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Abstract

This paper presents the results of the second edition of the Wind Farm Layout
Optimization Competition, which was held at the 22nd Genetic and Evolution-
ary Computation COnference (GECCO) in 2015. During this competition, com-
petitors were tasked with optimizing the layouts of five generated wind farms
based on a simplified cost of energy evaluation function of the wind farm layouts.
Online and offline APIs were implemented in C++, Java, Matlab and Python
for this competition to offer a common framework for the competitors. The top
four approaches out of eight participating teams are presented in this paper and
their results are compared. All of the competitors’ algorithms use evolution-
ary computation, the research field of the conference at which the competition
was held. Competitors were able to downscale the optimization problem size
(number of parameters) by casting the wind farm layout problem as a geometric
optimization problem. This strongly reduces the number of evaluations (limited
in the scope of this competition) with extremely promising results.
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1. Introduction1

Wind farm design is a complex task and the recent trend of larger farm2

sizes has greatly increased demands on designers. Traditionally, a small, well-3

connected, land area is divided into smaller cells and turbine placement among4

cells is decided through a simple search algorithm with a pre-specified cost5

function. This function is usually limited to minimizing inter-turbine wake6

interferences and thus maximizing energy capture. Few approaches consider7

additional factors such as operation and maintenance costs, turbine costs, or8

cable layout.9

Modern farms cover large areas and boast hundreds, and sometimes even10

thousands, of turbines. The layout design process is iterative, computationally11

expensive, burdened with global and local constraints, and ultimately controlled12

by subjective assessments due to the involvement of a variety of stakeholders.13

During each step, designers must either refine an incremental layout or pro-14

pose a new layout which they have generated by incorporating new constraints.15

Additionally, evaluating a layout requires varied multi-disciplinary models and16

sub-modules that are extremely computationally expensive.17

The wind farm layout optimization problem is the identification of turbine18

positions in a 2-D plane such that the energy capture is maximized while costs19

associated with a number of other factors are minimized. The energy capture20

for a turbine takes into account the wind scenario (wind force distribution and21

terrain), the turbines’ power curve (power generated by the turbine in function22

of the wind input) and wake effects (inter-turbine interferences) [1].23

When optimizing both the position and the number of turbines to build,24

genetic algorithms (GAs) are commonly used to optimize wind farm layout.25

The farm area is discretized with a grid [2, 3, 4, 5, 6, 7, 8]. The GA optimizes a26

binary genome in which each gene represents the presence or absence of a turbine27

in each cell of the grid, therefore both optimizing the number of turbines and28

their discrete placement. Other techniques have been evaluated using particle29

swarm optimization [9, 10, 11] and local modification with different optimization30

algorithms [12, 13]. Wilson et al. have also proposed an innovative interactive31

approach based on cell-based developmental model in [14]. Interested readers32

can find overviews of existing methods for wind farm layout optimization in33

Khan et al. [15] and Samorani [16].34

In this paper, we report on a competition we ran at the Genetic and Evo-35

lutionary Computation Conference 2015 (GECCO 2015) during which experts36

from the evolutionary computation community optimized wind farm layouts.37

Eight teams participated and proposed innovative algorithms, all evaluated in38

the same context: the same wind scenarios, power curve and wake effect mod-39

els. This paper presents the results of the top 4 participants and is organized as40

follows. Section 2 presents the rules and the framework used during the com-41

petition. Section 3 details the top 4 algorithms of the competition, which are42

then compared with a standard binary GA in section 4. Finally, this article43

discusses these algorithms and opens novel questions that could be addressed44

using evolutionary algorithms in this domain of research.45
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2. Competition rules and framework46

2.1. Competition rules47

Whereas the first edition of the wind farm layout optimization competition,48

held at the 2014 Genetic and Evolutionary Computation COnference (GECCO),49

consisted in only optimizing the wake free ratio (actual energy output over po-50

tential output without wake), the second edition focuses on the economical51

viability of the produced layouts. Layouts generated by the competitors’ al-52

gorithms are evaluated in the cloud on 5 unknown wind scenarios (wind rose,53

layout shape and obstacles, turbine specifications, etc.) using the cost func-54

tion presented below. In order to keep the computation cost acceptable, the55

competitors have a finite number of possible evaluations: they can only call56

the evaluation function 10,000 times for all 5 scenarios combined. This limited57

amount of evaluation credits aims to represent the CPU cost of layout evalua-58

tion and to promote efficient algorithms. This metric was preferred to CPU time59

because the computation was held on a shared research cluster with no exclusive60

access guaranteed. In order to develop their algorithms, competitors also have61

access to 20 known scenarios, 10 without obstacles and 10 with obstacles, all62

different from the ones used during the competition.63

Based on the best layouts submitted, the competing algorithms are compared64

on each scenario to optimize the cost of energy function. The algorithms are65

ranked on each scenario with a point system provided in Table 1.66

Position 1st 2nd 3rd 4th 5th 6th

Points 10 6 4 3 2 1

Table 1: Point system

Places below 6th receive 0 points. The winner of the competition is the67

competitor that has the highest number of points among the 5 scenarios.68

2.2. Layout evaluation69

For each layout generated, the goal of the competitors is to minimize the70

cost of energy f calculated as follows:71

f =

(
ctn+ cs⌊ n

m⌋
)
+ cOMn(

1− (1− r)−y
)
/r

∗ 1

8760P
+

0.1

n
(1)

where ct is the turbine cost, cs is the price of a substation, m is the number of72

turbines per substation, r is the interest rate, y is the farm lifetime in years, cOM73

is the operation and maintenance costs, n is the number of turbines of the layout,74

P is the layout’s energy output. The last term of the fitness function rewards75

layouts with more turbines: without this term, smaller layouts would be more76

optimal, which would be counterproductive with regard to the optimization.77

This cost function corresponds to the production price of a kilowatt: the78

competitors must produce the layout that minimizes the cost of energy with79
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respect to the scenario provided. Table 2 provides the constant values used in80

the previous equation.81

Note that a set of constraints must be fulfilled by a wind farm layout to82

be valid. First, all the turbines must be located inside the terrain where the83

wind farm will be deployed, i.e. all turbine positions must be smaller than a84

maximum x and y provided in each scenario. Second, the distance between85

turbines must be larger than a given security threshold, which is called Dmin86

and in our studies was set to 8 times the turbine rotor radius.87

Constant Value
ct $750,000
cs $8,000,000
m 30
r 3%
y 20 years

cOM $20,000 per year
Dmin 308m

Table 2: Constant values used in the calculation of the cost of energy.

To evaluate the energy output of the wind farm, Kusiak’s model has been88

used [1]. It provides the energy output P of the layout generated by the com-89

petitor optimizers.90

2.3. Inter-turbine interference model91

The energy capture for a turbine takes into account the following:92

• Wind Scenario: Wind speed, v, represented as a random variable with93

a Weibull distribution that is a summary of wind speed at that location94

for a period of time. This is given by pv(v; c, k|θ), where c and k are95

Weibull shape and scale parameters and θ is a wind directional bin. The96

wind speed distribution is different for different directional bins, θ. Addi-97

tionally, wind flows from a certain direction with some probability p(θ).98

Together pv(v; c, k|θ) and p(θ) are referred to as wind resource/scenario99

in this paper.100

• Power curve: A function η(v), known as a power curve, gives the power101

generated by a turbine for the given wind speed v. The power curve is102

dependent on the turbine make and model.103

• Wake effects: In a particular directional bin, for a given turbine i located104

at xi, yi a number of other turbines affect the wind it experiences. This105

is called wake effect. Given the other turbines’ locations xj , yj for all106

j ∈ {1 . . . i− 1, i+ 1 . . . n}, the turbines that affect the particular turbine107

are determined using a wake model. This is documented in [1]. If a turbine108

located at xi, yi is in the wake of another turbine located at xj , yj in a109

given direction, the wind speed distribution experienced by the turbine110
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is modified by changing the parameter c resulting in a turbine specific111

ci|θ. The value ci < c is reduced in proportion to the Euclidean distance112

between i and j.113

To evaluate the energy capture, the objective function needs the expected114

value of the energy capture for a given wind resource and turbine positions. For115

a single turbine at position (xi, yi), it first determines its modified wind resource116

for each directional bin based on other turbine positions and then calculates its117

energy capture using:118

E =

∫
θ

p(θ)

∫
v

pθv(v; ci, ki|θ)η(v). (2)

Equation 2 evaluates the overall average energy over all wind speeds for a119

given wind direction, and then averages this energy over all wind directions.120

Energy is calculated for every turbine and then summed together to give global121

energy capture.122

2.4. Framework123

In order to reduce the competitors’ development efforts, we have developed124

an open-source API, called WindFLO, that implements the cost function (and125

the inter-turbine interference model) in multiple languages (C++, Java, Matlab126
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Figure 1: The 5 unknown scenarios used to evaluate the competitors’ algorithms. Obstacles
are represented with dark blue rectangles.
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and Python)1. The API provides a simple GA as an example of use of the127

library.128

2.5. Wind scenarios129

Figure 1 depicts the scenarios (terrain sizes, obstacles and wind roses) used130

to evaluate the competitors’ algorithms. Wind roses graphically represent the131

wind repartition in force and probability in each direction. These scenarios can132

be downloaded from the WindFLO repository.133

1This API is available on github: https://github.com/d9w/WindFLO
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3. Competitors’ algorithms134

The second edition of the competition received a total of 8 submissions.135

This section presents the top four approaches. In our opinion, they are the136

most relevant to the wind farm optimization community and provides the best137

results in term of quality of layouts obtained. These four algorithms are available138

in the WindFLO API presented above. These algorithms are the following:139

1. 3s-MDE: from Carlos Segura, Guillermo López Buenfil, Mario Ocampo140

Pineda, Sergio Ivvan Valdez Peña, Salvador Botello Rionda, and Arturo141

Hernández-Aguirre. The 3-Stages Memetic Differential Evolution (3s-142

MDE) starts by creating a surrogate model which approximates the cost143

function. Then, a memetic differential evolution is used to pre-optimize144

the model based on a geometric distortion of a layout based on rhomboids.145

The pre-optimized layout is then refined by locally modifying the candi-146

date solution. The more accurate model is used only to evaluate solutions147

with a promising behaviour in the surrogate model.148

2. CMA-ES: from Ilya Loshchilov and Frank Hutter, this second approach149

uses the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to150

optimize a layout described by 5 variables: scale (horizontal and vertical),151

shift from the origin, rotation, and shift from a given location.152

3. SSHH : from Ahmed Kheiri and Ed Keedwell, the Sequence-based Selec-153

tion Hyper-Heuristic (SSHH) approach discretized the layout and then154

a solution is represented by three integer variables that corresponds to155

the distance between neighbouring turbines and a shift factor. A hidden156

Markov model produces a sequence of low level heuristics which create the157

final layout.158

4. GM : from Brian Goldman, the Goldman Method (GM) presented in this159

paper uses a pair of lattice vectors to calculate turbine locations. It160

also uses the cost of substation, which is larger than the turbine cost161

itself, to leverage the size of the evaluated layouts. A deterministic best-162

improvement local search method is then used to optimize the lattice vec-163

tors.164

The source codes of these four algorithms are available on the competition165

github: https://github.com/d9w/WindFLO. We now discuss these approaches166

in turn.167

3.1. Memetic Differential Evolution with Surrogate Model and Ad-hoc Improve-168

ments (3s-MDE)169

In this section we present a three-stage optimizer — see Algorithm 1 — that170

combines a memetic differential evolution (mde) with a novel representation of171

candidate solutions, a surrogate model and ad-hoc improvements. This method172

is referred to as 3s-mde in the rest of the paper. A detailed flowchart of the173

scheme describing the three stages is given in Fig. 2. In this flowchart, the boxes174

that perform evaluations in the real simulator — in contrast to those that use175

the surrogate model — are shown in gray. The following sections describe each176

stage of this optimizer.177
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Algorithm 1 Memetic de with Surrogate Model and Ad-hoc Improvements
1: Stage 1: Create a Surrogate Model SM .
2: Stage 2: Apply a memetic DE/rand/1/bin using SM with a representation based

on rhomboids.
3: Stage 3: Apply ad-hoc improvements to the best solution obtained in Stage 2.

3.1.1. First Stage: Construction of a Surrogate Model178

One of the main difficulties when dealing with complex engineering problems179

is that evaluating a solution is usually quite an expensive process. Surrogate180

models can be used to alleviate this difficulty [17]. Different ways of build-181

ing surrogate models have been proposed. Problem-dependent models rely on182

ad-hoc knowledge of the problem, whereas with problem-independent models,183

machine learning methods are usually employed [18].184

For this optimizer, a problem-dependent surrogate model is built to approx-185

imate the energy generated by a given set of turbines. In order to construct186

the surrogate model, a set of simple candidate solutions where only two tur-187

bines are placed in the wind farm are evaluated using the original evaluator.188

Additionally, one evaluation with a single turbine is carried out to estimate the189

maximum energy that it can generate. For each evaluation with two turbines,190

the penalty on the energy produced in both turbines with respect to the case191

where only one turbine is placed in the wind farm is calculated. Specifically, the192

following set of distances are checked: Dmin, 1.5Dmin, 2Dmin, 2.5Dmin, 3Dmin193

and 3.5Dmin, where Dmin represents the minimum admissible distance between194

turbines. For the case in which the distance between turbines is set to Dmin,195

720 equidistributed different angles are checked, whereas in the remaining cases,196

360 different angles are used.197

The surrogate model uses the saved data to approximate the energy gen-198

erated by layouts that use any number of turbines. The model assumes that199

the energy generated by one turbine is not influenced by any other turbines200

placed further away than 3.5Dmin. Thus, for each turbine, the set of conflicting201

turbines — those at a distance not greater than 3.5Dmin — is detected and the202

negative influence is estimated based on the saved data. Specifically, if for a203

given turbine there exists another turbine at a distance D and angle γ, then204

the four surrounding cases — combining the nearest distances and angles — are205

identified and linear interpolations are used to estimate the negative influence.206

Note that the computational complexity of identifying the surrounding cases207

with values higher and lower than D and γ is constant, so this process is quite208

fast. The total energy generated by a given turbine is the estimate of the maxi-209

mum attainable energy minus the sum of the estimated negative influences. The210

total energy estimated for a given layout is the sum of the energies estimated211

for each turbine.212

3.1.2. Second Stage: Memetic Differential Evolution213

In the second stage, one of the most well-known variants of de is applied.214

Specifically, the DE/rand/1/bin is used [19]. This variant has the property215
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Figure 2: 3s-MDE Flowchart

of being more explorative than schemes that apply the “best” strategy. This216

feature was vitally important due to the small population size (N) used in the217

runs. In the current mde implementation, a special initialization of the popu-218

lation is used. First, 200 individuals are created; then, the best N individuals219
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Figure 3: Encoding of Individuals in mde

are selected to form the initial population.220

One of the keys to designing proper Evolutionary Algorithms (eas) is the221

selection of a suitable encoding of the individuals [20]. Directly encoding the222

coordinates of the turbines yields too large a search space, thus an alternative223

encoding was adopted. Specifically, a solution is encoded with four real-valued224

parameters, which establish the geometry of a possibly rotated rhomboid (see225

Figure 3): L1 and L2 are the lengths of the sides of the rhomboid; α is the226

angle formed between two sides of the rhomboid; finally, β rotates the whole227

rhomboid. This rhomboid is used to establish the positions where the turbines228

are deployed, which is illustrated in Figure 3. Specifically, the given scenario —229

green zone — is covered with a set of rhomboids with the specified geometry230

and the turbines are positioned at the vertexes of these rhomboids. One of the231

vertexes of the rhomboids is placed in the bottom-left corner of the wind farm.232

Since some turbines might be too close to one another, a repairing method is233

used to remove conflicting turbines. First, the turbines are randomly shuffled.234

Then, each turbine is sequentially examined and is accepted only if it does not235

conflict with any previously accepted turbine, i.e. it is accepted if the distance236

to any already selected turbine is not smaller than Dmin. Additionally, when a237

vertex is inside an obstacle, no turbine is located in such a vertex.238

In order to improve upon the intensification capabilities, de was integrated239

with an adaptive local search, which is applied both in the creation of the initial240

population and after the creation of the offspring. The number of evaluations241

used in each application of the local search is set with the local search budget242

(LSB) parameter. The adaptive search starts with a given step size (SS) for243

each parameter which is progressively decreased linearly with the aim of in-244

creasing the intensification capabilities. The reduction is calculated in such a245

way that by the end of the local search the resulting value is 0. When each246

neighbor is created, any of the four parameters is changed with a probability247

equal to 0.25. Specifically, they are modified by summing or subtracting the248

step size corresponding to the iteration. Note that applying the real evaluator249
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in the local search would be very expensive. As a result, the adaptive local250

search uses the surrogate model and only the best solution obtained after the251

application of each local search might be evaluated with the original evaluator.252

Specifically, the obtained solution is evaluated with the original evaluator only253

if it is not worse than 1.20 multiplied by the best so far obtained fitness. Thus,254

the surrogate model is also used to filter out poor solutions, which is a typical255

use of surrogates.256

3.1.3. Third Stage: Ad-hoc Improvement257

The last stage starts from the best solution identified by the memetic de258

and applies two methods to further improve it. Note that in this last phase,259

the surrogate model is not used because some minor modifications are made260

to the candidate solutions, thus making it impossible to properly measure the261

promising behavior of these changes with the surrogate model.262

The first method is applied only in the scenarios where obstacles are in-263

cluded. First, given a budget B for evaluations, B
2 potential locations are264

identified. Specifically, at each edge of the obstacles, B
NOBS∗4∗2 locations are265

equidistributed, where NOBS is the number of obstacles. Then, for each se-266

lected location, a new solution is evaluated that considers the establishment of267

a turbine in that position and the removal of a randomly selected turbine. The268

modification is maintained only if the fitness is improved.269

Finally, the remaining evaluations are used to apply a local search. In the270

initial version of the local search, neighbors were generated by slightly moving a271

single turbine. Specifically, a maximum step (MS) was established — here set to272

6.25 units — and in order to generate a neighbor, a turbine was moved S units,273

where S was a randomly generated number between 0 and MS. The direction of274

movement was also randomly generated. Given that the number of evaluations275

is very restricted, instead of moving a single turbine, the local search moves276

several turbines simultaneously, following the same method explained above.277

Distant turbines are selected using the process below. First, a safety distance278

(SD) is established to 6×Dmin. Then, a turbine present in the current solution279

is randomly selected and a grid of square cells with a side length equal to SD280

is set up in the wind farm in such a way that the center of a cell is in the281

position of the selected turbine. Then, for each cell, the turbine that is closest282

to the center is selected. In this way, a set of distant turbines is generated. The283

new candidate solution is created by moving each selected turbine. Then, the284

energy generated in each cell is calculated and the cells where the amount of285

energy generated is increased are considered to be promising moves. Finally,286

the movements involving unsuccessful cells are undone and the new candidate287

solution is reevaluated. If the fitness of the new solution improves the original288

solution, it is accepted. This process is repeated until the budget for the number289

of evaluations is exhausted.290

3.1.4. Parameterization291

3s-mde needs a set of parameters, which were tuned with the set of instances292

given in the first part of the contest. Table 3 provides the parameters used in293
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this competition.294

Parameter name Notation value
Population size N 10
Crossover rate CR 0.9

Mutation scale factor F Gaussian dist. N (0.5, 0.3)
L1 Step size L1-SS 125
L2 Step size L2-SS 125
α Step Size α-SS 22.5 degrees
β Step Size β-SS 22.5 degrees

Local search budget (Initialization) I-LSB 15000
Local Search budget (Offspring) O-LSB 5000
Criterion to pass to third stage N/A 90% of Evaluations

Table 3: Parameters of the 3s-mde method.

3.2. CMA-ES for layout optimization (CMA-ES)295

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [21] is296

the method of choice when dealing with hard black-box optimization problems297

which are nonlinear, multimodal and/or noisy. The algorithm is invariant to298

rank-preserving transformations of the objective function and affine transforma-299

tions of the search space which makes it parameter-less in practice. CMA-ES300

has repeatedly demonstrated good performance at various platforms for compar-301

ing continuous optimizers such as the Black-Box Optimization Benchmarking302

(BBOB) workshop [22, 23, 24] and the Special Session at Congress on Evo-303

lutionary Computation [25, 26]. Thus, CMA-ES seems naturally suitable for304

the wind farm layout optimization problem especially when a low-dimensional305

parameterization of the design problem is considered.306

In this section, we discuss the application of CMA-ES to the wind farm307

layout optimization problem. In a nutshell, CMA-ES works as follows. In its308

iteration t, a mean mt of the mutation distribution (which can be interpreted309

as an estimation of the optimum) is used to generate λ candidate solutions310

xk ∈ IRn by adding a random Gaussian mutation defined by a (positive definite)311

covariance matrix Ct ∈ IRn×n. The k-th sampled candidate solution xt
k is then312

defined as:313

xt
k ∼ N

(
mt, σt2Ct

)
= mt + σtN

(
0, Ct

)
, (3)

where σt is a mutation step-size. These λ solutions then should be evaluated314

on an objective function f . The old mean of the mutation distribution is stored315

in mt and a new mean mt+1 is computed as a weighted sum of the best µ parent316

individuals selected among the λ generated offspring individuals. The algorithm317

adapts mt and Ct in order to increase the likelihood of the successful sampling318

steps to appear again and to proceed towards the optimum.319

Since we optimize both the number of turbines and their positions, the di-320

rect representation of turbine positions as variables would lead to a large-scale321
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Parameter Notation Optimized
Layout height H No (input)
Layout width W No (input)
Turbine radius R No (input)

Layout scale factor h1 No, fixed to 4
Interturbine scale on x-axis h2 No, fixed to 4
Interturbine scale on y-axis h3 No, fixed to 4

Interturbine distance on x-axis x1 Yes
Interturbine distance on y-axis x2 Yes

Rotation angle x3 Yes
Shift on x-axis x4 Yes
Shift on y-axis x5 Yes

Table 4: Parameters optimized with CMA-ES and constants used in this approach.

optimization problem which is often intractable [13]. Similarly to other algo-322

rithms presented in this paper, we therefore parameterize the search space of323

wind-farm layouts with only a few variables. We use 5 continuous variables to i)324

fill a rectangular grid of turbines, ii) shift it to the origin, iii) rotate it, and then325

iv) shift it to some location. Finally, all turbines which violate the constraints326

(e.g., obstacles, target size of the layout) are removed from the grid.327

We parameterize the original optimization problem as follows:328

STEP 1 The initial rectangular grid is selected to be h1 = 4 times larger than the329

maximum size (W ;H) of the target layout to take into account its rotation330

in STEP 2. The minimum distance between turbines on the x-axis is set331

by Dx = Dmin + (0.2x1)
h2 × (W − Dmin), where Dmin = 8R and h2332

is a hyperparameter set to 4. Similarly, the distance on y-axis is set by333

Dy = Dmin+(0.2x2)
h3 × (H−Dmin). Thus, the total number of turbines334

is (⌊h1 ×W/Dx⌋+ 1)(⌊h1 ×H/Dy⌋+ 1).335

STEP 2 Shift the grid to the origin by substracting (h1 ×W/2;h1 ×H/2) and336

rotate turbine coordinates by an angle θ = −π + 2πx3.337

STEP 3 Shift the rotated grid by ((0.5 + 0.2x4)×W ; (0.5 + 0.2x5)×H).338

STEP 4 Remove all infeasible turbines.339

Table 4 summarizes the various constants used as well as the five variables340

x1 to x5 optimized by CMA-ES. All these 5 variables are constrained to be in341

[0, 1] and are optimized with the active CMA-ES [27, 28] in its default settings342

and with m0 = [0.5]5 and σ0 = 0.3.343

3.3. A Sequence-based Selection Hyper-heuristic (SSHH)344

In contrast to the other techniques, hyper-heuristics operate at the level345

above (meta-)heuristics such as EAs. Selection hyper-heuristics are high level346

control methods that mix and manage a predefined set of low level heuristics347

for solving hard computational problems. Hence, online learning is a crucial348

component of such methods which are capable of discovering the appropriate349
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combinations of low level heuristics yielding an improved overall performance.350

More on different types of hyper-heuristics, including an overview of different351

algorithmic components and designs, and their applications can be found in [29].352

Traditionally, a selection hyper-heuristic employs two methods, consecu-353

tively: a heuristic selection method to choose a suitable low level heuristic (move354

operator) which is applied to a candidate solution, and then a move acceptance355

method to decide whether to accept or reject the newly generated solution. This356

study presents a sequence-based selection hyper-heuristic (SSHH) consisting of357

a learning sequence of heuristics selection method and an adaptive threshold358

move acceptance method to solve the wind farm layout optimization problem.359

3.3.1. Representation and overall search360

In order to pick the best locations for a set of turbines, a given region is split361

into a grid consisting of a certain number of rows and columns with neighbour-362

ing cells having an interval of size (0.1×TurbineRadius) in between them. A363

given solution is represented using three integer variables, X, Y and S, where364

M ≤ X < maxCols, M ≤ Y < maxRows, and 0 ≤ S; M is the minimum al-365

lowed distance between neighbouring turbines, maxRows and maxCols are the366

maximum number of rows and columns, respectively (see Figure 4). Based on367

the values of those variables, a binary matrix is formed by spreading neighbour-368

ing turbines with a separating distance of X cells at each row and a separating369

distance of Y cells at each column. A cyclic shift is performed at each row start-370

ing from the second row. The S parameter is used to reduce the wake effect371

from a neighbouring turbine and deals with differing wind directions by shift-372

ing wind turbines. Algorithm 1 provides the pseudocode of how the solution is373

constructed.374

Algorithm 1: The pseudocode of how a solution is constructed
input : scenario, X, Y and S
output: grid

1 for i← 0; i < maxCols; i+=X do
2 for j ← 0; j < maxRows; j+=Y do
3 l = (i+ (j/Y ) ∗ S)%maxCols;
4 if scenario.isValidLocation(l, j) then
5 grid.insertTurbineAtLocation(l, j);
6 end
7 end
8 end

SSHH performs the search under an iterative framework maintaining the375

best solution detected so far. Solutions are always made feasible by removing376

the invalid turbines which are placed on obstacles, before evaluation.377

3.3.2. Low level heuristics378

The low level heuristics (LLHs) used in this work are parameterized low379

level heuristics. Assume that H(V1, p, V2) is a heuristic, where p has one of380
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Figure 4: Encoding of Individuals in SSHH

three values: 1, rand[1,10] or rand[10,79]; and rand[L, U] is a random integer381

in [L, U] and this low level heuristic modifies (increases or decreases) the value382

of the variable V1 by p, and then with a probability of 0.30 resets the value V2.383

SSHH controls the following low level heuristics during the search process:384

• LLH0: Apply H(X, p, S)385

• LLH1: Apply H(Y, p, S)386

• LLH2: Apply H(S, p,X), then with a probability of 0.30 reset the value387

of Y .388

• LLH3: increase or decrease the value of X by p; then update p and apply389

H(Y, p, S).390

• LLH4: increase or decrease the value of X by p; then update p and391

increase or decrease the value of Y by p; and finally update p and increase392

or decrease the value of S by p.393

3.3.3. Heuristic sequence selection and move acceptance394

The selection component forms and applies a sequence of low level heuris-395

tics to a candidate solution as a single operation, thereby generating super-396

heuristics through the combination of more than one low level heuristic. This397

online learning method analyses and produces sequences of heuristics during398

the search process using a hidden Markov model, in which the hidden states399

are low level heuristics (LLHs) and observations are sequence-based acceptance400

strategies (AS). We make use of two matrices: a transition probability matrix to401

determine the movement between states and an emission probability matrix to402

determine whether the sequence of heuristics that has been constructed will be403

applied to a candidate solution or that sequence will be extended by including404

another LLH. As explained earlier, each heuristic is associated with a parame-405

ter, p influencing its behaviour. Therefore, an additional emission probability406
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matrix is implemented to set the value of p. A detailed description of this al-407

gorithm can be found in [30, 31, 32]. The threshold move acceptance method408

accepts all improving moves by default. However, the non-improving moves are409

accepted only if the cost of the new solution is less than or equal to a threshold410

which changes with respect to the best solution during the search process. The411

threshold is always set to the (1.01) of the cost of the best solution found so far,412

whenever a non-improving move occurs.413

3.4. The Goldman Method (GM)414

3.4.1. Representation415

There are two straightforward approaches to representing turbine locations416

in the field, both of which have significant limitations.417

The first method would be to enforce a maximally compact two-dimensional418

mesh, with each mesh point representing a possible turbine. This method han-419

dles obstacles gracefully as invalid mesh points can be removed before beginning420

search. As search focuses on which mesh points to include as turbines, the total421

number of turbines in the field is easy to manipulate. However, the mesh struc-422

ture does not allow turbines to orient themselves with the wind. For example,423

it is possible that the wind is blowing parallel to one of mesh axes, resulting in424

all turbines in a row (or column) interfering with each other.425

The second method would be to specify some number of turbines and then426

search their possible locations in the field. While this can overcome the problem427

of interference, it massively increases the search space. Furthermore, it now428

becomes challenging to determine the correct number of turbines to use and to429

avoid obstacles.430

In an attempt to gain the best of both techniques, while simultaneously re-431

ducing the search space size, the Goldman method represents a layout as two432

vector lattice. In this form, search is performed over the space of a pair of433

two-dimensional vectors. These vectors are converted to a layout by placing a434

turbine at all integer linear combinations of the two lattice vectors. As with435

the mesh representation any invalid turbine is removed, resulting in simple ob-436

stacle handling. Yet unlike that method turbines can orient at any angle to437

each other, with a flexible amount of space between each, to avoid interference.438

To aid search, the Goldman method encodes the two lattice vectors as (angle,439

magnitude) pairs.440

3.4.2. Number of Turbines441

A significant cost of any layout is how many substations must be purchased.442

The cost of energy function includes the term cs∗⌊N
M ⌋. The cost of a substation,443

cs, is an order of magnitude larger than the cost of a turbine. As a result the444

cost of energy is often minimized when N mod M = M − 1 as this uses the445

maximum number of turbines before a new substation must be purchased.446

The Goldman method leveraged this knowledge when evaluating layouts.447

Along with calculating the global cost of energy, each evaluation provides the448

user with information about the “fitness” of individual turbines in the layout.449
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The Goldman method used this information to reduce each tested layout to450

the nearest complete substation by naïvely removing the least fit turbines. The451

reduced layout is then evaluated, meaning that every lattice requires at most452

two evaluations.2 The lattice’s cost of energy is then considered to be whichever453

version was cheaper.454

3.4.3. Search Method455

Given the limited evaluation budget, the Goldman method utilizes a deter-456

ministic best-improvement local search method to explore the space of lattice457

vectors. To simplify this process and further reduce the search space, the four458

variables (two angles and two magnitudes) which encode the lattice were dis-459

cretized. Angles were restricted to 36 intervals spaced π/18 apart. Magnitudes460

ranged from the minimum allowable interval between turbines up to 5 times461

that size in 64 evenly spaced steps.462

To perform local search, the algorithm began from a lattice with the vectors463

perpendicular to each other, one using the minimum magnitude and the other464

using the middle of the magnitude range. All alternatives to each variable were465

then tested sequentially, such that only the best changing improvement to a466

variable is made before continuing to the next variable. This process continues467

until no single variable can be changed to make the lattice better. To improve468

rotational symmetry, this process is run starting with the long vector parallel469

to the x-axis, and then again parallel to the y-axis. Duplicate work is prevented470

by caching the quality of each discrete lattice.471

2Some lattices create layouts where N mod M = M − 1
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Figure 5: Best layouts obtained by the 4 competitors on scenario 1.

4. Competition results472

4.1. Competition results473

The algorithms presented in the previous section, in addition to four others474

not described in this paper, were run on the 5 scenarios presented in the compe-475

tition rules section. As mentioned above, the competitors were given a budget476

of 10,000 evaluations to split between the 5 scenarios for computational cost477

reasons. Table 5 provides the costs of energy fitness of each algorithms. As a478

basis of comparison, we have compared the results to a genetic algorithm. GAs479

have been used many times in this domain and offer a familiar and standard480

benchmark against other algorithms from the field of evolutionary computation.481

For this problem, a GA optimizes a binary genome that decides whether or not482

a turbine is located in each grid of a discretized layout. The fitness function483

used to evaluate each layout is the one presented in equation 1. The GA is set484

up with a population size of 20 individuals, a 4-player tournament selection with485

elitism, 5% mutation and 40% crossover. Mutating a layout consists in switch486

a Boolean of the grid and crossing is a standard one-point crossover. The GA487

is run for 50 generations, which represents 2000 evaluation per scenario.488

Table 7 provides both the number of turbines and of substations of the best489

layouts obtained by the different competitors on the different scenarios. It is490

worth noting that obtained layouts are of comparable size in terms of number491

of turbines for each scenario. Also, the algorithms, either naturally or due to492

specific strategies, limit the number of turbines to a value very close to the493

constraints of the substations. When evaluating the cost of energy function, the494

cost of building a substation is subsequently greater than the total price of the495

turbines. Therefore, the number of substations, even though not directly high-496

lighted in the problem description, is of primary importance. Figure 5 depicts497

Scenario 3s-MDE CMA-ES SSHH GM GA
1 1.164422E−3 1.172731E−3 1.181129E−3 1.185466E−3 1.269266E−3

2 1.00929E−3 1.029998E−3 1.039825E−3 1.044906E−3 1.158464E−3

3 6.26867E−4 6.30916E−4 6.40241E−4 6.49096E−4 6.91265E−4

4 6.53861E−4 6.5356E−4 6.66205E−4 6.64341E−4 7.18626E−4

5 1.142309E−3 1.152661E−3 1.167168E−3 1.16033E−3 1.269238E−3

Table 5: Cost of energy, compared to the state-of-the-art layout optimization (binary GA).
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Scenario 3s-MDE CMA-ES SSHH GM GA
1 10 6 4 3 -
2 10 6 4 3 -
3 10 6 4 3 -
4 6 10 3 4 -
5 10 6 3 4 -

Total 46 34 18 17 -
Rank 1st 2nd 3rd 4th -

Table 6: Competition results in points and ranking. Note that GA was not part of the
competition and is therefore not ranked. The results of other competitors are not presented
in this table.

Scenario #Turbines #Substations
3s-MDE CMA-ES SSHH GM 3s-MDE CMA-ES SSHH GM

1 539 539 561 479 18 (0) 18 (0) 19 (-8) 16 (0)

2 388 239 329 324 13 (-1) 8 (0) 11 (0) 11 (-5)

3 899 804 809 680 30 (0) 27 (-5) 27 (0) 23 (-9)

4 929 929 958 898 31 (0) 31 (0) 32 (-1) 30 (-1)

5 359 358 348 356 12 (0) 12 (-1) 12 (-1) 12 (-3)

Table 7: Number of turbines and of substations of the best layouts obtained by the competi-
tors on each scenarios. In the substation part of the table, the value parenthesis represents
the number of missing turbines in order to have all substations fully used (30 turbines per
substation).

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
3s-MDE 3s-MDE 3s-MDE CMA-ES 3s-MDE

Figure 6: Best layouts obtained on the 5 scenarios.
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the four layouts obtained by the four competitors for scenario 1. We can note498

similarities of the geometric arrangement strategies used by the competitors,499

albeit with different approaches, to compress the number of variables induced500

by the problem to a lower amount. They mostly operate on a transformation501

(shift, scale and rotation) of a grid layout prior to a removal of turbines that502

violate constraints (obstacles) and local deletion for layout refinement. Figure 6503

presents the best layouts across all competitors obtained for each scenario. Once504

again this geometric arrangement strategy appears on the obtained layout with505

various rotations and shifts depending on the terrain characteristics.506

4.2. Convergence comparison507

Figure 7 shows the convergence curves of the different algorithms. They508

represent the competitor algorithms’ best evaluations. Each algorithm curve509

stops at the final evaluation. As an example, the GA is always used with a fixed510

2000 evaluation steps for each scenario.511

First, the 3s-MDE optimization strategy is noticeable on the plots: whereas512

good fitness values appear as soon as the first evaluation in other approaches,513

3s-MDE only has competitive fitness values after 1260 evaluations. This corre-514

sponds to the duration needed by the algorithm to build the surrogate model.515

During this initial phase, the algorithm evaluates layouts with only two turbines,516

which generate very poor layouts (not represented in the plot for visualization517

purposes).518

Secondly, it can be noticed that all other algorithms converge in few itera-519

tions (approximately 300 evaluations) to a very good solutions before starting520

local optimization. Even though 3s-MDE needs more evaluation steps to pro-521

duce a good layout, the initial 1260 evaluations are only made with 2 turbines522

which is costless in comparison to layouts with hundreds to thousands of tur-523

bines. Therefore, we can argue that the layouts can be presented to the farm524

designer very early in the optimization loop across all presented methods.525
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Figure 7: Comparison of the convergence profile of the different algorithms on the 5 scenarios.
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5. Conclusion526

This paper presented the results of the 2015 competition on wind farm layout527

optimization. With this event, we were able to propose innovative algorithms to528

optimize large wind farms with a strong computational constraint. Thanks to529

this competition, we were also able to compare these approaches with state-of-530

the-art algorithms and observe the potential improvement of the optimization531

algorithms used to generate the wind farm layouts.532

This competition also provides a framework to compare future algorithms533

with existing ones on a comparative basis. The competition framework is freely534

available in multiple programming languages (C++, Java, Matlab and Python)535

with a set of randomly generated wind scenarios.536

Because solutions were obtained with acceptable computational costs in this537

competition, we can now imagine targeting new optimization objectives. The538

3D structure of the terrain, and/or heterogeneous wind distribution within the539

terrain, heterogeneous wind turbines with different height, width and power540

curves could be considered. In this competition, cable and road networks were541

not taken into account, but these are of great importance for the initial invest-542

ment to build the wind farm. They could be added to the framework and the543

cost of energy function in order to be addressed by the optimization algorithms.544

One of the main points we learned from this competition is that the algo-545

rithms proposed by the competitors mainly work on optimizing very few pa-546

rameters in comparison to state-of-the-art algorithms; instead of optimizing the547

Cartesian coordinates of individual turbines, it seams preferable to optimize geo-548

metric parameters. By doing so, the complexity of the search space is drastically549

reduced, leading to very acceptable optimization time, even for very large wind550

farms. These geometric parameters allow for continuous turbine placement over551

the entire grid, which is clearly advantageous over the discrete grid used by the552

GA and previously in the literature [15]. Furthermore, these parameters could553

be exposed to human wind farm designers to allow them to understand the554

optimal placement of turbines based on the wind scenario and the constraints555

given to the optimization. Understanding optimized grids such as Figures 3556

and 4 would allow human wind farm designers the flexibility of choosing tur-557

bine placement while still benefiting from an optimized energy cost.558

Beyond demonstrating the utility of reducing this problem to an optimiza-559

tion of geometric parameters, the successful use of a surrogate model in this560

problem is novel and significant. As a surrogate could be built using gathered561

wind data a single time before layout design starts, the computational load of562

optimization during design can be greatly reduced. Surrogates could be used563

while considering new constraints to allow for more rapid design, and then fi-564

nally rebuilt once constraints are more firmly understood. While this was not565

the focus of this competition, it was encouraging to see a surrogate model achieve566

such promising results.567

This competition also encouraged the use of intelligent stop criteria by al-568

lowing competitors to develop a strategy to best allocate their evaluation over569

the five scenarios. The stop criterion of the optimization is still an open question570
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for evolutionary algorithms and is a difficult one to address: even if evolution-571

ary algorithms have been proven to converge to the optimal solution [33], it is572

impossible to determine when and even if the current best solution is a local573

optimum or the global one. This is due to the size of search space explored in574

this kind of problem. However, transformations on the search space can reduce575

its complexity, and the convergence of most algorithms here suggests that sim-576

pler search space created by optimizing geometric parameters allows for a more577

natural stop condition. Furthermore, we imagine the integration of this type578

of optimization into wind layout software will be part of an iterative design579

process, as numerous factors, including human design, come into play during580

wind farm design. The optimization process could be run for a desired num-581

ber of steps or amount of computational time before being further reviewed or582

modified, matching the needs of human designers and mitigating the issue of a583

stop criterion.584
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