = γI(t)dt+ o(dt), (2.2.4)

where β and γ are the contact and the removal rates respectively.

Figure 2.2: Final epidemic size after 1000 realisations (Sellke thresholds) of the stan-
dard stochastic epidemic model with S(0) = 99, I(0) = 1, R(0) = 0, β = 0.003,
γ = 0.1 and Tmax = 60.

We produce an histogram showing the final size of an epidemic in a population of

size N = 100 where S(0) = 99, I(0) = 1, R(0) = 0, β = 0.003, γ = 0.1 after 1000

simulations (1000 Sellke thresholds for each host), observed up to a time T = 60 using

the algorithm described in Section 2.2.2. The result is shown by the Figure 2.2. It

can be seen that the epidemic is either minor or major, with no epidemics of final size

between 10 and 70.

This description implies that individuals become infected (new infection occurs) as

a Poisson process with rate βS(t)I(t) and the infectious period follows an exponential

distribution with rate γI(t). The latter has a lack-of-memory property, the reason

why this model is called Markovian. Such an assumption is unrealistic, therefore other

distributions for the infectious period might be investigated.
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2.2.3.2 General stochastic SIR model

The general stochastic SIR model can be defined as a non-Markovian SIR model. In a

non-Markovian SIR model, the infectious period is no longer exponentially distributed,

but may follow an alternative distribution.

Non-Markovian SIR model with Weibull infectious period

Following Streftaris and Gibson (2004) we consider the more general case where the

infectious periods of individuals follow a different prescribed distribution, In particular

we consider the Weibull distribution since it has the flexibility to mimic a wide range

of possible shapes for the distribution of infectious period.

The Weibull probability density function of a random variable X is given by

f(x, ν, λ) =


ν

λ

(x
λ

)ν−1

e−(x/λ)ν if x ≥ 0

0 if x < 0

,

where ν > 0 is the shape parameter and λ > 0 the scale parameter. This distribution

has mean λΓ(1 + 1
ν
) and variance λ2(Γ(1 + 2

ν
)− (Γ(1 + 1

ν
))2); where Γ is the gamma

function. Moreover, a reparameterisation of the Weibull distribution, replacing 1
λν

by

λ in the above equation, is given by

f(x, ν, λ) =


νλxν−1e−λx

ν

if x ≥ 0

0 if x < 0

.

Thus the cumulative distribution function is given by

FW (x, ν, λ) =


1− e−λxν if x ≥ 0

0 if x < 0

,

It is worth noting that in the former case, the moments are given by E(X t) =

λ−
t
ν Γ
(
1 + t

ν

)
and the Weibull distribution is equivalent to [Exp(λ)]

1
λ . Note that

this reparameterisation is particularly useful in Bayesian inference. With such a dis-

tribution, the infectious period loses the lack-of-memory property for ν 6= 1 (ν = 1

corresponds to the exponential case).

Therefore the probability that an infection occurs within a vanishing time window

is given by

P [S(t+ dt) = s− 1|S(t) = s] = βS(t)I(t)dt+ o(dt), (2.2.5)
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and the transition from I to R of an individual is

P [i is removed in (t+dt)|i was infected at time t] = P [ri ≤ t+ dt | ri > t]

=
P [t < ri ≤ t+ dt]

P [ri > t]

=
P [t− si < ri − si ≤ t− si + dt]

P [ri − si > t− si]

=
FW (t− si + dt)− FW (t− si)

1− FW (t− si)

=
f(t− si)dt

1− FW (t− si)
+ o(dt)

= νλ(t− si)ν−1dt+ o(dt); (2.2.6)

where si and ri are respectively the infection time and the removal time of the indi-

vidual i.

2.2.3.3 Simulation study

We perform simulation of the non-Markovian SIR model using the Sellke construction.

The benefit of using such a model is that it allows for either increased or decreased

variability in infectious period, and also allows the infectious period distribution to

peak around a selected value which may reflects the reality for many real-world epi-

demics such as FMD. To perform our simulation, we consider again a population of

size N = 100 wherein S(0) = 99, I(0) = 1 and R(0) = 0; along with Weibull distribu-

tion, with scale parameter λ = 9.94 and shape ν = 1.1, for the infectious period. We

observe the epidemic process up to time Tmax = 60. We simulate 1000 realisations of

the process and at each simulation we observe the final size of the epidemic.

As we can see on Figure 2.3, the histogram of the epidemic final size after simula-

tion shows two kind of epidemics: either it is minor or major. It can be seen that, the

epidemic is behaving as in the Markovian case. This is due to the fact that the shape

parameter of the Weibull distribution is close to unity and therefore the distribution

is close to the exponential distribution.

Furthermore, to illustrate the impact of the contact rate in the epidemic process,

we fix the infectious period parameters λ and ν and alter the value of the contact

rate β. Figure 2.4 illustrates the influence of the contact rate on a given epidemic

evolution. We notice that for small values of β, the main part of the population

does not contract the epidemic while for large rate almost all the individuals becomes

infected. One can easily predict this result since an infectious disease spreads rapidly
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within a population where individuals are in frequent contact.

In addition, using the same thresholds simulated previously we fix the contact

parameter β. By scaling the thresholds, we observe that the epidemic spreads quickly

in a population where individuals thresholds are small whilst a population wherein

individuals have large thresholds resists the epidemic as shown in Figure 2.5. This

illustrates the fact that with fixed set of thresholds, different comparisons can be

carried out.

We perform another simulation by fixing the mean of the infectious period at 9.59

( ν = 1.1 and λ = 9.94) and altering the variance. The histograms on Figure 2.6 show

that the epidemic size is increasing with the variance of the Weibull distribution. This

result suggests that a larger epidemic is more likely when the variance is small since

possibility of rapid removal of the initial infection becomes much smaller.

It is worth noting that on the Figure 2.6b, the spread of the epidemic is similar

to the Markovian case (see Figure 2.2). This result is not surprising since for a shape

parameter equal to 1, the Weibull distribution is merely the exponential distribution.

Figure 2.3: Final epidemic size after 1000 realisations of the non-Markovian process
(Weibull infectious period) where S(0) = 99, I(0) = 1, R(0) = 0, β = 0.003, ν = 1.1,
λ = 9.94 and Tmax = 60.
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Figure 2.4: Final epidemic size after 1000 realisations of the non-Markovian (Weibull
infectious period) with S(0) = 99, I(0) = 1, R(0) = 0, ν = 9.94, λ = 1.1, Tmax = 60
and different values of β.
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Figure 2.5: Final epidemic size after 1000 realisations of the non-Markovian (Weibull
infectious period) with S(0) = 99, I(0) = 1, R(0) = 0, λ = 9.94, ν = 1.1 and
Tmax = 60, fixed β = 0.003 and different thresholds.
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λ = 0.5, ν = 4.79, Var=459.95, β = 0.003
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Figure 2.6: Final epidemic size after 1000 realisations of the non-Markovian process
(Weibull infectious period) model with S(0) = 99, I(0) = 1, R(0) = 0, β = 0.003,
Tmax = 60 and fixed mean(9.59) with different variances of the infectious period .

2.2.4 Conclusions

This chapter reviews two fundamental approaches to specify the stochastic process

for epidemic models, the Gillespie algorithm and Sellke construction. Clearly, the

use of Sellke thresholds preserves the sampling properties of the Gillespie algorithm.

One of the most significant features to emerge from the Sellke construction in the

representation of the dynamics of an epidemic process, at least for an SI model, is

that the outcome x of the epidemic is obtained deterministically as a function h of

the model parameters given the thresholds (x = h(θ,Q)). A direct benefit of using
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this non-centered parametrisation is that different analysis could be applied on a given

realisation of Sellke thresholdsQ, observing the effect of changing the infectious period

distribution (see Figure 2.6) or the effect of a different contact rate (see Figure 2.4)

for instance.

Taken together, this non-centered parametrisation suggests that different control

strategies could be compared on the same set of Sellke thresholds and the outcome of

controls are expected to be a deterministic function of controls given the thresholds

and the parameters and possibly the infectious period. We will discuss this more

thoroughly in the remaining part of the thesis.
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Chapter 3

Statistical inference

3.1 Fundamentals of Bayesian approach

In recent decades, the Bayesian paradigm has become the most popular statistical

approach used in epidemic modelling partly due to its flexibility and that, in addition

to specifying a statistical model based for the observed data y, given a fixed vector of

parameters θ, it allows incorporation of prior information on θ. Contrary to frequen-

tist inference, the model parameter θ is treated as a random variable with a prior

distribution π(θ).

Let us define π(θ|y) to be the probability density function of the unknown quantity

θ given what we observe, y. The key idea in Bayesian framework can be summarised

as follows. We have a certain belief regarding θ before the data were obtained.

This knowledge is then updated through the data using Bayes rule to obtain the

so-called posterior distribution π(θ|y). Any estimation is then based on the posterior

distribution of the parameter to estimate, given by

π(θ|y) =
π(θ)π(y|θ)∫
π(θ′)π(y|θ′)dθ′

, (3.1.1)

where π(y|θ) is called the likelihood function of the parameter θ.

The above equation is known as Bayes formula. Since the denominator in (3.1.1) is

independent on the parameter θ, it can be omitted from the Equation (3.1.1) subject

to the integral being finite. We then have

π(θ|y) ∝ π(θ)π(y|θ). (3.1.2)

In other words, Bayes’ idea can be merely seen as

posterior ∝ prior × likelihood.
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3.2 Likelihood

The likelihood plays a central role in statistical inference including classical and

Bayesian statistics. Given an observation y, the likelihood of a parameter θ can

be seen informally as the probability of the data given the parameter, more precisely

π(y|θ). In statistics, distinction is made between probability and likelihood since the

likelihood is used to described a function of a parameter given an observation whereas

the probability refers to a function of the data given a fixed parameter. However, the

likelihood principle specifies the real importance of the likelihood. The principle states

that all the information about θ in an observed outcome is contained in the likelihood.

In addition, if y1 and y2 are two observations such that

π(y1|θ) = k(y1,y2)π(y2|θ) for all θ, (3.2.1)

where k(y1,y2) is a constant independent of θ, then the conclusion regarding θ drawn

from y1 and y2 should be identical. That is, if two samples have proportional likeli-

hoods, then they contain the same information about θ. Full details of the likelihood

principle could be found in (Casella and Berger, 2002). Therefore, Bayesian statistics

respects the likelihood principle since the data enter the calculations via the likeli-

hood.

3.3 Prior distribution

The subjectivity in the Bayesian approach arises in the assignment of the prior knowl-

edge known as the prior distribution, or simply “prior”, of the parameter θ when

conducting inference. This is the main source of controversy in this approach in the

frequentist point of view. Indeed, in Bayesian inference, the parameter is treated

as a random variable (because it is unknown) and the belief about θ is quantified

by a distribution π(θ) before looking at the observed outcome y. There are several

approaches to specifying a prior distribution. Here, we focus on the common ones.

3.3.1 Conjugate priors

In many situations, some choices of priors are more computationally efficient than

others. It may be possible to derive the posterior distribution so that it is of the

same family of distributions as the prior density function. Such a prior is known as

a conjugate prior. This type of prior is useful in that it can allow one to compute

the posterior distribution without numerical integration. In many situations, the

likelihood function is often drawn from the exponential family of models. Morris

(1983) showed that models in this family possess a conjugate prior distribution.
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3.3.2 Noninformative priors

The central point of Bayesian inference is that it offers the possibility to include

prior knowledge of a system into an analysis. However, such knowledge is not always

available. The Bayesian approach reflects the lack of information on the parameter by

assigning a ‘vague’ or a noninformative distribution to the model parameter θ. The

aim in this case is that all of information about θ in the posterior distribution π(θ|y)

should come from the observed data y and hence any inference is based entirely on

the likelihood. In the particular case where the prior is improper, i.e.
∫
π(θ)dθ =∞,

inference is still possible in the Bayesian framework whenever the denominator of the

posterior distribution in Equation 3.1.1 is defined or is finite. In this case, a proper

posterior distribution with
∫
π(θ|y)dθ = 1 can be defined.

3.4 Posterior distribution

As mentioned at the beginning of this chapter, inference in the Bayesian setting is

achieved via the posterior distribution of the parameter of interest π(θ|y) given in

Equation 3.1.1 which contains all information regarding the parameter. A density plot

of the posterior distribution, for instance, could give a useful representation of belief on

the parameter. However, its interpretation may be difficult. In this section, we discuss

some of the common methods for summarising Bayesian posterior distributions.

3.4.1 Bayesian point estimation

To obtain point estimates, the Bayesian approach often uses the posterior mean (θ̂ =

E(θ|y), median (θ̂ :
∫ θ̂
−∞ π(θ|y)dθ = 1/2) or mode (θ̂ : π(θ̂|y) = supθ π(θ|y)) as a

summary feature of the posterior distribution π(θ|y) which can be used as a point

estimate for θ. Among these three estimates, the mode is the simplest to compute

since it does not involve any integration. Note that for a constant prior, the posterior

mode is identical to the maximum likelihood estimate. However, the choice depends

on the shape of the posterior distribution, though the median might be used since it

represents better the center of an asymmetrical distribution. There is, however a vast

body of literature e.g. Carlin and Louis (2000) where this topic is discussed in more

details.

3.4.2 Interval estimation

In contrast to a point estimate, an interval estimation identifies a range of possible

values of the parameter. In Bayesian inference, the 100(1 − α)% credible interval,

analogous to the confidence interval (CI) in frequentist statistics, is a set C = (a, b)
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such that

1− α ≤ π(C|y) =

∫
C

π(θ|y)dθ (3.4.1)

The above interval is often used when the posterior distribution is symmetric and

unimodal. However, the highest posterior density (HPD) credible set is preferred in

case of a non-symmetric or multi-modal posterior distribution. The HPD is obtained

by taking values of θ that have a posterior density higher than some constant

C = {θ : π(θ|y) ≥ K(α)}, (3.4.2)

where K(α) stands for the largest constant such that

1− α ≤ π(C|y). (3.4.3)

As the computation of such an interval is not analytically straightforward, therefore,

numerical approaches are often used.

3.5 Bayesian computational methods

The Bayesian approach in statistical modelling has been historically difficult to im-

plement due to the high-dimensional integration that it required. However, progress

in computing in recent years has made these integrations, once cumbersome, feasible.

Several approaches have been proposed. In this section, we only focus our discussion

on, arguably, the most widely used: Markov Chain Monte Carlo (MCMC).

3.5.1 Stochastic simulation

Assume that we are interested in the following integral

I =

∫
g(x)dx (3.5.1)

A traditional approach would be to use the Riemann summation, which consist of

evaluating g(x) at n points (x1, . . . , xn) in a regular grid and therefore

I ≈ 1

n

∑
i

g(xi) (3.5.2)

However, if there is a probability density π(x) ≥ 0 such that

I =

∫
g(x)

π(x)
π(x)dx (3.5.3)
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and if we are able to draw samples xi i.i.d from π, then by the law of large numbers,

Equation 3.5.3 could be approximated as

În =
1

n

∑
i

g(xi)

π(xi)
(3.5.4)

Also, the variance could be estimated using the central limit theorem as

vn =
1

n(n− 1)

n∑
j=1

(
g(xj)

π(xj)
− În

)2

Sampling from π remains the key challenge. Techniques such as MCMC provide

valuable tools to draw samples from such a distribution. The key idea in MCMC

is to design a Markov Chain such that the target distribution π is the stationary

distribution. In Bayesian analysis we are particularly in the case where the stationary

distribution is the posterior distribution of a parameter of interest.

3.5.2 Markov Chain Monte Carlo (MCMC)

If there is one method that has revolutionized statistics in these recent years, then it

is Markov Chain Monte Carlo (MCMC). MCMC is a stochastic simulation extensively

used in Bayesian inference. MCMC generates, by using a Markov chain, samples from

a target distribution π, where π is designed to be the equilibrium distribution of the

Markov chain used.

3.5.2.1 Introduction to Markov Chain

A Markov chain is basically a stochastic process that undergoes transitions from one

state to another on a state space S where the distribution of the next state depends

only on the current state. More formally, if (X1, . . . , Xn) is a sequence of random

variables where Xt denotes a random value at time t then

π(Xn+1 ∈ A|X0 = s0, . . . , Xn = sn) = π(Xn+1 ∈ A|Xn = sn) =

∫
A

p(sn, x)dx,

(3.5.5)

with s0, . . . , sn ∈ S ⊇ A.

The above definition ensures that the random variable possesses the memoryless

property, i.e. the future state of the chain only depends on its history through its

current state. For fixed x in S, p(sn, x) is the density function of a move to state

x given that currently we are the state sn (Xn+1|Xn = sn). The n−steps transition
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density p(n)(s0, x) of (Xn|X0 = sn) is defined as

π(Xn ∈ A|X0 = s0) =

∫
A

p(n)(s0, x)dx. (3.5.6)

In the case where S is discrete, a Markov chain is defined by its transition probabilities

pij, which is the probability of moving from state si to the state sj in a single step i.e.

pij = π(Xn+1 = sj|Xn = si) (3.5.7)

Indeed, if we define πj(n+ 1) as the probability of being at the state sj at time n+ 1,

then from the Chapman-Kolomogrov equation,

πj(n+ 1) = π(Xn+1 = sj)

=
∑
i

π(Xn+1 = sj|Xn = si)π(Xn = si)

=
∑
i

pijπ(Xn = si) (3.5.8)

By defining the probability transition matrix as the matrix whose i, jth element is pij,

Equation 3.5.8 becomes

π(n+ 1) = π(n)P (3.5.9)

where π(n) is the vector of the πj(n),∀j as defined in Equation (3.5.8). Iterating the

Equation 3.5.9 we obtain π(n) = π(0)P n. In other words, if the initial distribution is

q, then q(n) = qP n with the ij−th element of P n, p
(n)
ij defining the n-step transition

probability that the process is at state j given that n steps ago it was at state i i.e.

p
(n)
ij = π(Xn = sj|X0 = si) (3.5.10)

If the transition matrix P has a unique eigenvalue of modulus one (which must be

equal to one) there is a unique distribution π̄ that satisfies the following relation

π̄ = π̄P (3.5.11)

π̄ is referred to as the stationary distribution. Note that for any initial distribution, a

Markov chain would, in effect, reach its equilibrium after some suitably large number

of iterations.

Properties 1. A Markov chain is said to be irreducible if from any state it is

possible to reach any other state. This implies there exists an integer n

such that p
(n)
ij > 0.
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2. An aperiodic Markov chain is a chain in which the state space cannot be

partitioned into disjoint subsets such that the chain is constrained to cycle

through these subsets.

For the chain to reach its stationary distribution from any initial starting state, it

has to be irreducible, aperiodic and possess a stationary distribution. In practice, the

aperiodicity is mostly straightforward to show, but the irreducibility is not always

trivial to show. However, to show the stationary property, a stronger property which

states that P satisfies the detailed balance property with respect to the distribution

π̄ is often preferred. Recall that the detailed balance property states that for all

i, j, if π̄ denotes the distribution and P a transition matrix,

π̄ipij = π̄jpji (3.5.12)

It then follows that π̄P = π̄. Details of the proof along with other properties of the

Markov Chain could be found in Roberts (2012).

Two particular MCMC methods are widely used in Bayesian analysis: Metropolis-

Hastings and Gibbs sampling.

3.5.2.2 Metropolis-Hastings algorithm

Initially introduced in the chemical physics literature to integrate over very complex

functions by simply drawing random samples (Metropolis and Ulam, 1949; Metropolis

et al., 1953; Hastings, 1970), the Metropolis-Hastings (M-H) algorithm is particularly

appropriate in scenarios where a posterior distribution is known only up to an un-

known normalisation constant.

We consider a target distribution π from which we wish to draw samples on a

finite state space. For this purpose, the M-H algorithm generates random draws as

follows:

1. Start with an arbitrary initial point θ0 and choose a probability density q(y, x)

from which to propose the next candidate y given the current value x. This

probability density q is referred to as the proposal distribution.

2. Suppose that the state after i iterations is θi. We propose a move to a new

candidate θ∗ generated from q(θ∗,θi). Then find the acceptance ratio

α(θ,θ∗) = min

{
1,
π(θ∗)q(θ∗,θi)

π(θi)q(θi,θ∗)

}
(3.5.13)

The new candidate is accepted with probability α(θ,θ∗). This is done by simu-

lating a random number u uniformly distributed between 0 and 1. If u ≤ α the

new point is then accepted and we set θi+1 = θ∗, otherwise the new candidate
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is rejected and we set θi+1 = θi. This generates a Markov Chain (θ0, . . . ,θn)

which converges after a large number of iterations to a stationary distribution

that coincides with the target distribution.

Moreover, the transition probability p(x, y) to move from state x to another

state y, x 6= y is given by

p(x, y) ∝ q(x, y)α(x, y) = q(x, y) min

{
1,
π(y)q(y, x)

π(x)q(x, y)

}
(3.5.14)

It can be shown that the M-H satisfies detailed balance.

The efficiency of the algorithm depends on the choice of the proposal distribu-

tion. Therefore caution must be taken in this regard.

3.5.2.3 Metropolis algorithm

The most popular algorithm introduced by Metropolis et al. (1953) is a particular case

of the Metropolis-Hastings algorithm described above, where the proposal distribution

q is chosen to be symmetric, so that q(x, y) = q(y, x). In this case the acceptance

ratio reduces to

α(θ,θ∗) = min

{
1,
π(θ∗)

π(θi)

}
(3.5.15)

a common choice to ensure a symmetric proposal distribution is to set q(x, y) =

f(|x − y|). This results in an algorithm known as a random-walk Metropolis since

in the absence of the acceptance/rejection steps the Markov-Chain would perform a

random walk.

3.5.2.4 Gibbs sampler

Originally used in statistical physics and later introduced in image processing (Geman

and Geman, 1984), Gibbs sampling is a MCMC algorithm for obtaining a sequence

of random draws. It has been applied extensively in Bayesian statistics. Moreover,

Gibbs sampling is a specific case of Metropolis-Hastings wherein the acceptance ratio

α = 1. This means we accept all proposed moves.

Suppose that θ = (θ1, . . . , θn) is the parameter vector. The usual form of the

algorithm is as follows:

1. Start with an initial value θ0 = (θ0
1, . . . , θ

0
n) arbitrarily chosen.

2. Assuming that after k iterations we reach the state θk = (θk1 , . . . , θ
k
n). Then the

next draw, θk+1
i is obtained by drawing each component in turn from its full

conditional distribution given state of other components. That is

θk+1
i ∼ π(θi|y, θk+1

1 , . . . , θk+1
i−1 , θ

k
i+1, . . . , θ

k
n), ∀i = 1, . . . , n.

36



As the number of iterations is increasing, the distribution of the state converges

to the target posterior distribution subject to irreducibility and aperiodicity.

3.5.2.5 Reversible-jump MCMC

Real-life epidemic data are typically rather less complete than would be desirable for

modelling and inference. In an ideal world, one would have observed the time at which

each individual contracts the epidemic (infection times), the source of infection (who

transmits the disease to whom) and maybe the time taken for an infected individual

to cease being infectious. In many particular situation, only the times at which

symptoms are detected are observed. Moreover, neither the infection times nor the

transmission network nor, frequently, the size of the epidemic are known.

In the case where the number of individuals who contracted the disease out of

the initial susceptible population is unknown, the traditional stochastic integration

methods such as Metropolis-Hastings and Gibbs sampling fail to incorporate the lack

of knowledge of the unobserved or ‘cryptic’ infections. However, there exists an ex-

tension of the M-H algorithm, namely Reversible Jump Markov Chain Monte Carlo,

which provides the tools to tackle this issue.

Reversible Jump Markov Chain Monte Carlo (RJMCMC) is a general form of the

Metropolis-Hastings algorithm. Green (1995) extends the most popular Metropolis-

Hastings algorithm to allow transitions between subspaces of the parameter space

with different dimensionality. This approach is often used for Bayesian model choice

but has found a wide applicability in epidemiology since, most of the time, there is

no precise knowledge of the number of infected individuals during the course of the

epidemic.

The algorithm involves the steps of proposing and accepting/rejecting a new state,

as in the case of the M-H algorithm. We first propose to move to a different space

and then accept that move with a certain probability or reject it. The details of the

algorithm is as follows:

Assume that after k iterations we reach parameter θk ∈ Rm. Then we propose to

move to θ∗ ∈ Rm′ . To do that, we generate two vectors u and u′ of random variables

respectively with density function q(u) and q′(u′) such that there exist a bijective

function g that satisfies the relation (θ∗, u′) = g(θk, u). It is worth noting that this

condition is required for dimension-matching and to allow a reverse move. We accept

the move with probability

α = min

{
1,
π(θ∗|y)j([θk]|[θ∗])q′(u′)
π(θk|y)j([θ∗]|[θk])q(u)

∣∣∣∣∂(θ∗, u′)

∂(θk, u)

∣∣∣∣} (3.5.16)

where j([θk]|[θ∗]) is the probability of choosing to move from the space [θk], space

generated by the vector θk to [θ∗], space generated by the vector θ∗, and the joint
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posterior distribution of the parameter π(θ|y) is given up to proportionality by the

product of the likelihood and the prior; that is:

π(θ|y) ∝ π(y|θ)π(θ). (3.5.17)

In practice, especially in epidemiology where moves are merely deletion, moving and

addition of infection times (Gibson and Renshaw, 1998; O’Neill and Roberts, 1999;

Streftaris and Gibson, 2004)), we do not need to generate both u and u′. For instance,

we only generate u such that |u| = 1 if the move consists of inserting a new infection

time u. As a result, the acceptance probability becomes:

α = min

{
1,

π(θ∗|y)j([θk]|[θ∗])
π(θk|y)j([θ∗]|[θk]))q(u)

∣∣∣∣ ∂(θ∗)

∂(θk, u)

∣∣∣∣} (3.5.18)

In this case, by setting θ∗ = (θk, u) the Jacobian

∣∣∣∣ ∂(θ∗)
∂(θk,u)

∣∣∣∣ = 1, therefore the acceptance

probability of a move that consists of adding a new infection time to the set θk is

given by:

α = min

{
1,

π(θ∗|y)j([θk]|[θ∗])
π(θk|y)j([θ∗]|[θk])q(u)

}
(3.5.19)

For the reverse move (deletion), we set (θ∗, u′) = θk, and the acceptance probability

is

α = min

{
1,
π(θ∗|y)j([θk]|[θ∗])q′(u′)
π(θk|y)j([θ∗]|[θk])

}
(3.5.20)

It is important to note that here, the vector θ represents the set of infection times.

In practice θ must incorporate both the parameters of the epidemic model and the

infection times.

3.5.2.6 Practical implementation of MCMC

Having designed a Markov chain which converges to the target distribution (the poste-

rior distribution in the Bayesian framework), it is important to consider some aspects

before drawing conclusions on the target distribution π. If we assume that the chain

has started at some initial state s0, then the number of iterations required for the

chain to reach its stationary distribution depends on s0, the initial state, and the

choice of the proposal distribution. A poor choice of s0 or the proposal distribution

will demand a large number of iterations. Therefore the first n′ (depending on the

choice of s0 and the proposal distribution) samples are discarded. This is known as

the burn-in period.

A further issue is the mixing problem. In general si and si+k are not independent

unless k is very large. To approximate an i.i.d. sample from the stationary distri-

bution we can thin the chain at every mth iteration generating a sample of the form
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{si, si+m, si+m, . . .}. Furthermore, there exist a collection of convergence diagnostics

methods in the MCMC literature including Geweke’s method (Geweke, 1991), the

method by Raftery and Lewis (Raftery and Lewis, 1992) and Gelman and Rubin’s

method (Gelman and Rubin, 1992) to assess the convergence of the chain. There is

some disagreement on whether these techniques guarantee convergence has occurred

mainly due to the fact that there are different type of convergence (Roberts, 2012).

Moreover, there are several packages that make these analyses feasible. Arguably

the most popular is WINBUGS, the current windows-based version of BUGS de-

scribed by Lunn et al. (2000), BOA (Bayesian output analysis) by Smith (2007) and

CODA(Convergence Diagnosis and Output Analysis) by Plummer et al. (2006).

3.5.2.7 Data-augmentation method

As mentioned in previous sections, data analysis is most straightforward when the

data are complete. In general, epidemic data are rarely fully observed. For instance

the precise infection times are not observed and this renders the data incomplete. In

the latter case, the likelihood is typically intractable and any inference on the model

parameters becomes difficult to handle. The technique of data augmentation provides

a solution to this problem.

Data augmentation is the most widely adopted computational method for per-

forming Bayesian analysis of missing data. The basic idea is that the observed data

y are augmented with latent data z representing unobserved quantities, such as the

infection times for example, such that the likelihood π(y, z|θ), where θ stands for the

model parameter, is tractable. Note that Bayesian inference usually aims to estimate

the marginal posterior distribution of the parameters π(θ|y).

The method is motivated by the following relation:

π(θ|y) =

∫
Z

π(θ, z|y)dz (3.5.21)

The above integration is straightforward using MCMC methods described previously.

We sample from the joint distribution π(θ, z|y) using a range of MCMC tech-

niques. Thus, sampling both parameters and censored data depends on the form of

each distribution π(θ|y, z) and π(z|θ,y). Practical implementation of the approach

tends to use a mixture of Gibbs sampling and Metropolis-Hastings. Reversible-jump

is particularly valuable when the range of z has components of differing dimensions

as is typically the case in epidemic modelling.
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3.6 Bayesian epidemic modelling

We now illustrate how the data augmentation approach can be applied to fit a stochas-

tic model to a partially observed epidemic.

3.6.1 Example of SIR model with complete epidemic

In this example we use data from a smallpox epidemic (Bailey, 1975) in a Nigerian

village along with the method described by Streftaris and Gibson (2004). See also

O’Neill and Roberts (1999).

The data consist of a total of 30 cases in a population of size 120. Indeed, the

observation reveals 30 removal times given in the Table 3.1. Time 0 indicates the first

removal time. Occurrence of identical times in the table indicates cases appearing the

same day. The model chosen to describe this process is exactly the non-Markovian SIR

0 13 20 22 25 25 25 26 30 35 38 40 40 42 42
47 50 51 55 55 56 57 58 60 60 61 66 66 71 76

Table 3.1: Smallpox data.

model described in Section 2.2.3.2. Recall that in this model, a susceptible becomes

infected only by contact with an infective. The transition probability that describes

this process is given in Equations (2.2.3). Moreover, an infected individual remains in

the infected state for a random time, known as the infectious period and here modelled

by a Weibull distribution as described in Equation (2.2.6).

We denote by r = (r1 = 0, r2, . . . , rnR) the ordered removal times observed during

the period [0, tobs] and s = (s1, s2, . . . , snI ) the ordered infection times, R and I
the set of removals and the set of infected individual respectively. We assume that

the epidemic is complete so that no other infections have occurred during its course.

Following O’Neill and Roberts (1999); O’Neill and Becker (2001); Britton and O’Neill

(2002), the likelihood is given as:

L(β, ν, λ; s, r) =
∏
j∈I−1

{βI(s−j )} exp

{
−
∫ tobs

s1

βS(t)I(t)dt

}

×
∏
j∈R

[νλ(rj − sj)ν−1 exp{−λ(rj − sj)ν} (3.6.1)

The integral in Equation 3.6.1 needs to be discretised by transformation into a sum

over successive events. To that end, an alternative representation is derived by Britton

40



and O’Neill (2002); Neal and Roberts (2005) as

∫ tobs

s1

S(t)I(t)dt =

nR∑
i=1

N∑
j=1

(ri ∧ sj)− (si ∧ sj), (3.6.2)

where snI+1 = snI+2 = . . . = sN = ∞. Equivalently, Streftaris and Gibson (2012)

proposed the form

∫ tobs

s1

S(t)I(t)dt =

nI+nR∑
i=1

S(t−i )I(t−i )(ti − ti−1) (3.6.3)

where (t1, t2, . . . , tnI+nR) is the ordered times of all events (infection and removal).

We shall suppose that β, ν and λ follow, a priori, gamma distributions Γ(a, b),

Γ(c, d) and Γ(m, p) respectively (O’Neill and Becker, 2001). The joint posterior dis-

tribution is then obtained using the Equation (3.1.1) as follows:

π(β, ν, λ, s|r) ∝ L(β, ν, λ, s; r)× βa−1νc−1λm−1 exp(−bβ − dν − pλ) (3.6.4)

This leads us to the full conditional distribution of the contact rate and the scale

parameter of the Weibull distribution :

β|r, s, a, b ∼ Γ

(
a+ nI − 1, b+

∫ tobs

s1

S(t)I(t)

)
(3.6.5)

λ|ν,m, p, r, s ∼ Γ

(
nR +m,

∑
j∈R

(rj − sj)ν + p

)
(3.6.6)

We can therefore sample directly from these distributions using Gibbs sampling. How-

ever, the full conditional distribution of the shape parameter is given as:

π(ν | λ, c, d, r, s) ∝ νnR+c−1
∏
j∈R

(rj − sj)ν−1

× exp

[
−λ

(∑
j∈R

(rj − sj)ν
)
− dν

]
(3.6.7)

Since this is not in a closed form we adopt a Metropolis-Hastings step to update ν.

We use the same approximation used by Streftaris and Gibson (2004) for the Gamma

proposal distribution. The shape u and the scale v parameters of the Gamma proposal

are solutions of the following equations:

u

v
= ν̂ and

u

v2
= −

[
∂2 log{π(ν|λ, c, d, r, s)}

∂ν2

]−1

ν=ν̂

(3.6.8)
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where ν̂ is the mode of the density π(ν|λ, c, d, r, s). We use the method of Brent

(Brent, 1977, Ch 3-4) for the maximisation. The new parameter ν ′ is then accepted

with probability

α = min

{
1,
π(ν ′|λ, c, d, r, s)/q(ν ′|λ, c, d, r, s)

π(ν|λ, c, d, r, s)/q(ν|λ, c, d, r, s)

}
(3.6.9)

where q() is the Gamma proposal obtained from the approximation.

The updates to the infection times s are carried out using a Metropolis-Hastings

step by randomly selecting an individual j. If such a host is infected, its infection time

sj is moved uniformly in [T0, tobs] with T0 being a lower time prior to the first infection.

T0 = −∞ but in practice must be chosen to be finite. Note that in this framework, any

individual can potentially become the initial infection. The new vector of infection

times s′ is accepted with probability

α = min

{
1,
L(β, λ, ν; r, s′)

L(β, λ, ν; r, s)

}
. (3.6.10)

We set a = b = c = d = 0.01 to represent a vague prior knowledge on parameters

β and λ whereas we consider a more informative prior for the shape parameter ν by

setting m = 1 and p = 10.

Figures 3.1, 3.2, 3.3 show the posterior densities for the model parameters β, λ

and ν along with the mean of the infectious period (µ), its standard deviation σ and

the basic reproduction number R0 defined to be the expected number of secondary

infections produced by a typical infected individual. The summary statistics are

shown in Table 3.2. It can be seen that the posterior mean of the basic reproduction

number is greater than unity; with a quarter of the population contracting the disease.

It is evident that R0 is probably not too much above 1 since this is a relatively small

epidemic. In addition, it is believed that symptoms takes on average a period of

12− 14 days after infection to become visible Bailey (1975). This should correspond

to the infectious period.These values are consistent with the posterior distribution of

µ as shown by the 95% credible interval in Table 3.2.
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Mean SD MC Error 0.025 Median 0.95

β 0.0008745458 0.0002630835 4.051929e-06 0.0004740828 0.0008355719 0.001486654

λ 0.0759245244 0.0825633211 1.770927e-03 0.0016837871 0.0498433817 0.301120996

ν 1.2974132138 0.4794788040 7.983310e-03 0.6215517380 1.2035599136 2.414046176

µ 11.81044 3.476584 0.05153583 6.72077 11.3632 19.66279

σ 10.49288 6.056765 0.1083857 4.362082 9.286176 23.81925

R0 1.182915 0.3427175 0.005831918 0.7011448 1.140111 1.927861

Table 3.2: Summary Statistic for the model parameters.

(a) (b)

Figure 3.1: Posterior density of the contact rate β and the scale parameter λ.
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(a) (b)

Figure 3.2: Posterior density of the shape parameter ν and the mean infectious period.
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(a) (b)

Figure 3.3: Posterior density of the standard deviation of the infectious period and
the basic reproduction number R0 respectively.

3.6.2 Example of SIR model with non-complete epidemic

More frequently, one is interested in making inference about an epidemic in progress.

Therefore it is reasonable to make inference on a non-complete epidemic where there

are some infected individuals that are not yet detected. In this case nI ≥ nR where

nI and nR respectively denote the number of infected and removed individuals. Since

the exact number of infections is unknown, inference from such data using traditional

MCMC methods including Gibbs sampling and Metropolis-Hastings is impossible.

The MCMC method that can address this issue is RJMCMC described in 3.5.2.5.

Gibson and Renshaw (1998), O’Neill and Roberts (1999) and Streftaris and Gibson

(2004) have all adapted reversible-jump methods to the epidemic situation. They

proposed changes to the infection times by inserting, deleting, or moving the infection

time of an individual depending on its current state. We illustrate the effectiveness

of this algorithm ( see Section 3.5.2.5) in the following simulation.

We simulate a non-complete epidemic from a general epidemic model (Threshold-

Weibull model) using the Sellke construction described in Section 2.2.2. We consider

a population of size N = 100 and the contact rate β = 0.003. We assume that the

infectious period follows a Weibull distribution with shape parameter ν = 1.1, and
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scale λ = 0.08. We observed the epidemic until time 60 where 83 individuals got

removed.

The likelihood is given by the Equation which is similar to (3.6.1), with an ad-

ditional term to account for the contribution of the infected individuals that are not

removed before the end of the observation period. That is

L(β, ν, λ, s; r) =
∏
j∈I−1

{βI(s−j )}exp
{
−
∫ tobs

s1

βS(t)I(t)dt

}

×
∏
j∈R

[νλ(rj − sj)ν−1 exp{−λ(rj − sj)ν} (3.6.11)

×
∏

j∈I∩R

exp{−λ(tobs − sj)ν}

As previously, we suppose that β, ν and λ follow a priori Gamma distributions Γ(a, b),

Γ(c, d) and Γ(m, p) respectively. We obtain the joint posterior distribution as

π(β, ν, λ, s|r) ∝ L(β, ν, λ, s; r)× βa−1νc−1λm−1 exp(−bβ − dν − pλ) (3.6.12)

The full conditional distribution of the contact rate and the scale parameter of the

Weibull distribution are given respectively as:

β|r, s, a, b ∼ Γ

(
a+ nI − 1, b+

∫ tobs

s1

S(t)I(t)dt

)
(3.6.13)

λ|ν,m, p, r, s ∼ Γ

nR +m,
∑
j∈R

(rj − sj)ν +
∑
j∈R∩I

(tobs − sj)ν + φ

 (3.6.14)

The full conditional distribution of the shape parameter is given as:

π(ν|λ, c, d, r, s) ∝ νnR+c−1
∏
j∈R

(rj − sj)ν−1

× exp

−λ
∑
j∈R

(rj − sj)ν +
∑
j∈I∩R

(tobs − sj)ν
− dν

 (3.6.15)

Again, since this is not in a closed form, we update ν employing a Gamma proposal

in a Metropolis-Hastings step as described in the case of a complete epidemic.

We also consider an informative prior on the parameters setting a = 3, b =

1000, c = 11, d = 10, m = 8, p = 100.

We report the outputs of the MCMC analysis in Table 3.3 and Figures 3.4 and ??.
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Clearly, in both posterior summary and posterior distribution, the true values of the

parameters lie within the range of values supported by the posterior distributions.

Mean SD MC Error 0.025 Median 0.95

β 0.003792087 0.0006321461 1.210681e-05 0.002717592 0.003746766 0.005181308

λ 0.102457424 0.0298863501 4.797205e-04 0.052489454 0.099438206 0.169175884

ν 1.257495123 0.1634417421 2.912114e-03 0.967980038 1.247155771 1.618339730

Table 3.3: Summary Statistic for the model parameters.

(a) (b)

Figure 3.4: Posterior density of the parameter β and λ respectively using Reversible
Jump MCMC technique on a non-complete epidemic simulated from a General epi-
demic model (Threshold-Weibull model) on a population of size N = 100, λ = 0.08,
ν = 1.1 and β = 0.003.
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Figure 3.5: Posterior density of the shape parameter ν using Reversible Jump MCMC
technique on a non-complete epidemic simulated from a General epidemic model
(Threshold-Weibull model) on a population of size N = 100, λ = 0.08, ν = 1.1
and β = 0.003.

Nonetheless, this algorithm could be modified to predict the dynamics of the

process by considering all removals that could happen after the observation time as

hidden events. This is done by extending the augmented data to include future events

such as infections and removals that could happen beyond the observation time. It

is worth noting that this approach could serve as a way of checking the efficacy of

the previous algorithm since π(θ|y) does not change if an additional information x

is imputed beyond the time of last removal. In this case, the likelihood is given by

Equation 3.6.11 with tobs replaced by T , the predicted or assessment time.

3.6.2.1 Details of the algorithm

The diagram in Figure 3.6 shows the transition between different states. Note that

the S = susceptible At each iteration of the MCMC we randomly choose an individual

j
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S I I,R

Figure 3.6: State diagram for the infection times and the removal times to show the
states transitions. I, R corresponds to the state of individuals removed in the interval
[tobs, T ], S represents the susceptibles individual and I the infected but not removed.

1. If j is susceptible (S), we either add an infection time sj ∈ [T0, T ] or both

infection and removal times simultaneously where sj ∈ [T0, T ] and rj ∈
[max(sj, tobs), T ]. The new vector s′ is accepted in the first case with proba-

bility

α = min

{
1,

2(T − T0)

3

L(β, λ, ν, s′; r)

L(β, λ, ν, s; r)

}
(3.6.16)

while in the latter case the acceptance probability is given by Equation (3.6.16)

with 2(T−T0)
3

replaced by
(T−max(sj ,tobs))(T−T0)

2
.

2. If j is infected but not removed (I), we either propose with equal probability

to delete the infection time sj or move uniformly sj ∈ [T0, T ] or add a removal

time. The new vector s′ of the infection times is accepted with probability given

by Equation (3.6.16) with 2(T−T0)
3

respectively replaced by 3
2(T−T0)

, omitted and

replaced by
3(T−max(sj ,tobs))

4
.

3. If j corresponds to an individual observed to be removed, we can only propose to

move its infection time sj uniformly in [T0, tobs] and the acceptance probability of

the new infection time is then given by Equation (3.6.16) with 2(T−T0)
3

omitted.

4. Finally, if j is removed after the observation time (I, R), with equal probability

we either delete its removal time rj or delete the coupled infection and removal

time (rj, sj), or we move its infection time sj uniformly in [T0, T ] or move its

removal time rj in [max(sj, tobs), T ]. The acceptance probability is obtained

from Equation (3.6.16) with 2(T−T0)
3

respectively replaced by 4
3(T−max(sj ,tobs))

and
1

2(T−max(sj ,Tobs))(T−T0)
in the first two cases respectively; and omitted in the last

two cases.

Instead of using a uniform proposal distribution, we can propose an independence

sampler which makes use of the likelihood. That is q(rj−sj, r′j−sj) ≈ Weibull(λ, ν).

However, since the additional removal times must lie beyond max(sj, tobs), we
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7: Trace plots of model parameters for the three algorithms. (a), (d) and (g)
tobs = 60 with uniform proposal; (b), (e) and (h) T = 70 with uniform proposal; (c),
(f) and (i) T = 70 with Weibul proposal
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Figure 3.8: Posterior distribution of the contact rate β (a), the shape parameter
λ (b) and the scale parameter ν (c) for different models: Streftaris-Gibson model
(black), removal prediction using uniform proposal (red) and prediction using Weibull
distribution (blue).
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must truncate its distribution to this interval. In this case, the above algorithm is

maintained with the only change occurring in the uniform proposal for the removal

replaced by the truncated Weibull distribution. This implies that 1
(T−max(sj ,tobs))

is then

replaced by
fW (rj−sj)

FW (T−sj)−FW (max(sj ,tobs)−sj)
where fW and FW are respectively the density

and the distribution function of the Weibull distribution. We name the algorithm

with uniform proposal and the Weibull proposal distribution respectively as uniform-

proposal and Weibull-proposal.

To illustrate the efficiency of our algorithms, we consider the simulated data of the

thresholds model described previously and observe the progress till time tobs = 60. We

impute new infections up to T = 70. We run the MCMC routine for 106 steps with

the first 10000 discarded using both uniform and Weibull proposal distributions. We

then compare the results with the one obtained at tobs. The trace plots in Figure 3.7

show that the chains mixed well and do not show any evidence of non-convergence.

From Figure 3.8, we can see that the posterior distributions of the model parameters

match in the three cases considered for the model parameters (see figure 3.8). Also,

the chain obtained from the model with Weibull-proposal seems to mix better than the

one with uniform (see Figures 3.7h and 3.7i). This results confirm that the algorithm

performs well. Note that we will use this type of prediction later on to compute

measures for control.

3.7 Conclusions

This chapter has reviewed the statistical approach mostly used to draw inference

from epidemic data especially when the number of infected individual is unknown.

The Bayesian techniques presented here, particularly the Reversible-Jump, play a

significant role in epidemic modelling given the flexibility it offers when dealing with

missing information, which is relevant when designing control strategies.

In chapter 5, we expand these techniques to the spatio-temporal models and mod-

els that present structure within the population, and incorporate the Sellke construc-

tion in order to provide an efficient control for real time epidemics. We go further in

the chapter 7.2 to provide a statistical method in Bayesian framework, treating the

transmission network as missing data.
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Chapter 4

Coupling non-spatial epidemics

using latent processes

4.1 Introduction

The main question that arises for an epidemiologist at the outbreak of an epidemic

is which control strategy to adopt in order to prevent future outbreaks. In this

chapter, we will consider strategies for controlling the spread of an epidemic using

control strategies based on the removal of individuals diagnosed as infected. The

question of epidemic control has been crucial over the history of mankind. Several

authors raised this question in the context of non-spatial epidemic models and several

strategies for their eradication were proposed. For instance, Bootsma and Ferguson

(2007); Daley and Gani (1999); Castilho (2006) developed control model based on

education campaigns to contain epidemics such as AIDS and Ebola. Anderson (1982);

Smith (1964); Becker and Dietz (1995, 1996), on the other hand, consider different

vaccination strategies to optimise the control of diseases in human populations. In

particular, Ball et al. (1997a) utilised a technique, called an “equalising” strategy,

which aims to maintain the number of susceptibles in each group to be similar as

possible. Also, Daley and Gani (1999) and WHO (2003) adopted a strategy whereby

hosts are screened and put in quarantine if deemed to be at risk.

Here, we assume for simplicity that there is a perfect diagnostic test which, when

applied to an individual, can tell us about its current state (e.g. screening test) with

100% accuracy, although this is unrealistic in practice. In other words the test has

100% sensitivity and specificity. Once infected individuals are identified, they can be

removed (cured or isolated depending on the disease). Intuitively, the epidemic spread

could be retarded due to the fact that susceptibles that would have been infected by

those individuals, removed after testing, are “rescued”, at least for a certain period

of time. Mathematically, the infection pressure exerted on a susceptible individual

is reduced, causing them to approach their Sellke threshold (see Section 2.2.2) at a
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slower rate.

The benefits of using the latent processes, in this case the Sellke thresholds, is

that epidemics can be coupled via a common set of thresholds (Andersson and Brit-

ton, 2000). The coupling method has found many important applications in several

fields of probability theory such as Poisson approximation, renewal processes and

Markov processes (Lindvall, 1992). More recently, the technique has been applied

successfully to compare retrospectively alternative strategies on historical epidemic

data (Cook et al., 2008). With the correct choice of coupling mechanism, the random

variables constructed (the outcome of the controls) are highly dependent, leading to

high correlation between the outcomes of the controls, reducing the variance of the

difference. This surely gives a better estimation of the expected difference between

control strategies. The sample size needed to estimate differences in strategies is re-

duced compared to independent sampling as a consequence of the high correlation

between the outcomes of controls. This is analogous to the well-known paired t-test

where two population means are compared on the same set of experimental units.

In the remainder of this chapter, we will first describe a general framework for

epidemic controls using Sellke thresholds. Conditioned on the individual thresholds

and the model parameters, the focus will then be on comparing different control

strategies using different epidemic models including the general stochastic epidemic

model (SIR), and a non-typical, multi-type SIS model. In our initial investigations we

will assume known parameters. When optimising control strategies we will make use

of the technique of Simulated Annealing. This concept has been used in the past in

epidemiology by Demon et al. (2011) to identify the sample size that maximises the

probability of detecting an invasive pathogen. We then show that, the outcomes of

controls are highly correlated when we couple realisations using the Sellke thresholds,

which reduces the variability in the estimate of the expected differences as suggested

above.

4.2 Coupling epidemics subject to alternative con-

trol strategies

The description given in this section concerns the SI model (see Equation (2.1.1)). As

mentioned in Section 2.2.2, the Sellke construction is one approach to formulating an

underlying process for stochastic epidemic models. We denote by x the complete set

of data (time, nature and affected individuals) for every event describing an epidemic

process generated using a standard stochastic model parametrised by θ, assumed

known in the rest for this chapter. Then there exists a one-to-one function h such

that x = h(Q,θ) where Q is the set of Sellke thresholds (Anderson, 1982). Recall
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that this non-centred parameterisation is essentially a functional model in the sense

of Dawid and Stone (1982). Hence, given (Q,θ) the epidemic trajectory is uniquely

defined.

One of the important properties of the Sellke thresholds is that their sample path is

not affected by any control strategy which affects only the infection pressure, therefore

the epidemic trajectory is uniquely defined for any control strategy. A graphical

representation of this property is shown in figure 4.1. The outcome of any control

strategy d given (Q,θ) is then uniquely determined as x = h(Q,θ,d). The effect of

x = h(Q,θ,d)

θ dQ

Figure 4.1: The graphical model of the non-centered parameterisation.

different controls can then be compared on a common set of (Q,θ). Specifically, let

Q = (Q1, . . . , QN) define the set of Sellke thresholds of individuals in a population of

size N and θ the vector of model parameters (the contact rate, the infectious period

parameter(s), the primary infection rate etc). If we construct two epidemics with

different control strategies d and d′, only the infection pressure processes A(t) and

A′(t) are different for the two processes. We then say that d outperforms d′ if the

total number of infections n(x(t)) < n(x′(t) where x(t) and x′(t) are respectively

the complete trajectory of the epidemic process when applying respectively control

strategies d and d′ on (Q,θ).

4.3 General Stochastic SIR model with control

Throughout this section,

Q =


Q1,1 Q1,2 . . . Q1,m

Q2,1 Q2,2 . . . Q2,m

...
...

. . .
...

QN,1 QN,2 . . . QN,m

 and I =


I1,1 I1,2 . . . I1,m

I2,1 I2,2 . . . I2,m

...
...

. . .
...

IN,1 IN,2 . . . IN,m

 will denote
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respectively m realisations of the set of Sellke thresholds and the corresponding in-

fectious period of the respective individuals in a population of size N . Therefore,

(Qi, I i,θ) where Qi = (Q1i, Q2i, . . . , QNi) and I i = (I1i, I2i, . . . , INi), denotes a sin-

gle replicate and (Q, I,θ) denotes a set of m replicates of the epidemic process with

fixed θ. In this section, we design controls and identify the optimal one using the

most commonly studied stochastic model, the general stochastic epidemic SIR model

described in Section 1.3.4. We consider controls based on deploying diagnostic tests

at specified times and immediately removing detected infections. This is analogous to

the cost-effective model for the quarantine policy developed by Gani et al. (1997) to

reduce the HIV rate in prison. In this chapter, hosts in the population are assumed

to mix homogeneously.

4.3.1 Testing protocol

Intuitively the tests should be administered so that individuals detected for testing

are most likely to be infectious at the time of the test. Here, we propose to test

individuals cyclically. More precisely, if t corresponds to a time when a test carried out

on individual i reveals that it is still susceptible, then it remains in the population and

can be tested again, say at time t′ > t. Meanwhile it has to wait until the remaining

individuals are tested. This is sensible given that the individual that has waited

the longest has the greatest chance of being infected, given that it has received the

greatest accumulated challenge since its last test. Table 4.1 shows the representation

of how the tests are applied.

i
i+1

...
N
1
...

i-1

=⇒
susceptible

i+1
...

N
1
...

i-1
i

=⇒
susceptible

i+2
...

N
1
...
i

i+1

=⇒
infective

i+3
...

N
1
...

i-1
i

Table 4.1: Schematic of the test procedure. Labels in gray correspond to the individual
tested. If the individual is infected then he is removed but takes the last position in
the list when he still susceptible.

4.3.2 Evaluation of the function h(θ,Q, I, d)

In reality, to embed a control strategy (or testing regime in this case) into an epidemic

process generated through Sellke construction, we first generate realisations of the

Sellke thresholds and the infectious period for each host. Then, starting from t = 0, we
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compute a potential infection times for all hosts and identify the next infection time.

The next event is then chosen to be either a test, an infection, or a removal depending

on which event type occurs first. The disease status is then changed according to the

event and the process continues until no further event can occur or until a defined

stopping criterion is reached. The algorithm is obtained by embedding the process

for the diagnostic tests into that described in Section 2.2.2.

Calculation of x = h(θ,Q, I, d) for SIR model with primary and secondary

infection.

Notation

• d = (τ1, ..., τN ′) say, the (ordered) times of the tests to be applied.

• I = (I1, ...., IN) the infectious periods for the N individuals in the population

(all initially susceptible).

• Q = (Q1, ..., QN), the Sellke thresholds for the individuals.

• θ = (δ, β), the primary and secondary infection rates.

Calculation

• Set t = 0, number of infections nI = 0, infection rate λ(t) = α + βnI .

Set initial state of each individual, si = 0, i = 1, ..., N , and time till next

transition ri = Qi/λ(t). Set final time T .

• While t < T do the following {

Identify next event: Let t∗ = min{r1, ..., rN , τ1} and j =

arg min{r1, ..., rN , τ1}.

If t∗ = rj (event is an infection or a removal), implement event.

– case sj = 0 (infection event), set sj = 1, nI = nI + 1, rj = Ij.

– case sj = 1 (removal event), nI = nI − 1, delete row j from tableau

and move lower rows up, set N = N − 1.

If t∗ = τ1 {

(event is test) delete τ1 and shift remaining times along.

If s1 = 1, delete row 1 from tableau and move lower rows up, setting N =

N − 1.

If s1 = 0, move row 1 to row N and move the others up
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}

Finally update remaining Sellke thresholds and waiting times in the tableau,

and test times.

– R′ = λ(t), t = t+ t∗, λ(t) = α + βnI .

– If si = 0, Qi = Qi −R′t∗, ri = Qi/λ(t).

If si = 1, ri = ri − t∗,

– Update remaining time till scheduled tests: τi = τi − t∗. }

4.3.3 Design construction

We assume that the tests are deployed in non-intersecting time windows [aj, bj], j =

1, . . . , l. It is assumed that there are nj test in [aj, bj] deployed at times separated

by δtj so that bj = aj + (nj − 1)δtj, j = 1, . . . , l. We specify a control strategy d as

d = {(a1, n1, δt1), . . . , (al, nl, δtl)}.

4.3.4 Simulation study using a single realisation of Sellke

thresholds

To illustrate our approach to designing control strategies based on Sellke thresholds

using diagnostic tests, we implement the method described above. We consider a

population of size N = 100 with initial number of susceptibles, infectives and removals

respectively S(0) = 100, I(0) = 0 and R(0) = 0. We assume the presence of a

primary infection source with a constant pressure over the observation time. Thus

for the simulation, we fixed the primary infection rate to δ = 0.002, the contact rate

β = 0.003, and the parameters of the Weibull infectious period ν = 1.1, λ = 9.94. We

then assign to each individual a single realisation of a Sellke threshold and an infectious

period which is Weibull distributed as described in Section 4.3.2. We observe the

epidemic evolution up to a time T = 60. In addition, we assume that there are

N ′ = 150 available tests. Recall that an individual is automatically removed if a test

reveals it to be infectious but remains in the process otherwise. In the latter case,

such an individual could be tested again once it has again reached the top of the

queue as in Table 4.1.

Initially, we consider various control strategies d0, d1, . . . , d6 where the tests are ap-

plied in a single interval. Table 4.2 shows the values used for the controls. Figure 4.2a

depicts the trajectory of epidemics generated by a common set of Sellke thresholds,

subjected to control strategies that differ in term of timing as shown in Table 4.2. As
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Control strategy
d0 No test
d1 {(10, 150, 0.067)}
d2 {(15, 150, 0.1)}
d3 {(20, 150, 0.1)}
d4 {(20, 150, 0.134)}
d5 {(30, 150, 0.1)}
d6 {(45, 150, 0.1)}

Table 4.2: Tests deployed in single intervals.

expected, the trajectories coincide with the test free trajectory until the deployment

of the tests, after which they decrease in comparison to the test-free trajectory. This

result is reasonable since the total pressure on susceptibles decreases as soon as an

infective is removed.

(a) (b)

Figure 4.2: Trajectories of an SIR epidemic process with Weibull infectious period
where S(0) = 100, I(0) = 0, R(0) = 0, β = 0.003, ν = 1.1, λ = 9.94, Tmax = 60,
primary infection rate δ = 0.002, when applying different test regimes (including no
test) and N ′ = 150 diagnostic tests in : (a) single intervals of time (b) single and
multiple intervals.
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These results are generated assuming all tests are deployed in a single interval. A

more general approach involves splitting the available tests over more than one inter-

val. We compare both cases by repeating the above simulation (coupling epidemics)

using the same Sellke thresholds and the same infectious period as previously but

now splitting the tests over two intervals. For the illustrative purpose, we consider

the control strategy d∗ = {(10, 100, 0.1), (35, 50, 0.3)}. Figure 4.2b indicates how im-

portant is the reduction in the latter case when comparing with the single interval

case for the design d1. On the Figure 4.2b, it can be seen that the reduction is about

10 when applying the control using the design d1 whilst this reduction is 65 when the

tests are split over two intervals using the strategy d∗. As a result, splitting the tests

may be more cost effective than concentrating all in a single interval.

4.3.5 Optimal control using Simulated Annealing (SA)

When applying tests to reduce the final size of an epidemic at some finite time, the

reduction can be thought of as a function of the control strategy d (time interval,

number of tests, etc.), with the optimal strategy giving the greatest expected reduc-

tion. However, the space of possible control strategies may be complicated. Hence

an appropriate optimization method such as Simulated Annealing could be useful for

finding an optimal control. We will discuss this method in the next section.

4.3.5.1 Motivation

Denote by d ∈ D a control design. We define the impact function u(x(T )) charac-

terising the number of infections, where x(T ) denotes the trajectory of the epidemic

up to T . The function u is obtained numerically by applying the method described

in Section4.3.2. The choice of d that gives the best reduction is of concern here.

Therefore we define the optimal strategy as the one that minimises the expectation

of the impact function. We can state the design problem as

d∗ = arg min
d∈D

(U(d)) (4.3.1)

where,

U(d) = Ed (u(x(T ))) =

∫
u(x′(T ))πd(x

′(T ))dx′(T ) (4.3.2)

Note that πd(x(T )) is the distribution of the process trajectory when a control d is ap-

plied. We omit d to signify no control is applied. In addition, we write x(Q, I,θ,d, T )

to denote a draw from πd(x(T )) which is the trajectory of the process generated by

(Q, I,θ) and observed until an “assessment time” T (d is applied before T , depending

on the intervals).
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The integral in U(d) could then be approximated using the Monte Carlo approx-

imation in Section 3.5.1 as follows:

Û(d) =
1

p

p∑
i=1

u(x(θi,Qi, I i,d, T )) (4.3.3)

and the optimal design d∗ could then be determined. This will involve computing

differences of the form Û(d′) − Û(d) for different designs d,d′. In causal inference,

this quantity is known as the average causal effect of d′ compare to d. Moreover,

contrary to most of the literature on causal inference (Holland, 1986), which focusses

on applying control on each individual considered as an experimental unit, we are

interested in the effect of the control on the whole population. Hence, the so-called

unit in causal inference is represented here as the whole population under study.

In the rest of this section, we denote by

n(θ,Q, I, d, , T ) = (u(x(θ1,Q1, I1,d, T )), . . . , u(x(θm,Qm, Im,d, T ))) (4.3.4)

the epidemic size obtained by applying the control strategy d on each simulated

realisation observed up to time T . Note that for a single realisation i.e. m = 1, we

maintain the notation (Q, I, θ) to denote a realisation of the epidemic process. We

define by

r(θ,Q, I, d, T ) = u(x(θ,Q, I, T ))− u(x(θ,Q, I, d, T )) (4.3.5)

the reduction in the epidemic size of a control d compared to the no-control case.

4.3.5.2 Simulated Annealing

Simulated Annealing (SA) is an optimization technique originally used in the field

of combinatorial optimization. Due to its simplicity and efficiency, it has been ex-

tensively applied in the field of heuristic search (Kirkpatrick et al., 1983). SA is a

stochastic algorithm that was inspired by the analogy between the physical annealing

process and the search for a minimum in more complex systems. Moreover it has

been proved that it has the ability to escape from local optima and reach the global

optimum (Kirkpatrick et al., 1983; Corana et al., 1987; Rajasekaran, 1990; Bertsimas

and Tsitsiklis, 1998; Busetti, 2003). Here, the goal is to find the design that maximises

the objective function f i.e. the strategy that satisfies the relation

arg max
d
f(d)

To that end, the algorithm employs, essentially, a random search procedure which

not only accepts changes that increase the objective function f , but also may accept

changes that decrease it. In this way, moves are accepted according to the Metropolis
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criterion. The probability of accepting a move is

α = min

{
1, exp

(
−∆f

Tp

)}
; (4.3.6)

where ∆f is the decrease in f and Tp is the control parameter which is known as

the system temperature. In our context, ∆f represents the expected reduction in the

outcome of the controls or the average causal effect analogous to Holland (1986).

4.3.6 Application of SA in epidemic control using Sellke

thresholds

Commonly used in the field of heuristic search, SA is less common in epidemiology. It

has been recently applied to epidemics by Demon et al. (2011) to identify the sample

size that maximises the probability of detecting an invasive pathogen. Here, we wish

to identify the optimal strategy that gives the highest reduction in the outcome of

the epidemic, the size of infected population by a certain assessment time.

4.3.6.1 Optimal control strategy for a single realisation of the epidemic

process

Assume that, the trajectory of the epidemic without control is known precisely. In this

case, the process can be represented with only one realisation of the Sellke thresholds

and the infectious periods. The optimal strategy using the SA is then obtained as

follows:

Algorithm

Denote by θ the model parameters. Let (Q, I) be the Sellke thresholds and the

infectious periods for population members.
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Algorithm 1. SA for a single realisation of the epidemic process

1: Initialisation

Set the cooling temperature c1, k = 1 and the initial design dopt = d1

Compute the approximation in Equation (4.3.3) for p = 1

Û opt = Û1 = Û(d1) = u(x(θ,Q, I,d1, T )).

2: Update to d (see application below).

3: while stopping criteria is not reached do

4: for l = 1, . . . , q do

5: Evaluate Û ′ = Û(d′) = u(x(θ,Q, I,d′, T ))

6: Set (Û ,d) =

(Û ′,d′) if Û ′ < Ûk

(Û ′,d′) if Û ′ > Ûk with probability α

where α = min
{

1, exp
(
− Û ′−Ûk

ck

)}
Set (Û opt,dopt) = (Û ′,d′) if Û ′ < Û opt

7: end for

8: Set (Ûk+1,dk+1) = (Û ,d)

9: Reduce the parameter ck such that ck+1 = γck, γ ∈ [0, 1]

10: k ← k + 1

11: end while

Application

To illustrate the approach described above, we consider the strategy defined in Section

4.2. We reduce the space of the control by considering only two intervals and by

assuming that δt1 = δt2 = δt. We then use the SA algorithm 1 to update the control

strategy d = {(T1, n1, δt), (T2, n2, δt)}. Here, a1 = T1 and a2 = T2. For simplicity, we

fix δt = 0.1. Consequently, we only update n1 (ultimately n2). Specifically, a new

design is proposed by performing a random walk on the current value of n1 and the

new value of n2 is deduced.

Again, as in Section 4.3.4, we consider a population of size N = 100 with initial

susceptibles, infectives and removals considered respectively to be S(0) = 100, I(0) =

0 and R(0) = 0. We assume that the epidemic is introduced by an external source

with a constant pressure δ = 0.002 over the observation period. We fixed the contact

parameter β = 0.003 and set the parameters of the Weibull infectious period to be

ν = 1.1, λ = 9.94. We then assign to each individual one threshold and an infectious

period. Once again we observe the epidemic evolution up to a time T = 60.
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Figure 4.3: Progress of Simulated Annealing on the epidemic reduction
r(θ,Q, I, d, T ).

We run the algorithm for 12000 iterations taking γ = 0.85. A new value of the

design parameter is proposed from a uniform distribution g centered on the current

value. Since n1 + n2 = N ′, we only update n1 and derive n2 = N ′ − n1. Figure 4.3

shows the progress of SA algorithm on the epidemic size reduction r(θ,Q, I, d, T )

for the current design against iteration number. It can be seen that initially, some

large decrease in the epidemic size reductions were accepted due to the fact that

the initial temperature is high. As the temperature decreases, fewer downhill moves

are tolerated, as a result the later iterations maintain the system close to the opti-

mum. The optimal control strategy resulting from this algorithm is given by d∗ =

{(11.172, 85, 0.1), (33.487, 65, 0.1)} i.e. T1 = 11.172, T2 = 33.487, n1 = 85, n2 = 65.

We can see how efficient the SA is in reducing the epidemic size. This reduction can

be seen as the causal effect of the optimal control on the epidemic at the population

level (Holland, 1986).

4.3.6.2 Optimal design for a multi-replicate of the epidemic process

Given the model parameters, the primary infection rate, if such a source is present,

the contact rate and the Weibull parameters δ, β, (ν, λ) respectively, by simulating

only one realisation of the epidemic process from these parameters, we only capture

a particular scenario that one can have from those specific parameters. The inherent

stochasticity in the process is then ignored. Therefore a multi-replicate experiment

(large number of simulated realisations) needs to be investigated in order to have a

good representation of the variability of the epidemic.
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The algorithm of 1 identifies the optimal control for a single realisation of the pro-

cess. For a multi-replicate of the process (multiple realisations of the Sellke thresh-

olds with given parameter distribution), we rather find the optimal control strategy

by adaptively increasing the value p in the function Û(d) in Equation (4.3.3). The

advantage of adopting such a strategy is that one can identify the minimum sample

size required for the algorithm to find the optimal control effectively.

Method

We start by finding the optimal design of u(x(θ1,Q1, I1, d)) using a single realisa-

tion of the process, say replicate 1. Whenever the optimisation is done, we intro-

duce in a new realisation at a time. The new optimal is obtained by minimising∑n
i=1 u(x(θi,Qi, I i,d, T )) where n is the current number of replicates included in the

sum. For efficiency, we specify that the initial design for the optimisation with n

replicates should be the optimum obtained using n− 1 replicates.

The algorithm is described as follows:

Algorithm

We start by generating (θi,Qi, I i) for i = 1, . . . , p from the set of replicates.
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Algorithm 2. Optimal design for a multi-replicate of the epidemic process

1: Initialisation

Set the cooling temperature c11, p = 1 and the initial design dopt = d1

Compute the approximation in Equation (4.3.3) Û opt = Û1 = Û(d1) =

u(x(θ1,Q1,d1)).

2: Update to d (see below).

3: while stopping criteria is not reached do

4: for l = 1, . . . ,m do

5: for k = 1, . . . , q do

6: Use the same p samples and evaluate

Û ′ = Û(d′) = 1
p

∑p
i=1 u(θi,Qi,d′)

7: Set (Û ,d) =

(Û ′,d′) if Û ′ < Ûk

(Û ′,d′) if Û ′ > Ûk with probability α

where α = min
{

1, exp
(
− Û ′−Ûk

cpk

)}
Set (Û opt,dopt) = (Û ′,d′) if Û ′ < Û opt

8: end for

9: Reduce the parameter cpk such that cp(k+1) = γcpk, γ ∈ [0, 1]

10: end for

11: p← p+ 1, d← dp = dopt, U ← U(dp)

12: Set cp1

13: end while

Application

To illustrate this procedure, we consider the same parameters for the epidemic model

used previously. Recall that we consider a population of size N = 100 and set the

primary infection rate δ = 0.002, the contact rate β = 0.003 and the Weibull infectious

period parameters as ν = 1.1, λ = 9.94. We assume that there are N ′ = 150 tests.

Again, we reduce the design space by partitioning the tests in two intervals where δt

is kept fixed and takes the value 0.1. Specifically, we consider the design of the form

d = {(T1, n1, δt), (T2, n2, δt)} where the parameters T1, T2, n1 and n2 are of interest.

Similar to the single replicate case, we propose a new value of each parameter in

the design by adopting a random walk using an uniform proposal distribution g. The

algorithm is run for 425000 iterations and the convergence is assessed. The progress

of the cumulative reduction
∑n

i=1 r(θ
i,Qi, I i, d, T ), n = 1, . . . , 50 for various control

strategies d proposed in the course of the algorithm is assessed and shown in Figure
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Figure 4.4: The progress of the cumulative reduction
∑n

i=1 u(θi, Qi, I i, d0) −
u(θi, Qi, I i, d) for n = 43, 44, . . . , 50 replicates of the epidemic process where d is
any design proposed and accepted during the Simulated annealing algorithm.

4.4. We only present the result for 43 − 50 replicates. We can see that from the

43th replicate, there is no clear difference in the reduction obtained from the initial
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strategy and the optimal one; in other words the algorithm does not find an improved

design. We can conclude that the algorithm converges towards an optimum in the

neighbourhood of d∗ = {(9.216, 83, 0.1), (32.172, 67, 0.1)} .

Next, we fixed T2 = 32.172 and we vary the parameters n1 and T1. Figure 4.5

shows the contour plot of n1 against T1. It can be seen from Figure 4.6 that the

domain explored by the algorithm represents the high density regions. This shows

indeed the effectiveness of the algorithm in term of convergence towards the optimal

strategy.
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Figure 4.5: Contour plot of Û over (n1, t1) when fixed t2 = 32.172 .
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Figure 4.6: Contour plot of Û over (n1, t1) when fixed t2 = 32.172 showing the area
exploired during the latter part of the algorithm (31875− 42500).

Finally we investigate the sample correlation Corr(n
(
θ, Q, I,d∗, T ), n(θ, Q, I,d, T )

)
for various control strategies d with T2 fixed to the optimum (see Figure 4.7). It can be

seen that there is a strong positive correlation between the epidemic size obtained from

the p replicates of the process subject to the optimal control d∗ (n
(
θ, Q, I,d∗, T

)
),

and the one of various control strategies d (n
(
θ, Q, I,d, T )

)
). This observation im-

plies that the variance of the difference between the reduction obtained by the optimal

control and any sub-optimal control V ar(n
(
θ, Q, I,d∗, T )− n(θ, Q, I,d, T )

)
) is then

reduced compared to the independent sampling case. Subsequently, this improves

estimation of the expected difference between these strategies. This is analogous to

the paired t-test where two treatments are applied to the same set of experimental

units.
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Figure 4.7: Figure showing the correlation between different strategies with the opti-
mal strategy

4.3.7 The multi-type SIS models

4.3.7.1 Model description

Traditionally, intervention during an outbreak is considered to provide the most re-

liable evidence in epidemiological research. In this section, we give an example to

illustrate how targeted control using latent processes (Sellke thresholds) might offer

benefits when considering a non-typical SIS model.

We consider a population of fixed size N partitioned into k sub-groups where,

initially, each group contains exactly Ni susceptibles i = 1, . . . , k. It follows that

N =
∑k

i=1Ni. Moreover, each individual may be in one of the two states, either

susceptible (S) or infected (I). We assume that the epidemic is essentially caused by
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an external source to the population. In other words there is no risk of transmission

between individuals. In addition, the model assumes that the epidemic is non-fatal to

the individuals. As soon as a susceptible is infected, it moves to the infective class. On

being diagnosed infected, the infected individual moves back to the S class, either due

to treatment or replacement. We again assume that our test has perfect sensitivity

and specificity so that no false positives or false negatives can arise. Model of the

sojourn time in the I state for each individual is determined via the testing process.

Recall that each individual possesses a level of tolerance to the disease known as

Sellke thresholds which is exponentially distributed (Qj ∼ Exp(1), j = 1, 2, . . . , N).

In this model an individual is assigned a new threshold wherever it recovers from

the disease. In other words once an individual is diagnosed positive, a new threshold

is then assigned as an independent draw from Exp(1). Infection occurs when the

total pressure exerted on an individual up to a certain time reaches its threshold∫ tj
0
αβg(i)dt = Qj. The process then follows the following probability transition: In

an infinitesimal interval [t, t+ dt] the transition from state S to the state I is given by

P [i infected in (t, t+ dt)] = αβg(i)dt+ o(dt) (4.3.7)

where α represents the rate of the external source of the epidemic (primary infection

rate), βg(i) stands for the ith group susceptibility.

4.3.7.2 Modelling Control strategies using Sellke thresholds

As mentioned previously, the transition from the class I to S occurs through a diag-

nostic test. Whenever individuals are tested positive (I), they immediately reset to

the S class. Numerically, this is done by assigning a new Sellke threshold. However,

in practice, it is almost impossible to test all individuals in the population (e.g. in

a large population) at the time due to the limitation of the available resources. It is

therefore important to find a prioritisation scheme in order to reduce the impact of

the outbreak.

Different approaches have been proposed in the literature for infectious epidemics.

For example Becker and Dietz (1995, 1996) discussed four particular strategies. They

are:

1. Households chosen at random and all their members are immunised.

2. Random vaccination of individuals.

3. Preferential selection of large households for immunisation.

4. Strategies for households of equal size (imunisation of a fixed fraction of members

in every household).

71



These strategies are compared by identifying the optimal proportion of the population

needed to be vaccinated in order to reduce below 1 the basic reproduction number.

Here we wish to minimize the time individuals remain infected for.

A- Proposed strategy

We propose to prioritise individuals with respect to the expectation of the time

they have been infected. Assume that an individual was last tested at time

T1. If the time of the next test is T , the expected infection time for which the

individual has been infected, τ , is given by:

τ =

∫ T

T1

(T − t) αβi exp(−αβit)
exp(−αβiT1)− exp(−αβiT )

dt. (4.3.8)

where t is the time of the infection period, and T − t the length of time that the

individual is infected for, up to T . It follows that

τ = T − 1

(exp(−αβiT1)− exp(−αβiT ))αβi
(F (T ; 2, αβi)− F (T1; 2, αβi)) ,

(4.3.9)

where F (T ; 2, αβi) represents the CDF of the Gamma distribution with shape

2 and rate αβi. Doing some algebraic manipulation, Equation (4.3.9) leads to:

τ = T − 1

αβi
+
T exp(−αβiT )− T1 exp(−αβiT1)

exp(−αβiT1)− exp(−αβiT )
. (4.3.10)

Allocating resources (tests in this case) using this strategy is sensible since we

expect to sample individuals that have been infected for longer period.

Alternative strategies: We assess the performance of three other strategies. In

particular, we consider

B- Probability or high risk based prioritisation of individuals

This sampling method involves sampling the N ′ individuals that have the largest

probability of being infected. Recall that under this process, each individual in

the population independently has a probability

P (t) = 1− exp(−αβit) (4.3.11)

of being infected since the time of the last test, where t is the time elapsed since

the last test.

C- Simple random scheme

Simple random sampling involves randomly selecting N ′ individual to test.
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D- Ranking based prioritisation

For ranking based prioritisation, individuals are randomly label from 1 to N

and then the tests are carried out according to that ordering; once an individual

is tested, it reverts to the bottom of the queue (see Table 4.1).

Method:

To generate a realised epidemic with this type of control using Sellke’s construc-

tion, we proceed as follows:

Notation

• d = (τ1, ..., τN ′) say, the (ordered) times of the tests to be applied.

• Q =


Q1,1 Q1,2 . . . Q1,m

Q2,1 Q2,2 . . . Q2,m

...
...

. . .
...

QN,1 QN,2 . . . QN,m

 where each row j corresponds to the indi-

vidual j’s sequence of Sellke thresholds.

• θ = (α, β), the primary rate and the vector of host’s group susceptibility.

• E to store infected hosts identified by the tests.

Calculation

• Set t = 0, infection rate of each individual Ri = αβg(i). Set initial state of

each individual, si = 0, i = 1, ..., N , Qi = Qi,1 and time till next transition

ri = Qi/Ri. Set final time T .

• While t < T do the following {

Identify next event: Let t∗ = min{r1, ..., rN , τ1} and j =

arg min{r1, ..., rN , τ1}.

If t∗ = rj (event is an infection), implement event.

– case sj = 0 (infection event), set sj = 1.

If t∗ = τ1 {

(event is test) delete τ1 and shift remaining times along.

If s1 = 1, move row 1 to row N and lower rows up and set si = 0. Store

individual in E
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If s1 = 0, move row 1 to row N and move the others up.

}

Finally update remaining Sellke thresholds and waiting times in the tableau,

and test times.

– t = t+ t∗.

– If si = 0, i /∈ E, Qi = Qi −Rit
∗, ri = Qi/Ri.

If si = 0, i ∈ E, assign the next value in Q to Qi.

If si = 1, ri = ri − t∗,

– Update remaining time till scheduled tests: τi = τi − t∗.

– Initialise E. }

To compare the strategies, we consider the evolution of the cumulative time indi-

viduals are infected for; more formally,

Ω(t) =
N∑
j=1

nj∑
i=1

(T(ji) − tij) (4.3.12)

where
{
tij, ∀i = 1, . . . , nj,∀j = 1, . . . , N

}
and

{
T(ji), ∀i = 1, . . . , nj,∀j = 1, . . . , N

}
are respectively the set of times at which individuals are infected during the ob-

servation period and their corresponding time at which they are tested positive. It is

worth noting that, these times are readily available from the above algorithm.

4.3.7.3 Simulation study

To illustrate the choice of the expected infection time as the measure of ordering the

individuals for the tests, we consider an outbreak with fixed parameters occurring

in a population of size N = 125 subdivided into two groups (k = 2) with initial

size of susceptibles N1 = 75 and N2 = 50 in each group respectively. Since the

susceptibility varies with respect to the group, we set β1 = 0.07 and β2 = 0.0035 for

group 1 and 2 respectively and we set the rate of external source of infection to be

α = 1. We assume that T = 10000 and that the tests are applied at T1, T2, . . . , TN ′

where Ti = t0 + i∆t, ∀i = 1, . . . , N ′ and TN ′ ≤ T . We simulate m replicates of

Sellke threshold for each individual where m corresponds to the maximum number of

possible tests one can carry out on an individual. At every Ti, we assume that it is

possible to sample r individuals for testing.

Here we use the values r = 1, 5 and ∆t = 0.5, 1. In practice, an epidemic has to

take off before we take any action, therefore we start deploying the controls from time
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t0 = 10 where few individuals present some signs of infection.

4.3.7.4 Results

Figure 4.8 shows the cumulative time Ω (see Equation 4.3.12) using the strategies A,

B, C and D defined previously. It can be seen that as time goes on, the strategy A

gives

(a) r = 1, every ∆t = 0.5 (b) r = 1, every ∆t = 1

(c) r = 5, every ∆t = 0.5 (d) r = 5, every ∆t = 1

(e) r = 10, every ∆t = 0.5 (f) r = 10, every ∆t = 1

Figure 4.8: Plot showing the evolution of the cumulative time infection during the
process over time, with four different measures used for different test regime (r = 1
and r = 5 each ∆t = 0.5 and ∆t = 5).

.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Plot showing the epidemic size, the number of times indivuduals are tested
positive and the number of times an individual is tested during the epidemic process
with parameters as mentioned above, in first, second and third rows respctively where
r = 1 and ∆t = 1.

.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Plot showing the epidemic size, the number of times individuals are tested
positive and the number of times an individual is tested during the epidemic process
with parameters as mentionned above, in first, second and third rows respctively
where r = 5 and ∆t = 1.

.

better reduction in terms of the time individuals are infected for (shown by the dashed

line), even though there is little difference with the strategy D. Hence, the strategy

based on prioritising individuals to test using their expected time since infection is

beneficial in comparison to the other approaches, when the objective function is Ω

(see Equation 4.3.12). However, as we increase the number of individuals r to sample
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for the test, the effectiveness of strategy B approaches that of strategy A as shown

in Figure 4.8. Figures 4.9 and 4.10 show the epidemic size, the distribution of the

positive tests and the distribution of the number of tests in each group only for the

case ∆t = 1 where r = 1 and r = 5 respectively using the optimal control (expectation

infection time based). As expected, Figures 4.9a, 4.9b, 4.10a and 4.10b show that the

epidemic never dies out; instead, the process seems to have reached its equilibrium

when the final time considered is T = 10000 and the number of infectives fluctuates

around 65 for the group 1 and 13 for the group 2 in the case r = 1.

Unsurprisingly, we note that there are more individuals tested in group 1 compare

to group 2; as shown in Figures 4.10f and 4.10e, 4.9f and 4.9e. This is due to the

fact that the group of individuals highly susceptible to the disease is more likely to

be infected more often after their recovery. This is emphasized in Figures 4.10d and

4.10c, 4.9d and 4.9c where the positive tests are more frequent in group 1. Hence for

a better control, more resources must be deployed to the more susceptible group.

4.4 Conclusions

This chapter has introduced the idea of using latent process (Sellke thresholds) to

compare different control strategies for epidemics in the presence of diagnostic tests

when there is no data observed and the model parameters are assumed to be known.

The approach leads to a coupling of realisations under different controls to compare

competing control strategies in term of their expected outcome (epidemic size or to-

tal time hosts remain infected for). It also gives evidence that under this coupling,

the outcome of different controls are highly positively correlated which, from a sta-

tistical perspective reduces the variance of the estimates of the expected difference.

We showed that given a set of Sellke thresholds, an optimal control strategy could

be determined using a general numerical optimisation method. Although Simulated

Annealing is relatively new to epidemic modelling (Demon et al., 2011), it is widely

used in geostatistics (van Groenigen, 1999; Marchant and Lark, 2007).

The current study has only examined controls on coupling epidemics with the

assumption that the model parameters are known beforehand. No inference of pa-

rameters from data is carried out. These considerations are not realistic for real-life

epidemics since most often controls are conditioned on observed data, i.e. the dy-

namics of the disease in the targeted population are estimated. In this case, the

distribution of the model parameters is determined using a statistical approach, fre-

quently the Bayesian inference described in chapter 3. We will discuss these aspects

in the next chapter.

78



Chapter 5

Controlling spatio-temporal

epidemics using latent processes in

the Bayesian framework

5.1 Introduction

5.1.1 Motivation

Highly infectious diseases such as citrus canker (Gottwald et al., 2002; Gottwald and

Irey, 2007; Neri et al., 2014), Huanglongbing (Bové, 2006; Gottwald, 2010; Parry

et al., 2014), Chalara dieback (DEFRA, 2013), Food and Mouth disease (Ferguson

et al., 2001; Tildesley et al., 2009) and classical swine fever traditionally have been and

continue to be a source of major global and regional threat in agricultural and animal

systems, causing important economical loss (Schubert et al., 2001; Ferguson et al.,

2001; Gottwald et al., 2002; Thompson et al., 2004; DEFRA, 2013). In recent years

there has been an increasing interest in controlling these severe diseases (Schubert

et al., 2001; USDA/APHIS et al., 2006; Parnell et al., 2009; Bassanezi et al., 2011;

DEFRA, 2013; Cunniffe et al., 2014). Efforts to control an outbreak of such diseases

often involve pre-emptive culling of a large number of healthy hosts around a detected

infected host. This kind of control has been always surrounded by controversy given

the socio-economic impact it can have on farm owners (Schubert et al., 2001; Ferguson

et al., 2001; Graham et al., 2004). This highlights the need of strategies which optimize

the distribution of the available resources and minimize the number of susceptible

hosts, that must be removed.

Here we assume that we observe some epidemic data y, typically host removal

times or snapshots of the system at certain observation times in a time interval [0, tobs].

The latter form of data is the result of a sequence of surveys identifying the set of

symptomatic hosts at times τ1 = t0, τ2, . . . , τn = tobs. Given that interventions will
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typically occur at a future time tc > tobs and that the object of the control is to

minimise some aspect of the epidemic (which may be the total number of infections-

removals prior to some future or an assessment time), the fundamental question that

arises during an outbreak of this kind is the following: What is the optimal control at

tc so that the specified impact, of the epidemic is minimised given the observation y?

(see Figure 5.1).

|
tobs

|
T

•
tcy

Figure 5.1: Graphical representation of the observation-control-impact system.

5.1.2 Methodology

To answer this fundamental question, we consider a range of measures that can be

used to characterise each host at a future time and to prioritise those hosts which shall

be targetted for control. A similar idea is used in Boender et al. (2007) where the map

is constructed based on the basic reproduction number. However, a control based on

such a map may reduce the epidemic impact but will involve culling healthy hosts,

especially in high-density regions. In Tildesley et al. (2009) and Kao (2003), a similar

approach is used to prioritise farms with high probability of infection. However, the

combination of both approaches has been proved to outperform either of these two

approaches (te Beest et al. (2011)). Our approach follows a similar idea, though

in contrast to the model in te Beest et al. (2011), our model accounts for cryptic

infections. We define the so-called threat for each host which takes into account

the predicted risk of infection (probability of being infected at a given time) and

the infection hazard posed to the other susceptibles if it becomes a focus of a new

local epidemic. To reflect the constraints on deploying resources which might limit

capability to inspect an arbitrary subset of hosts, we will consider scenarios where a

host population is partitioned into sub-regions and controls are deployed in a subset

of these. We will again use the notion of coupling epidemics using Sellke thresholds

to reduce the variance of estimates of differences in control efficacy.

Finding the optimal design involves comparing the predicted effect of different

control strategies on the trajectory of the epidemic. In practice, however, it is im-

possible to observe the effect of two control strategies on the same population unit

during an outbreak. This is known as the Fundamental Problem of Causal inference

(Holland, 1986). However, techniques such as randomised, cohort and case-control

studies have been used to tackle this issue in medical sciences. Also techniques based

on comparing controls on independent realisations obtained using the Gillespie algo-

rithm (Gillespie, 1977) have been used by Keeling et al. (2001); Ripley et al. (2003)
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and Cunniffe et al. (2015). These aforementioned techniques may increase the bias in

the expected effect between controls compared to the case where experimental units

are paired. They may also involve the use of a large number of realisations. Here,

we follow the same mechanism as in Cook et al. (2008) where epidemics are coupled

by matching latent processes assumed to be unaffected by control, to circumvent this

problem. Not only does this mechanism allow us to compare directly the effect of

different controls but it also provides a reduction in the variance of estimates of the

difference between controls. Following Cook et al. (2008), we use the Sellke thresholds

as the latent processes whose sampling properties are known given the model speci-

fication. We illustrate the methodology on various data sets, including a simulated

outbreak in an uniformly distributed locations, and using citrus locations from urban

Miami (Gottwald et al., 2002; Cook et al., 2008; Neri et al., 2014; Cunniffe et al.,

2015).

5.2 Modelling approaches

As mentioned in the previous section, consideration is given to identifying a more

general modelling approach that could be appropriate for controlling spatio-temporal

epidemics, particularly arboreal epidemics. The goal is to be able to design efficient

controls to reduce future impact of the epidemic taking account of the nature of the

available data and the size of the disposal resources.

5.2.1 Structure of the control

Epidemics such as citrus canker, FMD, Classical and African Swine Fever, etc, are

often observed in a period of time [t0, tobs] before any action is taken. We denote

by y the data observed during that period which typically consist of a sequence of

‘snapshots’ of the symptomatic set of hosts at discrete times. We assume the epidemic

proceeds according to some model with parameter vector θ. We define the trajectory

of the epidemic up to time t to be x(t) so that x(t) specifies the time and nature of

every transition occurring during [t0, t]. The intervention time when the control is

applied is denoted by tc > tobs and we denote by Ta ≥ tc the ‘outcome or assessment

time’ at which the effectiveness is assessed (e.g. in term of the numbers of infections

up to Ta). Similar to Chapter 4, we define the impact function u(x(T )) as the total

number of infections by T .

We denote by π0 (x(T )|y) and πd (x(T )|y) the posterior distribution of the tra-

jectory of the epidemic subject to no control and control d respectively. The best

choice of control d, given the data y is the one that minimises the expected impact
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conditional on what is observed. That is,

U(d) = Ed (u(x(T ))|y) =

∫
u(x′(T ))πd (x′(T )|y) dx′(T ) (5.2.1)

The most common approach used in simulation-based optimal design utilises Monte

Carlo Simulation (see Chapter 3). Typically, we draw sample (x(T ),θ) from

πd (x(T ),θ|y) to generate a sample from πd (x(T )|y). Therefore, for different strate-

gies, we use these samples to evaluate the impacts and evaluate expectations. The

expectation of the effect of these control strategies could then be compared to iden-

tify the optimal one. However, the posterior distribution πd (x(T ),θ|y) is not known

in our context. One approach would be to develop a fully Bayesian approach as in

Müller (1999) where the design d is estimated through an MCMC scheme using a

Metropolis-Hastings technique for updating d. However, by doing so we are com-

paring the effect of strategies on independent epidemics, leading to higher variance

between the outcomes.

5.2.2 Representation of the epidemic process

We will again make use of a functional-model representation of the process introduced

in 4.3.1. Recall that there is a process Q whose sampling distribution is independent

of the model parameter vector θ such that the outcome of the epidemic is obtained

deterministically as

x = h(Q,θ) (5.2.2)

where h is a 1-1 function. Our concern is to find optimal controls by comparing

different strategies using this construction rather than following the idea developed

by Cunniffe et al. (2015) where controls are compared on simulated replicates using

the Gillespie algorithm (Gillespie, 1976). We again use the Sellke thresholds as the

process Q as in 2.2.2.

Using the above parameterisation, we proceed as follows to solve the optimisation

problem defined in Equation (5.2.1):

1. Draw m samples from π0 (x(T ),θ|y) to generate samples from π0 (Q,θ|y) by

inverting the Equation 5.2.2.

2. We then apply a control d to all realisations (Q,θ) ∼ π0 (Q,θ|y), to generate

samples from πd (x(T )|y).

3. We approximate the expected value defined in Equation 5.2.1 as

Û(d) =
1

m

m∑
i=1

u(xi(θi, Qi,d, T )) (5.2.3)
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where xi(θi,Qi,d, T ) is a sample from πd (x(T )|y) corresponding to the process

(θi,Qi) to which the design d is applied and observed until time T .

The expected effect of various control strategies can then be compared. For dif-

ferent control strategies d and d′, the expected difference in the effect of d and d′

can be computed as Û(d)− Û(d′). This quantity is known in causal inference as the

average causal effect (Holland, 1986).

5.2.3 Epidemiological model

We consider a spatially-explicit, stochastic, individual-based, compartmental SI (Neri

et al., 2014) model for the spread of an infectious disease throughout a discrete pop-

ulation where members are located as points in a 2-dimensional continuous region.

Hosts are then identified by their coordinates (e.g. latitude/longitude). We assume

that at time t, any host in the population is either Susceptible (S) or Infected (I).

Hosts in the latter category are either cryptic or symptomatic. The stochastic process

that governs the transition from state S to state I in the infinitessimal time increment

[t, t+ dt] is given by the following equation:

P (i infected in [t, t+ dt]) = λi(t)dt+ o(dt), (5.2.4)

λi(t) = β
∑
j∈I(t)

K(dji, α) + ε (5.2.5)

where λi(t) is the hazard, or the force of infection on host i at time t, β is the contact

parameter and ε the primary infection rate, this being the rate at which any individual

contracts the disease from external sources, assumed fixed over the observation period.

In addition, K(dji, α) is a non-negative function characterizing the challenge posed by

the host j to i as a function of the inter-host distance dji, and known as the dispersal

kernel with parameter α (the dispersal parameter). It is worth noting that with fixed

α, the function K in most typical cases decreases with dij. We denote by S(t) and

I(t) respectively the set of susceptibles and infectives at time t.

Moreover, we assume without loss of generality that individuals remain asymp-

tomatic for a fixed period of time ∆ which is known, then ultimately become symp-

tomatic. A random sojourn time in the cryptic compartment could alternatively be

modelled by assigning an appropriate distribution, for instance a Gamma or Weibull

distribution (Parry et al., 2014).

It is worth noting that any symptomatic host is easily identifiable as being infec-

tive, while cryptic hosts are only identifiable through some diagnostics tests. This

makes control difficult. Moreover, both symptomatic and cryptic hosts present a

threat to other individual in the population. The described model is indeed relevant

to many plant diseases, especially to arboreal pathogens such as citrus canker.
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5.2.4 Control space construction

We make some assumptions regarding the type of controls we use in this chapter. We

assume that although a host, cryptic at the time of a survey contributing to y, will not

be recorded as infected in that survey, all infections are observable during the control

phase, thanks to the availability of a diagnostic test. We consider a system where

the host population is partitioned into Nr fixed sub-regions. Specifying the control

here consists of identifying the number nr of sub-regions to visit and the maximum

number of hosts Vi, i = 1, . . . , nr to remove in each region where
∑nr

i=1 Vi ≤ N ′. The

precise regions to be considered will be decided using the prioritisation scheme of the

next section.

5.2.5 Prioritisation scheme

We now define measures used as criteria for host prioritisation. For each host, we

construct different metrics that are used to prioritise hosts for consideration under a

given control strategy.

We define by E(Gj (x(t)) |y), the posterior expectation of a measure at time t ∈
[tc, T ] for host j. A measure of this kind is used to select hosts within regions when

deploying controls. This concept has been often used in the literature to target priority

sites (Boender et al., 2007; Tildesley et al., 2009; Kao, 2003; te Beest et al., 2011;

DEFRA, 2013). Typically, the candidate host with the highest expected measure is

prioritised.

Here, for each host we define the measures Gj
R (x(t)) and Gj

C (x(t)) respectively as

the infection status of j at t under trajectory x(t) and the challenge or the infection

hazard posed to the remaining susceptibles if that host were infected at time t. More

formerly, the risk measure is given by

Gj
R (x(t)) = 1{xj≤t} (5.2.6)

where xj is the infection time of host j and 1 is the indicator function. The challenge

is defined as:

Gj
C (x(t)) = β

∑
i 6=j

K(dij, α)1{xi>t} (5.2.7)

Hence, we denote by the posterior expected risk and the challenge respectively as

Rj(t) = E
(
Gj
R(x(t))|y

)
(5.2.8)

and

Cj(t) = E
(
Gj
C (x(t)) |y

)
(5.2.9)

84



5.2.5.1 Threat measure

In (DEFRA, 2013), it has been argued that considering such measures separately for

prioritisation may not be cost-effective. For example removing a host with high risk

might be less cost-effective when its challenge is low. The argument is that such a host

is probably surrounded by other infectious hosts. They concluded that a combination

of the two measures will provide the best prioritisation scheme. Following a similar

idea, we define the threat posed by each host at time t as the posterior expectation

of the product of the risk and challenge given the observed data y as :

Tj(t) = E
(
Gj
R(x(t))Gj

C (x(t)) |y
)

(5.2.10)

5.2.5.2 Alternative measure

We propose an additional metric for comparison purposes as being the product of

posterior expectations:

Uj(t) = Rj(t)Cj(t) (5.2.11)

Intuitively, the two metrics in Equations 5.2.10 and 5.2.11 are not the same given that

we might anticipate a negative correlation between Gj
R and Gj

C . The reason is that,

as the likelihood of infection increases, so does the probability that infection close to

j have occurred, reducing the number of susceptibles in the vicinity. The challenge is

then decreased.

5.3 Data and Inference

We suppose that the data y consist of a sequence of snapshots observed at particular

times in [t0, tobs] and we wish to predict the trajectory of the epidemic up to some

future time T . As this requires the imputation of additional quantities, notably the

infection times, it is well suited to Bayesian data-augmentation approaches (Neri et al.,

2014; Parry et al., 2014; Lau et al., 2015).

Recall that in Bayesian framework, any inference is obtained from the posterior

distribution π(θ|y) ∝ L(θ)π(θ), where L(θ) is the likelihood of the model parame-

ters and π(θ) reflects any a priori knowledge of the distribution of the parameters.

Therefore, we conduct our analysis in this framework using Bayesian computational

method namely Markov Chain Monte Carlo (MCMC) along with data augmentation

to draw samples from the posterior distribution π(θ, x(T )|y).
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5.3.1 ‘Complete data’ likelihood

We fist define the likelihood in the ‘complete data’ setting where the observations are

x(T ) and comprise the precise times of infection, and identify the infected individuals,

for all infections occurring in the interval [t0, T ] for some T > t0. We assume t0 to be

the time at which the primary source of infection becomes active. Let I denote the

set of infected hosts, Ĩ its complement and, for i ∈ I, let ti denote its infection time.

Then a complete-data likelihood can be constructed as:

L(θ;x(T )) =
∏
i∈I

λi(t
−
i ) exp

(
−
∫ ti

t0

λi(u)du

)
×
∏
s∈Ī

exp

(
−
∫ T

t0

λs(u)du

)

where λi(t) = λi(t, x(T ), θ) denotes the infections challenge presented to i at time t,

under the realisation x(T ), for t ∈ [t0, T ].

Four computational purposes it is helpful to write this likelihood using the ap-

proach of Britton and O’Neill (2002) and Neal and Roberts (2005). First assign the

‘notional’ infection time for all j ∈ Ĩ to be tj = T . Then we can write

L(θ;x(T )) =
∏
i∈I

λi(s
−
i ) exp

−∑
i∈I

∑
i∈I∪Ĩ

Aij(tj − ti)1tj>ti + ε
N∑
j=1

tj

 (5.3.1)

where Aij = βK(dij, α) is the infective pressure of host i on j and 1 the indicator

function.

5.3.2 Parameter estimation with MCMC method

Parameter estimation should be straightforward if the observation y is complete in

the sense of 5.3.1, in other words if all infection times are observed precisely. How-

ever, epidemiological data are partially observed. Therefore the problem of parameter

estimation with missing data must be addressed using MCMC along with data aug-

mentation methods (see Section 3.5). Recall that it entails treating the unobserved

events as nuisance parameters and, given the observed data, the joint posterior density

of the model and these nuisance parameters is then investigated. Inference on model

parameters is achieved from consideration of π0(θ|y) with inference on individual

components being made from the respective marginal density.

Our algorithm will generate samples from the joint posterior π0(θ, x(T )|y) where

T can be chosen in a number of ways. First note that the data y, being a sequence of

snapshots of symptomatic sets of hosts can be interpreted as specifying a period for

the infection of each symptomatic host of the form [τj−1 −∆, τj −∆] where τj is the
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time at which the host was first observed as symptomatic. It follows that a suitable

algorithm could be designed by setting T = tobs −∆, as the data in effect distinguish

hosts infected before tobs −∆ from those infected after tobs −∆. However, given the

need to impute infections beyond tobs −∆ to investigate the posterior distribution of

the prioritisation measures we implement a more general algorithm with T > tobs−∆.

We describe the MCMC algorithm used to simulate from π(θ|y) in 5.3.2.1 and

5.3.2.2 where the approach to updating components of θ and of x(T ) are discussed

separately.

5.3.2.1 Updating the model parameters, θ

We update parameters using a single-component Metropolis algorithm, since the pos-

terior distribution of each one of the parameters is not in a closed form, by proposing

and accepting or rejecting changes to the current values of α, β and ε respectively.

A new value of each parameter condition on all the others is proposed from a nor-

mal distribution with mean the current value. More precisely, the new parameter

θ′k, k = 1, 2, 3 is proposed as follows:

θ′k = θk + u, where u ∼ N(0, σ2
k). (5.3.2)

If θ′k > 0, it is then accepted with probability

ρ = min

{
1,
π(θ′, x(T )|y)

π(θ, x(T )|y)

}
= min

{
1,
π(θ′)L(θ′;x(T ))

π(θ)L(θ;x(T ))

}
(5.3.3)

where θ′ is the vector parameter θ with θk replaced by θ′k. Note that σk is a positive

parameter which is tuned for each parameter separately to ensure the chain mixes

well.

5.3.2.2 Updating x(T)

To update x(T ) we need to take account of the fact that when T > tobs, the number

of infection events in x(T ) is not specified by y. This is overcome using a simple

reversible-jump algorithm introduced in Section 3.5.2.5.

S I
1

1/2
1/2

Figure 5.2: State diagram for the infection times to show the state transitions.
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Given the current state of an individual, we propose changes to the infection

times by adding, moving or deleting its infection time (see Figure 5.2). This is done

as follows:

Updating x(T ) using Reversible-Jump MCMC (T > tobs −∆)

i) Choose an individual j in the population.

ii) If j is symptomatic at tobs so that tj < tobs−∆, propose a new infection time

t′ ∼ U
(
τf(j)−1 −∆, τf(j) −∆

)
(5.3.4)

where f(i) indexes the assessment time at which j was first symptomatic.

Accept t′ with probability

ρ = min

{
1,
π(θ, x′(T )|y)

π(θ, x(T )|y)

}
= min

{
1,
L(θ;x′(T ))

L(θ, x(T ))

}
(5.3.5)

where x′(T ) denotes the trajectory with tj replaced by t′.

iii) If j is infected at T (but not symptomatic at tobs)

(a) with probability p = 1/2 move its infection time t′ ∼ U [tobs − ∆, T ].

Accept t′ with probability given by Equation 5.3.5.

(b) Delete its infection time with probability p = 1/2. The acceptance

probability is then given by

ρ = min

{
1,

2

T − tobs + ∆

L(θ;x′(T ))

L(θ;x(T )

}
. (5.3.6)

iv) If j is not infected at T , propose an infection time t′ ∼ U [tobs−∆, T ]. Accept

t′ with probability

ρ = min

{
1,
T − tobs + ∆

2

L(θ;x′(T ))

L(θ;x(T )

}
. (5.3.7)
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5.3.3 Imputation of the Sellke thresholds

Given a sample (θ, x(t)) from π0(θ, x(T )|y) we can impute the Sellke thresholds Q

as follows:

Qj =


∫ tj

0

(
β
∑

i∈I(u) K(dij, α) + ε
)
du if j is infected at tj < T∫ T

0

(
β
∑

i∈I(u) K(dij, α) + ε
)
du+ ζ if j is susceptible at T

(5.3.8)

where ζ ∼ Exp(1). Given a random draw (x(T ),θ) ∼ π0(x(T ),θ|y), it is straight-

forward to use the construction in Equation 5.3.8 to impute the corresponding Sellke

thresholds Q. This results in a draw from the joint posterior distribution of the

parameter and the thresholds, π0(θ,Q|y).

The joint distribution π0(θ,Q|y) is the key object of interest in this chapter since

the underlying or latent stochastic process for the stochastic epidemic models are

specified with a draw from π0(θ,Q|y). Specifically, a random sample from the pos-

terior distribution (θ,Q) ∼ π0(θ,Q|y) is used as a population of ‘pre-epidemics’ on

which subsequent analyses to compare controls can be based.

5.3.4 Imputation of the prioritisation measures

The imputation of the prioritisation measures Gj (x(t)) given (x(t),θ) is straightfor-

ward using Equations (5.2.8), (5.2.9), (5.2.10) and (5.2.11). In particular, for each

draw (x(t)k,θ(k)) ∼ π0(x(t),θ|y), the vectorG(k)
. (x(t)) = (G1(k)

. (x(t)), . . . , GN(k)
. (x(t)))

is computed, with G(k)
. being either the risk or the challenge. This will provide a sam-

ple from the joint posterior distribution π0

(
Gj
R (x(t)) , Gj

C (x(t)) |y
)

for 1, . . . , N .

The measures defined in Equations (5.2.8), (5.2.9), (5.2.10) and (5.2.11) could then

be approximated using the Monte Carlo approximation (see Chapter 3) respectively

by:

R∗j(t) =
1

m

m∑
k=1

G
j(k)
R (x(t)) (5.3.9)

C∗j (t) =
1

m

m∑
k=1

G
j(k)
C (x(t)) (5.3.10)

T ∗j (t) =
1

m

m∑
k=1

(
G
j(k)
R (x(t))G

j(k)
C (x(t))

)
(5.3.11)

U∗j (t) =

(
1

m

m∑
k=1

G
j(k)
R (x(t))

)
×

(
1

m

m∑
k=1

G
j(k)
C (x(t))

)
(5.3.12)

where m is the number of draws generated from π0(x(t),θ|y).
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5.4 Optimised control strategies

Having defined the measures for prioritisation, different controls strategies could be

compared on the epidemic realisations using the Sellke construction. More impor-

tantly, given the available resources one might be able to identify the design that

provides an optimal reduction in the outcome of the epidemic. With that goal in

mind, an approach is followed whereby the outcome of the epidemic is represented

deterministically and an optimisation method is applied to identify the optimal strat-

egy.

Müller and Parmigiani (1995) introduced a general algorithm for curve-fitting

based optimisation to find an optimal design of Equation (5.2.3). Their algorithm

could be adapted here as follows:

1. Select a design di ∈ D, i = 1, . . . ,m

2. Draw (θi,Qi) from the joint posterior distribution π0(θ,Q|y) for i = 1, . . . ,m

to generate πdi(x(t)|y) and evaluate each Û(di).

3. Fit a smoothing curve as ‘hypersurface’ Ũ(d) to the scatterplot (di,−Û(di))

4. The optimal design could then be obtained deterministically for example the

mode of the smoothed curve.

They remarked that this approach could be applied only to a low-dimensional design

problem. In our framework however, optimised control of an epidemic may involve

high-dimensional designs. Therefore, fitting a smoothing curve on the resulting scat-

terplot may be difficult.

We therefore propose to adapt the Simulated Annealing algorithm introduced in

Chapter 4 (Bertsimas and Tsitsiklis, 1998; Busetti, 2003) to epidemics (Demon et al.,

2011).

5.4.1 Control strategies and selection of regions

We assume that the host population is partitioned into Nr regions. We let Mi and

Hi denote respectively the number of hosts in region i and the set of hosts in region

i (so that Mi = |Hi|).
We now describe several strategies for selecting regions and hosts based on the

measures defined in (5.3.9)-(5.3.12) as calculated for t > tobs −∆. For each region i

we define a measure, calculated from the samples (θ, x(T )), and given by (in the case

of T ∗)
wi(t) =

1

Mi

∑
k∈Hi

T ∗k (t), i = 1, . . . , Nr (5.4.1)

with wi analogously defined for R∗, C∗, U∗.
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We consider regions in descending order of wi(t). The first step in defining a control

is to identify the first nr regions from this order as those which will be considered

under the control. The second step involves specifying the maximum number of hosts

that can be removed in each region in the form of a vector V ∈ Nnr . A control (nr,V )

must satisfy a constraint
∑nr

j=1 Vj ≤ N ′.

Finally, we must specify which Vi host should be considered in the ith region

selected. This is done by choosing the Vi hosts with the highest value of T ∗. We

consider three strategies for identifying the values in V ∈ Nnr .

1. Strategy 1 (Equal allocation)

Vi = max{k|knr ≤ N ′}

2. Strategy 2 (Probability-based allocation)

(V1, . . . , Vnr) is selected to be a draw from a multinomial distribution with pa-

rameters N ′ and P where

Pi =
wi(t)∑nr
j=1wj(t)

.

Note that Strategy 2 has the property that it involves a random step in the

selection of V . Moreover, it would select with high probability a region with

few hosts but which had a high average value of the prioritisation measures.

Therefore we consider a further strategy:

3. Strategy 3 (Adaptation of Neyman allocation)

Here Vi =
N2
i wi∑Nr

j=1 N
2
j wj

N ′ (5.4.2)

The rationale of allocating resources in this manner is that they are distributed

across regions proportionally to both the size of the regions and considering

hosts measures. This is an analogy to the Neyman allocation in stratified sam-

pling (Neyman, 1934) where the goal is to sample more heavily from a stratum

(region) where the population size of the stratum is large and the variability

within the stratum is large. By doing so, we hope to find a sampling method

that could be easy to use in practice.

5.4.1.1 Optimisation strategy using Simulated Annealing

We begin by drawing (θi,Qi) from the joint posterior distribution π0(θ,Q|y), for

i = 1, . . . ,m. We then modify the Algorithm 1 of Section 4.3.6.1 as follows:
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Algorithm 1. Simulated Annealing for optimising the outcome of the epidemic
considering fixed sample size m

1: Initialisation

Set the cooling temperature c1, k = 1 and the initial design dopt = d1

Compute the approximation in Equation (5.2.3)

Û opt = Û1 = Û(d1) = 1
m

∑m
i=1 u(x(θi,Qi,d1)).

2: Update to d

3: while stopping criteria is not reached do

4: for l = 1, . . . , p do

5: Update nr

n′r ← nr + u where u ∼ U [−a, a] (only integer values).

6: Update V1, . . . , Vn′r using one of the following

i. Strategy 1

ii. Strategy 2

iii. Strategy 3

7: Use the same m samples and evaluate Û ′ = Û(d′) =
1
m

∑m
i=1 u(x(θi,Qi,d′))

8: Set (Û ,d) =

(Û ′,d′) if Û ′ < Ûk

(Û ′,d′) if Û ′ > Ûk with probability α

where α = min
{

1, exp
(
− Û ′−Ûk

ck

)}
Set (Û opt,dopt) = (Û ′,d′) if Û ′ < Û opt

9: end for

10: Set (Ûk+1,dk+1) = (Û ,d)

11: Reduce the parameter ck such that ck+1 = γck, γ ∈ [0, 1]

12: k ← k + 1

13: end while

It has been mathematically proven that this algorithm converges to the global

optimum (Kirkpatrick et al., 1983). Clearly, we are presented with a problem of

choosing the Monte Carlo sample size m. However, it may be determined either

empirically, using some prior information if available (e.g. an expert opinion) or

simply considering a large enough m. The latter will involve more computations,

therefore a more efficient method is proposed which adaptively increases the value of

m. We modify the Algorithm 1 so that it gradually increases the size of the sample
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used in the impact estimator.

Algorithm 2. Simulated Annealing with incremented sample size

1: Initialisation

Set the cooling temperature c11, m = 1 and the initial design dopt = d1

Compute the approximation in Equation (5.2.3)

Û opt = Û1 = Û(d1) = u(x(θ1,Q1,d1)).

2: Update to d

3: while stopping criteria is not reached do

4: for l = 1, . . . , p do

5: for k = 1, . . . , q do

6: Update nr

n′r ← nr + u where u ∼ U [−a, a] (only integer values).

7: Update V1, . . . , Vn′r using one of the following

i. Strategy 1

ii. Strategy 2

iii. Strategy 3

8: Use the same m samples and evaluate

Û ′ = Û(d′) = 1
m

∑m
i=1 u(x(θi,Qi,d′))

9: Set (Û ,d) =

(Û ′,d′) if Û ′ < Ûk

(Û ′,d′) if Û ′ > Ûk with probability α

where α = min
{

1, exp
(
− Û ′−Ûk

cmk

)}
Set (Û opt,dopt) = (Û ′,d′) if Û ′ < Û opt

10: end for

11: Reduce the parameter cmk such that cm(k+1) = γcmk, γ ∈ [0, 1]

12: end for

13: m← m+ 1, d← dm = dopt, U ← U(dm)

14: Set cm1

15: end while

The algorithm defines a sequence d1,d2, . . . ,dn which converges to an optimal

design (see Figure 5.4), with n is the number of realisation used. Here, the global

optimum is the lowest achievable expectation of the number of infections across the

epidemic realisations and the design is hereafter referred as the optimal design (Demon

et al., 2011). In practice, to reduce the computation time, one can define a stopping
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criterion. Here, the algorithm stops if the design remains the same after a certain

number s of successive realisations, where s is determined empirically. We mainly

choose s = 10.

5.4.1.2 Optimal strategy (Algorithm 3)

In theory, the optimal estimate of the approximation in the Equation (5.2.3) would be

the one obtained when each (θi,Qi) has its own optimum i.e. the sequence of designs

that minimises:

Û(d1, . . . ,dm) =
1

m

M∑
i=1

u(x(θi,Qi,di, T )) (5.4.3)

Each optimum can be obtained by optimising the resulting impact function i.e.

the problem is then reduced to finding the design di that minimises the impact

u(x(θi,Qi,d, T )). By doing so, we hope to check whether the optimal design ob-

tained using our proposed method is reasonable. To that end, we fix m = 1 in the

Algorithm 1 for each realisation (θi,Qi).

5.5 Computational Issues and Parallel Computing

It can be easily understood that given all the missing information, the inference prob-

lems we tackle are high-dimensional. In addition, the Simulated Annealing algorithm

involves computing the cumulative sum of outcomes of epidemics at every new pro-

posed design resulting in computationally intensive algorithms. Although, solutions

to the former problem are proposed by Deardon et al. (2010), some improvements

need to be made. Parallel computing methods seem ideal for speeding up the compu-

tations. However, their applicability within both a dynamic MCMC and stochastic

optimisation such as Simulated Annealing is not straightforward. This is because new

state is always dependent on the previous one, thus we need to keep track of states

that are already visited. Nevertheless, domain-decomposition parallelisation of the

sums in the likelihood in the Equation 5.3.1 and the parallelisation of the cumulative

sum of the outcome of the epidemics was achieved using a shared-memory architec-

ture with an implementation of the OpenMP standard (Dagum and Menon, 1998).

Although this technique is new to epidemic modelling, it has been successfully applied

to speed up the computation of the likelihood by Jewell et al. (2009). Therefore, we

use such method in order to be able to reduce the computation time.
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5.6 Application to simulated data

Efficiency of the algorithms described here is assessed using simulated data and on

simulations of outbreaks with citrus locations to mimic a much studied plant epidemic

citrus canker (Gottwald et al., 2002; Cook et al., 2008; Neri et al., 2014; Cunniffe et al.,

2015).

We begin by introducing some notation that will be used throughout the rest

of this thesis. We denote by Ta the assessment time. We omit the design d to

indicate that there is no control applied. Therefore the notation u (x(Q,θ, Ta)) will

denote the epidemic size at time Ta if no intervention is deployed. Given a sample

{(θi,Qi)|i = 1, . . . ,m} from π0(θ,Q|y) and a control d we will be interested in the

samples {
u(x(Qi,θi,d, Ta) | i = 1, . . . ,m

}
(5.6.1)

and{
P(Qi,θi, d, Ta) =

u (x(Qi,θi, Ta))− u (x(Qi,θi, d, Ta))

u (x(Qi,θi, Ta))− u (x(Qi,θi, tobs))

∣∣∣∣ i = 1, . . . ,m

}
, (5.6.2)

these being samples of the total number of infections with control strategy d and the

proportion of infections in [tobs, Ta] avoided using d in comparison to the no-control

case. The sample means of the latter quantity will be used to compare the effect of

competing control strategies. In addition, we denote by d{M,k,l} the control strategy

obtained using the measure M (see Equations 5.3.9-5.3.12), when implementing the

algorithm k, considering the strategy l and d∗{M,k,l} the corresponding optimal strategy.

So for example, d∗{R∗,2,1} will denote the optimal control strategy obtained using the

Simulated Annealing Algorithm 2 with strategy 1 (equal allocation) using the risk

measure R∗. Finally, UR(M) denotes the ‘unconstrained regions’ control strategy

using the measureM, this being control which consists of selecting the first N ′ in the

ordering for examination.

5.6.1 Simulated data using a uniformly distributed location

We test the methodology on a spatio-temporal epidemic simulated in a population

of size N = 1000, where their locations are sampled independently from a uniform

distribution over a 0.75km × 0.75km square region subdivided into 361 sub-regions

(see Figure 5.3). The observation are made between t = 0 (time corresponding to

the introduction of the external source of infection) and tobs = 460; and the data

consist of a sequence of snapshots of symptomatic set of hosts taken at 30−days

intervals. The entire population is assumed susceptible at time t = 0 and the process

is governed by the Equation (5.2.4). We use α = 0.08km, β = 7.10−6days−1km2 and

ε = 5.10−5days−1 for the simulation and consider an exponential kernel K(d, α) =
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1
2πdα

exp(−d/α). Moreover, we constrain the time it takes for symptoms to appear

following an infection to ∆ = 100 days. As discussed earlier, the data y specify

a period of time where each symptomatic host is infected and their corresponding

locations. By the end of the observation, there are 128 symptomatic hosts detected

while 153 are undetected (cryptic). Figure 5.3 illustrates the epidemic progress.

(a)

Snapshot at time t = 250

(b)

Snapshot at time t = 340

(c) (d)

Figure 5.3: Sample of the disease progress maps made at 30 days intervals from t = 130
up to t = 460, on a population of size N = 1000 from simulated data. Symptomatic
hosts, cryptic infections and susceptible hosts at the time of the snapshot are denoted
by red, blue and green dots respectively.

We use the MCMC routines described in Section 5.3.2 to sample from the posterior
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distribution π0(θ, x(T )|y). Non-informative uniform priors U [0, 1000] are used for all

parameters.

1. The first estimation is carried out by imputing infections times up to T =

tobs −∆.

2. Next, the cryptic hosts are included by imputing infections times up to T = tobs.

Recall that this will correspond to imputing new infections in [tobs −∆, tobs].

3. Finally, we impute infection times beyond the observation period up to T = Ta

(assessment time).

Note that 2) and 3) will require the use of RJMCMC techniques and the assessment

time is fixed to be Ta = 500.

For that end, we run the algorithms for 280000 iterations for the case T = 360 and

106 iterations for T = 460 and T = 500 discarding the firsts 10000 iterations to ensure

that convergence to stationary distribution is reached. The trace plots in Figure 5.5

show that the chains are mixing well and no sign of non-convergence. The posterior

distributions of the parameters along with the epidemic size at T = 460 and T = 500

are shown in Figure 5.6. We can observe from this figure that the true parameter

values (dash lines) are consistent with their respective posterior distributions. The

posterior distributions at different T shown on Figure 5.6 suggest that estimated

π0(θ|y) is the same regardless of which algorithm is used and how far beyond tobs we

impute infection times. This provides a check on the validity of the implementation

of the MCMC algorithms.

Figure 5.7 shows different measures described in Equations (5.3.9-5.3.12) con-

structed at T = 500 using 100000 realisations from the joint posterior distribution

π0(θ, x(T )|y). These measures are used to test our control strategies described in

5.4.1. We focus the discussion on Strategy 1 (equal allocation), though similar fea-

tures are obtained with the strategies 2 and 3 discussed in the next section. We

assume that we are allowed to sample a maximum of N ′ = 500 hosts for removal

and that the intervention occurs on day tc = 461, the day following the last ob-

servation, as a quick response to the disease is more cost-effective (Cunniffe et al.,

2015) though any given time beyond the last time the system is observed could be

used. Recall that symptomatic are automatically removed if sampled whereas cryptic

hosts are tested and removed if positive. Here, we consider the design of the form

d{M,2,1} for M ∈ {C∗,R∗,U∗, T ∗} (see Equations 5.3.9-5.3.12) and we use samples

{(Qi,θi)|i = 1, . . . , 1000} from the posterior distribution π0(Q,θ|y) for identifying

optimal controls.

After setting an appropriate initial design, d0 = (125; 4) for M, we run

the SA Algorithm 2 for {(θi,Qi), i = 1, . . . , 20} realisations. Figure 5.4 shows
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Figure 5.4: Ratio of the number of regions nr and the number of hosts Vi to visit as a
function of the number of realisation of the epidemic process for a typical run of the
Algorithm 2 using the citrus locations.

the progress of a typical run of the algorithm for 50 realisations. The algo-

rithm converges towards the optimal control strategies (second column of the Ta-

ble 5.1). The summary statistics of the estimated posterior distribution of the

proportion of infections avoided P (x(Q,θ,d, Ta)) when applying different controls

d ∈
{
d∗{C∗,2,1}, d

∗
{R∗,2,1}, d

∗
{U∗,2,1}, d

∗
{T ∗,2,1}, d

∗
{T ∗,3,1}

}
on the {(Qi,θi)|i = 1, . . . , 1000}

is shown in Table 5.1. The estimated posterior means of the proportion of infection

avoided with control strategies d∗{C∗,2,1} and d∗{R∗,2,1} show that such interventions are

less cost-effective in reducing the disease spread compared to the other measures; al-

though the control using R∗ performs better than C∗. This is due to the fact that

regions with high challenge coincide with regions where the majority of susceptible

hosts are distant from infections. Therefore any removal of infectious hosts has little
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effect in the amount of infective pressure on the remaining susceptibles. However,

interventions using d∗{U∗,2,1} and d∗{T ∗,2,1} differ to a very small extent, as seen from

their corresponding 95% credible interval in Table 5.1 and by the distributions of in-

fections avoided (see Figure 5.8). We found that regions selected for control in these

two cases coincide and this explains why these two controls differ so little. Moreover,

it appears from Figure 5.8 that there is no clear difference between the outcome of

both control strategies d∗{T ∗,2,1} and the optimal d∗{T ∗,3,1}. This suggests that the al-

gorithm performs well and the optimal strategy obtained from our proposed method

approaches the one of the optimal.

As expected, the control strategy UR(T ∗) which involves applying the control on

the first N ′ in the ordering across the entire set of 1000 realisations (Qi,θi) gives

the best reduction in the epidemic size (curve in cyan in Figure 5.8). This is an

obvious candidate for disease control in a system where either the pathogen cannot

be effectively controlled by chemical means (e.g. cocoa swollen-shoot virus (Dzhini-

Obiatey et al., 2006), sweet potato stunt (Gibson and Aritua, 2002)) or the resources

for the control allow surveying every single host in the population, which is unrealistic

in a large population.

Finally, we show the pairwise joint posterior distributions of the outcome of the

controls on Figure 5.9. Specifically, the lower panel shows the joint posterior distri-

bution

{(u
(
x(Qi,θi,d, Ta)

)
, u
(
x(Qi,θi,d′, Ta)

)
|i = 1, . . . , 1000}, (5.6.3)

where d, d′ ∈
{

no control, d∗{C∗,2,1}, d
∗
{R∗,2,1}, d

∗
{U∗,2,1}, d

∗
{T ∗,2,1}, UR(T ∗)

}
. We can no-

tice a strong positive correlation between the outcomes of paired-controls (Figure

5.9). As a result, the variance between the outcome of different controls is reduced

compared to an independent sampling allowing the difference in expected outcome to

be estimated more efficiently for a given sample size. More precisely,

V ar
(
n
(
x(Q, θ,d, Ta)

)
− n

(
x(Q, θ,d′, Ta)

))
<V ar

(
n
(
x(Q, θ,d, Ta)

))
+ (5.6.4)

V ar
(
n
(
x(Q, θ,d′, Ta)

))
where

n
(
x(Q, θ,d, Ta)

)
= {u

(
x(Qi,θi,d, Ta)

)
|i = 1, . . . , 1000}

and d, d′ ∈
{

no control, d∗{C∗,2,1}, d
∗
{R∗,2,1}, d

∗
{U∗,2,1}, d

∗
{T ∗,2,1}, UR(T ∗)

}
.

Therefore, for two control strategies d and d′, the expected difference in their

outcomes defined as Û(d′) − Û(d′) (see Equation (5.2.3)) can be estimated more

accurately using the Sellke construction. In addition, an independent sampling for

example will require the same amount of samples for each controls strategies, leading

to more sampling effort. Thus, coupling realisations under different control strategies
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.5: Sample trace plots for α, β and ε after a burn-in of 10000 iterations with
no augmentation period (T = 360) (a), (d) and (g) and with different augmentation
periods: T = 460 (b), (e) and (h) and T = 500 (c), (f) and (i).
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Figure 5.6: The posterior distributions for Bayesian MCMC estimation of the model
parameters including the dispersal rate α (a), the secondary infection rate β (b)
and the primary infection rate ε (c) conditioning on the data y while imputing the
infections up to T = 360 (black full curve), T = 460 (red dash curve); T = 500 (blue
curve). (d) The posterior distribution of the epidemic size at both 460 and 500 days.
Dashed lines correspond to the actual value used for the simulation.

101



Wi

0.00

0.25

0.50

0.75

1.00

R*

0.25

0.50

0.75

1.00

Map at t=500

(a) R∗ measure

C*)

0.004

0.008

0.012

Wi

0.0000

0.0025

0.0050

0.0075

0.0100

Map at t=500

(b) C∗ measure

Wi

0.000

0.002

0.004

0.006

T*

0.0025

0.0050

0.0075

Map at t=500

(c) U∗ measure

Wi

0.000

0.002

0.004

0.006

U*

0.0025

0.0050

0.0075

Map at t=500 

(d) T ∗ measure

Figure 5.7: Plots showing different maps including R∗ (a), C∗ (b), T ∗ (c) and U∗ (d)
constructed at Ta = 500 using 100000 (after a burn-in period of 10000) samples from
π0(θ, x(Ta)|y).

reduces the amount of simulation required to compare control strategies in term of

their expected outcomes compared to an independent sampling.
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Prioritisation Optimal design (nr;Vi) Mean SD 0.025 Median 0.95
d∗{C∗,2,1} (100;5) 0.458 0.07 0.333 0.459 0.6

d∗{R∗,2,1} (125;4) 0.597 0.072 0.457 0.597 0.742

d∗{U∗,2,1} (125;4) 0.614 0.072 0.474 0.616 0.756

d∗{T ∗,2,1} (125;4) 0.615 0.072 0.474 0.616 0.756

UR(T ∗) - 0.72 0.067 0.597 0.72 0.842

Table 5.1: Summary Statistic for the ratio of the number of infections avoided
P (x(Q,θ, d, Ta)) during different interventions on day tc = 461 relative to the number
for no control.
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Figure 5.8: Posterior distribution of the number of infection avoided u (x(Qi,θi, T ))−
u (x(Qi,θi,d, T )) | i = 1, . . . , 1000 for different d when deploying resources optimally
on day tc = 461, given that the maps are constructed on time Ta = 500 using simulated
data on uniformly distributed locations.
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Figure 5.9: Pairwise joint posterior distribution of the epidemic size i.e.
(n
(
x(Q, θ,d, Ta)

)
, n

(
x(Q, θ,d′, Ta)

)
on the lower panel and the distribution of

the difference between the outcomes of the paired controls n
(
x(Q, θ,d, Ta)

)
-

n
(
x(Q, θ,d′, Ta)

)
for d 6= d′.

5.6.2 Application to structured populations: citrus locations

from Florida

To illustrate the approach described above, we use data regarding citrus locations

from Florida to mimic a realistic spatial distribution of hosts.

5.6.2.1 Introduction to the data

The data used for the analysis consist of the citrus locations from a site located in

Broward county, labelled B2 from the four sites in an urban region close to Miami
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(Neri et al., 2014). A total of 18769 trees across the four sites were monitored with

1111 in B2. In the four sites, the spatial locations of citrus were fully enumerated

using a differential global positioning system. It is reported that over 16 inspectors,

experienced at recognising citrus canker symptoms, visited each site at successive

intervals between October 1997 and October 1999. The locations of the infected trees

were identified and their corresponding infection times were estimated by experienced

personnel from the lesions, size, tree age and other phenotypical characteristics.

5.6.2.2 Simulated data

The locations of the citrus population are then used to simulate epidemics governed

by Equation (5.2.4). Two different normalised kernels with qualitatively different

behaviour considered in Neri et al. (2014) are used for the simulations:

Exponential: K(d, α) =
1

2πd

1

α
exp(−d/α) (5.6.5)

Cauchy: K(d, α) =
1

2πd

2

πα(1 + d2/α2)
(5.6.6)

where d is the Euclidean distance between infected and susceptible hosts.

Note that the Exponential kernel characterizes a short-range disease spread while

the Cauchy kernel exhibits a long-range dispersal. Three scenarios are investigated:

- Case (I): An exponential kernel with presence of primary infection

We assume that the entire population is susceptible at time t = 0, the time corre-

sponding to the introduction of the external source. The value used for the con-

tact rate, the dispersal parameter and the primary infection rate are respectively

β = 7 × 10−6 days−1km2, α = 0.08 km, ε = 5 × 10−6 days−1 and we observe the

process up to time tobs = 460 day where 169 were symptomatics with 235 cryptics.

Figure 5.10 shows the progress of a simulation over time. These parameters are cho-

sen from Neri et al. (2014) where they were estimated via MCMC using 12 months

of the epidemiological data.

- Case (II): An exponential kernel with no primary infection.

We repeat a similar experiment with β = 8 × 10−6days−1km2, α = 0.8km and

ε = 0 but assuming that t = 0 corresponds to the time of the initial infection. For

convenience, we choose the first infection from the Canker data (Neri et al., 2014)

to be the host initially infected. Here, we maintain tobs = 460 but we observe 111

symptomatics and 124 cryptics (see Figure 5.11 for the progress of a simulation over

time).

- Case (III): Cauchy kernel with presence of primary infection.
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Again, we assume that t = 0 corresponds to the introduction of the external source of

infection. Here, we use β = 2× 10−5days−1km2, α = 0.2km and ε = 3× 10−5days−1

and we observe the process up to tobs = 440 days. We record 166 symptomatics and

339 cryptics at the end of the observation (see Figure 5.12 for the progress of the

simulation).

In all cases, the cryptic period considered is ∆ = 100 days. The data consist of a

sequence of snapshots taken at 30-day intervals over 360 days starting from day 130

in case (I) and (II) with 330 days starting from day 110 in case (III) to observe a

similar number of symptomatic as in Case (I). This is summarised in Table 5.2.

It is worth noting that these kernels are merely used to illustrate our methodology.

Details related to the kernel that best fits the citrus data can be found in Neri et al.

(2014). It is known that the symptoms take, on average 100 days to emerge following

infection (Parnell et al., 2009). Therefore, in this section we fix ∆ = 100, in line with

the assumption by Parnell et al. (2009) and Neri et al. (2014).

Case α β ε tobs Infections observed Cryptic T
(I) 0.08 7.10−6 0.00005 460 169 156 500
(II) 0.08 8.10−6 0 460 111 124 500
(III) 0.2 2.10−5 0.00003 440 166 339 500

Table 5.2: Summary of the parameters used and outcomes obtained for the simulations
in the three cases.

5.6.2.3 Parameter estimation

For the parameter estimation, we adopt the MCMC algorithm described in 5.3. The

estimation is done as in Section 5.6.1 varying T depending on the case considered (see

Figures 5.13, 5.15 and 5.14). In all cases, the algorithm is run for 520000 steps with

a burn-in period corresponding to the initial 20000 iterations.

In Figures 5.13, 5.15 and 5.14 we show the sample trace plots of the parameters in

all cases. The convergence issues are of no concern as shown on the figures. Neverthe-

less, it is clearly apparent that the chain mixing depends on how far we augment the

imputation period. For instance, the sample trace plot for parameters α in Figures

5.13a and 5.13b, and β in 5.13d and 5.13e suggest that complete knowledge on the

number of infections (T = tobs − ∆) leads to a chain which mixes better than when

precise times of future infections are imputed explicitly.
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Snapshot at time t = 130

(a)

Snapshot at time t = 250

(b)

Snapshot at time t = 340

(c)

Snapshot at time t = 460

(d)

Figure 5.10: Case I: A sample of a realisation of the disease progress maps made at 30-
day intervals from t = 130 up to t = 460, on the citrus population of size N = 1111
from a site located in Broward county. Symptomatic hosts, cryptic infections and
susceptible hosts at the time of the snapshot are denoted by red, blue and green dots
respectively.

107



Snapshot at time t = 130

(a)

Snapshot at time t = 250

(b)

Snapshot at time t = 340

(c)

Snapshot at time t = 460

(d)

Figure 5.11: Case (II): A sample of a realisation of the disease progress maps made at
30-day intervals from t = 130 up to t = 460, on the citrus population of size N = 1111
from a site located in Broward county. Symptomatic hosts, cryptic infections and
susceptible hosts at the time of the snapshot are denoted by red, blue and green dots
respectively.
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Snapshot at time t = 110

(a)

Snapshot at time t = 230

(b)

Snapshot at time t = 320

(c)

Snapshot at time t = 440

(d)

Figure 5.12: Case (III): A sample of a realisation of the disease progress maps made at
30-day intervals from t = 130 up to t = 440, on the citrus population of size N = 1111
from a site located in Broward county. Symptomatic hosts, cryptic infections and
susceptible hosts at the time of the snapshot are denoted by red, blue and green dots
respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.13: Case (I): Sample trace for the posterior distribution of parameters α β
and ε after a burn-in period of 10000 iterations using the MCMC algorithms described
in Section 5.3.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.14: Case (III): Sample trace for the posterior distribution of parameters α β
and ε after a burn-in period of 10000 iterations using the MCMC algorithms described
in Section 5.3.
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(a) (b)

(c) (d)

Figure 5.15: Case (II): Sample trace for the posterior distribution of parameters α β
after a burn-in period of 10000 iterations using the MCMC algorithms described in
Section 5.3.

The posterior distribution of the model parameters α, β and ε at various T for

Cases (I), (II) and (III) shown respectively in Figures 5.16, 5.17 and 5.18 match

regardless of how far we impute infection times beyond tobs. This gives evidence that

the algorithm give an accurate picture of the posterior distribution. In addition, it can

be seen that the model parameters used for the simulation (dashed lines) are consistent

with their respective posterior distributions highlighting the fact that the estimation

is good. We estimate the epidemic size considering two different augmentation periods

including T = tobs and T = Ta as shown in Table 5.2. Figure 5.16d shows the 95%

confidence band of the epidemic trajectory for Case (I). It can be seen that the actual

trajectory of the epidemic is contained in the 95% credible regions. Also, the posterior

distribution of the predicted epidemic sizes are shown in Figures 5.17c and 5.18d for

case (II) and (III) respectively. Again, this suggests that the actual epidemic size lies

within the range of the values supported by the predicted distribution. Moreover, we

estimate the set of Sellke thresholds as part of the parameter estimation routine in

order to compare different control strategies and identify the optimal control strategy

conditional on this.
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T = tobs−∆ = 360
T = tobs=460
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T = tobs−∆ = 360
T = tobs=460
T = Ta=500

(c)
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Figure 5.16: Case (I). The posterior distributions for Bayesian MCMC estimation of
the model parameters including the dispersal rate α (a), the secondary infection rate
β (b), and the primary infection rate ε (c), considering T = 360 (black full curve), T =
460 (red dash curve) and T = 500 (blue curve). Dashed lines correspond to the actual
value used for the simulation. (d) 95% posterior credible band of the distribution of
the disease progress during the period [360, 500] (shaded region) compared to the
actual disease progress (circles represent the observed trajectory at tobs−∆, gray dots
represent the unobserved trajectory at tobs and red dots are the future trajectory at
Ta).
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T = tobs=460
T = Ta=500
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Figure 5.17: Case (II) The posterior distributions for Bayesian MCMC estimation of
the model parameters including the dispersal rate α (a), the secondary infection rate
β (b) using T = 460 and T = 500. Dashed lines correspond to the actual value used
for the simulation. (c) The posterior distributions of the epidemic size.
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T = tobs−∆ = 340
T = tobs=440
T = Ta=500
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Figure 5.18: Case (III). The posterior distributions for Bayesian MCMC estimation
of the model parameters including the dispersal rate α (a), the secondary infection
rate β (b) and the primary infection rate ε (c) considering T = 340 (black full curve),
T = 440 (red dash curve) and T = 500 (blue curve). Dashed lines correspond to the
actual value used for the simulation. (c) The posterior distributions of the epidemic
considering two different augmentation periods (T = 440 and T = 500).

5.6.3 Optimisation and results

We show the effectiveness of the control approach developed here on the citrus loca-

tions described previously. The intervention time is chosen to be tc = 461 but could
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lie anywhere beyond the day we last observe the system. We assume that the region

is subdivided into 20 square regions as shown in Figure 5.19. As default, we construct

different measures at Ta = 500 for the control as shown in Figures 5.19, 5.20 and 5.21

for all different cases and assume that the maximum number of removals N ′ = 500

unless otherwise stated. Although we observe approximatively the same number of

symptomatic trees, the exponential kernel gives rise to more localised dispersal than

the Cauchy kernel. Note that these prioritisation measures are constructed using

200000 samples from the joint posterior distribution π0(x(T ),θ|y) obtained from the

MCMC scheme (see Section 5.3.2) where T = 500. Samples from the joint posterior

distribution of the model parameters and the Sellke-thresholds (π0(θ,Q|y)) are then

generated as part of the MCMC routine.

We sample {(Qi,θi)|i = 1, . . . , 1000}, realisations from π0(θ,Q|y) which are then

used to design control strategies. We consider control strategies of the form d{M,2,1}.

We only describe the result for case (I), but the descriptions are qualitatively similar

in the other two cases. Using the threat map T ∗, after 20 realisations, the Algorithm

2 (see Section 5.4) converges. The optimal control strategies using different measures

are shown in Table 5.3. However, the optimal control obtained using T ∗ is d∗{T ∗,2,1} =

(3; 166), which means that to maximize the impact of the epidemic conditioned on

the threat map in the Figure 5.19c, the intervention must be deployed in the 3 highest

ranked regions out of 20 where 166 hosts must be visited for control in each. Recall

that the regions are ranked in term of wi (see Equation (5.4.1)), the average value of

the respective measure over the region i. The corresponding estimated distribution of

the number of infections avoided {u (x(Qi,θi, T ))-u (x(Qi,θi,d, T )) |i = 1, . . . , 1000}
where d = d∗{T ∗,2,1} is shown in Figure 5.25 (black curve), leading to an average of 45

infections avoided with this control. The latter represents about 57% of the actual

number of infections (without control) as shown in Table 5.3. This highlight the

fact that regions with high threat are regions where susceptibles are mixed with few

infected or are close to densely infected regions.

Furthermore, we compare the impact of the control strategy d∗{T ∗,2,1} to that

of d∗{R∗,2,1}, d
∗
{C∗,2,1} and d∗{U∗,2,1} on the same realisations (Qi,θi), i = 1, . . . , 1000.

The distributions {u (x(Qi,θi, T ))-u (x(Qi,θi,d, T )) |i = 1, . . . , 1000} where d ∈{
d∗{T ∗,2,1} ,d

∗
{U∗,2,1}, d

∗
{R∗,2,1}, d

∗
{C∗,2,1}

}
are shown in Figure 5.25. Unsurprisingly, using

R∗ or C∗ as the prioritisation measures of intervention is less cost-effective in reducing

the number of infections. This is simply due to the fact that the regions with high

risk are those where the majority of individuals are already infected. Therefore the

removed individuals may be surrounded by hosts already infected. This would be

cost-effective if the number of regions to visit along with the individuals to remove

are sufficiently large so that most of the infected hosts can be removed. This mea-

sure will be more appropriate when attempting to design surveillance with the goal
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Figure 5.19: case (I): Plots showing the posterior expectation of the risk R∗ (a),
posterior expectation of the challenge C∗ (b), the threat T ∗(c) and the product of the
expectations U∗ (d) maps constructed on the assessment time T = 500.

117



Wi

0.0

0.2

0.4

0.6

R*

0.00

0.25

0.50

0.75

1.00

R* measure at t=500

(a)

Wi

0.000

0.005

0.010

0.015

0.020

0.025

C*)

0.03

0.06

0.09

C* measure at t=500

(b)

T*

0.0000

0.0025

0.0050

0.0075

0.0100

Wi

0.000

0.001

0.002

0.003

T* measure at t=500

(c)

U*

0.000

0.005

0.010

0.015

0.020

Wi

0.000

0.001

0.002

0.003

0.004

0.005

U* measure at t=500

(d)

Figure 5.20: case (II): Plots showing the posterior expectation of the risk R∗ (a),
posterior expectation of the challenge C∗ (b), the threat T ∗(c) and the product of the
expectations U∗ (d) maps constructed on the assessment time Ta = 500.
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Figure 5.21: Case (III): Plots showing the posterior expectation of the risk R∗ (a),
posterior expectation of the challenge C∗ (b), the threat T ∗(c) and the product of the
expectations U∗ (d) maps constructed on the assessment time Ta = 500.
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Figure 5.22: Effect of various control strategies (with no regional constraints) on
the relationship between the assessment time Ta and the posterior mean of the
number of infection avoided, P , when deploying resources at tc = 461 with N ′ =
100, 200, 300, 400, 500, given that the maps are constructed on the assessment time
Ta = 500 using simulated data on citrus locations.
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infected individuals. Figures 5.25, 5.24a and 5.24c revealed that infection avoided

when deploying control optimally based on the threat map T ∗ out-performed other

measures; though there is not much difference between control using measures T ∗ and

U∗. This is emphasized by the summary statistic of the proportion P of infections

avoided shown in Table 5.3. It can be seen that the 95% credible intervals do not

differ significantly from each other.

Strategy Optimal control (nr;n) Mean SD 0.025 Median 0.975
460− 500

d(C∗, 2, 1) (5;100) 0.458 0.074 0.318 0.457 0.603
d(R∗, 2, 1) (7;71) 0.551 0.080 0.392 0.553 0.712
d(U∗, 2, 1) (3;166) 0.571 0.073 0.435 0.565 0.716
d(T ∗, 2, 1) (3;166) 0.572 0.073 0.435 0.566 0.716
UR(T ∗) - 0.789 0.059 0.667 0.791 0.9

Table 5.3: Summary statistics for the ratio P of the number of infection avoided using
different interventions on day tc = 461 relative to the actual number of infection during
the period 460 − 500, using different prioritisation measures. we refer the reader to
5.6 for the notation adopted here for the strategies.
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Figure 5.23: N ′ versus E(P|y) for various control strategies (a) unconstrained re-
gions(b)Constrained regions.

We assess the performance of our proposed design by comparing the distribution
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of the number of infections avoided

{u
(
x(Qi,θi, Ta)

)
− u

(
x(Qi,θi,d, Ta)

)
|i = 1, . . . , 1000}

using the control strategy d∗{T ∗,2,1}, with the distribution of the outcome of the control

strategy d∗{T ∗,3,1} (control obtained by optimising for each realisation (Qi,θi)) on the

same 1000 realisations. The former distribution is shown in black and the latter

distribution in yellow on Figure 5.25, 5.24a and 5.24c. By doing so, we hope to show

that our optimal strategy is not far away from the global optimum. Results show that

the two distributions differ little from each other, highlighting the effectiveness of our

proposed approach.

In addition, we select N ′ hosts in the ordering with respect to their level of threat

leading to the control strategy UR(T ∗). Note that we employ the same technique for

the control in that hosts are removed when diagnosed positive or symptomatic. We can

see from Figure 5.25, 5.24a and 5.24c that the latter design provides a better control.

This is unsurprising, given that the method will result in detection of hosts with high

level of threat compared to the former method where regions with high threat are

identified. These regions do not necessary coincide with regions comprised of hosts

with the highest threat in the system. However, in practice it may be more convenient

to adopt a strategy whereby the control team are sent to different areas (e.g. villages,

farms etc), so that the number of regions that can be visited is constrained.

We display the joint posterior samples

(u
(
x(Qi,θi,d, T )

)
, u
(
x(Qi,θi,d′, T )

)
), i = 1, . . . , 1000

for d, d′ ∈ {No control, d∗{C∗,2,1}, d
∗
{R∗,2,1}, d

∗
{U∗,2,1}, d

∗
{T ∗,2,1}, UR(T ∗)}, of the epidemic

size on the assessment times Ta = 500 days in figure 5.26, 5.24b, 5.24d. Similar

to the uniformly distributed population case, we can see a strong positive correlation

between the outcomes of the epidemic for different controls. This results in the desired

reduction in the variance of the difference between outcomes of the controls compared

to independence sampling. Therefore, the coupling approach provides a more accurate

estimate of the expected effect of different controls.

We also determine the dependence of the posterior mean proportion of infections

avoided on both assessment time Ta and N ′. Unsurprisingly, it can be seen in Fig-

ure 5.23a that, as N ′ increases, performance for prioritisation based on the risk map

approaches that of the threat map. This observation is mainly due to the fact that

more infected hosts are likely to be removed during the intervention, reducing the

infection pressure on the remaining susceptibles. However, as the time that elapses

between the assessment time and the time at which the maps are constructed in-

creases, the outcome of the control strategy based on the risk map diverges from that
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of the threat map as shown in Figure 5.23. The reason being that some infected hosts

that present high challenge are not prioritised and therefore are not removed during

the intervention based on the risk map causing future outbreak as a consequence.
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Figure 5.24: Case (III) (a), (b) and Case (II) (c), (d). (a)(c) Posterior distri-
bution of the number of infections avoided {u (x(Qi,θi, T ))-u (x(Qi,θi,d, T )) | i =
1, . . . , 1000} and (b)(d) pairwise joint posterior samples {(u (x(Qi,θi,d, T )) ,
u (x(Qi,θi,d′, T ))), i = 1, . . . , 1000} on the lower panel and the distribution of
the difference between the outcomes of the paired controls {u (x(Qi,θi, T ))-
u (x(Qi,θi,d, T )) | i = 1, . . . , 1000} for d 6= d′ when deploying resources at tc = 461,
given that the maps are constructed at T = 500.
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Figure 5.25: Case (I): Posterior distribution of the number of infections avoided where
d takes respectively d∗{C∗,2,1}, d

∗
{R∗,2,1}, d

∗
{U∗,2,1}, d

∗
{T ∗,2,1}, and d∗{C∗,2,1} where the maps

are constructed at the assessment day Ta = 500.
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Figure 5.26: Case (I): Pairwise joint posterior samples {(u (x(Qi,θi,d, T )) ,
u (x(Qi,θi,d′ , T ))), i = 1, . . . , 1000} and the distribution of the difference between

these outcomes for d, d′ ∈
{

no control, d∗{C∗,2,1}, d
∗
{R∗,2,1} , d

∗
{U∗,2,1}, d

∗
{T ∗,2,1}, d

∗
{C∗,2,1}

}
when deploying resources at tc = 461, given that the maps are constructed at the
assessemement day Ta = 500.
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5.6.4 Effect of time of prioritisation map

So far, all controls are conditioned on maps constructed on the assessment time.

However, an interesting question when deploying controls or when directing surveil-

lance effort based on map generated during an outbreak would typically be either to

construct the map on the intervention time (see for example the Scotland risk map

generated in September 2007 (Woolhouse, 2011) during the FMD outbreak in Surrey

in England (Bessell, 2009)) or on the assessment date (DEFRA, 2013).

Alternative maps are therefore constructed at tc = 461 for data simulated for

uniformly distributed hosts and for hosts with the citrus locations. Again we run

the optimisation with varying number of hosts to sample for the control (N ′ =

100, 200, 300, 400, 500) but in this case we adopt the control strategies of the form

d∗{M,2,2} and d∗{M,2,3}. Note that we constrain the number of regions to visit nr ≤ C

where C = 50 for the uniformly distributed population and C = 10 for the citrus

locations case. These control strategies are obtained using {(θi,Qi)|i = 1, . . . , 20}.
Figures 5.27a and 5.27b reveal that there is no clear difference between controls

using maps constructed at the intervention date and the assessment date even though

we observe some little variation when the control is conditioned on the risk and the

challenge maps. It appears from the two graphs that it is more cost-effective to base a

control on the challenge map constructed on the intervention date than one computed

on the prediction date. This is due to the fact that hosts removed in the latter case

are from regions where hosts are either clustered with some susceptibles and isolated

from the rest of the system or are surrounded by susceptibles which are in their turn

clustered or surrounded by infectives. Therefore, they constitute a barrier for disease

transmission.

In addition, from the Figure 5.27b, the strategy 2 typically outperforms strategy 3,

while the difference in Figure 5.27a is more evident when the control is conditioned on

the risk and the challenge maps. This observation shows that host distribution impacts

on the relative efficacy of different approaches to control, with the heterogeneity of

the citrus data accentuating the superiority of the threat map as a tool to guide the

design of control.
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Figure 5.27: Effect of the control strategies used and the maps constructed at tc = 461
and T = 500 on the relationship between the proportion of infections avoided P and
the maximum number of hosts visited (N ′). (a) Uniformly distributed host (b) the
citrus location data.
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5.7 Conclusion

The removal of infected hosts during the course of an epidemic is considered as the

most efficient control strategy to halt epidemics of highly infectious diseases (Cook

et al., 2008; Cunniffe et al., 2014). This chapter introduces a prospective approach

to target control of highly infectious disease with spatial dynamical transmission. It

introduces a prioritisation scheme based on the idea that hosts with the highest threat

defined as the expected product of risk of being infected and the challenge presented

if infected, should be considered for removal first under the control.

The first important feature of our approach is that we have embedded it entirely

in the Bayesian framework. The second important feature of our approach is the

use of latent processes to couple epidemics. By so doing, we preserve the patterns

inherited from the data (epidemic trajectory up to the final observation time) when

comparing different control strategies with the aim to select the optimal one. The

latent process used here is the Sellke thresholds which is easy to construct as part of

the parameter estimation using MCMC and data augmentation methods. We revealed

that by coupling epidemics the joint distribution of the outcomes of paired control

strategies (including no-control) shows a strong positive correlation (see Figures 5.9

and 5.26). As a result, the variability in the difference between the outcomes is then

reduced, which indicates a better estimate of the average causal effect defined by

Holland (1986).

The stochastic optimisation method adopted here (Simulated Annealing) to opti-

mising control strategies appears to be efficient in finding the optimal distribution of

resources. However, strategy 2 (probability based allocation) seems to have outper-

formed strategy 3 (adaptation of Neyman allocation). Nevertheless, all simulations

show that a control conditioned on the threat measures (conditional expectation of the

product of risk and challenge ) reduces considerably the expected number of infections

independently of the spatial transmission mechanism of the disease and outperformed

controls conditioned on the risk and the challenge measures.
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Chapter 6

Case study and extension to

heterogeneously mixing population

6.1 Case study: Citrus Canker data from Florida

6.1.1 Introduction to Citrus canker disease

Citrus canker is a serious leaf, fruit and stem blemishing disease caused by a bacteria

pathogen Xanthomonas axonopodis pv. citri (Xac). The disease causes major eco-

nomic losses in many citrus-growing countries including the USA (Gottwald et al.,

2001a, 2002).

6.1.1.1 Mode of transmission

The bacterium is believed to be transmitted over short to medium distances through

wind-driven rain (Kuhara, 1978; Stall et al., 1980; Serizawa, 1981; Gottwald et al.,

1988; Gottwald and Timmer, 1995), circumstantially up to at least 10km during severe

rainstorms such as tornadoes and tropical storms (Gottwald et al., 1997b,a) and is

exacerbated by the citrus leafminer, an insect which occurs in most citrus producing

areas in most parts of the world and whose larvae attack all citrus varieties particularly

affecting the younger leaves (Gottwald et al., 2002).

Moreover, long-distance spread is believed to occur via contaminated equipment,

by exposure to diseased citrus, or by transfer by humans or exposed plant material

(Civerolo, 1984; Schubert et al., 2001).

6.1.1.2 Symptoms

Infection of citrus canker causes a variety of symptoms on leaves, fruits and stems.

Symptoms on leaves first appear as small, raised lesions that resemble blisters. After

some time, they might turn tan and brown with the edges appearing water-soaked
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and developing a yellow halo (Cabi, 2016). The cankers can be seen on both sides of

the leaf. While newly formed lesions could be difficult to spot, older lesions take on

a raised, ‘corky’ appearance and sometimes fall out, leaving behind a shot-hole effect

(Gottwald et al., 2002).

In the other hand, symptoms on fruits begin with dark raised lesions having a

similar yellow halo as on the leaves. This causes premature fruit drop and with

associated reduction in fruit quality and yield (Gottwald et al., 2002).

Finally, symptoms on twig and stem are typically corky and raised lacking the

chlorotic halo as on leaves and fruits, surrounded by an oily or water-soaked margin.

If twigs are not killed back by girdling infections, they may store inoculum that re-

infects new tissues as it is produced by the citrus tree. Note that symptoms on the

stem and twigs show that the tree may have been infected for a long time given that

stem and twig are not as vulnerable as leaves (Gottwald et al., 2002).

6.1.1.3 Eradication programs

In spite of all regulation imposed by several countries, the disease continues to spread

and increase its geographic range. In effect, citrus canker is present in over thirty

countries in Asia, the Pacific and India Ocean islands, South America, South-eastern

USA and South Africa (Gottwald et al., 2002). To date, there is no effective control of

citrus canker. However, the control is better achieved through prevention. Typically

this means that when canker is detected in an area, measures need to be taken to

protect the canker-free areas. Copper-based fungicides can provide a barrier against

canker spread through defoliated trees (Gottwald et al., 2002). Moreover, elimina-

tion of inoculum by removal and destruction of infected and exposed trees is the

most common practice to eradicate or contain the disease to stop future spread. For

example, the successful eradication program during the 1995 citrus canker outbreak

in Florida, USA involved removal of millions of commercial, nursery and residential

trees including infected and healthy trees at a cost of > $1 billion (Gottwald and Irey,

2007) and was subject to controversy since certain owners were extremely against the

removal of healthy trees. Early eradication proved to be more cost-effective as shown

by the eradication program during the Australian citrus canker outbreak in 2004. In-

deed, the Australian Bureau of Agricultural and Resources Economics estimated the

net benefit of eradicating the disease from Queensland alone was about $70 million

(Gambley et al., 2009).
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6.1.2 Bayesian analysis of the Citrus Canker data

6.1.2.1 Data and assumptions

The data used for the analysis is partially introduced in chapter 5. In addition to

the 1113 citrus trees located in Broward county and labelled B2 described in Section

5.6.2.1, the locations of the infected trees are identified and their corresponding in-

fection times are estimated by experienced personnel from the lesions, size, tree age

and other phenotypes characteristics. The infection times are not recorded precisely

but are grouped into 24 successive 30-day intervals. The data obtained is equiva-

lent to the data described in chapter 5 if the observation times shifted back by the

asymptomatic period ∆ so that all infections are observed. Here, the data consist of

spatial snapshots of locations of susceptibles and infected trees at 30-day intervals. A

comprehensive description of these data is found in Gottwald et al. (2001b).

In Neri et al. (2014), the analysis of these data was performed with the assumption

that an infected tree remains infected over the entire process, which is not the case.

In reality, once an infected tree is identified as such, it is removed within two to

four weeks after the detection (Gottwald et al., 2001b). Based on that, we assumed

for simplicity that an infected tree is removed three months (90 days) following its

infection. By considering this time lag, we combine the detection and the removal

period into a single removal period. This assumption is equivalent to a system where

hosts take three months to develop symptoms after infection and immediately at the

onset of the symptoms, they are instantaneously detected and removed. To illustrate

the methodology described in this thesis, we only consider the first 6 months of the

data i.e. we assume that the final observation time is tobs = 180 days where in total

55 trees were detected during that period among which 18 removed.

6.1.2.2 Model

We consider a spatially-explicit SIR model for the spread of the disease over time

and space. Indeed, a host in the susceptible state (S) until it is infected (I) either

by infected host or by external inoculum. A newly-infected host (I) is immediately

infectious and is removed (R) after a three-month lag and does not play any further

part in the epidemic transmission.

The transition from S to I in the model considered here is the same as the one

described in the previous chapter. Recall that the model represents two sources of

infection: primary (external sources) with a fixed rate ε and secondary (host-to-

host infection) with rate β. The transition from S to I is governed by the equation

(Equation 5.2.4) i.e.

P (i infected in [t, t+ dt]) = λi(t)dt+ o(dt), (6.1.1)
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λi(t) =

β ∑
j∈I(t)

K(dji, α) + ε

 (6.1.2)

It is worth noting that the latent period for citrus canker is short, averaging 14 days

(Gottwald et al., 2001b), therefore we did not take into account latency for infection

in the analysis here. As stated above, the removal period is kept fixed (90 days);

hence the transition from (I) to (R) is assumed not to be stochastic.

Furthermore, for the dispersal kernel, we focus solely on a short-range transmission

since we do not intend here to conduct a full analysis of these data. For a full

analysis of this data we refer the reader to Neri et al. (2014) where choice of kernel

function is discussed. We consider the exponential dispersal kernel with a short-

distance correction used in Neri et al. (2014), defined as follows:

K(d, α) =


1

π(2α + do)do
if d ≤ do

1

π(2α + do)d
exp

(
−d− do

α

)
if d > do

(6.1.3)

with do = .005km. Due this parameterisation of the kernel, the parameters α, β and

ε are respectively measured in km, days−1km2 and days−1.

6.1.2.3 Parameter estimation

The parameters are estimated using the MCMC algorithm described in Section 5.3

considering T = 180 and T = Ta = 270 (the assessment time) to generate the joint

distribution π0(θ, x(T )|y) with T = 270. We assume independent non-informative

uniform priors for all parameters with support coinciding with the interval [0, 1]. As

described in chapter 5, a Metropolis-Hastings algorithm with independent Gaussian

proposal distribution is used. We run the chain for 510000 iterations with the first

10000 discarded. Posteriors distributions of the model parameters are shown in Figure

6.1. The posteriors distributions match regardless of how far beyond the observation

time we impute infection times providing reassurance that the methods are correctly

implemented. In addition, we observe that the primary infection rate and the dispersal

kernel parameter match those reported in Neri et al. (2014). The posterior distribution

of the contact rate β however scaled by a factor about 2. This is due to the inclusion of

the removal process into the analysis. Intuitively, removal of trees during the process

decreases the infectious pressure on susceptibles. Given that the two processes are

conditioned on the same data, an increase in β will increase the infection pressure to

maintain the trend in the data.

We then draw 100000 samples from the joint posterior distribution π0(θ, x(T )|y)

to construct the prioritisation measures discussed below. Moreover, the joint posterior
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distribution π0(θ,Q|y) is ultimately generated as part of the MCMC scheme using

samples from π0(θ, x(T )|y). Again, this posterior distribution is then used to generate

pre-epidemics on which different competing control strategies are compared.
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Figure 6.1: Posterior distributions of α, β, ε for T = 180 and T = 270 and the
epidemic size considering T = 270 days.

6.1.3 Control strategies and results

Similar to chapter 5, different measures defined in Equations (5.3.9-5.3.12) are con-

structed including the risk (R∗), the challenge (C∗), the threat (T ∗) and the product
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Figure 6.2: Posterior expectation of the risk (R∗)(a), the challenge (C∗) (b), the
expectation of the product of risk and challenge (T ∗) (c) and the product of the ex-
pectations of the risk and the challenge (U∗) (d). Prioritisation measures constructed
at tc = 200 days, the intervention day.

of expectations (U∗) (see Figures 6.2 and 6.3). In addition the definition given for the

risk and challenge is subject to little change. Here, the presence of the host is taken

into account, in other words, hosts removed before the measures construction time

are not taken into account. Only active hosts are considered. Two different times
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Figure 6.3: Posterior expectation of the risk (R∗)(a), the challenge (C∗) (b), the
expectation of the product of risk and challenge (T ∗) (c) and the product of the ex-
pectations of the risk and the challenge (U∗) (d). Prioritisation measures constructed
at T = 270 days, the assessment day

are chosen to construct the measures: the intervention day tc = 200 (see Figure 6.2)

and the assessment day Ta = 270 (see Figure 6.3). Note that regions on Figures 6.2

and 6.3 are shaded according to their level of measures used (wi) and used for the

prioritisation of the regions. Also, trees are removed once diagnosed infected among
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the list of prioritised hosts. We consider various resource constraints (the maximum

number of removals) N ′ = 100, 200, 300, 400, 500 and we assume that the number

of regions to visit nr must satisfy 1 ≤ nr ≤ 20. In addition, we assume that the

intervention will take place at a future time tc = 200. We wish to estimate the impact

of different control strategies conditioned on the available resources at the assessment

time Ta = 270.

For every measure, we consider the control strategies of the form d∗{M,2,2} and

d∗{M,2,3}, the optimal controls obtained using the Simulated Annealing Algorithm 2

(incremented sample size) conditioned on the Strategy 2 and 3 respectively (see 5.6).

After incrementing simulated realisations {(θi,Qi)|i = 1, . . . , 20}, the algorithms con-

verge for different measures (assuming that the algorithms stop if 10 successive reali-

sations do not improve the control strategy) using different various values of N ′. We

compare the proportion of infections avoided by day 270 when applying the above

optimal controls on the same 1000 realisations randomly drawn from the posterior

distribution π0(θ,Q|y).

Results show that the prioritisation using the threat measure (T ∗) is more cost-

effective than those using C∗ and R∗ in reducing the impact of future outbreak when

constructed at both intervention day and the assessment day (see Figures 6.4a). This

is also emphasized with the distribution of the number of infections avoided using

N ′ = 500 with the maps constructed at Ta = 270 shown in Figure 6.4b. In contrast

to the observation made in the chapter 5, Figure 6.4a shows that conditioning on

measures constructed on the intervention day is more cost-effective than the one using

measures on the assessment day. This observation is a direct result of the removal

process introduced here. Indeed, most hosts that spread the disease by time tc are

likely to be removed before the assessment time Ta. In this case, their contributions are

not taken into account when constructing the maps at Ta, therefore are not removed

during the intervention tc (they are not used for prioritisation) thus continue to spread

the disease.

In contrast to the observation made in chapter 5, Strategy 3 outperforms strategy

2 when the maps are constructed on the intervention day. The reason being that,

the first ranked region (see 6.3a and 6.3c for example) only comprises very few trees;

therefore, the strategy 2 will typically allocate more resources than needed in that

particular region which will surely impact on regions densely populated. However,

given the randomness of Strategy 2 inherited from the multinomial distribution, it

will eventually outperform Strategy 3 in a long run. In addition, we observe on the

second and third panel of the Figure 6.4a where the strategy 3 is used that, the

outcome of the prioritisation using R∗ approaches the one of T ∗. The main reason for

that is that high risk and threat regions coincide as shown in Figures 6.3a and 6.3c

leading to the detection and removal of approximately similar number of infectious
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hosts across these regions. Also, with the latter strategy, the proportion of infections

avoided by day 270 using the measure T ∗ approximates the one obtained from the

control strategy UR(T ∗) (selecting the first N ′ trees in that ordering with respect

to T ∗). It confirms that prioritisation based on the strategy 3 could be used as an

alternative strategy in a large scale system where resources can only be deployed in

limited numbers of subregions.

In reality, when comparing different control strategies in term of their expected

outcomes (epidemic size for example), we are interested in estimating the average

effect of one strategy over an alternative control strategy (Holland, 1986). Like any

unbiased estimate, a reduction in the variability is always preferred for a better accu-

racy of the estimate. The coupling technique adopted in this thesis provides just that.

Indeed, Figures 6.5b and 6.5a show the pairwise joint distributions of the outcomes

(epidemic size) of various control strategies on the lower-panel and the box plots show-

ing the variability in the difference of these outcomes. As expected, the outcomes are

strongly correlated as observed in the previous chapters. Hence, the approach gives a

reduction in the variability between outcomes. Thus, the approach provides a better

estimate of the expected difference between the outcome of the controls. In addition,

we notice that as the correlation with the outcome from the unconstrained control

(UR(T ∗)) for example is getting stronger, the variability becomes smaller, therefore

gives a much better estimate of the average causal effect. This could be used as cri-

terion for selecting an alternative strategy among different strategies if an optimal

strategy is known in advance but could not be used in practice (e.g. in a large sys-

tem). Finally, all control strategies were coupled on the same 1000 realisations of the

epidemic, which reduces the amount of realisations needed compared to independent

sampling of outcomes over controls.
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Figure 6.4: (a) Effects of the maps and different strategies (Strategy 2 and 3) on the
relationship between the mean proportion of infections avoided and the maximum
number of hosts to visit. (b) Posterior distribution of the number of infections avoided
by Ta = 270 when N ′ = 500 and the maps are constructed at tc = 200 days.
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Figure 6.5: Pairwise joint posterior samples of various control strategies on the lower
panel and the distribution of the difference between the outcomes of the paired controls
when the maps used are constructed on (a) the intervention day tc = 200 days and
(b) the assessment day Ta = 270 days
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6.1.4 Retrospective analysis of the impact of controls used

prospectively

6.1.4.1 Motivation

So far, the control strategies are deployed in the light of what was known at tobs = 180,

to reducing the impact of the epidemic at a future time. This is a prospective approach

common in epidemiology where decisions must be taken at early stage of an epidemic.

However, when looking back at an historic epidemic, a sensible question to answer

could be ‘what would have been the impact of the decision made in the light of what

is known now?’.

The retrospective questions have been tackled in different ways in the literature.

A semi-retrospective approach whereby alternative controls are compared on indepen-

dent realisations of the epidemic has been mostly used in the literature (Ripley et al.,

2003; Keeling et al., 2001). However, implementing a control of this type can lead to

a significant probability of a worse outcome than was actually observed (Woolhouse,

2003). To answer the above retrospective question, we use the approach of Cook et al.

(2008) where epidemics are coupled. We couple epidemic under different controls us-

ing the Sellke thresholds. An implicit assumption in this kind of analysis is that the

control measures do not affect the Sellke threshold Q or the system parameter θ.

6.1.4.2 Application

We consider the observation (citrus data) up to tobs = 270. This will correspond to

the disease progress maps made at 30-days intervals over 9 months, yielding a total

of 113 infections among which 55 were removed.

We use the MCMC routine developed in 5.3.2 to sample from the posterior dis-

tribution π0(θ, x(tobs)|y) using independent uniform priors with support [0, 1] on all

parameters. Again we consider a Gaussian proposal distribution for all parameters

and a uniform proposal distribution over the censored intervals for the infection times.

We run the chain for 510000 with the first 10000 discarded and we thin the chain each

100 iterations. Figure 6.6 shows the posterior distributions of the model parameters.

Unsurprisingly, the variance in the posterior estimates decreases if tobs = 270 com-

pared to the case where tobs = 180 as more information is available. We then draw

(θi, xi(T )), i = 1, . . . , 1000 from π0(θ, x(T )|y) where T = 270 to generate π0(θ,Q|y).

Figures 6.7 and 6.8 show the distributions of the proportion of infection avoided

with different control strategies where the maps are constructed on the intervention

day tc = 200. There are a number of observations to be made from these figures.

First, we observe that the control strategies obtained in the light of what was known

at tobs = 180 perform effectively well on the actual trajectory of the epidemic. Second,

it can be seen that, while there are differences between the outcomes of the strategy
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Figure 6.6: Posterior distributions of α, β, ε using the complete data at tobs = 270
and tobs = 180.

2 (probability based allocation) and strategy 3 (adaptation of Neyman allocation)

when conducting the prospective analysis for different maps, the distributions of the

proportion of infections avoided is similar for the retrospective approach. In addition,

there is no clear difference in the outcomes of the control strategies for measures R∗,
U∗ and T ∗. Finally, results suggest that with N ′ = 100, the posterior distribution of

the proportion of infections avoided approaches the one of N ′ > 100 when the control

is conditioned on R∗, U∗ and T ∗ measures. Therefore, resources would be wasted if
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Figure 6.7: Comparison of the posterior distribution of the proportion of infec-
tions avoided for the prospective and retrospective approaches considering N ′ =
100, 200, 300, 400.
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Figure 6.8: Comparison of the posterior distribution of the proportion of infections
avoided for the prospective and retrospective approaches for N ′ = 500

the control was carried out using N ′ > 100. These observations are mainly due to

the fact that based on what was known at tobs, we have predicted scenarios that are

typically worse than that which eventually occurred.
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6.2 Extension to spatio-temporal epidemics in het-

erogeneously mixing population

6.2.1 Introduction

6.2.1.1 Why models with heterogeneously mixing population are neces-

sary

In the chapter 5 and earlier in this chapter, we have focussed on models for popula-

tions of identical, homogeneous hosts. That is hosts are identically uniform to each

other. This assumption is unrealistic for most real-life epidemics. For example in hu-

man population all members are inherently different from each other (Mayr, 1982) so

that every member in that population could respond differently to a specific disease.

Having said that, it is important to consider source of heterogeneity when modelling

epidemics.

Different factors could be sources of variation within hosts in the population. An

obvious candidate of such variation is host age (Isham, 2005). For example, the period

from infection with HIV to diagnosis of full AIDS is known to vary with host age

(Billard et al., 1990). In addition, age plays a key role in the spread of some plants

diseases. Indeed, while estimating parameters for models of an emerging epidemic

subject to control, Parry et al. (2014) pointed out that the spread of Huanglongbing

is highly dependent on citrus age. The introduction of host mixtures to support

disease control is an obvious source of diversity in some crop populations (e.g barley).

Following the definition given to cultivar mixtures in Wolfe (1988) as “mixtures of

cultivars that vary for many characters including disease resistance but have sufficient

similarity to be grown together”, it is crucial to consider structure in the population

when modelling with a disease outbreak in such a system.

6.2.1.2 Review of some modelling approaches

The general approach considered when analysing heterogeneity is to split the popula-

tion into groups (types) within which hosts mix homogeneously (no variation in the

capacity of hosts to become infected, their ability to infect other hosts in the popula-

tion (O’Neill, 2010)) within each group. In this case, a mixing matrix whose element

rij specifies the rate of disease transmission from an i-host (hosts in group i) to a

given susceptible host at each group j is usually considered (Ball et al., 1997b). This

mixing matrix is in general not symmetric given that rij depends on the infectivity

of the infective and the susceptibility of the susceptible. More complex structure of

mixing matrices have been consider in Koopman et al. (1989).

During the last three decades or so researchers have developed various models for

epidemics in structured populations. Longini and Koopman (1982) studied models
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in which individuals reside in households and are subject to two potential sources

of infection: local source (infection from the same household) and external source

(infection from another household). They assumed that infections occur within the

household independently of the dynamics of the community. Similar work was devel-

oped by Addy et al. (1991) who extended the approach of Ball (1986). The model

developed by Longini and Koopman (1982) is used by Britton and Becker (2000)

to estimate the critical vaccination coverage required to prevent outbreaks in house-

holds. O’Neill et al. (2000) on other hand, applied the MCMC methods to analyse

temporal and final-size data from model in population partitioned into households.

Ball and Lyne (2002); Becker et al. (2003) compared various vaccination strategies

through their effect on a population subdivided into households. Ball et al. (1997a)

introduced an epidemic models with two levels of mixing, along with methods for sta-

tistical inference and discussed various vaccination strategies. The model described

assumes local and global contacts among individuals. Becker et al. (2005) drew in-

ferences from models of this type in a Bayesian setting. Britton et al. (2011) have

extended the two-level mixing framework to three levels.

Despite all these aforementioned models, researchers pointed out that it is practi-

cally impossible to capture every aspect of the population structure since individuals

interact with each other in diverse ways. In an attempt to address this issue, models

where the population structure is represented as a random network are considered.

Britton and O’Neill (2002) applied the MCMC techniques to make inferences using

models where individuals interact through social networks according to a Bernoulli

random graph. Also, heterogeneity has been considered when modelling the 2001 Foot

and mouth disease in UK where infectivity and susceptibility of farms are assumed to

vary with the species present in the farm (Ferguson et al., 2001; Keeling et al., 2001;

Jewell et al., 2009).

6.2.2 Model description

We assume that the population is subdivided into k groups each of size Ni, i =

1, . . . , k so that the size N of the population is N =
∑k

i=1Ni. Let ulm be the rate

at which a host of type l contacts a host of type m, l = 1, . . . , k. The generalisation

of the homogeneous model is done in a straightforward way to the case where there

is heterogeneity within the population hosts by assuming that an infectious host i

makes contact with a susceptible j at rate hij.

In this chapter, we adopt the case where the general contact parameter hij can be

represented as a product hij = βg(i)µg(j), known under the name of proportionate mix-

ing (Andersson and Britton, 2000; Isham, 2005), where g is a function that maps any

host to its type so that i and j are of type g(i) and g(j) respectively. The parameters

βl and µm, l,m = 1, . . . , k represent infectivities and susceptibilities respectively.
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Moreover, the probability that a host i becomes infected is given as follows:

P (i infected in [t, t+ dt]) = λi(t)dt+ o(dt), (6.2.1)

λi(t) = βg(i)

(
N∑
j=1

µg(j)K(dji, α) + ε

)
(6.2.2)

where λi(t) is the hazard or the force of infection on host i at time t, ε the primary

infection rate i.e. the rate at which the individual i contracts the disease from an

external source of the population (e.g. environment drivers). In addition, recall that

K(dji, α) is a non-negative function characterizing the challenge posed by the host j

to i as a function of the inter-host distance dji and known as the transmission kernel

which typically shows how infectivity decreases with distance dji. The parameter α

represents the dispersal parameter.

6.2.2.1 Data and assumptions

Similar to Chapter 5, the data considered consist of a sequence of snapshots from

which the type and the location of symptomatic hosts are observable, while the in-

fection times are not. Only the period in which the host contracts the disease is

known. The unknown infection times are then treated as additional parameters to

the model using Bayesian methods coupled with data augmentation method. Again,

we define the time origin by setting t = 0 to be time of introduction of the pri-

mary infection source, the data then consist of sequence of interval on the form[
tp−1
l , tpu

]
, p = 0, 1, . . . , n in which symptomatics hosts with their locations and type

are identified. We also assume that t−1
l = 0 and tnu = tobs is the final time of the

observation. Similar to Chapter 5, we consider the period it takes for an infected host

to display symptoms to be fixed ∆. Therefore for any host i detected as symptomatic

for the first time in
[
tp−1
l , tpu

]
is surely infected in

[
tp−1
l −∆, tpu −∆

]
.

6.2.2.2 Inference of model parameters

We again use Bayesian methods and MCMC modified to take account of the additional

complexity that arises from the inclusion of heterogeneity.

Likelihood

Following the description given in Section 5.3, the likelihood of the vector parameters

θ = (α,β,µ, ε) at any time T ≥ tobs where β = (β1, . . . , βk) and µ = (µ1, . . . , µk) can

be written in a more simple way as follows:
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L(θ;x(T )) =
∏
i∈I

λi(s
−
i ) exp

−∑
i∈I

∑
j∈I∪Ĩ

Aij(tj − ti)1tj>ti + ε

N∑
j=1

βg(j)tj

 (6.2.3)

where Aij = βg(j)µg(i)K(dij, α) is the pressure of host i on j and 1 the indicator

function.

Recall that under Bayes’ theorem,

π(θ, x(T )|y) ∝ L(θ;x(T ))× π(θ). (6.2.4)

Parameter estimation using MCMC

Authors have developed routines for spatio-temporal models to fit homogeneous host-

types (Cook et al., 2007; Cunniffe et al., 2015; Neri et al., 2014) and heterogeneous

host-types (Cook et al., 2007; Lau et al., 2014) where hosts vary in term of their

suitability. Ferguson et al. (2001); Keeling et al. (2001); Jewell et al. (2009) have also

used MCMC techniques of this type to estimate parameters from the 2001 Food and

Mouth disease data from UK but assumed that hosts (farms) vary in terms of their

infectivities and susceptibilities. We adapt these approaches and describe our own

routine following the approach given in section 5.3.2. This yield samples from the

posterior distribution π0(θ, x(T )|y). Recall that one particularly attractive feature of

drawing a sample to estimate the posterior distribution of the parameters is that we

can apply any transformation to estimate the posterior distribution of any function

of those parameters.

6.2.3 Modelling control of the epidemic in heterogeneously

mixing population

The generalisation of the measures used to design controls in the case of the homo-

geneously mixing population in Section 5.2.5 is done considering each host’s type.

While the challenge that a host presents to others in the population when it becomes

a new focus of infection is somewhat modified, the definition of the risk of a host to

be infected at a certain time t remains the same.

Specifically the Equations 5.2.6 and 5.2.7 become

Gj
R (x(t)) = 1{xj≤t} (6.2.5)

Gj
C (x(t)) = µg(j)

∑
i∈S(t)

βg(i)K(dij, α) (6.2.6)
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Intuitively, hosts with high susceptibility are more likely to be infected and from the

definition of the challenge in Equation (6.2.6), hosts surrounded by highly susceptible

individuals will be highly ranked according to that measure. In this case, regions

vastly populated by highly susceptible hosts might be prioritised when deploying

controls.

Recall that the control used here is again based on the removal of infected hosts

in the sampled population with respect to the resources.

6.2.4 Application

6.2.4.1 Data and inference

We use simulated epidemics to illustrate our methodology. We consider a population

of size N = 1000 hosts identified by their locations sampled independently from a

uniform distribution over 1000× 1000 square region. We assume that the population

can be partitioned into two groups (k = 2). The values considered here for β1 =

0.5, 1.5 and β2 = 0.7, 3 µ1 = 1, 0.8 and µ2 = 1, 0.3 for the susceptibilities and

infectivities for group 1 and 2 respectively. The entire population is assumed to be

disease free at t = 0, time corresponding to the introduction of the external source

of infection with parameter ε = 10−4, 25 × 10−5. Observations are accepted up to

tobs = 460. The data consist of a sequence of snapshots of symptomatic hosts taken

from t = 130 at 30-days intervals. Note that we use a short range exponential dispersal

kernel of the form K(d, α) = exp (−dα) and the value of the dispersal parameter used

is α = .2 in both cases. This is summarised in Table 6.1.

Case α ε β1 β2 µ1 µ2 tobs Infection in group 1 Infection
in group 2

(I) 0.2 0.0001 0.5 0.7 1 1 460 66 187
(II) 0.2 0.000025 1.5 3 0.8 0.3 460 48 141

Table 6.1: Summary of the parameters used for the simulations in the three cases.

The case (I), where the infectivities are identically 1 for every group, is a special

case of the two-level mixing. This is equivalent to the assumption that the contact

parameters {hij} satisfy hij = βg(i). This assumption implies that all infectives are

equally infectious and hosts only vary in term of their susceptibilities. That is each

susceptible of type (group) m is equally infected by any infective host irrespective of

its group (Andersson and Britton, 2000; Cook et al., 2007).

For the parameter estimation, we adopt the MCMC algorithm described in section

5.3.2 to generate samples from the posterior distribution π(θ, x(T )|y). We assume

non-informative uniform priors on α, β1, µ2 and ε, whereas we consider informative

uniform priors [0, 5] and [0, 1] respectively for β2 and µ1. We run the MCMC for
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500000 iterations considering T = 550 for case (I) and for 1000000 iterations for Case

(II) using various imputation period considering T = 360, 460, T = 550. Note that

T = 460, 550 involve the use of the reversible-jump techniques.

We only discuss results for case (II), as results for case (I) are qualitatively similar.

The trace plots in Figure 6.10 show no sign of non-convergence. Also, the posterior

distributions of the model parameters at various T shown in Figure 6.12 match re-

gardless of how far beyond tobs we impute infection times. Again this confirms that

the algorithms are performing well. It is worth noting that the small deviations ob-

served on the plots are due to the sampling effect. In addition, Figures 6.9 and 6.12

show that the parameters used for the simulation (dashed lines) are consistent with

their respective posterior distributions highliting the fact that the estimation is good.

We then draw 200000 samples from the joint posterior distribution π(θ, x(T )|y)

to produce measures for each host and the geographical maps at two different times

(on the intervention day tc = 461 and the assessment day Ta = 550). Figures 6.13 and

6.14 show the measures constructed on the assessment day and the priority regions.

Each region is coloured according to its level of measure wi computed as the average

of all measures of hosts presented in the region (see equation (5.4.1)).
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Figure 6.9: Simulated data Case (I): The posterior distributions for Bayesian MCMC
estimation of the model parameters where tobs = 460 and imputing infection times up
to T = 550 including the dispersal rate α (a), the susceptibilities of group 1 and 2
respectively β1 (b) and β2 (c), their corresponding infectivity µ1 (d) and µ2 (e) and
the primary infection rate ε (f). Red lines correspond to the actual value used for the
simulation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.10: Sample trace plots for α, β1, β2 after a burn-in of 10000 iterations at
different imputation periods.
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Figure 6.11: Sample trace plots for µ1, µ2 and ε after a burn-in of 10000 iterations at
different imputation period.
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Figure 6.12: Simulated data Case (II): The posterior distributions for Bayesian
MCMC estimation of the model parameters π0(θ, |y) obtained from π0(θ, x(T )|y)
where tobs = 460 and T = 360, 460, 550 including the dispersal rate α (a), the suscep-
tibilities of group 1 and 2 respectively β1 (b) and β2 (c), their corresponding infectivity
µ1 (d) and µ2 (e) and the primary infection rate ε (f). Red lines correspond to the
actual value used for the simulation.
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Figure 6.13: Case (II): Priority regions and the posterior expectation of the risk
measure (a), posterior expectation of the challenge measure (b), expectation of the
threat or expectation of the product of the risk and the challenge (c) and the product
of the expectations (d) by day Ta = 550 using 200000 samples from π0(θ, x(Ta)|y).
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Figure 6.14: Case (II): Priority regions and the posterior expectation of the risk
measure (a), posterior expectation of the challenge measure (b), expectation of the
threat or expectation of the product of the risk and the challenge (c) and the product
of the expectations (d) by day tc = 461 using 200000 samples from π0(θ, x(Ta)|y).

6.2.4.2 Controls and results

To test the efficiency of our control model, we partition the region into 100 and

64 squares regions (Figure 6.13 shows the latter case). We draw {(θi, xi(T ))|i =

1, . . . , 1000} to generate {(θi,Qi)|i = 1, . . . , 1000} (samples from π0(Q,θ|y)). We

assume various values of N ′ = 100, 200, 300, 400, 500, the maximum number of re-

movals. In addition, the time of the intervention is assumed to be tc = 461. For

the optimisation, we consider the control strategies of the form d{M,2,2} and d{M,2,3}
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for different measure M constructed at both tc and Ta as shown in Figures 6.13 and

6.14. For these measures, we use 30 realisations randomly drawn from π0(Q,θ|y) to

reach the convergence, leading to the optimal control strategies d∗{M,2,2} and d∗{M,2,3}.

Note that in each case, we constrain the number of regions to visit such that nr ≤ 50.

These optimal control strategies along with the control UR{M} (obtained by order-

ing the first N ′ with respect to their measure M) are then applied on the same 1000

realisations of the epidemic randomly sampled.

The resulting posterior distributions of the outcomes of each intervention for N ′ =

500 only are paired. Their joint distribution along with the box plots showing the

variability of the expectation of their difference is shown on Figures 6.15. Similar to

the homogeneous population case, the outcomes of the controls are strongly correlated,

reducing the variability between their outcomes, leading to a more accurate estimation

of the expectation of the difference between outcomes. Again, as a result, the sample

size required to compare the effect of the competing strategies during the experiment

is reduced.

We compare the effect of different maps on the posterior mean of the proportion of

the number of infections avoided P considering the subregions described above (100

for Figure 6.17a and 64 for Figure 6.17b) and the unconstrained regions in Figure 6.16.

Similar to the homogeneously mixing population case, results show that prioritisation

based on the threat measures (T ∗) is more cost-effective in reducing the impact of the

epidemic compared with other measures especially the risk (R∗) and the challenge

(C∗) measures. We notice that there is no clear distinction between the effect of the

prioritisation using either of T ∗ and U∗. This is clearly shown in Figure 6.16. The

reason being that even though the measures for each host are not equal, the priority

regions coincide as shown in their respective maps in Figures 6.13c and 6.13d, and

Figures 6.14c and 6.14d.

In addition, we compare the effect of the time at which the measures are con-

structed on the relationship between the posterior mean of P and N ′. Similar to the

homogeneous population without removal (chapter 5), we can see from the Figures

6.17b and 6.16 that, if the prioritisation is based on the T ∗ and U∗, it is cost-effective

to construct the measures at the assessment time. On the other hand, a prioritisation

scheme usingR∗ and C∗ offers greater reduction in the epidemic size when constructed

at the intervention time. Similar to the homogeneous case in chapter 5, strategy 2

typically outperforms the strategy 3. Again this emphasizes the fact that host diver-

sity impacts on the relative efficacy of the approaches proposed in this framework.

Also, it shows that regardless of the approach used for the control, the threat map is

a valuable tool to use to inform control policies.
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Figure 6.15: Pairwise scatter plots on the lower panel and box plots of the difference
between the outcomes of the paired controls when the maps used are constructed at
the intervention day tc = 461 days and the assessment day Ta = 550 days. (a) and
(b) correspond to the 100 subregions (c) and (d) 64 subregions.
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Figure 6.16: Effects of different measures and the size of the resources on the mean
of proportion P using the unconstrained control.
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Figure 6.17: Effects of prioritisation measures and the size of the resources on the
posterior mean proportion of hosts rescued. (a) Considering 100 regions and (b)
considering 64 regions
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6.3 Conclusion

In this chapter, we first applied the coupling method described in Chapter 5 to a real-

life epidemic data set regarding the 1995 Citrus Canker outbreak in Florida (Gottwald

et al., 2002; Neri et al., 2014; Cunniffe et al., 2015) before moving to extend the

approach to a more realistic framework assuming an heterogeneous population where

individuals differ not only in term of their susceptibilities to contract the disease, but

also their ability to transmit it. In this study, the primary aim was to identify the

benefit of coupling epidemics with different control strategies.

One of the more significant findings to emerge from this study is that, the out-

comes of epidemics under different control strategies are highly positively correlated

(see Figures 6.5a, 6.5b, 6.15) leading to a reduction in the number of simulations

required to compare different strategies. Taken together, these results suggest that

the variability in the difference between outcomes of paired controls is reduced com-

pared to independent sampling. This will provide a better estimate of their expected

difference.

This study also suggests that regardless of host diversity, the prioritisation for

control based on removal when identified as infective is more cost-effective in term of

reducing the expected outcome of the epidemic if the control is designed using the

threat map which is the posterior expectation of the the risk of being infected and

the challenge it will pose once infected. It also suggests that both host diversity and

removal process play apart in the choice of when to construct the maps.
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Chapter 7

Modelling and control of the Pest

des Petits Ruminants (PPR)

7.1 Introduction

This chapter describes work undertaken for the European Food Safety Authority

(EFSA) under the project MAPRA: Modelling Animal Pathogens: Review and Adap-

tation.

The ultimate purpose of the modelling from the EFSA perspective is to understand

the risk of an outbreak of Peste de Petits Ruminants (PPR) occurring in a given

country and to understand the risk of subsequent spread to other countries in the

network. Although the goals relate to the dynamics of the disease in a large-scale

network of interacting countries, to understand transmission from one node to another

in this network requires consideration of the spatio-temporal characteristics of spread

within the country corresponding to the node. The challenge is then to see how

such an understanding at the local level might be scaled-up to predict the risk of

introduction across countries. The immediate goals of the work reported here were to

provide a modelling framework that could be used to integrate data, much of which

may not yet be available, from various sources to build a quantitative understanding of

PPR dynamics in a network of countries to support the longer term aim of building a

predictive model of spread that can be used to assess the risk of incursion into control

strategies.

Data on the disease considered in this chapter come from Tunisia and consist of

information on the occurrence of outbreaks at farm level, with each outbreak being

characterised by the start time, end time, size of outbreak and size of susceptible

population. The locations of infected premises were also available for each outbreak.

Unlike all the other examples considered in previous chapters the data on PPR do not

include details on the locations of the uninfected susceptible population. The impact

of not considering unobserved susceptibles in spatio-temporal analyses of epidemics
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has been demonstrated by Lau et al. (2015) and a particular goal was the develop-

ment of methods that could accommodate the lack of information on the susceptible

population in a systematic way, so that spatio-temporal models could nevertheless be

fitted to the outbreak data. In Section 7.2 we describe PPR briefly before describing

the spatio-temporal model used to model within-country spread and, in particular,

how we attempt to accommodate the lack of information on the susceptibles using

contact distribution models in Section 7.3. Bayesian methods for fitting the model

to data are described in Section 7.4. In 7.5 we use the fitted model to generate a

predictive distribution of wave speeds comparing our results with the results of an

earlier analysis by EFSA of the data from Tunisia using an ad hoc method that did

not attempt to model the dynamics of spread. In 7.6 we describe a network model

for the spread of PPR which represents a framework for scaling the within-country

models up to the continental scale. In particular we show how algorithms from graph

theory can be used to give efficient methods for simulating the network model and

present some initial results using the model. Finally in 7.7 we discuss how control

measures may potentially be compared with the network by coupling epidemics using

latent processes (in a manner analogous to earlier chapters).

7.2 Background

Peste des petits ruminants (PPR), also known as ‘goat plague’ (OIE, 2015) is a highly

contagious disease of sheep, goats and, occasionally, wild small ruminants caused by a

Morbillivirus in the family of Paramyxoviridae. It was first reported in Ivory Coast in

1942 and subsequently spread into other West African countries (OIE, 2015). Figure

7.1 shows the geographical distribution of Peste des Petits Ruminants for the period

2005− 2013. At a time, peste des petits ruminants was thought to be a West African

disease but later has been reported in North Africa, Middle East as well as Asia. PPR

was originally considered as rinderpest due to the similarity between their symptoms;

however, this consideration was ruled out when it was noticed that cattle do not

become diseased when exposed to ruminants infected with rinderpest (FAD PReP

and USDA, 2013).

7.2.1 PPR characteristic

7.2.1.1 Transmission

The virus is mainly contained in discharges from eyes, nose and mouth, secretions from

coughing and in faeces of infected animals. PPR virus is also transmitted through

inhalation of fine droplets released into the air, particularly when infected animals

cough and sneeze. Therefore, close contact between animals is the main route of
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spread of the virus. However, fomites such as bedding, water and feed troughs can

also be contaminated by urine and secretions and, therefore, become a source of

infection (FAO, 1999; FAD PReP and USDA, 2013; OIE, 2015), though the virus

only survives in the environment for a short period of time (FAD PReP and USDA,

2013).

7.2.1.2 Incubation period and symptoms

It is reported that the incubation period ranges between 2 to 10 days (EFSA, 2015;

CFSPH and IICAB, 2008), while the symptoms can take 2 to 6 days to be become

visible (FAO, 1999; CFSPH and IICAB, 2008; EFSA, 2015). This is followed by

the sudden onset of fever, severe depression, respiratory symptoms, congestion and

necrosis of mucous membranes. Severe diarrhoea is developed in some animals causing

dehydration and weight loss. In most cases, animals can have a nasal discharge causing

respiratory distress. In the advanced stage of the disease, pneumonia is common

among the diseased animals. Abortion can be noted in pregnant animals. Death may

occur within 2 to 10 days following the date of onset of symptoms.

Figure 7.1: Number of years of presence of PPR in different countries as reported to
OIE during 2005-2013 EFSA (2015).

7.2.1.3 Control

PPR is classified by FAO as one of the Transboundary Animal Diseases (TADs) de-

fined by FAO as those diseases that are of significant economic, trade and/or food

security importance for a considerable number of countries; which can easily spread

to other countries and reach epidemic proportions; and where control/management,

including exclusion, requires cooperation between several countries. As a TAD, it is
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one of the priority animal diseases, whose control is considered important for poverty

alleviation in the infected regions. There are no vaccines available that can eradicate

the disease but there are means to decrease its spread. Since the transmission of the

virus only occurs through direct contact with infected animals, the main control ap-

proaches include a combination of quarantine, pre-emptive culling, animal movement

control and the use of ‘ring’ vaccination and vaccination of the high-risk population

(FAD PReP and USDA, 2013). Because of its similarity with the Rinderpest virus,

rinderpest vaccine has been used on some occasions to attempt to slow the spread.

7.2.2 Challenge of modelling PPR

The work focuses on the use of data on the disease in Tunisia which consist of in-

formation on occurrence of outbreaks at the farm level with each outbreak being

characterised by the start time, end time, size of outbreak and size of susceptible

population. Data on PPR outbreaks in other countries were also available through

EFSA including, for example, spatial locations of reported outbreaks in Turkey from

2011 to 2014 along with information on patterns of animal movement. However, given

time constraints, we focus on the Tunisia data here.

The ultimate purpose of the modelling from the EFSA perspective is to understand

the risk of an outbreak occurring in a given country and to understand the risk of

subsequent spread to other countries in the network. Although the goals relate to the

dynamics of the disease in a large-scale network of interacting countries, it is arguable

that to understand transmission from one node to another in this network requires

consideration of the spatio-temporal characteristics of spread within the country cor-

responding to the node. The challenge is then to see how such an understanding at

the local level might be scaled-up to predict risk of introduction across countries.

7.2.3 Previous PPR modelling

In contrast to other diseases considered in this thesis, there was little prior modelling

on which the models developed here could be built, given the incomplete nature of the

data. Also, the application of vaccine in most regions where PPR is reported (in most

African countries) complicates any modelling. The only attempt at mathematical

modelling to our knowledge is the one in EFSA (2015). They used the method derived

by Koeijer et al. (1998) to estimate the basic reproduction number R0 given as

R0 =
(1− f) log(y)

log(x)
(7.2.1)

where f is the mortality of infected animals, x the fraction of the population that

survives the epidemic and y the fraction of the population that does not get infected.
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However, the authors themselves recognised that such a model does not reflect reality.

Also, this model implies complete knowledge of the initial population which is not

often the case.

Also, another modelling attempt was implemented in EFSA (2015) where some

quantitative work on estimating wave speeds using the Tunisia data and modelling

transmission through animal movements was carried out. Even though the results

presented are sensible, there is no clear mathematical description of how they were

derived; more precisely, an explicit spatio-temporal dynamical model was not formu-

lated. In this chapter not only do we consider such models but also consider how they

may be used to inform the construction of network models for the spread of PPR

through a network of countries at the continental scale.

7.3 Identifying Modelling Approaches

Consideration is given to identifying general aspects of modelling approaches that

would most likely be appropriate for PPR modelling, taking account of the goals

outlined in the previous Section, the available data and, importantly, the unobserved

processes on which conclusions will depend. It was decided that attention should

focus on modelling spread within a country and on identifying methods of building

these models into a model for PPR spreading through a network of countries, as the

incursion of PPR into uninfected countries was seen as the process of prime interest

for this case study.

7.3.1 Model structure

Concerning the spread of PPR within a country there are several ways in which

the susceptible population may be modelled. Data from Tunisia provide information

on sub-populations infected, suggesting that a meta-population approach where sus-

ceptibles are modelled as a network of interconnected nodes would be appropriate.

Although not pursued in this study, we note that this framework would offer the scope

to capture heterogeneity across nodes, representing the differing species make-up of

individual farms. The strength of connections in this network would then be influ-

enced by the perceived strength of the infectious challenge between nodes. A natural

initial first approach to this would be to represent the strength of interactions as being

monotonically related to Euclidean distance.

Anticipating the problems regarding lack of knowledge on the susceptible popula-

tion, it is also beneficial to consider frameworks where the susceptible population is

represented via a continuous spatial intensity, which then moderates the occurrence of

new infections. In particular it is possible that a framework in which spatial contact
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distribution models (described later) for the initiation of new infections are used to

formulate a marked point process model in which marks are drawn from a distribu-

tion representing the diversity of units forming the susceptible population may be

appropriate, and may offer a way of accommodating the lack of information on the

susceptible population.

7.3.2 Inference and parameter estimation

It was identified as important that parameter uncertainty can be treated properly

for any models that are fitted to data on PPR, so that these uncertainties can be

propagated through to predictions. With this in mind particular consideration was

given to finding models that can be fitted using likelihood-based methods (to ex-

tract maximum information from data) or a fully Bayesian approach, for uncertainty

propagation. As already mentioned it was considered important that any approach

to model fitting could cope with unobserved processes, or with the increased model

complexity that arises for example from including parameters for probability of non-

reporting of infections, with methods that use data on final size for the inference of

epidemic parameters potentially relevant.

7.4 Models for within-country spread

7.4.1 Model structure

We represent the spread of PPR through a network of premises where only infections

are recorded, so that no information on susceptible premises is available. We treat the

farm or premises as being the population unit so that, in effect, we are considering a

meta-population model for the system. A key feature of our modelling approach is that

we avoid the need to represent the susceptible population by, in a sense, combining

the generation of the susceptible population with the spread of the disease within that

population. This greatly simplifies the challenge of constructing and fitting a model.

The main assumptions in the contact distribution model are as follows:

• On infection, premises remain infectious for a fixed period, γ (which is unknown)

for all infection premises.

• Infected premises cause new infections according to a Poisson process with fixed

rate, β.

• Each new infection is located at random distance r from the source premises,

drawn from density, r ∼ f(r;α) placed at a uniformly distributed bearing from

the source.
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• The unknown susceptible population is implicitly modelled in this approach as

a spatial Poisson process.

We note that the representation of the susceptible population means that the effect of

depletion of the susceptible population is not explicitly represented in the population,

and ignores certain temporal dependencies that should occur in a given neighbour-

hood, since the number of premises in a neighbourhood remains constant. However,

the approach is valid for the early stages and linear phase of the epidemic and is

arguably appropriate for the estimation of speeds of the disease wave-front.

For a given choice of function f , there are three key parameters in this model the

dispersal rate β, the infectious period γ and the parameter α that controls the spatial

dispersal process. All of these combine in the estimation of spatial spread rates. Note

that β combines the effect of the rate at which new infectious challenges are generated

by a given source and the rate in the Poisson process that is assumed to generate the

susceptible population. We have proposed a number of candidate models for f in the

contact distribution model. The main assumptions are as follows:

Rayleigh(α): f(r;α) =2rα exp
(
−αr2

)
Exponential(α): f(r;α) =α exp (−αr) (7.4.1)

Cauchy(α): f(r;α) =
2

πα
(
1 + r2

α2

) (7.4.2)

in which r is the Euclidean distance between a given pair of premises and measured

in km. Note that these 1−dimensional kernels are isotropic defined on the positive

real axis. These models represent scenarios in which the propensity for long-range

interactions increases with the Cauchy model exhibiting jumps in the infection process

that are very long-range. The kernels defined above ensure that different pattern of

the epidemic could be compared directly. While thin-tailed kernels such as Rayleigh

and exponential kernels give rise to a slow spreading wave of new infections, the

thick-tailed kernels such as Cauchy result in a rapid and long dispersal ahead of the

source (Mollison, 1977; Clark et al., 1999). Techniques developed here can readily be

adapted to other models in addition to the three variants considered above.

7.4.2 Data and inference methods

The approaches followed can be applied in any setting where spatial locations of

infected premises and onset times of infectiousness are recorded (and treated as a

proxy for infection time). They can in principle be extended to situations where
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infection times are not recorded. The data from Tunisia (see Figure 7.2) are used

to illustrate the approach and we denote this data-set by y. Analyses were initially

carried out assuming that the infectious period γ was known, but this assumption is

relaxed in analyses presented here where γ is inferred.
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t

Figure 7.2: Locations of PPR outbreak in Tunisia.
.

7.4.2.1 Bayesian imputation of the network

In the Bayesian approach, a prior distribution π(α, β, γ) is placed on the unknown pa-

rameters. The likelihood function π(y|α, β, γ) is not the most convenient to compute

due to the fact that the network of infections (who infected whom) denoted by s here
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is not observed. However, using the data-augmented approach we can overcome this

problem by treating the infectious network as an additional unknown parameter and

investigating the joint posterior π(α, β, γ, s|y). Markov chain Monte Carlo (MCMC)

methods are well suited to solving such problems. We note that the inclusion of s as

parameter allows us to use Gibbs steps in some of the updates.

7.4.2.2 Markov chain Monte Carlo Algorithm

As in the previous chapters, key parameters of the process α, β, γ are estimated in

the Bayesian framework using MCMC coupled with data augmentation methods. Let

[0, T ] denotes the observation period and let ti denotes the infection time of the

premises i. We denote by y = (t1, . . . , tN) the ordered infection times, where t1 = 0

without loss of generality. The network of transmissions is specified by the set of

sources for each infection occurring after the first infection and this is denoted by

s = (s2, . . . , sN), where si denotes the source of the infection occurring at time ti.

If the transmission network (the set of sources) is treated as a parameter, then the

likelihood is given by

L(α, β, γ, s) ∝ exp

(
−β
∫ T

0

n(t)dt

) N∏
i=2

β
f(ri;α)

ri
, ti − ti−1 < γ∀i = 1, . . . N.

(7.4.3)

where n(t) is the number of infectious premises at time t and ri denotes the distance

between the premises infected at time ti and the source premises as specified by si.

Had these sources been observed then parameters (α, β, γ) could be estimated using

for example the maximum likelihood method. In the absence of this information we

can nevertheless investigate the posterior distribution of the augmented parameter

(α, β, γ, s) in the Bayesian framework using MCMC.

To complete the Bayesian framework, we need to assign prior distributions to

the transmission rate β, the dispersal parameter α and the infectious period γ. We

propose independent vague Gamma priors for parameters α ∼ Gamma(a, b) and β ∼
Gamma(c, d), and a uniform distribution for the infectious period γ ∼ U [e, f ]. From

Bayes’ theorem, the joint posterior distribution is then given by,

π(α, β, γ, s|y) ∝ L(α, β, γ; s)βc−1αa−1 exp(−dβ − bα), α, β > 0,

e < γ < f (7.4.4)

and can be sampled using the Markov chain. Inference on individual parameters is

made by considering the marginal posterior distribution of the parameter from the

simulations from the joint posterior distribution.
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7.4.2.3 Construction of the Markov chain

A single iteration of the Markov chain requires making updates to each of the pa-

rameters in the augmented parameter vector. Where it is straightforward to sample

directly from the posterior density of a parameter conditional on the values of all

other parameters then that parameter can be updated using a Gibbs step, whereby

the updated value is simply a draw from the respective conditional density. If this

cannot be effected for a given parameter, then knowledge of the posterior density up

to unknown normalising constants allows Metropolis-Hastings methods to be used.

Conditional distribution of β

The full conditional distribution of the transmission rate density (given all other

parameters) is given by:

β|γ,y ∼ Gamma(N + c,

∫ T

0

n(t)dt+ d) (7.4.5)

Conditional distribution of α

The full conditional distribution of the dispersal parameter α depends on the

particular kernel function f that is chosen.

• For the Rayleigh kernel considered initially, we have

α|s,y ∼ Gamma(N + a, b+
N∑
i=2

r2
i ) (7.4.6)

• For the exponential kernel considered later, we have

α|s,y ∼ Gamma(N + a, b+
N∑
i=1

ri) (7.4.7)

• For the Cauchy kernel, using a uniform prior [0, 1000] in this case, we have

p(α|s,y) ∝
N∏
i=1

1

α
(

1 +
r2i
α2

) (7.4.8)

Conditional distribution of the infectious period γ

The full conditional distribution of the infectious period is given by

π(γ|β,y) ∝ exp

(
−β
∫ T

0

n(t)dt)

)
(7.4.9)

where the dependence on γ on the right-hand side arises through the dependence of

n(t), the number of infected premises at time t, on the infectious period.
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Conditional distribution of the infecting sources s.

It is possible to identify formally the conditional distribution of s given the other

parameters as

π(s|α, γ,y) ∝
N∏
i=2

f(ri;α)

ri
(7.4.10)

where the ri is the distance between the premises infected at time ti and the infecting

source si.

7.4.2.4 Parameter updates

Using the conditionals identified above it is possible to use Gibbs steps (i.e. updating

a parameter by directly drawing from its conditional distribution) to update β, and

to update α for the case of the Rayleigh and Exponential kernels. However it is not

straightforward to draw samples directly from the conditional distributions of α in

the Cauchy kernel or of γ.

For these parameters we therefore use a Metropolis update with Gaussian and

Uniform proposal distribution for α and β respectively, centred on the current value

of these parameters. The acceptance probability for a proposed move of this form is

given by

pacc = min

{
1,
π(θnew)

π(θold)

}
(7.4.11)

where π here denotes the conditional density of the parameter θ being updated.

To update the transmission network, an infected premises j is selected at random

from infections 2, . . . , N . A new source sj is proposed uniformly from the set of

premises that are infected at time tj. Specifically, this is the set of sources with an

infection time ti such that ti < tj < ti+γ. The proposed source is then accepted with

probability

pacc = min

{
1,
f(r′, α)

f(rj, α)

rj
r′

}
(7.4.12)

where rj and r′ denote the distance between site j and the current source and proposed

source respectively.

7.4.3 Results on Tunisian Data

The model is applied on the Tunisia data described above. We reflect our vague prior

knowledge on the parameters α and β by setting a = c = 10−4 and b = d = 10−6

but we choose an informative prior belief for the infectious period by setting e = 0

and f = 120. This choice allows premises to remain infectious for a period up to four

months as opposed to three months period considered in EFSA (2015) since there is no

evidence showing an external source of infection for the 4th infection which occurred

108 days after the third one.
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The MCMC algorithm is iterated for 100000 iterations, discarding the first 10000

iterations (the burn-in period) to ensure that convergence to the stationary distribu-

tion is reached. Trace plots in Figure 7.3 demonstrate that the chains are mixing well

and there is no sign of non-convergence. The Tunisian data are analysed using the

model with the three choices of kernel. For each model, the marginal posterior distri-

butions of α, β, and γ are presented in the table 7.1. Note that to allow comparison

of parameters α in the spatial kernel models we re-parameterise the exponential and

Rayleigh kernel in terms of new parameters: α′ = 1√
2α

for the Rayleigh and α′ = 1
α

for

the Exponential. We remark that owing to the parameterisation chosen, the kernel

parameter in each model is km and the rate of infection β is measured in days−1km.

The original parameterisation of the Rayleigh and Exponential models is of course

more convenient for Bayesian analysis due to the conjugacy of the Gamma prior, but

we will present posterior distributions by transforming to the new parameterisation.

The posterior distributions and the summary statistics are shown in Figure 7.4

and in Table 7.1 respectively. These results indicate that the posterior distributions

of β and γ are stable with respect to the choice of spatial kernel. The parameter

α has a posterior distribution that varies with the choice of kernel. Of course the

interpretation of this parameter is specific to the kernel choice so that the stability

observed for other parameters should not be expected.

In Section 7.5, samples from the joint posterior density are used to estimate rates

of spatial spread of PPR for use in the network model considered later for the spread of

PPR through a network of countries. As observed in Section 7.5, there is considerable

sensitivity in these predictions to the choice of spatial kernel.

All models suggest that the infectious period distribution present several peaks.

This is essentially due to the clustering of infection times as shown by the data.
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Figure 7.3: Trace plots of the model parameters showing the convergence of the chains
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.4: Posterior distribution of the model parameters α, β and γ for different
kernels. The first, second and third row correspond to Rayleigh, exponential and
Cauchy kernels respectively

7.4.4 Testing methods of inference

A standard approach to testing MCMC methods is used; namely to use the techniques

to estimate parameters using data simulated from the fitted model with known pa-

rameter values. By benchmarking posterior densities against these known values, it
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Mean SD MC Error 0.025 Median 0.975
Rayleigh

α 95.78 11.96 0.07 75.72 94.66 122.34
β 0.01 0.006 2.44e-05 6.607e-03 0.01 0.0147
γ 113.92 3.34 0.09 1.09e+02 113.5e 119.8

Exponential
α 100.975 22.648 1.126e-01 65.72 97.864 154.248
β 0.01 0.0022 1.24e-05 6.67e-03 0.01 0.0148
γ 113.593 3.293 8.46e-02 1.09e+02 113.157 119.77

Cauchy
α 134.244 39.182 2.217 7.442e+01 128.02 231.349
β 0.01 0.0022 1.09e-05 6.642e-03 0.01 0.015
γ 113.65 3.364 9.095e-02 1.09e+02 113.172 119.791

Table 7.1: Mean, standard deviation, Monte Carlo error and quantile function eval-
uated at (0.025, 0.5, 0.975) for marginal posteriors of model parameters as estimated
using MCMC for three different choices of kernel function. Plots of marginal distri-
butions of these parameters are displayed in 7.4.

is possible to elicit evidence that the methods are working correctly.

This verification approach is illustrated using simulated data with parameters and

total epidemic size shown in the following table. The Rayleigh kernel is used for the

simulations.

α’ β γ Tmax No. of infections
I 2.04 0.012 110 500 17
II 2.04 0.012 80 500 29
III 64.5 0.02 110 325 61
IV 64.5 0.012 110 500 126

Table 7.2: Parameter values used in simulation study..

In each case, we consider vague gamma priors for the parameters α and β but use

an informative uniform prior U(0, 120) in scenarios I and II and U(100, 120) in III and

IV for the infectious period duration γ. The Markov chain is run for 100000 iterations

and no evidence of lack of convergence is observed. The posterior distributions are

presented in Figures 7.5 and 7.6 with the known parameter values indicated by the

red line on these diagrams. These results indicate that the MCMC methods appear

able to recover the model parameters from data with true parameter values lying in

the region supported by the respective marginal posterior densities.
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(g) (h) (i)

Figure 7.5: Posterior distribution of the model parameters α, β and γ taking account
of the unobserved transmission network for cases I (first row), II (second row), III
(third row) as shown in table 7.2. A Rayleigh distribution for f(r) is assumed.
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(a) (b) (c)

Figure 7.6: Posterior distribution of the model parameters α, β and γ taking account
of the unobserved transmission network for case IV as shown in table 7.2.

7.4.5 Generalisation of the modelling approach

The assumption of constant infectious period many be unrealistic for many real-life

epidemics. In reality, individuals respond differently to an epidemic. We therefore

relax this assumption (for the case of Rayleigh kernel only) by assuming instead that

individuals remain infectious for a time period that is exponentially distributed. In

this case, the likelihood is then given by:

L(α, β, γ; s, R) ∝ exp

(
−β
∫ T

0

n(t)dt

) N∏
i=1

β
f(ri;α)

ri

Nr∏
j=1

φ (rj − tj)
N−Nr∏
s=1

(1− Φ (T − ts)) (7.4.13)

where φ and Φ are respectively the density function and the CDF of the exponential

distribution, Nr the number of individuals removed, and R the vector of removal

times.

Inference in this case is similar to the previous case. In addition to the gamma

priors used previously for the parameters α and β, we assume a gamma prior for the

parameter γ (considered here as the parameter of the exponential distribution) i.e.

γ ∼ Gamma(e, f). The joint posterior distribution is then given by :

π(α, β, γ, s, R|y) ∝ L(α, β, γ; s, R)βc−1αa−1γe−1 exp(−dβ − bα− fγ) (7.4.14)

The full conditional distributions in Equations 7.4.6, 7.4.15, 7.4.8, 7.4.5, 7.4.10 are
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maintained whereas the full conditional distribution of the infectious period parameter

is given by:

γ|y ∼ Gamma

(
Nr + e, f +

Nr∑
i=1

(Ri − ti) +
N−Nr∑
j=1

(T − tj)

)
(7.4.15)

We use Gibbs sampling to sample from the parameters α, β and γ. However updates

to the transmission network along with the removal times are done using Metropolis-

Hasting algorithm. We use an independent sampler for the proposal distribution of

the removal times which uses the likelihood function as q(Rj − tj, R′j − tj) ∼ Exp(γ).

The algorithm is described as follows:

Algorithm to generate sample from the posterior distribution using

Metropolis within Gibbs Sampling

i) Initiate the chain with values β0, α0, γ0, s0 and R0.

ii) Update β, α, γ using Gibbs Sampling by drawing from their corresponding

full conditional distribution.

iii) Update the transmission network s using Metropolis-Hastings scheme:

(a) Randomly choose an infection j in the set of infection with the first

infection excluded i.e 2, . . . , N .

(b) Update its source by randomly choosing among the potential sources i.e.

from the set {i : ti < tj < Ri}.

(c) Accept the new transmission network snew with probability

pacc = min

{
1,
p(snew|α, γ,y)

p(sold|α, γ,y)

}
(7.4.16)

iv) Update the removal times using Metropolis-Hastings steps

Repeat

(a) Select an infected premise j.

(b) If j is not removed, propose to add a removal time R′j and accept the

new vector of removal times with probability

pacc = min

{
1,

Φ(T − tj)
2φ
(
R′j − tj

)Ω

}
(7.4.17)

where Ω = L(α,β,γ,s;Rnew)
L(α,β,γ;s,Rold)

.

178



(c) If j is removed during the observation period, propose to do one of the

following:

• Move its removal time with probability 1/2. To this end, we propose

a new removal time R′j and accept it with probability

pacc = min

{
1,
L(α, β, γ; s, Rnew)

L(α, β, γ; s, Rold)

}
(7.4.18)

• or delete its removal time with probability 1/2. We accept the new

removal time with probability

pacc = min

{
1, 2

φ (Rj − tj)
Φ(T − tj)

Ω

}
(7.4.19)

v) Repeat i)-iv) until convergence.

It is worth noting that from the above description, if host j selected is a source of

infection of individual k, we propose to move or add its removal time (depending on

its status) R′j such that tk − tj < R′j − tj < T − tj.
The method described here is then applied to the Tunisia data. We use the above

MCMC routine to sample from the Posterior distribution of the parameters (α, β and

γ) using vague priors on α, β as in the previous section. We use however two different

priors for the infectious period parameter γ. Specifically, we consider a vague gamma

prior by setting e = 10−4 and f = 10−6; and an informative prior using e = 27.6 and

f = 2790. The MCMC is run for 100000 iterations with the first 10000 discarded.

The trace plots in Figure 7.7 of the model parameters show no evidence of non-

convergence though the chain mixes better when using an informative prior for γ.

The corresponding posterior densities are shown in Figure 7.8. It can be seen that

the choice of prior does not have much impact on the posterior distribution of α

and β. However, the mean infectious period or the infectious period parameter γ is

sensitive to the choice of its prior which will surely have an impact on the wave speed

of propagation.
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Figure 7.7: Trace plot after a burn-in period of 10000 iterations of α, β and γ using
a vague and an informative prior on the infectious parameter γ in the case of the
general model considering the Tunisia data.
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Figure 7.8: Posterior distribution of the model parameters α, β, γ and the mean
infectious period taking account of the unobserved transmission network for the ex-
ponential infectious period using a vague and an informative prior on γ.

7.5 Generating wave speeds for PPR transmission

In this section the estimation of wave speeds from the analyses of the previous section

is described. This is essential to establish the link between the country-specific model

and the network model considered later, as the wave speed is related to the time taken

for PPR to transit a given country and infect a neighbour. To this end, we simulate the

epidemic process using the posterior distribution of the parameters obtained from the

inference and measure how far the disease spreads from the initial source after some

particular period. The following is the algorithm (essentially a variant of the well-
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known Gillespie algorithm (see algorithm 1)) to simulate a realisation of the epidemic,

given a set of parameters (α, β, γ), and estimate wave speeds. This algorithm is

then repeatedly run using different parameters sets (α, β, γ) drawn from the posterior

distribution π(α, β, γ|y) where y denotes the Tunisian data.

7.5.1 Simulation algorithm

Speed of wave propagation simultion algorithm

1. Initialise t = t0, the initial time, and set location of the initial infection to be

X0 = (x0, y0), the number of infectious hosts n = 1 and the initial distance

measuring how far the disease spread d0 = 0.

2. Add new infectious period, γ (for constant infectious period for example)

for the new infection.

3. New infections (or removals) are generated as follows. Suppose that at time

t there have been k infections and n ≥ 1 currently infectious premises and

let ∆R denote the infimum of the remaining infectious periods for active

infections at time t. Draw u ∼ U(0, 1) and calculate

∆t = − log(u)/(nβ) (7.5.1)

4. If ∆t < ∆R, then select a currently infected premises j uniformly at random

from the n infections not removed yet, draw θ ∼ U [0, 2π], draw r ∼ f(r;α)

and place a new infection at location

Xk+1 = Xj + (r cos(θ), r sin(θ)) (7.5.2)

Assign this new infection to have infectious period γ and reduce remaining

infectious periods of all other infections by ∆t, setting t = t+ ∆t. Calculate

dk+1 = d(X0, Xk+1) where d() denotes Euclidean distance.

5. If ∆t > ∆R then remove the infection with the minimal remaining infection

time and reduce all other infectious periods by ∆R, and set t = t+ ∆R, then

return to step 3.

6. Repeat 2− 5 until a stopping criterion is reached (e.g. t ≥ T ).
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For a given realisation of the process, a set of estimates of wave speed v1, . . . , vm can

be generated at times T1, . . . , Tm, where vi = Di/Ti and Di is the maximum distance

the wave has travelled by time Ti and is given by

Di = max
k
{d(X0, Xk)|tk ≤ Ti} , (7.5.3)

that is the largest distance between X0 and any premises whose infection time is less

than or equal to Ti.

To account for the uncertainty on the model parameters, we sample from the joint

posterior distribution of the model parameters. Therefore each draw of parameters

from the posterior distribution provides m estimates of the speed, which we use to

build up a population of estimates of speed.

7.5.2 Estimating wave speeds for Tunisian data

The methodology for estimating wave speeds is illustrated on the data from Tunisia

y assuming a fixed infectious period. Three different kernel functions were used

(Rayleigh, Exponential, Cauchy) and distributions of wave speeds were estimated.

Algorithm

1. A total of 1000 samples from the posterior distribution π(α, β, γ|y) were

generated using the MCMC algorithm of section 7.4.2.

2. For each sample the process is simulated until time T = 325 and speeds

v1, . . . , v325 are estimated at times i = 1, 2, . . . , 325 respectively.

Figure 7.9 shows the predictive distribution of the wave speed in the absence of

controls using the 3 different kernels along with the posterior densities of the model

parameters and the exponential infectious period described in the previous Section.

As should be expected, the model using the Cauchy kernel leads to a posterior distri-

bution of wave speeds that supports very high speeds compared to the Rayleigh and

Exponential.
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(a) (b)

(c) (d)

Figure 7.9: Posterior wave speed in absence of control meausred in kmdays−1 using
different kernels (a) Rayleigh, (b) exponential and (c)Cauchy kernels and (d) Rayleigh
kernels with exponential infectious period . Dots lines show the 95% confidence in-
terval and the solid line represents the median

7.5.3 Comparison with baseline paper

In the EFSA Opinion, an attempt is made to estimate wave speeds from the Tunisian

data. This is achieved by considering all possible infecting sources for each infection

and for each potential source, estimating a wave speed based on the distance between

the respective source and the given infection and the difference in infection times. This

led to a population of estimates from which a 95% confidence interval was estimated to

be (0.3, 65.5), where speed is measured in km/day, with a median speed of 3.9. Using
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the above algorithm to generate a population of estimates, we generate a 95% equal

tailed posterior credible interval for the speeds, and estimate the median speed. These

are illustrated for the three models in Figure 7.9. It should be noted that credible

intervals for the Rayleigh and exponential kernel respectively (with fixed infectious

period) are narrower compared to (0.3, 65.5) obtained in the baseline paper. The

median speed for the model with the Rayleigh kernel (4.18) is comparable to the

median obtained in the EFSA analysis (EFSA, 2015). The wider credible interval in

the EFSA opinion may arise due the fact that the approach therein does not use any

statistical model that distinguishes between more likely and less likely infection links,

while the stochastic spatio-temporal model does.

The Cauchy model, which predicts very high speed, is unlikely to be realistic unless

there is strong reason to believe that long-range processes are actually operating in the

context of PPR spread, other than the animal movement which is represented in the

next section using a separate process. Indeed, the theory of spatio-temporal processes

indicates that the analogy of a spreading wave is not appropriate for a kernel like

the Cauchy, which is not exponentially bounded, so that the concept of transmission

speed is not meaningful.

7.5.4 Model selection

The common tool used in the literature for model comparison is the Deviance Infor-

mation Criterion (DIC) introduced by Spiegelhalter et al. (2002). The best model

is the one with the smallest DIC. In the presence of missing data as often the case

in real-world data especially in epidemiology where data are partially observed, the

DIC developed by Spiegelhalter et al. (2002) presents some limitations since the DIC

cannot be uniquely defined as pointed out by Celeux et al. (2006). Here we use the

one named as DIC4 by Celeux et al. (2006) defined as:

DIC = −4Eθ,s [log (π(y, s|θ)) |y)] + 2Es

[
log
(
π(y, s|θ̂(y, s)

)
|y
]

(7.5.4)

where θ̂(y, s) is a posterior point estimate such as the mean (used here), median etc..

based on the likelihood of both the observed and unobserved model π(y, s|θ) and

y and s are the observed data and missing transmission network respectively. The

computation of the DIC in Equation 7.5.4 required the computation of the expectation

of some quantities which can be easily derived using the MCMC techniques.

We then compare different models used for Tunisia data for fixed infectious period.

The results are shown in Table 7.3. It can be seen that the DIC favours the model with

the exponential and Cauchy kernel over the Rayleigh one, which seems to contradict

our suggestion that the Rayleigh kernel represents adequately the PPR dispersal.

This is due to the insufficiency of the data to enable any kind of rigorous model
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Model Exponential Rayleigh Cauchy
DIC 658.9445 937.3481 673.1241

Table 7.3: Model comparison with DIC.

choice and the biological understanding of the spread of PPR may be sufficient to

inform the choice of model. Nevertheless, the techniques described in the chapter are

not restricted to any particular choice of kernel and with minor modification could be

applied to fit a model with any desired choice of kernel function.

7.6 Network models for spread at the global scale

In selecting an approach to larger-scale modelling of PPR in this project the practical

goals of the work to inform policy regarding risk of incursion of PPR have been borne

in mind. In particular, it is important that the approach to modelling a network is

capable of:

• quantifying risk of spread from a given source country to any other country

within a given timescale;

• taking account of information on spread of PPR from a range of sources;

• propagating uncertainty regarding key system parameters into predicted risk;

• adapting to new information on PPR of various forms as it becomes available;

• representing impact of potential controls on the likelihood of invasion;

• lending itself to some kind of extrapolation for example to estimate parameters

for parts of the network for which data are unavailable;

• assessing relative risks of different courses of incursion into any given country;

• integrating the results of other studies at smaller scales.

With these factors in mind, an approach is followed whereby the temporal dy-

namics of PPR are represented stochastically and in which different mechanisms of

spread are combined in an integrated network model. In particular, the system is

represented as a network of vertices and directed edges, where each edge corresponds

to a mechanism of spread and behaves stochastically in a manner which can reflect

current knowledge regarding the respective mechanism.
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7.6.1 PPR Network Model: Structure

Specifically, we consider a network with vertex set

V = v1, . . . , vn (7.6.1)

where each vertex represents a country. The network is further specified by the set of

directed edges

E = e1, e2, . . . , em (7.6.2)

where each edge represents a mode of transmission of PPR between two particular

countries. Any edge therefore requires 3 pieces of information in order to specify it:

• the donor country vd,

• the recipient country vr,

• the mode of transmission, m, where m could be any one of: illegal movement of

infected animals, legal movement of infected animals, or spread across national

boundaries due to other mechanisms.

The directed nature of edges is important as there is no reason to assume any

symmetry, for example, in the patterns of illegal movement from country A to B and

from B to A. Clearly, certain aspects of the network will be constrained by geography,

with two countries requiring a common border in order for an edge corresponding to

transboundary spread to be present between them. Figure 7.10 shows a representation

of possible transmission routes from one country to another.

v1 v2 v3

v4

Figure 7.10: Graph showing different routes PPR could be transmitted from one
country to another. Dashed line shows that countries share the same border so tran-
mission could occur accross the border. Red and blue conexion show the existence of
illegal and legal animal movement between countries. Red node denotes the country
that is source of infection.
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7.6.2 Stochastic dynamics using first-passage times

To generate a realisation of the stochastic dynamics of the PPR spread through such

a network we adopt the following approach. To each edge ej we assign a random

time Tj from a probability distribution φj. Tj has the interpretation of being the

random time (following initial incursion of PPR into vd(j)) that it would take PPR to

be transmitted from vd(j) to vr(j) via the mode m(j). We assume initially that the

times Tj are assigned independently across edges (though not identically distributed

- see later).

Once times are allocated to edges, the dynamics of the disease subsequent to initial

incursion of PPR into a given country A, say, at time t = 0 can be determined. The

method for doing this utilises some standard techniques frequently used in operational

research and studies of communication networks which exploit the connection between

the first-passage times and minimal path lengths through a directed graph. In essence,

by identifying the shortest path of directed edges (where path-length corresponds to

the sum of the Tj over edges ej in the path) from A to any given country, generates a

realisation from the distribution of time taken for the disease to pass to B from A. We

denote such time the first-passage time of the pathogen to to B from A. This calcula-

tion can be effected using classical optimisation algorithms such as the Bellman-Ford

algorithm (Thippeswamy et al., 2010), or the more specialised Dijkstra’s algorithm

(Thippeswamy et al., 2010). In this project we use the former algorithm. It is sur-

prising that this connection between shortest-paths in directed graphs and epidemic

dynamics has not been more fully exploited in the applied epidemics literature. By

repeatedly generating realisations of the edge process and computing first-passage

times, the distribution of times for PPR to reach country B from any given incursion

to country A can be investigated and risk measures (such as probability of spread

within a given time horizon can be computed).

7.6.3 Algorithm for generating first-passage times

In the algorithm, having generated an edge (with associated transmission time) for

every potential transmission mechanism between any pair of countries, we first carry

out some pre-processing which reduces the directed graph to one where at most a

single edge exists between any two countries i and j. For each pair of countries i, j

with a potential mechanism of transmission between them, a time Tij is defined to be

the infimum of the transition times of all edges corresponding to transmission between

i and j. As well as storing this minimum time, the mechanism (transboundary spread,

legal movement, illegal movement) is recorded. It is clear that first-passage times in

the original network, in which multiple edges from i to j may be represented, are

precisely the same as those calculated in the reduced network with at most one edge
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from i to j. The Bellman-Ford algorithm operates as follows.

Bellman-Ford algorithm for first passage time

1. Consider a network of n nodes where each node represents a country. Be-

tween any two countries i and j where a mechanism of spread from i to j

is known to exist, represent this with a single edge of length Tij, this being

the minimum transition time over all mechanisms of transmission for i to j.

Let Mij denote the mechanism with this minimum time.

2. Next we consider a source country, k, this being the particular country which

is assumed to be the initially infected country. We initialise the algorithm by

setting time(k) = 0 and then for i 6= k we set time(i) =∞. On completion of

the algorithm, time() will denote the time at which the disease first reaches

i from the source k.

3. For i = 1, . . . , n− 1 we repeat the following process. For every edge-length

Tij,

If time(j) > time(i) + Tij{

time(j) = time(i) + Tij

predecessor(j) = i

mode(j) = Mij

}

Note that the scenario of having multiple initial sources k1, . . . , kr can be captured

by including an edge of length 0 between every pair of vertices in this set.

7.6.4 Advantages of 1st-passage-time representation

There are several benefits from using this representation of the process.

7.6.4.1 Conditional distribution of infection source

A useful by-product of the approach is that it naturally allows for investigation of the

distribution of the source of infection, conditional on a given country being infected.
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This can potentially indicate which source is the most hazardous so far as initial

incursion into a given country is concerned, and may help identify what the most

appropriate control measures may be so far as preventing spread to that country.

7.6.4.2 Integration and assimilation of knowledge

By allocating each mechanism its own edge in the network, we are able to combine

information from separate sources in a coherent way. For example, information on

Tunisia regarding spatial spread can inform the model used for the transition time over

an edge representing trans-boundary spread from Tunisia to a neighbouring country.

Information on animal movement rate between one country and another, coupled with

knowledge of the sero-prevalence within the donor country can inform the choice of

model for the random time for spread due to legal animal movement between coun-

tries. Moreover, where there is little knowledge on a mechanism, that uncertainty

can nevertheless be represented and propagated into prediction we give further infor-

mation on the modelling of transition times below. As further information becomes

available on a particular mechanism, then this can be used to update assumptions

regarding the parameters governing that mechanism.

In addition, this representation is particularly useful in assessing the impact of

surveillance and control measures discussed later.

7.6.5 Passage-time models and parameterisation

Many approaches could be taken to assigning distributions to passage-times for indi-

vidual edges, ej. Here some straightforward approaches are considered.

• For passage time due to spread across boundaries between neighbouring coun-

tries we consider a Gamma(aj, bj) where aj and bj are estimated from distribu-

tions of wave-speed in relation with some measure of Euclidean distance between

the countries involved. Specifically the population of wave speeds obtained for

the Rayleigh kernel are used to generate a population of passage times for edge

j. This population of passage times are then fitted to a Gamma distribution by

the method of moments in order to obtain aj and bj.

• For passage times related to animal movement the occurrence of infection events

is represented as a Poisson process. This fits well with the approach taken in the

EFSA opinion (EFSA, 2015) where a Binomial(n, p) distribution was used to

represent the numbers of infected animal transferred in a year via the movement

with n denoting numbers moved and p denoting prevalence in the source country.

The natural continuous-time representation of these assumptions uses a Poisson

process with rate np. Thus the time to traverse edge ej would be modelled as

190



an Exp(λj) where λj can be related to the numbers of animal movements and

probability of each animal being infected in a straightforward way.

Note that uncertainty in these processes could be captured by assigning distributions

to the parameters aj, bj, or λj and propagating this into the distribution of the

associated Tj.

7.6.6 Illustrative results with 1st passage-time model

Since extensive data regarding illegal animal movement along with information on

transboundary spread are not available, we propose a simulation using arbitrary pa-

rameters to illustrate how the Bellman-Ford algorithm can be used. To ensure es-

timated parameters are as realistic as possible, we first consider the data regarding

legal animal movement shown in (EFSA, 2015, P 36) where the average amount of an-

imal movement between some countries during the period of 2009− 2013 is reported.

To estimate the distance between contiguous countries necessary for identifying the

distribution of time taken for transboundary spread we consider the 149 countries

(South, 2011)) supplemented by the inclusion of Libya, and we use the corresponding

geographical information (locations of the capitals of these countries) provided by

Mayer and Zignago (2005) in order to identify a notional distance between contiguous

countries. In addition, we assume that the posterior distribution of the wave speed

obtained from the Tunisian data can be applied to other countries and use the above

approach to parameterise the Gamma distributions used to model passage time via

spatial spread between contiguous countries.

The information provided in (EFSA, 2015, P 36) covers legal animal movement

between some countries. Where these data are not available we assume that this

implies only illegal movement. Initially, it is assumed as in EFSA (2015) that the

virus is already present in north Africa and Middle east countries except Libya, and

central Asia and south Asia countries (EFSA, 2015). We assume that the value of

the prevalence p is identical for all countries (once infected with PPR) along with the

rate of illegal animal movement n giving a net rate np in the corresponding Poisson

process between any two countries. For the simulations, we assign different values

for the prevalence p = 0.00037, 0.003 and the number of animals moved illegally n =

100, 1000/year. The algorithm is then used to generate 105 independent realisations

(assignments of passage times to edges) and we present results relating to spread into

Europe and into Libya (since the data we use from EFSA (2015) do not consider Libya

as infected in 2013 though the virus is now detected in the country). A plausible route

of transmission into Europe when coming from Africa is countries such as Greece or

Bulgaria, given their proximity to Turkey. Another possibility may be to enter directly

to Italy (via illegal movement), given the proximity of Tunisia to the south of Italy.
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Therefore for illustration we consider target countries Bulgaria, Greece, Italy and

Libya.

In Figures 7.11, 7.12, 7.13 , 7.14, and 7.16, some exemplar outcomes are presented

for these countries. For
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Transmission into Bulgaria, p = 0.00037, n = 100/year

(a) (b)

(c)

Figure 7.11: Bar plots showing the relative importance of different countries (a) for
spread of PPR into Bulgaria and the corresponding type of transmission responsible
of the infection (b). The posterior distribution of the first passage time (conditioned
on the source of infection and the type of transmission)(c)
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Transmission into Greece, p=0.00037, n=100/year

(a) (b)

(c)

Figure 7.12: Bar plots showing the relative importance of different countries (a) for
spread of PPR into Greece and the corresponding type of transmission responsible of
the infection (b). The posterior distribution of the first passage time (conditioned on
the source of infection and the type of transmission)(c)
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Transmission into Italy, p=0.00037, n=100/year

(a)

(b)

Figure 7.13: Bar plots showing the relative importance of different countries (a) for
spread of PPR into Italy. The posterior distribution of the first passage time ( condi-
tioned on the source of infection and the type of transmission) (b)
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Transmission into Libya, p=0.00037, n=100/year

(a) (b)

(c)

Figure 7.14: Bar plots showing the relative importance of different countries (a) for
spread of PPR into Libya and the corresponding type of transmission responsible of
the infection (b). The posterior distribution of the first passage time (conditioned on
the source of infection and the type of transmission)(c)
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Figure 7.15: Transmission into Bulgaria, p=0.003, n=1000/year

(a)

(b)

Figure 7.16: Bar plots showing the relative importance of different countries (a) for
spread of PPR into Italy. The posterior distribution of the first passage time ( condi-
tioned on the source of infection and the type of transmission) (b).

each country (Bulgaria, Greece, Italy and Libya). We show:

• the distribution of the source country of infection (top left histogram);
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• the distribution of the source country and infecting mechanism (top right);

• the conditional distribution of the 1st-passage time given the source of the in-

fection (lower histogram).

Note that countries are designated by their ISO3 code Wikipedia (2016)

7.6.7 Discussion of 1st-passage time model

Given the uncertainty regarding parameter values, and the lack of data on specific

interactions between countries, these results of Section 7.6.6 should be interpreted

as exemplifying the kinds of analyses and predictions that could be achieved using

our modelling framework, rather than representing definitive predictions. The latter

can only be achieved if more extensive data can be obtained and model testing and

comparison can be carried out. Nevertheless, as with all the methods presented in this

case study, the model is generally applicable and we believe it can have considerable

use as a decision support tool if it can be properly informed by data.

The kinds of conclusions that could be drawn from the models are illustrated by

consideration of Figure 7.12, transmission into Greece. It is seen that the most likely

source of transmission is transboundary spread from Turkey, with transboundary

spread via Macedonia or Bulgaria also having a significant probability under the

model. Although the probability of animal movement being the source is small,

conditional on movement from currently infected countries (Turkey, Egypt, Tunisia)

being the source then the distribution of the time to reach Greece is small. Such

analyses can be useful in identifying the most important mechanisms to focus on for

the construction of control strategies, which have not been thus far considered in the

work.

7.7 Assessment of impact of control with the net-

work model

The representation selected naturally lends itself to assessment of impact of surveil-

lance and control measures. For example, the impact of eradicating the disease in

a country within a given time from initial incursion can be seen by removing edges

(Haydon et al., 2003) from that country of length exceeding the eradication time.

Specifically, one could investigate the impact of controls by simulating times for every

directed edge and then looking to see the impact of controls which, eradicated the

disease within a country within a given time horizon T from first infection. The im-

pact of the control could be investigated by removing all edges out from that country

with time more than T . The benefit of this approach in terms of first-passage times
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to nodes is that, one would obtain a monotonic relationship between the value of T

and the first-passage time. Thus, for a simulated population set of edge lengths on

which we apply different control strategies, we should expect highly correlated out-

comes therefore, a reduction in variance in the difference of control strategies. It is

worth noting that the smaller T , the more edges removed and therefore the longer

the first-passage time.

Similarly, the impact of controls to reduce animal movement can be assessed. The

approach described here can lead to a coupling of realisations under alternative control

strategies that can reduce the amount of simulation required to compare competing

control strategies in terms of their expected outcomes.

7.8 Conclusion

In this chapter, we have presented a novel methodology for modelling PPR spread

within a given country and the risk of subsequent introduction to other countries.

To that end, we initially develop a contact model that only accounts for the infected

premisses as the information of susceptible population is unavailable. Inference on

model parameters is drawn from their posterior distributions generated via MCMC

algorithm. The most practical implication of this modelling is the estimation of the

distribution of wave speed. We then develop an algorithm that can enable the esti-

mation of the posterior distribution of wave speed of propagation. Results from the

application on the Tunisia data assuming a constant infectious period show consis-

tency of our approach using the Rayleigh kernel with results in EFSA (2015).

We represent the spread of PPR in a large-scale network of countries in which

different modes of transmissions are considered. We borrow techniques from graph

theory and operational research such as Bellman-Ford algorithm to introduce the

notion of first-passage time from a source country to a given country. The exemplar

outcomes presented in this framework show that this representation can be used as

a tool to guide decision makers as more information on animal movement becomes

available.
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Chapter 8

Conclusion and future work

8.1 Summary and conclusions

In the major part of the thesis, we designed experiments to compare the effect of

alternatives strategies on real time epidemics. To that end, we used a mechanism

that enables us to couple epidemics with different control strategies by matching their

latent processes which we assumed are unaffected by controls. We used the Sellke

thresholds as the latent processes to induce dependence between the distributions

of the effect of alternative controls. The method was applied in two ways: First,

we consider simple and accessible temporal epidemic models. We made simplifying

assumptions, assuming no available data, homogeneous mixing (O’Neill and Becker,

2001), fixed and known model parameters. We then moved to more general cases

where a spatio-temporal model was considered with the assumption that data are

available but are partially observed. In this case, the thresholds are then readily

recovered as part of the parameter estimation using Bayesian computation methods

namely MCMC techniques.

The latter part focussed on PPR case study. A range of flexible modelling tools

have been deployed to inform understanding of risk of introduction of PPR and its

spread through a network of countries. Little in the way of earlier modelling work

on PPR was available to inform the construction of the models, but the approaches

taken have been chosen to take account of analyses carried out by EFSA (EFSA,

2015). Given the limited data on PPR available, a main aim has been to develop

modelling frameworks that are readily adaptable to the inclusion of new data and

improve understanding of PPR as these become available.

8.1.1 Coupling epidemics using Sellke construction

One of the most significant findings to emerge from this study is that, coupled epi-

demics with different control strategies using Sellke thresholds reduces the variability
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between their outcomes, as they are highly positively correlated. This evidence sug-

gests a more accurate estimation of the expected difference in the effect of control

strategies. As a consequence, the sample size of simulated realisations needed to com-

pare competing control strategies is reduced. The current findings add to a growing

body of literature on experimental designs for epidemic controls, and add substantially

to our understanding of causal effect between different interventions.

Based on the idea of coupling epidemics, various controls strategies were con-

structed and compared using both non-spatial and spatio-temporal models. This

provides new tools for future studies in identifying optimal strategies for epidemics

control. The approaches developed in this thesis are flexible and could be applied on

a wide range of epidemics.

In Chapter 2, we reviewed different types of stochastic models often used to repre-

sent epidemics and recall two main numerical approaches namely Gillespie algorithm

(Gillespie, 1976) and Sellke construction (Sellke, 1983) often used in the literature,

though the former is the most popular. We showed that conditioned on individual

Sellke thresholds, the outcome of the epidemic is a deterministic function of the model

parameters.

In chapter 4, we modeled epidemic controls assuming that there are no data ob-

served and considering two non-spatial models using the idea of Sellke thresholds

introduced in Chapter 2. We first considered an SIR model and we introduced the

notion of optimal control strategy using a stochastic optimisation algorithm namely

Simulated Annealing (Busetti, 2003; Demon et al., 2011) when the impact function

is considered to be the number of infections by a future time. A key feature to that

is to increment the number of realisations rather than fixing it from the start. It

emerges that SA converges to the optimum distribution of the resources that gives

the highest reduction in the epidemic size. Also, results showed highly positive cor-

relation between the outcomes of epidemics when controls are deployed following the

optimal strategy and suboptimal strategies. This indicates that the variability of

the outcomes of coupled epidemics in these conditions is reduced, therefore providing

a better estimate of their expected difference. Second, we designed various control

strategies on a simple non-spatial SIS (not typical SIS as the transitions from I to S

occur through interventions) model assuming no observations available and that the

hosts are not infectious once they contract the disease. The controls include controls

based on prioritising hosts with respect to their expected infection time, the risk of

infection, random selection and randomly assigned an order. Results showed that if

the controls consist of replacement of hosts once detected through diagnostics tests,

the prioritisation of hosts based on their expected infection time is more cost-effective

in terms of minimising the cumulative time hosts remain infected for.

Chapter 5 generalised the concept of Chapter 4 to spatio-temporal epidemic mod-
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els assuming a presence of data. The data considered consisted of a sequence of

spatial snapshots of locations of susceptibles and infected hosts (trees) at fixed period

of time. We developed reversible jump MCMC (RJMCMC) algorithms that allow

not only the imputation of missing information but also the future events. Similar to

the non-spatial model, results showed that the posterior distributions of the model

parameters do not change if we impute future events. We then moved on to construct

various prioritisation measures including the posterior expectation of the risk R∗, the

challenge C∗, the expectation of the product of the risk and challenge (threat) T ∗

and the product of the expectation of the risk and the expectation of the challenge

U∗ at both intervention day and the assessment day. The comparison of different

control strategies on three designs space including strategy 1 (equal allocation), strat-

egy 2 (probability-based allocation) and strategy 3 (adaptation of Neyman allocation)

respectively reveals three important results on two different datasets (randomly gener-

ated locations and structured data of the well known 1995 Citrus canker epidemic from

Florida (Neri et al., 2014)). First, the threat measure outperformed other measures.

Second it was observed that there is no evidence to prefer using measure constructed

on the intervention day over the one of the assessment day, results looked similar.

Finally, when considering subregions, probability-based allocation proves to be more

cost-effective compared to the adaptation of Neyman allocation. The evidence of

this study that made these comparisons feasible is that the correlation between the

outcomes of the epidemics with different controls including no control is positively

strong. This implies a reduction in the variability between outcomes, thus giving a

more accurate estimation of their expected difference which could be seen as their

average causal effect (Holland, 1986).

Chapter 6 is divided into two parts where the same approach as in Chapter 5 is

used. The first part was devoted to the application of the methodology of Chapter 5

to real life epidemic data namely the 1995 Citrus canker data from Florida (Gottwald

et al., 2001a; Neri et al., 2014; Cunniffe et al., 2015). Results are similar to those of the

previous chapter with two exceptions mainly due to the introduction of the removal

process: The prioritisation is more cost-effective if resources are distributed following

the adaptation of Neyman allocation and the prioritisation map is constructed at the

intervention time. The second part is an extension to a more general framework where

individuals in the population have different level of infectivities and susceptibilities.

Results are qualitatively similar to those of Chapter 5 where there is no removal

process included accentuating the superiority of the threat map as a tool to guide the

design of control.

8.1.2 Modelling PPR

The main points of the case study in chapter 7 are summarised as follows:
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8.1.2.1 Modelling and Bayesian analysis of spatio-temporal spread of

PPR

Using contact distribution models, extended to include the effect a finite infectious

period, a model for representing the spread of PPR within a country has been devel-

oped. A key feature is the representation of the susceptible population as a Poisson

process modelled simultaneously with the infection process. This allows the models

to be fitted to data on the time of location of infections without the need to know

the locations of the susceptible units in the population. Statistical algorithms using

MCMC have been developed to fit the models and verified using simulated data gen-

erated using a range of transmission kernels. The methods have been applied to the

Tunisian data to estimate key parameters.

8.1.2.2 Modelling wave speeds

Methods for estimating the posterior distribution of a wave speed for a given spatio-

temporal model have been developed (using a variant of the Gillespie algorithm to

generate realisations from the posterior predictive distribution of the process). These

have been applied to generate credible intervals for wave speeds using models with

Rayleigh, Exponential and Cauchy kernels. Results using the Rayleigh kernel are

consistent with the analysis carried out by EFSA (2015).

8.1.2.3 First-passage time models for spread of PPR through a network

of countries

Using techniques from graph theory and operational research, an efficient represen-

tation was developed for the spread of PPR through a network of countries in which

multiple modes of transmission are operating. The key feature is the modular ap-

proach to representing spread between any two countries in terms of the distribution

times for the respective edge in the network, and the use of the Bellman-Ford algo-

rithm to reduce the full network of edge-passage times to determine the time of first

passage from any given source country and any given target. This structure means

that the model can be adapted to new information on particular mechanisms simply

by modifying the corresponding edge transmission time distributions.

8.2 Assumptions and caveats

Departing from temporal data in Chapter 4 to spatio-temporal data in Chapter 5

added more complexity and uncertainty to the estimation. Nevertheless, the models

were considered with simplified assumptions. In fact, when assuming that the period

it takes for symptoms to appear is fixed, we also assumed that such period is known.
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Future research might explore the extent to which we can estimate that period and

therefore investigate its sensitivity on the prioritisation. The approach to adopt can

be motivated from the work of Cunniffe et al. (2015) where in their SCIR model the

transition from cryptic class to infection class is modelled by exponential distribution.

A more general distribution such as Weibull or Gamma distributions (O’Neill and

Roberts, 1999; Stacey et al., 2004) could be applied.

Although results are presented in chapter 7, it should be noted that further in-

vestigations on the sensitivity of conclusions to assumptions indicate that there are

currently major gaps in the understanding of PPR which means that predictions from

the models here should not be treated as definitive.

Some assumptions have already been described in Section 7.6.7. It should be noted

that posterior distributions of wave speeds are also sensitive to the assumption that

the infectious period is constant over infectious premises. Relaxing this assumption

leads to greater uncertainty in other parameters with consequently greater variance in

predictive distributions. It is also assumed that the Tunisian data are complete in the

sense that there are no unobserved infections. Again this assumption can be relaxed

by imputing unobserved infections with a consequent inflation of the uncertainty in

predictions.

8.3 Future work

8.3.1 Extensions of the control model using Sellke construc-

tion

The most pressing extension of this work is to consider more realistic designs. For

example, removal or replacement of hosts within a certain distance of the detected

infective (Cook et al., 2008; Neri et al., 2014; Cunniffe et al., 2015) and incorporate

economic factors such as intervention costs in order to identify economically optimal

strategies (Forster and Gilligan, 2007; Neri et al., 2014) or cost of detection (Dybiec

et al., 2004; Dybiec and Gilligan, 2005; Dybiec et al., 2009). This may be readily

effected within our approach by suitably adapting the impact function.

For simplicity, the diagnostic test considered throughout this thesis is assumed to

be perfect. Our methodology can easily be extended to incorporate the imperfection

of the tests (Cook et al., 2008). The controls considered in Chapter5 and 6 assumed

that all resources are deployed at a particular time. However, the impact of the disease

could be optimised by deploying control sequentially. For example, if we assume that

the control will occur sequentially at tobs < t1, . . . , tn ≤ T , then the designs will

involve updating the measures at every tj, j = 1, . . . , n while keeping track of the

history of the controls (locations of hosts removed). This might be computationally
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intense and very cumbersome. Research is needed to examine the effectiveness to

varying the timing and intensity of controls.

We note that a very nice aspect of the approach of Lau et al. (2015), their integra-

tion of genetic information into epidemiological data, could easily and consistently be

incorporated within our framework. By using Sellke thresholds as latent processes,

our approach also allow assessments to be made of retrospective actions as argued by

Cook et al. (2008) on historical epidemics data in which intervention for control was

applied.

It would be interesting to assess the effects of the model parameters on the control

strategies especially in the case where hosts in the population vary in term of their

infectivities and susceptibilities since results (in Figure 6.17 for example) show a

significant difference in the outcome of the control strategies compared to the single

type host.

8.3.2 Extensions and modifications to first passage-time model

There are some further extensions to the network model that could be considered to

improve its realism.

• One key assumption is that, once a given country A is infected, the rates of

transmission from A to other countries via illegal or legal animal movement

are immediately attained. This in effect assumes that steady-state prevalences

are immediately attained and this is unrealistic. It would be possible to model

the rate of transmission via movement as being time-varying, replacing λ with a

function of the form λ(t) = λ(1−exp(−t/µ)), where t represents the time elapsed

since incursion into A and µ represents an additional parameter controlling how

quickly asymptotic prevalence is attained. The simulation of the passage time

in the model with this modification is effected by drawing t′ from Exp(λ) and

then identifying the actual passage time, t, by solving numerically the equation

t′ = t+ µ exp(−t/µ)− µ (8.3.1)

• A second assumption that also may serve to lead to short transmission times is

the assumption that transboundary spread occurs as a consequence of the wave

of spread that would occur within a country. In reality it may be the case that

short-range local spread within a country, which is manifest in the wave speed

may be partly due to local animal or human movement which does not occur

to the same extent over national boundaries. The first-passage time model may

be further adapted to accommodate this effect by having the distribution of

time taken to spread from A to a neighbouring country B by transboundary
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spread as being formed from two independent components T1 + T2. Here T1

represents the time taken for the wave to reach the region of A which has a

boundary with B and could be drawn from the Gamma distribution and T2

represents the additional random time to traverse the boundary, perhaps drawn

from an Exponential distribution. Such a modification to the model would

be straightforward to implement, illustrating the adaptability of the general

approach.
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