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Abstract

A novel probabilistic robust design optimization framework is presented here using a Bayesian infer-
ence framework. The objective of the proposed study is to obtain probabilistic descriptors of the system
parameters conditioned on the user-prescribed target probability distributions of the output quantities
of interest or figures of merit of a system. A criterion-based identification of a reduced important pa-
rameter space is performed from the typically high number of parameters modelling the stochastically
parametrized physical system. The criterion can be based on sensitivity indices, design constraints or
expert opinion or a combination of these. The posterior probabilities on the reduced or important param-
eters conditioned on prescribed target distributions of the output quantities of interest is derived using the
Bayesian inference framework. The probabilistic optimal design proposed here offers the distinct advan-
tage of prescribing probability bounds of the system performance functions around the optimal design
points such that robust operation is ensured. The proposed method has been demonstrated with two nu-
merical examples including the optimal design of a structural dynamic system based on user-prescribed
target distribution for the resonance frequency of the system.

Keywords: Bayesian inference; robust design; probabilistic optimization; uncertainty propagation;
stochastic structural dynamics; sensitivity analysis;

1. Introduction

Optimal design of engineering systems under uncertainty is important to ensure their fail-safe and
robust performance. It is in this context that uncertainty quantification (UQ) of engineering systems
has received significant attention in the past decade due to its effectiveness and applicability in handling
parameteric uncertainty in engineering systems. The uncertainty may stem from the lack of knowl-
edge of the parameter values or randomness inherent in them or error (noise or bias) associated with
model predictions. Hence design optimization under uncertainty requires identifying optimal posterior
distributions on the design parameters which satisfy the target design as opposed to working with point
estimates.

The forward UQ problem forms an inner loop, and is often the first step, in the problem of robust
optimization under uncertainty. It considers propagation of input parametric uncertainty using efficient
computational methods to create a high-dimensional stochastic response surface in the parameter space.
Some of the most efficient methods which fall under this category are stochastic Galerkin method using
polynomial chaos basis functions [1–5], stochastic collocation techniques [6, 7], Monte-Carlo sampling
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based methods (and its various improvements) [8–10] with significant effort devoted to constructing
reduced order approximations of the true solution .

For robust optimization, different classes of methods have been developed, often aimed at specific
engineering applications, to probe the search space of parametric models for optimum solutions. Ge-
netic algorithm [11, 12], and its various improvements based on novel crossover and fuzzy algorithms,
is amongst one of the most widely used search algorithm in optimization in various applications (such
as shortest path, scheduling, amongst others). This falls under the umbrella of evolutionary algorithm
and belongs to the category of global search heuristics where probabilistic strategies are employed to
successively refine the solution based on a fitness criterion. Such heuristic approaches focus on random-
ization to ensure completeness in probing the search space in an attempt to find the global optimum. The
heuristic (and metaheuristic optimization) techniques demonstrate their effectiveness by virtue of their
success in finding the global optimum.

Bayesian methods for optimization can refer to different things in the context of parametric opti-
mization. This includes methods which aim to minimize the expected deviation of a function from its
extremum [13]. On the other hand, Gaussian process based studies as a means of approximating the
behavior of function over the probe space (as indicated by prior distributions on hyperparameters mod-
elling the process) is often a first step where few evaluations are used to learn the function behavior in
the Bayesian sense followed by local optimization algorithms which utilize the posterior distribution of
estimated functions to obtain the extremum [14]. In contrast to this sequential approach, there might also
be adaptive resample and remodel strategies that aim to improve the response surface accuracy as the
design space is probed in the optimization loop [15–18]. This includes a direct sampling and optimiza-
tion process where the latter is realized as a direct consequence of the former required for generating the
metamodel [19, 20]. However, this essentially constitutes a method of approximating a response surface
using surrogate models rather than a probabilistic optimization based on adhoc target design criterion.
Most uncertainty-based optimization problems focus on using probabilistic descriptors for input uncer-
tainties and using black-box algorithms to probe the search space for acceptable solutions. In contrast
probabilistic model informed optimizers aim to populate the solution set based on an initial guess of a
set of random sample solutions and estimating (or updating) the new solution set based on acceptance
criterion [21].

The present study elicits a novel approach whereby the Bayesian inference approach is utilized to
perform robust optimization of an engineering system under uncertainty such that optimal probability
distributions of the system parameters are identified which would meet the desired optimal design cri-
terion specified (again) by full distributions on figures of merit of the system. Thus we are using the
framework of inverse system identification to optimize the parameter distribution of the model prob-
lem. This can be regarded as an application of the Bayesian regularization method where the regularized
functional includes the chosen prior and posterior distributions of the system performance functions. The
benefits of this Bayesian regularization based optimization become clear when considering the fact that
the optimal parameter distributions which produces the desired distributions of the system performance
functions ensure their robust operation around the optimal points. This is facilitated by going beyond
point estimates typical in deterministic analysis which do not represent the confidence in the optimal
design or that of meeting the target design distribution [22]. The impact of this in real engineering
applications is significant since it allows for reliable risk-informed decision-making [23].

The paper is organized as follows. Section 2 gives the problem definition using a step by step de-
velopment of the problem setting starting from forward problem of uncertainty propagation to Bayesian
system identification based on which the inverse optimization problem is defined. The function space
elicitation of the problem definition and the solution is presented in section 3 where the inverse optimiza-
tion problem is defined in terms of the theoretical framework of Kolmogorov’s conditional expectation.
Section 4 deals with the proposed methodology applied to the robust optimization of a structural dynamic
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system with random elastic and geometric parameters as well as for a non-linear six-dimensional Hart-
mann function. The main conclusions of the study along with the potential directions for future work are
given in section 5.

2. Problem setting

In this section we define the main components necessary to lay the probabilistic framework of
Bayesian optimization under uncertainty. We begin by defining the forward problem, giving an input-
output mapping of the solution to the set of input parameters. Following this, the layout the inverse
or what is known as the system-identification problem under uncertainty is given. Based on these the
Bayesian optimization methodology is established which is defined in the context of the forward and
inverse problem.

2.1. Forward problem

In order to present a generic discussion, we start with the forward problem defined on a d-dimensional
domainD ⊂ Rd by an operator L as

L (u; q) = f (1)

where the system is parametrized by a set q. The system solution is represented by u under external
forcing function f . In real-life engineering applications, uncertainties exist around parameter values as
well as in forcing functions which are incorporated in the parameter set q with probabilistic descriptors.
For the sake of simplicity, we consider the forcing function to be deterministic which does not limit
the scope of applicability of the proposed method because forcing uncertainty is classified as additive
uncertainty compared to the multiplicative uncertainty contained in parameters q in Eqn. (1). The forward
problem consists of propagating the uncertainty in q to the system response u. This relies on numerical
approximation techniques to represent the solution in the stochastic parameter space and when used in
conjunction with finite element methods are collectively referred to as stochastic finite element methods
[1, 24].

The elements of the parameter set q in Eqn. (1) are taken to be square integrable (having a finite
variance) and is modeled with a set of independent random variables ξ(θ) = {ξ1, . . . , ξn} in the sample
space Θ such that q : ξ → q and ξ(θ) ∈ L2(Θ,F ,P). The probability space triplet (Θ,F ,P) consists of
elementary events θ in the sample space Θ as θ ∈ Θ, with the associated σ-algebra F . The pair (Θ,F ) is
a measurable space with P being the probability measure attached to it.

Thus u can be approximated in the tensor product space as U = X ⊗S where X ⊂ L2(D) denotes
the subspace spanned by the spatial basis functions, while S ⊂ L2(Θ) is a subspace spanned by finite
order stochastic basis functions. The solution is approximated as

u(r, ξ(θ)) =
∑

i, j

ui jHi(ξ(θ))N j(r) where Hi ∈ S , N j ∈X ∀i, j (2)

in the most general case where θ ∈ Θ and r ∈ D. Based on the differential operator and the associated
probability measurable, the subspace in which the solution is sought can be defined to have certain degree
of continuity (as is the case for diffusion operator, where the solution is sought in a Sobolev space with
at least first order continuity and a finite L2 norm).

The stochastic Galerkin method for approximating the system solution relies on approximating the
response u in a finite dimensional space of basis functions. We assume that u ∈ A which is a Hilbert
space endowed with an inner product structure to be defined later in this paper. The problem is assumed
to be well posed in the Hadamard sense.
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The weak form of the parametrized stochastic pde can then be expressed in terms of the bilinear (A)
and linear (B) forms as

A(u, v; θ) = B(v; θ) ∀v ∈X ⊗S (3)

where A(u, v) = E [a(u(θ), v(θ); θ)] ; B(v) = E [b(v(θ); θ)] ; with E [·; θ] =

∫

θ
[·; θ] dP(θ)

The Galerkin method ensures that the approximate solution u ∈X ⊗S minimizes the error in the sense

‖utrue − u‖e ≤ ‖utrue − v‖e ∀v ∈X ⊗S where ‖·‖e = [A(·, ·)]1/2 (4)

The above constitutes the forward uncertainty propagation problem which provides a stochastic mapping
between the input parameter space and the output response variables.

2.2. Sensitivity analysis: statistically important predictors
The various sources of uncertainty captured in the parameter ξ(θ) lead to a high-dimensional or over-

parametrized system and it is essential to identify the statistically important predictors which significantly
affect the model outputs. Sensitivity indices [25] are the most commonly used measures to identify and
rank the parameters in their order of importance. The sensitivity estimation strategies can be primarily
categorized into local (concerned with output variability around a nominal parameter value) and global
(overall variability in model output over the entire parameter range) sensitivity measures. An exhaustive
discussion on the various sensitivity analysis tools can be found in the literature [26, 27]. In this article
we have focussed on and worked with the global sensitivity approach based on Sobol’ indices. This
section gives a brief description of the method. It is to be noted however that the applicability of the
robust optimization approach proposed in this work is not limited by a particular choice of sensitivity
analysis method.

The output u(:, ξ(θ)) is a function of the independent input parameters ξ = {ξ1, . . . , ξn} in the n-
dimensional hyperspace. Hence, a quantitative estimate of the sensitivity of the model output u(:, ξ(θ))
to the input parameters is provided by the Sobol’s sensitivity indices [28]. These provide an estimate
of the relative importance of the input variables (or a group of input variables) on the output quantities
of interest (qoi). If a stochastic response quantity u expressed as a function of the input uncertainty
contained in ξ(θ) is expanded as

u(ξ) = u0 +

n∑

i=1

ūi(ξi) +
∑

1≤i< j≤n

ūi j(ξi, ξ j) + . . . + ū1...n(ξ1, . . . , ξn) (5)

then it is seen that the expansion terms successively gives the dependence of the stochastic functions
on the individual random variables as well as their interaction with other variables. Here each term
ūi1...is(ξi1 , . . . , ξis) denotes a sum of the collection of all terms involving random variables {ξi1 , . . . , ξis}.
There are a total of 2n−1 terms in the above equation and the set of indices in the expansion is contained
in I (with cardinal 2n−1). Equation (5) is termed as the ANOVA (Analysis of Variance) decomposition
[25] of the function u(ξ). The term u0 is the mean value of the function while each term of the summand
has zero expectation and are orthogonal to each other, i.e.

∫

Θ

ūI dPξ = 0 and
∫

Θ

ūI ūJ dPξ = 0 ∀ I, J ∈ I , I , J (6)

where I, J denote specific terms in expansion of u(ξ) in Eqn. (5) and dPξ is the joint distribution on pa-
rameter set ξ. Assuming ξ are independent, then the simple relation Pξ =

∏
i Pξi holds. When the random

variables are correlated, a decomposition of the correlation matrix is performed to identify a denumer-
able set of independent random variables to model the variability. Extensive research in this specific area
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has been reported which include methods ranging from non-standard transformations which goes beyond
simple mixing to obtain uncorrelated variables to arbitrary polynomial chaos expansion method [29–31].
Going back to Eqn. (5), the successive terms of the expansion maybe derived analytically and is unique
when the functions u(ξ(θ)) is square-integrable in Θ. When the input random variables are independent
of each other the total variance of u(ξ(θ)) i.e. Γ = Var

[
u(ξ(θ))

]
can be written as

Γ =

n∑

i=1

Γi +
∑

1≤i< j≤n

Γi j + . . . + Γ1,...,n =

∫

Θ

u2(ξ) dPξ − u2
0 where ΓI =

∫

Θ

ū2
I dPξ (7)

for all I ∈ I . Here Γi1,...,ik are the partial variances in the expression. The expression for partial variances
follows from Eqns. (5)–(6). The Sobol’ indices are defined as

S =
∑

I∈I
SI =

n∑

i=1

Si +
∑

1≤i< j≤n

Si j + . . . + S1,...,n = 1 where SI =
ΓI

Γ
∀ I ∈ I (8)

The relative importance of the individual input random variables in the response quantities are provided
by the values of the Sobol’ indices. The first order Sobol’ index associated with the i-th random variable
is given by Si = Γi/Γ, ∀i = 1, . . . , n (note that the first order Sobol’ index is defined with the subscript i
and not I). This is equivalent to defining it as

Si =
Var

[
E

[
u(ξ)

∣∣∣ ξi
]]

Var
[
u(ξ)

] =
Γi

Γ
, i = 1, . . . , n (9)

which is useful for sample based uncertainty propagation schemes (such as Monte Carlo or collocation
methods). The total order Sobol’ index ST

i of a particular input random variable ξi gives an estimation
of the total contribution of a random input, including interaction terms, to the output variance and is
calculated as

ST
i =

∑

Ii

ΓIi where Ii ⊂ I (10)

such that the set of multi-indices in Ii always include the random variable ξi (both independent Si and
interaction terms).

The Sobol’ indices can be calculated analytically from a finite order chaos expansion [32] where the
terms uI in Eqn. (5) can be simply obtained by grouping the terms of a finite order polynomial chaos
expansion. The variance measures ΓI are obtained from the square integrable products of the chaos
expansion functions |HI(ξ(θ))|2L2(θ) (following the orthogonality property). Depending on the nature of
parameter dependence of the problem both the first and total order Sobol’ indices may be pertinent for
identifying the important parameter space as will be seen later in this work.

2.3. Inverse problem
We consider an observation operator y = Y(q; u) which connects the output qoi y to a set of model

forecast values and the measurements corresponding to these are denoted by ȳ ∈ ȳ. It is commonly
expressed as ȳ = y + ε where ε is a discrepancy term expressing the difference between the simulated
output and the measured data. In general ε is assumed to be independent of q. The observation y is
obtained by the mapping: Y : (q; u)→ y which gives

y = ȳ − ε = Y(q; u) where y ∈ Y (11)

where Y is the vector space containing y. The most common engineering problem is to infer about the
statistical properties of the set of input parameters q given the simulated observations y and measurements
ȳ. For this the Bayesian system identification framework is utilized which is discussed in this section.
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It is important here to comment on the prior probabilities imposed on the input parameter set which
elicits the prior belief on the uncertainty of the parameters. Many works have proposed which highlight
systematic methods for elicitation of prior uncertainty, including parametric and non-parametric models
[33–37]. In presence of significant amount of data it is standard to use ‘noninformative priors’ without
much risk, since the evidence would negate any effect of prior. However, data is limited/scarce, the
priors play an important role and in such cases it is essential to have systematic and consistent ways of
choosing priors. Methods ranging from expert elicitation with probabilistic descriptors [38] to entropy-
based conditional elicitations [39] have been used. In the context of this work, we have used uniform
distributions as prior for the input parameters which reflects our knowledge about the acceptable range
of variation of these parameters and to avoiding weighing any area of the parameter space. It should
also be mentioned that the proposed method can perform satisfactorily with different choices of priors
(or hyperpriors) in the parameters since no limiting assumptions have been made on the priors for the
successful working of this algorithm.

The problem being tackled here is defined as follows. Given the interval of variation and the prior
probability P(ξ) on this interval for the n-dimensional input parameter vector ξ ∈ Rn, the system output
due to the observation operator Y follows the prior distribution P(y). We assume that the target distribu-
tion for output y is specified by another random variable ȳ : Θ → ȳ. The problem is to find the optimal
distribution on the input parameters ξ (or a subset of input parameters ξr ∈ Rr, r < n) such that when
the uncertainty in ξ is propagated to y(ξ), then y and ȳ are as close as possible. The closeness is defined

by the L2 distance in the probability space as d(y, ȳ) =

√∫
Θ

(y − ȳ)2 dP = ‖y − ȳ‖L2(Θ,F ,P)

Mathematically, the problem can be stated as: find a map f : ξ → Rn such that

f (ξ) = arg inf
ξ∈Rn

‖y( f (ξ)) − ȳ‖L2(Θ,F ,P) (12)

Following Radon-Nikodym theorem [40] the map f defines a new measure (say ν) on the space (Θ,F )
which is absolutely continuous with P and is defined as f = dν/ dP.

y

P(y)

target

posterior

prior

distribution (ȳ)

distribution (y( f (ξ)))

distribution (y(ξ))

Figure (1): The schematic diagram describing the problem definition of prior and target distribution

This is illustrated in Fig. (1) where the prior distribution on y given the prior probability imposed
on ξ is shown in blue while the target distribution for y (denoted as ȳ in Eqn. (12)) is given in red. The
objective is to find the optimal posterior distributions on ξ which will produce the best approximation
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(shown in green) of the target distribution. The target distribution on ȳ is a user-specified criterion on
physical qoi and it can be in the form of

• samples from an arbitrary distribution as

ȳ = {ȳ1, . . . , ȳs}T where ȳ ∼ P(ȳ
∣∣∣αȳ) ∀i = 1, . . . , s (13)

where P(ȳ
∣∣∣αȳ) is a probability distribution characterized by hyperparameter set αȳ.

• constraints specified as upper/lower limits on ȳ such that

ȳ = {ȳ1, . . . , ȳs}T where ȳl ≤ ȳi ≤ ȳu ∀i = 1, . . . , s (14)

where ȳu and ȳl are designer prescribed upper and lower limits on observable outputs.

• extremizing objective functions g(ȳ) with sample values ȳ = {ȳ1, . . . , ȳs}T derived from the crite-
rion

ȳ = {ȳi : ‖g(ȳi) − gt‖ < ε ∀i = 1, . . . , s} (15)

where gt is a target value for the objective function and ε is a random variable with an associated
probability distribution. ε can be considered as a loss term in regularization which defines the
tightness of desired fit.

The samples ȳ = {ȳ1, . . . , ȳs}T are derived from the constraints or optimization criterion imposed on the
output qoi ȳ. This would form the dataset on which the prior probabilities imposed on the input parameter
space ξ will be conditioned following the criterion in Eqn. (12).

2.4. Bayesian system identification

Following from the discussion presented in the previous section, we takeY as the observation opera-
tor which defines output data y = Y(q; u). The target distribution is specified by samples of ȳ ∼ P(ȳ

∣∣∣αȳ).
The prior distribution on q is characterized by a set of hyperparameters αq such that q ∼ P(q

∣∣∣αq). Under
classical Bayesian inference setting the problem of inferring optimal posterior distributions on parameter
set q is given by

P(q
∣∣∣Y, ȳ, αȳ, αq) =

P(ȳ
∣∣∣Y, q, αȳ)P(q

∣∣∣αq)

P(ȳ
∣∣∣Y, αȳ)

∝ L
ȳ
∣∣∣αȳ

(q)P(q
∣∣∣αq) (16)

where L
ȳ
∣∣∣αȳ

(q) is the likelihood function defined by L
ȳ
∣∣∣αȳ

(q) = P(ȳ
∣∣∣Y, q, αȳ). Hence the posterior

predictive distribution of observable output samples is given as

P(y∗
∣∣∣Y, ȳ, αȳ) =

∫

q

∫

αq

P(y∗
∣∣∣Y, ȳ, αȳ)P(q

∣∣∣αq)P(αq) dq dαq (17)

where the parameter q and the hyperparameter αq has been marginalized out from the posterior predictive
distribution.

The likelihood function is shaped by the observation data set ȳ since it is governed by the statistics
of the observation dataset ȳ. Assuming that the measurement are independent and identically distributed
(iid), we can write from Eqn. (16)

L
ȳ
∣∣∣αȳ

(q) =

s∏

i=1

L
ȳi

∣∣∣αȳ
(q) (18)
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whereL
ȳi

∣∣∣αȳ
(θ) denotes the likelihood function associated with each data point i. For each datapoint i the

likelihood function L
ȳi

∣∣∣αȳ
(q) is calculated as a function of the observation operator Y. The probability

measure associated with the response surface of observation operator y = Y(q; u) dictates the likelihood
function. For every value of the parameter q, the distribution on the output y is given as P(y

∣∣∣ q,Y). If the
measurement point ȳi is within the support of P(y

∣∣∣ q,Y) then the likelihood for ȳi is given as

P(ȳ
∣∣∣Y, q, αȳ) ≡

s∏

i=1

P(y = ȳi
∣∣∣Y, q, αȳ) (19)

and the marginal likelihood (after marginalizing the hyperparameter αȳ associated with the dataset ȳ) is
non-zero and equals

Lȳ(q) =

∫

αȳ

L
ȳ
∣∣∣αȳ

(q)P(αȳ) dαȳ =

∫

αȳ

P(ȳ
∣∣∣Y, q, αȳ)P(αȳ) dαȳ =

s∏

i=1

∫

αȳ

P(y = ȳi
∣∣∣Y, q, αȳ)P(αȳ) dαȳ

(20)
A discusssion of Eqns. (18)–(20) is given here to provide an insight into the calculation of likelihood

function. The likelihood of a data point ȳi ∈ ȳ is calculated for each point q in the multidimensional
parameter space. For each value of q, the distribution of the simulated output y is estimated in the
first step, following which the quantity P(y = ȳi

∣∣∣Y, q, αȳ) is evaluated based on its distance from the
distribution. In the special case when the distribution of the multidimensional output vector for each
q has a joint normal distribution with a mean vector E

[
y(q)

]
and a covariance matrix Cq, the negative

log-likelihood is given as the squared Mahalanobis distance

− ln[P(y = ȳi
∣∣∣Y, q, αȳ)] ∝ [ȳi − E [

y(q)
]
]TC−1

q [ȳi − E [
y(q)

]
] (21)

It is to be noted here that E
[
y(q)

]
is a function of q and the expectation is evaluated from the distribution

of the simulated output y for each point in the input parameter space q. However, in the most general case
the distribution of simulated y for specific values of the input parameter q would be an arbitrary proba-
bility distribution which would be fitted to a density function f (yq) using kernel density estimators. If a
kernel K(•) is defined with a smoothing parameter h with the samples of y j(q) from the true distribution
of the observation vector π(y(q)), then from Eqn. (19) we can write

P(y = ȳi
∣∣∣Y, q, αȳ) = π̂(y(q) = ȳi) ∀i = 1, . . . , s where π̂(y(q)) =

1
sh

s∑

j=1

K
(y j − y

h

)
(22)

where π̂(y(q)) is an approximation of π(y(q)) with kernel density estimate.
With the likelihood function estimated using the above methods, the samples from the posterior

distribution P(q
∣∣∣Y, ȳ, αȳ, αq) in Eqn. (16) for various Bayesian model fitting algorithms can be used to

sample from the target distributions. The Markov Chain Monte Carlo (MCMC) algorithm in its most
generic form, as well as with various enhanced implementations for reduced computational overhead,
would be applicable here. The MCMC convergence rate depends on the dimension of the parameter space
and the nature of the posterior distributions (such as multi-modal distributions, which are challenging to
handle). These require advanced implementations of the MCMC method a detailed review of which is
beyond the scope of this work (please see [10, 41, 42]).

2.5. Identification on reduced parameter space

The uncertainty in the simulated output can result from the consideration of a reduced important
parameter space, as shown in Fig. (2). We denote the reduced input parameter space ξr ∈ Rr and its
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complementary set ξc ∈ Rn−r such that S(ξi) > S(ξ j) ∀ ξi ∈ ξr, ξ j ∈ ξc where S(ξi) is the global
sensitivity index (as discussed in Sec. 2.2). This implies the set ξr consists of all parameters with higher
sensitivity indices than in ξc. It must be mentioned that the applicability of the proposed method is
not limited by the choice of the metric (such as the global sensitivity measure, in this case) used for
constructing the reduced parameter space.

P(ξ1)

P(ξ2)

...

P(ξr)

...

P(ξn)

Prior on parameters

q(θ)

Im
po

rt
an

tp
ar

am
et

er
sp

ac
e

ξ r
=
{ξ 1
,.
..
,ξ

r}

Y

Target distribution P(ȳ)

ȳ

Bayesian
Inference

P(ξr
∣∣∣Y, ȳ, q)

Posterior distribution of
important parameters

Simulated
output

Figure (2): Schematic diagram of the Bayesian model fitting on a reduced important parameter space.

The probability distribution on the physical parameter q which depends on the basic random variables
ξ = {ξ1, . . . , ξn} along with a set of hyperparameter αq (which can describe the associated noise) can be
expressed as P(q

∣∣∣αq) which depends on the set of underlying parameters ξ. The probability distribution
of q given a specified value for the set ξr is given as

qξr ∼ P(q
∣∣∣ ξr, αq) = P(qξr

∣∣∣αq) where qξr : ξr → q(ξr) and qξr ∈ (Θ, F,P), F ⊂ F
such that E

[
qξr

]
=

∫

ξc
P(qξr

∣∣∣αq)P(ξc) dξc (23)

The random variable qξr follows the distribution qξr ∼ P(qξr
∣∣∣αq) for each point in ξr and is a function of

ξr. This is discussed rigourously in light of Kolmogorov’s conditional expectation in section 3. It is to be
noted that the variability in qξr at a particular ξr is due to the dependence of q on the unimportant random
variables ξc. The probability space associated with qξr has the Borel σ-algebra F which is a subset of F
defined in Sec. 2.1. Following from Eqn. (16), the posterior probability on qξr is

P
(
qξr

∣∣∣Y, ȳ, αȳ, αq
)

=
P
(
ȳ
∣∣∣Y, qξr

)
P(Y(qξr )

∣∣∣αȳ)P(qξr
∣∣∣αq)

P(ȳ
∣∣∣Y, αȳ)

∝ Lȳ|αȳP
(
qξr

∣∣∣αq
)

(24)

The likelihood function, defined here as Lȳ|αȳ = P
(
ȳ
∣∣∣Y, qξr

)
P(Y(qξr )

∣∣∣αȳ), and the prior probability in
the above equation does not have a straightforward relationship with the likelihood and prior probabil-
ities described in Eqn. (16). It must be emphasized that the posterior distribution P(qξr

∣∣∣Y, ȳ, αȳ, αq) in
Eqn. (24) is a function of ξr. Hence,

P
(
ξr

∣∣∣ qξr , ȳ,Y
)
∝ P

(
ȳ,Y

∣∣∣ qξr
)
P

(
qξr

∣∣∣ ξr, αq
)
P (ξr) ∝ Lȳ|αȳP

(
qξr

∣∣∣ ξr, αq
)
P (ξr) (25)
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Combining Eqns. (24) and (25), we can write

P
(
ξr

∣∣∣ ȳ
)

=

∫

qξr

∫

αȳ

P
(
ξr

∣∣∣ qξr , ȳ,Y
)
P(qξr

∣∣∣Y, ȳ) P(Y(qξr )
∣∣∣αȳ) dqξr dαȳ (26)

where the posterior distribution on the important parameter space ξr conditional on the measurement
data ȳ is obtained by marginalizing out qξr and the observation operator parameter αȳ.

3. Function space view of conditional expectation on reduced parameter space

In this section, we take a step back and discuss the theoretical aspects of the Bayesian inference based
robust optimization from the functional analysis point of view using the notion of conditional expectation.
The modern concept of conditional probability is explained in light of conditional expectation following
Kolmogorov [40]. Given the probability space triplet (Θ,F ,P) associated with the input stochastic space
and a parameter set q ∈ Q ⊗ L2(Θ,F ,P) := Q (as introduced in Sec. 2.1), we assume there exists a
sub-σ-algebra G ⊂ F .

The parameter q when described as a random field over the domain q : D × Θ → Q, is assumed to
be fairly smooth with bounded covariance, where Q is the image of q. Here we assume Q to be a Hilbert
space with an inner product structure defined as

〈〈q1, q2〉〉Q = E
[
〈q1(θ), q2(θ)〉Q

]
∀ q1, q2 ∈ Q (27)

Remark 1. Given that (Θ,F ,P) is a measure space with G ⊂ F and G contains all S ∈ F with P(S ) = 0,
then Lp(Θ,G,P) ⊂ Lp(Θ,F ,P), ∀p ≥ 1 [40]. Thus, for the subsequent discussions of this article we can
specifically write L2(Θ,G,P) ⊂ L2(Θ,F ,P)

Then the conditional expectation E
[
q
∣∣∣G

]
is obtained as the orthogonal projection of q on the sub-

space Q ⊗ L2(Θ,G,P). Mathematically,

E
[
q
∣∣∣G

]
= qG = arg inf

q̃∈QG
‖q − q̃‖QG where QG := Q ⊗ L2(Θ,G,P) (28)

where ‖·‖QG is an appropriately defined norm in QG with an inner product structure defined in Eqn. (27).
If we have a function f : Θ → R such that the sub-sigma algebra generated by f is equivalent to G i.e.
G ≡ σ( f ), then we can write following the Doob-Dynkin lemma [40] that all elements of q̃ ∈ QG can be
expressed as q̃ = φ ◦ f where φ are Lebesgue measurable maps from f to QG, i.e.

q̃ = φ ◦ f (q) where φ : f → QG, ∀q̃ ∈ QG (29)

Moreover, since qG = E
[
q
∣∣∣σ( f )

]
is an orthogonal projection of q on QG, we can write

〈〈
q − qG, q̃

〉〉
Q = 0 ∀q̃ ∈ QG (30)

Assuming an observation operator Y as defined in Eqn. (11) which defines a σ-algebra denoted
by σ(Y), it follows from the previous discussion in Eqns. (28)–(30) that the conditional expectation
E

[
q
∣∣∣σ(Y)

]
is given by

E
[
q
∣∣∣σ(Y)

]
= arg inf

q̂∈QY
‖q − q̂‖QY where QY := Q ⊗ L2(Θ, σ(Y),P) (31)

and E
[
q
∣∣∣σ(Y)

]
= φY ◦ Y(q; u) such that φY : Y → QY (32)

Thus φY are measurable maps from the vector space Y (in which the observation y exist) to QY.
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Lemma 1. Given an input set of parameters q with an associated probability space (Θ,F ,P), and a
mapping κ(u(q)) : u(q) → κ, ∀q ∈ Q (Q-valued random variable) with σ(κ) ⊂ F being the sub-sigma
algebra generated by κ, find qa ∈ Q̄ where Q̄ := L2(Θ, σ(κ),P) ⊗ Q such that

qa = arg inf
q̃∈Q̄

‖q − q̃‖Q⊗L2(Θ,F ,P) (33)

This results in qa becoming the conditional expectation qa = E
[
q
∣∣∣σ(κ)

]
which is an orthogonal projec-

tion given by 〈〈
q − E

[
q
∣∣∣σ(κ)

]
, q̃

〉〉
= 0 ∀q̃ ∈ Q̄ (34)

and the assimilated parameters qa = E
[
q
∣∣∣σ(κ)

]
are σ(κ)-measurable functions (using the Doob-Dynkin

lemma). Hence qa = ψqa ◦ κ where ψqa : κ 7→ qa. The map Pqa : q 7→ qa is the L2-projection defined
above and is a Markov operator [40].

To reiterate, the objective of this study is to obtain the optimal values of the design parameters
which would satisfy a user-specified design criterion. Prior probability density P(θ) is assumed on the
input parameter space θ which ensures support of P(θ) covers the target design space. This is a typical
requirement for Bayesian regularization such that the priors cover the full probability density support
containing the posterior distribution. Lemma 1 shows that the posterior calculated using the Bayes’
theorem is optimal in the L2 sense.

3.1. Probabilistic Optimization using Bayesian inference
The objective of this section is to pose the problem of robust optimization of the engineering system

in a reduced parameter space. Assuming the parameter space consists of n iid random variables ξ =

{ξ1, . . . , ξn} in the space L2(Θ,F ,P) with a vector of physical system parameters q ∈ Q defined such that
q : θ → Q. The dimension of the parameter space is reduced by ranking each parameter in their order
of global sensitivity indices. We assume that based on the observable qoi for the system model, we have
the ordering of the reduced parameter space ξr ⊂ ξ as

ξr =
{
ξ j1 , . . . , ξ jr : S j1 ≥ S j2 ≥ . . . ≥ S jr where j1, . . . , jr ∈ [1, . . . , n]

}
(35)

where S ji is the first or total order Sobol’ index of parameter ξ ji as discussed in Sec. 2.2. Thus ξr
identifies a reduced number r of input random parameters from the original parameter space ξ(θ) based
on their sensitivity indices S ji for the system response y(ξ). This gives a reduced parameter space of
dimension r < n (where n is original total number of independent identically distributed parameters of
the system) which consists of parameters in ascending order of their global sensitivity indices. We denote
the remaining parameters in the set ξ after the important parameters ξr as ξ̄.

Lemma 2. A probability space (Θ,F ,P) associated with a set of parameters ξ ∈ Rn can be partitioned
into disjoint sets {A1, A2, . . .} based on the separation of important ξr and non-important ξ̄ parameters
as

{
Ai : ξr(θi) × σmin(ξ̄)

}
, where σmin(ξ̄) is the smallest possible sub-sigma algebra of the non-important

parameters ξ̄.

In other words, we are interested in a partition of the sample space Θ, as {A1, A2, . . .} such that each
Ai is associated with a specific value of the important variable ξr and all admissible values of the non-
important parameters ξ̄. The set of all admissible values of ξ̄ is contained in the smallest sigma algebra
σmin(ξ̄) which consists of

{
Θ(ξ̄),Ø

}
where Θ(ξ̄) is the set of all admissible values of the non-important

parameters ξ̄.

Lemma 3. The partitioned disjoint sets {A1, A2, . . .} (as defined in Lemma 2) of the full-sample space Θ

associated with the probability space (Θ,F ,P) defines a sub-σ algebra Gξr ⊂ F .
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It is easily seen that G(ξr) satisfies all the properties of a sub-sigma algebra, since it is closed under
complementation and closed under countable unions. This property will be frequently referred to in the
subsequent discussions in this paper. It forms the basis of identifying the optimal posterior predictive
distributions of the important parameter set which satisfies the target distribution of the qoi under the
condition that the non-important (or uncontrollable parameters) follow their prior distributions.

We assume a set of system parameters q : Θ→ Qwhich depend on the fundamental set of parameters
ξ, which defines a sub-σ-algebra σ(q) defined as

σ(q) =
{
θi : q−1(S ), ∀S ∈ Q and ∀θi ∈ Θ

}
(36)

We define another functional mapping as the conditional expectation qξr = E
[
q
∣∣∣Gξr

]
where qξr ∈ Q ⊗

L2
(
Θ,Gξr ,P

)
and qξr is a Gξr -measurable function. This implies

∫

Gi

E
[
q
∣∣∣Gξr

]
dP =

∫

Gi

q dP ∀ Gi ∈ Gξr (37)

Considering Eqns. (36) and (37), we take Gξr ⊂ σ(q) since the set σ(q) is dense in F .
Next, we take an observation operator Y, which defines a sub-σ-algebra σ(Y) as discussed in

Sec. 2.3. Our objective then is to obtain a functional mapping between the elements of the sets con-
tained in the sub-σ-algebras σ(Y) and Gξr . This scenario is represented schematically in Fig. (3) where
the dotted lines signify the functional relationship to be derived based on conditional expectation.

Θ q qξr

y

q E
[
q
∣∣∣Gξr

]

Y
E
[ q
∣ ∣ ∣ σ

(Y)
]

E
[

qξr

∣∣∣σ
( Y

)]

Figure (3): Schematic diagram of the Bayesian model fitting on a reduced important parameter space.

Theorem 1. There is a basic probability space defined by the triplet (Θ,F ,P) consisting of a set of
n independent identically distributed random variables ξ = {ξ1, . . . , ξn} which models a set of system
parameters q ∈ Q ⊗ L2(Θ, σ(q),P). The sub-σ-algebras obtained by the observation operator Y and
the important parameter based partitioning of the sample space are defined as σ(Y) and Gξr respec-
tively. The conditional expectation E

[
E

[
q
∣∣∣Gξr

] ∣∣∣σ(Y)
]

exists and when restricted to L2(Θ,F ,P) is a
projection onto a subspace L2(Θ, σYGξr ,P) where σYGξr = σ(Y) ∩ Gξr
Proof. It has already been discussed in Lemma 3 that the important parameter space generates a sub-
σ-algebra denoted by Gξr . Doob-Dynkin’s lemma ensures that E

[
q
∣∣∣Gξr

]
= f (ξr) is a Gξr -measurable

function of the important parameters ξr. Similarly E
[
q
∣∣∣σ(Y)

]
is σ(Y)-measurable and is a function

of Y i.e. E
[
q
∣∣∣σ(Y)

]
= φ(Y) ◦ Y. We also assume that σ(Y) ∩ Gξr , Ø. Following Eqn. (30),

E
[
q
∣∣∣Gξr

]
and E

[
q
∣∣∣σ(Y)

]
are orthogonal projections of q on the measurable subspaces generated by

Gξr and σ(Y) and we denote these projections as PGξ and PY respectively. Thus, the projection PYGξ
onto σYGξr = Gξr ∩ σ(Y) is obtained as PYGξ = PYPGξ = PGξPY, as per [40], and this implies

E
[
q
∣∣∣Gξr ∩ σ(Y)

]
= E

[
E

[
q
∣∣∣Gξr

] ∣∣∣σ(Y)
]

= E
[
E

[
q
∣∣∣σ(Y)

] ∣∣∣Gξr
]

(38)
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Thus the conditional expectation exists and is a projection on L2(Θ, σYGξr ,P). Again, we can write the
double conditional expectation as

E
[
E

[
q
∣∣∣Gξr

] ∣∣∣σ(Y)
]

= E
[
q
∣∣∣σY

]
− E

[(
q − E

[
q
∣∣∣Gξr

]) ∣∣∣σ(Y)
]

= φY ◦ Y − E
[(

q − E
[
q
∣∣∣Gξr

]) ∣∣∣
(
σYGξr + σ⊥YGξr

)]
(39)

where E
[
q
∣∣∣σY

]
= φY ◦ (Y) from Eqn. (30) where φY ∈ L0(Y,Q) and we have decomposed the sub-σ

algebra σ(Y) into two components as σ(Y) = σYGξr + σ⊥YGξr , where σ⊥YGξr is orthogonal to σYGξr . We

also denote q⊥Gξ = q − E
[
q
∣∣∣Gξr

]
to be orthogonal to all vectors in Q ⊗ L2(Θ,Gξr ,P). Following from the

previous equation, we can write

E
[
E

[
q
∣∣∣Gξ

] ∣∣∣σ(Y)
]

= φY ◦ Y − E
[
q⊥Gξ

∣∣∣
(
σYGξr + σ⊥YGξr

)]

or, E
[
E

[
q
∣∣∣Gξ

] ∣∣∣σ(Y)
]

= φY ◦ Y − E
[
q⊥Gξ

∣∣∣σ⊥YGξr
]

(40)

Here we note that q⊥Gξ being orthogonal to all elements in the sub-σ algebraGξr , would also be orthogonal

to a subset of it σYGξr ⊂ Gξr , hence E
[
q⊥Gξ

∣∣∣σYGξr
]

= 0. Equation (40) signifies that the LHS is equal to

the projection of q on the sub-σ algebra generated by the observation operator Y, i.e φY ◦ Y, minus the
projection of the non-important parameter value q⊥Gξr on portion of the observation space orthogonal to
the intersection between σ(Y) and Gξr .

In the special case where σ(Y) ∩ Gξr = σYGξr = Ø, we expect E
[
E

[
q
∣∣∣Gξ

] ∣∣∣σ(Y)
]

= 0. This can be
proved as follows. Firstly, if σYGξr = Ø then σ⊥YGξr ≡ σ(Y). Thus, when σ(Y) ∩ Gξr = Ø

E
[
E

[
q
∣∣∣Gξr

] ∣∣∣σ(Y)
]

= φY ◦ Y − E
[
q⊥Gξr

∣∣∣σ(Y)
]

(41)

We also note that since E
[
q⊥Gξr

∣∣∣σ(Y)
]

is a projection of q⊥Gξr on Q ⊗ L2(Θ, σ(Y),P), it is expressed as

E
[
q⊥Gξr

∣∣∣σ(Y)
]

= ψY ◦ Y where ψY are measurable maps in L0(Y,Q). Additionally, under the condition

of σ(Y) ∩ Gξr = Ø, the projection of q⊥Gξr on Q ⊗ L2(Θ, σ(Y),P) is equivalent to the projection of q on
the same. This results in ψY ≡ φY. Thus, from Eqn. (41) we have

E
[
E

[
q
∣∣∣Gξr

] ∣∣∣σ(Y)
]

= 0 when σ(Y) ∩ Gξr = Ø (42)

4. Application to engineering problems

The robust optimization algorithm described in the previous sections are summarized here which
would be helpful in making them amenable for implementations applied to practical engineering prob-
lems. The details of the MCMC sampling strategy has been removed to preserve clarity of the steps
involved in calculating the optimum posterior on the important parameter space. Blackbox MCMC im-
plementations can be utilized in conjunction with this algorithm and the primary quantities required for
the calculation are listed in Algorithm 1.

We apply the proposed robust Bayesian optimization method to two example problems to demon-
strate its performance and accuracy for real engineering problems. The first problem is a related to a
structural dynamic system while the second deals with minimizing a non-linear six dimensional Hart-
mann function.
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Algorithm 1 Robust optimization of important design variables under uncertainty
Input: Prior on n-dimensional parameter space ξ ∈ Rn, such that ξ ∼ P(ξ).
Input: Response surface of the output qoi, y(q(ξ)) ∈ Y.
Input: Target distribution on output qoi, ȳ ∼ P(ȳ).
Output: Posterior distribution on ξr ∼ P(ξr

∣∣∣ ȳ), where ξr ⊂ ξ, r < n.
1: Calculate importance measure Si, i = 1, . . . , n.
2: Identify ξr =

{
ξ j1 , . . . , ξ jr : S j1 ≥ S j2 ≥ . . . ≥ S jr

}
, j1, . . . , jr ∈ [1, . . . , n]

3: Initialize ξ0
r .

4: % {MCMC sampling commences}
5: for i=1 to ns do
6: ξ(i)

r from a proposal Π(ξi
r |ξ(i−1)

r ).
7: Likelihood Lȳ|αȳ = P

(
ȳ
∣∣∣Y, qξr

)
P(Y(qξr )

∣∣∣αȳ)
8: Posterior probability on ξr as P

(
ξr

∣∣∣ qξr , ȳ,Y
)

= Lȳ|αȳP
(
qξr

∣∣∣ ξr, αq
)
P (ξr).

9: Accept or reject ξ(i)
r % {based on MCMC acceptance probability}

10: end for
11: Posterior predictive distribution P(y

∣∣∣ ȳ, q,Y) =
∫
ξr
P(y

∣∣∣ ȳ, q,Y)P
(
ξr

∣∣∣ qξr , ȳ,Y
)

dξr

4.1. Randomly parametrized structural dynamic system

We consider a bounded domain D ∈ Rd for a structural dynamic system with piecewise Lipschitz
boundary ∂D , d ≤ 3 is the spatial dimension and t ∈ R+ is the time variable. The linear stochastic partial
differential equation (pde) governing the system with uncertainty in parameter values is given as

ρ(r; θ)
∂2u(r, t; θ)

∂t2 + Lc
∂u(r, t; θ)

∂t
+ div (σα(u(r, t; θ))) = p(r, t); r ∈ D , t ∈ [0,T ], θ ∈ Θ (43)

with the associated Dirichlet condition u(r, t, θ) = 0; r on ∂D . Here σα(u(r, t; θ)) is the stress tensor
with stiffness coefficient α(r, θ) modeled as a stationary, square integrable random field such that α :
Rd × Θ → R. The random field exists in the probability space defined by the triplet (Θ,F ,P) as
before. The operator div(σa) is the self-adjoint stochastically parametrized stiffness operator and Lc is
the damping operator containing the stochastic coefficient vector c(r, θ). The system solution u(r, t, θ) is
sought under the condition of external excitation field p(r, t). To perform harmonic analysis, Eqn. (43)
is transformed to the frequency domain as

− ω2ρ(r; θ)̃u(r, ω; θ) + iωLcũ(r, ω; θ) + div (σα(̃u(r, ω; θ))) = p̃(r, ω); θ ∈ Θ (44)

whereω denotes the harmonic frequency, with p̃ and ũ representing the corresponding complex harmonic
amplitudes. E(α) in the stress-strain relationship σα = E(α) : ε is the symmetric positive definite elas-
ticity tensor which depends on the scalar random parameter α with ε being the strain tensor expressed as
ε = Dũ. Well established techniques of variational formulation of the displacement-based deterministic
finite-element methods [43, 44] gives the following bilinear form for the elastodynamic system (dropping
the ω for the sake of simplicity)

B(̃v, ũ; θ) = −ω2
∫

D
ṽ ρ(r; θ) ũ dD + iω

∫

D
ṽLc ũ dD +

∫

D

{
Dṽ

}T E(α)
{
Dũ

}
dD (45)

L (̃v; θ) =

∫

D
ṽp̃ dD

so that, B(̃v, ũ; θ) = L (̃v; θ) ∀ ṽ ∈X ×S (46)
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where X ×S the tensor product space of admissible functions as introduced Eqn. (2). Equation (46)
gives a set of discretized linear algebraic equations in terms of the mass, damping and stiffness matrices.
These can be expressed in a compact form as

A(ω, θ)̃u(ω, θ) = p̃(ω, θ); ∀ θ ∈ Θ; A ∈ Cn×n; ũ, p̃ ∈ Cn (47)

where A(ω, θ) is the complex frequency dependent coefficient matrix which inherits the uncertainty of
the random parameters involved in the governing pde.

The uncertainty elicited using random field description of a parameter α is generally associated with
a covariance function Cα : D × D → R defined on the open, bounded polygonal domain in D . For
second order random fields, there is a compact self-adjoint operator

Tαv(·) =

∫

D
Cα(r, ·)v(r)dr ∀v ∈ L2(D) s.t. Tαϕi = λiϕi,

〈
ϕi, ϕ j

〉
L2(D)

= δi j (48)

where 〈·, ·〉L2(D) denotes the inner product in L2(D). The {(λi, ϕi)}∞i=1 are a sequence of non-negative
eigenpairs of the operator Tαv(·). The truncated KL expansion of the stochastic process α(r, θ) is thus
expressed using these eigen-functions as

α(θ, r) = E [α] (r)︸   ︷︷   ︸
mean part

+

m∑

i=1

√
λiϕi(r)ξi(θ)

︸                ︷︷                ︸
deviatoric part

∀m ∈ N+ (49)

where E [α] (r) is the mean function and {ξi(θ)}mi=1 is a set of pairwise uncorrelated random variables. In
the special case where α is a Gaussian stochastic process, ξi-s are modeled with independent standard
(zero mean, unit variance) Gaussian random variables. The eigenfunctions ϕi(r) can be assumed to have
sufficient smoothness for smooth covariance functions, and if the eigenpairs are decaying according to
at least

√
λk ‖ϕk‖L∞(D) = O( 1

1+ks ) for some decay exponent s > 1, then ‖α − α̂‖L∞(D) → 0, as m → ∞
increases [45]. For practical engineering problems, the parametric randomness is modeled with a finite
set of random variables ξ = (ξ1, ξ2, . . . , ξm) : Θ → Rm, using first few largest eigenpairs in the reduced
probability space [46]. This is facilitated by the fact that the non-negative eigenvalues satisfy the relation∑∞i

i=1 λi =
∫
D

Var[α](r)dr and decay in accordance with the aforementioned relation. The choice of
m is informed by the decaying eigenvalues and it is ensured ln(λm/λ1) << 0.01 which implies that at
least 99% of the spectrum has been accounted for in the truncated KL expansion in Eqn. (49). For
arbitrary random field models, the expansion in Eqn. (49) can be written in terms of Weiner-Askey chaos
using finite order polynomial basis functions following [47]. Additionally, to ensure strict positivity of
stochastic processes (such as when modelling elastic modulus, material thickness), it is standard to use
the lognormal transformation [2, 48].

The solution u(ξ) is obtained using a finite order chaos expansion as discussed in Sec. 2.1 using
Galerkin’s method. The order of polynomial expansion has been chosen to ensure that the mean and
standard deviation of the solution has converged to the working level of accuracy for the chosen ap-
plication. Following the stochastic response surface constructed in the parameter space, the sensitivity
indices are analytically obtained from the coefficients of the expansion as discussed in Sec. 2.2. The im-
portant parameter space ξr is identified based on the sensitivity indices on which the posterior probability
distributions are estimated conditioned on the optimal distributions prescribed on the target qoi.

The structural system being studied here is a corrugated panel (as shown in Fig. 4(a)) which is
fixed at the left edge and a line force acts on the opposite edge. This panel is of particular interest
in aerospace applications due to its highly anisotropic behavior of high compliance in the corrugation
direction and high stiffness in the transverse direction. The uncertainties in the material and geometric
properties of the corrugated skin have been described probabilistically with random fields and variables.
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The idealized geometry of the corrugated panel is described with the geometrical properties of each
repetitive corrugation unit (such as width, height and the angle of corrugation). But it is impossible (under
the cost constraints of industrial production) to have the exact replication of the prescribed geometry
during manufacturing. As a result uncertainty always exists in the geemetrical shape of the corrugated
panel.

corrugation direction
p̃ (ω)
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0 50 100 150 200 250 300
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Frequency (Hz)

F
re

q
u
en

cy
 r

es
p
o
n
se

 (
m

)

 

 

mean

(b) Mean response and the ±2σ envelope

Figure (4): The corrugated panel used as an example of the structural dynamic system being studied here and the frequency
response function (mean and standard deviation) of the system under the action of a point load.

The uncertainty in the geometric shape or random surface roughness is quantified here with a random
field description characterized by a correlation length. Additionally, the thickness and Young’s modulus
has also been considered uncertain. There are a total of 12 random variables which are used to model the
stochastic properties as given below.

• The topology of the corrugated skin is assumed to be a random field with an exponential covariance

function
(
Cr(r1, r2) = exp

{
− ‖r1−r2‖L2

Lc

})
. The random field has been approximated with 10 uniform

random variables which models the perturbation of the (x, y) coordinates of the skin.

• The 11-th random variable models the thickness of the corrugated panel as a uniform random
variable around the nominal thickness value.

• The 12-th random variable models the Young’s modulus as a uniform random variable around the
nominal value.

Each random parameter is modeled with a scaled version of a standard uniform random variable, such
that a random parameter a is given as a = a0(1 + δξ) where a0 is the baseline parameter value, δ models
the variability and ξ is a uniform random variable (between [−1, 1]). The value of δ has been chosen for
each of these random parameters has been chosen to be equal for all cases, δ = 0.2 which represents a
40% variability of the parameters about their baseline value. The correlation length Lc has been taken
to be half of the overall length (along x-axis) of the corrugated panel. Hence the input parameter space
is 12 dimensional which models the random topology, thickness and elastic constant of the corrugated
panel.

The stochastic solution of this system, as shown in Fig. 4(b), has been obtained with 4-th order
Legendre polynomials which are orthogonal with respect to the joint uniform distribution on the input
random variables. This results in 1820 Legendre basis functions. This has been tested to approximate
the response surface with sufficient accuracy in context of the present computations. The figure shows
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the mean curve along with the ±2σ envelope (σ being the standard deviation) which signifies that 95%
of the possible FRF realizations lie within this envelope given the prior uniform distribution on the 12
input random variables.
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Figure (5): The distribution of the first resonant frequency given the prior distributions on the multidimensional stochastic
parameter space. The figure on the right shows the target distribution Π(D) from which the observation dataD is sampled.

This leads to a distribution of the first resonant frequency of the corrugated panel as shown in
Fig. 5(a). The objective of the problem is to optimize the first resonant frequency so that it follows a
target distribution function shown in Fig. 5(b). The objective of the design optimization in this study is
to isolate the structural modes of vibration from the aerodynamic modes. As a result, the objective is to
have the structural modes pushed near (and beyond) the 15 Hz range. This target distribution of the first
resonant frequency is specified by a beta distribution whose pdf is specified as xa−1(1− x)b−1 Γ(a+b)

Γ(a)Γ(b) with
a = 2.0, b = 5.0, Γ being the gamma function and the pdf is defined over the support of [15, 18] Hz. We
have synthetically generated 1, 000 samples from this target distribution conditioned on which we seek
the joint posterior distribution in the parameter space of interest.

The sensitivity of the first resonant frequency to the individual random variables have been estimated
based on the discussion presented in Sec. 2.2. Here table 1 gives the first order sensitivity values of the

Table 1: Sobol’s sensitivity indices for the first two eigenvalues of the randomly parametrized (12 parameters) corrugated skin.
The first order Sobol’ indices of the four most sensitive parameters to the first and second resonant frequencies are shown along
with the respective 95% confidence intervals (CI).

R.V.
1st eigenvalue (λ1) 2nd eigenvalue (λ2)

1st order 95% CI 1st order 95% CI
ξ1 0.552858 0.054858 0.572822 0.061312
ξ2 0.069691 0.009317 0.081345 0.009861
ξ11 0.051539 0.008933 0.051970 0.009138
ξ12 0.203692 0.035671 0.206073 0.036156

first and second resonant frequencies of the stochastic corrugated panel to the input random variables
{ξ1, ξ2, ξ11, ξ12}. These four parameters have the highest values of first order Sobol’ indices with an
acceptable confidence interval (less than 10% of the sensitivity value). Hence the first robust optimization
problem has considered ξ1 and ξ12 as the important parameters whose posterior distributions are inferred
conditional on the samples from the target distribution (as shown in Fig. 5(b)).

The MCMC method has been used to sample from the joint posterior distribution of ξ1 and ξ12
using the Metropolis-Hastings algorithm. The prior probability support for all input parameters has

17



been standardized over [−1, 1]. The likelihood function depends on the choice of the reduced important
parameter space as has been discussed in Sec. 2.5. In this case, the distribution of the first resonant
frequency at each point in the important parameters space due to the non-important variables (i.e. all
variables except for ξ1 and ξ12), governs the likelihood function. The optimal joint posterior distribution
along with the marginal distributions are shown in Fig. (6). The best fit regression line through the cluster
of points through the samples of the joint posterior distribution is shown in red. The joint posterior of

Figure (6): Posterior joint probability density functions of the two random variables ξ1 and ξ12 obtained from the samples
generated using the MCMC algorithm.

these two parameters shows a strong correlation, the correlation coefficient has been calculated to be
0.2502. This is expected since the variability of the posterior predictive distribution of the first resonant
frequency is primarily due to variation of the unimportant parameters (the remaining 10 parameters out
of the total of 12 input except for ξ1 and ξ12, which follow the original prior uniform distribution). The
derived posterior distribution on ξ1 and ξ12, in order to fit the target distribution closely, would have small
variability and a strong correlation, as observed in Fig. (6).

Figure (7) shows the prior, target (observation) and posterior (or optimized) distribution of the first
resonant frequency of the corrugated panel. The posterior distribution has been obtained from the joint
posterior distribution on the important parameters ξ1 and ξ12 while the remaining parameters follow their
uniform prior distribution. The figure indicates that the mean of the posterior distribution of the first
resonant frequency has moved closer to that of the target distribution. The mean of this distribution
is obtained approximately at 16 Hz which is in the desired range of values with a standard deviation
of around 1.7 Hz. This shows that the posterior Bayesian model calibration framework has produced
the posterior samples distributions based on the observations such that it successfully drove the natural
frequency of the stochastic system in the desired range of values.

Next the important parameter space has been expanded to include the four parameters {ξ1, ξ2, ξ11, ξ11}
which are the parameters with the highest Sobol’ indices (as indicated in table 1). The joint posterior dis-
tribution on the parameters (obtained using the MCMC method) and the distribution of the first resonant
frequencies are shown in Figs. (8) and (9) respectively. It can be seen from Fig. (9) that the four param-
eter optimization produces a better approximation of the target pdf compared to the two parameter case,
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Figure (7): The prior, observed and posterior distributions of the first resonant frequency of the randomly parametrized corru-
gated skin.

especially in the form of reduced variance around the optimum mean. This is expected since in this case
we are seeking the optimal solution in a higher dimensional (four) parameter space and the uncertainty
in the optimized result is in large part due to the eight remaining input parameters following their prior
distribution (compared to ten for the two parameter case). It is also to be noted that the joint posterior on
the important parameters in Figs. (6) and (8) indicates the robustness of the solution by specifying the
allowable range of variation (using the probability distributions) around the optimal point values of the
input parameters.

Thus as the important parameter space is extended to include more parameters, the target pdf will be
approximated more closely compared to the case when only a few parameters are included. This leads
to the criterion where the input parameter space can be adaptively increased based on distance metrics
between the acheived posterior distribution on the qoi vis-a-vis the target distribution on these qunatities
(such as the distance between summary statistical indicators as mean or variance, or the Kullback-Leibler
(KL) divergence estimates between the full distributions).

4.2. Test: 6-dimensional Hartmann function

The six dimensional Hartmann function is used here as another example to demonstrate the applica-
bility of the proposed optimal probabilistic design framework. The 6D Hartmann function in variables
ξ = {ξ1, . . . , ξ6} is given as

f (ξ) = −
4∑

i=1

αi exp


−

6∑

j=1

Ai j
(
ξ j − Pi j

)2


where α = [1.09, 1.2, 3.0, 3.2] ; ξi ∈ [0, 1] ∀i (50)

A =



10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14


; P = 10−4 ×



1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


;

The Hartmann function is a highly non-linear function of the variables ξ and given that a prior uniform
distribution in [0, 1] is imposed on these variables the sensitivities of f (ξ) on the individual input vari-
ables are shown in table 2. The total order Sobol’ indices are shown here along with the associated 95%
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Figure (8): Posterior joint probability density functions of the four random variables {ξ1, ξ2, ξ11, ξ11} obtained from the samples
generated using the MCMC method.

Table 2: Sobol’s total order sensitivity indices for the 6-dimensional Hartmann function over the domain [0, 1] along with the
associated confidence intervals.

Variable
Total order

Sobol’ indices 95% C.I.
ξ1 0.342296 0.012293
ξ2 0.398686 0.014681
ξ3 0.051675 0.002197
ξ4 0.381338 0.011978
ξ5 0.297879 0.010183
ξ6 0.477963 0.015618

confidence interval to capture the effect of individual random variables on the function value. Due to the
highly non-linear nature of the Hartmann function there is little contribution of the individual variables
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Figure (9): Comparison of the prior, posterior and observed values for MCMC model fit with 4 and 2 random variables (rv).

to the function variance, rather the interaction terms are much more significant. Hence the total order
Sobol’ indices have been considered to rank the random variables according to their order of importance.
Table 2 shows that parameter ξ3 and ξ5 have the lowest sensitivity index (in ascending order) and hence
the important parameter space is constructed by successively eliminating them.

The global minimum of the 6D Harmann function exists when the input variables are bound in [0, 1]
and following from Eqn. (50) is given as,

fmin = −3.322 with ξ∗ = arg inf
ξi∈[0,1],∀i

∣∣∣ f (ξ)
∣∣∣ where ξ∗ = {0.202, 0.150, 0.477, 0.275, 0.312, 0.657}

(51)
Our objective is to specify a target distribution close to the global minimum fmin as has been shown in
Fig. (10) where the histogram in green shows the target distribution with its median at 3.0 with samples
from a beta distribution. The prior distribution of the Hartmann function is obtained by sampling f (ξ)
for uniform priors on ξ within the [0, 1] interval. Hence the objective here is to obtain the optimal
distribution on the important parameter space which brings the prior (yellow) distribution on f (ξ) closer
to the target distribution (specified by the green histogram).

We use five parameters with highest total order Sobol’ indices (from table 2) as our design variables
while ξ3 (with the lowest sensitivity) is treated as a stochastic variable which follows their prior distri-
bution before and after optimization. The joint posterior distribution on the five parameters are shown
in Fig. (11) which has been obtained by using the MCMC method to sample from the posterior distri-
bution. The figure shows pairwise joint posterior distributions of the five parameters along with their
individual marginalized distributions. It can be observed that the posterior probability support for each
of these variables are quite narrow (compared to the [0, 1] interval), which implies a small variance, and
this support covers the input variable ξ values which give the global minimum of f (ξ) as discussed in
Eqn. (51).

The probability distribution of the Hartmann function given the optimal joint posterior distributions
on the important parameters and the prior distribution on the non-important parameters is shown in
Fig. (12). The calculation of the posterior predictive distribution has been performed with different
dimensions (4 and 5) of the important parameter space (based on the highest sensitivity indices). It is
seen that the closeness of the posterior predictive distribution to the target distribution in Fig. (12) is
more for the 5 parameter case compared to the one with 4. Once again, this is similar to the observation
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Figure (10): Prior distribution of the six-dimensional Hartmann function with uniform priors on the six variables {ξ1, . . . , ξ6}
and samples (observation) from the target distribution around the global minimum of the Hartmann function.

in Fig. (9) where increasing the dimension of the design space results in improved capacity of meeting
the target distribution. A closer look at Fig. (12) (and comparing with Fig. (9)) indicates that the target
distribution has high skewness (asymmetry) and is far from the prior (with respect to distance measures
between probability distributions, for e.g. KL divergence). The better fit of the posterior predictive
distribution to the target distribution with 5 parameters highlights that the proposed method performs
well even when the distance between the target probability distribution (in green in Fig. (12)) and the
prior is large in a statistical sense (such as entropy based metrics). This in turn implies that the proposed
method performs well even when the rate of acceptance of samples for the MCMC step is quite small.

5. Conclusions and future work

The study demonstrates the applicability of a novel robust optimization approach based on Bayesian
system identification to achieve ad-hoc user-prescribed target distributions on output qoi of a stochastic
system. This differs from the deterministic optimization schemes in the sense that Bayesian inference is
used to obtain optimal joint posterior probability distributions on a chosen important parameters space
in order to get the probability distribution of the qoi of the system close to a specified target distribu-
tion. Hence the optimization criterion is specified by incorporating the uncertainty description (either by
specifying acceptable margins of deviation around the optimum or by identifying a robust region of op-
eration of the physical system) on the target function. This alleviates the problem of having to deal with
optimal point estimates (as is the case with deterministic optimization schemes) which fail to provide a
qualitative/quantitative idea of the robustness of the solution in the neighbourhood of the optimal point.
This offers distinct advantages in a practical design optimization problem by a) clearly identifying the
best optimal design regions in the important parameter space, b) having a quantitative estimate of the
confidence with which design targets would be met, c) ensuring robustness of operation from the joint
posterior distribution on the parameters (key indicators would be correlation coefficient, lower order sta-
tistical moments, number of modes) and d) obtaining a one-to-one map between the input distribution
of important design variables around the optimal design point and the distribution of the target qoi in
presence of system level uncertainty. Thus the proposed method satisfies these key requirements which
are necessary to ensure its suitability for practical industrial applications.
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Figure (11): Posterior joint probability density functions of the two random variables ξ1 and ξ12 obtained from the samples
generated using the MCMC algorithm.

The proposed robust Bayesian optimization method evaluates the optimal solution which satisfies the
target distribution subject to the assumed priors since it has been shown in Sec. 3.1 that the joint posterior
distribution derived using the proposed method is an L2 projection of the important parameters onto the
sub-σ algebra generated by the intersection of the reduced parameter space and the observation samples
from the target distribution. The likelihood function for the robust optimization scheme is informed by
the variability of the response surface at each point of the important parameter space (the design space)
due to the prior distributions of the non-important parameters. Thus efficient uncertainty propagation
methods are required which can allow for rapid sampling from the multi-dimensional stochastic response
surface. The results show that increasing the dimension of the design space gets the posterior distribution
of the qoi closer to the prescribed target distribution.

The proposed method has been demonstrated with two examples in which the input parameters have
been considered as random inputs with prescribed prior distributions while the target distributions are
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Figure (12): Probability distribution of the Hartmann function with the prior and joint optimal posterior distribution on the input
parameters. The ‘observation’ histogram denotes the samples from the specified target distribution and the optimal posterior
distribution have been performed with 4 and 5 parameters (random variables (rv)) with the highest global sensitivity indices.

based on ad-hoc prescribed distributions on the qoi. The structural dynamic system consists of a corru-
gated structural component where selected geometric and elastic parameters (important parameters) were
used for robust optimization to match the target distribution for the first resonant frequency. The second
example dealt with a six-dimensional Hartmann function where the problem was posed so as to find the
optimal distribution on the important parameters which would bring the Hartmann function close to its
global minima. The applicability of the method has been demonstrated even when the target distribution
is very dissimilar to the output qoi with the assumed prior distribution on the input parameters.

It is imperative that the proposed robust optimization method based on Bayesian inference is a first
attempt at providing a theoretical basis and a proof of concept for the proposed scheme. A number of
important directions for the further investigation and consolidation of the proposed method has to be
undetaken some of which can be listed as follows.

• Include distance measures between the prior and target distributions which would enable an alter-
native approach of estimating the likelihood function without resorting to explicitly sampling from
the specified target distribution.

• It is necessary to provide the theoretical basis and demonstration of the applicability of the pro-
posed method to multiobjective robust optimization problem. This would be particularly inter-
esting since the Bayesian inference methodology is amenable to accommodating additional con-
straints and conditions on the study parameters using the general product rule [40] to extend simple
problems.

• The investigation of efficient sampling algorithms to improving the speed of convergence of the
MCMC algorithm [10, 41, 42] especially when the probability support for the joint optimal pos-
terior distribution is small in a high dimensional parameter space. This would also present the
opportunity to reformulate the problem in terms of a dual problem where sampling from the com-
plement space would significantly increase the sample acceptance rate.

• A multi-stage robust optimization problem, where a joint identification of the important parameter
space and the associated optimal joint posterior distribution is performed. This would imply that
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the definition of the important parameter space can change following the identification of the robust
optimum zone based on additional local sensitivity/importance metrics.

Additionally, the considerations of other future research directions would include studying the perfor-
mance of the proposed method for the case of hierarchical uncertainty models, adaptively enriching the
solution accuracy around the areas of high joint posterior densities on the important parameters and
choice of the important parameter space on the fly (during the robust optimization process) with local
sensitivity measure of the input parameters on the qoi.
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Highlights

 A novel Bayesian-inference based probabilistic optimal design is proposed.
 Optimal distribution on a reduced set of important design parameters is derived.
 The likelihood explicitly considers the variability due to the reduced parameter set.
 Conditional expectation theory is used to prove the existence of the posterior.
 The method is demonstrated with non-linear functions and structural dynamics systems.


