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We investigate the data-driven newsvendor problem when one has n observations of p features related

to the demand as well as historical demand data. Rather than a two-step process of first estimating a

demand distribution then optimizing for the optimal order quantity, we propose solving the “Big Data”

newsvendor problem via single step machine learning algorithms. Specifically, we propose algorithms based

on the Empirical Risk Minimization (ERM) principle, with and without regularization, and an algorithm

based on Kernel-weights Optimization (KO). The ERM approaches, equivalent to high-dimensional quantile

regression, can be solved by convex optimization problems and the KO approach by a sorting algorithm.

We analytically justify the use of features by showing that their omission yields inconsistent decisions. We

then derive finite-sample performance bounds on the out-of-sample costs of the feature-based algorithms,

which quantify the effects of dimensionality and cost parameters. Our bounds, based on algorithmic stability

theory, generalize known analyses for the newsvendor problem without feature information. Finally, we apply

the feature-based algorithms for nurse staffing in a hospital emergency room using a data set from a large

UK teaching hospital and find that (i) the best ERM and KO algorithms beat the best practice benchmark

by 23% and 24% respectively in the out-of-sample cost, and (ii) the best KO algorithm is faster than the best

ERM algorithm by three orders of magnitude and the best practice benchmark by two orders of magnitude.

Key words : big data, newsvendor, machine learning, Sample Average Approximation, statistical learning

theory, quantile regression
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1. Introduction

We investigate the newsvendor problem when one has access to n past demand observations as well

as a potentially large number, p, of features about the demand. By features we mean exogenous

variables (also known as covariates, attributes and explanatory variables) that are predictors of the

demand and are available to the decision-maker (hereafter, “DM”) before the ordering occurs. While

inventory models to date have typically been constructed with demand as the stochastic primitive,

*Formerly: Gah-Yi Vahn.
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in the world of Big Data, the DM has access to a potentially large amount of relevant information

such as customer demographics, weather forecast, seasonality (e.g. day of the week, month of the

year and season), economic indicators (e.g. the consumer price index), as well as past demands to

inform her ordering decisions.

In this paper, we propose solving the “Big Data” newsvendor problem via distribution-free, one-

step machine learning algorithms that handle high-dimensional feature data, and derive finite-sample

performance bounds on their out-of-sample costs. The one-step algorithms contrast with the ap-

proach of solving the Big Data newsvendor problem via a two-step process, of first estimating a

(feature-dependent) demand distribution then optimizing for the optimal order quantity. Such two-

step processes can be problematic because demand model specification is difficult in high-dimensions,

and errors in the first step will amplify in the optimization step.

In this setting, the paper is structured to answer the following four questions. (Q1) How should

the DM use a feature-demand data set to solve the newsvendor problem? (Q2) What is the value

of incorporating features in newsvendor decision-making in the first place? (Q3) What theoretical

guarantees does the DM using such data have, and how do these scale with the various problem

parameters? (Q4) How do newsvendor decisions based on the feature-demand data set compare to

other benchmarks in practice?

We address (Q1) in Sec. 2, where we propose one-step approaches to finding the optimal order

quantity with a data set of both demand and related feature observations. One approach is based

on the machine learning principle of Empirical Risk Minimization (ERM) (Vapnik 1998), with and

without regularization, and the other, which we call Kernel-weights Optimization (KO), is inspired

by Nadaraya-Watson’s kernel regression method (Nadaraya 1964, Watson 1964). The ERM ap-

proach, equivalent to high-dimensional quantile regression, is a linear programming (LP) algorithm

without regularization, and a mixed-integer program (MIP), an LP or a quadratic program (QP)

with `0, `1 and `2 regularizations respectively. Under the KO approach, the optimal data-driven

order quantity can be found by a simple sorting algorithm.

We justify the use of features by answering (Q2) in Sec. 3, where we analytically quantify the

value of features by comparing against decisions made without any features (the “Sample Average

Approximation (SAA)” method). This is necessary as most data-driven inventory works to date

do not consider features. We consider two demand models for the comparison — a two-population

model and the linear demand model. For both models, we show that the no-feature SAA decision

does not converge to the true optimal decision, whereas the feature-based ERM decision does. In

other words, the SAA decision can have a constant bias (i.e. O(1) error) regardless of how many

observations n the DM has, whereas any finite-sample bias of the feature-based decision shrinks to
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zero as n tends to infinity. Accordingly, the SAA decision can have a higher newsvendor cost than

the ERM decision. We quantify the additional cost incurred by biased decisions in Theorem 4.

We address (Q3) in Sec. 4. In practice, the DM may never make the truly optimal decision

with finite amount of data, even if s/he uses as much relevant feature information as possible.

To understand the tradeoffs of not having the full distributional information of the demand, we

derive theoretical performance bounds for the DM who uses the algorithms proposed in Sec. 2. Our

bounds characterize how the in-sample cost of the in-sample decision (which the DM can calculate,

as opposed to the expected cost of the in-sample decision) deviates from the true expected cost

of the true optimal decision in terms of the various parameters of the problem, in particular in

terms of p and n. The bounds show how the out-of-sample cost of the in-sample decision (the

“generalization error”) deviates from its in-sample cost by a complexity term that scales gracefully

as 1/
√
n for n, and as

√
log(1/δ) for δ, where 1− δ is the probabilistic accuracy of our bound,

under the minimal assumption that the demand data is independent and identically distributed (iid)

in the high-dimensional feature space. The bounds also show how the finite-sample bias from the

true optimal decision scales as n−1/(2+p/2)
√

logn, under the additional assumption of linear demand

model.

From a practical perspective, our bounds explicitly show the trade-offs between the generalization

error (which measures the degree of in-sample overfitting) and the finite-sample bias and how

they depend on the size of the data set, the newsvendor cost parameters and any free parameters

(controls) in the algorithms. While some past papers in operations management have incorporated

specific features in inventory models, none have analyzed the out-of-sample performance (cost) with

high-dimensional data. Our work also contrasts with past works in quantile regression by using

algorithm-specific stability theory of Bousquet and Elisseeff (2002) to analyze the generalization

error, as opposed to Vapnik-Chervonenkis (VC) theory (Vapnik 1998), which results in bounds with

tight constants dependent only on the newsvendor cost parameters, as opposed to ones dependent on

uniform complexity measures such as covering numbers, VC dimensions and Rademacher averages,

which are often difficult to compute and interpret in practice. Detailed discussions of the literature

can be found below in Section 1.1.

We address (Q4) in Sec. 5, where we evaluate our algorithms against other known benchmarks

through an extensive empirical investigation. Specifically, we apply our algorithms and other meth-

ods to a nurse staffing problem in a hospital emergency room. The best result using the ERM

approach was with `1 regularization, with a cost improvement of 23% [a saving of £44,219 per annum

(p.a.)] relative to the best practice benchmark (Sample Average Approximation (SAA) clustered by

day of the week), and the best result using the KO approach had a cost improvement of 24% (a

saving of £46,555 p.a.) relative to the same benchmark. Both results were statistically significant
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at the 5% level. The best KO method, solved using the sorting procedure described in Sec. 2, was

also very computationally efficient, taking just 0.05 seconds to compute the optimal staffing level

for the next period, which is three orders of magnitude faster than the best ERM method and two

orders of magnitude faster than the best practice benchmark and other benchmarks.

Finally, in Sec. 6, we conclude with a discussion of the practical take-aways, generalizable insights

as well as limitations of our investigation, and thoughts on future directions for research.

1.1. Literature Review

Our work contributes to the following areas of investigation in operations management and machine

learning.

(i) Data-driven inventory models. Models in newsvendor/inventory management have long been

constructed with the available (or, rather, the lack of) data in mind, with the stochastic nature

of the demand modelled with various assumptions. The earliest papers (Arrow et al. 1958, Scarf

1959b) make the assumption that the demand distribution is fully known, and this has been relaxed

in recent years. Overall, there have been three main approaches to modeling demand uncertainty

in the literature. In the Bayesian approach, the demand distribution is assumed to be known up

to unknown parameter(s), which are dynamically learned starting with prior assumptions (Scarf

1959a, Azoury 1985, Lovejoy 1990). In the minimax approach, the decision-maker (hereafter, DM)

opts for the best robust decision among all demand distributions within a specified uncertainty

set (Scarf et al. 1958, Gallego and Moon 1993, Chen et al. 2007, Perakis and Roels 2008). Finally,

in the data-driven approach, the DM has access to samples of demand observations drawn from

an unknown distribution. In this setting, Burnetas and Smith (2000), Huh and Rusmevichientong

(2009) and Kunnumkal and Topaloglu (2008) propose stochastic gradient algorithms, Godfrey and

Powell (2001) and Powell et al. (2004) consider the adaptive value estimation method, Levi et al.

(2007) provide a sampling-based method based on solving a shadow problem to solve for the optimal

ordering quantities, and Levi et al. (2015) improve upon the bounds of Levi et al. (2007) for the

single-period, featureless newsvendor case.

Within this line of work, the distinguishing aspect of our paper is in the incorporation and analysis

of a potentially large number of features directly in an inventory model. As far as we are aware, the

works of Liyanage and Shanthikumar (2005), See and Sim (2010) and Hannah et al. (2010) are the

only other preceding methodological papers in operations management to incorporate some form

of feature information in the decision model. We compare them with our approaches in detail in

Sec. 2.4. Most importantly, we derive performance bounds that quantify the effect of the feature

dimension on the out-of-sample cost, which has no precedence in this line of literature.
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Our setup and subsequent analysis also differ from the parametric modeling approaches of Feld-

man (1978), Lovejoy (1992), Song and Zipkin (1993), Gallego and Özer (2001), Lu et al. (2006),

Iida and Zipkin (2006), where the demand is modeled as Markov-modulated processes (MMDP)

with known state-dependent distributions, where the states capture various exogenous information

such as economic indicators or advanced demand information. The key difference is that we make

minimal assumptions about the underlying demand distribution (iid for the most part and later, for

more specific finite-sample bias analysis, the linear demand model with unknown error distribution),

whereas in all of the aforementioned works, the demand is modelled parametrically with known,

state-dependent distributions (e.g. Normal or Poisson, where the mean is a function of the state),

with the state evolving as a Markov process.

(ii) Performance bound analysis of data-driven inventory decisions. While there is no precedent

for feature-dependent performance bounds in the inventory theory literature, Levi et al. (2007)

and Levi et al. (2015) provide such bounds without features. Levi et al. (2007) studies the single-

period and dynamic inventory problems with zero setup cost from a nonparametric perspective and

provides sample average approximation (SAA)-type algorithms to solve them. They then provide

probabilistic bounds on the minimal number of iid demand observations that are needed for the

algorithms to be near-optimal. Levi et al. (2015) improves upon the bound for the single-period

case. Our performance bounds are generalizations of the bounds of Levi et al. (2007) and Levi et al.

(2015) to incorporate features in the DM’s data set. We demonstrate how our bounds can retrieve

the bounds of Levi et al. (2007) when p= 1 in Appendix D; a similar result can be shown for Levi

et al. (2015) as well.

(iii) High-dimensional Quantile Regression. Due to the equivalence of the newsvendor cost func-

tion with the loss function in quantile regression, our work can be classified as a study in high-

dimensional quantile regression as well; albeit with the twist that we analyze (analytically and

empirically) the cost of the estimated quantile as opposed to the estimated quantile itself. We

make two contributions to this literature. First, the KO method is, to the best of our knowledge, a

new nonparametric quantile regression method. Second, our out-of-sample performance analyses of

both the ERM methods and the KO method, which uses algorithmic stability theory from machine

learning (Bousquet and Elisseeff 2002), are new. Lastly, we extend the results of Chaudhuri et al.

(1991) to the high-dimensional setting to derive bounds on the biases of the newsvendor algorithms

under consideration. For references on quantile regression, we refer the readers to Koenker (2005)

for a textbook reference, Takeuchi et al. (2006), Chernozhukov and Hansen (2008), Chernozhukov

et al. (2010), Belloni and Chernozhukov (2011) and references therein for more recent works on

high-dimensionality.
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2. Solving the Newsvendor Problem with Feature Data

2.1. The Newsvendor Problem

A company sells perishable goods and needs to make an order before observing the uncertain

demand. For repetitive sales, a sensible goal is to order a quantity that minimizes the total expected

cost according to:

min
q≥0

EC(q) :=E[C(q;D)], (1)

where q is the order quantity, D ∈D is the uncertain (random) future demand,

C(q;D) := b(D− q)+ +h(q−D)+ (2)

is the random cost of order q and demand D, and b and h are respectively the unit backordering

and holding costs. If the demand distribution, F , is known, one can show the optimal decision is

given by the b/(b+h) quantile, that is:

q∗ = inf

{
y : F (y)≥ b

b+h

}
. (3)

2.2. The Data-Driven Newsvendor Problem

In practice, the decision maker does not know the true distribution. If one has access to historical

demand observations d(n) = [d1, . . . , dn], but no other information, then a sensible approach is to

substitute the true expectation with a sample average expectation and solve the resulting problem:

min
q≥0

R̂(q;d(n)) =
1

n

n∑
i=1

[b(di− q)+ +h(q− di)+], (SAA)

where we use the ˆ notation to emphasize quantities estimated from data. This approach is called

the Sample Average Approximation (SAA) approach in stochastic optimization (for further details

on the SAA approach in stochastic optimization, see Shapiro et al. 2009). One can show the optimal

SAA decision is given by

q̂n = inf

{
y : F̂n(y)≥ b

b+h

}
, (4)

where F̂n(·) is the empirical cdf of the demand from the n observations. Note that if F is continuous,

and we let r= b/(b+h), then q̂n = ddnre, the dnre-th largest demand observation.
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2.3. The Feature-Based Newsvendor Problem

In practice, the demand depends on many observable features (equivalently, indepen-

dent/explanatory variables, attributes or characteristics), such as seasonality (day, month, season),

weather, location and economic indicators, which are available prior to making the order. In other

words, the real newsvendor problem is optimize the conditional expected cost function:

min
q(·)∈Q,{q:X→R}

E[C(q(x);D(x))|x], (5)

where the decision is now a function that maps the feature space X ⊂ Rp to the reals and the

expected cost that we minimize is now conditional on the feature vector x∈X ⊂Rp.
The decision-maker intent on finding an optimal order quantity in this new setting has three issues

to address. The first issue is in knowing what features the demand depends on, which prescribes

what data to collect. As this is application-specific, we assume that the decision maker has already

collected appropriate historical data Sn = [(x1, d1), . . . , (xn, dn)]. The data may be low-dimensional,

where the number of features p is small compared to the number of observations n, or high dimen-

sional, where the number of features is large compared to n (the analysis of identifying the low- and

high-dimensional regimes later in Sec. 4). The second issue is how to solve the problem (5) in an

efficient manner given the feature-demand data set. In this section, we propose two approaches to

solving (5) — the ERM and KO approaches. Both approaches are direct, in that the decision-maker

solves for the (in-sample) optimal order quantity in a single step. As such, our proposed algorithms

are customized for the feature-based newsvendor problem, and are distinct from SAA (which are

independent of features) and the separated estimation and optimization (SEO) approach, against

which we compare in Sec. 5, along with other known benchmarks. The final concern is what perfor-

mance guarantee is possible prior to observing the demand in the next period. We address this in

Sec. 4.

Before we begin, we clarify that the setting of interest is one in which the DM observes the

features xn+1 before making the ordering decision at time n+ 1.

2.3.1. Empirical Risk Minimization Algorithms. The ERM approach to solving the

newsvendor problem with feature data is:

min
q(·)∈Q,{q:X→R}

R̂(q(·);Sn) =
1

n

n∑
i=1

[b(di− q(xi))+ +h(q(xi)− di)+], (NV-ERM)

where R̂ is called the empirical risk of function q with respect to the data set Sn.

To solve (NV-ERM), one needs to specify the function class Q. The size or the complexity of Q
controls overfitting or underfitting: for instance, if Q is too large, it will contain functions that fit

the noise in the data, leading to overfitting. Let us consider linear decision rules of the form

Q=

{
q :X →R : q(x) = q′x=

p∑
j=1

qjxj

}
,
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where x1 = 1, to allow for a feature-independent term (an intercept term). This is not restrictive,

as one can easily accommodate nonlinear dependencies by considering nonlinear transformations of

basic features. We might, for instance, consider polynomial transformations of the basic features,

e.g., [x1, . . . , xp, x
2
1, . . . , x

2
p, x1x2, . . . , xp−1xp]. Such transformations can be motivated from generative

models of the demand (but do not need to be); for instance, assume: D = f(x) + ε, where x is a

p-dimensional vector of features. If we also assume that f(·) is analytic, we can express the demand

function by its Taylor expansion:

D≈ f(0) + ∂f(0)′x+x′[D2f(0)]x+ ...+ ε

= f(0) +

p∑
i=1

∂fi(0)xi +

p∑
i=1

p∑
j=1

[D2f(0)]ijxixj + ...+ ε, (6)

which means that the demand function of a basic feature vector x can be approximated by a linear

demand model with a much larger feature space. For example, the second-order Taylor approxi-

mation of the demand model can be considered to be a linear demand model with the (p + p2)

features mentioned earlier: [x1, . . . , xp, x
2
1, . . . , x

2
p, x1x2, . . . , xp−1xp]. Regardless of the motivation for

the transformations of basic features, we can choose them to be arbitrarily complex; hence our choice

of decision functions that depend linearly on the feature vector is not particularly restrictive. The

choice of Q can be made more or less complex depending on which transformations are included.

For a discussion on how piecewise linear decisions can be considered by transforming the features,

see Sec. 2.4.2. This comes at the cost of increasing the number of features, perhaps dramatically so,

thereby increasing the likelihood of overfitting if there are not enough data. We thus propose ERM

with regularization for large p (discussed further in Sec. 4). Although we consider linear decision

functions for the rest of the paper, we show how one can consider nonlinear functional spaces for

Q in Appendix A via mapping the original features onto a higher dimensional reproducing kernel

Hilbert space.

When p is relatively small, the DM can solve (NV-ERM) via the following linear program:

ERM Algorithm 1

min
q:q(x)=

∑p
j=1 q

jxj
R̂(q(·);Sn) =

1

n

n∑
i=1

[b(di− q(xi))+ +h(q(xi)− di)+]

≡ min
q=[q1,...,qp]

1

n

n∑
i=1

(bui +hoi)

s.t. ∀ i= 1, . . . , n :

ui ≥ di− q1−
p∑
j=2

qjxji

oi ≥ q1 +

p∑
j=2

qjxji − di

ui, oi ≥ 0, (NV-ERM1)
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where the indicator variables ui and oi represent, respectively, underage and overage costs in period

i. This is an LP with a p+ 2n-dimensional decision vector and 4n constraints. We will see in Sec. 4

that while (NV-ERM1) yields decisions that are algorithmically stable, the performance guarantee

relative to the true optimal decision is loose when p is large (relative to n). Thus, in the case of

high dimensional data, one can solve the LP (NV-ERM1) by selecting a subset of the most relevant

features according to some feature-selection criterion, for example via cross validation or via model

selection criteria such as the Akaike Information Criterion (Akaike 1974) or Bayesian Information

Criteria (Schwarz 1978). Alternatively, one can automate feature selection by solving the following

regularized version of (NV-ERM1):

ERM Algorithm 2 (with regularization)

min
q:q(x)=

∑p
j=1 q

jxj
R̂(q(·);Sn) +λ‖q‖22 =

1

n

n∑
i=1

[b(di− q(xi))+ +h(q(xi)− di)+] +λ‖q‖2k

≡ min
q=[q1,...,qp]

1

n

n∑
i=1

(bui +hoi)

s.t. ∀ i= 1, . . . , n :

ui ≥ di− q1−
p∑
j=2

qjxji

oi ≥ q1 +

p∑
j=2

qjxji − di

ui, oi ≥ 0, (NV-ERM2)

where λ > 0 is the regularization parameter and ‖q‖k denotes the `k-norm of the vector q =

[q1, . . . , qp]. If we regularize by the `2 norm, the problem becomes a quadratic program (QP) and can

be solved efficiently using widely available conic programming solvers. If we believe that the number

of features involved in predicting the demand is very small, we can choose to regularize by the `0

semi-norm or the `1 norm to encourage sparsity in the coefficient vector. The resulting problem

then becomes, respectively, a mixed-integer program (MIP) or an LP. Note regularization by the

`k-norm is widely used across engineering, statistics and computer science to handle overfitting.

Let us consider variations. We may want a set of coefficients to be either all present or all absent,

for instance if they fall into the same category (e.g., all are weather-related features). We can

accommodate this with a regularization term
∑G

g=1 ‖qIg‖2, with Ig being the indicator of group g.

This regularization term is an intermediate between `1 and `2 regularization, where sparsity at the

group level is encouraged by the sum (`1 norm) over groups. We will see in Sec. 4 that regularization

leads to stable decisions with good finite-sample performance guarantees.
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2.3.2. Kernel Optimization (KO) Method. Here we introduce an alternative approach

that can take features into account. We call this approach the Kernel-weights Optimization (KO)

method because it is based on Nadaraya-Watson kernel regression (Nadaraya 1964, Watson 1964).

One of the goals of nonparametric regression is to estimate the expectation of a dependent variable

(e.g. demand) conditional on independent variables taking on a particular value. That is, given past

data (x1, y1), . . . , (xn, yn) one wants to estimate

m(xn+1) =E[Y |xn+1],

where Y ∈R is the dependent variable and xn+1 ∈Rp is a vector of new independent variables. In

1964, Nadaraya and Watson proposed to estimate this quantity by the locally weighted average

mh(xn+1) =

∑n

i=1Kw(xn+1−xi)yi∑n

i=1Kw(xn+1−xi)
,

where Kw(·) is a kernel function with bandwidth w. Typical examples of the kernel function include

the uniform kernel

K(u) =
1

2
I(‖u‖2 ≤ 1)

and the Gaussian kernel

K(u) =
1√
2π

exp−‖u‖
2
2/2,

with Kw(·) :=K(·/w)/w. Now for an order quantity q, the feature-dependent newsvendor expected

cost after observing features xn+1 is given by

E[C(q;D)|xn+1], (7)

which depends (implicitly) on the demand distribution at xn+1. Thus if we consider the newsvendor

cost to be the dependent variable, we can estimate (7) by the Nadaraya-Watson estimator∑n

i=1Kw(xn+1−xi)C(q, di)∑n

i=1Kw(xn+1−xi)
.

This gives rise to a new approach to feature-data-driven newsvendor, which we call the Kernel

Optimization (KO) Method.

min
q≥0

R̃(q;Sn,xn+1) = min
q≥0

∑n

i=1Kw(xn+1−xi)C(q, di)∑n

i=1Kw(xn+1−xi)
. (NV-KO)

Note that there are no edge effects in the objective estimate if the kernel is smooth, which is the case

for the Gaussian kernel. Notice that the optimization is over the non-negative reals, and the optimal

decision implicitly depends on xn+1. (NV-KO) is a one-dimensional piecewise linear optimization

problem, and we can find its solution according to the following proposition.
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Proposition 1. The optimal feature-based newsvendor decision q̂κn obtained by solving (NV-KO)

is given by

q̂κn = q̂κn(xn+1) = inf

{
q :

∑n

i=1 κiI(di ≤ q)∑n

i=1 κi
≥ b

b+h

}
, (8)

where for simplicity we introduce κi =Kw(xn+1−xi). In other words, we can find q̂κn by ranking the

past demand in increasing order, and choosing the smallest value at which the inequality in (8) is

satisfied.

Notice that the left hand side (lhs) of the inequality in (8) is similar to the empirical cdf of

the demand, except that each past demand observation di is re-weighted by the distance of its

corresponding feature xi to the current feature xn+1.

2.4. Comparison with other inventory papers that incorporate features

In the above, we had identified three systematic approaches to incorporating features for the

newsvendor problem. However, incorporating exogenous information in inventory decision-making

is not entirely new. In what follows, we compare and contrast the algorithms introduced thus far to

past works that incorporate exogenous information in inventory decision-making.

2.4.1. Comparison with Liyanage and Shanthikumar (2005). Our first comparison is

with operational statistics (OS), which was first introduced by Liyanage and Shanthikumar (2005).

The idea behind OS is to integrate parameter estimation and optimization rather than separate

them. Let us illustrate how OS works by an example similar to the one used in Liyanage and

Shanthikumar (2005).

Suppose the true demand has an exponential distribution, i.e. D∼ exp(1/θ), and that the decision

maker has access to d1, . . . , dn observations of past data. Then with straightforward calculations,

one can show first estimating then optimizing (“Separated Estimation and Optimization”, hereafter

SEO) leads to the decision

q̂SEO = log

(
b+h

b

)
d̄n,

where d̄n is the sample average of the demand. Now consider instead the decision

q̂1
OS(α) = αd̄n (9)

parameterized by a constant α> 0. The OS approach then picks α by the following optimization:

min
α≥0

Eθ[C(q̂1
OS(α);D)]. (10)
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As α= log((b+ h)/b) is a feasible solution of (10), this guarantees the OS decision to yield a true

expected cost that is bounded above by the true expected cost of the SEO decision. In other words,

by construction we have

Eθ[C(q̂1
OS(α∗);D)]≤Eθ[C(q̂SEO;D)], (11)

where α∗ is the optimal parameter in (10). With some computations, one can show

α∗ =

[(
b+h

h

)1/n+1

− 1

]
n.

Liyanage and Shanthikumar (2005) also shows that one can also improve upon the SAA optimal

decision in terms of the true expected cost by considering the decision

q̂2
OS(α,β) = ddβ−1e+α(ddβe− ddβ−1e), (12)

where β ∈ {1, . . . , n} and α≥ 0 are parameters to be chosen via

min
α≥0,β∈{1,...,n}

Eθ[C(q̂2
OS(α,β);D)]. (13)

As the above example illustrates, OS takes insight from the form of the decision derived by other

methods (e.g. SEO and SAA) and constructively improves upon them in terms of the true expected

cost simply by considering a decision that is a function of past demand data rather than a scalar

quantity. In the parlance of our feature-based approach, the OS method is essentially considering

meaningful statistics of past demand data as features. However, there is an important difference

between the OS approach and ours, and this is in the way the unknown coefficients (parameters)

of the decision function are chosen. Under our decision-making paradigm, one would simply input

the sample average of past demand and differences of order statistics of past demand as features

and choose the coefficients that minimize the in-sample average cost. In contrast, OS is based on

the premise that one knows the distributional family the demand belongs to, and thus is able to

compute the coefficients that minimize the true expected cost. That one knows the true distributional

family is not a weak assumption, however the insights from OS analysis are valuable. In Sec. 5, we

will consider solving (NV-ERM1) and (NV-ERM2) both without and with OS-inspired features, to

evaluate their practical benefit in terms of the out-of-sample cost.

2.4.2. Comparison with See and Sim (2010). See and Sim (2010) investigates the multi-

period inventory management problem in the presence of features such as “market outlook, oil prices,

trend, seasonality, cyclic variation” that a product demand can depend on. Specifically, they model

the demand at time t as

dt(z̃) = d0
t +

Nt∑
k=1

dkt z̃k,



Ban & Rudin: Big Data Newsvendor
Article submitted to Operations Research; manuscript no. 13

where z̃ = [z̃1, . . . , z̃Nt ] represents random features, and dkt , k = 0, . . . ,Nt are the coefficients. They

then make a number of assumptions on the random features (zero mean, positive definite covari-

ance matrix, bounded support set which is second-order conic representable, etc.), all of which are

assumed to be known to the DM, and solve an approximation of the robust problem by considering

linear decision rules (linear as a function of the features) as well as piecewise linear decision rules.

See and Sim (2010) demonstrates that piecewise linear decision rules have the best performance.

While See and Sim (2010) certainly consider the presence of features in their problem setup, their

work is distinctly different from ours on a number of fronts. First of all, See and Sim (2010) is about

robust decision-making, as opposed to data-driven decision-making; and as such their theoretical

results, while interesting, do not pertain to the data-driven questions we explore in this paper.

Secondly, See and Sim (2010) assumes that the DM has access to a number of key statistics regarding

the random features are known to the DM, and performance bounds for their approximate decisions

are derived as a function of these statistics. In contrast, we do not make any assumptions about

the data-generating process other than iid, and as such our performance analysis are independent

of statistics that are presumed known. Thirdly, See and Sim (2010) do not study the effect of

high-dimensionality (the “Big” in Big Data), which is the central theme of this paper.

Lastly, See and Sim (2010) makes an interesting observation that considering decisions that are

piecewise linear functions of the underlying features perform better than linear decision rules. How-

ever, in this paper we consider only linear decision rules because non-linear decisions can be trans-

formed into linear decision rules with the addition of new features. We had explained how to enlarge

the feature space when the true decision is an analytic function of the features in Section 2.3.1. Let us

now illustrate how to enlarge the feature space to allow for piecewise linear decisions. For simplicity,

consider a single feature x. We can then construct new features x̃1 = I(x≤ c1), x̃2 = βI(c1 <x≤ c2)

and x̃3 = I(x> c3) based on the “basic” feature x, and some pre-specified constants c1 and c2. Then

the corresponding linear decision rule

q= q0 + q1x̃1 + q2x̃2 + q3x̃3

has the same piecewise linear structure as the decisions considered in See and Sim (2010). By

incorporating a large number of breakage points, any piecewise linear decision can be approximated

by linear decision rules arbitrarily well, although perhaps with the addition of a large number of

“new” features corresponding to each breakage point. Thus we solely focus on the feature-based

newsvendor problem with decisions that are linear functions of the feature vector, where the feature

dimension may be large.
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2.4.3. Comparison with Hannah et al. (2010). Hannah et al. (2010) consider the single-

period stochastic optimization problem

min
x∈X

EZ [F (x,Z)|S = s]

where x∈X is the decision variable, Z is a state-dependent random variable, and S = s is the current

state of the world. They propose solving the above problem by the weighted empirical stochastic

optimization problem

min
x∈X

n∑
i=1

wn(s,Si)F (x,Z(Si)),

where wn(s,Si) are the weights given to the past data (Si,Z(Si))
n
i=1 determined by the Nadaraya-

Watson-based kernel estimator as in the (KO) method or by a complex Dirichlet process mixture

model.

This is similar to our feature-based newsvendor setup, however there are a few key differences.

Firstly, the model studied by Hannah et al. (2010) requires discrete state variables, whereas we

consider both discrete and continuous feature variables. Secondly, Hannah et al. (2010) do not

study the effect of high-dimensionality (the “Big” in Big Data), which is the central theme of this

paper (their numerical example, which also considers the newsvendor problem, has only two states).

Finally, Hannah et al. (2010) report numerical studies of computing the in-sample decisions, whereas

we provide both theoretical performance guarantees and extensive empirical computation of out-of-

sample performance of the in-sample decisions.

3. Value of Feature Information

In this section, we quantify the value of incorporating features in newsvendor decision-making, by

comparing the (NV-ERM1) decision against the SAA decision, which is made with only past demand

data. We consider two demand models: a two-population demand model, and the linear demand

model. In both cases, the SAA decision yields inconsistent decisions (i.e. the in-sample decision does

not converge to the true optimal, even when given an infinite amount of iid demand data), whereas

the feature-based decision is consistent. We further quantify the implication on the expected cost,

which is necessarily larger for decisions that are further away from the true optimal. All proofs can

be found in Appendix B.

3.1. Motivating Example I: Two Population Model

Consider the following demand model:

D=D0(1−x) +D1x, (14)
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where D0 and D1 are non-negative continuous random variables such that the corresponding critical

newsvendor fractiles q∗0 and q∗1 follow q∗0 < q
∗
1 , and x∈ {0,1} is a binary feature (e.g. 0 for weekday

and 1 for weekend, or 0 for male and 1 for female). Let p0 be the proportion of time x= 0. We have n

historical observations: [(x1, d1), . . . , (xn, dn)], of which n0 = np0 are when x= 0 and n1 = n−n0 are

when x= 1 (assume rounding effects are negligible). Note the observations dk can be decomposed

into: {dk|xk = 0}= d0
k and {dk|xk = 1}= d1

k. Also let r= b/(b+h) to simplify notations. Let F0 and

F1 denote the cumulative distribution functions (cdfs), F−1
0 and F−1

1 denote the inverse cdfs, and

f0 and f1 the probability density functions (pdfs) of D0 and D1 respectively.

We also assume the following.

Condition (A). Assume F0 and F1 are twice differentiable (i.e. f0 and f1 are differentiable) and

that there exists a 0<γ < 2 such that

sup
0<y<1

y(1− y)
|Ji(y)|

f(F−1
i (y))

≤ γ,

where Ji(·) is the score function of distribution Fi defined by

Ji(y) =
−f ′i(F−1

i (y))

fi(F
−1
i (y))

=− d

dy
fi(F

−1
i (y)).

Condition A is satisfied by many standard distributions such as uniform, exponential, logistic,

normal, and log normal, for γ between 0 and ∼1.24. The critical ratios for the uniform, exponential

and logistic distributions can be computed straight-forwardly; for the normal distribution it is easier

to compute the critical ratio by using the following equivalent formulation for the critical ratio:

sup
x∈dom(D)

F (x)(1−F (x))
|f ′(x)|
f(x)2

.

In Table 1, we display some standard distributions that satisfy the requirement of Condition A. For

more details see Parzen (1979).

Distribution f(F−1(y)) J(y) Is sup
0<y<1

y(1− y)
|J(y)|

f(F−1(y))
< 2 ?

Uniform 1 0 Yes, LHS = 0
Exponential 1− y 1 Yes, LHS = 1
Logistic y(1− y) 2y− 1 Yes, LHS = 1
Normal 1√

2π
exp{− 1

2
|Φ−1(y)|2} Φ−1(y) Yes, LHS = 1

Lognormal φ(Φ−1(y)) exp{−Φ−1(y)} exp{−Φ−1(y)}(Φ−1(y) + 1) Yes, LHS . 1.24
Table 1 Some standard distributions that satisfy the requirement of Condition A. The standard normal cdf and

pdf are denoted as Φ(·) and φ(·) respectively.

Below we derive the optimal in-sample solution given by (NV-ERM1).
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Lemma 1 (Optimal ordering decision of (NV-ERM1)). Let F̂i denote the empirical cdf of

D|x= i with ni iid observations for i= 0,1. Then the optimal decision that solves (NV-ERM1) is

given by

q̂0
n = inf

{
q : F̂0(q)≥ b

b+h

}
= d0

(dn0re), if xn+1 = 0

q̂1
n = inf

{
q : F̂1(q)≥ b

b+h

}
= d1

(dn1re), if xn+1 = 1.

Put simply, q̂0
n solves the SAA problem for the subsample of data corresponding to x= 0 and q̂0

n+ q̂1
n

solves the SAA problem for the subsample of data corresponding to x= 1.

Theorem 1 (Finite-sample bias and asymptotic optimality of (NV-ERM1)). We can

show ∣∣E[q̂in]−F−1
0 (r)

∣∣≤O( logni
ni

)
, i= 0,1

i.e. the finite-sample decision of the feature-based decision is biased by at most O(logni/ni), i= 1,2,

and

lim
n→∞

q̂in
a.s.
= F−1

0 (r) =: q∗i , i= 0,1

i.e. the feature-based decision is asymptotically optimal, correctly identifying the case when x= 0 or

1 as the number of observations goes to infinity.

Lemma 2 (Optimal SAA ordering decision). Let Fmix denote the cdf of the mixture distribu-

tion Dmix = p0D0 + (1− p0)D1 and F̂mix
n its empirical counterpart with n observations. Then the

optimal SAA decision is given by

q̂SAAn = inf

{
q : F̂mix

n (q)≥ b

b+h

}
= d(dnre).

Theorem 2 (Finite-sample bias and asymptotic (sub)-optimality of SAA). The finite-

sample bias of the SAA decision is given by∣∣E[q̂SAAn ]− (Fmix)−1(r)
∣∣≤O( logn

n

)
, (15)

where (Fmix)−1 is the inverse cdf of Dmix. Hence we also have∣∣E[q̂SAAn − q̂0
n]
∣∣= ∣∣(Fmix)−1(r)−F−1

0 (r)
∣∣+O

(
logn

n

)
=O(1)∣∣E[q̂1

n− q̂SAAn ]
∣∣= ∣∣F−1

1 (r)− (Fmix)−1(r)
∣∣+O

(
logn

n

)
=O(1). (16)

That is, on average, if x= 0 in the next decision period, the SAA decision orders too much and if

x= 1 the SAA decision orders too little. In addition,

q∗0 < lim
n→∞

q̂SAAn

a.s.
= (Fmix)−1(r)< q∗1 , (17)

hence the SAA decision is not asymptotically optimal (is inconsistent).
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As a final point, we remark that these observations are analogous in spirit to the bias and in-

consistency of regression coefficients when there are, in econometric parlance, correlated omitted

variables in the model.

3.2. Motivating Example II: Linear Demand Model

Suppose the demand is given by the following linear model:

D|(X= x) = β>x+ ε, (18)

where ε∼ Fε is independent of the (random) feature vector X, is continuous with probability den-

sity function fε(·) which is bounded away from zero on the ordering domain [D,D̄] and has zero

mean, and X1 = 1 almost surely, to allow for a constant location term. In other words, the demand

D depends linearly on the random features X : X → Rp, with some error. This is a widely-used

and useful demand model that, apart from the fact that it can arbitrarily approximate nonlinear

models as outlined in (6), it also subsumes times series models and the Martingale Model of Fore-

cast Evolution (MMFE) of Heath and Jackson (1994) and Graves et al. (1986). For example, the

autoregressive model of degree p, AR(p) is modeled by

Dt = α0 +α1Dt−1 + . . .+αpDt−p + εt,

where εt is a noise term with zero mean; this is clearly a linear demand model with features

Dt−p, . . . ,Dt−1. Also, the additive MMFE model for the demand at time t is given recursively by

Dt =Dt−1 + εt−1,t,

where εt−1,t is a mean zero normal random variable that captures forecast update at time t− 1 for

demand at time t. Expanding the recursion, we get, at time 1:

Dt =D0 +
t−1∑
i=0

εi,i+1,

where D0 is known; and so the demand follows a linear model with εi,i+1, i= 0, . . . , t−1 as features.

A DM without the feature information only has access to past demand data: D= {d1, . . . , dn}; and

a DM who has both past feature and demand data has the information: Dx = {(x1, d1), . . . , (xn, dn)}.

Let xn+1 denote the feature at time n+ 1, which is available to the DM. Then, the optimal order

quantity is given by

q∗(xn+1,zn+1) =Qε

(
b

b+h

)
+β>xn+1 (19)
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where

Qε

(
b

b+h

)
= inf{y : Fε(y)≥ b

b+h
}

is the b/(b+ 1)-quantile of the distribution of ε.

The SAA solution is given by

q̂SAA(xn+1) = inf{y : F̂ 0
n(y)≥ b

b+h
}+ d̄n (20)

where d̄n is the sample average of the demand data, and F̂ 0
n is the empirical distribution of {di −

d̄n}ni=1. Note the SAA decision is not dependent on any of the features, as the DM does not have

access to any feature data. Thus the SAA decision is to order the same critical fractile quantity for

the entire population at time n+1, regardless of what the population or the particular point in time

may be. As a concrete example, this is like a national newspaper vendor who stocks the same number

of newspapers at all shops, disregarding location features pertaining to the shop (e.g. customer

demographics in the area) as well as relevant temporal features (e.g. holiday or not, weekday versus

weekend, major political or sporting events) or features that pertain to both (e.g. historical demand

for the shop).

The DM with features however orders the quantity

q̂DM2(xn+1) = inf{y : F̂ 2
n(y)≥ b

b+h
}+

p∑
k=2

q̂kxkn+1

and F̂ 2
n is the empirical distribution of {di −

∑p

k=2 q̂
kxki }, and q̂k, k = 2, . . . , p are the solution

coefficients to (NV-ERM1). Unlike the SAA decision, DM2’s decision does depend on all relevant

features. Continuing on with the national newspaper example, this corresponds to orders being

different across stores as well as in time, taking into account such information as past sales and

customer demographics at each store as well as temporal effects such as holidays/weekends and

major public events.

Theorem 3 (Using no features leads to inconsistent decisions). Under the linear demand

model of (18), given features X= x̃,

q̂SAAn (x̃)
a.s.→ Qε

(
b

b+h

)
+EX [Eε[D|X]]

=Qε

(
b

b+h

)
+β>E[X],

and

q̂DM2
n (x̃)

a.s.→ Qε

(
b

b+h

)
+β>x̃= q∗(x̃),

as n tends to infinity.
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Considering the same national newspaper example above, we see that the SAA decision converges

to the critical fractile of the dispersion ε plus the population-temporal average demand EX [Eε[D|X]],

whereas DM2’s decision converges to the correct one, q∗(x̃).

The results of Theorems 1–3 indicate that the no-feature SAA decisions are inconsistent, i.e.,

even with infinite amount of demand data the SAA decisions converge to quantities different from

the true optimal. The natural question “is a decision that is further away from the true optimal

necessarily worse in terms of the expected cost?” then follows. In other words, does the loss in the

expected cost increase when the effect of the feature information increases? The answer is in the

affirmative, which we detail below.

Theorem 4 (Expected Cost Difference). Let q∗ = q∗(x̃) denote the true optimal newsvendor

decision given feature x̃, and q̂ some other decision not equal to q∗. Then the difference of the

expected costs of the two decisions is given by

EC(q̂;D)−EC(q∗;D) = (b+h)E[|q̂−D|I{(q̂ ∧ q∗)≤D≤ (q̂ ∨ q∗)}]. (21)

Theorem 4 thus provides an exact formula for the expected cost difference of the sub-optimal decision

q̂ from the true optimal decision q∗. We observe that the expected cost difference scales as the

expectation of |q̂ −D| over the interval between the two decisions, q̂ and q∗. Thus what matters

is the size of this interval and how the demand is distributed over it— the more concentrated

the distribution over this interval, the larger the difference. While the exact quantity can only

be computed with the knowledge of the demand distribution and the true optimal decision, we

nevertheless arrive at the universal insight that the expected cost difference increases as q̂ deviates

further away from q∗.

In particular, Theorem 4 implies that for the two population model (14), the more distinct the

two population demands D0 and D1 in their critical fractiles, the worse the expected cost of the

no-feature SAA decision to the true optimal solution. Likewise, for the linear demand model (18),

the more idiosyncratic the feature information β>x̃ over the average β>X̄, the worse the expected

cost of the no-feature SAA decision in comparison to the true optimal decision.

While Theorem 4 together with Theorems 1–3 justify the collection of features, a shortcoming is

that the DM needs to know the demand distribution in order to quantify the gain in the expected

cost due to a sub-optimal in-sample decision, which of course she does not know. In the next section,

we characterize, with high probability bounds, the expected cost of the DM’s in-sample decision

using the information at hand.
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4. Bounds on the out-of-sample cost using in-sample information

In this section, we provide theoretical guarantees on the out-of-sample cost of the ordering decisions

chosen by (NV-ERM1), (NV-ERM2) and (NV-KO). While (EC.4) from Theorem 4 states the exact

expected cost difference between a proposed decision and the optimal decision, in practice one

cannot compute the expectations because the demand distribution is unknown. The goal of this

section is thus to provide performance bounds that are computable with the data at hand. We will

see that the performance bound splits into two components; one that pertains to the bias arising

from having a finite amount of data, commonly referred to as the finite-sample bias, and one that

pertains to the variance of the in-sample decision, known as the generalization error.

The term “generalization” refers to the generalizability of the in-sample decision to out-of-sample

data, and is a measure of the degree of over-fitting, as decisions with larger generalization errors are

associated with greater over-fitting. Decisions that overfit can be misleading; for instance, if there

is a large degree of freedom in the choice of the in-sample decision, then it may be possible to have

zero in-sample cost leading the DM to think perfect ordering is possible. An astute DM who is aware

of the perils of overfitting, however, would be cautious to make conclusions on the in-sample data

alone, and the generalization error provides a description of how over-fitting arises for her decision.

The performance bounds derived in this section describe the mechanisms at play. They inform

how the finite-sample bias and the generalization error scale with respect to the size of the data

set at hand (i.e., with respect to p and n), the problem parameters (b and h) and any decision

parameters (e.g. regularization parameter λ in (NV-ERM2)). As we will see, there is a tension

between finite-sample bias and generalization error, which can be controlled by parameters such as

the regularization parameter λ in (NV-ERM2) or the bandwidth parameter w in (NV-KO).

We start with some definitions. The true risk is the expected out-of-sample cost, where the

expectation is taken over an unknown distribution over X ×D, where X ⊂Rp. Specifically,

Rtrue(q) :=ED(x)[C(q;D(x))].

We are interested in minimizing this cost, but we cannot measure it as the distribution is unknown.

The empirical risk is the average cost over the training sample:

R̂(q;Sn) :=
1

n

n∑
i=1

C(q, di(xi)).

The empirical risk can be calculated, whereas the true risk cannot; the empirical risk alone, however,

is an incomplete picture of the true risk. We must have some additional property of the algorithm to

ensure that the method does not overfit. If the algorithm is stable, it is less likely to overfit, which

we quantify in the results in this section. Specifically, we provide probabilistic upper bounds on the
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true risk in terms of the empirical risk and the algorithmic stability of the method. Since we desire

the true risk to be low, a combination of low empirical risk and sufficient stability ensures this.

The training set is, as before, Sn = {z1 = (x1, d1), . . . , zn = (xn, dn)}, z ∈Z, and we also define the

modified training set

S\in := {z1, . . . , zi−1, zi+1, . . . , zn},

which leaves one observation out.

A learning algorithm is a function A from Zn into Q ⊂ DX , where DX denotes the set of all

functions that map from X to D. A learning algorithm A maps the training set Sn onto a function

ASn : X → D. A learning algorithm A is symmetric with respect to Sn if for all permutations π :

Sn→ Sn of the set Sn,

ASn =Aπ(Sn) =A{π(z1),...,π(zn)}.

In other words, a symmetric learning algorithm does not depend on the order of the elements in the

training set Sn. The loss of the decision rule q ∈Q with respect to a sample z = (x, d) is defined as

`(q, z) := c(q, d(x)),

for some cost function c, which in our work is the newsvendor cost C.

We derive performance bounds on (NV-ERM1)–(NV-KO) under the following assumptions.

Assumptions for Theorems 5–7.

1. The feature vector X is normalized (X1 = 1 almost surely, X[2:p] has mean zero and standard

deviation one) and that it lives in a closed unit ball: ||X||2 ≤Xmax
√
p.

2. The demand follows the linear model (18) where the distribution of ε, fε, is bounded away

from zero on the domain [D,D̄] (otherwise unspecified).

3. All decision functions (policies) described are measurable, and Q is a convex subset of a linear

space.

Assumption 1 is for the feature vector X; we note the normalization assumption is to simplify the

exposition and the results do not require that the DM knows the true mean or standard deviations

of X, only the size bound Xmax, the existence of which is realistic and not prohibitive. Assumption

2 details assumptions on the demand model, which is assumed to be linear for tractability, but

we do not assume any distributional knowledge beyond its total range. Finally, Assumption 3 is a

necessary requirement for sensible optimization over a function class when the demand is linear.

First, we state the performance bound on (NV-ERM1).

Theorem 5 (Out-of-sample performance of (NV-ERM1)). Denote the true optimal solution

by q∗ = q∗(xn+1), and the decision due to (NV-ERM1) by q̂= q̂(xn+1). Then with probability at least



Ban & Rudin: Big Data Newsvendor
22 Article submitted to Operations Research; manuscript no.

1− δ over the random draw of the sample Sn, where each element of Sn is drawn i.i.d. from an

unknown distribution on X ×D, and for all n≥ 3,

|Rtrue(q∗)− R̂in(q̂;Sn)| ≤ (b∨h)D̄

[
2(b∨h)

b∧h
p

n
+

(
4(b∨h)

b∧h
p+ 1

)√
log(2/δ)

2n

]
+ (b∨h)K

√
logn

n1/(2+p/2)
,

where K =
√

9(8+5p)

(4+p)
1

(1−2−4/(4+p))λ∗2
, and λ∗2 = min

t∈[D,D̄]
fε(t).

Theorem 5 is a statement about how close the in-sample cost of the in-sample decision, R̂in(q̂;Sn)

is to the expected cost of the true optimal decision, Rtrue(q∗), in terms of quantities the DM knows.

The first term on the right hand side upper bound is the bound on the generalization error,

which is the difference between the training error and test error for the in-sample decision. For

fixed cost parameters b and h, we find that the generalization error scales as O(p/
√
n). Thus if

the number of relevant features in the population model is small and not growing relative to the

number of observations, then in-sample decisions generalize well to out-of-sample data; in other

words overfitting should not be an issue. However, if p/
√
n is large, or growing (which happens when

new observations are associated with new features), then overfitting will be an issue, and Theorem 5

suggests that (NV-ERM1) may not be a good algorithm in such a scenario. The dependence on the

upper bound on the demand, D̄ is necessary so that the bound is not scale invariant. In other words,

if the risks on the left hand side of the inequality changed units (e.g. from dollars per kilo of demand

to dollars per ton), it would not make sense for the right hand side of the inequality to stay the

same. Lastly, we note that the bound on the generalization error is tight in the sense that it comes

from showing that the probability of large deviation of |R̂true(q̂)− R̂in(q̂;Sn)| decays exponentially

fast in the number of observations n, which we establish through a property known as uniform

stability of a learning algorithm, and because the constants in the bound are the smallest possible.

For further details, we refer the reader to the proof in Appendix C and Bousquet and Elisseeff

(2002). These are the best finite-sample bounds we know of for this problem. This is due to the

fact that they are not uniform bounds, which require a complexity measure for the entire decision

space (e.g. covering numbers, VC dimension or Rademacher complexity), rather algorithm-specific

bounds that considers how the algorithm searches the decision space.

The second term on the right hand side upper bound is due to the finite-sample bias, E|q∗− q̂|.

The only way a DM can reduce the finite-sample bias is by collecting more observations. The rate

n−1/(2+p/2)
√

logn is optimal and cannot be improved upon without further assumptions on the

demand model and/or the data generating process. For details, we refer the reader to the proof of

Theorem 5 in Appendix C.

When p= 1, we are in the setup where the demand does not depend on any exogenous features

(recalling that X1 = 1 is the intercept term). This setting had been studied by Levi et al. (2007)
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and our results are consistent with them in that their sampling bound, up to a constant factor, can

be obtained from our bound. The details of this can be found in Appendix D.

We now state the performance bound on (NV-ERM2).

Theorem 6 (Out-of-sample performance of (NV-ERM2)). Denote the true optimal solution

by q∗ = q∗(xn+1), the decision due to (NV-ERM1) by q̂ = q̂(xn+1) and the decision due to (NV-

ERM2) by q̂λ = q̂λ(xn+1). Then with probability at least 1− δ over the random draw of the sample

Sn, where each element of Sn is drawn i.i.d. from an unknown distribution on X ×D, and for all

n≥ 3,

|Rtrue(q∗)− R̂in(q̂λ;Sn)| ≤ (b∨h)D̄

[
(b∨h)X2

maxp

nλD̄
+

(
2(b∨h)X2

maxp

λD̄
+ 1

)√
log(2/δ)

2n

]

+ (b∨h)ED|xn+1
[|q̂λ− q̂|] + (b∨h)K

√
logn

n1/(2+p/4)
,

where K =
√

9(8+5p)

(4+p)
1

(1−2−4/(4+p))λ∗2
, and λ∗2 = min

t∈[D,D̄]
fε(t).

The performance bound of Theorem 6 has three components. The first term is a bound on

the generalization error, which is of O(p/(
√
nλ)). Thus the amount of overfitting can be directly

controlled by the amount of regularization imposed on the problem; the larger the λ, the smaller

the generalization error. Choosing λ=O(1/p2) retrieves the same error rate as for (NV-ERM1), so

λ=O(1/p2) is a good starting point for choosing λ. The bound thus provides a sense of the “right”

scale for lambda, which is useful when you have to search for its best value in practice.

The second term, which does not appear in Theorem 5, is the bias of the in-sample decision due

to regularization, in other words the bias due to having perturbed the optimization problem away

from the true problem of interest. This term is larger for larger λ, and so there is an inherent trade-

off between the generalization error and the regularization bias. Ultimately, however, regularization

gives the DM an extra degree of control while being agnostic to which feature is important a

priori, and in practice would work with the optimal value of λ that balances the generalization

error-regularization bias tradeoff on a validation data set (see Sec. 5).

The third and the final term is the finite-sample bias. We note that while the regularization bias

can be controlled by λ, the finite-sample bias can only be controlled by collecting more data.

Finally, we have the following result for (NV-KO).

Theorem 7 (Out-of-sample performance of (NV-KO)). Denote the true optimal solution by

q∗ = q∗(xn+1), the decision due to (NV-ERM1) by q̂ = q̂(xn+1) and the decision to (NV-KO) with

the Gaussian kernel by q̂κ = q̂κ(xn+1). Then with probability at least 1− δ over the random draw of
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the sample Sn, where each element of Sn is drawn i.i.d. from an unknown distribution on X ×D,
and for all n≥ 3,

|Rtrue(q∗)− R̂in(q̂κ;Sn)| ≤ (b∨h)D̄

[
2(b∨h)

b∧h
1

1 + (n− 1)rw(p)
+

(
4(b∨h)

1/n+ (1− 1/n)rw(p)
+ 1

)√
log(2/δ)

2n

]

+ (b∨h)ED|xn+1
[|q̂κ− q̂|] + (b∨h)K

√
logn

n1/(2+p/2)
,

where rw(p) = exp(−2X2
maxp/w

2), w the kernel bandwidth, and K =
√

9(8+5p)

(4+p)
1

(1−2−4/(4+p))λ∗2
, and

λ∗2 = min
t∈[D,D̄]

fε(t).

As with Theorem 6, the performance bound on (KO) has three components: a bound on the

generalization error, the bias due to optimizing with a scalar decision when the true decision is a

function, and the finite-sample bias term, which is the same as in Theorems 5–6. The generalization

error is of O(1/rw(p)
√
n), so can be controlled by reducing rw(p) by increasing the kernel bandwidth

w. Setting w=O(
√
p) gives an error which is of O(1/

√
n), which is as good as having the demand

not depend on any features. When w is set to an arbitrarily large number, rw(p) = 1, so the error

rate O(1/
√
n) cannot be improved upon. It is not surprising that the generalization error can be

made small with large w since this corresponds to smoother comparisons of the feature vectors

from the past to the one in period n+ 1. However, as with (NV-ERM2), increased w increases the

second term, thus in practice w needs to be optimized over a reasonable range of values. Finally,

the finite-sample bias term plays the same role as the corresponding terms in Theorems 5–6.

5. Case Study: Nurse Staffing in a Hospital Emergency Room

In this section, we compare the three algorithms introduced in Sec. 2, (NV-ERM1), (NV-ERM2) and

(NV-KO) against the main data-driven benchmarks known in the literature and practice through

an extensive empirical investigation. Although some analytical comparisons are possible under as-

sumptions about the true demand model, the ultimate test of data-driven methods must be on

real data sets. Furthermore, we report other practical observations such as the computational time

required and trends in the optimal staffing solution.

In particular, we apply the three learning algorithms to find the optimal staffing levels of nurses for

a hospital emergency room. As most hospitals in the developed world either impose or recommend

a minimum nurse-to-patient ratio, we can approximate nurse staffing problem as a newsvendor

problem if we assume the hospital incurs a linear underage cost if too many patients arrive and

expensive agency nurses have to be called, and a linear overage cost if too many regular nurses are

scheduled compared to the number of patients. As nurse staffing contributes to a significant portion

of hospital operations (see e.g. Green et al. 2013) and as many hospitals are starting to harness

the value of data, the nurse staffing problem is a natural setting to test the data-driven models

introduced in this paper.
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Our data comes from the emergency room of a large teaching hospital in the United Kingdom

from July 2008 to June 2009. The data set includes the total number of patients in the emergency

room at 2-hour intervals. We provide box plots of the number of patients by day and by time periods

in Fig. 1. We assumed a nurse-to-patient ratio of 1 to 5, hence the demand is the total number of

patients divided by 5. We do not require the staffing level to be an integer in our predictions, as

multi-skilled workers could be used for part-time work. We also assumed that the hourly wage of

an agency nurse is 2.5 times that of a regular nurse, that is b= 2.5/3.5 and h= 1/3.5, resulting in a

target fractile of r = b/(b+ h) = 2.5/3.5. Although the exact agency nurse rate differs by location,

experience and agency, our assumption is a modest estimate (Donnelly and Mulhern 2012).

We considered two sets of features: the first set being the day of the week, time of the day and

m number of days of past demands; the second set being the first set plus the sample average of

past demands and the differences in the order statistics of past demands, which is inspired by the

analysis in Liyanage and Shanthikumar (2005) as described in Sec. 2.4.1. We refer to these features

as Operational Statistics (OS) features. We used n = 1344 past demand observations (16 weeks)

as training data and computed the critical staffing level 3 periods ahead. We then recorded the

out-of-sample newsvendor cost of the predicted staffing level on 1344/2 = 672 validation data on a

rolling horizon basis, following the-rule-of thumb in Friedman et al. (2009) for choosing the size of

the validation data set. Any parameter that needs calibration was calibrated on the validation data

set. We then applied the algorithms to a test set of 672 unseen observations.

Figure 1 A boxplot of the number of patients in the emergency room (a) by day and (b) by time period.
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All computations were carried out on MATLAB2013a with the solver MOSEK and CVX, a

package for specifying and solving convex programs (CVX Research 2012, Grant and Boyd 2008)

on a Dell Precision T7600 workstation with two Intel Xeon E5-2643 processors, each of which has

4 cores, and 32.0 GB of RAM.

5.1. Methods considered

We investigate the following methods in detail:

1. SAA by day of the week: take a sample average of the training data set, by day of the week

(since our training data set consists of 16 weeks of demand, there are 1344/16 = 84 observations

for each day of the week). We note that this is reflective of nurse staffing done in practice.

2. Cluster + SAA: we take the vector of features, then first classify them into k= 2, . . . ,12 clusters

before applying SAA. This is an intuitive, and alternative method to use the feature data. For

clustering, we use the k-means clustering algorithm.

3. Solve (NV-KO) with the Gaussian kernel, with the day of the week and time of the day features

and an increasing number of days of past demands (for up to 2 weeks) with and without

Operational Statistics features. These constitute a total of two algorithms.

4. Solve (NV-ERM1) with the day of the week and time of the day features and an increasing

number of days of past demands (for up to 2 weeks) with and without Operational Statistics

features, which were explained in Sec. 2.4.1. These constitute a total of two algorithms.

5. Solve (NV-ERM2) with the day of the week and time of the day features and 2 weeks of past

demands with and without OS features for a range of regularization parameters. We investigate

both `1 and `2 regularizations. These constitute a total of four algorithms.

6. Separated Estimation and Optimization (SEO): a common-sense approach to incorporating

features in the newsvendor decision-making is by first regressing the demand on the features

assuming a normally distributed error term (estimation) then applying the appropriate formula

for the optimal quantile using the assumption of normality for the demand (optimization). We

use day of the week and time of the day features and an increasing number of days of past

demands (for up to 2 weeks). We consider two cases, one without and one with OS features.

7. Separated Estimation and Optimization (SEO) approach with `1 or `2 regularization: we apply

OLS regression with `1 or `2 or with no regularization to first estimate a demand model, then

choosing the optimal quantile under the assumption of normally distributed demand. For the

demand estimation step, we use day of the week and time of the day features and 2 weeks of

past demands, and consider using and not using OS features.

8. We also consider Scarf’s Minimax approach (Scarf et al. 1958).

In Table 2, we summarize the abbreviations used to describe the 16 different methods considered

in this paper.
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Abbreviation Description OS Features? Reg.? Free parameter
1a. SAA-day SAA by day of the week No None None
1b. Cluster+SAA First cluster then SAA No no. of clusters None
2a. Ker-0 solve (NV-KO) with Gaussian kernel No None bandwidth
2b. Ker-OS " Yes None "
3a. NV-0 solve (NV-ERM1) No None no. of days of

past demand
3b. NV-OS " Yes None "
4a. NVreg1 solve (NV-ERM2) No Yes, `1 regularization

parameter
4b. NVreg1-OS " Yes Yes, `1 "
5a. NVreg2 " No Yes, `2 "
5b. NVreg2-OS " Yes Yes, `2 "
6a. SEO-0 OLS regression + NV optimization No None no. of days of

past demand
6b. SEO-OS " No None "
7a. SEOreg1 Lasso regression + NV optimization No Yes, `1 regularization

parameter
7b. SEOreg1-OS " Yes Yes, `1 "
8a. SEOreg2 Ridge regression + NV optimization No Yes, `2 "
8b. SEOreg2-OS " Yes Yes, `2 "
9. Scarf Minimax optimization No None no. of days of

past demand
Table 2 A summary of the methods considered.

5.2. Discussion of Results

In Table 3, we report the out-of-sample performance of the sixteen methods considered. We report

the calibrated parameter (if any), the mean and the 95% confidence interval for the out-of-sample

staffing cost in normalized units (parameters are calibrated by in-sample calculations, which can be

found in Appendix E Tables EC.1–EC.7). In the last column, we report the annual cost savings of

the method relative to SAA-day where there is a statistically significant net cost saving, assuming

a regular nurse salary of £25,000 (which is the Band 4 nurse salary for the National Health Service

in the United Kingdom in 2014) and standard working hours of 37.5 hours per week. Cost savings

in USD are also reported, assuming an exchange rate of £1: USD 1.6.

The best result was obtained by the KO method with OS features, with bandwidth w = 1.62,

which yields a cost improvement of 24% (a saving of £46,555 p.a.) relative to the best practice

benchmark (“SAA-day”) with statistical significance at the 5% level. The next best results were

obtained by the ERM method with `1 regularization and the KO method without OS features, which

have average annual cost improvements of 23% (£44,219 p.a.) and 21% (£39,915 p.a.) respectively.

The computational costs of the feature-based methods are very different, however. The KO

method is three orders of magnitude faster than the ERM-based methods. For instance, it takes just

0.0494 seconds to find the next optimal staffing level using the KO method with OS features, which

is the best in terms of the out-of-sample cost, whereas it takes 114 seconds for the the ERM method
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Method Calibrated
parameter

Avg. Comp.
Time (per it-
eration)

Mean (95 % CI) % savings
rel. to SAA-
day

Annual cost savings
rel. to SAA-day

1a. SAA-day — 14.0 s 1.523 (± 0.109) — —
1b. Cluster+SAA — 14.9 s 1.424 (± 0.102) — —
2a. Ker-0 w= 0.08 0.0444 s 1.208 (± 0.146) 20.7% £39,915 ($ 63,864)
2b. Ker-OS w= 1.62 0.0494 s 1.156 (± 0.140) 24.1% £46,555 ($ 74,488)
3a. NV-0 12 days 325 s 1.326 (± 0.100) 12.9% £24,909 ($ 39,854)
3b. NV-OS 4 days 360 s 1.463 (± 0.144) — —
4a. NVreg1 1× 10−7 84.5 s 1.336 (± 0.100) — —
4b. NVreg1-OS 1× 10−7 114 s 1.174 (± 0.113) 22.9% £44,219 ($ 70,750)
5a. NVreg2 5× 10−7 79.6 s 1.336 (± 0.110) — —
5b. NVreg2-OS 1× 10−7 107 s 1.215 (± 0.111) 20.2% £39,065 ($ 62,503)
6a. SEO-0 1 day 10.8 s 1.279 (± 0.099) 16.0% £30,952 ($ 49,523)
6b. SEO-OS 6 days 16.1 s 12.57 (± 10.63) — —
7a. SEOreg1 5× 10−1 22.1 s 1.417 (± 0.106) — —
7b. SEOreg1-OS 5× 10−3 25.9 s 11.95 (± 6.00) — —
8a. SEOreg2 1× 10−1 26.6 s 1.392 (± 0.105) — —
8b. SEOreg2-OS 5× 10−3 27.1 s 12.57 (± 10.63) — —
9. Scarf 12 days 20.8 s 1.593 (± 0.114) — —
Table 3 A summary of results. We assume the hourly wage of an agency nurse is 2.5 times that of a regular

nurse. We report the calibrated parameter (if any), the average computational time taken to solve one problem

instance, and the mean and the 95% confidence interval for the out-of-sample staffing cost in normalized units. In

the last column, we report the annual cost savings of the method relative to SAA-day where there is a statistically

significant net cost saving, assuming a regular nurse salary of £25,000 (which is the Band 4 nurse salary for the

National Health Service in the United Kingdom in 2014) and standard working hours. A dashed line represents cost

differential that is not statistically significant. Cost savings in USD are also reported, assuming an exchange rate of

£1: USD 1.6.

with `1 regularization, which is the second-best performing method. The KO method is also faster

than SAA-day, SEO methods and Scarf by two orders of magnitude.

5.3. Optimal Staffing Decisions

Let us further investigate the staffing decision of the best method: KO-OS with w= 1.62. In Fig. 2

(a), we display the staffing levels predicted by KO-OS with w= 1.62 along with the actual required

levels. For comparison, we also provide the staffing levels predicted by the second-best method,

NVreg1-OS with λ= 1×10−7 in Fig. 2 (b). A striking observation is that both KO-OS and NVreg1-

OS methods anticipate periods of high demand fairly well, as evidenced by the matching of the

peaks in the predicted and actual staffing levels. The two methods are otherwise quite different

in the prediction; in particular, the KO-OS method balances both over-staffing and under-staffing,

whereas NVreg1-OS method seems to systematically over-predict the staffing level.

Let us now suppose the hospital indeed implements our algorithm for its nurse staffing decisions.

We wish to gain some insight into the predictions made by the algorithm. In particular, we would like

to know when the hospital is over- or under-staffed, assuming the hospital chooses to implement the
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best possible method, provided by KO-OS with w= 1.62. In Figs. 3 and 4, we show the conditional

probability (frequency) of under- and over-staffing by day of the week and by time period. We derive

the following insights from these plots, which could be useful for patients and managers directly:

(i) mid-week days are more likely to be under-staffed then weekends, thus, given the choice to visit

the emergency room on a weekday or weekend, we would choose a weekend, (ii) the period from

noon to midnight is substantially more likely to be over-staffed then the period from midnight to

noon, thus, given the choice of time to visit the emergency room, we would choose visiting in the

afternoon, and (iii) the algorithm is most likely to over-staff by at least 50% of the required level

on a Monday then any other day of the week, hence, given the flexibility, we would choose to visit

the emergency room on a Monday.

Figure 2 (a) A time-series plot of actual staffing demand (solid blue) versus staffing levels predicted by

KO-OS with w = 1.62 (best method) on test data set in dotted red. (b) A time-series plot

of actual staffing demand (solid blue) versus staffing levels predicted by NVreg1-OS with λ=

1× 10−7 (second best method) on test data set in dotted red.
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Figure 3 A plot of the conditional probabilities of under-staffing (a) by day and (b) by time period for

KO-OS with w= 1.62 (best method). The conditioning is done by the particular day or the time

period, i.e. the probability of under-staffing given it is a Monday.

Figure 4 A plot of the conditional probabilities of over-staffing by at least 50% (a) by day and (b) by

time period for KO-OS with w= 1.62 (best method). The conditioning is done by the particular

day or the time period, i.e. the probability of over-staffing given it is a Monday.

6. Conclusion

We investigated the newsvendor problem when the DM has historical data on both demands and

p features that are related to the demand. We have analyzed this problem using recent techniques

from machine learning (algorithmic stability theory) as well as theoretical statistics (theory of

quantile estimators). Rather than reiterate the contributions detailed in the Introduction, below we

summarize the some practical insights that may not be obvious upon first reading (especially to

readers unfamiliar with machine learning), and discuss potential directions for future research.

Some practical insights from this work are as follows. (i) There is not a single approach to solving

the “Big Data” newsvendor problem. In this paper we proposed three approaches (ERM with and
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without regularization, and KO) to using the feature-demand data set and compared with against a

number of other potential approaches to solving the problem, with or without features. This is not

to say these approaches are exhaustive — we are optimistic that new methods can be developed.

(ii) A “Big Data”-driven decision-maker always needs to be weary of overfitting, where decisions can

perform well in-sample but not so out-of-sample, hence leading to not only decisions that perform

badly, but also decisions that are misleading. We have shown that overfitting can be controlled by

a-priori feature selection or regularization, which gives the DM extra control to bias the decision

in favour of improved out-of-sample generalization. (iii) What affects the true performance of the

in-sample decision are the generalization error (a.k.a. overfitting error), bias from regularization and

finite-sample bias simply from having a finite amount of data. The DM can control the generalization

error and bias from regularization through the regularization parameter, and in practice needs to

optimize over a range of parameter values on a separate validation data set. Finite-sample bias

cannot be controlled except by collecting more data. (iv) While the KO method dominates all others

in terms of the out-of-sample performance in our case study, this need not be the case for a different

data set. We believe the most important point of our case study is in demonstrating how to carry

out a careful data-driven investigation, not in the case-specific conclusion that the KO method

performed the best. We note however the relative speed of the KO method is generalizable.

There are many directions for follow-up work, and we discuss a few. First, investigating how the

dynamic inventory management problem can be solved with demand-feature data set remains an

open question. Second, as mentioned in point (i) of the previous paragraph, the methods considered

in this paper are not exhaustive — new methods can be developed, especially if different assumptions

are made on the data-generating process than we have assumed here. It would be interesting to see,

for instance, if Markov-modulated demand processes can be adapted to handle a large number of

feature information. Finally, extending our theoretical results for more general classes of stochastic

optimization problems remains an open task.
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Appendix A: Solving (NV-ERM) over a Nonlinear Function Class

We can solve (NV-ERM) over a nonlinear function class by the use of kernels. Kernels allow to

mapping of the problem (NV-ERM) to a higher dimensional space (known as a reproducing kernel

Hilbert space) in a convenient way. The computations are approximately as difficult as in the original

feature space, but the order quantity can now be a highly nonlinear function of the original features.

Consider the feature vector x from the original feature space X ⊂Rp. Suppose we transform this

to a new feature, φ(x), of possibly infinite dimensions. φ(x) may be a vector of dimension greater

than p, or a function. By assuming φ(x) belongs in a reproducing kernel Hilbert space with a known

kernel k(·, ·), we can compute inner products 〈φ(x1), φ(x1)〉= k(x1,x2) by the reproducing property.

As long as we can compute kernels between any two elements x1, x2, we can operate in this higher

dimensional space, without having to specify the map φ(·).

We can thus transform the newsvendor problem (NV-ERM) to optimize over a class of nonlinear

decisions by transforming x to φ(x) via a kernel. Let q be a function within the reproducing kernel

Hilbert space and q0 a scalar decision variable. Then the primal optimization problem becomes:

min
q,ui,oi

1

n

n∑
i=1

(bui +hoi) +λ‖q‖22

s.t. ∀ i= 1, . . . , n :

ui ≥ di− q0−〈φ(xi), q〉

oi ≥ q0 + 〈φ(xi), q〉− di

ui, oi ≥ 0, (NV-ERM2-KER)

where the optimal order quantity will be qopt(x) = 〈φ(x), q∗〉+ q∗0 , where q∗ and q∗0 is the solution to

the optimization problem. Following the standard approaches we can derive the convex dual, using

notation K as the matrix of k(xi,xl) values, and using α as the vector of n combined Lagrange

multipliers. Note that if k is a valid kernel (i.e. an inner product for a reproducing kernel Hilbert

space), the gram matrix K is positive semi-definite. The dual problem is thus:

min
α

1

2
αTKα−αTd

s.t. ∀ i= 1, . . . , n :
−h
2λn
≤ αi ≤

b

2λn
, and∑

i

αi = 0.
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If α∗ is the solution to this dual problem, which we can compute with a quadratic programming

solver, the solution to the primal will be given by:

q∗(x) =
∑
i

α∗iφ(xi),

and q∗0 is di−〈φ(xi), q
∗(xi)〉= di−

∑n

l=1α
∗
l k(xi,xl) for any i where α∗i is neither −h

2λn
nor b

2λn
. This

means that the optimal order quantity q(x) for any new x can be evaluated directly, using only

computations of k(x,xi). This is given by:

qopt(x) =
∑
i

αik(x,xi) + q∗0 .

One can choose any kernel k so long as it satisfies the property of being a reproducing kernel,

without calculating (or even knowing) the map φ to the reproducing kernel Hilbert space. Typical

kernels are polynomial kernels or Gaussian kernels. The kernel must be symmetric, as it needs to

be an inner product in the reproducing kernel Hilbert space, and inner products are symmetric.

Even if the kernel function is much more complicated than a standard inner product, qopt(x) can

be evaluated for any x, by solving the dual formulation and using the formulae above. This is the

generalization of (NV-ERM) to nonlinear decision rules.

For further readings on the topic, we direct the readers to Hofmann et al. (2008) and Manton

et al. (2015).

Appendix B: Proofs of results in Sec. 3

Proof of Lemma 1: The feature-based algorithm (NV-ERM1) solves

min
q(x)=q0(1−x)+q1x

R̂(q(x);Sn) =
1

n

n∑
i=1

[b(di(x)− q(x))+ +h(q(x)− di(x))+]

= min
q(x)=q0(1−x)+q1x

1

n0

∑
i:xi=0

[b(d0
i − q0)+ +h(q0− d0

i )
+] +

1

n1

∑
i:xi=1

[b(d1
i − q1)+ +h(q1− d1

i )
+]

= min
q0≥0

{
1

n0

∑
i:xi=0

[b(d0
i − q0)+ +h(q0− d0

i )
+]

+ min
q1≥0

{
1

n1

∑
i:xi=1

[b(d1
i − q1)+ +h(q1− d1

i )
+]

}}
, (EC.1)

where the outer and inner minimization problems correspond to the SAA problem for the subsample

of data corresponding to x = 0 and x = 1 respectively. Hence the solutions are the corresponding

SAA solutions for the appropriate subsample of data, which is the well-known critical fractile of the

inverse empirical cdf as in (4). �
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Proof of Theorem 1: Under Condition A, the following strong result holds via Theorem 4.1.2.

pp. 31 of Csörgö (1983): there exists, for each ni, i= 0,1, a Brownian Bridge {Bni(y),0≤ y ≤ 1}
such that

sup
0<y<1

∣∣∣∣fi(F−1
i (y))(F̂−1

i (y)−F−1
i (y))−

Bni(y)
√
ni

∣∣∣∣ a.s.= O

(
logni
ni

)
. (EC.2)

The above implies, for y= r:∣∣∣∣(F̂−1
i (r)−F−1

i (r))−
Bni(r)

fi(F
−1
i (r))

√
ni

∣∣∣∣ a.s.≤ O

(
logni
ni

)
=⇒

∣∣∣∣F̂−1
i (r)−F−1

i (r)

∣∣∣∣ a.s.≤ Bni(r)

fi(F
−1
i )
√
ni

(r) +O

(
logni
ni

)
=⇒

∣∣∣∣E[F̂−1
i (r)]−F−1

i (r)

∣∣∣∣≤E
∣∣∣∣F̂−1

i (r)−F−1
i (r)

∣∣∣∣≤ EBni(r)
fi(F

−1
i (r))

√
ni

+O

(
logni
ni

)
=O

(
logni
ni

)
,

where the last line uses Jensen’s inequality and the fact that the mean of a Brownian Bridge is zero

everywhere. Hence we get both the finite-sample bias result and the asymptotic optimality result.

�

Proof of Lemma 2: This is equivalent to the SAA solution for the complete data set. �

Proof of Theorem 2: Proof of (15) parallels that of Proposition 1. Proof of (16) then follows from

(15) and Proposition 1.

Proof of (17): The asymptotic convergence of q̂SAAn to its true value is again due to the asymptotic

convergence of the sample quantile estimator, as shown in Theorem 1. The statement then follows.

�

Proof of Theorem 3. The SAA decision is given by

q̂SAAn (x̃) = (F̂ 0
n)−1

(
b

b+h

)
+ d̄n

= (F̂ 0
n)−1

(
b

b+h

)
+

1

n

n∑
i=1

β>Xi +
1

n

n∑
i=1

εi

a.s.→ Qε

(
b

b+h

)
+β>E[X] + 0,

where the convergence of the first term is due to the Glivenko-Cantelli theorem and the convergence

of the last two terms is due to the Strong Law of Large Numbers (SLLN) (see Durrett 2010). �

Proof of Theorem 4: Let D ≤ q1 < q2 ≤ D̄ be two newsvendor decisions. Then by considering

the difference C(q2; ·)−C(q1; ·) for three different regions: D< q1, q1 ≤D≤ q2 and D> q2, one can

show

C(q2;D)−C(q1;D)

=−b(q2− q1)I(D> q2) +h(q2− q1)I(D< q1) + [bq1 +hq2− (b+h)D]I(q1 ≤D≤ q2)

=−b(q2− q1)I(D> q2) +h(q2− q1)I(D< q1) + [b(q2− (q2− q1)) +hq2− (b+h)D]I(q1 ≤D≤ q2)

=−b(q2− q1)I(D> q1) +h(q2− q1)I(D< q1) + (b+h)(q2−D)I(q1 ≤D≤ q2) (EC.3)
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Also,

C(q2;D)−C(q1;D)

=−b(q2− q1)I(D> q2) +h(q2− q1)I(D< q1) + [bq1 +hq2− (b+h)D]I(q1 ≤D≤ q2)

=−b(q2− q1)I(D> q2) +h(q2− q1)I(D< q1) + [bq1 +h(q1 + (q2− q1))− (b+h)D]I(q1 ≤D≤ q2)

=−b(q2− q1)I(D> q2) +h(q2− q1)I(D< q2)− (b+h)(D− q1)]I(q1 ≤D≤ q2) (EC.4)

Case I: Let us suppose q1 = q∗. Then P(D< q1) = b/(b+ h) and P(D> q1) = h/(b+ h), since we

assume the demand is continuous. Thus the expectation of the first two terms in (EC.3) is equal to

zero. The expected cost difference then becomes

|EC(q2;D)−EC(q1;D)|= (b+h)E[(q2−D)I(q1 ≤D≤ q2)],

which clearly increases as q2 increases (i.e. deviates further from q1).

Case II: Let us suppose q2 = q∗. Then P(D< q2) = b/(b+h) and P(D> q2) = h/(b+h), since we

assume the demand is continuous. Thus the expectation of the first two terms in (EC.4) is equal to

zero. The expected cost difference then becomes

|EC(q2;D)−EC(q1;D)|= (b+h)E[(D− q1)I(q1 ≤D≤ q2)],

which clearly increases as q1 decreases (i.e. deviates further from q2).

In sum, the expected cost difference between q∗ and q̂ increases as |q∗− q̂| increases. �

Appendix C: Proofs of Theorems in Sec. 4

We start by first showing that the optimal (in-sample) decisions obtained by solving the three

optimization problems are algorithmically stable, which means that the true expected cost of the

decision is not sensitive to changes in the data set. The stability of a decision is thus a desirable

property and is intimately linked to how well the decision performs on new observations. We then

quantify the performance of the three decisions on a new observation in the form of generalization

bounds, and extend them to quantify how well the in-sample decisions perform relative to the true

optimal decision in terms of the expected out-of-sample cost.

Generalization bounds are probabilistic bounds on the out-of-sample performance of in-sample

predictions, and are useful in highlighting quantities that are important in prediction. There are

several types of generalization bounds that are known in the statistical learning theory literature.

The type of bounds we employ are stability bounds, because as algorithm-specific bounds, they

generate the most insightful results for the feature-based newsvendor problem. In contrast, uniform

generalization bounds, which are more common in statistical learning theory and perhaps more
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familiar to the reader, are algorithm-independent. Uniform generalization bounds do not consider

the way in which the algorithm searches the space of possible models, and as such they lack specific

insights about prediction.

Stability bounds can be thought of as a form of Hoeffding’s inequality for algorithms (recall, for

instance, that the sample-size bounds of Levi et al. 2007 and Levi et al. 2015 are critically based

on Hoeffding’s inequality). To apply Hoeffding’s inequality, we need to know a bound on the values

of a random variable, whereas to apply stability bounds, we need to know a bound on the stability

of an algorithm to a random data set. The challenging part is to prove a stability result that is as

strong as possible for the algorithm, which we here achieve for the newsvendor problem. Stability

bounds have origins in the 1970’s (Rogers and Wagner 1978, Devroye and Wagner 1979a,b), and

recent work includes that of Bousquet and Elisseeff (2002).

To show that our newsvendor algorithms are stable, we first show that the newsvendor cost on

the training set does not change very much when one of the training examples changes. Stability of

a decision is a desirable property, and these bounds show that stability is intimately linked to how

well the decision performs on new observations. One of the main contributions of this section is thus

in showing that (NV-ERM1), (NV-ERM2) and (NV-KO) are strongly stable, which are important

results in their own right.

Our algorithms for the learning newsvendor problem turn out to have a very strong stability

property, namely it is uniformly stable. We define stability and uniform stability below.

Definition EC.1 (Uniform stability, Bousquet and Elisseeff (2002) Def 6 pp. 504).

A symmetric algorithm A has uniform stability α with respect to a loss function ` if for all Sn ∈Zn

and for all i∈ {1, . . . , n},

‖`(ASn , ·)− `(AS\in , ·)‖∞ ≤ α. (EC.5)

Furthermore, an algorithm is uniformly stable if α= αn ≤O(1/n).

In what follows, the random demand is denoted by D, and is assumed to be bounded: D ∈D :=

[0, D̄].

As before, the historical (‘training’) set of data is given by Sn = {(xi, di)}ni=1.

We start with the results for (NV-ERM1).

Proposition EC.1 (Uniform stability of (NV-ERM1)). The learning algorithm (NV-ERM1)

with iid data is symmetric and uniformly stable with respect to the newsvendor cost function C(·, ·)

with stability parameter

αn =
D̄(b∨h)2

(b∧h)

p

n
. (EC.6)
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Here the notation b∨h indicates the maximum value of b and h, and b∧h indicates the minimum

of the two. This bound illuminates that if one of b or h is too large and the other too small, in

other words if the backordering and holding costs are highly asymmetric, then the algorithm is

very sensitive to small changes in the data set. The algorithm is more stable when the target order

quantity is closer to the median of the demand distribution.

The stability result, coupled with a Hoeffding/McDiarmid based argument (in our case, we are

using more contemporary versions of the results due to Bousquet and Elisseeff 2002), yields the

following:

Proposition EC.2 (Generalization Bound for (NV-ERM1)). Let q̂ be the model produced

by Algorithm (NV-ERM1). The following bound holds with probability at least 1−δ over the random

draw of the sample Sn, where each element of Sn is drawn iid from an unknown distribution on

X ×D:

|Rtrue(q̂)− R̂(q̂;Sn)|
(b∨h)D̄

≤ 2(b∨h)

b∧h
p

n
+

(
4(b∨h)

b∧h
p+ 1

)√
log(2/δ)

2n
.

For large p/n, we had suggested finding the optimal order quantity by solving (NV-ERM2) instead.

In this case, the generalization is driven by the regularization parameter, rather than the ratio p/n,

as well as b and h as before. First is the stability result.

Proposition EC.3 (Uniform stability of (NV-ERM2)). The learning algorithm (NV-ERM2)

is symmetric, and is uniformly stable with respect to the newsvendor cost function C with stability

parameter

αrn =
(b∨h)2X2

maxp

2nλ
. (EC.7)

The new stability parameter is O(p/nλ). Thus the stability of the algorithm can be controlled via

the regularization parameter λ.

We will use the following lemma in the proof of Propositions EC.1 and EC.5.

Lemma EC.1 (Tight uniform bound on the newsvendor cost). The newsvendor cost func-

tion C(·, ·) is bounded by (b∨h)D̄, which is tight in the sense that:

sup
(x,D)∈X×D

|C(q,D(x))|= D̄(b∨h).

Proof of Lemma EC.1: Clearly, D̄(b∨h) is an upper bound on |C(q, d)| for all q, d∈ [0, D̄]. Now

if d= 0 and q = D̄, |C(q, d)|= D̄h. Conversely, if d= D̄ and q = 0, |C(q, d)|= D̄b. Hence the upper

bound is attained. �

Now for the proof of the Proposition EC.1.
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Proof of Proposition EC.1: Symmetry follows from the fact that the data-generating process is

iid. For stability, we will change our notation slightly to make the dependence on n and Sn explicit.

Let

qn(x) := q>nx=

p∑
j=1

qjnxj

and

qn\i(x) := q>n\ix=

p∑
j=1

qjn\ixj

where

[q1
n, . . . , q

p
n] = arg min

q=[q1,...,qp]

R̂(q;Sn) =
1

n

n∑
j=1

b(dj − p∑
j=1

qjxj

)+

+h

(
p∑
j=1

qjxj − dj

)+


is the solution to (NV-ERM1) for the set Sn, and

(q1
n\i, q

1
n\i) = arg min

q=[q1,...,qp]

R̂(q;S\in ) =
1

n

n∑
j=1

b(dj − p∑
j=1

qjxj

)+

+h

(
p∑
j=1

qjxj − dj

)+


is the solution to (NV-ERM1) for the set S\in . Note that:

R̂(q;Sn) =
n− 1

n
R̂(q;S\in ) +

1

n
R̃(q;Si),

where Si = (xi, di).

For a fixed x, we have, by the Lipschitz property of C(q; ·),

sup
(x,D)∈X×D

|C(qn(x),D(x))−C(qn\i(x),D(x))| ≤ sup
(x,D)∈X×D

(b∨h)|qn(x)− qn\i(x)|.

So we want to bound

|qn(x)− qn\i(x)|=

∣∣∣∣∣
p∑
j=1

qjnxj −
p∑
j=1

qjn\ixj

∣∣∣∣∣ .
By the convexity of the function R̂n(·, S), we have (see Section 23 of Rockafellar (1997)):

p∑
j=1

νj(q
j
n\i− q

j
n)≤ R̂(qn\i;Sn)− R̂(qn;Sn)

for all ν = [ν1, . . . , νm] ∈ ∂R̂(qn;Sn) (set of subgradients of R̂(·, Sn) at qn). Furthermore, because

0∈ ∂R̂(qn;Sn) by the optimality of qn, we have

0≤ max
ν∈∂R̂(qn;Sn)

p∑
j=1

νj(q
j
n\i− q

j
n)≤ R̂(qn\i;Sn)− R̂(qn;Sn)
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where the max over ν can be attained because ∂R̂(qn;Sn) is a compact set. Denote this maximum

ν∗. We thus have

R̂(qn\i;Sn)− R̂(qn;Sn)≥ |ν∗>(qn\i−qn)|=
p∑
j=1

ν∗j (qjn\i− q
j
n)

≥ |ν∗j (qjn\i− q
j
n)|= |ν∗j ‖q

j
n\i− q

j
n| for all j = 1, . . . p

where the second inequality is because ν∗j (qjn\i− qjn)> 0 for all j because R̂(·;Sn) is piecewise linear

and nowhere flat. Thus we get, for all j = 1, . . . , p,

|qjn\i− q
j
n| ≤

R̂(qn\i;Sn)− R̂(qn;Sn)

|ν∗j |
.

Let us bound R̂(qn\i;Sn)− R̂(qn;Sn). Note

R̂(qn;Sn) =
n− 1

n
R̂(qn;S\in ) +

1

n
R̂(qn;Si)

≥ n− 1

n
R̂(qn\i;S

\i
n )

since qn\i is the minimizer of R̂(·;S\in ). Also, R̂(qn;Sn)≤ R̂(qn\i;Sn) since qn is by definition the

minimizer of R̂(·;Sn). Putting these together, we get

n− 1

n
R̂(qn\i;S

\i
n )− R̂(qn\i;Sn)≤ R̂(qn;Sn)− R̂(qn\i;Sn)≤ 0

=⇒ |R̂(qn;Sn)− R̂(qn\i;Sn)| ≤
∣∣∣∣n− 1

n
R̂(qn\i;S

\i
n )− R̂(qn\i;Sn)

∣∣∣∣
=

∣∣∣∣n− 1

n
R̂(qn\i;S

\i
n )− n− 1

n
R̂(qn\i;S

\i
n )− 1

n
R̂(qn\i;Si)

∣∣∣∣
=

1

n
|R̂(qn\i;Si)|.

Thus

sup
(x,D)∈X×D

(b∨h)|qn(x)− qn\i(x)| ≤ sup
(x,D)∈X×D

(b∨h)

(
p∑
j=1

|qjn− q
j
n\i‖xj|

)

≤ sup
(x,D)∈X×D

(b∨h) ·
p∑
j=1

|xj|
|ν∗j |
· (R̂(qn\i;Sn)− R̂(qn;Sn))

≤ sup
(x,D)∈X×D

b∨h
n
·

p∑
j=1

|xj|
|ν∗j |
· |R̂(qn\i;Si)|. (EC.9)

We can further simplify the upper bound (EC.9) as follows. Recall that ν∗ is the subgradient of

R̂(·;Sn) at qn that maximizes
∑p

j=1 νj(q
j
n\i− qjn); and as ∂R̂(qn;Sn) is compact (by the convexity

of R̂(·;Sn)), we can compute ν∗ exactly. It is straightforward to show:

ν∗j =

{
−bxj if qjn\i− qjn ≤ 0

hxj if qjn\i− qjn ≥ 0 ∀ j.

We can thus bound 1/|ν∗j | by 1/[(b∧ h)|xj|]. By using the tight uniform upper bound (b∨ h)D̄ on

each term of |R̂(·, ·)| from Lemma EC.1, we get the desired result. �
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Wemove onto the main result needed to prove Proposition EC.3. First, we build some terminology.

Definition EC.2 (σ-admissible loss function). A loss function ` defined on Q × D is σ-

admissible with respect to Q if the associated convex function c is convex in its first argument and

the following condition holds:

∀ y1, y2 ∈Y, ∀ d∈D, |c(y1, d)− c(y2, d)| ≤ σ|q1− q2|,

where Y = {y : ∃ q ∈Q, ∃ x∈X : q(x) = y} is the domain of the first argument of c.

Note that Rp is a reproducing kernel Hilbert space where the kernel is the standard inner product.

Thus, κ in our case is Xmax.

Proof of Proposition EC.3: By the Lipschitz property of C(·;d),

sup
d∈D

|C(q1(x), d)−C(q2(x), d)| ≤ (b∨h)|q1(x)− q2(x)|, ∀q1(x), q2(x)∈Q

as before, hence C :X ×D→R is (b∨h)-admissible. Hence by Theorem 22 of Bousquet and Elisseeff

(2002), the algorithm (NV-ERM2) has uniform stability with parameter αrn as given. �

We have thus far established the stability of the machine learning algorithms (NV-ERM1) and

(NV-ERM2), which lead to the risk bounds provided in Propositions EC.2 and EC.4, as follows.

Proposition EC.4 (Generalization Bound for (NV-ERM2)). Let q̂ be the model produced

by Algorithm (NV-ERM2) with `2 regularization. The following bound holds with probability at least

1−δ over the random draw of the sample Sn, where each element of Sn is drawn iid from an unknown

distribution on X ×D:

|Rtrue(q̂)− R̂(q̂;Sn)|
(b∨h)D̄

≤ (b∨h)

D̄X−2
max

1

nλ
+

(
2(b∨h)

D̄X−2
max

1

λ
+ 1

)√
log(2/δ)

2n
. (EC.10)

We now state stability and generalization bound results for (NV-KO).

Proposition EC.5 (Uniform stability of (NV-KO)). The algorithm (NV-KO) with iid data

and the Gaussian kernel is symmetric with respect to the newsvendor cost function C(·, ·) with

uniform stability parameter

ακ =
D̄(b∨h)2

(b∧h)

1

1 + (n− 1)rw
, (EC.11)

where rw = exp(−2X2
max/w

2).

The first term in the kernel stability parameter is the same as for (NV-ERM1), hence the insight

that highly asymmetric backordering and holding costs leads to unstable decisions still holds. The

second term depends on n and rw, which in turn depends on the bandwidth w and the number of

features p through Xmax. The term rw goes from zero to one as w increases from zero to infinity;
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this shows that greater stability is achieved with a larger bandwidth. This is an intuitive result, as

a larger bandwidth is associated with bundling feature observations closer together. With this in

mind we state the generalization bound for (NV-KO).

Proof of Proposition EC.5: The proof parallels that of Proposition EC.1. Symmetry follows from

the fact that the data-generating process is i.i.d. For stability, we will change our notation slightly

to make the dependence on n and Sn explicit. Let

qκn = arg min
q≥0

R̃(q;Sn,xn+1) = argmin
q≥0

∑n

j=1 κj[b(dj − q)+ +h(q− dj)+]∑n

j=1 κj

be the solution to (NV-KO) for the set Sn, and

qκn\i = arg min
q≥0

R̃(q;S\in ,xn+1) = argmin
q≥0

∑
j 6=i κj[b(dj − q)+ +h(q− dj)+]∑

j 6=i κj

be the solution to (NV-KO) for the set S\in . Note that:

R̃(q;Sn,xn+1) =

∑
j 6=i κj∑
j κj

R̃(q;S\in ,xn+1) +
1∑
j κj

R̂(q;Si,xn+1),

where Si = (xi, di).

By definition, the algorithm is stable if for all Sn ∈Zn and i∈ {1, . . . , n},

sup
(x,D)∈X×D

|C(qκn,D(x))−C(qκn\i,D(x))| ≤ αn,

where αn ≤O(1/n). Now for a fixed x, we have, by the Lipschitz property of C(q; ·),

sup
(x,D)∈X×D

|C(qκn,D(x))−C(qκn\i,D(x))| ≤ sup
(x,D)∈X×D

(b∨h)|qκn− qκn\i|.

(See Fig. ??). So we want to bound |qκn− qκn\i|.
By the convexity of the function R̃n(·;Sn,xn+1), we have (see Section 23 of Rockafellar (1997)):

ν(qκn\i− qκn)≤ R̃(qκn\i;Sn,xn+1)− R̃(qκn;Sn,xn+1)

for all ν ∈ ∂R̃(qκn;Sn,xn+1) (set of subgradients of R̃(·;Sn,xn+1) at qκn). Further, because 0 ∈
∂R̃(qκn;Sn,xn+1) by the optimality of qκn, we have

0≤ max
ν∈∂R̃(qκn;Sn,xn+1)

ν(qκn\i− qκn)≤ R̃(qκn\i;Sn,xn+1)− R̃(qκn;Sn,xn+1)

where the max over ν can be attained because ∂R̃(qκn;Sn,xn+1) is a compact set. Denote this

maximum ν∗.

Following arguments parallel those of the proof for (EC.1),

sup
(x,D)∈X×D

(b∨h)|qκn− qκn\i| ≤ sup
(x,D)∈X×D

b∨h
|ν∗|

· (R̃(qκn\i;Sn,xn+1)− R̃(qκn;Sn,xn+1))

≤ sup
(x,D)∈X×D

(b∨h)κi
|ν∗|

∑
j κj
· |R̃(qκn\i;Si,xn+1)|. (EC.12)
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We can further simplify the upper bound (EC.12) as follows. Consider

sup
(x,D)∈X×D

κi∑
j κj

= sup
(x,D)∈X×D

1

1 +
∑

j 6=i κj/κi
.

The supremum is thus achieved by the infimum of the ratio κj/κi over X ×X ×X . For the Gaussian

kernel,

inf
(xi,xj ,xn+1)∈X×X×X

Kw(xn+1−xj)

Kw(xn+1−xi)
=
e−4X2

maxp/2w
2

e0
= e−2X2

maxp/w
2

:= rw.

Finally, we can bound 1/|ν∗j | by 1/(b∧h), as in the proof for Proposition EC.1. By using the tight

uniform upper bound (b∨h)D̄ on each term of |R̃(·; ·,xn+1)| from Lemma EC.1, we get the desired

result. �

Proposition EC.6 (Generalization Bound for (NV-KO)). Let q̂κ be the optimal decision of

(NV-KO) with the Gaussian kernel. The following bound holds with probability at least 1−δ over the
random draw of the sample Sn, where each element of Sn is drawn iid from an unknown distribution

on X ×D:

|Rtrue(q̂κ)− R̂(q̂κ;Sn)|
(b∨h)D̄

≤ 2(b∨h)

b∧h
1

1 + (n− 1)rw
+

(
4(b∨h)

b∧h
1

1 + (n− 1)rw
+ 1

)√
log(2/δ)

2n
.

Figure EC.1 A plot illustrating that the difference |C(qn(x),D(x))−C(qn\i(x),D(x))| is bounded.

We need the following lemma to wrap up the proofs of Propositions EC.2, EC.4 and EC.5.

Lemma EC.2. Let q̂(Sn) be an in-sample decision with uniform stability αn with respect to a loss

function ` such that 0≤ `(q̂(Sn), z)≤M , for all z ∈Z and all sets Sn of size n. Then for any n≥ 1

and any δ ∈ (0,1), the following bound holds with probability at least 1− δ over the random draw of

the sample Sn:

|Rtrue(q̂(Sn))− R̂(q̂(Sn), Sn)| ≤ 2αn + (4nαn +M)

√
log(2/δ)

2n
.
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Proof of Lemma EC.2: The result is obtained by extending Theorem 12 of Bousquet and Elis-

seeff (2002) on pp. 507 by using the two-sided version of McDiarmid’s inequality. �

We can now put the results together to prove Corollaries EC.2 and EC.4.

Proof of Proposition EC.2: The result follows from Proposition EC.1 and Lemma EC.2. �

Proof of Proposition EC.4: By Lemma EC.1, 0≤ `(AS, z)≤ D̄(b∨ h) for all z ∈ Z and all sets

S. The result then follows from Proposition EC.3 and Lemma EC.2. �

Proof of Proposition EC.6: The result follows from Proposition EC.5 and Lemma EC.2. �

Before proving Theorems 5, 6 and 7, we first prove the following lemma, that shows the equiv-

alence of the newsvendor objective function to the nonparametric regression loss function by a

multiplicative factor.

Lemma EC.3. The newsvendor objective function is a constant multiple of to the nonparametric

regression loss function Hr(·).

C(q;D)≡ 1

2
Hr(q−D) :=

1

2
[|q−D|+ (2r− 1)(q−D)],

where r= b/(b+h).

Proof of Lemma EC.3:

Hr(q−D) := |q−D|+ (2r− 1)(q−D)

= (q−D)+ + (D− q)+ + 2r(q−D)− (q−D)

= (q−D)+ + (D− q)+ + 2r[(q−D)+− (D− q)+]− (q−D)+ + (D− q)+

= 2r(q−D)+ + 2(1− r)(D− q)+

= 2[r(q−D)+ + (1− r)(D− q)+]. �

Proof of Theorem 5:

|Rtrue(q∗)− R̂in(q̂;Sn)| ≤ |Rtrue(q̂)− R̂in(q̂;Sn)|+ |Rtrue(q∗)−Rtrue(q̂)|

≤ 2(b∨h)2D̄

b∧h
p

n
+

(
4(b∨h)2D̄

b∧h
p+ (b∨h)D̄

)√
log(2/δ)

2n
+ |Rtrue(q∗)−Rtrue(q̂)|,

because the first term in the last inequality is the generalization bound in Proposition EC.2. As in

the proof of Theorem 7, we can bound the second term by

|Rtrue(q∗)−Rtrue(q̂)| ≤ (b∨h)E|q∗− q̂|.

Finally, the term E|q∗− q̂| is the finite-sample bias of the decision q̂, which is the b/(b+h) quantile of

the conditional distribution of D|xn+1 by Lemma EC.3. Then, by Theorem 3.2. of Chaudhuri et al.
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(1991), we have |q∗− q̂|=O(nm−k−γ/(2(k+γ)+p)) almost surely, where m is the order of derivatives (of

the demand model) required to determine the true conditional quantile, k is the order of derivatives

taken by the estimation procedure and 0< γ ≤ 1 is the Hölder continuity exponent of the demand

model [see Chaudhuri et al. (1991) for the exact definitions]. For the linear demand model, we have

γ = 1, m= 0 and k= 1, and we obtain the rate n−1/(2+p/2).

Computing the lower bound on the constant K is quite involved and below we present only the

last steps in the computation. Following the steps in the proof of Theorem 3.2. of Chaudhuri et al.

(1991), we require the convergence of the series
∞∑
n=1

np+1−p(p+1)/(4+p)−c7 ,

where c7 = (1− ε1)2(c∗5)2K2c̃/(p+ 1), where c̃ ∈ (c1, c2), c1 and c2 are as in the proof of Theorem

3.2. of Chaudhuri et al. (1991), c∗5 is as in the proof of Proposition 6.1. of Chaudhuri et al. (1991)

and ε2 ∈ (0,1) is such that

c̃n4/(4+p)− (p+ 1)≥ (1− ε2)c̃n4/(4+p)

for all n>N1, where N1 is required in Fact 6.5. of Chaudhuri et al. (1991). Rearranging and using

the fact that over-harmonic series are convergent, we arrive at the requirement

K2 >
(8 + 5p)(1 + p)

4 + p

1

(1− ε1)2(c∗5)2c̃
.

For a tighter bound, we want to find the smallest lower bound on K, i.e. the smallest possible lower

bounds on ε1, and the largest possible upper bounds on c∗5 and c̃.

From the proof of Proposition 6.1. of Chaudhuri et al. (1991), we have c∗5 equal to λ∗2ρ/2, where

ρ is equal to 1/3 and λ∗2 is given by

λ∗2 := min
t∈[D,D̄]

fε(t),

which is bounded away from zero by assumption.

As for ε1, we first rearrange the defining expression to get the requirement

ε1 ≥
p+ 1

c̃n4/(4+p)
.

From the proof of Proposition 6.1. of Chaudhuri et al. (1991), c̃n2/(4+p)−(p+1) is a counting process

so has to be greater than or equal to zero for all n≥ 1. Thus c̃ is greater than or equal to (p+ 1),

and the lower bound for ε1 above can be upper bounded by 2−4/(4+p), which is strict for n≥ 3, and

so we can set ε∗1 equal to this value.

Combining, we have the lower bound

K ≥

√
9(8 + 5p)

(4 + p)

1

(1− 2−4/(4+p))λ∗2
,

and the best constant K is obtained by setting it equal to the right hand side. �
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Proof of Theorem 6:

|Rtrue(q∗)− R̂in(q̂λ;Sn)| ≤ |Rtrue(q̂λ)− R̂in(q̂λ;Sn)|+ |Rtrue(q̂)−Rtrue(q̂λ)|+ |Rtrue(q∗)−Rtrue(q̂)|

≤ (b∨h)

[
(b∨h)X2

maxp

nλ
+

(
2(b∨h)X2

maxp

λ
+ D̄

)√
log(2/δ)

2n

]
+ |Rtrue(q̂)−Rtrue(q̂λ)|+ |Rtrue(q∗)−Rtrue(q̂)|

because the first term in the last inequality is the generalization bound in Proposition EC.4. As in

the proof of Theorem 5, we can bound the second and the third terms by

|Rtrue(q̂)−Rtrue(q̂λ)| ≤ (b∨h)E|q̂− q̂λ|, and

|Rtrue(q∗)−Rtrue(q̂)| ≤ (b∨h)E|q∗− q̂|.

The first term E|q̂ − q̂λ| is the finite-sample bias that results from regularization, which depends

on the exact regularization used and on the demand distribution. The second term E|q∗− q̂| is the

finite-sample bias of the decision q̂, which we bound as in the proof for Theorem 5. �

Proof of Theorem 7: We have

|Rtrue(q∗)− R̂in(q̂κ;Sn)| ≤ |Rtrue(q̂κ)− R̂in(q̂κ;Sn)|+ |Rtrue(q∗)−Rtrue(q̂κ)|

≤ 2(b∨h)2D̄

b∧h
1

1 + (n− 1)rw
+

(
4(b∨h)2D̄

b∧h
1

1 + (n− 1)rw
+ (b∨h)D̄

)√
log(2/δ)

2n

+ |Rtrue(q∗)−Rtrue(q̂κ)|,

because the first term in the last inequality is the generalization bound in Proposition EC.6. As in

the proof of Theorem 5, we can bound the second and the third terms by

|Rtrue(q̂)−Rtrue(q̂κ)| ≤ (b∨h)E|q̂− q̂κ|, and

|Rtrue(q∗)−Rtrue(q̂)| ≤ (b∨h)E|q∗− q̂|.

The first term E|q̂− q̂κ| is the finite-sample bias that results from kernel-weights optimization, which

depends on the choice of the kernel and on the demand distribution. The second term E|q∗− q̂| is

the finite-sample bias of the decision q̂, which we bound as in the proof for Theorem 5. The result

then follows from similar arguments to the proof for Theorem 5. �

Appendix D: Retrieving sampling bound of Levi et al. (2007)

For the no-feature newsvendor problem (p = 1 in our setup), Theorem 2.2. of Levi et al. (2007)

presents a sampling size bound to obtain ε-accurate decisions. Specifically, they state that when

n≥ (9/2ε2)[(b+h)/(b∧h)]2 log(2/δ),

Rtrue(q̂)−Rtrue(q∗)≤ εRtrue(q∗)≤ (b∨h)D̄ε,
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with probability at least 1− δ, where 0< δ < 1 is a specified confidence level.

Let us now invert the generalization bound statement of Proposition EC.2 to arrive at a statement

about the sampling size for ε-accuracy. By the triangle inequality we have

|Rtrue(q̂)−Rtrue(q∗)| ≤ |Rtrue(q̂)−Rin(q̂;Sn)|+ |Rin(q̂;Sn)−Rtrue(q∗)|.

The first term is the generalization bound from Theorem EC.2; thus is less than

(b∨h)D̄

[
2(b∨h)

(b∧h)n
+

(
4(b∨h)

b∧h
+ 1

)√
log(2/δ)

2n

]

with probability at least 1− δ. Inverting this statement, we have that

|Rtrue(q̂)−Rin(q̂;Sn)| ≤ ε1 + ∆1,n

where ∆1,n = 2(b∨h)2D̄/(b∧h)n, whenever

n≥ [(b∨h)D̄]

(
4(b∨h)

b∧h
+ 1

)2
log (2/δ)

2ε21
.

For the second term, consider, for some constant ε2 > 0,

P(|Rin(q̂;Sn)−Rtrue(q∗)| ≤ ε2)

= P(|Rin(q̂;Sn)−Rtrue(q∗)| ≤ ε2; |q̂− q∗| ≤∆n) +P(|Rin(q̂;Sn)−Rtrue(q∗)| ≤ ε2; |q̂− q∗|>∆n,2)

= P(|Rin(q̂;Sn)−Rtrue(q∗)| ≤ ε2; |q̂− q∗| ≤∆n,2)

where ∆n,2 =Mn−2/(4+p)
√

logn, for some appropriately large M such that |q̂ − q∗| ≤∆n,2 almost

surely (note such M exists because |q̂− q∗|=O(n−2/(4+p)
√

logn); see the proof of Theorem 5). We

can further bound the above by

P(|Rin(q̂;Sn)−Rtrue(q∗)| ≤ ε2; |q̂− q∗| ≤∆n,2)

≥ P(|Rin(q̂;Sn)−Rin(q∗;Sn)|+ |Rin(q∗;Sn)−Rtrue(q∗)| ≤ ε2; |q̂− q∗| ≤∆n,2)

≥ P((b∨h)|q̂− q∗|+ |Rin(q∗;Sn)−Rtrue(q∗)| ≤ ε2; |q̂− q∗| ≤∆n,2)

≥ P(|Rin(q∗;Sn)−Rtrue(q∗)| ≤ ε2− (b∨h)∆n,2; |q̂− q∗| ≤∆n,2)

≥ P(|Rin(q∗;Sn)−Rtrue(q∗)| ≤ ε2− (b∨h)∆n,2).

The final expression is a statement about the concentration of the sample average Rin(q∗;Sn) about

its mean Rtrue(q∗), so we can use the well-known Hoeffding’s (concentration) inequality to get

|Rin(q∗;Sn)−Rtrue(q∗)| ≤ ε2− (b∨h)∆n,2
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with probability at least 1− δ whenever

n≥ (b∨h)D̄
log(2/δ)

2(ε2− (b∨h)∆n,2)2
.

Combining, we have, with probability at least 1− δ,

|Rtrue(q̂)−Rtrue(q∗)| ≤ ε1 + ε2 + ∆1,n− (b∨h)∆2,n

whenever

n≥ (b∨h)D̄max

{(
4(b∨h)

b∧h
+ 1

)2
log (2/δ)

2ε21
,

log(2/δ)

2(ε2− (b∨h)∆n,2)2

}
Set ε1 = (b∨ h)D̄ε−∆1,n = (b∨ h)D̄[ε− 4(b∨ h)/((b∧ h)n)] and ε2 = (b∨ h)D̄ε+ (b∨ h)∆n,2. Then

we get
|Rtrue(q̂)−Rtrue(q∗)|

(b∨h)D̄
≤ ε

whenever

n≥ log(2/δ)

2(b∨h)D̄
max

{(
4(b∨h)

b∧h
+ 1

)2
1

[ε− 4(b∨h)/((b∧h)n)]2
,

1

ε2

}

≥ 1

2(b∨h)D̄

(
4(b∨h)

b∧h
+ 1

)2
log(2/δ)

ε2

which is the same as the sampling bound of Levi et al. (2007) up to a constant factor (which bound

is tighter depends on the exact values of b, h and D̄).
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Appendix E: In-sample empirical results

without OS Features with OS Features
No. of past days Avg. Cost Total no. Avg. Cost Total no.

of Features of Features
(avg. chosen) (avg. chosen)

0 0.9785 20 (3.0) 0.9785 20 (3.0)
1 0.9882 32 (4.0) 0.9848 32 (6.3)
2 0.9893 44 (5.3) 0.9966 44 (9.1)
3 0.9896 56 (6.2) 0.9335 56 (21.1)
4 0.9716 68 (8.0) 0.8937 68 (28.1)
5 0.9711 80 (8.3) 0.9112 80 (36.7)
6 0.9700 92 (8.6) 0.9080 92 (43.4)
7 0.9691 104 (9.5) 0.9270 104 (52.4)
8 0.9688 116 (9.5) 0.9097 116 (56.5)
9 0.9687 128 (9.6) 0.9329 128 (62.6)
10 0.9690 140 (9.6) 0.9195 140 (69.7)
11 0.9693 152 (9.7) 0.9204 152 (73.4)
12 0.9685 164 (9.9) 0.9459 164 (82.2)
13 0.9689 176 (10.3) 0.8976 176 (91.8)
14 0.9686 188 (10.3) 0.9002 188 (97.2)

Table EC.1 Average in-sample cost of the solution to (NV-ERM1) with the day of the week and time of the day

features and an increasing number of days of past demands (for up to 2 weeks), with and without OS features. The

best in-sample results are highlighted in bold. The total number of features that appear in the decision are also

reported (as measured by the number of nonzero elements in the decision vector).

No. of clusters Avg. Cost
2 1.3167
3 1.3727
4 1.4332
5 1.3977
6 1.4170
7 1.4244
8 1.4439
9 1.4455
10 1.4293
11 1.4583
12 1.4343

Table EC.2 Average in-sample cost of the Cluster + SAA approach, with OS features. The best in-sample

results are highlighted in bold. We include all OS features as not including them often yields empty clusters.
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without OS Features with OS Features
No. of past days Avg. Cost Total no. Avg. Cost Total no.

of Features of Features
(avg. chosen) (avg. chosen)

0 1.0945 20 (16.7) 1.0945 20 (16.7)
1 1.0892 32 (16.8) 1.0381 44 (27.3)
2 1.0960 44 (16.6) 1.0775 68 (37.6)
3 1.1142 56 (16.6) 0.9372 92 (48.5)
4 1.1220 68 (16.8) 0.9393 116 (59.5)
5 1.1360 80 (16.4) 0.9270 140 (71.2)
6 1.1525 92 (16.3) 0.9202 164 (83.1)
7 1.1487 104 (16.5) 0.9632 188 (95.4)
8 1.1596 116 (16.4) 1.0301 212 (108.3)
9 1.1638 128 (16.6) 1.0500 236 (118.6)
10 1.1587 140 (16.5) 1.0521 260 (129.7)
11 1.1694 152 (16.4) 1.0899 284 (141.4)
12 1.1601 164 (16.5) 1.0799 308 (153.5)
13 1.1540 176 (27.7) 1.0464 332 (165.5)
14 1.1658 188 (30.7) 1.0785 356 (178.2)

Table EC.3 Average in-sample cost of the solution to the SEO approach with day of the week and time of the

day features and an increasing number of days of past demands (for up to 2 weeks), with and without OS features.

The best in-sample results are highlighted in bold. The total number of features that appear in the decision are also

reported (as measured by the number of elements in the decision vector that are at least as large as 1% of the

largest element in absolute value).

without OS Features with OS Features
Regularization Param. Avg Cost Total no. Avg Cost Total no.

of Features of Features
(avg. chosen) (avg. chosen)

1× 10−4 1.1450 188 (9.1) 0.6140 356 (4.7)
5× 10−5 1.0769 188 (12.0) 0.5793 356 (5.8)
1× 10−5 1.0750 188 (14.6) 0.5837 356 (7.2)
5× 10−6 1.0748 188 (15.3) 0.5837 356 (7.8)
1× 10−6 1.0117 188 (14.6) 0.5376 356 (10.3)
5× 10−7 0.9737 188 (13.0) 0.5165 356 (11.5)
1× 10−7 0.9729 188 (13.2) 0.4489 356 (28.1)

Table EC.4 Average in-sample cost of the solution to (NV-ERM2) solved with `1 regularization, with the day of

the week and time of the day features and 2 weeks of past demands with and without OS features for a range of

regularization parameters. The best in-sample results are highlighted in bold. The total number of features that

appear in the decision are also reported (as measured by the number of nonzero elements in the decision vector).
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without OS Features with OS Features
Regularization Param. Avg. Cost Total no. Avg. Cost Total no.

of Features of Features
(avg. chosen) (avg. chosen)

1× 10−4 1.1138 188 (8.7) 1.1153 356 (8.7)
5× 10−5 1.0626 188 (11.2) 1.0629 356 (11.2)
1× 10−5 1.0462 188 (13.0) 1.0463 356 (13.0)
5× 10−6 1.0434 188 (13.4) 1.0438 356 (13.7)
1× 10−6 0.9805 188 (13.2) 0.9276 356 (17.7)
5× 10−7 0.9570 188 (10.1) 0.9270 356 (21.6)
1× 10−7 0.9684 188 (10.2) 0.9153 356 (42.5)

Table EC.5 Average in-sample cost of the solution to (NV-ERM2) solved with `2 regularization, with the day of

the week and time of the day features and 2 weeks of past demands with and without OS features for a range of

regularization parameters. The best in-sample results are highlighted in bold. The total number of features that

appear in the decision are also reported (as measured by the number of elements in the decision vector that are at

least as large as 1% of the largest element in absolute value).

without OS Features with OS Features
Regularization Param. Avg Cost Total no. Avg Cost Total no.

of Features of Features
(avg. chosen) (avg. chosen)

1× 100 1.1020 188 (9.9) 1.4849 356 (9.9)
5× 10−1 1.0905 188 (10.4) 1.2418 356 (10.4)
1× 10−1 1.0990 188 (14.9) 1.2318 356 (14.9)
5× 10−2 1.1023 188 (19.7) 1.1975 356 (15.9)
1× 10−2 1.1264 188 (34.0) 1.1307 356 (24.1)
5× 10−3 1.1365 188 (44.2) 1.0636 356 (28.5)

Table EC.6 Average in-sample cost of the solution to the SEO approach solved with `1 regularization, with day

of the week and time of the day features and an increasing number of days of past demands (for up to 2 weeks),

with and without OS features. The best in-sample results are highlighted in bold. The total number of features that

appear in the decision are also reported (as measured by the number of elements in the decision vector that are at

least as large as 1% of the largest element in absolute value).
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without OS Features with OS Features
Regularization Param. Avg Cost Total no. Avg Cost Total no.

of Features of Features
(avg. chosen) (avg. chosen)

1× 10−1 1.1486 188 (57.6) 1.1584 356 (92.8)
5× 10−2 1.1555 188 (61.2) 1.1357 356 (85.8)
1× 10−2 1.1613 188 (65.0) 1.0398 356 (88.0)
5× 10−3 1.1626 188 (65.7) 1.0040 356 (87.1)
1× 10−3 1.1669 188 (67.8) 1.0526 356 (76.2)
5× 10−4 1.1658 188 (68.6) 1.0636 356 (69.9)
1× 10−4 1.1654 188 (69.2) 1.0716 356 (64.3)

Table EC.7 Average in-sample cost of the solution to the SEO approach solved with `2 regularization, with day

of the week and time of the day features and an increasing number of days of past demands (for up to 2 weeks),

with and without OS features. The best in-sample results are highlighted in bold. The total number of features that

appear in the decision are also reported (as measured by the number of elements in the decision vector that are at

least as large as 1% of the largest element in absolute value).
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