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Abstract. We present exploratory results from dynamical simulations of QCD in
isolation, as well as QCD coupled to QED, with C� boundary conditions. In finite
volume, the use of C� boundary conditions allows for a gauge invariant and local
formulation of QED without zero modes. In particular we show that the simulations
reproduce known results and that masses of charged mesons can be extracted in a
completely gauge invariant way. For the simulations we use a modified version of the
HiRep code. The primary features of the simulation code are presented and we discuss
some details regarding the implementation of C� boundary conditions and the simulated
lattice action.

Preprint: CP3-Origins-2017-046 DNRF90, CERN-TH-2017-214

1 Introduction
Calculating electromagnetic corrections to hadronic observables via lattice simulations requires a con-
sistent formulation of QCD+QED in finite volume. Such a formulation, based on C� boundary condi-
tions, was proposed and thoroughly discussed in [1]. Here we present the first exploratory simulations
showing that the proposed setup works in practice. For the simulations we use a modified version of
the HiRep code, as discussed in section 2, and in section 3 we present our exploratory results. In
particular, we show that masses of charged hadrons can be extracted in a gauge invariant way, with a
signal-to-noise ratio equivalent to that of neutral hadrons.

2 Simulation code
In this section we present a modified version of the HiRep code [2] used for simulating QCD and QED
with C� boundary conditions. In particular we outline the primary features of the code and discuss the
approach used to implement the boundary conditions.

2.1 Overview

The HiRep code was developed as a flexible code for studying BSM models and for this reason it has
native support for different gauge groups and higher dimensional fermion representations. Especially
the latter feature was one of the main reasons for choosing to modify this code, as discussed later on.
�Speaker, e-mail: hansen@cp3.sdu.dk
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The modified code presented here can simulate QCD, QED and QCD+QED with either periodic or
C� boundary conditions in space. The main features of the code include:

• Wilson fermions with O(a) improvement
• Lüscher-Weisz gauge action for SU(3) field
• Plaquette gauge action for U(1) field
• Compact QED with optional Fourier acceleration
• Support for rational approximations
• Hierarchical OMF integrators
• Several inverters, such as MINRES, BiCGstab, and CG with multishift support
• Gradient flow observables for both SU(3) and U(1) field
• Measurements of charged and neutral meson correlators

The approach used for implementing the C� boundary conditions has been described in the appendix
of [1]. For the discussion at hand we recall that C� boundary conditions correspond to performing a
charge conjugation when wrapping around the torus. Denoting the matter fields by ψ f and the U(1)
and SU(3) gauge potentials by Aμ and Bμ, respectively, the boundary conditions read:

Aμ(x + L̂k) = −Aμ(x) (1)

Bμ(x + L̂k) = −B∗μ(x) (2)

ψ f (x + L̂k) = C−1ψ̄T
f (x) (3)

ψ̄ f (x + L̂k) = −ψT
f (x)C (4)

Here C is the charge conjugation matrix. These boundary conditions pose no additional complications
for the gauge fields. In terms of the link variables, for both gauge fields, the boundary conditions
correspond to complex conjugating the links when wrapping around the torus.

Uμ(x + L̂k) = U∗μ(x) (5)

In practice this constraint is implemented by having an extended lattice with a static border around
the actual lattice. The relevant field variables are then copied into the static border and the boundary
conditions are applied. This operation must be repeated every time the field changes.

2.2 Fermion representation

While the boundary conditions for the gauge fields are trivially implemented, special care is needed
for the matter fields because of the mixing between fermions and antifermions at the boundary. Due
to this mixing it is advantageous to write the fermion action in terms of a new doublet χ containing
both fermion fields.

χ =

(
ψ

C−1ψ̄T

)
(6)

In this notation the C� boundary conditions simply swap the two components of the doublet.

χ(x + L̂k) =
(
0 1
1 0

)
χ(x) (7)

The boundary conditions can be diagonalized via a unitary transformation in which case the basis is
the two eigenstates ψ± of the charge conjugation operator.

η =

(
ψ+
−iψ−

)
=

1√
2

(
ψ +C−1ψ̄T

−i(ψ −C−1ψ̄T )

)
(8)
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In this basis the boundary conditions read

η(x + L̂k) =
(
1 0
0 −1

)
η(x) , (9)

and the link variables appearing the Dirac operator are 6 × 6 real matrices constructed via the map

Uη =
(
Re U −Im U
Im U Re U

)
. (10)

The relation D[U]T = CD[U∗]C−1 can now be used to rewrite the action.

S F = ψ̄D[U]ψ = −1
2
ηT CD[Uη]η (11)

Because the boundary conditions have been diagonalized we can evaluate the associated path integral.
This results in the Pfaffian of the Dirac operator instead of the usual determinant.

∫
[Dη] exp

{
+

1
2
ηT CD[Uη]η

}
= Pf CD[Uη] (12)

Using the fact that CD[Uη] is an antisymmetric matrix, the absolute value of the Pfaffian can be related
to the determinant via the identification

∣∣∣Pf CD[Uη]
∣∣∣ =
√

det D[Uη] . (13)

Due to this relation, on the lattice we can use the pseudofermion method to represent the Pfaffian, but
it requires the use of rational approximations in the action.

∣∣∣Pf CD[Uη]
∣∣∣ =
∫

[Dφ][Dφ∗] exp
{
−φ†{D[Uη]†D[Uη]}−1/4φ

}
(14)

Because the HiRep code already supported higher dimensional representations, defining the new rep-
resentation Uη used in the Dirac operator, amounted to writing a new function that implements the
map defined in Eq. (10).

2.3 Lattice action

Because the quarks are fractionally charged, when using the compact formulation of QED it is neces-
sary to rescale the elementary charge to ensure gauge covariance. We define the U(1) action as

S QED
G = βem

∑
x

∑
ν<μ

[1 − Re Pμν(x)] , (15)

where the bare coupling βem now depends on the electromagnetic coupling constant α and the ele-
mentary charge qel. The latter is a tunable parameter chosen to be qel = 1/6 in our simulations.

βem =
1

4παq2
el

(16)

The Dirac operator used for QCD+QED simulations is written in terms of the U(3) links defined by

Wμ(x) = Uμ(x)Vμ(x)q̂ , (17)
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where Vμ(x) is the U(1) link and Uμ(x) is the SU(3) link. The integer exponent q̂ = q/qel is the fermion
charge in units of the elementary charge. With these definitions, the O(a) improved Dirac operator
can be written as

Dφ(x) = (4 + m0)φ(x) − 1
2

∑
μ

(1 − γμ)Wμ(x)φ(x + μ̂) + (1 + γμ)W†μ(x − μ̂)φ(x − μ̂) (18)

+
i
4

∑
μ,ν

σμν
{
cQCD

sw F̂QCD
μν (x) + cQED

sw F̂QED
μν (x)

}
φ(x) , (19)

where we use the clover definition of the field tensors. For the simulations presented in the next
section, we use the tree-level coefficient for the U(1) clover term given by cQED

sw = q̂.

2.4 Interpolating operators

The construction of gauge-invariant interpolating operators for charged states was discussed in [1]. In
the next section we use the so-called “Coulomb operator” for measurements of charged meson states.

Ψ(x) = exp
{
−iq
∫

d3y ∂kAk(x0, y)Φ(y − x)
}
ψ(x) (20)

The electrostatic potential Φ(x) must be anti-periodic and satisfy ∂k∂kΦ(x) = δ3(x). This operator
is invariant under local gauge transformations, but transforms under global gauge transformations,
and as such it defines a charged state. In the Coulomb gauge Ψ(x) = ψ(x), and the operator Ψ(x) is
therefore the unique gauge-invariant extension of the quark field defined in the Coulomb gauge. We
refer again to [1] for a definition of the discretized operator implemented in the code.

3 Exploratory studies

In this section we discuss some exploratory simulations of QCD with C� boundary conditions as well
as dynamical QCD+QED simulations. For the QCD simulations we use parameters from the CLS
collaboration to allow for a comparison with their results. For the QCD+QED simulations we start
from the parameters of one of the QCD simulations, while adding the QED interactions in the Dirac
operator. Introducing the QED interactions will, most notably, shift the value of the critical masses,
and hence affect the mass spectrum. We study how the mass spectrum changes when adding the
QED interactions, and in particular, we show that the masses of charged hadrons can be extracted in a
completely gauge invariant way.

3.1 QCD

We have performed several QCD simulations to show that our setup with C� boundary conditions
works in practice. For the simulations we have chosen Nf = 3 dynamical fermions at the isospin sym-
metric point with the bare parameters taken from the CLS collaboration [3]. The simulated ensembles
are listed in Table 1 together with the bare parameters and the number of thermalized configurations
used in the analysis.

Except from ensemble A1 we use C� boundary conditions in the spatial directions, and periodic
boundary conditions in time. Ensemble A1 was simulated with periodic boundary conditions in all
directions to allow for a direct comparison between the two cases. For all ensembles we have mea-
sured the PCAC mass, the pion/kaon mass and decay constant and the gradient flow observable t0.
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Ensemble L3 × T β κ csw b.c.s. MDU

A1 163 × 32 3.40 0.13675962 1.986246 PPPP 1000

A2 163 × 32 3.40 0.13675962 1.986246 CCCP 1500

A3 243 × 48 3.40 0.13675962 1.986246 CCCP 693

B1 163 × 32 3.55 0.13700000 1.824865 CCCP 1000

B2 243 × 48 3.55 0.13700000 1.824865 CCCP 1000

Table 1. Ensembles and parameters for the QCD simulations.

Ensemble mq mπ,K fπ,K t0 mπL

A1 0.00868(35) 0.2006(82) 0.0486(21) 2.960(48) 3.2

A2 0.00877(24) 0.1820(47) 0.0562(12) 2.879(34) 2.9

A3 0.00901(12) 0.1819(16) 0.06022(96) 2.901(10) 4.3

B1 0.00665(23) 0.1866(65) 0.0305(24) 5.01(10) 3.0

B2 0.006805(93) 0.1324(28) 0.04597(51) 5.259(41) 3.2

Table 2. Results for the QCD simulations.

The results are listed in Table 2, where the PCAC mass is unrenormalized, but O(a) improved using
cA from [4], and the decay constant has been renormalized using ZA from [5].
The results for the A (B) ensembles should be compared with CLS ensemble H101 (H200) in [6].
Because our volumes are smaller than the corresponding CLS ensembles we have significant finite
volume effects, especially on the B1 ensemble. On the two largest volumes A3 and B2 our results
agree with the CLS values within 5% in all cases. This seems reasonable given the smaller volume
and smaller amount of statistics.

3.2 QCD+QED

For our first test simulations of dynamical QCD+QED we took the parameters for the B1 ensemble
and added the QED interactions. While, in these simulations, the bare masses are still degenerate for
all three quarks, in the Dirac operator we use the physical charges i.e. we have one up-type quark
with charge q = 2/3 and two down-type quarks with q = −1/3. Because the charges are different,
the quark masses are also renormalized differently, and for this reason it makes little sense to keep the
bare masses degenerate. However, for these exploratory simulations we just wanted a simple setup
for studying the two-point functions.

In Table 3 we list the two simulated QCD+QED ensembles, with the only difference being the
value of electromagnetic coupling constant. In the first ensemble we use an unphysically large value
of the coupling constant α ≈ 7αphys and in the second ensemble we use the physical value.

As previously stated, the primary goal of these exploratory QCD+QED simulations is to prove
that we can extract the masses of charged hadrons in a gauge invariant way using the operator defined
in section 2.4. In particular we have studied the mass of the charged and neutral kaon. In Fig. 1 we
show in the first column the results for the Q1 ensemble and in the second column the results for
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Ensemble L3 × T β α κ cQCD
sw b.c.s. MDU

Q1 163 × 32 3.55 0.05 0.13700000 1.824865 CCCP 1000

Q2 163 × 32 3.55 1/137 0.13700000 1.824865 CCCP 500

Table 3. Ensembles and parameters for the QCD+QED simulations.

the Q2 ensemble. In the first row we show the correlators for the two states, in the second row the
corresponding effective masses, and in the last row we show the effective mass splitting. This effective
splitting, denoted ΔK in the plots, is defined as the mass difference divided by the average mass, i.e.

ΔK = 2
(

MK+ − MK0

MK+ + MK0

)
. (21)

For the Q1 ensemble we observe a large mass splitting with ΔK = 0.2378(46) due to the unphysically
large value of the electromagnetic coupling. As expected, we also observe that the masses increase
compared to the QCD simulation (ensemble B1), due to the QED interactions shifting the critical bare
masses. On the Q1 ensemble the mass splitting is naturally smaller with ΔK = 0.065(15). While these
simulations are affected by finite volume effects, we are clearly able to extract a statistically significant
signal even for the physical value of the electromagnetic coupling constant.

3.3 Optimizations

As argued in section 2.2, the RHMC algorithm is necessary for simulations with C� boundary con-
ditions. This will naturally make the simulations significantly more expensive, but there are several
ways to reduce the cost, such as pole-splitting for the rational approximation or the introduction of
multiple pseudofermions [7]. We explored the possibility of using multiple pseudofermions for our
QCD simulations and we were eventually able to reduce the cost by more than a factor of two1. In our
setup we can simulate Nf = 3 degenerate fermions with a single pseudofermion when using the frac-
tion 3/4 in the rational approximation. This was, however, quite expensive because of the relatively
ill-conditioned Dirac operator. For this reason we changed the action to include two pseudofermions,
each with a fraction of 3/8, which resulted in a much better conditioned setup. In practice it allowed
us to reduce the number of integration steps by roughly a factor of five without loosing acceptance.
In Fig. 2 we show how the mean value and standard deviation of the numerical MD forces decrease
when using two pseudofermions for the A3 ensemble, which explains why the number of integration
steps can be decreased. On the plot |F|2 is the squared norm of the force vector, and the average is
over all positions and directions. Naturally, we also tried using three pseudofermions, but no futher
gain was observed in this case.

For our QCD+QED simulations we naturally need two pseudofermions because of the different
charge assignments for the quarks, which automatically leads to a reasonably well-conditioned setup.
What makes a difference for these simulations is the use of Fourier acceleration for the U(1) field.
This was originally implemented to decrease the autocorrelation, but unexpectedly, the number of
integration steps could also be decreased by a factor of two, without loosing acceptance, compared
to the same simulation without Fourier acceleration. This means that, while the use of Fourier accel-
eration is slightly more expensive, it is well compensated by the possible decrease in the number of
integration steps.

1We use a simple two-level integration scheme with fermions on the outer level and gauge on the inner level.
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Figure 1. Correlators and effective masses for the charged and neutral kaon state as measured on ensemble Q1
(first column) and Q2 (second column). The relative mass difference ΔK is defined in Eq. (21).
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Figure 2. Comparison of the numerical MD forces for the A3 ensemble. The mean value and standard deviation
of the fermion force is drastically reduced when decreasing the exponent in the rational approximation.

4 Conclusion

We presented a modified version of the HiRep code suitable for simulations of QCD and QCD+QED
with C� boundary conditions. The primary features of the code have been discussed together with
some implementation specific details. The code has been used to perform the first exploratory sim-
ulations and we have shown that we are able to reproduce known results and that masses of charges
hadrons can be extracted in a gauge invariant way, with a signal-to-noise ratio equivalent to that of
neutral hadrons. Moreover, we have discussed a few possible ways of optimizing the cost of the
simulations.
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