THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

On A Conjecture of Tian

Citation for published version:
Ahmadinezhad, H, Cheltsov, I \& Schicho, J 2018, 'On A Conjecture of Tian' Mathematische Zeitschrift, vol 288, no. 1-2, pp. 217-241. DOI: 10.1007/s00209-017-1886-z

Digital Object Identifier (DOI):
10.1007/s00209-017-1886-z

Link:

Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In:

Mathematische Zeitschrift

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

ON A CONJECTURE OF TIAN

HAMID AHMADINEZHAD, IVAN CHELTSOV AND JOSEF SCHICHO

"A tragedy of mathematics is a beautiful conjecture ruined by an ugly fact."

Abstract

We study Tian's α-invariant in comparison with the α_{1}-invariant for pairs (S_{d}, H) consisting of a smooth surface S_{d} of degree d in the projective three-dimensional space and a hyperplane section H. A conjecture of Tian asserts that $\alpha\left(S_{d}, H\right)=\alpha_{1}\left(S_{d}, H\right)$. We show that this is indeed true for $d=4$ (the result is well known for $d \leqslant 3$), and we show that $\alpha\left(S_{d}, H\right)<\alpha_{1}\left(S_{d}, H\right)$ for $d \geqslant 8$ provided that S_{d} is general enough. We also construct examples of S_{d}, for $d=6$ and $d=7$, for which Tian's conjecture fails. We provide a candidate counterexample for S_{5}.

1. Introduction

In order to prove the existence of a Kähler-Einstein metric, known as the Calabi problem, on a smooth Fano variety, in [12] Gang Tian introduced a quantity, known as the α-invariant, that measures how singular pluri-anticanonical divisors on the Fano variety can be. There, he proved that a smooth Fano variety of dimension m admits a Kähler-Einstein metric provided that its α-invariant is bigger that $\frac{m}{m+1}$.

Despite the fact that the Calabi problem for smooth Fano varieties has been solved (see [7, 9, 11, 14]) this result of Tian is often the only way to prove the existence of the Kähler-Einstein metric for a given Fano.

In fact, the α-invariant turned out to have important applications in birational geometry as well; see for example [1]. Later, Tian generalised this invariant for arbitrary polarised pairs (X, L), where X is a smooth variety and L is an ample Cartier divisor on it. For the pair (X, L), it can be defined as

$$
\alpha(X, L)=\sup \left\{\begin{array}{l|l}
\lambda \in \mathbb{Q} & \begin{array}{l}
\text { the log pair }(X, \lambda D) \text { is log canonical } \\
\text { for every effective } \mathbb{Q} \text {-divisor } D \sim_{\mathbb{Q}} L
\end{array}
\end{array}\right\} \in \mathbb{R}_{>0} .
$$

This definition coincides with Tian's original definition in [12, 13] by [6, Theorem A.3].
The number $\alpha(X, L)$ is often hard to compute but, in good situations, can be approximated by numbers that are much easier to control (see, for example, [5, Proposition 2.2]). For instance, if the linear system $|n L|$ is not empty, Tian defined the n-th α-invariant of the pair (X, L) as

$$
\alpha_{n}(X, L)=\sup \left\{\lambda \in \mathbb{Q} \mid \text { the pair }\left(X, \frac{\lambda}{n} D\right) \text { is } \log \text { canonical for every } D \in|n L|\right\} \in \mathbb{Q}>0 .
$$

If the linear system $|n L|$ is empty, one can simply put $\alpha_{n}(X, L)=+\infty$. Then $\alpha(X, L) \leqslant \alpha_{n}(X, L)$ and

$$
\alpha(X, L)=\inf _{n \geqslant 1}\left\{\alpha_{n}(X, L)\right\} .
$$

Then, Tian posed the following conjecture.
Conjecture 1.1 ([13, Conjecture 5.4]). Suppose that L is very ample and defines a projectively normal embedding under its associated morphism, i.e., the graded algebra

$$
\bigoplus_{i \geqslant 0} H^{0}\left(X, \mathcal{O}_{X}(i L)\right)
$$

is generated by elements in $H^{0}\left(X, \mathcal{O}_{X}(L)\right)$. Then $\alpha(X, L)=\alpha_{1}(X, L)$.

[^0]Note that the very ampleness of the divisor L does not always imply that the associated morphism gives a projectively normal embedding. However, in many cases this is true, for example when X is a hypersurface and L is a hyperplane section, which includes all varieties we study in this article. Note also that [13, Conjecture 5.4] is stated in terms of the more delicate invariants $\alpha_{n, k}(X, L)$, which are defined in analytic language (for their explicit definitions see $[13, \S 5]$). Arguing as in the proof of [6, Theorem A.3], one can show that

$$
\alpha_{n}(X, L)=\alpha_{n, 1}(X, L),
$$

so that Conjecture 1.1 is a special case of Tian's more general [13, Conjecture 5.4].
The purpose of this paper is to study Conjecture 1.1 for smooth surfaces in \mathbb{P}^{3}. Namely, let S_{d} be a smooth surface in \mathbb{P}^{3} of degree $d \geqslant 1$, and let H be its hyperplane section. Then the pair $\left(S_{d}, H\right)$ satisfies all hypotheses of Conjecture 1.1. Moreover, if $d=1$ or $d=2$, then

$$
\alpha\left(S_{d}, H\right)=\alpha_{1}\left(S_{d}, H\right)=1 .
$$

Indeed, in these cases S_{d} is toric, so that the required equalities follows from [6, Lemma 5.1]. Furthermore, if $d=3$, then $\alpha\left(S_{d}, H\right)=\alpha_{1}\left(S_{d}, H\right)$ by [2, Theorem 1.7]. In Section 4, we prove

Theorem 1.2. Let S_{4} be a smooth quartic surface in \mathbb{P}^{3}. Then $\alpha\left(S_{4}, H\right)=\alpha_{1}\left(S_{4}, H\right)$.
Hence, Conjecture 1.1 holds for the pair $\left(S_{d}, H\right)$ provided that $d \leqslant 4$. In particular, this gives an easy way to compute all possible values of $\alpha\left(S_{d}, H\right)$ for $d=4$, because the number $\alpha_{1}\left(S_{d}, H\right)$ is easy to compute. However, Conjecture 1.1 fails for general surfaces of large degree in \mathbb{P}^{3}. This follows from

Theorem 1.3. Let S_{d} be a general surface in \mathbb{P}^{3} of degree $d \geqslant 8$. Then $\alpha\left(S_{d}, H\right)<\alpha_{1}\left(S_{d}, H\right)$.
This result shows that it is hard to compute $\alpha\left(S_{d}, H\right)$ for $d \gg 0$. In fact, we do not know what the exact value of $\alpha\left(S_{d}, H\right)$ is when $d \geqslant 5$ and the surface S_{d} is general. One the other hand, we prove that $\alpha_{1}\left(S_{d}, H\right)=\frac{3}{4}$ for these hypersurfaces (see Lemmas 3.1 and 3.2).

We prove Theorem 1.3 in Section 5. In Section 6, we show that Conjecture 1.1 also fails for some smooth sextic and septic surfaces in \mathbb{P}^{3}. We believe that it fails for some smooth quintic surfaces as well. Unfortunately, we are unable to verify this claim at this stage, due to enormous computations required in our method (see Remark 6.4).

By [2, Theorem 1.7], Conjecture 1.1 holds for all smooth del Pezzo surfaces, i.e. smooth Fano varieties of dimension two, polarized by their anticanonical divisors. Surfaces considered in Theorem 1.2 and 1.3 have non-negative Kodaira dimension, so that, in particular, they are not del Pezzo surfaces. Unfortunately, we do not know whether Conjecture 1.1 holds for smooth del Pezzo surfaces polarised by arbitrary ample divisors. Thus, we conclude by posing

Question 1.4 (Rubinstein). Let S be a smooth del Pezzo surface. Is it true that

$$
\alpha(S, A)=\alpha_{1}(S, A)
$$

for every ample divisor $A \in \operatorname{Pic}(S)$.
All varieties are assumed to be algebraic, projective and defined over \mathbb{C}.

2. Singularities of pairs

In this section we present local results about effective \mathbb{Q}-divisors on smooth surfaces. Almost all these results can be found in $[10, \S 6]$ in much more general forms.

Let S be a smooth surface, let D be an effective non-zero \mathbb{Q}-divisor on the surface S, and let P be a point in the surface S. Put $D=\sum_{i=1}^{r} a_{i} C_{i}$, where each C_{i} is an irreducible curve on S, and each a_{i} is a non-negative rational number. We assume here that all curves C_{1}, \ldots, C_{r} are different. We call (S, D) a log pair.

Let $\pi: \widetilde{S} \rightarrow S$ be a birational morphism such that \widetilde{S} is also smooth. Then π is a composition of n blow ups of smooth points. For each C_{i}, denote by \widetilde{C}_{i} its proper transform on the surface \widetilde{S}. Let F_{1}, \ldots, F_{n} be
π-exceptional curves. Then

$$
K_{\widetilde{S}}+\sum_{i=1}^{r} a_{i} \widetilde{C}_{i}+\sum_{j=1}^{n} b_{j} F_{j} \sim_{\mathbb{Q}} \pi^{*}\left(K_{S}+D\right)
$$

for some rational numbers b_{1}, \ldots, b_{n}. Suppose, in addition, that $\sum_{i=1}^{r} \widetilde{C}_{i}+\sum_{j=1}^{n} F_{j}$ is a divisor with simple normal crossings.
Definition 2.1. The log pair (S, D) is said to be \log canonical at the point P if the following two conditions are satisfied:

- $a_{i} \leqslant 1$ for every C_{i} such that $P \in C_{i}$,
- $b_{j} \leqslant 1$ for every F_{j} such that $\pi\left(F_{j}\right)=P$.

This definition is independent on the choice of birational morphism $\pi: \widetilde{S} \rightarrow S$ provided that the surface \widetilde{S} is smooth and $\sum_{i=1}^{r} \widetilde{C}_{i}+\sum_{j=1}^{n} F_{j}$ is a divisor with simple normal crossings. The log pair (S, D) is said to be log canonical if it is log canonical at every point of S.
Remark 2.2. Let R be any effective \mathbb{Q}-divisor on S such that $R \sim_{\mathbb{Q}} D$ and $R \neq D$. Put

$$
D_{\epsilon}=(1+\epsilon) D-\epsilon R
$$

for some rational number $\epsilon \geqslant 0$. Then $D_{\epsilon} \sim_{\mathbb{Q}} D$. Moreover, there exists the greatest rational number $\epsilon_{0} \geqslant 0$ such that the divisor $D_{\epsilon_{0}}$ is effective. Then $\operatorname{Supp}\left(D_{\epsilon_{0}}\right)$ does not contain at least one irreducible component of $\operatorname{Supp}(R)$. Moreover, if (S, D) is not \log canonical at P, and (S, R) is \log canonical at P, then $\left(S, D_{\epsilon_{0}}\right)$ is not \log canonical at P by Definition 2.1, because

$$
D=\frac{1}{1+\epsilon_{0}} D_{\epsilon_{0}}+\frac{\epsilon_{0}}{1+\epsilon_{0}} R .
$$

The following result is well-known and is very easy to prove.
Lemma 2.3 ([10, Exercise 6.18]). If (S, D) is not \log canonical at P, then $\operatorname{mult}_{P}(D)>1$.
Let $\pi_{1}: S_{1} \rightarrow S$ be a blow up of the point P, and let E_{1} be the π_{1}-exceptional curve. Denote by D^{1} the proper transform of the divisor D on the surface S_{1} via π_{1}. Then

$$
K_{S_{1}}+D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1} \sim_{\mathbb{Q}} \pi_{1}^{*}\left(K_{S}+D\right)
$$

Remark 2.4. The \log pair (S, D) is \log canonical at P if and only if $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is \log canonical at every point of the curve E_{1}.
Corollary 2.5. If $\operatorname{mult}_{P}(D)>2$, then (S, D) is not log canonical at P.
We can measure how far the pair (S, D) is from being \log canonical at P by the positive rational number

$$
\operatorname{lct}_{P}(S, D)=\sup \{\lambda \in \mathbb{Q} \mid \text { the } \log \text { pair }(S, \lambda D) \text { is } \log \text { canonical at } P\} .
$$

This number has been introduced by Shokurov and is called the log canonical threshold of the pair (S, D) at the point $P \in S$. The log canonical threshold of the pair (S, D) is defined as

$$
\operatorname{lct}(S, D)=\inf _{O \in S}\left\{\operatorname{lct}_{O}(S, D)\right\} .
$$

By Lemma 2.3 and Corollary 2.5, we have

$$
\begin{equation*}
\frac{2}{\operatorname{mult}_{P}(D)} \geqslant \operatorname{lct}_{P}(S, D) \geqslant \frac{1}{\operatorname{mult}_{P}(D)} \tag{2.6}
\end{equation*}
$$

The following theorem is a very special case of a much more general result known as Inversion of Adjunction (see, for example, [10, Theorem 6.29]).
Theorem 2.7 ([10, Exercise 6.31], [3, Theorem 7]). Suppose that $r \geqslant 2$. Put $\Delta=\sum_{i=2}^{r} a_{i} C_{i}$. Suppose that C_{1} is smooth at $P, a_{1} \leqslant 1$, and the log pair (S, D) is not log canonical at P. Then mult ${ }_{P}\left(C_{1} \cdot \Delta\right)>1$.

This theorem implies
Lemma 2.8. Suppose that (S, D) is not \log canonical at P, and $\operatorname{mult}_{P}(D) \leqslant 2$. Then there exists a unique point in E_{1} such that $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is not log canonical at it.

Proof. If $\operatorname{mult}_{P}(D) \leqslant 2$ and $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is not \log canonical at two distinct points P_{1} and \widetilde{P}_{1} of the curve E_{1}, then

$$
2 \geqslant \operatorname{mult}_{P}(D)=D^{1} \cdot E_{1} \geqslant \operatorname{mult}_{P_{1}}\left(D^{1} \cdot E_{1}\right)+\operatorname{mult}_{\widetilde{P}_{1}}\left(D^{1} \cdot E_{1}\right)>2
$$

by Theorem 2.7. By Remark 2.4, this proves the assertion.
A crucial role in the proof of Theorems 1.2 is played by
Theorem 2.9 ([3, Theorem 13]). Suppose that $r \geqslant 3$. Put $\Delta=\sum_{i=3}^{r} a_{i} C_{i}$. Suppose that the curves C_{1} and C_{2} are smooth at P and intersect each other transversally at P, the \log pair (S, D) is not \log canonical at P, and $\operatorname{mult}_{P}(\Delta) \leqslant 1$. Then either

$$
\operatorname{mult}_{P}\left(C_{1} \cdot \Delta\right)>2\left(1-a_{2}\right)
$$

or

$$
\operatorname{mult}_{P}\left(C_{1} \cdot \Delta\right)>2\left(1-a_{1}\right)
$$

(or both).
Recall that π is a composition of n blow ups of smooth points. We encourage the reader to prove both Theorems 2.7 and 2.9 using induction on n.

3. Smooth surfaces in \mathbb{P}^{3}

In this section we collect global results about smooth surfaces in \mathbb{P}^{3}. These results will be used in the proof of Theorems 1.2 and 1.3.

Let S_{d} be a smooth surface in \mathbb{P}^{3} of degree d. Denote by H its hyperplane section. Then

$$
1 \geqslant \alpha\left(S_{d}, H\right) \geqslant \frac{1}{d}
$$

by Lemma 2.3. These bounds are not optimal for $d \geqslant 2$. In fact, if $d \geqslant 2$, then $\alpha\left(S_{d}, H\right) \geqslant \frac{2}{d}$. Moreover, $\alpha\left(S_{d}, H\right)=\frac{2}{d}$ if and only if S_{d} contains a so-called star point, i.e., a point that is an intersection of d lines contained in S_{d}. This follows from [4, Corollary 1.27]. A slightly better upper bound for $\alpha\left(S_{d}, H\right)$ follows from
Lemma 3.1. Suppose that $d \geqslant 3$. Then $\alpha_{1}\left(S_{d}, H\right) \leqslant \frac{3}{4}$.
Proof. Let us first consider the case $d=3$. Then S_{3} is a smooth cubic surface in \mathbb{P}^{3}. It is well-known that S_{3} contains 27 lines. Taking hyperplane sections of the cubic surface S_{3} passing through one of these lines L_{1}, we see that either there exists a conic C in S_{3} such that

$$
L_{1}+C \sim H
$$

and L_{1} is tangent to C, or S_{3} contains two more lines L_{2} and L_{3} such that

$$
L_{1}+L_{2}+L_{3} \sim H
$$

and all three lines L_{1}, L_{2} and L_{3} intersect in a single point. In the former case, one has $\alpha_{1}\left(S_{d}, H\right) \leqslant \frac{3}{4}$ by definition of $\alpha_{1}\left(S_{d}, H\right)$. Similarly, in the later case, one has $\alpha_{1}\left(S_{d}, H\right) \leqslant \frac{2}{3}$.

We proved the required assertion in the case $d=3$. Now let us prove it for $d=4$. The proof is similar for higher degrees.

Let $\mathcal{X} \cong \mathbb{P}^{34}$ be the variety of all quartics in four variables, and suppose \mathcal{Y} is the variety of all complete flag varieties in \mathbb{P}^{3}, hence \mathcal{Y} is a projective variety of dimension 6 . Consider the incidence variety $\mathcal{Z} \subset \mathcal{X} \times \mathcal{Y}$ consisting of all pairs (X, Y), where $Y=(P, L, E)$, such that $X \cap E$ has an \mathbb{A}_{3}, or worse, singularity at P with tangent L. We claim that the fibres of the second projection are linear subspaces of codimension 6 . To
show this, we choose a coordinate system such that P, L and E are, respectively, defined by $x=y=z=0$, $x=y=0$ and $x=0$. Then the fibre of \mathcal{Y} is the set of quartics such that the coefficients of the monomials

$$
y z w^{2}, y w^{3}, z^{3} w, z^{2} w^{2}, z w^{3}, w^{4}
$$

are equal to zero.
Therefore it follows that \mathcal{Z} is irreducible and has dimension $34+6-6=34$. In order to complete the proof, we need to show that the first projection is surjective. Since it is a projective map, the image $\mathcal{W} \subset \mathcal{X}$ is closed. We claim that there exists a point $X \in W$ with finite fibre. Then the generic fibre is finite and $\operatorname{dim}(\mathcal{W})=\operatorname{dim}(\mathcal{Z})=34$.

A quartic surface corresponds to a point $X_{0} \in \mathcal{W}$ with finite fiber if it is nonsingular and the intersections with its tangent planes do not have triple points; equivalently, the rank of the hessian of the equation of the surface never drops to 2 . An example of such a surface is given by the equation

$$
x^{4}+y^{4}+z^{4}+w^{4}+\left(x^{2}+y^{2}+z^{2}+w^{2}\right)^{2}=0
$$

Arguing as in the proof of [5, Proposition 2.1], we get
Lemma 3.2. Suppose that S_{d} is a general surface in \mathbb{P}^{3} of degree d. Then $\alpha_{1}\left(S_{d}, H\right) \geqslant \frac{3}{4}$.
Proof. Similar as in the proof of Lemma 3.1, we define $\mathcal{X} \cong \mathbb{P}^{\binom{d+3}{3}-1}, \mathcal{Y}$ the variety of all complete flag varieties, and $\mathcal{Z} \subset \mathcal{X} \times \mathcal{Y}$ the incidence consisting of all pairs (X, Y), where $Y=(P, L, E)$, such that $X \cap E$ has an \mathbb{A}_{4}, or worse, singularity at P with tangent L. Now the fibers of the second projection have codimension 7 (defined by 6 linear and one quadratic equation). Since $\operatorname{dim}(\mathcal{Y})=6$, it follows that $\operatorname{dim}(\mathcal{Z})<\operatorname{dim}(\mathcal{X})$, hence the first projection cannot be surjective and the generic surface has no corresponding point in \mathcal{Z}. This shows that its hyperplane sections have only singularities of type $\mathbb{A}_{1}, \mathbb{A}_{2}$, and \mathbb{A}_{3}.

The following result is due to Pukhlikov.
Lemma 3.3. Let D be an effective \mathbb{Q}-divisor on S_{d} such that $D \sim_{\mathbb{Q}} H$, and let P be a point in the surface S_{d}. Put $D=\sum_{i=1}^{r} a_{i} C_{i}$, where each C_{i} is an irreducible curve, and each a_{i} is a non-negative rational number. Then each a_{i} does not exceed 1 .
Proof. Let X be a cone over the curve C_{i} whose vertex is a sufficiently general point in \mathbb{P}^{3}. Then

$$
X \cap S=C_{i}+\widehat{C}_{i}
$$

where \widehat{C}_{i} is an irreducible curve of degree $(d-1) \operatorname{deg}\left(C_{i}\right)$. Moreover, \widehat{C}_{i} is not contained in the support of the divisor D. Furthermore, the intersection $C_{i} \cap \widehat{C}_{i}$ consists of $\operatorname{deg}\left(\widehat{C}_{i}\right)$ different points, because the surface S_{d} is smooth. Thus, we have

$$
\operatorname{deg}\left(\widehat{C}_{i}\right)=D \cdot \widehat{C}_{i} \geqslant a_{i} C_{i} \cdot \widehat{C}_{i} \geqslant a_{i} \operatorname{deg}\left(\widehat{C}_{i}\right)
$$

which implies that $a_{i} \leqslant 1$.
For an alternative proof of Pukhlikov's lemma, see the proof of [10, Lemma 5.36].

4. Quartic surfaces

In this section, we prove Theorem 1.2. Let S_{4} be a smooth quartic surface in \mathbb{P}^{3}. Denote by H its hyperplane section. By definition, one has $\alpha\left(S_{4}, H\right) \leqslant \alpha_{1}\left(S_{4}, H\right)$. We must show that $\alpha\left(S_{4}, H\right)=\alpha_{1}\left(S_{4}, H\right)$. Suppose that $\alpha\left(S_{4}, H\right)<\alpha_{1}\left(S_{4}, H\right)$. Let us seek for a contradiction.

Since $\alpha\left(S_{4}, H\right)<\alpha_{1}\left(S_{4}, H\right)$, there exists an effective \mathbb{Q}-divisor D such that $D \sim_{\mathbb{Q}} H$ and $\left(S_{4}, \lambda D\right)$ is not \log canonical for some $\lambda<\alpha_{1}\left(S_{4}, H\right)$. Since $\alpha_{1}\left(S_{4}, H\right) \leqslant \frac{3}{4}$ by Lemma 3.1, we have

$$
\begin{equation*}
\lambda<\frac{3}{4} . \tag{4.1}
\end{equation*}
$$

By Lemma 3.3, the \log pair $\left(S_{4}, \lambda D\right)$ is \log canonical outside of finitely many points. Let P be one of these points at which $\left(S_{4}, \lambda D\right)$ is not \log canonical. Consider the quartic curve T_{P} that is cut out on S_{4} by the hyperplane in \mathbb{P}^{3} that is tangent to S_{4} at the point P. Then T_{P} is a reduced plane quartic curve Lemma 3.3. It is singular at the point P by construction.

Lemma 4.2. The curve T_{P} contains all lines in S_{4} that passes through P.
Proof. If L is a line in S_{4} that passes through P, then L is an irreducible component of the curve T_{P}, because otherwise we would have

$$
1=L \cdot C=\operatorname{mult}_{P}\left(L \cdot T_{P}\right) \geqslant \operatorname{mult}_{P}\left(T_{P}\right) \geqslant 2
$$

which is absurd.
Put $m=\operatorname{mult}_{P}(D)$. Then Lemma 2.3 and (4.1) imply

$$
\begin{equation*}
m>\frac{1}{\lambda}>\frac{4}{3} . \tag{4.3}
\end{equation*}
$$

Lemma 4.4. Let L be a line in S_{4} that passes through P. Then L is contained in $\operatorname{Supp}(D)$.
Proof. If L is not contained in the support of D, then (4.3) gives

$$
1=L \cdot H=L \cdot D \geqslant \operatorname{mult}_{P}(L) \operatorname{mult}_{P}(D)=m>\frac{1}{\lambda}>1
$$

which is absurd.
Let $f: \widetilde{S}_{4} \rightarrow S_{4}$ be a blow up of the surface S at the point P. Denote by E the f-exceptional curve, and denote by \widetilde{D} the proper transform of D on the surface \widetilde{S}_{4}. Then the log pair

$$
\begin{equation*}
\left(\widetilde{S}_{4}, \lambda \widetilde{D}+(\lambda m-1) E\right) \tag{4.5}
\end{equation*}
$$

is not \log canonical at some point $Q \in E$ by Remark 2.4. Moreover, Lemma 2.8 implies
Corollary 4.6. Suppose that $m \leqslant \frac{2}{\lambda}$. Then the log pair (4.5) is log canonical at every point of the curve E that is different from Q.

Put $\widetilde{m}=\operatorname{mult}_{Q}(\widetilde{D})$. Applying Lemma 2.3 to the \log pair (4.5) at the point Q, we obtain

$$
\begin{equation*}
m+\widetilde{m}>\frac{2}{\lambda}>\frac{8}{3}, \tag{4.7}
\end{equation*}
$$

because $\lambda<\frac{3}{4}$ by (4.1).
Let $g: \bar{S}_{4} \rightarrow \widetilde{S}_{4}$ be the blow up of the surface \widetilde{S}_{4} at the point Q, and let F be the exceptional curve of g. Denote by \bar{E} and \bar{D} the proper transforms of E and \widetilde{D}, respectively. By Remark 2.4, the log pair

$$
\begin{equation*}
\left(\bar{S}_{4}, \lambda \bar{D}+(\lambda m-1) \bar{E}+(\lambda m+\lambda \widetilde{m}-2) F\right) \tag{4.8}
\end{equation*}
$$

is not \log canonical at some point $O \in F$, because

$$
K_{\bar{S}_{4}}+\lambda \bar{D}+(\lambda m-1) \bar{E}+(\lambda m+\lambda \widetilde{m}-2) F \sim_{\mathbb{Q}} g^{*}\left(K_{\widetilde{S}_{4}}+\lambda \widetilde{D}+(\lambda m-1) E\right)
$$

and (4.5) is not \log canonical at the point Q. Applying Lemma 2.8, we obtain
Corollary 4.9. Suppose that $m+\widetilde{m} \leqslant \frac{3}{\lambda}$. Then the log pair (4.8) is log canonical at every point of F that is different from O.

Put $\bar{m}=\operatorname{mult}_{O}(\bar{D})$. Applying Lemma 2.3 to the \log pair (4.8) at the point O, we get

$$
\begin{equation*}
m+\widetilde{m}+\bar{m}>\frac{3}{\lambda}>4 \tag{4.10}
\end{equation*}
$$

because $\lambda<\frac{3}{4}$ by (4.1).
Denote by \widetilde{T}_{P} the proper transform of the singular quartic curve T_{P} on the surface \widetilde{S}_{4}. We have the following diagram:

For the point Q, we have two mutually excluding possibilities: $Q \in \widetilde{T}_{P}$ and $Q \notin \widetilde{T}_{P}$. If $Q \in \widetilde{T}_{P}$, we can use geometry of the curve T_{P} to derive a contradiction. If $Q \notin \widetilde{T}_{P}$, then we often can obtain a contradiction using the following two lemmas.
Lemma 4.11. Suppose that $m \leqslant \frac{2}{\lambda}, m+\widetilde{m} \leqslant \frac{3}{\lambda}$ and $Q \notin \widetilde{T}_{P}$. Then $O=\bar{E} \cap F$.
Proof. Suppose $O \neq \bar{E} \cap F$. Then the linear system $\left|(f \circ g)^{*}(H)-2 F-\bar{E}\right|$ is a free pencil. Thus, it contains a unique curve that passes through the point O. Denote this curve by \bar{M}, and denote its proper transform on S_{4} by M. Then M is a hyperplane section of the surface S_{4} and $P \in M$. In particular, M is reduced by Lemma 3.3. Since $Q \notin \widetilde{T}_{P}$, we have $M \neq T_{P}$, so that M is smooth at P. Thus, \bar{M} is the proper transform of the curve M on the surface \bar{S}_{4}.

Since M is smooth at P, the $\log \operatorname{pair}\left(S_{4}, \lambda M\right)$ is \log canonical at P. Thus, it follows from Remark 2.2 that there exists an effective \mathbb{Q}-divisor D^{\prime} on the surface S_{4} such that $D^{\prime} \sim_{\mathbb{Q}} H$, the \log pair $\left(S_{4}, \lambda D^{\prime}\right)$ is not \log canonical at P, the support of the divisor D^{\prime} is contained in the support of the divisor D and does not contain at least one irreducible component of the curve M. Replacing D by D^{\prime}, we may assume that D enjoys all these properties.

Denote by M_{\star} the irreducible component of the curve M that is not contained in the support of D. Similarly, denote by \bar{M}^{\prime} the irreducible component of the curve \bar{M} that contain O, and denote its image on S_{4} by M^{\prime}. If $M_{\star}=M^{\prime}$, then

$$
\bar{m} \leqslant \bar{M}^{\prime} \cdot \bar{D}=\operatorname{deg}\left(M^{\prime}\right)-m-\widetilde{m} \leqslant 4-m-\widetilde{m},
$$

which contradicts (4.10). Thus, we see that $M_{\star} \neq M^{\prime}$. In particular, the curve M is not irreducible.
Since M is smooth at P and $P \in M^{\prime}$, then $P \notin M_{\star}$. By Lemma 4.2, the curve M^{\prime} is not a line, because $Q \notin \widetilde{T}_{P}$ by assumption. Hence, either M^{\prime} is a conic or M^{\prime} is a cubic curve. Therefore, we may have the following cases:

M^{\prime} and M_{\star} are conics

M^{\prime} is a conic, and M_{\star} is a line

M^{\prime} is a cubic, and M_{\star} is a line

Put $D=a M^{\prime}+\Delta$, where a is a non-negative rational number, and Δ is an effective \mathbb{Q}-divisor whose support does not contain M^{\prime}. Then $a \leqslant 1$ by Lemma 3.3. In fact, we can say more. Indeed, we have

$$
\operatorname{deg}\left(M_{\star}\right)=H \cdot M_{\star}=D \cdot M_{\star}=a M^{\prime} \cdot M_{\star}+\Delta \cdot M_{\star} \geqslant a M^{\prime} \cdot M_{\star}
$$

Since $M^{\prime} \cdot M_{\star}=\operatorname{deg}\left(M^{\prime}\right) \operatorname{deg}\left(M_{\star}\right)$ on the surface S_{4}, we have

$$
\begin{equation*}
a \leqslant \frac{\operatorname{deg}\left(M_{\star}\right)}{\operatorname{deg}\left(M^{\prime}\right) \operatorname{deg}\left(M_{\star}\right)} \tag{4.12}
\end{equation*}
$$

Denote by $\widetilde{\Delta}$ the proper transform of the divisor Δ on the surface \widetilde{S}_{4}. Put $n=\operatorname{mult}_{P}(\Delta)$ and $\widetilde{n}=$ $\operatorname{mult}_{Q}(\widetilde{\Delta})$. Since $O \neq \bar{E} \cap F$ and (4.8) is not \log canonical at the point O, the log pair

$$
\left(\bar{S}_{4}, \lambda a \bar{M}^{\prime}+\lambda \bar{\Delta}+(\lambda n+\lambda \widetilde{n}+2 \lambda a-2) F\right)
$$

is also not \log canonical at the point the point O. Applying Theorem 2.7 to this log pair, we obtain

$$
\bar{M}^{\prime} \cdot \bar{\Delta}+(\lambda n+\lambda \widetilde{n}+2 \lambda a-2)=\bar{M}^{\prime} \cdot(\lambda \bar{\Delta}+(\lambda n+\lambda \widetilde{n}+2 \lambda a-2) F)>1
$$

This gives $\bar{M}^{\prime} \cdot \bar{\Delta}+n+\widetilde{n}+2 a>\frac{3}{\lambda}$. On the other hand, we have

$$
\bar{M}^{\prime} \cdot \bar{\Delta}=M^{\prime} \cdot \Delta-n-\widetilde{n}=M^{\prime} \cdot\left(H-a M^{\prime}\right)-n-\widetilde{n}=\operatorname{deg}\left(M^{\prime}\right)-a\left(M^{\prime}\right)^{2}-n-\widetilde{n} .
$$

Therefore, we obtain

$$
\operatorname{deg}\left(M^{\prime}\right)-a\left(M^{\prime}\right)^{2}>\frac{3}{\lambda}-2 a>4-2 a,
$$

because $\lambda>\frac{3}{4}$ by (4.1). Thus, we have

$$
\begin{equation*}
a\left(2-\left(M^{\prime}\right)^{2}\right)>4-\operatorname{deg}\left(M^{\prime}\right) . \tag{4.13}
\end{equation*}
$$

If M^{\prime} is a conic, then $\left(M^{\prime}\right)^{2}=-2$, so that that $a>\frac{1}{2}$ by (4.13), which is impossible, because $a \leqslant \frac{1}{2}$ by (4.12). Thus, M^{\prime} is a plane cubic curve. Then $\left(M^{\prime}\right)^{2}=0$. Now (4.13) gives $a>\frac{1}{2}$, which is impossible, since $a \leqslant \frac{1}{3}$ by (4.12).
Lemma 4.14. If $m \leqslant 2$, then $m \leqslant \frac{2}{\lambda}, m+\widetilde{m} \leqslant \frac{3}{\lambda}$ and $O \neq \bar{E} \cap F$.
Proof. Suppose $m \leqslant 2$. Then $m \leqslant \frac{2}{\lambda}$, because $\lambda<\frac{3}{4}$ by (4.1). Similarly, we see that $m+\widetilde{m} \leqslant \frac{3}{\lambda}$, because $\widetilde{m} \leqslant m$. If $O=\bar{E} \cap F$, then

$$
(\lambda \bar{D}+(\lambda m+\lambda \widetilde{m}-2) F) \cdot \bar{E}>1
$$

by Theorem 2.7. On the other hand, we have

$$
\bar{D} \cdot \bar{E}=m-\widetilde{m}
$$

and $F \cdot \bar{E}=1$. Hence, if $O \neq \bar{E} \cap F$, then $2 \lambda \geqslant \lambda m>\frac{3}{2}$, which contradicts (4.1).
Recall that T_{P} is a reduced plane quartic curve that is singular at the point P. This implies that there are twelve possibilities for the curve T_{P} as follows.
(A) $\operatorname{mult}_{P}\left(T_{P}\right)=4$, hence T_{P} consists of four lines that intersect at P.
(B) $\operatorname{mult}_{P}\left(T_{P}\right)=3$ and T_{P}
(B1) consists of four lines and three of them intersect at P, or
(B2) it is an irreducible quartic with a singular point P of multiplicity 3 , or
(B3) it consists of a conic and two lines, all intersecting at P, or
(B4) it consists of a cubic curve with a singular point P of multiplicity 2 and a line passing through P.
(C) $\operatorname{mult}_{P}\left(T_{P}\right)=2$ and T_{P}
(C1) consists of four lines, two of which pass through P, or
(C2) it consist of a conic and two lines, and the two lines intersect at P and P does not lie on the conic, or
(C3) it consist of a conic and two lines and P is the intersection point of the conic with one of the lines, or
(C4) it consists of a cubic curve and a line and P is the intersection of the two at a smooth point of the cubic curve, or
(C5) it consists of a cubic curve and a line and P is singular point of the cubic curve with multiplicity 2 and does not lie on the line, or
(C6) it consists of two conics and they intersect at P, or
(C7) it is an irreducible quartic curve with a singular point P of multiplicity 2 .
In the rest of this section, we eliminate all these possibilities case by case using Lemmas 4.11 and 4.14. To succeed in doing this, we also need

Lemma 4.15. We may assume that the support of the divisor D does not contain at least one irreducible component of the plane quartic curve T_{P}.
Proof. Note that $\left(S_{4}, \lambda T_{P}\right)$ is \log canonical at P, because $\lambda<\alpha_{1}\left(S_{4}, H\right)$. Thus, it follows from Remark 2.2 that there exists an effective \mathbb{Q}-divisor D^{\prime} on the surface S_{4} such that $D^{\prime} \sim_{\mathbb{Q}} H$, the \log pair $\left(S_{4}, \lambda D^{\prime}\right)$ is not \log canonical at P, and the support of D^{\prime} does not contain at least one irreducible component of the curve T_{P}. Replacing D by D^{\prime}, we obtain the required assertion.

We denote by C_{\star} the irreducible component of the curve T_{P} that is not contained in the support of the divisor D. By Lemma 4.4, if $P \in C_{\star}$, then C_{\star} is not a line. This gives

Corollary 4.16. The case (A) is impossible.
Now we are going to deal with the cases (B1), (B2), (B3), and (B4). In these four cases, $\lambda<\frac{2}{3}$. Indeed, one has $\operatorname{lct}_{P}\left(S_{4}, T_{P}\right) \leqslant \frac{2}{\operatorname{mult}_{P}\left(T_{P}\right)}$ by (2.6). Thus, we have

$$
\begin{equation*}
\lambda<\frac{2}{\operatorname{mult}_{P}\left(T_{P}\right)}, \tag{4.17}
\end{equation*}
$$

because $\lambda<\alpha_{1}\left(S_{4}, H\right) \leqslant \operatorname{lct}_{P}\left(S_{4}, T_{P}\right)$.
Lemma 4.18. The case (B1) is impossible.
Proof. Suppose that we are in the case (B1). Then $\operatorname{mult}_{P}\left(T_{P}\right)=3$ and T_{P} consists of four lines L_{1}, L_{2}, L_{3}, and L_{4} such that the first three intersect at P, and L_{4} does not pass through P. Thus, we have the following picture:

By Lemma 4.4, the lines L_{1}, L_{2}, and L_{3} are contained in the support of D, and $C_{\star}=L_{4}$. Hence, we put $D=a_{1} L_{1}+a_{2} L_{2}+a_{3} L_{3}+\Omega$, where a_{1}, a_{2}, and a_{3} are positive rational numbers, and Ω is an effective \mathbb{Q}-divisor whose support does not contain the lines L_{1}, L_{2}, L_{3}, and L_{4}. Put $n=\operatorname{mult}_{P}(\Omega)$. Then $m=n+a_{1}+a_{2}+a_{3}$.

Denote by $\widetilde{\Omega}$ the proper transform of the divisor Ω on the surface \widetilde{S}_{4}. Also denote the proper transforms of the lines L_{1}, L_{2}, and L_{3} on the surface \widetilde{S}_{4} by $\widetilde{L}_{1}, \widetilde{L}_{2}$, and \widetilde{L}_{3}, respectively. Then we can rewrite the log pair (4.8) as

$$
\left(\widetilde{S}_{4}, \lambda a_{1} \widetilde{L}_{1}+\lambda a_{2} \widetilde{L}_{2}+\lambda a_{3} \widetilde{L}_{3}+\lambda \widetilde{\Omega}+\left(\lambda\left(n+a_{1}+a_{2}+a_{3}\right)-1\right) E\right) .
$$

On the surface S_{4}, one has $L_{1}^{2}=-2$. Thus, we have

$$
1=D \cdot L_{1}=\left(a_{1} L_{1}+a_{2} L_{2}+a_{3} L_{3}+\Omega\right) \cdot L_{4}=-2 a_{1}+a_{2}+a_{3}+\Omega \cdot L_{1} \geqslant-2 a_{1}+a_{2}+a_{3}+n .
$$

Similarly, we see that $a_{1}-2 a_{2}+a_{3}+n \leqslant 1$ and $a_{1}+a_{2}-2 a_{3}+n \leqslant 1$. Adding these three inequalities together, we get $n \leqslant 1$. On the other hand, we have

$$
1=D \cdot L_{4}=\left(a_{1} L_{1}+a_{2} L_{2}+a_{3} L_{3}+\Omega\right) \cdot L_{4}=a_{1}+a_{2}+a_{3}+\Omega \cdot L_{4} \geqslant a_{1}+a_{2}+a_{3}
$$

which gives $a_{1}+a_{2}+a_{3} \leqslant 1$. In particular, we have $m=n+a_{1}+a_{2}+a_{3} \leqslant 2$. Then Lemmas 4.11 and 4.14 imply that Q is contained in one of the curves $\widetilde{L}_{1}, \widetilde{L}_{2}$, and \widetilde{L}_{3}. Without loss of generality, we may assume that $Q \in \widetilde{L}_{1}$.

As \widetilde{L}_{2} and \widetilde{L}_{3} do not pass through Q, the log pair $\left(\widetilde{S}_{4}, \lambda a_{1} \widetilde{L}_{1}+\lambda \widetilde{\Omega}+\left(\lambda\left(n+a_{1}+a_{2}+a_{3}\right)-1\right) E\right)$ is not \log canonical at the point Q. Moreover, we have $\operatorname{mult}_{Q}(\widetilde{\Omega}) \leqslant n \leqslant 1$. Thus, we can apply Theorem 2.9 to the \log pair (4.8) and the curves \widetilde{L}_{1} and E. This gives either

$$
\begin{aligned}
& \lambda\left(1+2 a_{1}-a_{2}-a_{3}-n\right)=\lambda\left(\left(H-a_{1} L_{1}-a_{2} L_{2}-a_{3} L_{3}\right) \cdot L_{1}-n\right)= \\
& \quad=\lambda\left(\Omega \cdot L_{1}-n\right)=\lambda \widetilde{\Omega} \cdot \widetilde{L}_{1}>2\left(1-\left(\lambda\left(n+a_{1}+a_{2}+a_{3}\right)-1\right)\right)
\end{aligned}
$$

or $\lambda n=\lambda \widetilde{\Omega} \cdot E>2\left(1-\lambda a_{1}\right)$ (or both). If the former inequality holds, then

$$
4 a_{1}+a_{2}+a_{3}+n>\frac{4}{\lambda}-1>5
$$

because $\lambda<\frac{2}{3}$ by (4.17). One the other hand, we know that $a_{1} \leqslant 1$ by Lemma 3.3, and we proved earlier that $a_{1}+a_{2}+a_{3} \leqslant 1$ and $n \leqslant 1$. This implies that $4 a_{1}+a_{2}+a_{3}+n \leqslant 5$. Thus, we see that the latter inequality holds. It gives $1+2 a_{1}>\frac{2}{\lambda}>3$, since $\lambda<\frac{2}{3}$ by (4.17). Thus, we conclude that $a_{1}>1$, which is impossible by Lemma 3.3.

Lemma 4.19. The case (B2) is impossible.
Proof. Suppose that we are in the case (B2). Then $\operatorname{mult}_{P}\left(T_{P}\right)=3$ and T_{P} is an irreducible quartic curve with a singular point P of multiplicity 3 . Thus, we have the following picture:

We have $C_{\star}=C$. Thus, it follows from (4.3) that

$$
4=H \cdot C=D \cdot C \geqslant \operatorname{mult}_{P}(C) \operatorname{mult}_{P}(D) \geqslant 3 \operatorname{mult}_{P}(D)>\frac{3}{\lambda},
$$

which contradicts (4.1).
Lemma 4.20. The case (B3) is impossible.
Proof. Suppose that we are in the case (B3). Then $\operatorname{mult}_{P}\left(T_{P}\right)=3$ and T_{P} consists of a conic C_{1} and two lines L_{1} and L_{2}, all intersecting at the point P. Thus, we have the following picture:

By Lemma 4.4, both lines L_{1} and L_{2} are contained in the support of the divisor D. Hence we can write $D=a_{1} L_{1}+a_{2} L_{2}+\Omega$, where a_{1} and a_{2} are positive rational numbers, and Ω is an effective \mathbb{Q}-divisor whose support does not contain the lines L_{1} and L_{2}. Recall that the support of Ω does not contain the curve C_{\star} by assumption. In our case, the curve C_{\star} is the conic C_{1}.

Put $n=\operatorname{mult}_{P}(\Omega)$. Let us show that $n \leqslant \frac{6}{5}$. We have

$$
n \leqslant \Omega \cdot L_{1}=\left(H-a_{1} L_{1}-a_{2} L_{2}\right) \cdot L_{1}=1+2 a_{1}-a_{2} .
$$

Similarly, we see that $n \leqslant 1-a_{1}+2 a_{2}$. Finally, we have

$$
n \leqslant \Omega \cdot C_{\star}=\left(H-a_{1} L_{1}-a_{2} L_{2}\right) \cdot C_{\star}=2-2 a_{1}-2 a_{2},
$$

which implies that $a_{1}+a_{2} \leqslant 1-\frac{n}{2}$. Adding these three inequalities together, we get $n \leqslant \frac{6}{5}$.

By (4.17), we have $\lambda<\frac{2}{3}$. Since $n \frac{6}{5}$, we see that $\lambda n \leqslant 1$. Thus, we can apply Theorem 2.9 to the log pair $\left(S_{4}, a_{1} L_{1}+a_{2} L_{2}+\Omega\right)$. This gives $\lambda \Omega \cdot L_{1}>2\left(1-\lambda a_{2}\right)$ or $\lambda \Omega \cdot L_{2}>2\left(1-\lambda a_{1}\right)$. Without loss of generality, we may assume that the former inequality holds. Then

$$
\lambda\left(1+2 a_{1}-a_{2}\right),=\lambda\left(H-a_{1} L_{1}-a_{2} L_{2}\right) \cdot L_{1}=\lambda \Omega \cdot L_{1}>2\left(1-\lambda a_{2}\right)
$$

which implies that $2 a_{1}+a_{2}>\frac{2}{\lambda}-1$. Since $\lambda<\frac{2}{3}$, we have $2 a_{1}+a_{2}>2$, which is impossible since we already proved that $a_{1}+a_{2} \leqslant 1-\frac{n}{2} \leqslant 1$.
Lemma 4.21. The case (B4) is impossible.
Proof. Suppose that we are in the case (B4). Then mult $P_{P}\left(T_{P}\right)=3$ and T_{P} consists of a cubic curve C_{1} with a singular point P of multiplicity 2 and a line L passing through P. Thus, we have the following picture:

By Lemma 4.4, the line L is contained in the support of the divisor D. Hence, $C_{\star}=C_{1}$, and we can write $D=a L+\Omega$, where a is a positive rational number, and Ω is an effective \mathbb{Q}-divisor whose support does not contain the line L. Put $n=\operatorname{mult}_{P}(\Omega)$. Then

$$
3=H \cdot C_{1}=D \cdot C_{1}=(a L+\Omega) \cdot C_{1}=3 a+\Omega \cdot C_{1} \geqslant 3 a+2 n \geqslant 2 a+2 n
$$

which implies that $a+n \leqslant \frac{3}{2}$. On the other hand, $\lambda<\frac{2}{3}$ by (4.17), so that $n+a>\frac{3}{2}$ by Lemma 2.3 . The contradiction is clear.

Lemma 4.22. The cases (C 1) and (C2) are impossible.
Proof. Suppose that we are either in the case (C1) or in the case (C2). Then T_{P} consists of two lines L_{1} and L_{2}, and a possibly reducible conic C_{1}, where P is the intersection point of the lines L_{1} and L_{2}, and P is not contained in the conic C_{1}. If we are in the case $(\mathrm{C} 1)$, then the conic C_{1} splits as a union of two different lines L_{3} and L_{4}, which implies that we have the following picture:

If we are in the case $(\mathrm{C} 2)$, then the conic C_{1} is irreducible, so that we have the following picture:

By Lemma 4.4, both lines L_{1} and L_{2} are contained in the support of the divisor D. In particular, $C_{\star} \neq L_{1}$ and $C_{\star} \neq L_{2}$. Write $D=\Omega+a_{1} L_{1}+a_{2} L_{2}$, where a_{1} and a_{2} are positive rational numbers, and Ω is an effective \mathbb{Q}-divisor whose support does not contain the lines L_{1} and L_{2}. Put $n=\operatorname{mult}_{P}(\Omega)$. Then

$$
n \leqslant \Omega \cdot L_{1}=\left(H-a_{1} L_{1}-a_{2} L_{2}\right) \cdot L_{1}=1+2 a_{1}-a_{2}
$$

Similarly, we see that $n \leqslant 1-a_{1}+2 a_{2}$. Finally, we have

$$
0 \leqslant \Omega \cdot C_{\star}=\left(H-a_{1} L_{1}-a_{2} L_{2}\right) \cdot C_{\star}=\operatorname{deg}\left(C_{\star}\right)\left(1-a_{1}-a_{2}\right),
$$

which implies that $a_{1}+a_{2} \leqslant 1$. Adding these three inequalities together, we get $n \leqslant \frac{3}{2}$.
Recall that $m=n+a_{1}+a_{1}$. We see that $m \leqslant \frac{5}{2}$, because $a_{1}+a_{2} \leqslant 1$ and $n \leqslant \frac{3}{2}$. In particular, $\lambda m<\frac{15}{8}$, because $\lambda<\frac{3}{4}$ by (4.1).

Denote by $\widetilde{\Omega}$ the proper transform of the divisor Ω on the surface \widetilde{S}_{4}. Similarly, denote by \widetilde{L}_{1} and \widetilde{L}_{2} the proper transform of the lines L_{1} and L_{2} on the surface \widetilde{S}_{4}, respectively. Then we can rewrite the \log pair (4.5) as

$$
\left(\widetilde{S}_{4}, \lambda a_{1} \widetilde{L}_{1}+\lambda a_{2} \widetilde{L}_{2}+\lambda \widetilde{\Omega}+\left(\lambda\left(a_{1}+a_{2}+n\right)-1\right) E\right) .
$$

Since $\lambda m<\frac{15}{8}$, this \log pair is \log canonical at every point of E that is different from Q by Corollary 4.6. Put $\widetilde{n}=\operatorname{mult}_{Q}(\widetilde{\Omega})$. Then $\widetilde{n} \leqslant n$.

Suppose that $Q \in \widetilde{L}_{1}$. Then $Q \notin \widetilde{L}_{2}$ and

$$
\widetilde{n} \leqslant \widetilde{\Omega} \cdot \widetilde{L}_{1}=\Omega \cdot L_{1}-n=1+2 a_{1}-a_{2}-n .
$$

This gives $2 \widetilde{n} \leqslant \widetilde{n}+n \leqslant 1+2 a_{1}-a_{2}$, because $\widetilde{n} \leqslant n$. Since, we already know that $n \leqslant 1-a_{1}+2 a_{2}$, we get

$$
3 \widetilde{n} \leqslant 2 \widetilde{n}+n \leqslant 2+a_{1}+a_{2} \leqslant 3,
$$

because $a_{1}+a_{2} \leqslant 1$. Thus, we see that $\widetilde{n} \leqslant 1$. On the other hand, the \log pair $\left(\widetilde{S}_{4}, \lambda a_{1} \widetilde{L}_{1}+\lambda \widetilde{\Omega}+\left(\lambda\left(a_{1}+\right.\right.\right.$ $\left.\left.a_{2}+n\right)-1\right) E$) is not \log canonical at Q. Thus, we can apply Theorem 2.9 to this log pair. This gives

$$
\lambda\left(1+2 a_{1}-a_{2}-n\right)=\lambda\left(\Omega \cdot L_{1}-n\right)=\lambda \widetilde{\Omega} \cdot \widetilde{L}_{1}>2\left(1-\left(\lambda\left(a_{1}+a_{2}+n\right)-1\right)\right.
$$

or $\lambda n=\lambda \widetilde{\Omega} \cdot E>2\left(1-\lambda a_{1}\right)$. Since $\lambda \leqslant \frac{3}{4}$ by (4.1), the former inequality gives

$$
n+4 a_{1}+a_{2}>\frac{13}{3}
$$

which is impossible, because $n \leqslant 1+2 a_{2}-a_{1}$ and $a_{1}+a_{2} \leqslant 1$. Thus, the later inequality holds. It gives $n+2 a_{1}>\frac{8}{3}$. Since $n \leqslant 1+2 a_{2}-a_{1}$ and $a_{1}+a_{2} \leqslant 1$, we have $a_{2}>\frac{2}{3}$. Now applying Theorem 2.7 to the \log pair (4.5), we obtain

$$
\begin{aligned}
\lambda+3 \lambda a_{1}-1=\lambda\left(H-a_{1} L_{1}\right. & \left.-a_{2} L_{2}\right) \cdot L_{1}+\lambda a_{1}+\lambda a_{2}-1=\lambda \Omega \cdot L_{1}+\lambda a_{1}+\lambda a_{2}-1= \\
& =\lambda \widetilde{\Omega} \cdot \widetilde{L}_{1}+\lambda a_{1}+\lambda a_{2}+\lambda n-1=\left(\lambda \widetilde{\Omega}+\left(\lambda\left(a_{1}+a_{2}+n\right)-1\right) E\right) \cdot \widetilde{L}_{1}>1,
\end{aligned}
$$

which results in $a_{1}>\frac{5}{9}$. On the other hand, we have $a_{1}+a_{2} \leqslant 1$ and $a_{2}>\frac{2}{3}$, which is absurd.
We see that $Q \notin \widetilde{L}_{1}$. Similarly, we see that $Q \notin \widetilde{L}_{2}$.
Recall that $m=a_{1}+a_{1}+n$. We also have $\widetilde{m}=\widetilde{n}$, because $Q \notin \widetilde{L}_{1} \cup \widetilde{L}_{2}$. Earlier, we proved that $a_{1}+a_{2} \leqslant 1$ and $n \leqslant \frac{3}{2}$. In particular, we have $\widetilde{n} \leqslant \frac{3}{2}$ as well, because $\widetilde{n} \leqslant n$. Thus, we have

$$
m+\widetilde{m}=a_{1}+a_{2}+n+\widetilde{n} \leqslant a_{1}+a_{2}+2 n \leqslant 4<\frac{3}{\lambda},
$$

because $\lambda<\frac{3}{4}$ by (4.1). Thus, it follows from Corollary 4.9 that the \log pair (4.8) is \log canonical at every point of F that is different from O. Moreover, we have $O=F \cap \bar{E}$ by Lemma 4.11, because $m<\frac{2}{\lambda}$, $m+\widetilde{m}<\frac{3}{\lambda}$, and $Q \notin \widetilde{L}_{1} \cup \widetilde{L}_{2}$.

Denote by $\bar{\Omega}$ the proper transform of the divisor Ω on the surface \bar{S}_{4}. Since $Q \notin \widetilde{L}_{1} \cup \widetilde{L}_{2}$, the log pair

$$
\left(\bar{S}_{4}, \lambda \bar{\Omega}+\left(\lambda\left(a_{1}+a_{2}+n\right)-1\right) \bar{E}+\left(\lambda\left(a_{1}+a_{2}+n+\tilde{n}\right)-2\right) F\right)
$$

is not \log canonical at the point O and is \log canonical at every point of F that is different from O. Applying Theorem 2.7 to this \log pair and the curve \bar{E}, we get

$$
\left.\begin{array}{rl}
\lambda\left(a_{1}+a_{2}+2 n\right)-2= & \lambda(n-\widetilde{n})+\lambda\left(a_{1}+a_{2}+n+\widetilde{n}\right)-2
\end{array}=\overline{ } \quad=\lambda \bar{\Omega} \cdot \bar{E}+\lambda\left(a_{1}+a_{2}+n+\widetilde{n}\right)-2=\left(\lambda \bar{\Omega}+\left(\lambda\left(a_{1}+a_{2}+n+\widetilde{n}\right)-2\right) F\right) \cdot \bar{E}>1\right)
$$

which implies that $a_{1}+a_{2}+2 n>\frac{3}{\lambda}>4$, because $\lambda<\frac{3}{4}$ by (4.1). This is a contradiction, since we already proved that $a_{1}+a_{2} \leqslant 1$ and $n \leqslant \frac{3}{2}$.

Lemma 4.23. The case (C3) is impossible.
Proof. Suppose that we are in the case (C3). Then $\operatorname{mult}_{P}\left(T_{P}\right)=2$, the curve T_{P} consist of a conic curve C_{1} and two lines L_{1} and L_{2}, and the point P is the intersection point of the conic with the line L_{1}. Thus, we have the following picture:

By Lemma 4.4, the line L_{1} is contained in the support of the divisor D. In particular, $C_{\star} \neq L_{1}$. Thus, either $C_{\star}=L_{2}$ of $C_{\star}=C_{1}$. Write $D=\Omega+a L_{1}+b C_{1}$, where a is a positive rational number, b is a non-negative rational number, and Ω is an effective \mathbb{Q}-divisor whose support does not contain the curves L_{1} and C_{1}. If $b>0$, then the support of Ω does not contain the line L_{2}, which implies that

$$
1-a-2 b=\left(H-a L_{1}-b C_{1}\right) \cdot L_{2}=\Omega \cdot L_{2} \geqslant 0
$$

Hence, either $b=0$ or $a+2 b \leqslant 1$ (or both), so that $a+2 b \leqslant 1$, because $a \leqslant 1$ by Lemma 3.3.
Put $n=\operatorname{mult}_{P}(\Omega)$. Then

$$
n \leqslant \Omega \cdot L_{1}=\left(H-a L_{1}-b C_{1}\right) \cdot L_{1}=1+2 a-2 b
$$

Similarly, we see that

$$
n \leqslant \Omega \cdot C_{1}=\left(H-a L_{1}-b C_{1}\right) \cdot C_{1}=2-2 a+2 b .
$$

Adding these inequalities, we get $n \leqslant \frac{3}{2}$. This gives $m=n+a+b \leqslant n+a+2 b \leqslant \frac{5}{2}<\frac{2}{\lambda}$, because $\lambda>\frac{3}{4}$ by (4.1).

Denote by $\widetilde{\Omega}$ the proper transform of the divisor Ω on the surface $\widetilde{\Omega}$. Similarly, denote by \widetilde{L}_{1} and \widetilde{C}_{1} the proper transform of the curves L_{1} and C_{1} on the surface $\widetilde{\Omega}$, respectively. Then we can rewrite the log pair (4.5) as

$$
\left(\widetilde{S}_{4}, \lambda a \widetilde{L}_{1}+\lambda b \widetilde{C}_{1}+\lambda \widetilde{\Omega}+(\lambda(a+b+n)-1) E\right) .
$$

Since $m<\frac{2}{\lambda}$, this \log pair is \log canonical at every point of E that is different from Q by Corollary 4.6. Put $\widetilde{n}=\operatorname{mult}_{Q}(\widetilde{\Omega})$. Then $\widetilde{n} \leqslant n$.

Let us show that $Q \notin \widetilde{L}_{1}$. Suppose that $Q \in \widetilde{L}_{1}$. Then

$$
\widetilde{n} \leqslant \widetilde{\Omega} \cdot \widetilde{L}_{1}=\Omega \cdot L_{1}-n=1+2 a-2 b-n,
$$

which implies that $2 \widetilde{n} \leqslant \widetilde{n}+n \leqslant 1+2 a-2 b$. But we already know that $\widetilde{n} \leqslant n \leqslant 2-2 a+2 b$. Adding these two inequalities together, we get $\widetilde{n} \leqslant 1$. If $Q \in \widetilde{C}_{1}$, then we also have

$$
\widetilde{n} \leqslant \widetilde{\Omega} \cdot \widetilde{C}_{1}=\Omega \cdot C_{1}-n=2-2 a+2 b-n,
$$

which implies that $2 \widetilde{n} \leqslant \widetilde{n}+n \leqslant 2-2 a+2 b$. Thus, if $Q \in \widetilde{C}_{1}$, then

$$
\widetilde{n} \leqslant \frac{1}{4}((1+2 a-2 b)+(2-2 a+2 b)) \leqslant \frac{3}{4} .
$$

Keeping in mind that $a+2 b \leqslant 1$, we conclude that $\widetilde{n}+b \leqslant \frac{5}{4}$ provided that $Q \in \widetilde{C}_{1}$. In particular, the multiplicity of the \mathbb{Q}-divisor $\lambda b \widetilde{C}_{1}+\lambda \widetilde{\Omega}$ at the point Q does not exceed 1 , since $\lambda<\frac{3}{4}$ by (4.1). Hence, we can apply Theorem 2.9 to (4.5) and the curves E and \widetilde{L}_{1}. This gives either

$$
\lambda+2 \lambda a-\lambda b-\lambda n=\left(\lambda b \widetilde{C}_{1}+\lambda \widetilde{\Omega}\right) \cdot \widetilde{L}_{1}>2(1-(\lambda(a+b+n)-1)
$$

or

$$
\lambda b+\lambda n=\lambda b+\lambda \widetilde{\Omega} \cdot E=\left(\lambda \widetilde{C}_{1}+\lambda \widetilde{\Omega}\right) \cdot E>2(1-\lambda a)
$$

(or both). Since $\lambda<\frac{3}{4}$ by (4.1), this gives either $4 a+b+n>\frac{13}{3}$ or $2 a+b+n>\frac{8}{3}$ (or both). On the other hand, we already proved that $n \leqslant 2-2 a+2 b$ and $a+2 b \leqslant 1$. Thus, we have

$$
4 a+b+n=(2 a-2 b+n)+2(a+2 b) \leqslant 4<\frac{13}{3}
$$

which implies that $2 a+b+n>\frac{8}{3}$. This gives

$$
\frac{8}{3}<2 a+b+n \leqslant 2+3 b
$$

because $n \leqslant 2-2 a+2 b$. Hence, we obtain $b>\frac{2}{9}$. On the other hand, applying Theorem 2.7 to the log pair (4.5) and the curve \widetilde{L}_{1}, we obtain

$$
\begin{aligned}
& \lambda+3 \lambda a-1=\lambda\left(\Omega \cdot L_{1}-n\right)+\lambda a+2 \lambda b+\lambda n-1=\lambda \widetilde{\Omega} \cdot \widetilde{L}_{1}+\lambda a+2 \lambda b+\lambda n-1= \\
&=\left(\lambda b \widetilde{C}_{1}+\lambda \widetilde{\Omega}+(\lambda(a+b+n)-1) E\right) \cdot \widetilde{L}_{1}>1
\end{aligned}
$$

which results in $a>\frac{2}{\lambda}-1$. Since $\lambda>\frac{3}{4}$, we have $a>\frac{5}{9}$. But $a+2 b \leqslant 1$, so that $b \leqslant \frac{2}{9}$. The obtained contradiction shows that the curve \widetilde{L}_{1} does not contain the point Q.

Let us show that the curve \widetilde{C}_{1} does not contain the point Q. Indeed, suppose it does. Then

$$
\widetilde{n} \leqslant \widetilde{\Omega} \cdot \widetilde{C}_{1}=\Omega \cdot C_{1}-n=2-2 a+2 b-n
$$

which implies that $2 \widetilde{n} \leqslant \widetilde{n}+n \leqslant 2-2 a+2 b$. But $\widetilde{n} \leqslant n \leqslant \Omega \cdot L_{1}=1+2 a-2 b$, we see that

$$
3 \widetilde{n} \leqslant(1+2 a-2 b)+(2-2 a+2 b)=3,
$$

which implies $\widetilde{n} \leqslant 1$. On the other hand, the $\log \operatorname{pair}\left(\widetilde{S}_{4}, \lambda b \widetilde{C}_{1}+\lambda \widetilde{\Omega}+(\lambda(a+b+n)-1) E\right)$ is not \log canonical at the point Q, because $Q \notin \widetilde{L}_{1}$. Moreover, we can apply Theorem 2.9 to this log pair, because $\widetilde{n} \leqslant 1$ and $\lambda<\frac{3}{4}$. This gives

$$
\lambda(2-2 a+2 b-n)=\lambda\left(\Omega \cdot C_{1}-n\right)=\lambda \widetilde{\Omega} \cdot \widetilde{C}_{1}>2(1-(\lambda(a+b+n)-1)
$$

or $\lambda n=\lambda \widetilde{\Omega} \cdot E>2(1-\lambda b)$. The former inequality gives $4 b+n>\frac{4}{\lambda}-2$, and the later inequality gives $2 b+n>\frac{2}{\lambda}$. Since $\lambda<\frac{3}{4}$, we see that either $4 b+n>\frac{10}{3}$ or $2 b+n>\frac{8}{3}$ (or both). But $n \leqslant \Omega \cdot L_{1}=1+2 a-2 b$ and $a+2 b \leqslant 1$, which implies that

$$
4 b+n \leqslant 1+2 a+2 b \leqslant 3<\frac{10}{3} .
$$

Thus, we have $2 b+n>\frac{8}{3}$. One the other hand, we already know that $n+2 b-2 a \leqslant 1, n+2 b-2 a \leqslant 2$, and $a+2 b \leqslant 1$, so that

$$
n+2 b=\frac{2}{3}(n+2 b-2 a)+\frac{1}{3}(n+2 b-2 a)+\frac{2}{3}(a+2 b) \leqslant \frac{2}{3}+\frac{2}{3}+\frac{2}{3}=2,
$$

which is a contradiction. This shows that $Q \notin \widetilde{C}_{1}$.
Denote by $\bar{\Omega}$ the proper transform of the divisor Ω on the surface \bar{S}_{4}. Recall that the log pair (4.8) is not \log canonical at the point $O \in F$. Moreover, it is \log canonical at every point of F that is different from O by Corollary 4.9, because

$$
m+\widetilde{m}=a+b+n+\widetilde{n} \leqslant a+2 b+2 n \leqslant 4<\frac{3}{\lambda},
$$

since $a+2 b \leqslant 1, n \leqslant \frac{3}{2}$ and $\lambda<\frac{3}{4}$. Then $O=F \cap \bar{E}$ by Lemma 4.11.
Since $Q \notin \widetilde{L}_{1} \cup \widetilde{C}_{1}$, we see that the log pair

$$
\left(\bar{S}_{4}, \lambda \bar{\Omega}+(\lambda(a+b+n)-1) \bar{E}+(\lambda(a+b+n+\widetilde{n})-2) F\right)
$$

is not \log canonical at the point $O \in F$ and is \log canonical in all other points of the curve F. Applying Theorem 2.7 to this \log pair and the curve \bar{E}, we get

$$
\begin{aligned}
& \lambda(a+b+2 n)-2=\lambda(n-\widetilde{n})+\lambda(a+b+n+\widetilde{n})-2= \\
& \quad=\lambda \bar{\Omega} \cdot \bar{E}+\lambda(a+b+n+\widetilde{n})-2=(\lambda \bar{\Omega}+(\lambda(a+b+n+\widetilde{n})-2) F) \cdot \bar{E}>1
\end{aligned}
$$

which implies that $a+b+2 n>\frac{3}{\lambda}>4$. On the other hand, $n+2 b-2 a \leqslant 1, n+2 b-2 a \leqslant 2 l$ and $a+2 b \leqslant 1$. Thus, we have

$$
n+a+b=\frac{11}{12}(n+2 b-2 a)+\frac{13}{12}(n+2 b-2 a)+\frac{2}{3}(a+2 b) \leqslant \frac{11}{12}+\frac{13}{6}+\frac{2}{3}=\frac{15}{4}<4,
$$

which is a contradiction.
Lemma 4.24. The case (C 4) is impossible.
Proof. Suppose that we are in the case (C4). Then $\operatorname{mult}_{P}\left(T_{P}\right)=2$ and T_{P} consists of a cubic curve C_{1} and a line L, and P is their intersection at a smooth point of the cubic curve. Thus, we have the following picture:

By Lemma 4.4, the line L_{1} is contained in the support of the divisor D, so that $C_{\star}=C_{1}$. Write $D=\Omega+a L_{1}$, where a is a positive rational number, and Ω is an effective \mathbb{Q}-divisor whose support does not contain the line L_{1}. Put $n=\operatorname{mult}_{P}(\Omega)$. Then

$$
n \leqslant \Omega \cdot L_{1}=\left(H-a L_{1}\right) \cdot L_{1}=1+2 a
$$

which gives $n-2 a \leqslant 1$. Similarly, we obtain $n+3 a \leqslant 3$, because

$$
n \leqslant \Omega \cdot C_{1}=\left(H-a L_{1}\right) \cdot C_{1}=3-3 a .
$$

We see that $n+a=\frac{2}{5}(n-2 a)+\frac{3}{5}(n+3 a) \leqslant \frac{11}{5}$, which implies that $m=n+a<\frac{2}{\lambda}$, because $\lambda>\frac{3}{4}$. Thus, it follows from Corollary 4.6 that the \log pair (4.5) is \log canonical at every point of E that is different from Q.

Note that $a \leqslant 1$ by Lemma 3.3. This also follows from $n+3 a \leqslant 3$. We also know that $a>0$. In fact, one can show that $a>\frac{1}{6}$. Indeed, we have $\lambda(1+2 a)=\lambda \Omega \cdot L_{1}>1$ by Theorem 2.7. This gives $a>\frac{1}{6}$, since $\lambda>\frac{3}{4}$.

Denote by $\widetilde{\Omega}$ the proper transform of the divisor Ω on the surface $\widetilde{\Omega}$. Similarly, denote by \widetilde{L}_{1} the proper transform of the line L_{1} on the surface $\widetilde{\Omega}$. Then we can rewrite the log pair (4.5) as ($\widetilde{S}_{4}, \lambda a \widetilde{L}_{1}+\lambda \widetilde{\Omega}+(\lambda(a+$ $n)-1) E$. Put $\widetilde{n}=\operatorname{mult}_{Q}(\widetilde{\Omega})$. Then $\widetilde{n} \leqslant n$.

Suppose that $Q \in \widetilde{L}_{1}$. Then

$$
\widetilde{n} \leqslant \widetilde{\Omega} \cdot \widetilde{L}_{1}=\Omega \cdot L_{1}-n=1+2 a-n,
$$

which implies that $2 \widetilde{n} \leqslant \widetilde{n}+n \leqslant 1+2 a$. Since $\widetilde{n} \leqslant n$ and $n+3 a \leqslant 3$, we have $\widetilde{n}+3 a \leqslant 3$. Thus, we have $8 \widetilde{n}=2(\widetilde{n}+3 a)+3(2 \widetilde{n}-2 a) \leqslant 9$, which gives $\widetilde{n} \leqslant \frac{9}{8}$. Then $\lambda \widetilde{n} \leqslant 1$. Hence, we can apply Theorem 2.9 to the \log pair (4.5) and the curves E and \widetilde{L}_{1}. This gives

$$
\lambda+2 \lambda a-\lambda n=\lambda \widetilde{\Omega} \cdot \widetilde{L}_{1}>2(1-(\lambda(a+n)-1)
$$

or $\lambda n=\lambda \widetilde{\Omega} \cdot E>2(1-\lambda a)$. Since $\lambda \leqslant \frac{3}{4}$ by (4.1), the former inequality gives $n+4 a>\frac{4}{\lambda}-1>\frac{13}{3}$, and the later inequality gives $n+2 a>\frac{4}{\lambda}>\frac{8}{3}$. Each of these inequalities leads to a contradiction, because $n-2 a \leqslant 1$ and $n+3 a \leqslant 3$. Indeed, we have

$$
n+2 a=\frac{1}{5}(n-2 a)+\frac{4}{5}(n+3 a) \leqslant \frac{1}{5}+\frac{12}{5}=\frac{13}{5}<\frac{8}{3} .
$$

Similarly, $n+4 a \leqslant n+3 a \leqslant 3 \leqslant \frac{13}{3}$. This shows that \widetilde{L}_{1} does not contain the point Q.
Let us show that $Q \notin \widetilde{C}_{1}$. Suppose $Q \in \widetilde{C}_{1}$. Then

$$
3-3 a-n=\Omega \cdot C_{1}-n=\widetilde{\Omega} \cdot \widetilde{C}_{1} \geqslant \widetilde{n},
$$

which implies $n+a+\widetilde{n} \leqslant 3-2 a$. Thus, we have

$$
3-2 a \geqslant a+n+\tilde{n}=m+\widetilde{m}>\frac{8}{3}
$$

by (4.7). This gives $a<\frac{1}{6}$. But we already proved that $a>\frac{1}{6}$. This shows that $Q \notin \widetilde{C}_{1}$.
Recall that $n-2 a \leqslant 1$ and $n+3 a \leqslant 3$. Adding these two inequalities together, we obtain $m+\widetilde{m}=$ $a+n+\widetilde{n} \leqslant a+2 n \leqslant 4<\frac{3}{\lambda}$, since $\lambda<\frac{3}{4}$. Thus, Corollary 4.9 implies that the \log pair (4.8) is log canonical at every point of the curve F that is different from O. By Lemma 4.11, we have $O=F \cap \bar{E}$, because $m<\frac{2}{\lambda}$, $m+\widetilde{m}<\frac{3}{\lambda}$ and $Q \notin \widetilde{L}_{1} \cup \in \widetilde{C}_{1}$.

Denote by $\bar{\Omega}$ the proper transform of the divisor Ω on the surface \bar{S}_{4}. Then the log pair ($\bar{S}_{4}, \lambda \bar{\Omega}+(\lambda(a+$ $n)-\underset{\text { 1 }}{1} \bar{E}+(\lambda(a+n+\widetilde{n})-2) F)$ coincides with the \log pair (4.8) in a neighborhood of the point O, because $Q \notin \widetilde{L}_{1}$. Applying Theorem 2.7 to this \log pair and the curve \bar{E}, we get

$$
\lambda(a+2 n)-2=\lambda \bar{\Omega} \cdot \bar{E}+\lambda(a+n+\widetilde{n})-2=(\lambda \bar{\Omega}+(\lambda(a+n+\widetilde{n})-2) F) \cdot \bar{E}>1
$$

which implies that $a+2 n>\frac{3}{\lambda}$. But we already proved that $n-2 a \leqslant 1$ and $n+3 a \leqslant 3$. Thus, we have $a+2 n \leqslant 4<\frac{3}{\lambda}$, because $\lambda>\frac{3}{4}$. This is a contradiction.

Lemma 4.25. The case (C5) is impossible.
Proof. Suppose that we are in the case (C5). Then $\operatorname{mult}_{P}\left(T_{P}\right)=2$ and T_{P} consists of a cubic curve C_{1} and a line L such that P is a singular point of the cubic curve with multiplicity 2 and does not lie on the line L. Thus, we have the following picture:

Write $D=\Omega+a C_{1}$, where a is a non-negative rational number, and Ω is an effective \mathbb{Q}-divisor whose support does not contain the curve C_{1}. Put $n=\operatorname{mult}_{P}(\Omega)$. Then $m=n+2 a$. If $a>0$, then $C_{\star}=L_{1}$, so that

$$
1=D \cdot L_{1}=\left(\Omega+a C_{1}\right) \cdot L_{1}=\Omega \cdot L_{1}+3 a \geqslant 3 a
$$

because C_{\star} is not contained in the support of the divisor D. Hence, we see that $a \leqslant \frac{1}{3}$. On the other hand, we have

$$
2 n=\operatorname{mult}_{P}\left(C_{1}\right) \leqslant \Omega \cdot C_{1}=\left(H-a C_{1}\right) \cdot C_{1}=3
$$

Thus, we have $n \leqslant \frac{3}{2}$. Then $m=n+2 a<\frac{2}{\lambda}$, because $\lambda>\frac{3}{4}$ by (4.1). Thus, it follows from Corollary 4.6 that the \log pair (4.5) is \log canonical at every point of E that is different from Q.

Denote by $\widetilde{\Omega}$ the proper transform of the divisor Ω on the surface $\widetilde{\Omega}$. Similarly, denote by \widetilde{C}_{1} the proper transform of the curve L_{1} on the surface $\widetilde{\Omega}$. Then we can rewrite the log pair (4.5) as $\left(\widetilde{S}_{4}, \lambda a \widetilde{C}_{1}+\lambda \widetilde{\Omega}+\right.$ $(\lambda(n+2 a)-1) E)$. Put $\widetilde{n}=\operatorname{mult}_{Q}(\widetilde{\Omega})$. Then $\widetilde{n} \leqslant n$. If $Q \notin \widetilde{C}_{1}$, then $\widetilde{m}=\widetilde{n}$. If $Q \in \widetilde{C}_{1}$, then $\widetilde{m}=\widetilde{n}+a$.

Denote by $\bar{\Omega}$ the proper transform of the divisor Ω on the surface \bar{S}_{4}, and denote by \bar{C}_{1} the proper transform of the curve C_{1} on the surface \bar{S}_{4}. Then we can rewrite the log pair (4.8) as $\left(\bar{S}_{4}, \lambda a \bar{C}_{1}+\lambda \bar{\Omega}+\right.$ $(\lambda(n+2 a)-1) \bar{E}+(\lambda(n+2 a+\widetilde{m})-2) F)$. This \log pair is not \log canonical at the point $O \in F$ by construction. Moreover, we have

$$
m+\widetilde{m}=n+2 a+\widetilde{n}+a \leqslant 2 n+3 a \leqslant 3+3 a \leqslant 4<\frac{3}{\lambda}
$$

since $\lambda<\frac{3}{4}$. Thus, it follows from Corollary 4.9 that the \log pair (4.8) is \log canonical at every point of the curve F that is different from the point O.

Let us show that $O \neq F \cap \bar{E}$. Suppose that $O=F \cap \bar{E}$. If $O \notin \bar{C}_{1}$, then Theorem 2.7 applied to the log pair (4.8) and the curve \bar{E} gives

$$
\begin{aligned}
& \lambda(3 a+2 n)-2 \geqslant \lambda(2 a+2 n+\widetilde{m}-\widetilde{n})-2=\lambda(n-\widetilde{n})+\lambda(n+2 a+\widetilde{m})-2= \\
& \quad=\lambda \bar{\Omega} \cdot \bar{E}+\lambda(n+2 a+\widetilde{m})-2=(\lambda \bar{\Omega}+(\lambda(n+2 a+\widetilde{m})-2) F) \cdot \bar{E}>1
\end{aligned}
$$

which implies that $3 a+2 n>\frac{3}{\lambda}$. This is impossible, because $a \leqslant \frac{1}{3}, n \leqslant \frac{3}{2}$ and $\lambda \leqslant \frac{3}{4}$. Thus, we see that $O \in \bar{C}_{1}$. In particular, $Q \in \widetilde{C}_{1}, \widetilde{m}=\widetilde{n}+a$, and C_{1} has a cuspidal singularity at the point P. Now we apply Theorem 2.7 to the \log pair (4.8) and the curve \bar{C}_{1} at the point O. This gives

$$
\begin{aligned}
& \lambda(3+5 a)-3=\lambda\left(\Omega \cdot C_{1}+5 a\right)-3=\lambda\left(\widetilde{\Omega} \cdot \widetilde{C}_{1}-\widetilde{n}\right)+\lambda(2 n+5 a+\widetilde{n})-3= \\
& \quad=(\lambda \bar{\Omega}+(\lambda(n+2 a)-1) \bar{E}+(\lambda(n+3 a+\widetilde{n})-2) F) \cdot \bar{C}_{1}>1
\end{aligned}
$$

which implies that $5 a>\frac{4}{\lambda}-3$. Since $\lambda \leqslant \frac{3}{4}$, we have $a>\frac{1}{5}\left(\frac{4}{\lambda}-3\right)>\frac{7}{15}$, which is impossible, because we already proved that $a \leqslant \frac{1}{3}$. Thus, we see that $O \neq F \cap \bar{E}$.

We already know that $m<\frac{2}{\lambda}$ and $m+\widetilde{m}<\frac{3}{\lambda}$. Thus, if $Q \notin \widetilde{C}_{1}$, then we can apply Lemma 4.11 to obtain $O=F \cap \bar{E}$, which is not the case. Hence, we conclude that $Q \in \widetilde{C}_{1}$, so that $\widetilde{m}=\widetilde{n}+a$. If $O \notin \bar{C}_{1}$, then the log pair $\left(\bar{S}_{4}, \lambda \bar{\Omega}+(\lambda(n+2 a+\widetilde{m})-2) F\right)$ is not \log canonical at the point O as well, which implies that $\widetilde{n}=\bar{\Omega} \cdot F>\frac{1}{\lambda}>\frac{4}{3}$ by Theorem 2.7. On the other hand, we have

$$
3=\Omega \cdot C_{1}-2 n=\widetilde{\Omega} \cdot \widetilde{C}_{1} \geqslant \widetilde{n}
$$

which implies that $3 \widetilde{n} \leqslant 2 n+\widetilde{n} \leqslant 3$, so that $\widetilde{n} \leqslant 1$. This shows that $O \in \bar{C}_{1}$.

Since $O \neq F \cap \bar{E}$ and $O \in \bar{C}_{1}$, we conclude that P is an ordinary double point of the curve C_{1}. Hence, the curves \widetilde{C}_{1} and E intersect transversally at the point Q. Thus, applying Theorem 2.7 to the \log pair (4.5) and the curve E, we get $\lambda n=\lambda \widetilde{\Omega} \cdot E>1-\lambda a$, which implies $a+n>\frac{1}{\lambda}>\frac{4}{3}$. Similarly, applying Theorem 2.7 to the log pair (4.5) and the curve \widetilde{C}_{1}, we get

$$
\lambda(3-2 n)=\lambda \widetilde{\Omega} \cdot \widetilde{C}_{1}>1-(\lambda(2 a+n)-1)=2-\lambda(2 a+n),
$$

which implies that $2 a>n+\frac{2}{\lambda}-3>n-\frac{1}{3}$. Thus, we have $2 a>n-\frac{1}{3}>\left(\frac{4}{3}-a\right)-\frac{1}{3}=1-a$, which implies that $a>\frac{1}{3}$. But we already proved that $a \leqslant \frac{1}{3}$. This is a contradiction.
Lemma 4.26. The case (C6) is impossible.
Proof. Suppose that we are in the case (C6). Then $\operatorname{mult}_{P}\left(T_{P}\right)=2$ and T_{P} consists of two conic curves and they intersect at P. Thus, we have the following picture:

Without loss of generality, we may assume that $C_{1}=C_{\star}$. This gives $2=C_{1} \cdot D \geqslant m$. Then $m \leqslant \frac{2}{\lambda}$ and $m+\widetilde{m} \leqslant \frac{3}{\lambda}$ by Lemma 4.14. Hence, Corollary 4.6 implies that the \log pair (4.5) is log canonical at every point of the curve E that is different from Q. Moreover, Corollary 4.9 implies that the log pair (4.8) is log canonical at every point of the curve F that is different from O. Furthermore, Lemma 4.14 implies that $O \neq \bar{E} \cap F$.

Denote by \widetilde{C}_{1} and \widetilde{C}_{2} the proper transforms on the surface \widetilde{S}_{4} of the conics C_{1} and C_{2}, respectively. By Lemma 4.11, we see that $Q \in \widetilde{C}_{1} \cup \widetilde{C_{2}}$. If $Q \in \widetilde{C}_{1}$, then

$$
2-m=\widetilde{D} \cdot \widetilde{C}_{1} \geqslant \widetilde{m}
$$

which implies that $m+\widetilde{m} \leqslant 2$. On the other hand, we have $m+\widetilde{m}>\frac{2}{\lambda}>\frac{8}{3}$ by (4.7). Hence, we see that $Q \notin \widetilde{C}_{1}$ and $Q \in \widetilde{C}_{2}$.
Write $D=a C_{2}+\Omega$, where a is a non-negative rational number, and Ω is an effective \mathbb{Q}-divisor whose support does not contain the conic C_{2}. Put $n=\operatorname{mult}_{P}(\Omega)$. Then

$$
2-4 a=\left(H-a C_{2}\right) \cdot C_{1}=\Omega \cdot C_{2} \geqslant n .
$$

This gives $n+4 a \leqslant 2$. In particular, $a \leqslant \frac{1}{2}$.
Denote by $\widetilde{\Omega}$ the proper transform of the \mathbb{Q}-divisor Ω on the surface \widetilde{S}_{4}, and put $\widetilde{n}=\operatorname{mult}_{Q}(\widetilde{\Omega})$. Then $n \geqslant \widetilde{n}$ and

$$
2+2 a-n=\left(H-a C_{2}\right) \cdot C_{2}-n=\Omega \cdot C_{2}-n=\widetilde{\Omega} \cdot \widetilde{C}_{2} \geqslant \widetilde{n} .
$$

Hence, we have $n+\tilde{n} \leqslant 2+2 a$. Using this inequality together with $n+4 a \leqslant 2$, we see that

$$
\widetilde{n} \leqslant 2+2 a-n \leqslant 2+\frac{1}{2}(2-n)-n
$$

which implies that $\frac{3}{2} n+\widetilde{n} \leqslant 3$. This together with the fact that $\widetilde{n} \leqslant n$ shows that $\widetilde{n} \leqslant \frac{6}{5}$.
Rewrite the log pair (4.5) as $\left(\widetilde{S}_{4}, \lambda a \widetilde{C}_{2}+(\lambda n+\lambda a-1) E+\lambda \widetilde{\Omega}\right)$. Since $\widetilde{n} \leqslant \frac{6}{5}$, we see that $\lambda \widetilde{n}<1$. Hence, we can apply Theorem 2.9 to the pair (4.5) at the point Q. This gives us that either

$$
\lambda(2+2 a-n)=\lambda\left(\Omega \cdot C_{2}-n\right)=\lambda \widetilde{\Omega} \cdot \widetilde{C}_{2}>2(1-(\lambda n+\lambda a-1))
$$

or $\lambda n=\lambda \widetilde{\Omega} \cdot E>2(1-\lambda a)$ (or both). In the first case, we have

$$
4 a+n>\frac{4}{\lambda}-2>\frac{16}{3}-2=\frac{8}{3},
$$

because $\lambda<\frac{3}{4}$. In the second case, we get $n+2 a>\frac{2}{\lambda}>\frac{8}{3}$. On the other hand, we already proved that $4 a+n \leqslant 2$. This gives us the desired contradiction.

Lemma 4.27. The case (C7) is impossible.
Proof. Suppose that we are in the case (C7). Then $\operatorname{mult}_{P}\left(T_{P}\right)=2$ and T_{P} is an irreducible quartic curve with a singular point P of multiplicity 2 We have the following picture:

Since T_{P} is irreducible, we have $C_{\star}=C$. This gives $4=D \cdot C \geqslant 2 m$, which implies that $m \leqslant 2$. Thus, $Q \in \widetilde{T}_{P}$ by Lemmas 4.11 and 4.14. Therefore, we have

$$
4-2 m=\widetilde{D} \cdot \widetilde{C} \geqslant \widetilde{m}
$$

which implies that $2 m+\widetilde{m} \leqslant 4$. Using (4.7), we get $4-m \geqslant m+\widetilde{m}>\frac{2}{\lambda}>\frac{8}{3}$, which implies that $m \leqslant \frac{4}{3}$. But $m>\frac{4}{3}$ by (4.3).

By Corollary 4.16 and Lemmas 4.18, 4.19, B3, B4, 4.22, 4.23, 4.24, 4.25, 4.26, and 4.27, we obtain the desired contradiction. This completes the proof of Theorem 1.2.

5. General surfaces of large degree

In this section, we prove Theorem 1.3. By Lemmas 3.1 and 3.2, it follows from
Lemma 5.1. Let S_{d} be a smooth surface in \mathbb{P}^{3} of degree d, and let H be its hyperplane section. Then $\alpha\left(S_{d}, H\right) \leqslant \frac{2}{\sqrt{d}}$.
Proof. Let P be a point in S_{d}, and let $f: \widetilde{S}_{d} \rightarrow S_{d}$ be the blow up of the surface S_{d} at the point P. Denote by E the f-exceptional curve. Fix any positive rational number m such that $m<\sqrt{d}$, and take a positive integer n such that $m n$ is an integer. Then

$$
\left(f^{*}(n H)-n m E\right)^{2}=n^{2}\left(d-m^{2}\right)>0 .
$$

This implies that the linear system $\left|f^{*}(n H)-n m E\right|$ is not empty for $n \gg 0$. Indeed, we have

$$
h^{2}\left(\widetilde{S}_{4}, \mathcal{O}_{\widetilde{S}_{d}}\left(f^{*}(n H)-n m E\right)\right)=h^{0}\left(\widetilde{S}_{4}, \mathcal{O}_{\widetilde{S}_{d}}\left(f^{*}((d-4-n) H)+(m n+1) E\right)\right)=0
$$

for $n>d-4$ by Serre duality. Thus, if n is sufficiently big comparing to d, then

$$
\begin{aligned}
& h^{0}\left(\widetilde{S}_{d}, \mathcal{O}_{S_{d}}\left(f^{*}(n H)-n m E\right)\right) \geqslant \\
& \qquad \chi\left(\mathcal{O}_{\widetilde{S}_{d}}\right)+\frac{1}{2}\left(\left(f^{*}(n H)-n m E\right)^{2}-\left(f^{*}(n H)-n m E\right) \cdot K_{\widetilde{S}_{4}}\right)= \\
&
\end{aligned} \quad=\chi\left(\mathcal{O}_{\widetilde{S}_{d}}\right)+\frac{1}{2}\left(n^{2}\left(d-m^{2}\right)-n(d-4)-n m\right)>0 \text {. }
$$

by the Riemann-Roch formula for surfaces.
Let us fix a positive integer n such that $m n$ is an integer and $\left|f^{*}(n H)-n m E\right|$ is not empty. Pick a divisor \widetilde{M} in this linear system, so that $\widetilde{M} \sim n \widetilde{H}-n m E$. Denote by M the proper transform of the divisor \widetilde{M} on the surface S_{d}. Put $D=\frac{1}{n} M$. Then $\operatorname{mult}_{P}(D) \geqslant m$, so that $\operatorname{lct}_{P}\left(S_{d}, D\right) \leqslant \frac{2}{m}$ by (2.6). This gives $\alpha\left(S_{d}, H\right) \leqslant \frac{2}{m}$, because $D \sim_{\mathbb{Q}} H$. Since we can choose rational number $m<\sqrt{d}$ as close to \sqrt{d} as we wish, we obtain $\alpha\left(S_{d}, H\right) \leqslant \frac{2}{\sqrt{d}}$.

The idea of the proof of this lemma comes from [4, Example 1.26].

Proof of Theorem 1.3. It follows from Lemma 3.1 and Lemma 3.2 that $\alpha_{1}\left(S_{d}, H\right)=\frac{3}{4}$ for a general surface S_{d} in \mathbb{P}^{3}. The claim follows from this fact together with Lemma 5.1.

6. Quintic, sextic and septic

Let S_{d} be a surface in \mathbb{P}^{3} that is given by

$$
\left(x^{d-2}+y^{d-2}+z^{d-2}+w^{d-2}\right)(x w+y z)+(y-z)^{d}-x^{d}=0,
$$

where $d \geqslant 2$. One can easily see that the surface S_{d} is smooth. Denote by H its hyperplane section. Arguing as in [5, Example 3.9], we obtain
Lemma 6.1. Suppose that $d \leqslant 7$. Then $\alpha_{1}\left(X_{d}, H\right)>\frac{1}{2}$.
Proof. Let $C \subset \mathbb{P}^{3}$ be the curve defined by the intersection of the surface S_{d} and the Hessian surface $\operatorname{Hess}\left(S_{d}\right)$ of S_{d}. For the tangent hyperplane T_{P} at a point $P \in S_{d}$, if the multiplicity of the curve $T_{P} \cap S_{d}$ at the point P is at least 3, then the curve C is singular at the point P. Using the computer algebra system Magma, we checked that the curve C is smooth. Thus, the intersections of S_{d} with its tangent planes do not have points of multiplicity 3 or higher. The later implies that $\alpha_{1}\left(S_{d}, H\right)>\frac{1}{2}$. Indeed, each singular hyperplane section of S_{d} is reduced by Lemma 3.3 , so that each its singular point is of type \mathbb{A}_{n}. Then $\alpha_{1}\left(S_{d}, H\right)=\frac{1}{2}+\frac{1}{m}$, where m is the greatest integer such that a hyperplane section of S_{d} has a singular point of type \mathbb{A}_{m}.

On the other hand, we have
Lemma 6.2. One has $\alpha_{2}\left(S_{d}, H\right) \leqslant \frac{3}{d}$.
Proof. We may assume that $d \geqslant 3$. Put $P=[0: 0: 0: 1]$. Let M be the divisor that is cut out on S_{d} by the equation $x w+y z=0$. Locally at P, the divisor M is given by $(y-z)^{d}=(-y z)^{d}=0$, which implies that $\operatorname{lct}_{P}\left(S_{4}, M\right)=\frac{3}{2 d}$. Since $M \sim 2 H$, we obtain $\alpha_{2}\left(S_{d}, H\right) \leqslant \frac{3}{d}$.
Corollary 6.3. If $d>5$, then $\alpha\left(S_{d}, H\right)<\alpha_{1}\left(S_{d}, H\right)$.
Remark 6.4. We expect that $\alpha\left(S_{d}, H\right)<\alpha_{1}\left(S_{d}, H\right)$ for $d=5$ as well. By Lemma 6.1, this claim follows from $\alpha_{1}\left(S_{d}, H\right)>\frac{3}{5}$. To check the latter inequality one would have to find out if the intersections of S_{d} with its tangent planes have a singularity of type \mathbb{A}_{9} or worse. This can be expressed as a system of polynomial equations in 4 variables x, y, z, w :

Start with the equation of the quintic in variables x, y, z, w. Then intersect this with a symbolic plane $w=a x+b y+c z$, by substitution. This gives a polynomial in a, b, c, x, y, z. Now we compute the discriminant of this equation with respect to z, which results in a huge polynomial in a, b, c, x, y. Let us denote this polynomial by h. If there is an \mathbb{A}_{9} singularity, or worse, then the discriminant, as a polynomial in x, y (when a, b, c are treated as as parameters), should have a zero of multiplicity 10 or higher. So the system of equations to consider consists of h and all its derivatives of order up to 10 , as a system of polynomial equations in a, b, c, and x.

We used computer algebra to check whether or not this system has a solution, but the computations did not finish after 1500 CPU seconds on a Pentium Pro with 2.7 GHz . After reducing the system of equations modulo some small prime numbers (up to 293), the program finished with the answer that the reduced system has no solution. This can be interpreted as a strong evidence that $\alpha\left(S_{d}, H\right)<\alpha_{1}\left(S_{d}, H\right)$ for $d=5$.

References

[1] Ivan Cheltsov, Fano varieties with many selfmaps, Adv. Math. 217 (2008), no. 1, 97-124.
[2] Ivan Cheltsov, Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Anal. 18 (2008), no. 4, 1118-1144.
[3] Ivan Cheltsov, Del Pezzo surfaces and local inequalities, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., vol. 79, Springer, Cham, 2014, pp. 83-101.
[4] Ivan Cheltsov, Worst singularities of plane curves of given degree, to appear in J. Geom. Anal.
[5] Ivan Cheltsov, Jihun Park, and Joonyeong Won, Log canonical thresholds of certain Fano hypersurfaces, Math. Z. 276 (2014), no. 1-2, 51-79.
[6] Ivan Cheltsov, Constantin Shramov, Log canonical thresholds of smooth Fano threefolds, Russian Math. Surveys 63 (2008), no. 5, 859-958
[7] Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano manifolds, J. Amer. Math. Soc. 28 (2015), no. 1, 183-278.
[8] Jean-Pierre Demailly and János Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 4, 525-556.
[9] Philippe Eyssidieux, Métriques de Kähler-Einstein sur les variétés de Fano, Astérisque $\mathbf{3 8 0}$ (2016), 207-229.
[10] János Kollár, Karen E. Smith, and Alessio Corti, Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics, vol. 92, Cambridge University Press, Cambridge, 2004.
[11] Yanir Rubinstein, Smooth and singular Kähler-Einstein metrics, Contemp. Math. 630 (2014), 45-138.
[12] Gang Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $C_{1}(M)>0$, Invent. Math. 89 (1987), no. 2, 225-246.
[13] Gang Tian, Existence of Einstein metrics on Fano manifolds, Metric and differential geometry, Progr. Math., vol. 297, Birkhäuser/Springer, Basel, 2012, pp. 119-159.
[14] Gang Tian, K-stability and Kähler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015), 1085-1156.
School of Mathematics, University of Bristol, Bristol, BS8 1TW, UK
E-mail address: h.ahmadinezhad@bristol.ac.uk
University of Edinburgh, Department of Mathematics, Mayfield Rd., Edinburgh EH9 3JZ, UK
E-mail address: I.Cheltsov@ed.ac.uk
RiSC, Johannes Kepler University, Linz, Schloss Hagenberg, 4232 Hagenberg, Austria
E-mail address: josef.schicho@risc.jku.at

[^0]: 2010 Mathematics Subject Classification. 14J25, 14J70 (primary), and 32Q20 (secondary).
 Key words and phrases. Log canonical threshold, α-invariant of Tian, smooth surface.

