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Determining the acquisition parameters in diffusionmagnetic resonance imaging (dMRI) is governed by a series
of trade-offs. Images of lower resolution have less spatial specificity but higher signal to noise ratio (SNR). At the
same time higher angular contrast, important for resolving complex fibre patterns, also yields lower SNR. Consid-
ering these trade-offs, the Human Connectome Project (HCP) acquires high quality dMRI data for the same sub-
jects at different field strengths (3T and 7T), which are publically released. Due to differences in the signal
behavior and in the underlying scanner hardware, the HCP 3T and 7T data have complementary features in k-
and q-space. The 3T dMRI has higher angular contrast and resolution, while the 7T dMRI has higher spatial res-
olution. Given the availability of these datasets, we explore the idea of fusing them together with the aim of com-
bining their benefits. We extend a previously proposed data-fusion framework and apply it to integrate both
datasets from the same subject into a single joint analysis. We use a generative model for performing parametric
spherical deconvolution and estimate fibre orientations by simultaneously using data acquired under different
protocols. We illustrate unique features from each dataset and how they are retained after fusion. We further
show that this allows us to complement benefits and improve brain connectivity analysis compared to analyzing
each of the datasets individually.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Determining the optimal acquisition protocol in diffusion magnetic
resonance imaging (dMRI) is governed by a series of trade-offs. An in-
crease in the spatial resolution of the acquisition yields lower signal to
noise ratio (SNR). An increase in the angular contrast of the images
(i.e. higher b value) also reduces SNR. Benefits from improving all
these features have been demonstrated. For instance, high spatial reso-
lution reduces partial volume effects and allows exquisite tissue details
to be revealed, as has been shown from postmortem acquisitions
(Roebroeck et al., 2008; Miller et al., 2011; Leuze et al., 2014),
specialised sequences (Heidemann et al., 2012) or in-vivo acquisitions
using bespoke scanners (McNab et al., 2013; Sotiropoulos et al.,
2013c). High SNR and/or angular contrast are beneficial for accurate
and precise estimation of tissue microstructure properties from the
dMRI signal, e.g. (Tournier et al., 2004; Behrens et al., 2007;
Descoteaux et al., 2009; Sotiropoulos et al., 2012; Zhang et al., 2012).
s).

. This is an open access article under
In this paper, we explore whether these trade-offs can be tackled by
combining high spatial resolution data with data of higher angular res-
olution and contrast.

The WU-Minn Human Connectome Project (HCP) (Ugurbil et al.,
2013; Van Essen et al., 2013b) has implemented acquisition protocols
that improve on both spatial resolution and angular contrast compared
to conventional dMRI, while confronting with the limitations imposed
by scanning hundreds of subjects. High quality data are publically re-
leased at regular intervals. An optimised Connectome Skyra 3T scanner
(Siemens, Erlangen, Germany) is being used to acquire data in 1200
subjects with a relatively high spatial resolution (1.25 mm isotropic),
multiple angular contrasts (b=1000, b=2000 and b=3000 s/mm2)
and high SNR (multiple averages and dense sampling in q-space, giving
570 volumes) (Sotiropoulos et al., 2013c). The HCP consortium has also
developed acquisition protocols at higher magnetic field strength. A
subset of 200 subjects from the population scanned at 3T is also scanned
at 7T (Vu et al., 2015) using a 7TMAGNETOM scanner (Siemens, Erlang-
en, Germany).

The two scanners are equipped with different gradient coils. The
maximum gradient strength is 100 mT/m on the 3T WU-Minn
Connectome scanner versus 70 mT/m on the 7T MAGNETOM. Due to
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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hardware differences, as well as the different behavior of theMRI signal
at different field strengths (e.g. T2 relaxation is shorter at 7T, but the
baseline SNR is higher (Ugurbil et al., 2013)) the dMRI protocols were
designed under different constraints. The 7T data have higher nominal
spatial resolution (1.05 mm isotropic), but the 3T have higher angular
contrast and angular resolution. Therefore, the 3T and 7T data can pro-
vide different views of the sameunderlying tissue structure. Here, we il-
lustrate some unique and complementary features that the 3T and 7T
HCP datasets possess, when analyzed independently. We then propose
a data fusion approach for jointly analyzing such dMRI datasets that
have been acquired on the same subject with different protocols and
different scanners.

We base our approach on an extension of a data fusion generative
model that we previously introduced (Sotiropoulos et al., 2013b). This
model, called RubiX (Resolutions Unified for Bayesian Inference of X-
ings) allows the joint analysis of dMRI data acquired with different spa-
tial resolutions, but using the same b-value, for estimating fibre orienta-
tions. We previously showed that, when combining data acquired from
the same 3T scanner at different spatial resolutions, the RubiX approach
yields more accurate estimates of fibre orientation at the highest of the
available resolutions, compared to estimates obtained from data at a
single spatial resolution and matched for scanning time. In this paper,
we extend the RubiX model to jointly analyse datasets with different
spatial and angular samplings, as well as different b-values. We explore
the benefits of this model to the publically available HCP data acquired
using a 3T and 7T scanner. We show that the analysis of the HCP data
can benefit from such a fusion approach that takes advantage of com-
plementarity and retains desired features from both datasets in the es-
timated orientations.
Theory

We present an approach for estimating the fibre orientation density
functions (fODFs) by simultaneously analysing two datasets of different
spatial resolutions and angular contrasts. We subsequently apply this
method to jointly analyse 3T and 7T HCP datasets (Table 1) from the
same subject. A generative model is used to perform neighborhood-
wise parametric spherical deconvolution and allow data fusion. The
model has a component that represents the voxel-wise signal at the
highest of the available resolutions (i.e. 7T data in this instance) using
a convolution integral of the fODF. A different component of the
model represents the signal at the lower resolution (i.e. 3T data) using
a spatial partial-volume combination of signals from the higher resolu-
tion. The twomodel components allow the two datasets to be combined
and are presented in detail in the following sections. They extend our
previous work (Sotiropoulos et al., 2013b) in that they allow multiple
b shells to be considered anddatawith different b values and spatial res-
olutions to be combined.
Table 1
Summary of main features of the HCP 3T and 7T dMRI protocols.

HCP 3T HCP 7T

Spatial resolution (1.25 mm)3

LR/RL phase encoding (PE)
(1.05 mm)3

AP/PA phase encoding (PE)
Acceleration Multiband = 3

Partial Fourier = 6/8
Multiband = 2, GRAPPA = 3
Partial Fourier = 6/8

Total echo train
length

84.24 msec 41 msec

Gradient strength
(max)

100 mT/m 70 mT/m

b values (s/mm2) 1000, 2000, 3000 1000, 2000
Q-space
directions

270 × 2 (i.e. each sampled
twice with different PEs)

130 × 2 (i.e. each sampled
twice with different PEs)
Voxel-wise spherical deconvolution

Severalmethods have been proposed for inferring the fODF fromdif-
fusion MRI. The underlying idea is that the signal measured in aniso-
tropic white matter SAN can be considered as the spherical convolution
of the fODF F and an impulse response function R, i.e. SAN(θ,φ)=
F(θ,φ)⊗R(θ,φ), where θ and φ are the inclination and azimuth angles
on the sphere. Estimating F is a deconvolution operation (Behrens
et al., 2003; Tournier et al., 2004; Alexander, 2005; Anderson, 2005;
Dell'Acqua et al., 2007; Kaden et al., 2007; Sotiropoulos et al., 2012;
Zhang et al., 2012). Deconvolution methods differ in the way they rep-
resent F (parametrically or non-parametrically, e.g. using some basis
functions) and treat R (measure or explicitly model it).

We represent the signal attenuation within a voxel due to the kth

diffusion-sensitising gradient (k= 1:K) as a weighted sum of the atten-
uation from a partial volume component (EPV) and from an anisotropic
component (EAN):

S θk;φkð Þ=S0 ¼ Sk=S0 ¼ 1− fANð ÞEPVk þ fAN EANk ð1Þ

with S0 being the signal intensity without any diffusion-weighting and
0≤ fAN≤1 the fraction of the signal explained by the anisotropic
component.

Partial volume has been represented before using an isotropic diffu-
sion compartment of a single diffusivity (for instance (Behrens et al.,
2007; Dell'Acqua et al., 2007; Kaden et al., 2007)) or ignored (Tournier
et al., 2007). We use a distribution of isotropic diffusion compartments,
as in (Jbabdi et al., 2012). This is a phenomenological representation
that adds only a single parameter, yet allows the model to capture
non-monoexponential signal decay with b value and represent data ac-
quired with multiple b values (Lasic et al., 2014). Assuming a Gamma
distribution of diffusivities with shape and scale parameters α and 1/β
gives:

EPVk ¼ β
β þ bk

� �α

ð2Þ

with bk the b value of the kth diffusion-sensitising gradient and the
Gamma parameters relating to the mean diffusivity dm and variance of
the distribution dstd

2 as β=dm/dstd2 and α=dmβ.
The anisotropic component is described using a spherical convolu-

tion integral of the fODF F:

EAN ¼ ∫
2π

0
∫
π

0
F θ;φð ÞR θ;φð Þ sinθdθdφ: ð3Þ

We represent the convolution kernel R as the signal attenuation
from an axially symmetric anisotropic tensor D=(λ1 -λ2)vTv+λ2I3,
with eigenvalues λ1≫λ2 and λ2=λ3, principal orientation v=
[sin θcos φsin θsin φcos θ] and I3the 3 × 3 unit matrix (Anderson,
2005). Re-parameterising using the mean of the eigenvalues λm and
their ratio λR=λ2/λ1 gives:

Rk θ;φð Þ ¼ exp �bk
3λm

2λR þ 1
1� λRð Þ gkv

T� �2 þ λR

� �� 	
ð4Þ

with gk a unit row vector representing the orientation of the kth

diffusion-sensitising gradient.
Finally, the fODF is representedusing a sumofN spherical delta func-

tions, each oriented along an orientation vn, allowing direct
deconvolution against the fODFmaxima (Behrens et al., 2007). The con-
volution integral then reduces to a summation of N fibre components (

f AN ¼ ∑N
n¼1 f n ≤1Þ . Assuming that these N fibre components are

characterised by the same convolution kernel R, the final model for
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the signal becomes:

Sk ¼ S0 1�∑N
n¼1 f n

� � dm
dm þ bk d

2
std

 !d2m=d
2
std

2
4

þ∑N
n¼1 f nexp �bk

3λm

2λR þ 1
1� λRð Þ gkv

T
n

� �2 þ λR

� �� �	
ð5Þ

Using the above model and a set of voxel-wise (multi-shell) mea-
surements, we can estimate the unknown parameters, with the
vectors vn being the main parameters of interest that represent the
fODF maxima.

Neighborhood-wise deconvolution

The above approach considers themeasurements andmodel param-
eters individually at every voxel, as most spherical deconvolution
methods do. Another approach has been introduced in Sotiropoulos
et al., (2013b), where multiple voxels are simultaneously considered.
In the presence of datasets acquired at different spatial resolutions
(and therefore SNRs), the low-resolution (LR) and high-resolution
(HR) data are fused in a Bayesian hierarchical model to allow
deconvolution of the fODFs defined at the highest of the available reso-
lutions (HR). This approach has the potential to provide more accurate
and precise estimation at HR compared to voxelwise estimation, as it
can take advantage of complementarity in the fused datasets.

We use this framework to fuse the 7T (HR) and 3T (LR) HCP datasets
acquired from the same subject (datasets having K and L q-space sam-
ples respectively). The RubiX generative model comprises of a local
voxel-wise convolution representation (Eq. (5)) and a neighborhood-
wise spatial partial volume representation (see Eq. (6) below). The for-
mer allows predictions to be made for the HR dataset using parameters
defined at theHR grid. The local and the spatial representations together
allow predictions to bemade for the LR dataset using the same set of HR
model parameters.

Assuming that the HR and LR voxel grids have been aligned into the
same physical space and that an LR voxel intersects P HR voxels, each

with fraction ap (∑
P
p¼1 ap ¼ 1), then:

SLRl
SLR0

¼ ∑P
p¼1apS

HR
l;p

∑P
p¼1apS

HR
0;p

ð6Þ

where Sl
LR and Sl,p

HR are the signals from the lth (l = 1:L) diffusion-
sensitisinggradient for the LRvoxel and the pthHRvoxel it intersects, re-
spectively. Notice that the L and K diffusion-sensitising gradients can be
different between the two datasets. Eq. (6) combined with Eq. (5) can
provide signal predictions for the l = 1:L measurement points of the
LR dataset (for every HR voxel p, S0,pHR is the model parameter S0 in
Eq. (5) and Eq. (5) can be evaluated at the lth measurement point (bl,
gl) to provide a prediction Sl,p

HR). Also, Eq. (5) alone can provide predic-
tions SkHR for the k= 1:Kmeasurement points (bk, gk) of the HR dataset.
Therefore, the two equations combined can explain both datasets ac-
quired with gradients that can be different in magnitude and direction.
This allows different spatial resolution/angular contrast/SNR trade-offs
to be combined.

The spatial model used in this study (Eq. 6) is slightly different from
the one used in (Sotiropoulos et al., 2013b), which instead uses a
weighted summation of the attenuations: SlLR/S0LR=∑p=1

P apSl,p
HR/S0,pHR.

Both spatial representations assume that T1 and T2 vary smoothly in
the neighborhood that is considered. However, Eq. (6) is less sensitive
to averaging signal from different tissue types and provides more accu-
rate estimates particularly at tissue boundaries (see simulations pre-
sented in the Supplementary Material, Figure S2).
The signal for the HR voxels is represented using the local convolu-
tionmodel described before. Thus, Eqs. (5) and (6) provide a generative
model for predicting both LR and HR datasets given parameters at the
HR only.

Inference

We use Bayesian inference and a Metropolis MCMC algorithm to in-
vert the above forward model and estimate the posterior distribution
P(Ω |Y) of the set of unknownmodel parametersΩ given a set of mea-
surements Y. Using Bayes' theorem, P(Ω |Y)∝P(Y |Ω) P(Ω), i.e. the pos-
terior distribution of the model parameters is proportional to the
likelihood of the measurements and the prior distribution of the
parameters.

To define the likelihood function, we assume zero-mean, additive
Rician noise with precision τ =1/σ2 (σ2 the noise variance). Then, for
each measurement Yk of the HR dataset, the likelihood will follow a
Rician distribution centered around the respective model prediction
Sk, i.e. P(Yk |Ω ,τ)~Rice(Sk,τ). Assuming themeasurements are indepen-
dent from each other, the likelihood for a set of k = 1:K (similarly for
l= 1:L) measurements Yk is given by the product of the individual like-
lihoods:

P YHR



Ω; τ� �

¼ ∏K
k¼1τYkexp �τ Y2

k þ S2k
� �

=2
� �

I0 τYkSkð Þ ð7Þ

with I0() the 0th order modified Bessel function of the first kind and
Sk the predictions using the local model (Eq. 5). When considering
both HR and LR datasets (again assuming independence), the joint like-
lihood of both datasets for a LR voxel and the group of HR voxels
intersecting it is given by:

P YLR; YHR
p

n o� 


 ΩAll; τLR; τHRp
n o

Þ
¼ P YLR

� 


ΩAll; τLRÞ∏P
p¼1P YHR

p jΩHR
p ; τHRp

� �
ð8Þ

where we assume a Rician noise distribution for both datasets with dif-
ferent precision (noise) levels τ, ΩAll={{Ωp

HR}p=1:P, S0LR} and Ωp
HR the

set of unknown model parameters for the pth HR voxel, as defined in
Eq. (5). I.e. for a single HR voxel the unknown model parameters will
be ΩHR={S0HR,dm,dstd,λR, {fn,vn}n=1

N }. The likelihood for the LR data P(Y-
LR |ΩAll ,τLR) will be given as above (Eq. 7) with the product evaluated
over the l = 1:L measurements Yl and the predictions Sl obtained from
the spatial and local model (Eqs. 5 and 6).

The prior distributions need to be also defined. A-priori
(S0HR)∼U(0,∞), P(S0LR)∼U(0,∞), P(τHR)∼U(0,∞) and P(τ-
LR)∼U(0,∞) allowing positive values and P(v)∝ sinθ, such that v is uni-
form on the sphere. The principal volume fraction f1 is also uniformly
distributed on [0, 1], while an automatic relevance determination
(ARD) prior that encourages sparsity in the fODF (Wipf and Nagarajan,
2008) is used for the other volume fractions, P(fn)∝1/fnw,n≥2. This al-
lows on-the-fly determination of the fODF complexity, with multi-
modal fibre patterns being a-priori penalised(Behrens et al., 2007).
The hyper-parameter w controls the severity of the penalty with
wb1 relaxing and wN1 increasing the penalty compared to the w=
1 case.

The priors used for the diffusivity parameters are informative to
make the partial volume and the white matter compartments with
varying anisotropy identifiable and avoid “competition” between the
two. For the same reason, we set dm=λm (i.e. both compartments
share the same mean diffusivity) and allow large differences in mean
diffusivities to be captured by dstd. An ARD prior is used for the dstd pa-
rameter (i.e. P(dstd)∝1/dstd) to a-priori encourage a single diffusion coef-
ficient dm within a voxel. A Gamma prior is used for the diffusivity dm
with a mean around 10−3 mm2/s (shape = 3, scale = 0.25 × 10−3) to
encourage diffusivities observed in the brain parenchyma (Pierpaoli
and Basser, 1996). Finally, a Gaussian prior is used for the parameter
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P(λR)~N(μλ,σλ
2). Given that this prior is on the anisotropy of the convo-

lution kernel R, we learn its parameters from the data. We assume that
the corpus callosum is probably the most coherently organised white
matter region and we use this region to learn features about the “sin-
gle-fibre” response. This is similar to the approach used by Tournier
et al. (2004), except that instead of measuring the response function di-
rectly form the corpus callosum and fixing it in the model, we learn
prior hyper-parameters for the response function.We use an FA thresh-
old to obtain the most anisotropic voxels within the corpus callosum
(defined by an eroded MNI mask) and find the mean and standard de-
viation of the parameter λR across the voxels using the diffusion tensor
eigenvalues (λR=(λ2+λ3)/2λ1). These values across 10 HCP subjects
are shown in Fig. 1, alongwith an example of the corpus callosummask.

The RubiX model uses some informative priors to further combine
the two datasets. Briefly, the prior on the orientations is a sum of Wat-
son distributions. Crucially, the modes and variances of these priors
are common to a neighborhood of P voxels and are all estimated on-
the-fly from the data as hyper-parameters. They therefore impose spa-
tial constraints on the HR estimates, where the constraints themselves
are estimated from the data. An intuitive description for this prior is
that orientation information from the LR data (that have more angular
contrast/coverage) is learned in the hyperparameters, which then
Fig. 1. A) Mean and standard deviation of the anisotropy ratio (λR = λradial/λaxial) across
ten different HCP subjects. The values for each subject were obtained using the DTI
eigenvalues in a region depicting the most anisotropic voxels in the corpus callosum
(red mask in B). The green dashed lines correspond to the average values used for the
hyperparameters of the λR prior distribution (μλ = 0.13, σλ = 0.03). B) Axial and
sagittal views of the mask depicting the most anisotropic voxels of the corpus callosum.
The midbody of the corpus callosum was identified in the Johns Hopkins University
white matter atlas (Wakana et al., 2007), available in FSL. The mask was eroded once
and voxels with the top 50% FA values within this mask were retained. The mask is
shown in red superimposed on an FA map.
constraints the solution space at the HR grid, see (Sotiropoulos et al.
2013b) for the full details.

Having defined both the likelihood function and the prior distribu-
tions the posterior distribution of themodel parameters given themea-
surements is defined up to a proportionality constant. We use Markov-
Chain Monte-Carlo (MCMC) to estimate this posterior, as shown before
(Behrens et al., 2003, Behrens et al., 2007).
Methods

Data acquisition

Scans were performed in a 3T Siemens Connectome Skyra and a 7T
Siemens MAGNETOM, equipped with a 100 mT/m and a 70 mT/m gra-
dient set, respectively, and 32-channel receive coils (Ugurbil et al.,
2013). Details of the 3T and 7T dMRI acquisition protocols are given in
Sotiropoulos et al. (2013c) and Vu et al. (2015), with main scan param-
eters summarised in Table 1. Briefly, the HCP dMRI scans utilise the
Stejskal-Tanner pulsed gradient (i.e. monopolar) scheme (Stejskal and
Tanner, 1965),within a single-shot 2D spin-echomultiband EPI acquisi-
tion. A SENSE1 magnitude reconstruction is used so that datasets have
Rician noise (Sotiropoulos et al., 2013d). For the 3T, nominal spatial res-
olution is 1.25 mm isotropic (matrix size PE × Readout = 144 × 168
with left–right (LR) phase encoding (PE) and 6/8 PE partial Fourier),
with 111 slices acquired in interleaved slice order to cover the entire
brain using aMultiband (MB) factor of 3 for slice acceleration and no ac-
celeration along the PE direction. A total of 108 echoes are collected,
with echo spacing of 0.78 ms and readout bandwidth 1490 Hz/pixel,
resulting in a total echo train length (ETL) of 84.24 ms. Sampling in q-
space includes 3 shells at b = 1000, 2000 and 3000 s/mm2 (diffusion
times are Δ=43.1 ms and δ=10.6 ms). TE and TR are matched across
shells (TE = 89 ms, TR = 5.5 s). For each shell, 190 data points are ob-
tained, corresponding to 90 isotropic diffusion-sensitised directions and
5 b = 0′s acquired once per phase encoding (PE) direction (i.e. LR and
RL pairs). Total scanning time for this protocol is ~55 min.

For the 7T, nominal spatial resolution is 1.05 mm isotropic (matrix
size PE × Readout = 200 × 200 with 6/8 PE partial Fourier), with 132
slices acquired in interleaved slice order to cover the entire brain and
phase encoding applied along the anterior–posterior (AP/PA) direction,
using MB = 2 and PE acceleration (GRAPPA) of 3. A total of 50 echoes
are collected, with echo spacing of 0.82 ms and readout bandwidth
1388Hz/pixel, resulting in a total echo train length (ETL) of 41ms. Sam-
pling in q-space includes 2 shells at b = 1000, 2000 s/mm2 (diffusion
times are Δ = 34 ms and δ = 14.3 ms). TE and TR are matched across
shells (TE=71ms, TR=7 s). For each shell, 142 data points are obtain-
ed, corresponding to 65 diffusion-sensitised directions and 6 b=0′s ac-
quired once per phase encoding direction (i.e. AP and PA pairs). Total
scanning time for this protocol is ~40 min.

The 3T data contain more angular information (due to both the
higher gradient strength and the longer scanning time available) and
are expected to provide better sensitivity to detecting crossing fibres
and resolving complex fODFs. On the other hand, the 7T data have
higher spatial resolution. Despite the seemingly small difference in
voxel size (which is still a ~ 40% decrease in nominal voxel volume),
the 7T data are also closer to their nominal resolution (Vu et al.,
2015). The utilisation of in-plane GRAPPA produces a shorter echo
train length, which leads to smaller PSF blurring along the phase-
encoding direction. This results in a true resolution gain of ~44% in
voxel volume (Vu et al., 2015). Fig. 2 shows qualitatively the difference
in crispness in the FA maps (top row). DTI fibre orientations are also
shown in addition to the pial and WM/GM boundary surfaces. Notice
that the fibre spreading pattern to the cortex as well as orientation in-
formation within the cortical ribbon (black arrows) are better depicted
in the 7T data. The 7T also support better separation between
neighbouring gyri at certain areas (yellow arrows).



Fig. 2. DTI maps for 3T and 7T data of the same subject (HCP Subject ID: 158035). Top row: Fractional anisotropy (FA) maps (axial, coronal and sagittal views). Notice the effect of B1
inhomogeneities for the 7T that lead to poor SNR and noisy FA estimates at the inferior temporal regions (evident in the coronal views). These artifacts are present for the 7T data, but
efforts have been taken to minimise them (Vu et al., 2015). Bottom row: DTI principal fibre orientations (coronal zoomed view of the area delineated by the yellow box). The
orientations are RGB color-coded (Red: Left–Right, Green: Anterior–Posterior, Blue: Superior–Inferior) and superimposed on the structural T1w image. The pial surface and the WM/
GM boundary surface are also shown.
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Processing and analysis

Both datasets were corrected for distortions using the HCP dMRI
pipelines (Glasser et al., 2013; Sotiropoulos et al., 2013c). An approach
based on Gaussian processes was used to combine the PE pairs and cor-
rect for susceptibility (Andersson et al., 2003), eddy-current and head
motion induced distortions (Andersson and Sotiropoulos, 2015, 2016).
The datasets were also corrected for gradient non-linearities and were
both aligned to the 3T T1 structural space using spline interpolation.
The 3T dMRI dataset was registered to the T1 using a rigid body trans-
formation. The 7T dataset was registered using a linear transformation
with 9 degrees of freedom, as a rigid body transformation was not
enough to account for slight gradient miscalibrations between the two
scanners. (In general, scalings in the order of 1–3% along the different
axeswere found necessary to perfectly register images between the dif-
ferent Siemens scanners, even when considering corrections for gradi-
ent non-linearities, as in Glasser et al. (2013)). All registrations were
boundary-based (Greve and Fischl, 2009), as these were found superior
to volumetric. The directions of the diffusion-sensitising gradients were
reoriented using the rotational components of the transformations.

Fibre orientations were estimated using either voxel-wise
deconvolution (Eq. 5), applied independently to each of the 3T or 7T
datasets (up to N = 3 fibre compartments estimated), or the RubiX
model applied to both 3T and 7T datasets simultaneously (up to N =
3 fibre compartments estimated with an orientation prior with 3
modes). The idea behind neighborhood-wise deconvolution allows in
principle arbitrary low and high resolutions to be combined. Due to
the dimensionality of the problem and the large datasets to be
combined, we developed a parallel implementation to achieve practical
execution times. We used the CUDA principles outlined in Hernandez
et al. (2013) to run the RubiX MCMC-based inference on Graphics Pro-
cessing units (GPUs). To allow parallelisation, this implementation as-
sumes an integer volume ratio of LR and HR voxels, implying ak=1/P
(see Eq. 6) and that each HR voxel intersects only one LR voxel; or
that P HR voxels fit perfectly within one LR. That way, neighborhoods
of P voxels can be treated independently and inference can be
parallelised. Thus, we downsample the LR (3T data) to twice the spatial
resolution of the 7Twhen runningRubiX. Broadly, given that the LRdata
affect more directly the estimation of the orientation prior hyper-
parameters in the RubiX framework (see (Sotiropoulos et al., 2013b)
for details) and their angular information is what complements the al-
ready high spatial resolution of the 7T data, we chose to sacrifice the
3T spatial resolution in order to achieve estimation in realistic time
frames. The MCMC was then run with a burn-in period of 5000 itera-
tions, with 1250 extra iterations for sampling. Thinning of the MCMC
posteriors and reduction of the autocorrelation of the chains was
achieved by retaining only every 25th sample. Computation times for
the very high-resolution HCP datasets of a single subject were in the
order of 4 h using 6 GPUs (about an order of magnitude longer than
performing Bayesian Inference using a single resolution local model
without any data fusion).

Results

In this section,we illustrate examples of desirable features fromeach
of the two datasets that are preserved after data fusion. Such features



Fig. 3. RubiX model predictions of both LR (3T) and HR (7T) datasets for three different locations (in the midbody of the corpus callosum, in the centrum semiovale and in cortical grey
matter). For each model parameter, the mode of the estimated posterior distribution was used to obtain model predictions. The volumes have been grouped into b-shells. Within each
shell, the volumes have been rearranged according to the dot product between the corresponding gradient direction and the principal DTI eigenvector.
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include the higher sensitivity to fibre complexity of the 3T and the
higher spatial resolution of the 7T.

First, we show the ability of the RubiX model to perform reasonable
predictions for both datasets given the set of parametersΩAll. Fig. 3 pre-
sents model predictions along with data at different locations in the
brain. To obtain the predictions, we used the mode of the estimated
Fig. 4. RubiXmodel predictions of differentmeasurement volumes in the HR (7T) and LR (3T) d
used in the estimation). The middle row shows the predictions. To obtain model predictions, t
bottom row shows the difference of the prediction minus the measurement expressed as a p
ID: 102311).
posterior distribution of each model parameter. We then used the gra-
dient direction scheme of each acquisition and Eqs. (5) and (6) to pre-
dict the signal at 3T and 7T. The data points have been grouped into b-
shells. Within each shell, they have been reordered according to the
angle of the corresponding gradient direction with the principal DTI ei-
genvector. Thus, the points are shown sorted from parallel to
ata. The top row shows the actual measurements (the 3T data have been downsampled, as
he mode of the estimated posterior distribution was used for each model parameter. The
ercentage of the measurement. The pial surface is shown as a grey outline (HCP Subject
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perpendicular to the principal diffusion direction. Despite the differ-
ences in the acquisition protocols, the model predicts reasonably well
both datasets.

Alternatively, instead of focusing on all measurements at single loca-
tions, Fig. 4 shows predictions for a single measurement volume. For
both datasets, the diffusion contrast in the predicted volumes follows
themeasured ones. The bottom row shows the difference between pre-
diction and measurements, expressed as a % fraction of the measure-
ment. The largest differences can be observed in the CSF-filled areas
(either in the ventricles or at the brain periphery outside the pial sur-
face, as indicated by the grey line) and these further increase with b-
values. The model predicts a lower CSF signal than measured, with the
measurements however reflecting an elevated noise floor. Within the
brain tissue, the absence of a consistent bias towards higher or lower
signal predictions can be noticed. In regions with larger inhomogenei-
ties (see Supplementaryfigures S4, S5), the deviations of themodel pre-
dictions from the data are higher, yet the predictions are reasonable for
both datasets and all b values.

Preserving the higher fibre complexity supported by the 3T data

Fig. 5 shows a qualitative comparison between the peaks of the fODF
that have been estimated using three different approaches; voxel-wise
deconvolution (i.e. Eq. (5)) using the 3T data alone (estimates at nomi-
nal spatial resolution (1.25 mm)3), voxel-wise deconvolution using the
7T alone (estimates at nominal spatial resolution (1.05 mm)3) and
RubiX using both 3T and 7T (estimates at nominal spatial resolution
(1.05 mm)3). The estimated orientations in the centrum semiovale are
Fig. 5. Fibre orientations in the centrum semiovale (coronal views) estimated using (from left to
(1.25 mm)3, Voxel-wise deconvolution on the 7T alone (estimates at nominal spatial resolut
resolution (1.05 mm)3). The two rows correspond to two different subjects. The black contou
their norm is modulated by the respective volume fractions. Only fibres with volume fraction f
shown for two different subjects (top and bottom row). Using the 3T
data, which have rich angular information, we can estimate two-way
and three-way crossings at the native 3T resolution, as expected.
Using the 7T data alone, we can still get reasonable crossing estimates,
but the orientations look more spatially incoherent at certain places
and some crossings are missing (example areas are depicted within
the dotted circles). After data fusion, we estimate very coherent cross-
ings at the resolution of the 7T grid i.e. we can get equally coherent
fibre patterns as with the 3T data, but at a higher spatial resolution.

The data fusion further permits an increase in the precision of orien-
tation estimates and/or an increase in the sensitivity in detecting fibre
crossings at high resolution. To quantify these gains, we counted the
amount of crossingfibre patterns that have been detected inwhitemat-
ter using the three approaches. We also computed the 95% cone of un-
certainty (Jones, 2003) for each estimated orientation. Fig. 6 illustrates
the results across ten subjects and two ROIs (corona radiata and
whole white matter). Two versions of RubiX are included along with
the 3T and 7T results that correspond to different values for the model
selection sensitivity parameter (w = 1: standard ARD prior and w =
0.8: relaxed ARD prior). In all cases, RubiX increases the sensitivity in
detecting crossings at HR (particularly 3-way, top row) and the preci-
sion of the HR estimates (bottom row) compared to results obtained
from the 7T data alone. By relaxing the ARD prior (i.e. use w b 1), we
can allow more crossing fibres to be detected at the expense of estima-
tion precision. We have chosen w = 0.8 as a middle-ground solution,
which allows RubiX estimates to be as precise as the 3T estimates,
have a sensitivity in detecting crossings close to the 3T, while being at
higher resolution than the 3T.
right): Voxel-wise deconvolution on the 3T alone (estimates at nominal spatial resolution
ion (1.05 mm)3), RubiX deconvolution on both 3T and 7T (estimates at nominal spatial
r represents the WM/GM boundary surface. The vectors have been RGB color-coded and
N 5% are shown.



Fig. 6. Number of crossing fibres (top row) and uncertainty of estimated orientations (bottom row) obtained using four different methods: voxel-wise deconvolution at 3T (red), voxel-
wise deconvolution at 7T (blue), RubiX deconvolution using both 3T and 7T andw=1 formodel selection (Rbx1, purple) and RubiX deconvolution usingw=0.8 (Rbx, black). Notice the
difference in the spatial resolution, on which eachmethod operates and estimates fibre orientations. Two ROIs have been considered, one in the corona radiata (obtained from the Johns
Hopkins University white matter atlas (Wakana et al., 2007)) and one covering the white matter. The bars correspond to the mean and standard deviation across 10 subjects. For each
subject and each ROI, the mean values were obtained. Only fibre orientations with f N 5% were considered. The percentages at the top row are expressed as fractions of the total ROI
volume. The uncertainties at the bottom correspond to the 95% cone of uncertainty (Jones, 2003).
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Preserving the fibre spreading pattern to the cortex supported by the 7T
data

As shown qualitatively in Fig. 2, the higher resolution 7T data sup-
port clearerfibre spreading patterns towards the cortex at the transition
betweenWMand GM. Figs. 7 and 8 clarify this difference further and il-
lustrate that this feature is retained after data fusion. This is desirable
behavior as the axonal patterns at the boundary between white and
grey matter indeed support such spreading geometries (Miller et al.,
2011; Heidemann et al., 2012; Van Essen et al., 2013a), which are
often missed by conventional, lower resolution dMRI (Sotiropoulos
et al., 2013a; Reveley et al., 2015).

More specifically, Fig. 7 presents the angle between the estimated
fibre orientations and the tangent plane to different locations of the
WM/GM boundary surface. For each surface vertex, the estimated
fibre compartments from the closest voxel were found and the com-
partments that had a volume fraction larger than 5% were retained.
The orientation of the compartment most parallel to the surface normal
was used to derive the presented angle. As shown in Fig. 7, the orienta-
tions estimated from the 3T (top) are mostly parallel to the surface and
only perpendicular to it at the top of the gyral crowns. The orientations
estimated from the 7T (middle) aremore often close to perpendicular to
the surface and are in general less parallel to the surface. This follows
more closely the spreadingfibre patterns to the cortex suggested by his-
tology (Van Essen et al., 2013a) and allows in principle more connec-
tions to reach the cortex at places other than the gyral crowns. The
orientations estimated from RubiX (bottom) follow a similar behavior
to the 7T.

To further characterise these differences we divided the WM/GM
boundary surface into three subregions. We used the mean curvature
at every vertex to differentiate between gyral crowns (high positive cur-
vature), gyral walls (roughly zero curvature) and sulcal fundi (high
negative curvature). We then obtained for each subregion a histogram
of the angles subtended between the estimated fibre orientations and
the surface tangent (Fig. 8). The difference between the 3T and 7T
data is minimal at the gyral crowns, but it is considerable at the gyral
walls and sulcal fundi. The probabilities of angles smaller than 20° are
respectively 17% and 40% higher with the 3T. The probabilities of angles
higher than 60° are respectively 40% and 150% higher with the 7T. The
histograms for the RubiX estimates follow very closely the 7T ones.

We then checked how these differences affect the behavior of
tractography towards the cortex. In particular we hypothesized that
the gyral bias, the anatomically unjustified (at least up to a certain ex-
tent) tendency of streamlines to preferably terminate at the gyral
crowns (Van Essen et al., 2013a), is reduced with the 7T/RubiX orienta-
tions. We estimated a connectome for each subject, by seeding every-
where in the brain and recording the path probabilities between pairs
of locations on the WM/GM boundary surface. We then obtained for
every surface vertex a mean path probability from that vertex to any
other vertex. This probability is representative of how “visited” each
vertex is; in the presence of a strong gyral bias, gyral crowns will be
more visited than other areas of the cortical ribbon. Subsequently, we
examined how these probability values correlate with a probe of corti-
cal geometry/folding. We chose as a probe the “gyral height” (“sulc”
map as obtained from the HCP pipelines (Glasser et al., 2013) and
FreeSurfer (Fischl, 2012)); this is the normalised signed linear distance
of a vertex from the mid-surface between gyri and sulci (positive for
gyral crowns, roughly zero for gyral walls and negative for sulcal
fundi). Fig. 9A shows violin plots of the correlation coefficients between
the logarithm of the mean path probability and the sulc values. Using
the 3T data leads to higher correlations of the streamline termination
points with cortical folding, meaning thatmore streamlines are concen-
trated at locationswith high sulc values, i.e. at the gyral crowns. The use
of 7T data brings down this correlation, allowing a more even



Fig. 7. Angle between surface tangent and fibre orientations at the inflated WM/GM
boundary surface. Orientations have been estimated as before using voxel-wise
deconvolution on the 3T alone, voxel-wise deconvolution on the 7T alone, RubiX
deconvolution on both 3T and 7T. For every surface vertex, the maximum dot product
between fibre orientations (with volume fraction f N 5%) at this location (within a voxel
size distance from the vertex location and on either side of the surface) and the surface
normal is computed. This is then converted to the colour-code angle shown on the
inflated surface. To aid visualisation of these qualitative illustrations, Gaussian
smoothing on the surface with 1 mm FWHM was performed for all cases. (HCP Subject
ID: 158035).
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distribution of the streamline terminations throughout the surface. Data
fusion preserves this trend (~8% increase in the median correlation
compared to the 7T, but still ~20% decrease compared to the 3T).

Fig. 9B quantifies the reduction of the gyral bias in a different way.
The WM/GM surface was divided into the three subregions, shown in
Fig. 8 (gyral crowns, gyral walls, sulcal fundi). The average path proba-
bility within each of these regions was obtained and the ratio of the
values at the sulcal fundi and the gyral walls to the value at the gyral
crowns is shown for each method and across 10 subjects. A 37% (20%)
increase of the connections ending up at the sulcal fundi (gyral walls)
relative to the connections ending up at the gyral crowns is obtained
with the 7T when compared to the 3T results. Very similar behavior is
retained with RubiX.

In summary, the results suggest that the 3T & 7T data fusion brings
sensitivity for detecting crossings to levels close to the ones observed
in the 3T data. At the same time the fusion matches desirable features
of the 7T data, such as reduced gyral bias.

Tractography examples

We next compared the effect of data fusion on tractography results.
Given the differences in spatial resolution between the methods ex-
plored, we defined seed (as well as constraint) masks in the standard
MNI 1 mm space. We also binned the tractography-estimated path dis-
tributions in the same space. Transformations between theMNI and the
native spaces were obtained as in Glasser et al. (2013) using a non-
linear registration of the T1-weighted images acquired at 3T.

Fig. 10 illustrates differences between the three different approaches
(3T alone, 7T alone, RubiX 3T & 7T)whenmapping different parts of the
motor projections using probabilistic tractography. Seed regions were
defined at the foot, hand and face area of the motor cortex. Paths
going through the posterior limb of the internal capsule and the thala-
mus were retained. An exclusion mask covering the midsagittal plane
was also used. A fine somatotopy is expected in the projections of the
motor paths both in the internal capsule (Fig. 10, top row) and in the
thalamus (Fig. 10, bottom row) and this was revealed with all methods.
Projections from the face area in the thalamus were not clearly identi-
fied with the 3T data and were mixed with paths from the foot area.
The separation was clearer using 7T and was retained after data fusion.

Fig. 11A illustrates the ability to resolve a thin tract, the limbic path-
ways of the subgenual white matter to the amygdala (Mayberg et al.,
2005). Allmethods perform a reasonable estimation as shown for an ex-
emplar subject (top row). However, for some subjects (particularlywith
larger than average brain sizes) the 7T data support much noisier pro-
jections to the amygdala than the 3T (bottom row). Larger brain sizes
lead to worse SNR (also larger heads require higher voltages to achieve
the desired flip angles, which cannot be reached due to SAR con-
straints), which amplifies the signal dropouts in the inferior temporal
regions due to B1 inhomogeneities (Fig. 11B, also artifacts shown in
Fig. 2). The RubiX model seems beneficial in resolving such a situation,
as the 3T data assist orientation estimation in the absence of usable 7T
data.

We finally checked how well we could replicate an organisational
rule learned from tracers using the orientation estimates obtained
from the differentmethods. Injection of retrograde tracers in the ventral
prefrontal cortex (vPFC) of themacaque reveals a certain pattern for the
commissural projections. Themore lateral the injection site is at the cor-
tex, the more superior the commissural projection ends up within the
corpus callosum (R2 N 0.9 between the medial-lateral vPFC position
and the midsagittal inferior–superior position in the corpus callosum).
This pattern has been augmented and validated with tractography in
the post-mortem macaque brain (Jbabdi et al., 2013). Fig. 12 shows
that we can replicate such a pattern with the HCP data (the results
with RubiX are shown in the figure, but a similar trend is revealed for
the other two methods). Across ten subjects we computed the correla-
tion coefficient of vPFC X-position and CC Z-position. We obtained a
higher and less variable R2 (mean R2 = 0.697, 0.693 and 0.746 for 3T,
7T and RubiX respectively) when using the data fusion model.

Discussion

We presented a framework for combining diffusion MRI data ac-
quired using different k-space and q-space sampling protocols. We ex-
plored complementary features of the available HCP data acquired
using different scanners and magnetic field strengths (3T and 7T)
(Sotiropoulos et al., 2013c; Vu et al., 2015). We then used a data fusion
approach to estimate fibre orientations in a way that preserved desired
features from the combined datasets. Despite the fact that individual
HCP data are of very high quality on their own, we showed benefits
when performing a joint analysis, which reflect the better angular con-
trast and angular resolution of the 3T and the better spatial resolution of
the 7T.

The RubiX generative model used for this data fusion has been pre-
sented before for combining dMRI acquired using the same 3T scanner,
at the same b-value, but different spatial resolutions (Sotiropoulos et al.,
2013b). Here, we modified the local and spatial representations (Eq. 5
and 6) to allow data, different in both q- and k-space sampling, to be
combined. This tackles a complex trade-off in diffusionMRI acquisitions,
between SNR, spatial resolution and angular contrast.We illustrated the
benefits in the context of the HCP and of combining data from different
scanners, but data from the same scanner using different sampling ap-
proaches could also be combined, as originally shown in Sotiropoulos
et al. (2013b).

Other groups have also recently considered the advantages of data
fusion within the same modality (dMRI). In Fan et al. (2015), similar



Fig. 8.Normalised histograms of angles between fibre orientations and surface tangent at three subregions of theWM/GM boundary surface: gyral crows (top), gyral walls (middle) and
sulcal fundi (bottom). Orientations have been estimated as before using voxel-wise deconvolution on the 3T alone (red), voxel-wise deconvolution on the 7T alone (blue), RubiX
deconvolution on both 3T and 7T (black). For every surface vertex, the maximum dot product between fibreorientations (with volume fraction f N 5%) at this location and the surface
normal is computed. This is then converted to the angles shown. For every bin of the histograms, the mean angle across ten subjects is shown. The error bars indicate the standard
deviation across these subjects.

405S.N. Sotiropoulos et al. / NeuroImage 134 (2016) 396–409
to our study, the benefit of combining data with different sampling pro-
tocols is illustrated when focusing on tractography near the cortex. A
relatively low-resolution & high b-value dataset (aimed at deep white
matter) is combined with a high-resolution & low b-value dataset
(aimed at regions near the cortex). However, their combination reduces
down to a binary selection of data using the WM/GM interface as a de-
cision boundary, which leads to half of the data being thrown away.
Here we achieve a similar aim by using a generative model of both
datasets that are combinedwithout theneed for performing such binary
decisions.

In Alexander et al. (2014), the HCP data are used to learn a mapping
of high-resolution spatial patterns to low-resolution representations. By
detecting these patterns in unseen conventional dMRI the authors
transfer features learned from the bespoke high-quality HCP images to
standard low-resolution diffusion images and super-resolve them.
This is effectively an advanced approach to data interpolation, which
has been shown to improve the geometrical resolution content of
dMRI (Dyrby et al., 2014). Even if an exhaustive comparison with inter-
polation methods is outside the scope of this study, we confirmed that
certain exquisite features of the high-resolution data could not be ob-
tained via simple interpolation (see Supplementary Material,
Figure S6). Therefore, our data fusion offers more than interpolation
and, similar in spirit to Alexander et al. (2014), complements image
quality between the 3T and 7T datasets.
Using the RubiX framework, we also extend the idea of classical
voxel-wise spherical deconvolution (Anderson, 2005; Behrens et al.,
2007; Dell'Acqua et al., 2007; Tournier et al., 2007). Benefits from
using spatial information in the deconvolution have been illustrated, ei-
ther as ameans to regularise the estimates (e.g. (Goh et al., 2009)) or as
a way to infer within-voxel asymmetry (Reisert et al., 2012). By cou-
pling a spatial and a local model, we also show that complementary
datasets can be combined and this complementarity is reflected into
the estimates.We also observe thatmore precise estimates are obtained
using data fusion (Fig. 6). We need to point out that this feature is ex-
pected andnot surprising in this application, as the fused data have larg-
er total scan time than the individual datasets. But we have shown
before the benefit of increased precision and accuracy in a comparison
where fused data were matched for scanning time with the individual
datasets (Sotiropoulos et al., 2013b).

Model assumptions and simulations

The current model representations have certain assumptions. The
local model (Eq. 5) is aimed to deconvolve the fODF using a parametric
approach. This captures isotropic partial volume and also permits the
estimation of features of the convolution kernel. The anisotropy of an
axially symmetric tensor response is estimated with a prior on that pa-
rameter learned from the data. However, we assume and fit a single



Fig. 9.A) Correlations ofmean path probabilities on theWM/GM boundary surfacewith gyral height (“sulc”map obtained from FreeSurfer). Violin plots illustrate the distribution of these
correlations across ten subjects and for three different methods (3T, 7T, Rbx). The dashed lines within the plots show themedian of the distribution and the dotted lines the inter-quartile
range. The individual points are also shown and the solid lines connect the points corresponding to the same subject, across the three different methods. Themean path probabilities were
estimated using tractography. As shown on the left column, probabilistic tractography was seeded at every brain tissue voxel C (~190,000 seeds, 3000 samples per seed, curvature
threshold = 80°, Pial surface termination mask, WM/GM boundary surface allowed to be crossed only twice). Path probabilities were then recorded between pairs of 60,000 vertices
on the WM/GM boundary surface to give a comprehensive connectome matrix. The mean path probability of every vertex was obtained by taking the average across the rows of the
connectome. The logarithm of the path probabilities was correlated with the gyral height at the respective vertex locations. Gyral height is high for gyral crowns and low for sulcal
fundi. B) Mean path probabilities at different regions of the WM/GM boundary surface (sulcal fundi, gyral walls), normalised to the corresponding mean path probability at the gyral
crowns. The mean path probability values obtained on the WM/GM surface as in (A) were grouped into the three subregions described in Fig. 8. The average across these subregions
was obtained and the ratio of these values at the sulcal fundi and the gyral walls to the value at the gyral crowns is presented. The bars show the mean and standard deviation of the
ratios across ten subjects.
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average anisotropy of that convolution kernel across all bshells. In real-
ity, the average anisotropy would increase and the ideal kernel will
change with bvalue. Incorporating an extension similar to Jeurissen
et al. (2014) would increase the accuracy. Nevertheless, we extend
here the commonly used practice in deconvolution (Tournier et al.,
2007; Jeurissen et al., 2014), by allowing some spatial variability of the
convolution kernel with an informative prior instead of using a single
kernel for all voxels.

The isotropic compartment used in the local model is a phenomeno-
logical representation, using a Gamma distribution of diffusivities, as in
Jbabdi et al. (2012). It can capture the non-mono-exponential decay of
the signal with b value. Therefore, it can accommodate the combination
of data with multiple b values. Other models may have a more direct
Fig. 10. Somatotopy ofmotor projections in the internal capsule and the thalamus. Tractography
left. Axial views of the path distributions are shown for the different methods at two differ
comparisons. Path distributions for the foot and face area have been thresholded at 1% (3% thr
biophysical interpretation (for instance the bi-exponential model
(Clark et al., 2002), kurtosis imaging (Jensen et al., 2005), the stretched
exponentialmodel (Bennett et al., 2003) ormodels that explicitly repre-
sent restriction (Stanisz et al., 1997; Assaf et al., 2008)), but the Gamma
distribution representation is more compact adding only one extra
parameter.

The spatial model (Eq. 6) assumes that T1 and T2 vary smoothly in
the neighborhood of voxels whose signal is combined. Furthermore, re-
laxation, which can be different at different acquisition timings (TE, TR)
and field strengths, is not represented explicitly in either the spatial or
the local model. We used simulations to assess the impact of these sim-
plifications (Supplementary Material, Figure S2). We refer the interest-
ed reader to the Supplementary Material for the full details and we
was seeded from the foot, hand and face area of theprimarymotor cortex, as shownon the
ent Z positions. All results are shown in the standard MNI 1 mm space to allow direct
eshold has been used for the hand area).



Fig. 11. A)Maximum intensity projections along the coronal plane of the distribution of the limbic paths connecting subgenualwhitematter to the amygdala. Each column corresponds to
probabilistic tractography results using fibre orientations estimated from the three different methods (voxelwise 3T deconvolution, voxelwise 7T deconvolution and RubiX
deconvolution). The two rows correspond to different subjects (HCP Subject ID: 158035 — top, 109123 — bottom). B) Mean b = 0 image of the 7T data for the two subjects presented
in (A) (HCP Subject ID: 158035 — top, 109123 — bottom). The red outlines represent the pial surface. Subjects with larger brain sizes have larger B1 inhomogeneity artifacts. These
lead to more severe signal dropouts in the temporal lobes (yellow arrows).

Fig. 12. Replication of the organisation pattern of prefrontal cortex commissural projections using HCP data. A) The ventral prefrontal cortex (vPFC) has been divided into 13 subregions
according to Ongur et al. (2003). The regions are shown from a sagittal perspective, as well as from below (A: anterior, P: posterior, S: superior, I: inferior, M: medial, L: lateral). The
organisation pattern predicts that the more lateral the position of a subregion is, the more superior in the corpus callosum (CC) its commissural projection will be. Tracers injected in
the vPFC, as well as macaque post-mortem tractography follow this pattern with a very strong correlation between the X position of the centre of gravity (COG) in the vPFC and the Z
position of the COG of the callosal projection (Jbabdi et al., 2013). B) The coefficient of determination R2 between the vPFC X and the midsaggital CC Z position, when performing
tractography using the fibre orientations estimated from the three different approaches. Mean and standard deviation shown across ten subjects. For each subject, the COG is
computed for each vPFC mask (since these are binary masks, the COG is simply the mean of the coordinates of all voxels contained in the mask). Also, for each mask the respective
callosal path distribution is obtained using tractography. The COG of the distribution is obtained on the midsagittal plane (since this is a path distribution, the COG is the centre of
mass of this distribution, i.e. coordinates are weighted by the respective probabilities). The squared correlation coefficient between the X coordinate of vPFC COG and the Z coordinate
of the respective CC COG is then computed. The barplots show these values across ten subjects. RubiX results have on average the highest and less variable R2 compared to the other
two methods. C) Mean coordinates across ten subjects of the COG of the midsaggital CC projections from each vPFC subregion when using RubiX. D) Mean and standard deviation
across subjects of coordinates of the midsaggital CC projections' COG when using RubiX. The grey squares delineate the anterior part of the corpus callosum. Coordinates are all
reported in MNI space. For all tractography a waypoint was used for the anterior CC. For each vPFC seed, the rest subregions were used as exclusion masks.
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present here the main findings. Simulations showed that the impact is
minimal for estimated orientations, which are the parameters of inter-
est for this framework. The most profound effects were observed at
boundaries between tissue types (particularly at WM/CSF borders), on
the estimated diffusivities and volume fractions. Given that we use
shrinkage priors on the volume fractions, such deviations are less likely
to induce false positive crossings. A worst-case scenario is getting the
fractions wrong when the true anisotropic volume fractions are small
(in the order of ~5%), which can induce false negatives in the complex-
ity of the fODFs. Yet, our estimates of complexity (Fig. 6), even at this
high resolution, fall within the expected range as estimated from data
of conventional spatial resolution (Jeurissen et al., 2013).

The spatial model can be improved in a number of ways. For in-
stance, differences between the combined datasets in PSF blurring
along the phase-encoding direction are currently ignored. These could
be incorporated into the model. A preliminary attempt to incorporate
the PSF into the model has been recently shown in (Pisharady et al.,
2015). Furthermore, tissue maps (obtained e.g. from a structural seg-
mentation) could be used for a more accurate partial volume represen-
tation that accounts for tissue-specific relaxation rates. Nevertheless,
the simple representation used in this study predicts well measure-
ments made at both field strengths and with different protocols (Figs.
3, 4).

An underlying assumption of the presented framework is that the
fused datasets are well aligned. Of course, given the 4D nature of diffu-
sion datasets, alignment of diffusion-weighted volumes in the presence
of distortions and head motion is a prerequisite even for traditional
voxel-wise analysis (Nilsson et al., 2015; Graham et al., 2016). In this
study, we have used state-of-the-art methods to align the datasets, in-
cluding distortion correction (Andersson et al., 2003; Andersson and
Sotiropoulos, 2016), boundary-based registration (Greve and Fischl,
2009) to reduce sensitivity to residual distortions and unwarping of
shape distortions caused by gradient non-linearities (Glasser et al.,
2013). Simulations of relatively worst-case scenarios of residual mis-
alignments (see Supplementary Material, Figure S3) confirmed that
performance deteriorates with misalignment, but even for bad align-
ment scenarios the model does not behave in an unpredictable manner
and performance is reasonable.

Limitations and future work

A limitation in our implementation is the requirement of fusing data
acquired with voxel sizes of one dataset being exact multiples of the
sizes of the other. We have made this simplification to allow
parallelisation in the inference and achieve computationwithin realistic
time frames. This renders the HCP data (obtained from protocols aimed
to push the limits as much as possible at every field strength within the
allotted scanning time) slightly sub-optimal for our current implemen-
tation. Yet, in Sotiropoulos et al. (2013b)we evaluated the effect of such
a setup (with LR voxel volume being twice the HR one). We found that
the RubiX estimates have spatial specificity very close and representa-
tive of the HR grid they are obtained at, while the LR data constrain
the solution space. The price for those LR constraints was found to be
in the order of 5–10% resolution loss in the estimates, which we intro-
duce in the case of HCP datawhen downsampling the 3T.We anticipate
that removing these implementation-related requirements will further
improve the spatial specificity of the estimates. Nevertheless, the angu-
lar contrast that the 3Tdata carry complementedwith the higher spatial
resolution of the 7T is beneficial in many instances compared to analyz-
ing the original 3T data alone without downsampling (Figs. 7-9, 12).

The coupling of the datasets during estimation is achieved by the
spatial model, but also by the use of orientation priors. The exact
hyperparameters used in theWatsonpriors have an influence on the ac-
curacy and precision of the estimates and the spatial regularisation in-
duced (Sotiropoulos et al., 2013b). We have used the hyper-
parameters suggested in Sotiropoulos et al., (2013b), as these values
were also used to evaluate the induced spatial regularisation and reso-
lution loss described above.

We should finally point out that although the HCP data obtained on
the same subjects at 3T and 7T provide insights into the effect of the
field strength on dMRI, these data should not be considered a direct
field strength comparison. The 7T dMRI was allotted 40 min of total
scan time, restricting it to 2 shells versus 3 shells and 55 min of scan
time for 3T. The TR was also longer at 7T leading to fewer q-values per
shell because of power deposition (SAR) constraints (which can be in
principle overcome with more recent technical developments). Maxi-
mal gradient strengths available would have a major impact on such a
comparison, with higher maximal gradients being much more impor-
tant at the higher field strength. Rather, the present study informs
more on the effects of data with higher spatial resolution versus data
with higher b-values and more angular sampling and the benefits
from their joint analysis. Future studies can improve on the already
highly advanced HCP data by taking into account the results obtained
in this study.
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