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Abstract

In this thesis we study the speed of hereditary properties of graphs and how this defines

some of the structure of the properties. We start by characterizing several graph param-

eters by means of minimal hereditary classes. We then give a global characterization of

properties of low speed, before looking at properties with higher speeds starting at the Bell

number. We then introduce a new parameter, clique-width, and show that there are an

infinite amount of minimal hereditary properties with unbounded clique-width. We then

look at the factorial layer in more detail and focus on P7-free bipartite graphs. Finally we

discuss word-representable graphs.
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Chapter 1

Introduction

A graph property (or a class of graphs
1) is a set of graphs closed under isomorphism. A

property is hereditary if it closed under taking induced subgraphs. It is well-known (and

not di�cult to see) that a property X is hereditary if and only if it can be characterized

in terms of forbidden induced subgraphs. In other words, X is hereditary if and only if

there exists a set M of graphs such that G belongs to X if and only if G contains no graph

from M as an induced subgraph, in which case we say that G is M -free. The set of all

M -free graphs will be denoted Free(M).

In general, there may exist many sets M such that X = Free(M) for a hereditary

class X. However, for every hereditary class there exists a unique set of minimal forbid-

den induced subgraphs, which is also well-known and not di�cult to see. Similarly, some

families of hereditary classes can be characterize by means of minimal “forbidden” ele-

ments, i.e. minimal hereditary classes that do not belong to these families. In the present

dissertation, we provide such a characterization for some families defined in terms of their

speed. To introduce this notion, let us denote by Xn for the set of graphs in X with vertex

set {1, 2, . . . , n}, i.e. Xn is the set of labelled graphs in X. The speed of X is the function

f(n) = |Xn|.

Trivially, if X is the class of all simple graphs, then |Xn| = 2(
n
2), and if X is the

class of complete graphs, then |Xn| = 1 for all natural n. The last observation shows,

in particular, that the class of complete graphs is infinite. Also, it is not di�cult to see

1Throughout the text we use the two notions – graph property and graph class – interchangeably.
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that this is a minimal hereditary class containing infinitely many graphs. Indeed, if Y

is any of its proper hereditary subclasses, then at least one complete graph Kn is not in

Y , i.e. Y ⇢ Free(Kn). But then Y contains only graphs with at most n � 1 vertices,

or equivalently, only n � 1 graphs. Similarly, the class of empty (edgeless) graphs is a

minimal hereditary class with infinitely many graphs. Moreover, complete graphs and

empty graphs are the only two minimal infinite hereditary classes. This fact is highly

non-trivial and follows, in particular, from Ramsey’s Theorem.

In 1930, a 26 years old British mathematician Frank Ramsey proved the following

theorem, known nowadays as Ramsey’s Theorem.

Theorem 1. [59] For any positive integers k, r, p, there exists a positive integer R =

R(k, r, p) with the following property. If the k-subsets of an R-set are colored with r

colors, then there is a monochromatic p-set, i.e., a p-set all of whose k-subsets have the

same color.

It is not di�cult to see that with k = 1 the theorem coincides with Pigeonhole Principle:

for any r and p, there exists an n = n(r, p) such that for any coloring of n objects with r

di↵erent colors there exist p objects of the same color.

For k = 2, the theorem admits a nice interpretation in the terminology of graph theory,

since coloring 2-subsets can be viewed as coloring the edges of a complete graph: for any

positive integers r and p, there is a positive integer n = n(r, p) such that if the edges of an

n-vertex complete graph are colored with r colors, then there is a monochromatic clique

of size p, i.e., a clique all of whose edges have the same color.

In the case of r = 2 colors, the graph-theoretic interpretation of Ramsey’s Theorem

can be further rephrased as follows.

Theorem 2. For any positive integer p, there is a positive integer n = n(p) such that

every graph with at least n vertices has either a clique of size p or an independent set of

size p.

Definition 1. The minimum n such that every graph with n vertices contains either a

clique of size p or an independent set of size p is the symmetric Ramsey number R(p).

Theorem 2 also admits a non-symmetric formulation as follows.
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Theorem 3. For any positive integer p and q, there is a positive integer n = n(p, q) such

that every graph with at least n vertices has either a clique of size p or an independent set

of size q.

Definition 2. The minimum n such that every graph with n vertices contains either a

clique of size p or an independent set of size q is the Ramsey number R(p, q).

Theorem 3 (or Theorem 2) allows us to make the following conclusion: if X is a

hereditary class which does not contain a complete graph Km and an empty graph Km,

then graphs inX have less than R(n,m) vertices, i.e. X is finite. More formally, Theorem 3

implies the following conclusion.

Theorem 4. The class of complete graphs and the class of edgeless graphs are the only

two minimal infinite hereditary classes of graphs.

On the other hand, it is not di�cult to see that the reverse is also true: Theorem 4

implies Theorem 3. In other words, these two theorems are equivalent.

Theorem 4 characterizes the family of finite hereditary classes in terms of minimal

“forbidden” elements, i.e. minimal classes that do not belong to this family. In the present

dissertation, we provide a similar characterization for some other families of hereditary

classes. In particular, in chapter 3 we show that in the case of classes with polynomial

or exponential speed of growth the family of minimal “forbidden” elements is finite. To

contrast, in chapter 4 we show that for the case of classes with speeds below the Bell

number this family is infinite.

Let us observe that Theorem 4 can be rephrased as follows: the class of complete

graphs and the class of edgeless graphs are the only two minimal hereditary classes of

graphs with finitely many vertices, i.e. it characterizes the family of classes where a

certain graph parameter (the number of vertices) is bounded by means of minimal classes

where this parameter is unbounded. The literature contains some other results of this type.

For instance, the celebrated theorem of Robertson and Seymour states that the class of

planar graphs is the unique minimal minor-closed class of graphs of unbounded tree-width

[60]. In the present dissertation, in chapter 5 we show that in the case of clique-width

(a notion generalizing tree-width) there are infinitely minimal hereditary classes where
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this parameter is unbounded. We also identify a new minimal class of unbounded linear

clique-width.

In addition to characterizing the families of hereditary classes with polynomial or ex-

ponential speeds of growth in terms of minimal “forbidden” classes, we also characterize

these families by means of graph parameters which are bounded in such classes. In par-

ticular, we show that the speed of a hereditary class X is at most exponential if and only

if graphs in X have bounded neighbourhood diversity.

Finally, we obtain a number of other results related to the speed of hereditary properties

of graphs. In particular, in chapters 6 and 7 we identify new subclasses of P7-free bipartite

graphs with factorial speed of growth and determine the asymptotic speed of so-called

word-representable graphs.

In the rest of this chapter we introduce basic definitions and notations, provide some

motivation and prove a number of preliminary results.

1.1 Preliminaries

All graphs in this dissertation are simple, i.e. undirected, without loops and multiple

edges. The vertex set and the edge set of a graph G are denoted by V (G) and E(G),

respectively. If v is a vertex of G, then N(v) is the neighbourhood of v, i.e. the set of

vertices adjacent to v, and deg(v) = |N(v)| is the degree of v.

Given a subset U ✓ V (G), we denote by G[U ] the subgraph of G induced by U , the

graph with vertex set U in which two vertices are adjacent if and only if they are adjacent

in G.

1.1.1 The speed of hereditary properties and graph coding

As we mentioned earlier, the speed of a hereditary property X is the number |Xn| of n-

vertex labelled graphs inX. Determining |Xn| is important in many respects, in particular,

for optimal coding of graphs. By graph coding we mean the problem of representing graphs

by words in a finite alphabet, which is important in computer science for representing

graphs in computer memory [34, 38, 65]. Without loss of generality we will assume that

our alphabet is binary, i.e. consists of two symbols 0 and 1.
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More formally, denote B = {0, 1} and let B⇤ be the set of all words over the alphabet

B. Given a word ↵ 2 B⇤, we denote by |↵| the length of ↵ and by ↵j the j-th letter of ↵.

Also, � stands for the empty word (the only word of length 0).

Coding of graphs in the class X is a family of bijective mappings � = {�n : n =

1, 2, 3, . . .}, where �n : X ! B⇤. A coding � will be called asymptotically optimal if

lim
n!1

max
G2Xn

|�n(G)|

log |Xn|
= 1.

Every labelled graph G with n vertices can be represented by a binary word of length
�n
2

�
, one bit per each pair of vertices, with 1 standing for an edge and 0 for an non-edge.

Such a word can be obtained by reading the elements of the adjacency matrix above the

main diagonal. The word obtained by reading these elements row by row, starting with

the first row, will be called the canonical coding of G and will be denoted �cn(G).

If no priory information about the graph is available, then
�n
2

�
is the minimum number

of bits needed to represent the graph. However, if we know that our graph possesses some

special properties, then this knowledge may lead to a shorter representation. For instance,

• if we know that our graph is bipartite, then we do not need to describe the adjacency

of vertices that belong to the same part in its bipartition. Therefore, we need at

most n2/4 bits to describe the graph, the worst case being a bipartite graph with

n/2 vertices in each of its parts.

• if we know that our graph is not an arbitrary bipartite graph but chordal bipartite,

then we can further shorten the code and describe any graph in this class with at

most O(n log2 n) bits2 [64].

• a further restriction to trees (a proper subclass of chordal bipartite graphs) enables

us to further shorten the code to (n � 2) log n bits, which is the length of binary

representation of Prüfer code for trees [58].

How much can the canonical representation be shortened for graphs with a property

X? For hereditary properties this question can be answered through the notion of entropy.

2All logarithms are of base 2
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1.1.2 Entropy of hereditary properties

In order to represent graphs of size n in a class X, we need at least |Xn| di↵erent binary

words. Therefore, in the worst case the length of a binary code of an n-vertex graph in X

cannot be shorter than log |Xn|. Thus, the ratio

log |Xn|�n
2

�

can be viewed as the coe�cient of compressibility for representing n-vertex graphs in X.

Its limit value, for n!1, was called by Alekseev in [3] the entropy of X. Moreover, in the

same paper Alekseev showed that for every hereditary property X the entropy necessarily

exists and in [4] he proved that its value takes the following form:

lim
n!1

log |Xn|�n
2

� = 1� 1

k(X)
, (1.1)

where k(X) is a natural number, called the index of X. To define this notion let us denote

by Ei,j the class of graphs whose vertices can be partitioned into at most i independent

sets and j cliques. In particular, E2,0 is the class of bipartite graphs and E1,1 is the class

of split graphs. Then k(X) is the largest k such that X contains all Ei,j with i + j = k.

Independently, this result was obtained by Bollobás and Thomason [14, 15] and is known

nowadays as the Alekseev-Bollobás-Thomason Theorem (see e.g. [7]).

1.1.3 Coding of graphs in classes of high speed

In [3], Alekseev proposed a universal algorithm which gives an asymptotically optimal

coding for graphs in every hereditary class X of index k > 1, i.e. of non-zero entropy.

Below we present an adapted version of this algorithm with a proof of its optimality.

Let n > 1 and let p be a prime number between bn/
p
log n + 1c and 2bn/

p
log nc.

Such a number always exists by the Bertrand-Chebyshev theorem (see e.g. [1]). Define

k = bn/pc. Then

p  2n/
p

log n, k 
p
log n, n� kp < p. (1.2)

Let G be an arbitrary graph with n vertices. Denote by Dn the set of all pairs of

vertices of G. We split Dn into two disjoint subsets R1 and R2 as follows: R1 consists of

the pairs (a, b) such that a  kp, b  kp and b(a� 1)/pc 6= b(b� 1)/pc, and R2 consists of
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all the remaining pairs. Let us denote by µ(1) the binary word consisting of the elements

of the canonical code corresponding to the pairs of R2. This word will be included in the

code of G we construct.

Now let us take care of the pairs in R1. For all x, y 2 {0, 1, . . . , p� 1}, we define

Qx,y = {pi+ 1 + resp(xi+ y) : i = 0, 1, . . . , k � 1},

where resp(z) is the remainder on dividing z by p. Let us show that every pair of R1

appears in exactly one set Qx,y. Indeed, if (a, b) 2 Qx,y (a < b), then

xi1 + y ⌘ a (mod p), xi2 + y ⌘ b (mod p),

where i1 = b(a � 1)/pc, i2 = b(b � 1)/pc. Since i1 6= i2 (by definition of R1), there exists

a unique solution of the following system

x(i1 � i2) ⌘ a� b (mod p)

y(i1 � i2) ⌘ ai2 � bi1 (mod p).
(1.3)

Therefore, by coding the graphs Gx,y = G[Qx,y] and combining their codes with the word

µ(1) (that describes the pairs in R2) we obtain a complete description of G.

To describe the graphs Gx,y = G[Qx,y] we first relabel their vertices according to

z ! b(z � 1)/pc+ 1.

In this way, we obtain p2 graphs G0
x,y, each on the vertex set {1, 2, . . . , k}. Some of these

graphs may coincide. Let m (m  p2) denote the number of pairwise di↵erent graphs in

this set and H0, H1, . . . , Hm�1 an (arbitrarily) ordered list of m pairwise di↵erent graphs

in this set. In other words, for each graph G0
x,y there is a unique number i such that

G0
x,y = Hi. We denote the binary representation of this number i by !(x, y) and the

length of this representation by `, i.e. ` = dlogme. Also, denote

µ(2) = �ck(H0)�
c
k(H1) . . .�

c
k(Hm�1),

µ(3) = !(0, 0)!(0, 1) . . .!(0, p� 1)!(1, 0) . . .!(p� 1, p� 1).

The word µ(2) describes all graphs Hi and the word µ(3) indicates for each pair x, y the

interval in the word µ(2) containing the information about G0
x,y. Therefore, the words µ

(2)
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and µ(3) completely describe all graphs Gx,y. In order to separate the word µ(2)µ(3) into

µ(2) and µ(3), it su�ces to know the number `, because |µ(2)| = `p2 and the number p is

uniquely defined by n. Since m  2(
k
2), the number ` can be described by at most

dlog `e = dlogdlogmee  dlog
✓
k

2

◆
e  dlog k2e  dlog log ne

binary bits. Let µ(0) be the binary representation of the number ` of length dlog log ne,

and let

�⇤n(G) = µ(0)µ(1)µ(2)µ(3), �⇤ = {�⇤n : n = 2, 3, . . .}.

Theorem 5. �⇤
is an asymptotically optimal coding for any hereditary class X with

c(X) > 1.

Proof. From the construction of �⇤ it is clear that any graph is uniquely defined by its

code. Therefore, �⇤ is a coding for any class of graphs. Assume now that our graph G

belongs to a hereditary class X with c(X) > 1. We denote the entropy of X by h(X), i.e.

h(X) = lim
n!1

log |Xn|�n
2

� ,

and therefore,

|Xn| = 2
n2

2 (h(X)+"n),

where "n ! 0 when n!1.

Let n be the number of vertices of G. We estimate the length of the words in the code

�⇤n(G) as follows:

|µ(0)| = dlog log ne,

|µ(1)| = k

✓
p

2

◆
+ kp(n� kp) +

✓
n� kp

2

◆
.

Taking into account (1.2), we conclude that

|µ(1)|  3kp2

2
+

p2

2
 6n2

p
log n

+
2n2

log n
= o(n2).

Each graph Hi belongs to Xk and hence the number m of these graphs satisfies

m  |Xk| = 2
k2

2 (h(X)+"k),

where "k ! 0 when k !1. Therefore,

|µ(2)| = m

✓
k

2

◆
< k22

k2

2 (h(X)+"k)  n
1
2 (h(X)+"k) log n,
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|µ(3)| = p2dlogme  p2k2

2
(h(X) + "k).

Since h(X)  1 and k ! 1 when k ! 1, we conclude that |µ(2)| = o(n2). Also, since

kp  n, we have

|µ(3)|  n2

2
h(X) + o(n2).

Combining the above arguments, we obtain

|�⇤n(G)|  n2

2
h(X) + o(n2).

Therefore, if c(X) > 1 (i.e. if h(X) > 0), then

lim
n!1

max
G2Xn

|�⇤n(G)|

log |Xn|
= 1,

and hence, �⇤ is an asymptotically optimal coding for X.

Example. Let G be the graph (pictured below) with 9 vertices {1, 2, 3, 4, 5, 6, 7, 8, 9}

and the following canonical code:

00111000 1111000 111000 10100 1001 001 10 1.

The code is obtained by listing the elements of the adjacency matrix above the main

diagonal. For convenience, the elements coming from di↵erent rows of the matrix are

separated. Let us define k = p = 3 (this choice of k and p does not satisfy their definition,

but it is not very important. These numbers still satisfy (1.2)).

G

1

2

3
4

5

6

7
8

9
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The set R2 consists of the pairs of vertices that belong to the subgraphs of G induced

by three sets {1, 2, 3}, {4, 5, 6} and {7, 8, 9}. The word µ(1) consists of the elements of the

canonical code corresponding to these pairs:

µ(1) = 001101101.

Now for each pair (x, y) 2 {0, 1, 2}2, we compute the set Qx,y and the canonical code of

the graph G0
x,y. The results are presented in the table below.

x, y Qx,y �c3(G
0
x,y) !(x, y)

0,0 1,4,7 101 0

0,1 2,5,8 100 1

0,2 3,6,9 101 0

1,0 1,5,9 101 0

1,1 2,6,7 100 1

1,2 3,4,8 100 1

2,0 1,6,8 100 1

2,1 2,4,9 100 1

2,2 3,5,7 100 1

The third column of the table shows that among the graphs G0
x,y for various values of

x and y there are only two di↵erent graphs, i.e. m = 2 and hence ` = 1. The canonical

codes of these graphs are 101 and 100. These two codes give us the word µ(2):

µ(2) = 101100.

We code the graph with canonical code 101 by 0 and the graph with canonical code 100

by 1. This coding give us the word µ(3):

µ(3) = 010011111.

Thus, the code of �⇤9(G) = µ(0)µ(1)µ(2)µ(3) is represented by the following binary sequence

(for convenience, we separate di↵erent words of the code):

�⇤9(G) = 01 001101101 101100 010011111.
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Chapter 2

Graph parameters and Ramsey

Theory

In this chapter, we characterize several graph parameters by means of minimal hereditary

classes, where these parameters are unbounded. In other words, we prove a number of

results of the following form: a graph parameter p(G) is unbounded in a hereditary class

X if and only if X contains a class from a family F . According to Ramsey’s Theorem, if

p(G) is the number of vertices in G, then F consists of two classes: complete graphs and

edgeless graphs. That is why we call the results of this form Ramsey-type results. We

start with two illustrating results, which will be useful later.

Proposition 1. For any positive integers s and t, there exists a positive integer d = d(s, t)

such that any graph G of vertex degree at least d contains either a complete graph Ks or

an induced star K1,t.

Proof. Let d = R(s� 1, t) and assume G has a vertex v of degree d. Then, by Theorem 3,

the neighbourhood of v contains either an independent set I of size t, in which case I[{v}

induces a K1,t, or a clique of size s, i.e. G contains Ks.

This proposition not only uses Theorem 3 for the proof. It is also stated in the style

of Theorem 3. Moreover, Proposition 1 admits a reformulation in the style of Theorem 4

as well. To show this, let us introduce the following notation.
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R = Free(P 3,K3, C4). Since any graph G in this class is P 3-free, it is complete multi-

partite. Since G is K3-free, it is complete bipartite. Finally, since G is C4-free, one

of the parts in its bipartition contains at most one vertex. Therefore, G is either a

star K1,n or an edgeless graph. In other words, R is the class of all stars and all

their induced subgraphs.

Clearly, vertex degree is bounded neither in R nor in the class of complete graphs. On

the other hand, Proposition 1 states that if vertex degree is unbounded in a hereditary

class, then it contains either all complete graphs or all stars, which implies the following

conclusion.

Proposition 2. The class of complete graphs and the class R are the only two minimal

hereditary classes of graphs of unbounded vertex degree.

One more Ramsey-type result that will be needed later can be viewed as the bipartite

analog of Theorem 2. We give an independent proof of this result derived from the

Pigeonhole Principle.

Theorem 6. For every s, there is an n = n(s) such that every bipartite graph G with at

leas n vertices in each part contains either Ks,s or the bipartite complement of Ks,s.

Proof. Let n = s22s and let G = (A,B,E) be a bipartite graph with |A| � n and |B| � n.

Consider an arbitrary subset A0 ✓ A with 2s vertices. We split the vertices of B into at

most 22s subsets in accordance with their neighbourhood in A0. Since |B| � s22s, there

must exist a subset B0 ✓ B with at least s vertices. By definition all vertices of B0 have

the same neighbourhood in A0, say A00. If |A00| � s, then A00 [ B0 is a biclique with at

least s vertices in each part. Otherwise, (A0 � A00) [ B0 is the bipartite complement of a

biclique with at least s vertices in each part.

2.1 Independence number, clique number and complex num-

ber

As usual, ↵(G) stands for the independence number and !(G) for the clique number of

G. Now let us introduce a new parameter:
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c(G) = min(↵(G),!(G)) is the complex number of G.

In what follows we give a Ramsey-type characterization of this parameter, i.e. we

characterize it in terms of minimal hereditary classes where the parameter is unbounded.

To this end, let us introduce the following notation.

S = Free(P3, 2K2). In other words, S is the class of graphs partitionable into a clique

and a set of isolated vertices. Indeed, since G 2 S is P3-free, every connected

component of G is a clique, and since G is 2K2-free, at most one of its components

has more than one vertex. Also, let Sn be a graph in S with a clique of size n and

a set of isolated vertices of size n. Obviously, Sn is n-universal for graphs in S, i.e.

it contains every n-vertex graph from S as an induced subgraph.

S is the class of complements of graphs in S.

Theorem 7. S and S are the only two minimal hereditary classes of graphs of unbounded

complex number.

Proof. Obviously, the complex number of graphs in S and S can be arbitrarily large.

Conversely, let X be a hereditary class containing a graph G with c(G) � k for each value

of k. Then G contains a clique C of size k and an independent set I of size k. Since C

and I have at most one vertex in common, we may assume without loss of generality that

they are disjoint, and since k can be arbitrarily large, in the bipartite graph G[C, I] we

can find an arbitrarily large biclique or its bipartite complement (Theorem 6). Therefore,

graphs in X contain either Sn or Sn for arbitrarily large values of n, i.e. X contains either

S or S.

2.2 Degree, co-degree and c-degree

Let G be a graph and v a vertex of G. We denote by d(v) the degree of a vertex v and by

d(v) the co-degree of v, i.e. the degree of v in the complement of G. The c-degree of v is

denoted and defined as follows: cd(v) = min(d(v), d(v)).

As usual, �(G) is the maximum vertex degree in G. Also, we denote by �(G) the

maximum co-degree and by c�(G) the maximum c-degree inG. We call c�(G) the complex

18



degree in G. In order to characterize this new parameter by means of minimal hereditary

classes where c�(G) is unbounded, let us introduced the following notions.

Q = Free(P4, C4, 2K2,K3). The structure of graphs in this class can be characterized

as follows. The vertices of each graph G 2 Q can be partitioned into a set inducing

a star and a set of isolated vertices. Indeed, since G is (P4,K3)-free, every connected

component of G is a biclique. Since G is C4-free, every connected component of

G is a star. Finally, since G is 2K2-free, at most one of its components has more

than one vertex. Also, let Qn be a graph in Q whose vertices can be partitioned

into an induced star K1,n and a set of isolated vertices of size n. Obviously, Qn

is n-universal for graphs in Q, i.e. it contains every n-vertex graph from Q as an

induced subgraph.

Q is the class of complements of graphs in Q.

Theorem 8. S, S, Q and Q are the only minimal hereditary classes of graphs of un-

bounded complex degree.

Proof. Obviously, the complex degree of graphs in S, S Q and Q can be arbitrarily large.

Conversely, let X be a hereditary class containing a graph G with c�(G) � k for each

value of k. Then G contains a vertex v such that d(v) � k and d(v) � k. Let A be

the set of neighbours of v and B the set of its non-neighbours. Since both A and B

can be arbitrarily large, each of them contains either a big clique or a big independent set

(Ramsey’s Theorem), andG[A,B] contains either a big biclique or its bipartite complement

(Theorem 6). Therefore, graphs in X contain either Sn or Sn or Qn or Qn for arbitrarily

large values of n. As a result, X contains at least one of S, S, Q and Q.

2.3 Matching number, co-matching number and c-matching

number

The matching number of a graph G is the size of a maximum matching in G and we

denote it by µ(G). The co-matching number of G is the size of a maximum matching in

the complement of G and we denote it by µ(G). The c-matching number of G is defined and

19



denoted as follows: cµ(G) = min(µ(G), µ(G)). In this section, we characterize all three

parameters in terms of minimal hereditary classes where these parameters are unbounded.

To this end, we introduce several more classes of graphs.

B = Free(P 3,K3). By forbidding P 3, we exclude all odd cycles of length at least 5.

Therefore, B is a class of bipartite graphs. Every graph in this class with at least one

edge is complete bipartite, since otherwise an induced P 3 arises. With a slight abuse

of terminology, we will refer to graphs in this class as complete bipartite regardless

of whether they contain edges or not. For consistency of notation with previously

defined classes, we will denote a biclique with n vertices in each part of its bipartition

by Bn. Clearly, Bn is n-universal for graphs in B, i.e. it contains all n-vertex graphs

in B as induced subgraphs.

B is the class of complements of graphs in B.

M = Free(P3,K3). It is not di�cult to see that M is the class of graphs of vertex

degree at most 1. By Mn we denote the unique (up to isomorphism) graph from

this class with 2n vertices each of which has degree 1. Clearly, Mn is n-universal for

graphs in M.

M is the class of complements of graphs in M.

Z = Free(2K2,K3, C5). In other words, these are 2K2-free bipartite graphs. These

graphs are also known under the name of chain graphs, because for any bipartition,

the neighbourhoods of the vertices in each part form a chain with respect to set-

inclusion. By Zn we denote a chain graph such that for each i 2 {1, 2, . . .}, each

part of the graph contains exactly one vertex of degree i. Figure 2.1 represents the

graph Zn for n = 5 and Lemma 1 proves that Zn is n-universal for graphs in Z.

Lemma 1. Zn is an n-universal chain graph, i.e. it contains all n-vertex chain graphs as

induced subgraphs.

Proof. We prove by induction on n. For n = 1, 2, the statement is trivial. Now let G

be a chain graph with n > 2 vertices. We consider an arbitrary bipartition X [ Y of the
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Figure 2.1: The graph Z5

vertices of G and order the vertices in X increasingly and the vertices in Y decreasingly

with respect to their degrees, breaking ties arbitrarily. Let x be a vertex with a largest

degree in X and y a vertex with a smallest degree in Y . If x is not adjacent to y, then y

is isolated in G, and if x is adjacent to y, then x dominates Y . In the first case, we map

y to the vertex yn of Zn and embed G� y into Zn�1 by induction. In the second case, we

map x to the vertex xn of Zn and embed G� x into Zn�1 by induction. In either case, G

is an induced subgraph of Zn.

Lemma 2. For any positive integers s, t, there exists a positive integer q = q(s, t) such

that every bipartite graph G with a matching of size q contains either an induced Ms or

an induced Bt.

Proof. Let us denote m = 2max(s, t) and q = R(2, 4,m), where R(k, r, p) is the number

from Ramsey’s Theorem (Theorem 1). Consider a matching M = {x1y1, . . . , xqyq} of size

q. We color each pair (xiyi, xjyj) of edges in M (i < j) in one of the four colors as follows:

• color 1 if G contains no edges between xiyi and xjyj ,

• color 2 if G contains both edges between xiyi and xjyj ,

• color 3 if G contains the edge xiyj but not the edge yixj ,

• color 3 if G contains the edge yixj but not the edge xiyj .

By Ramsey’s Theorem, M contains a monochromatic set M 0 of edges of size m. If the

color of each pair in M 0 is

1 then M 0 is an induced matching of size m � 2s > s,

2 then the vertices of M 0 induce a biclique Bm with m � 2t > t,
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3 or 4, then the vertices of M 0 induce a Zm and hence, by Lemma 1, G contains a

biclique Bm/2 with m/2 � t.

Lemma 3. For any natural s, t, p, there exists a Q = Q(s, t, p) such that every graph G

with a matching of size Q contains either an induced Ms or an induced Bt or a clique Kp.

Proof. Let Q = R(2, 2,max(R(2, 2,max(p, q)), p)), where q = R(2, 4, 2max(s, t)) (i.e. the

value defined in the proof Lemma 2). We consider a matching M of size Q in G and color

the endpoints of each edge of M in two colors, say white and black, arbitrarily. Since the

set of white vertices has size Q, it must contain either a clique Kp, in which case we are

done, or an independent set A of size R(2, 2,max(q, p)). In the latter case, we look at the

black vertices matched with the vertices of A. According to the size of this set, it must

contain either a clique Kp, in which case we are done, or an independent set A0 of size q.

In the latter case, we denote by A00 the set of white vertices matched with the vertices of

A0. Then A0 and A00 induce a bipartite graph with a matching of size q, in which case, by

Lemma 2, G contains either an induced matching of size s or an induced biclique Bt.

The above sequence of results allow us to make the following conclusions, the first two

of which follow directly from Lemma 3.

Theorem 9. M, B and the class of complete graphs are the only three minimal hereditary

classes of graphs of unbounded matching number.

Theorem 10. M, B and the class of edgeless graphs are the only three minimal hereditary

classes of graphs of unbounded co-matching number.

Theorem 11. M, B, S, M, B and S are the only six minimal hereditary classes of graphs

of unbounded c-matching number.

Proof. Clearly, graphs in M, B, S, M, B and S can have arbitrarily large c-matching

number. Conversely, let X be a hereditary class with unbounded c-matching number.

Assume X contains none of M, B, M, B, i.e. there is a values of p such that none of

Mp, Bp, Mp, Bp belongs to X. By assumption, X contains a graph G with cµ(G) � k for
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each value of k, i.e. G contains a matching and a co-matching of size k. Since k can be

arbitrarily large and Mp, Bp are forbidden, G contains a large clique (Lemma 3). Similarly,

G contains a large independent set. Therefore, X contains graphs with arbitrarily large

complex number. But then X contains either S or S (Theorem 7).

2.4 Neighbourhood diversity

Definition 3. Let us say that two vertices x and y are similar if there is no vertex z

distinguishing them (i.e. if there is no vertex z adjacent to exactly one of x and y).

Clearly, the similarity is an equivalence relation. We denote by nd(G) the number of

similarity classes in G and call it the neighbourhood diversity of G.

In order to characterize the neighbourhood diversity by means of minimal hereditary

classes of graphs where this parameter is unbounded, we need to introduced a few more

classes of graphs.

Y = Free(K3, C5,K2+2K1). By excluding K2+2K1 we exclude all cycles of length at

least 7. Therefore, every graph in this class is bipartite. Moreover, if G 2 Y contains

at least one edge, then every vertex of this graph has at most one non-neighbour

in the opposite part. In other words, this is the class of bipartite complements of

graphs in M. We denote by Yn the bipartite complement of Mn, i.e. a graph with 2n

vertices each of which has exactly one non-neighbour in the opposite part. Clearly,

Yn is n-universal for graphs in Y.

M⇤ = Free(diamond, 2K2, C4, C5). Since a graph G in M⇤ is (2K2, C4, C5)-free, it is

a split graph, i.e. the vertices of G can be partitioned into a clique C and an

independent set I. Also, since G is diamond-free, every vertex of a maximal clique

C has at most one neighbour in I and every vertex of I has at most one neighbour

in C. In other words, G belongs to M⇤ if and only if the removal of all edges from

C transforms G into a graph in M. We denote by M⇤
n the graph obtained from Mn

by fixing an arbitrary bipartition of its vertices into two independent sets and then

by creating clique in one of the parts. Clearly, M⇤
n is n-universal for graphs in M⇤.
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T = Free(P4, C4, 2K2). This class is known as the class of threshold graphs. It is a

subclass of split graphs and therefore the vertices of each threshold graph G can be

partition into a clique C and an independent set I. It is well-known (and not di�cult

to see) that the removal of all edges from C transforms G into a chain graph, and

vice versa. Therefore, the graph Tn obtained from Cn by creating a clique in one of

its parts is n-universal for graphs in T .

Before we provide a characterization of the neighbourhood diversity, we introduce an

auxiliary parameter.

Definition 4. A skew matching in a graph G is a matching {x1y1, . . . , xqyq} such that yi

is not adjacent to xj for all i < j. The complement of a skew matching is a sequence of

pairs of vertices that create a skew matching in the complement of G.

Lemma 4. For any positive integer m, there exists a positive integer r = r(m) such that

any bipartite graph G = (A,B,E) of neighbourhood diversity r contains either a skew

matching of size m or its complement.

Proof. Define r = 22m and let X be a set of pairwise non-similar vertices of size r/2 chosen

from the same color class of G, say from A. Let y1 be a vertex in B distinguishing the set

X (i.e. y1 has both a neighbour and a non-neighbour in X) and let us say that y1 is big

if the number of its neighbours in X is larger than the number of its non-neighbours, and

small otherwise. If y1 is small, we arbitrarily choose its neighbour in X, denote it by x1

and remover all neighbours of y1 from X. If y is big, we arbitrarily choose a non-neighbour

of y1 in X, denote it by x1 and remove all non-neighbours of y1 from X. Observe that y1

does not distinguish the vertices in the updated set X.

We apply the above procedure to X 2m � 1 times and obtain in this way a sequence

of 2m� 1 pairs xiyi. If m of these pairs contain small vertices yi, then these pairs create

a skew matching (of size m). Otherwise, there is a set of m pairs containing big vertices

yi, in which case these pairs create the complement of a skew matching.

Lemma 5. For any positive integer p, there exists a positive integer q = q(p) such that

any bipartite graph G = (A,B,E) of neighbourhood diversity q contains either an induced

Mp, or an induced Zp or an induced Yp.
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Proof. Let m = R(p+ 1) (where R is the symmetric Ramsey number) and q = 22m. Ac-

cording to the proof of Lemma 4, G contains a skew matching of size m or its complement.

If G contains a skew matching M , we color each pair xiyi, xjyj of edges of M in two colors

as follows:

• color 1 if xi is not adjacent to yj ,

• color 2 if xi is adjacent to yj .

By Ramsey’s Theorem, M contains a monochromatic set M 0 of edges of size p+ 1. If the

color of each pair of edges in M 0 is

1 then M 0 is an induced matching of size p+ 1,

2 then the vertices of M 0 induce a Zp+1.

Analogously, in the case when G contains the complement of a skew matching, we find

either an induced Yp+1 or an induced Zp (observe that the bipartite complement of Zp+1

contains an induced Zp).

Lemma 6. For any positive integer p, there exists a positive integer Q = Q(p) such that

every graph G of neighbourhood diversity Q contains one of the following nine graphs as

an induced subgraph: Mp, Yp, Zp, Mp, Y p, Zp, M⇤
p , M

⇤
p, Tp.

Proof. Let Q = R(q), where q = 22m and m = R(R(p) + 1) (where R is the symmetric

Ramsey number). We choose one vertex from each similarity class of G and find in the

chosen set a subset A of vertices that form an independent set or a clique of size q = 22m.

Let us call the vertices of A white. We denote the remaining vertices of G by B and call

them black. Let G0 = G[A,B]. By the choice of A, all vertices of this set have pairwise

di↵erent neighbourhoods in G0. Therefore, according to the proof of Lemma 5, G0 contains

a subgraph G00 inducing either Mn, Yn, or Zn with n = R(p). Among the n black vertices

of G00, we can find a subset B0 of vertices that form either a clique or an independent set

of size p in the graph G. Then B0 together with a subset of A of size p induce in G one of

the nine graphs listed in the statement of theorem.

Since the nine graphs of Lemma 6 are universal for their respective classes, we make

the following conclusion.
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Theorem 12. There exist exactly nine minimal classes of graphs of unbounded neighbour-

hood diversity: M, Y, Z, M, Y, Z, M⇤
, M⇤

, T .

2.5 VC-dimension

A set system (X,S) consists of a set X and a family S of subsets of X. A subset A ✓ X

is shattered if for every subset B ✓ A there is a set C 2 S such that B = A \ C. The

VC-dimension of (X,S) is the cardinality of a largest shattered subset of X.

The VC-dimension of a graph G = (V,E) was defined in [8] as the VC-dimension of

the set system (V, S), where S is the family of closed neighbourhoods of vertices of G, i.e.

S = {N [v] : v 2 V (G)}. Let us denote the VC-dimension of G by vc[G].

In this section, we characterize VC-dimension by means of three minimal hereditary

classes where this parameter is unbounded. To this end, we first redefine it in terms of

open neighbourhoods as follows. Let vc(G) be the size of a largest set A of vertices of G

such that for any subset B ✓ A there is a vertex v outside of A with B = A\N(v). In other

words, vc(G) is the size of a largest subset of vertices shattered by open neighbourhoods

of vertices of G.

We start by showing that the two definitions are equivalent in the sense that they

both are either bounded or unbounded in a hereditary class. To prove this, we introduce

the following terminology. Let A be a set of vertices which is shattered by a collection of

neighbourhoods (open or closed). For a subset B ✓ A we will denote by v(B) the vertex

whose neighbourhood (open or closed) intersect A at B. We will say that B is closed if

v(B) belongs to B, and open otherwise.

Lemma 7. vc(G)  vc[G]  vc(G)(vc(G) + 1) + 1.

Proof. The first inequality is obvious. To prove the second one, let A be a subset of V (G)

of size vc[G] which is shattered by a collection of closed neighbourhoods. If A has no

closed subsets, then vc[G] = vc(G). Otherwise, let B be a closed subset of A.

Assume first that |B| = 1. Then B = {v(B)} and v(B) is isolated in G[A], i.e. it has

no neighbours in A. Let C be the set of all such vertices, i.e. vertices each of which is

a closed subset of A. By deleting any vertex x from C we obtain a new set A and may
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assume that it has no closed subsets of size 1. Indeed, for any vertex y 2 C di↵erent from

x, there is a vertex y0 62 A such that N(y0) \ A = {x, y}. After the deletion of x from A,

we have N(y0) \ A = {y} and hence {y} is not a closed subset anymore. This discussion

allows us to assume in what follows that A has no closed subsets of size 1, in which case

we only need to show that vc[G]  vc(G)(vc(G) + 1).

Assume now that B is a closed subset of A of size at least 2. Suppose that B � v(B)

contains a closed subset C, i.e. v(C) 2 C. Observe that v(C) is adjacent to v(B), as every

vertex of B�v(B) is adjacent to v(B). But then N [v(C)]\A contains v(B) contradicting

the fact that N [v(C)] \ A = C. This contradiction shows that every subset of B � v(B)

is open, i.e. |B � v(B)|  vc(G).

The above observation allows us to apply the following procedure: as long as A contains

a closed subset B with at least two vertices, delete from A all vertices of B except for

v(B). Denote the resulting set by A⇤. Assume the procedure was applied p times and let

B1, . . . , Bp be the closed subsets it was applied to. It is not di�cult to see that the set

{v(B1), . . . , v(Bp)} has no closed subsets and hence its size cannot be large than vc(G),

i.e. p  vc(G). Combining, we conclude:

vc[G] = |A| = |A⇤|+
pX

i=1

|Bi � v(Bi)|  vc(G) + p · vc(G)  vc(G)(vc(G) + 1).

This lemma allows us to assume that if A is shattered, then there is a set C disjoint

from A such that for any subset B ✓ A there is a vertex v 2 C with B = A \ N(v), in

which case we will say that A is shattered by C, or C shatters A.

Let Bn = (A,B,E) be the bipartite graph with |A| = n and |B| = 2n such that all

vertices of B have pairwise di↵erent neighbourhood in A. Also, let Sn be the split graph

obtained from Bn by creating a clique in A.

Lemma 8. The graph Bn is an n-universal bipartite graph, i.e. it contains every bipartite

graph with n vertices as an induced subgraph.

Proof. Let G be a bipartite graph with n and with parts A and B of size n1 = |A| 

|B| = n2. By adding at most n2 vertices to A, we can guarantee that all vertices of B
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have pairwise di↵erent neighbourhoods in A. Then we can extend B by create a vertex

x with N(x) = C for each subset C ✓ A for which such a vertex does not exist. In this

way, we transform G into a graph with at most n+ 2n vertices. Clearly, Bn contains this

graph and hence it also contains G as an induced subgraph.

Corollary 1. Every co-bipartite graph with at most n vertices is contained in Bn and

every split graph with at most n vertices is contained in both Sn and in Sn.

Lemma 9. If a set A shatters a set B with |B| = 2n, then B shatters a subset A⇤
of A

with |A⇤| = n.

Proof. Without loss of generality we assume that B is the set of all binary sequences of

length n. Let us denote by Bi the subset of B such that b1 . . . bn 2 Bi if and only if bi = 1.

Since A shatters B, it contains a vertex ai with N(ai) \B = B � i for each i. We denote

A⇤ = {a1, . . . , an} and claim that B shatters A⇤. To prove this we only need to show

that any two distinct vertices x = (b1 . . . bn) 2 B and y = (b01 . . . b
0
n) 2 B have di↵erent

neighbourhoods in A⇤. Since x and y are distinct, there exists an i such that bi 6= b0i, say

bi = 1 and b0i = 0. But then ai is adjacent to bi but not to b0i.

Lemma 10. For every n, there exists a k = k(n) such that every graph G with vc(G) = k

contains one of Bn, Bn, Sn, Sn as an induced subgraph.

Proof. Define k = R(2R(n)), where R(n) = R(2, 2, n). Since vc(G) = k, there are two

subsets A and B of V (G) such that |A| = k and B shatters A. By definition of k, A must

have a subset A0 of size 2R(n) which is a clique or an independent set. Clearly, B shatters

A0 and hence, by Lemma 9, A0 shatters a subset B0 of B of size R(n). Then B0 must have

a subset B00 of size n which is either a clique or an independent set. Now G[A0 [ B00] is

either bipartite or co-bipartite or split graph, |B00| = n and A0 shatters B00. Therefore,

G[A0 [B00] contains one of Bn, Bn, Sn, Sn as an induced subgraph.

Theorem 13. The classes of bipartite, co-bipartite and split graphs are the only three

minimal hereditary classes of graphs of unbounded VC-dimension.

Proof. Clearly these three classes have unbounded VC-dimension, since they contain

Bn, Bn, Sn, Sn with arbitrarily large values of n.
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Now let X be a hereditary class containing none of these three classes. Therefore, there

is a bipartite graph G1, a co-bipartite graph G2 and a split graph G3 which are forbidden

for X. Denote by n the maximum number of vertices in these graphs.

Assume that VC-dimension is not bounded for graphs in X and let G 2 X be a graph

with vc(G) = k, where k = k(n) from Lemma 10. Then G contains one of Bn, Bn, Sn, Sn,

say Bn. Since Bn is n-universal (Lemma 8), it contains G1 as an induced subgraph, which

is impossible because G1 is forbidden for graphs in X. This contradiction shows that

VC-dimension is bounded in the class X.
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Chapter 3

Subfactorial properties of graphs

The universal algorithm for graph coding given in Section 1.1.3 is not optimal for classes

of index 1, which we call unitary, since equality (1.1) does not provide the asymptotic

behavior of | logXn| in this case. On the other hand, the family of unitary classes can also

be split into layers according to their speed, as was shown in [62]. This paper distinguishes

four lower layers: constant, polynomial, exponential and factorial. In [11], the authors

partition polynomial and exponential layers further and provide each of the sublayers with

a structural characterization. Instead, in what follows we give a global characterization

of each of the first three layers. Moreover, with polynomial and exponential layers we

associate graph parameters responsible for the speed and construct asymptotically optimal

codings for classes these layers.

3.1 Constant layer

As mentioned earlier, complete graphs and empty (edgeless) graphs contain exactly one

n-vertex graph for each value of n. The family of all hereditary classes for which the

number of n-vertex graphs is bounded by a constant independent of n is called constant.

This family constitute the first layer of infinite hereditary classes. The following theorem

characterizes the structure of such classes and also provides the minimum classes that do

not belong to this layer.

Theorem 14. For a hereditary class X, the following statements are equivalent:
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(1) log |Xn| = O(1);

(2) X contains finitely many graphs di↵erent from complete and empty graphs;

(3) none of the following classes is a subclass of X:

R the class of graphs each of which is either an edgeless graph or a star (i.e. a

graph of the form K1,n for some n),

E1
the class of graphs with at most one edge,

R the class of complements of graphs in R,

E1
the class of complements of graphs in E1

.

Proof. Clearly, (2) implies (1). Also, it is not di�cult to see that |R(n)| = |R(n)| = n+1

and |E1
n| = |E1

n| =
�n
2

�
+ 1. Therefore, (1) implies (3). It remains to show that (3) implies

(2).

Assume X satisfies (3). Then there is a number p such that none of the following

graphs belongs to X: K1,p, K1,p, K2 +Op, K2 +Op.

Let G be a graph in X which is neither complete nor edgeless. Then G contains a

vertex x which has both a neighbour y and a non-neighbour z. The remaining vertices of

G can be partitioned (with respect to x, y, z) into at most eight subsets. For U ✓ {x, y, z},

we denote VU = {v 62 {x, y, z} : N(v) \ {x, y, z} = U}. To prove the theorem, let us

show that each of VU contains at most R(p) vertices, where R(p) is the symmetric Ramsey

number.

If U = ;, then |VU | < R(p) because a clique of size p in VU together with x create an

induced K1,p, while an independent set of size p in VU together with x and y create an

induced K2 +Op, which is impossible because both graphs are forbidden in X.

If |U | = 1, say U = {x}, then |VU | < R(p) because a clique of size p in VU together

with y or z create an induced K1,p, while an independent set of size p in VU together with

x create an induced K1,p, which is impossible because both graphs are forbidden in X.

For |U | > 1, the result follows by complementary arguments.
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3.2 Polynomial layer

According to Theorem 14, the four minimal classes above the constant layer are R, E1, R

and E1
. Each of them contains polynomially many n-vertex labelled graphs and hence the

layer following the constant one is polynomial. In order to provide a global characterization

of the polynomial layer we use the results and notation of Sections 2.2 and 2.3.

Theorem 15. For a hereditary class X, the following statements are equivalent:

(1) log |Xn| = ⇥(log n);

(2) there exists a constant c such that every graph in Xn contains a similarity class of

size at least n� c;

(3) complex degree and c-matching number are bounded for graphs in X;

(4) none of the following classes is a subclass of X:

B,S,Q,M,B,S,Q,M.

Proof. (1) ) (4). It is not di�cult to see that |Sn| = 2n � n, |Bn| = 2n�1 and |Qn| =

n2n�1 � n(n + 1)/2 + 1. Also, the number of n-vertex labelled graphs in Mn is at least

bn/2c!. Therefore, X cannot contain any of the classes B,S,Q,M,B,S,Q,M.

(2) ) (1). The number of labeled graphs on n vertices with a similarity class of size

n� k is equal to
�n
k

�
2(

k+1
2 )+1 and hence we have that | logXn| = ⇥(log n).

Theorems 8 and 11 imply that (3) and (4) are equivalent. Therefore, it remains to

show that (3) and (4) imply (2).

Let G be a graph in Xn. Since the c-matching number is bounded in G, we may

assume, without loss of generality, that µ(G)  k for a constant k. Therefore, n � 2k

vertices form an independent set I in G. Also, since the complex degree is bounded in G,

there is a constant l such that every vertex v outside of I has at most l neighbours or at

most l non-neighbours in I. By removing from I either l neighbours or l non-neighbours of

v, for each v 62 I, we transform I into a similarity class of size n�c where c  2k(l+1).
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3.2.1 Coding of graphs in classes of polynomial growth

We will now describe another algorithm for coding graphs and provide a proof that it gives

an asymptotically optimal coding for graphs in classes of polynomial growth.

Given a labelled graph G on n vertices, define a new labelled graph G⇤ by choosing a

similarity class K in G of greatest size and replacing the vertices in K with a single vertex

z labelled n+ 1. The adjacencies of vertices to z are defined by x 2 G⇤ \ {z} is adjacent

to z if x is adjacent to each vertex in K, and x is non adjacent to z if x is non adjacent

to each vertex in K.

Now each vertex in G has a label that can be described with a binary word of length at

most log n. Let us denote by  (1) the binary word consisting of the labels of the vertices

in G \ K in increasing order. Let  (2) = �cn�|K|+1(G
⇤) and let  (3) = 0 if K forms an

independent set in G otherwise let  (3) = 1 if K forms a clique in G.1 We now define

�1n(G) =  (1) (2) (3), �1 = {�1n : n = 1, 2, 3, . . .}.

Theorem 16. �1
is an asymptotically optimal coding for any hereditary class X with

log |Xn| = ⇥(log n).

Proof. LetX be a hereditary class satisfying | logXn| = ⇥(log n). We know by Theorem 15

that there exists a constant c such that every graph in Xn contains a similarity class of

size at least n� c. Partition X into sets X0, X1, . . . , Xc with Xi defined to be the set of

graphs G 2 X with the size of the largest similarity class contained in G precisely equal

to n � i for 0  i  c. Define t to be the largest number such that the set Xt contains

infinitely many graphs, i.e. there exists an N 2 N such that for all n > N every graph in

Xn has a similarity class of size at least n� t. Hence for n > N we have that

max
G2Xn

|�1n(G)|  t log n+

✓
t+ 1

2

◆
+ 1.

We also know that |Xn| �
�n
t

�
and hence

log |Xn| � t log n.

Therefore,

lim
n!1

max
G2Xn

|�1n(G)|

log |Xn|
 1.

1To create a unique coding we assume that a similarity class of size one is a clique.
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However, each graph in Xn must have a unique coding so one must have length at least

log |Xn|, hence the limit is equal to 1.

G

1

2

3

4

5

6

7

8

9

Example. Let G be the graph (pictured above) with 9 vertices {1, 2, 3, 4, 5, 6, 7, 8, 9} and

the following canonical code:

11010000 1010000 010000 11111 1111 000 00 0.

The largest size of a similarity class in G is four, and the vertices 6, 7, 8 and 9 form

such a similarity class. Hence, the vertices in G \K are 1, 2, 3, 4 and 5. This tells us that

 (1) = 0001 0010 0011 0100 0101. Now replacing the vertices 6, 7, 8 and 9 with one

vertex labelled 10 gives us G⇤ (pictured below).

G⇤

1

2

3

4

5

10

Looking at G⇤ gives us  (2) = 11010 1010 010 11 1 and as the vertices 6, 7, 8 and 9

form an independent set in G we have  (3) = 0. So,

�19(G) = 00010010001101000101 110101010010111 0.
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In this particular case, the method for coding a graph described in this section gives a

binary word of equal length to the one given by the canonical code.

3.3 Exponential layer

Theorem 15 tells us that there are eight minimal classes above the polynomial layer, namely

B,S,Q,M,B,S,Q, and M. Each of these classes contains at least exponentially many n-

vertex labelled graphs and hence the next layer is the exponential layer. In order to provide

a global characterization of this layer we use the results and notation of Sections 2.4.

Theorem 17. For a hereditary class X, the following statements are equivalent:

(1) log |Xn| = ⇥(n);

(2) the neighbourhood diversity is bounded for graphs in X;

(3) none of the following classes is a subclass of X:

M,Y,Z,M,Y,Z,M⇤,M⇤
, T .

Proof. As stated previously, the number of n-vertex labelled graphs in Mn is at least

bn/2c!. It is not di�cult to see that the same is true for all other classes listed in (3).

Therefore, (1) implies (3).

By Theorem 12, (3) is equivalent to (2). Finally, the number of labeled graphs on

n vertices with at most k similarity classes is at most kn2(
k
2)+k. Therefore, (2) implies

(1).

3.3.1 Coding of graphs in classes of exponential growth

We will now describe a third algorithm for coding graphs and provide a proof that it gives

an asymptotically optimal coding for graphs in classes of exponential growth.

Let G be an arbitrary graph with n vertices. Partition G into maximal similarity

classes, and let m be the number of these similarity classes. Note that m  n and let  (4)

be the binary representation of m using log n bits. Now define a new labelled graph G0

by contracting each similarity class to a single vertex, hence two vertices x and y in G0
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are adjacent if and only if all of the vertices in the class represented by x are adjacent to

all of the vertices in the class represented by y. Now fix an ordering on the vertices of G0

and assign to each vertex v of G the binary word  (5)
v of length logm that denotes the

label of the vertex which represents the similarity class v belongs to. Finally let MG0 be

a modified adjacency matrix of G0 where the entries on the main diagonal are defined by

setting the element (i, i) of the matrix to be 0 if the similarity class in G represented by

the vertex i in G0 is an independent set and 1 if it is a clique, for i = 1, 2, . . . ,m. Now

let  (6) be the binary word obtained by reading the elements of the modified adjacency

matrix above and including the main diagonal, row by row starting with the first. We

now define

�2n(G) =  (4) (5)
v1  

(5)
v2 . . . (5)

vn  
(6), �2 = {�2n : n = 1, 2, 3, . . .}.

In order to restore the graph G from its code �2n(G) first determine the value of m by

reading the first log n bits of the code. We now know that the rest of the code consists

of n binary words of length logm and a binary word of length
�m+1

2

�
which describes the

modified adjacency matrix of G0. Now two vertices x, y 2 G are adjacent if and only if

MG0(i, j) = 1 where i is the number represented by  (5)
x and j is the number represented

by  (5)
y . We will now show that this coding is asymptotically optimal for any class of

graphs with exponential growth.

Theorem 18. �2
is an asymptotically optimal coding for any hereditary class X with

log |Xn| = ⇥(n).

Proof. We know by Theorem 17 that there exists a constant k such that every graph in

Xn contains k similarity classes. Partition X into sets X0, X1, . . . , Xk with Xi defined to

be the set of graphs G 2 X which contain at most i maximal similarity classes. Define

t to be the largest number such that the set Xt contains infinitely many graphs, i.e. t is

the largest number such that for any s 2 N there are infinitely many graphs in X which

contain t similarity classes of size at least s.

Now pick an N 2 N such that for all n > N every graph in Xn contains at most t

maximal similarity classes. Hence for n > N we have that

max
G2Xn

|�2n(G)|  log n+ n log t+

✓
t+ 1

2

◆
. (3.1)
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It is not hard to see that the class X must contain at least

n!

(bnt c!)t

di↵erent n-vertex labelled graphs, for n > N . Hence,

log |Xn| � log n!� t log(bn
t
c!) � log n!� t log((

n

t
)
n
t ) = log n!� n log n+ n log t. (3.2)

We know by Stirling’s approximation that

log n! ⇠ n log n� n log e+
1

2
log 2⇡n

so
log n!

n log n
⇠ 1� log e

log n
+

1

2

log 2⇡n

n log n
.

Therefore,

lim
n!1

log n!

n log n
= 1 (3.3)

So combining (3.1), (3.2) and (3.3) we get

lim
n!1

max
G2Xn

|�2n(G)|

log |Xn|


log n+ n log t+
�t+1

2

�

log n!� n log n+ n log t
=

log n+ n log t+
�t+1

2

�

n log t
= 1+

log n

n log t
+

�t+1
2

�

n log t
= 1.

However, each graph in Xn must have a unique coding so one must have length at

least log |Xn|, hence the limit is equal to 1.

Example. Let G be the graph with 9 vertices {1, 2, 3, 4, 5, 6, 7, 8, 9} used in the example in

section 3.2.1. We will now show how this graph can be coded using the method introduced

in this section. G has four maximal similarity classes, the sets {1, 2, 3}, {4}, {5} and

{6, 7, 8, 9}. So  (4) = 0011. Contracting these classes to a single vertex gives us the graph

G0 (pictured below).

G0

0

1

2

3
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As the graph G0 has four vertices, each vertex in G will be assigned one of the four

binary words 00, 01, 10 or 11. Also looking at G0, and noting that the similarity class

defined by {6, 7, 8, 9} is the only similarity class which is an independent set, gives us

 (6) = 1010 111 11 0. Hence,

�29(G) = 0011 00 00 00 01 10 11 11 11 11 1010111110.

In this particular case, the method for coding a graph described in this section gives a

binary word which uses four less bits than the one given by the canonical code.
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Chapter 4

Hereditary properties with speeds

below the Bell number

Recall that the Bell number Bn, defined as the number of ways to partition a set of n

labelled elements, satisfies the asymptotic formula lnBn/n = lnn� ln lnn+⇥(1).

Balogh, Bollobás and Weinreich [13] showed that if the speed of a hereditary graph

property is at least n(1�o(1))n, then it is actually at least Bn; hence we call any such

property a property above the Bell number. Note that this includes hereditary properties

whose speed is exactly equal to the Bell numbers (such as the class of disjoint unions of

cliques).

4.0.1 (`, d)-graphs and sparsification

Given a graphG and two vertex subsets U,W ⇢ V (G), define�(U,W ) = max{|N(u) \W |,

|N(w) \ U | : u 2 U,w 2 W}. With N(u) = V (G)\(N(u) [ {u}), let �(U,W ) =

max{|N(u)\W |, |N(w)\U | : w 2W,u 2 U}. Note that �(U,U) is simply the maximum

degree in G[U ].

Definition 5. Let G be a graph. A partition ⇡ = {V1, V2, . . . , V`0} of V (G) is an (`, d)-

partition if `0  ` and for each pair of not necessarily distinct integers i, j 2 {1, 2, . . . , `0}

either �(Vi, Vj)  d or �(Vi, Vj)  d. We call the sets Vi bags. A graph G is an (`, d)-graph

if it admits an (`, d)-partition.
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If �(Vi, Vj)  d, we say Vi is d-sparse with respect to Vj , and if �(Vi, Vj)  d, we

say Vi is d-dense with respect to Vj . We will also say that the pair (Vi, Vj) is d-sparse or

d-dense, respectively. Note that if the bags are large enough (i.e., min{|Vi|} > 2d+1), the

terms d-dense and d-sparse are mutually exclusive.

Definition 6. A strong (`, d)-partition is an (`, d)-partition each bag of which contains at

least 5⇥2`d vertices; a strong (`, d)-graph is a graph which admits a strong (`, d)-partition.

Given any strong (`, d)-partition ⇡ = {V1, V2, . . . , V`0} we define an equivalence rela-

tion ⇠ on the bags by putting Vi ⇠ Vj if and only if for each k, either Vk is d-dense with

respect to both Vi and Vj , or Vk is d-sparse with respect to both Vi and Vj . Let us call

a partition ⇡ prime if all its ⇠-equivalence classes are of size 1. If the partition ⇡ is not

prime, let p(⇡) be the partition consisting of unions of bags in the ⇠-equivalence classes

for ⇡.

We proceed to showing that the partition p(⇡) of a strong (`, d)-graph does not depend

on the choice of a strong (`, d)-partition ⇡. The following three lemmas are the ingredients

for the proof of this result.

Lemma 11. Consider any strong (`, d)-graph G with any strong (`, d)-partition ⇡. Then

p(⇡) is an (`, `d)-partition with at least 5⇥ 2`d vertices in each bag.

Proof. Consider two bags W1,W2 2 p(⇡). By definition Wi =
S

s2Si
Vs for some Si ⇢

{1, 2, . . . , `0}, i = 1, 2. Also, by the definition of the partition, for all (s1, s2) 2 S1 ⇥ S2

the pairs (Vs1 , Vs2) are all either d-dense or d-sparse. If they are d-sparse, then for any

s1 2 S1 we have �(Vs1 ,W2) 
P

s22S2
�(Vs1 , Vs2)  |S2|d. Since this holds for every

s1 2 S1, for all x 2 W1 we have that |N(x) \W2|  |S2|d. Similarly we conclude that for

all x 2 W2 we have |N(x) \W1|  |S1|d. Therefore, �(W1,W2)  max(|S1|, |S2|)d  `d.

If the pairs of bags are d-dense, a similar argument proves that �(W1,W2)  `d. Hence

the partition p(⇡) is an (`, `d)-partition. As it is obtained by unifying some bags from a

strong (`, d)-partition, we conclude that each bag is of size at least 5⇥ 2`d.

Lemma 12 ([13, Lemma 10]). Let G be a graph with an (`, d)-partition ⇡. If two vertices

x, y 2 G are in the same bag Vk, then the symmetric di↵erence of their neighbourhoods

N(x) N(y) is of size at most 2`d.
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Lemma 13. Let G be a graph with a strong (`, d)-partition ⇡. If two vertices x, y 2

V (G) belong to di↵erent bags of the partition p(⇡), then the symmetric di↵erence of their

neighbourhoods N(x) N(y) is of size at least 5⇥ 2`d� 2d.

Proof. Take any two vertices x 2 Vi and y 2 Vj with bags Vi and Vj belonging to di↵erent

⇠-equivalence classes. Then there is a bag Vk such that one of the pairs (Vi, Vk) and

(Vj , Vk) is d-dense and the other one is d-sparse; without loss of generality, suppose that

(Vi, Vk) is d-sparse and (Vj , Vk) is d-dense. Then, in particular, |N(x) \ Vk|  d and

|N(y)\Vk| � |Vk|�d. Hence |N(x) N(y)| � |N(y)\N(x)| � |Vk|�2d � 5⇥2`d�2d.

We are now ready to prove the uniqueness of p(⇡).

Theorem 19. Let G be a strong (`, d)-graph with strong (`, d)-partitions ⇡ and ⇡0. Then

p(⇡) = p(⇡0).

Proof. Assume two vertices x, y 2 V (G) are in the same bag of the partition p(⇡). By

Lemma 11, p(⇡) is an (`, `d)-partition, so applying Lemma 12 to p(⇡) we obtain |N(x) 

N(y)|  2`(`d) = 2`2d < 5 ⇥ 2`d � 2d. Thus by Lemma 13, x and y are in the same

bag of p(⇡0). Hence, using symmetry, x and y are in the same bag of p(⇡) if and only

if they are in the same bag of p(⇡0). We deduce that the partitions are the same, i.e.,

p(⇡) = p(⇡0).

With any strong (`, d)-partition ⇡ = {V1, V2, . . . , V`0} of a graph G we can associate a

density graph (with loops allowed) H = H(G,⇡): the vertex set of H is {1, 2, . . . , `0} and

there is an edge joining i and j if and only if (Vi, Vj) is a d-dense pair (so there is a loop

at i if and only if Vi is d-dense).

For a graph G, a vertex partition ⇡ = {V1, V2, . . . , V`0} of G and a graph with loops

allowedH with vertex set {1, 2, . . . , `0}, we define (as in [11]) theH,⇡-transform  (G,⇡, H)

to be the graph obtained from G by replacing G[Vi, Vj ] with its bipartite complement for

every pair (Vi, Vj) for which ij is an edge of H, and replacing G[Vi] with its complement

for every Vi for which there is a loop at the vertex i in H.

Moreover, if ⇡ is a strong (`, d)-partition we define �(G,⇡) =  (G,⇡, H(G,⇡)). Note

that ⇡ is a strong (`, d)-partition for �(G,⇡) and each pair (Vi, Vj) is d-sparse in �(G,⇡).
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We now show that the result of this “sparsification” does not depend on the initial strong

(`, d)-partition.

Proposition 20. Let G be a strong (`, d)-graph. Then for any two strong (`, d)-partitions

⇡ and ⇡0, the graph �(G,⇡) is identical to �(G,⇡0).

Proof. Suppose that ⇡ = {U1, U2, . . . , Uˆ̀} and ⇡0 = {V1, V2, . . . , Vˆ̀0}. By Theorem 19,

p(⇡) = p(⇡0) = {W1,W2, . . . ,Wˆ̀00}. Consider two vertices x, y of G. Let i, j, i0, j0, i00, j00 be

the indices such that x 2 Ui, x 2 Vi0 , x 2Wi00 , y 2 Uj , y 2 Vj0 , y 2Wj00 . As the partitions

have at least 5 ⇥ 2`d vertices in each bag, `d-dense and `d-sparse are mutually exclusive

properties. Hence the pair (Ui, Uj) is d-sparse if and only if (Wi00 ,Wj00) is `d-sparse if and

only if (Vi0 , Vj0) is d-sparse; and analogously for dense pairs. Therefore xy is an edge of

�(G,⇡) if and only if it is an edge of �(G,⇡0).

Proposition 20 motivates the following definition, originating from [11].

Definition 7. For a strong (`, d)-graph G, its sparsification is �(G) = �(G,⇡) for any

strong (`, d)-partition ⇡ of G.

4.0.2 Distinguishing number kX

In this section, we discuss the distinguishing number of a hereditary graph property, which

is an important parameter introduced by Balogh, Bollobás and Weinreich in [11].

Given a graph G and a set X = {v1, . . . , vt} ✓ V (G), we say that the disjoint subsets

U1, . . . , Um of V (G) are distinguished by X if for each i, all vertices of Ui have the

same neighbourhood in X, and for each i 6= j, vertices x 2 Ui and y 2 Uj have di↵erent

neighbourhoods in X. We also say that X distinguishes the sets U1, U2, . . . , Um.

Definition 8. Given a hereditary property X , we define the distinguishing number kX as

follows:

• If for all k,m 2 N we can find a graph G 2 X that admits some X ⇢ V (G)

distinguishing at least m sets, each of size at least k, then put kX =1.

• Otherwise, there must exist a pair (k,m) such that any vertex subset of any graph

G 2 X distinguishes at most m sets of size at least k. We define kX to be the

minimum value of k in all such pairs.
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In [11], Balogh, Bollobás and Weinreich show that the speed of any hereditary prop-

erty X with kX =1 is above the Bell number. To study the classes with kX <1, in the

next sections we will need two results from their paper.

Lemma 14 ([11], Lemma 27). If X is a hereditary property with finite distinguishing

number kX , then there exist absolute constants `X , dX  kX and cX such that for all

G 2 X , the graph G contains an induced subgraph G0
such that G0

is an (`X , dX )-graph

and |V (G)\V (G0)| < cX .

By removing all the small bags with fewer than 5⇥ 2`X dX vertices, which a↵ects only

the constant cX , we can actually assume that the graph G0 is a strong (`X , dX )-graph.

This observation allows us to strengthen Lemma 14 as follows.

Lemma 15. If X is a hereditary property with finite distinguishing number kX , then there

exist absolute constants `X , dX and cX such that for all G 2 X , the graph G contains an

induced subgraph G0
such that G0

is a strong (`X , dX )-graph and |V (G)\V (G0)| < cX .

Finally, we will use this theorem:

Theorem 21 ([11], Theorem 28). Let X be a hereditary property with kX < 1. Then

Xn � n(1+o(1))n
if and only if for every m there exists a strong (`X , dX )-graph G in X such

that its sparsification �(G) has a component of order at least m.

4.1 Structure of minimal classes above the Bell number

In this section, we describe minimal classes with speed above the Bell number. In [13],

Balogh, Bollobás and Weinreich characterised all minimal classes with infinite distinguish-

ing number. In Section 4.1.1 we report this result and prove additionally that each of

these classes can be characterised by finitely many forbidden induced subgraphs. Then in

Section 4.1.2 we move on to the case of finite distinguishing number, which had been left

open in [13].

4.1.1 Infinite distinguishing number

Theorem 22 (Balogh–Bollobás–Weinreich [13]). Let X be a hereditary graph property

with kX =1. Then X contains at least one of the following (minimal) classes:
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• the class K1 of all graphs each of whose connected components is a clique;

• the class K2 of all star forests;

• the class K3 of all graphs whose vertex set can be split into an independent set I and

a clique Q so that every vertex in Q has at most one neighbour in I;

• the class K4 of all graphs whose vertex set can be split into an independent set I and

a clique Q so that every vertex in I has at most one neighbour in Q;

• the class K5 of all graphs whose vertex set can be split into two cliques Q1, Q2 so

that every vertex in Q2 has at most one neighbour in Q1;

• the class K6 of all graphs whose vertex set can be split into two independent sets I1, I2

so that the neighbourhoods of the vertices in I1 are linearly ordered by inclusion (that

is, the class of all chain graphs);

• the class K7 of all graphs whose vertex set can be split into an independent set I

and a clique Q so that the neighbourhoods of the vertices in I are linearly ordered by

inclusion (that is, the class of all threshold graphs);

• the class Ki of all graphs whose complement belongs to Ki as above, for some i 2

{1, 2, . . . , 6} (note that the complementary class of K7 is K7 itself).

Aiming to prove that each of the classes above is defined by forbidding finitely many

induced subgraphs, we first state an older result by Fldes and Hammer about split graphs

of which we make use in our proof. A split graph is a graph whose vertex set can be split

into an independent set and a clique.

Theorem 23 ([33]). The class of all split graphs is exactly the class Free(2K2, C4, C5).

Before showing the characterisation of the classes K1–K6 in terms of forbidden induced

subgraphs, we introduce some of the less commonly appearing graphs: the claw K1,3, the

3-fan F3, the diamond K�
4 , and the graph H6 (Fig. 4.1).

Theorem 24. Each of the classes of Theorem 22 is defined by finitely many forbidden

induced subgraphs.
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K1,3 F3 K�
4 H6

Figure 4.1: Some small graphs

Proof. First, observe that if we define X as the class of the complements of all graphs

in X , then Free(F) = Free(F). Hence if each class Ki is defined by finitely many forbidden

induced subgraphs, then so is each Ki.

(a) K1 = Free(P3): It is trivial to check that P3 does not belong to K1, and any graph

not containing an induced P3 must be a collection of cliques.

(b) K2 = Free(K3, P4, C4): Obviously, none of the graphs K3, P4, C4 belongs to K2.

Let G 2 Free(K3, P4, C4). Since every cycle of length at least 5 contains P4, G does not

contain any cycles; thus G is a forest. The absence of a P4 implies that the diameter of

any component of G is at most 2, hence G is a star forest.

(c) K3 = Free(F) for F = {2K2, C4, C5,K1,3, F3}: It is easy to check that none of the

forbidden graphs belong to K3. Let G 2 Free(F). By Theorem 23, G is a split graph.

Split G into a maximal clique Q and an independent set I. Suppose, for the sake of

contradiction, that Q contains a vertex u with two neighbours a, b 2 I. As we took Q to

be a maximal clique, a has a non-neighbour v and b has a non-neighbour w in Q. If a, w

are not adjacent, then the vertices a, b, u, w induce a claw in G; if b, v are not adjacent,

then the vertices a, b, u, v induce a claw in G; otherwise the vertices a, b, u, v, w induce a

3-fan in G. In either case we get a contradiction.

(d) K4 = Free(F) for F = {2K2, C4, C5,K
�
4 }: Again, it is easy to check that none of

the forbidden graphs belong to K4. Let G 2 Free(F). By Theorem 23, G is a split graph.

Just like before, split G into a maximal clique Q and an independent set I. Suppose

that some vertex u in I has two neighbours a, b in Q. By maximality of Q, u also has a

non-neighbour c in Q. But then the vertices a, b, c, u induce a K�
4 in G, a contradiction.

(e) The class K5 of the complements of the graphs in K5 is characterised as the class
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of all (bipartite) graphs whose vertex set can be split into independent sets I1, I2 so that

each vertex in I2 has at most one non-neighbour in I1. We show that K5 = Free(F) for

F = {K3, C5, P4 + K1, 2K2 + K1, C4 + K2, C4 + 2K1, H6}. The reader will kindly check

that indeed no graph in F belongs to K5.

Consider some G 2 Free(F); we will show that G 2 K5. Observe that F prevents G

from having an odd cycle, thus G is bipartite. We distinguish three cases depending on

the structure of the connected components of G.

First, suppose that G has at least two non-trivial connected components (that is,

connected components that are not just isolated vertices). Because G is (2K2 +K1)-free,

it only has two connected components in all. Being C4- and P4-free, each component is

necessarily a star. Observe that any graph consisting of one or two stars belongs to K5.

Next assume that G has only one non-trivial component and some isolated vertices.

The non-trivial component is bipartite and P4-free, so it is a biclique. If this biclique

contains C4, then G only contains one other isolated vertex; any graph consisting of a

biclique and one isolated vertex is in K5. Otherwise the biclique is a star; any graph

consisting of a star and one or more isolated vertices belongs to K5.

Finally, consider G that is connected. We will show that for any two vertices of G in

di↵erent parts, one of them must have at most one non-neighbour in the opposite part.

Suppose this is not true and there are x, y 2 V (G) in di↵erent parts such that both x

and y have at least two non-neighbours in the opposite part. Assume first that x and y

are adjacent. Let a and b be two non-neighbours of x, and let c and d be two non-

neighbours of y. Then the graph induced by a, b, c and d cannot be a C4, P4, P3+K1, 2K2

or K2 + 2K1, because G is (P4 +K1, 2K2 +K1, C4 +K2)-free. Hence a, b, c and d must

induce a 4K1. As G is connected, a must have a neighbour, say w. However, the vertices

x, y, a, c and w induce a P4 +K1 if y and w are adjacent and they induce a 2K2 +K1 if y

and w are not adjacent. Therefore, x and y must be non-neighbours.

By assumption, x has another non-neighbour a 6= y in the opposite part, and y has

another non-neighbour b 6= x in the opposite part. As G is connected, x must have a

neighbour, say u. If a and b are adjacent, then x, y, u, a and b induce a 2K2 +K1 if u is

not adjacent to b, and they induce a P4 +K1 if u is adjacent to b. Both cases lead to a

contradiction as G is (P4 +K1, 2K2 +K1)-free, hence a and b cannot be adjacent. Now,

46



as G is connected, y must also have a neighbour, say v. If u is not adjacent to b, then

x, y, u, v and b induce either a 2K2+K1 or a P4+K1, hence u and b must be adjacent. By

a symmetric argument, v is adjacent to a. Now u and v must be non-adjacent: otherwise

x, y, u, v, a and b induce an H6.

This argument shows that any neighbour of x must also be a neighbour of b, any neigh-

bour of y must also be a neighbour of a, and that any neighbour of x cannot be adjacent to

any neighbour of y. This means that the shortest induced path between x and y must con-

tain a P6, which is a contradiction as G is (P4+K1)-free. Therefore, either x or y must have

at most one non-neighbour. This implies that G can be split into two independent sets I1,

I2 such that every vertex in I2 has at most one non-neighbour in I1, so G belongs to K5.

(f) Chain graphs are characterised by finitely many forbidden induced subgraphs by a

result of Yannakakis [66]; namely, K6 = Free(2K2,K3, C5).

(g) Threshold graphs are characterised by finitely many forbidden induced subgraphs

by a result of Chvátal and Hammer [20]; namely, K7 = Free(2K2, P4, C4).

4.1.2 Finite distinguishing number

In this section we provide a characterisation of the minimal classes for the case of finite

distinguishing number kX . It turns out that these minimal classes consist of (`X , dX )-

graphs, that is, the vertex set of each graph is partitioned into at most `X bags and dense

pairs are defined by a density graph H (see Lemma 15). The condition of Theorem 21

is enforced by long paths (indeed, an infinite path in the infinite universal graph). Thus

actually dX  2 for the minimal classes X .

Let A be a finite alphabet. A word is a mapping w : S ! A, where S = {1, 2, . . . , n}

for some n 2 N or S = N; |S| is the length of w, denoted by |w|. We write wi for w(i),

and we often use the notation w = w1w2w3 . . . wn or w = w1w2w3 . . .. For n  m and

w = w1w2 . . . wn, w0 = w0
1w

0
2 . . . w

0
m (or w0 = w0

1w
0
2 . . .), we say that w is a factor of w0 if

there exists a non-negative integer s such that wi = w0
i+s for 1  i  n; w is an initial

segment of w0 if we can take s = 0.

Let H be an undirected graph with loops allowed and with vertex set V (H) = A,

and let w be a (finite or infinite) word over the alphabet A. For any increasing sequence

47



u1 < u2 < · · · < um of positive integers such that um  |w|, define Gw,H(u1, u2, . . . , um)

to be the graph with vertex set {u1, u2, . . . , um} and an edge between ui and uj if and

only if

• either |ui � uj | = 1 and wuiwuj /2 E(H),

• or |ui � uj | > 1 and wuiwuj 2 E(H).

Let G = Gw,H(u1, u2, . . . , um) and define Va = {ui 2 V (G) : wui = a} for any a 2

A. Then ⇡ = ⇡w(G) = {Va : a 2 A} is an (|A|, 2)-partition, and so G is an (|A|, 2)-

graph. Moreover,  (G,⇡, H) is a linear forest whose paths are formed by the consecutive

segments of integers within the set {u1, u2, . . . , um}. This partition ⇡w(G) is called the

letter partition of G.

Definition 9. Let H be an undirected graph with loops allowed and with vertex set

V (H) = A, and let w be an infinite word over the alphabet A. Define P(w,H) to be

the hereditary class consisting of the graphs Gw,H(u1, u2, . . . , um) for all finite increasing

sequences u1 < u2 < · · · < um of positive integers.

As we shall see later, all classes P(w,H) are above the Bell number. More importantly,

all minimal classes above the Bell number have the form P(w,H) for some w and H. Our

goal here is firstly to describe su�cient conditions on the word w under which P(w,H)

is a minimal class above the Bell number; moreover, we aim to prove that any hereditary

class above the Bell number with finite distinguishing number contains the class P(w,H)

for some word w and graph H. We start by showing that these classes indeed have finite

distinguishing number.

Lemma 16. For any word w and graph H with loops allowed, the class X = P(w,H) has

finite distinguishing number.

Proof. Put ` = |H| and let G be a graph in X . Consider the letter partition ⇡ = ⇡w(G) =

{Va : a 2 V (H)} of G, which is an (`, 2)-partition. Choose an arbitrary set of vertices

X ✓ V (G) and let {U1, U2, . . . , Uk} be the sets distinguished by X. If there are subsets

Ui, Uj and Va such that |Va \ Ui| � 3 and |Va \ Uj | � 3, then some vertex of X has at

least three neighbours and at least three non-neighbours in Va, which contradicts the fact
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that ⇡ is an (`, 2)-partition. Therefore, in the partition {Va \ Ui : a 2 V (H), 1  i  k}

we have at most ` sets of size at least 3. Note that every set Ui of size at least 2`+1 must

contain at least one such set. Hence the family {U1, U2, . . . , Uk} contains at most ` sets of

size at least 2`+ 1. Since the set X was chosen arbitrarily, we conclude that kX  2`+ 1,

as required.

The graphs Gw,H(u1, u2, . . . , un) defined on a sequence of consecutive integers will play

a special role in our considerations.

Definition 10. If u1, u2, . . . , um is a sequence of consecutive integers (i.e., uk+1 = uk + 1

for each k), we call the graph Gw,H(u1, u2, . . . , um) an |H|-factor. Notice that each |H|-

factor is an (|H|, 2)-graph; if its letter partition is a strong (|H|, 2)-partition, we call it a

strong |H|-factor.

Note that if G = Gw,H(u1, u2, . . . , um) is a strong `-factor, then its sparsification

�(G) =  (G,⇡w(G), H) is an induced path with m vertices.

Proposition 25. If w is an infinite word over a finite alphabet A and H is a graph on A,

with loops allowed, then the class P(w,H) is above the Bell number.

Proof. We may assume that every letter of A appears in w infinitely many times: otherwise

we can remove a su�ciently long starting segment of w to obtain a word w0 satisfying this

condition, replace H with its induced subgraph H 0 on the alphabet A0 of w0, and obtain a

subclass P(w0, H 0) of P(w,H) with that property. For su�ciently large k, the |A|-factor

Gk = Gw,H(1, . . . , k) is a strong |A|-factor; thus �(Gk) is an induced path of length k� 1.

Having a finite distinguishing number by Lemma 16, the class P(w,H) is above the Bell

number by Theorem 21.

Definition 11. An infinite word w is called almost periodic if for any factor f of w there

is a constant kf such that any factor of w of length at least kf contains f as a factor.

The notion of an almost periodic word plays a crucial role in our characterisation of

minimal classes above the Bell number. First, let us show that if w is almost periodic,

then P(w,H) is a minimal property above the Bell number. To prove this, we need an

auxiliary lemma.
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Lemma 17. Consider G = Gw,H(u1, . . . , un). If G is a strong (`, d)-graph and �(G) con-

tains a connected component C such that |C| �
�
2d02`2|H|2 + 1

�
(m � 1) + 1, where

d0 = max{d, 2}, then V (C) contains a sequence of m consecutive integers.

Proof. Let ⇡ = {U1, U2, . . . , U`0} be a strong (`, d)-partition of G, so that `0  ` and

�(G) = �(G,⇡); let ⇡0 = {Va : a 2 V (H)} be the letter partition of G, given by Va =

{uj 2 V (G) : wuj = a}. Put k = |H|. Note that ⇡0 is an (k, 2)-partition, hence also an

(k, d0)-partition.

Let E = E(�(G))\E( (G,⇡0, H)) be the set of all the edges of �(G) that are not edges

of  (G,⇡0, H), that is, that do not join two consecutive integers. We will now upper-bound

the number of such edges. Observe that E consists of

• the edges between Ui \ Va and Uj \ Vb where (Ui, Uj) is d0-sparse and (Va, Vb) is

d0-dense, and

• the non-edges between Ui \ Va and Uj \ Vb where (Ui, Uj) is d0-dense and (Va, Vb) is

d0-sparse.

Consider the partition ⇢ = {Ui \ Va : 1  i  `0, a 2 V (H)} of G, which is an (`0k, d0)-

partition. Let (Ui \ Va, Uj \ Vb) be a pair of non-empty sets such that (Ui, Uj) is d0-sparse

but (Va, Vb) is d0-dense. Each such pair is both d0-sparse and d0-dense, and consequently

we have |Ui\Va|  2d0 and |Uj\Vb|  2d0. Moreover, there are at most 2d02 edges between

Ui\Va and Uj \Vb. Similarly, for any pair (Ui\Va, Uj \Vb) where (Ui, Uj) is d0-dense but

(Va, Vb) is d0-sparse, we can show that there are at most 2d02 non-edges between Ui \ Va

and Uj \ Vb. We conclude that |E|  2d02(`0k)2.

Any edge of �(G) that is not in E joins two consecutive integers. Hence any connected

component C of �(G) consists of at most |E|+1 segments of consecutive integers connected

by edges from E. If C does not contain a sequence of m consecutive integers, it consists of

at most |E|+1  2d02(`0k)2+1 segments of consecutive integers, each of length at mostm�

1; it can therefore contain at most
�
2d02(`0k)2 + 1

�
(m � 1) 

�
2d02`2|H|2 + 1

�
(m � 1)

vertices.

Theorem 26. If w is an almost periodic infinite word and H is a finite graph with loops

allowed, then P(w,H) is a minimal hereditary property above the Bell number.
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Proof. The class P = P(w,H) is above the Bell number by Proposition 25. Thus we

only need to show that any proper hereditary subclass X of P is below the Bell number.

Suppose X ⇢ P and let F 2 P \ X . By definition of P(w,H), the graph F is of the

form Gw,H(u1, . . . , un) for some positive integers u1 < · · · < un. Let w0 be the finite word

w0 = wu1wu1+1wu1+2 . . . wun�1wun . As w is almost periodic, there is an integer m such

that any factor of w of length m contains w0 as factor. Assume, for the sake of contradic-

tion, that X is hereditary and above the Bell number. By Lemma 16, the distinguishing

number of P, and hence of X , is finite, and therefore, by Lemma 15 and Theorem 21,

there exists a strong (`X , dX )-graph G = Gw,H(u01, u
0
2, . . . , u

0
n0) 2 X such that �(G) has

a connected component C of order at least
�
2d2`2|H|2 + 1

�
(m � 1) + 1, where ` = `X

and d = max{dX , 2}. By Lemma 17, the vertices of C contain a sequence of m con-

secutive integers, i.e., V (G) ◆ V (C) ◆ {u0, u0 + 1, . . . , u0 + m � 1}. However, the word

wu0wu0+1 . . . wu0+m�1 contains w0; therefore G contains F , a contradiction.

The existence of minimal classes does not necessarily imply that every class above the

Bell number contains a minimal one. However, in our case this turns out to be true, as we

proceed to show next. Moreover, this will also imply that the minimal classes described in

Theorem 26 are the only minimal classes above the Bell number with kX finite. To prove

this, we first show in the next two lemmas that any class X above the Bell number with

kX finite contains arbitrarily large strong `X -factors.

Lemma 18. Let X be a hereditary class with speed above the Bell number and with finite

distinguishing number kX . Then for each m, the class X contains an `X -factor of order m.

Proof. From Theorem 21 it follows that for each m there is a graph Gm 2 X which

admits a strong (`X , dX )-partition {V1, V2, . . . , V`m} with `m  `X such that the sparsifi-

cation �(Gm) has a connected component Cm of order at least (`XdX )m. Fix an arbitrary

vertex v of Cm. As Cm is an induced subgraph of �(Gm), the maximum degree in Cm

is bounded by d = `XdX . Hence for any k > 0, in Cm there are at most d(d � 1)k�1

vertices at distance k from v; so there are at most 1 +
Pm�2

k=1 d(d� 1)k�1 < dm vertices at

distance at most m � 2 from v. As Cm has order at least dm, there exists a vertex v0 of

distance m� 1 from v. Therefore Cm contains an induced path v = v1, v2, . . . , vm = v0 of

length m� 1.
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Let A = {1, 2, . . . , `m} and let H be the graph with vertex set A and edge between

i and j if and only if Vi is dX -dense with respect to Vj . Let wi 2 A be such that

vi 2 Vwi and define the word w = w1w2 . . . wm. The induced subgraphGm[v1, v2, . . . , vm] ⇠=

Gw,H(1, 2, . . . ,m) is an `X -factor of order m contained in X .

Lemma 19. Let ` and B be positive integers such that B � 5⇥ 2`+1
. Then any `-factor

Gw,H(1, 2, . . . , |w|) of order at least B`
contains a strong `-factor Gw0,H(1, 2, . . . , |w0|) of

order at least B such that w0
is a factor of w.

Proof. We will prove by induction on r 2 {1, 2, . . . , `} that any `-factor Gw,H(1, 2, . . . , Br)

on Br vertices with at most r bags in the letter partition contains a strong `-factor on

at least B vertices. For r = 1 the statement holds because any `-factor with one bag

in the letter partition of order B � 5 ⇥ 2`+1 is a strong `-factor. Suppose 1 < r  `.

Then either each letter of w = w1w2 . . . wBr appears at least B times, in which case we

are done, or there is a letter a = wi which appears less than B times in w. Consider the

maximal factors of w that do not contain the letter a. Because the number of occurrences

of the letter a in w is less than B, there are at most B such factors of w and the sum

of their orders is at least Br � B + 1. By the pigeonhole principle, one of these factors

has order at least Br�1; call this factor w00. Now w00 contains at most r � 1 di↵erent

letters; thus G00 = Gw00,H(1, 2, . . . , |w00|) is an `-factor of order at least Br�1 for which

the letter partition has at most (r � 1) bags. By induction, G00 contains a strong `-factor

Gw0,H(1, 2, . . . , |w0|) of order at least B such that w0 is a factor of w00 which is a factor

of w. Hence w0 is a factor of w and we are done.

Theorem 27. Suppose X is a hereditary class above the Bell number with kX finite. Then

X ◆ P(w,H) for an infinite almost periodic word w and a graph H of order at most `X

with loops allowed.

Proof. From Lemmas 18 and 19 it follows that each class X with speed above the Bell

number with finite distinguishing number kX contains an infinite set S of strong `X -

factors of increasing order. For each H on {1, 2, . . . , `} with 1  `  `X , let SH =

{Gw,H(1, . . . ,m) 2 S} be the set of all `X -factors in S whose adjacencies are defined using

the density graph H. Then for some (at least one) fixed graph H0 the set SH0 is infinite.
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Hence also L = {w : Gw,H0(1, . . . ,m) 2 X} is an infinite language. As X is a hereditary

class, the language L is closed under taking word factors (it is a factorial language).

It is not hard to see that any infinite factorial language contains an inclusion-minimal

infinite factorial language. So let L0 ✓ L be a minimal infinite factorial language. It follows

from the minimality that L0 is well quasi-ordered by the factor relation, because otherwise

removing one word from any infinite antichain and taking all factors of the remaining

words would generate an infinite factorial language strictly contained in L0. Thus there

exists an infinite chain w(1), w(2), . . . of words in L0 such that for any i < j, the word

w(i) is a factor of w(j). More precisely, for each i there is a non-negative integer si such

that w(i)
k = w(i+1)

k+si
. Let g(i, k) = k +

Pi�1
j=1 sj . Now we can define an infinite word w

by putting wk = w(i)
g(i,k) for the least value of i for which the right-hand side is defined.

(Without loss of generality we get that w is indeed an infinite word; otherwise we would

need to take the reversals of all the words w(i).)

Observe that any factor of w is a factor of some w(i) and hence in the language L0. If

w is not almost periodic, then there exists a factor f of w such that there are arbitrarily

long factors f 0 of w not containing f . These factors f 0 generate an infinite factorial

language L00 ⇢ L0 which does not contain f 2 L0. This contradicts the minimality of L0

and proves that w is almost periodic.

Because any factor of w is in L, any Gw,H0(u1, . . . , um) is an induced subgraph of some

`X -factor in X . Therefore P(w,H0) ✓ X .

Combining Theorems 26 and 27 we derive the main result of this section.

Corollary 28. Let X be a class of graphs with kX <1. Then X is a minimal hereditary

class above the Bell number if and only if there exists a finite graph H with loops allowed

and an infinite almost periodic word w over V (H) such that X = P(w,H).

Lastly, note that – similarly to the case of infinite distinguishing number – each of the

minimal classes P(w,H) has an infinite universal graph: Gw,H(1, 2, 3, . . . ).
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Chapter 5

Hereditary properties of

unbounded clique-width

Clique-width is a graph parameter which is important in theoretical computer science,

because many algorithmic problem that are generally NP-hard become polynomial-time

solvable when restricted to graphs of bounded clique-width [24]. This is a relatively new

notion and it generalizes another important graph parameter, tree-width, studied in the

literature for decades. Clique-width is stronger than tree-width in the sense that graphs

of bounded tree-width have bounded clique-width, but not necessarily vice versa. For

instance, both parameters are bounded for trees, while for complete graphs only clique-

width is bounded.

When we study classes of graphs of bounded tree-width, we may assume without loss

of generality that together with every graph G our class contains all minors of G, as the

tree-width of a minor can never be larger than the tree-width of the graph itself. In other

words, when we try to identify classes of graphs of bounded tree-width, we may restrict

ourselves to minor-closed graph classes. However, when we deal with clique-width this

restriction is not justified, as the clique-width of a minor of G can be much larger than

the clique-width of G [25]. On the other hand, the clique-width of G is never smaller than

the clique-width of any of its induced subgraphs [25]. This allows us to be restricted to

hereditary classes, i.e. those that are closed under taking induced subgraphs.

One of the most remarkable outcomes of the graph minor project of Robertson and
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Seymour is the proof of Wagner’s conjecture stating that the minor relation is a well-quasi-

order [61]. This implies, in particular, that in the world of minor-closed graph classes there

exist minimal classes of unbounded tree-width and the number of such classes is finite. In

fact, there is just one such class (the planar graphs), which was shown even before the

proof of Wagner’s conjecture [60].

In the world of hereditary classes the situation is more complicated, because the in-

duced subgraph relation is not a well-quasi-order. It contains infinite antichains, the set of

cycles for example. Hence, there may exist infinite strictly decreasing sequences of graph

classes with no minimal one. In other words, even the existence of minimal hereditary

classes of unbounded clique-width is not an obvious fact. This fact was recently confirmed

in [46]. However, whether the number of such classes is finite or infinite remained an open

question. We will settle this question by showing that the family of minimal hereditary

classes of unbounded clique-width is infinite. Moreover, we will prove that the same is

true with respect to linear clique-width.

5.1 Preliminaries

Let G be a graph and U ✓ V (G) a subset of its vertices. Two vertices of U will be

called U -similar if they have the same neighborhood outside U . Clearly, U -similarity is

an equivalence relation. The number of equivalence classes of U will be denoted µ(U).

The notion of clique-width of a graph was introduced in [23]. The clique-width of a

graph G is denoted cwd(G) and is defined as the minimum number of labels needed to

construct G by means of the following four graph operations:

• creation of a new vertex v with label i (denoted i(v)),

• disjoint union of two labeled graphs G and H (denoted G�H),

• connecting vertices with specified labels i and j, with i 6= j (denoted ⌘i,j) and

• renaming label i to label j (denoted ⇢i!j).

Every graph can be defined by an algebraic expression using the four operations above.

This expression is called a k-expression if it uses k di↵erent labels. For instance, the
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cycle C5 on vertices a, b, c, d, e (listed along the cycle) can be defined by the following

4-expression:

⌘4,1(⌘4,3(4(e)� ⇢4!3(⇢3!2(⌘4,3(4(d)� ⌘3,2(3(c)� ⌘2,1(2(b)� 1(a)))))))).

Alternatively, any algebraic expression defining G can be represented as a rooted tree,

whose leaves correspond to the operations of vertex creation, the internal nodes correspond

to the �-operations, and the root is associated with G. The operations ⌘ and ⇢ are

assigned to the respective edges of the tree. Figure 5.1 shows the tree representing the

above expression defining a C5.

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

✓⌘
◆⇣

+ + + +C5

4(e) 4(d) 3(c) 2(b)

1(a)
⇢4!3⇢3!2⌘4,3⌘4,1⌘4,3 ⌘3,2 ⌘2,1

Figure 5.1: The tree representing the expression defining a C5

Let us observe that the tree in Figure 5.1 has a special form known as a caterpillar tree

(i.e. a tree that becomes a path after the removal of vertices of degree 1). The minimum

number of labels needed to construct a graph G by means of caterpillar trees is called the

linear clique-width of G and is denoted lcwd(G). Clearly, lcwd(G) � cwd(G) and there

are classes of graphs for which the di↵erence between clique-width and linear clique-width

can be arbitrarily large (see e.g. [18]).

A notion which is closely related to clique-width is that of rank-width (denoted rwd(G)),

which was introduced by Oum and Seymour in [54]. They showed that rank-width and

clique-width are related to each other by proving that if the clique-width of a graph G is

k, then

rwd(G)  k  2rwd(G)+1 � 1.

Therefore a class of graphs has unbounded clique-width if and only if it also has unbounded

rank-width.

For a graph G and a vertex v, the local complementation at v is the operation that

replaces the subgraph induced by the neighbourhood of v with its complement. A graph
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H is a vertex -minor of G if H can be obtained from G by a sequence of local complemen-

tations and vertex deletions. In [53] it was proved that if H is a vertex-minor of G, then

the rank-width of H is at most the rank-width of G.

Finally, we introduce some language-theoretics terminology and notation. Given a

word ↵, we denote by ↵(k) the k-th letter of ↵ and by ↵k the concatenation of k copies

of ↵. A factor of ↵ is a contiguous subword of ↵, i.e. a subword ↵(i)↵(i + 1) . . .↵(i + k)

for some i and k. An infinite word ↵ is periodic if there is a finite number k such that

↵(i) = ↵(i+ k) for all i.

5.2 Minimal classes of graphs of unbounded clique-width

In this section, we describe an infinite family of graph classes of unbounded clique-width

(Subsections 5.2.1 and 5.2.2). The fact that each of them is a minimal hereditary class of

unbounded clique-width will be proved in Subsection 5.2.3.

Each class in our family is defined through a universal element, i.e. a infinite graph

that contains all graphs from the class as induced subgraphs. All constructions start from

the graph

P the disjoint union of infinitely many of infinite paths. We assume that the vertices

of each path are labelled by natural numbers listed along the path. We denote the

set of vertices of P with label j by Vj and refer to it as the j-th column of the graph.

Also, the set of vertices of the i-th path will be called the i-th row of P. The vertex

of P in the i-th row and j-th column will be denoted vi,j .

Let ↵ = ↵1↵2 . . . be an infinite binary word, i.e. an infinite word such that ↵j 2 {0, 1} for

each natural j. The graph P↵ is obtained from P by complementing the edges between

two consecutive columns Vj and Vj+1 if and only if ↵j = 1. In other words, we apply

bipartite complementation to the bipartite graph induced by Vj and Vj+1. In particular,

if ↵ does not contain 1s, then P↵ = P.

Finally, by G↵ we denote the class of all finite induced subgraphs of P↵. By definition,

G↵ is a hereditary class. In what follows we show that G↵ is a minimal hereditary class of

unbounded clique-width for infinitely many values of ↵.
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5.2.1 The basic class

Our first example constitutes the basis for infinitely many other constructions. It deals

with the class G11 , where 11 stands for the infinite word of all 1s. Let us denote by

Fn,n the subgraph of P11 induced by n consecutive columns and any n rows.

In order to show that G11 is a class of unbounded clique-width, we will prove the following

lemma.

Lemma 20. The clique-width of Fn,n is at least bn/2c.

Proof. Let cwd(Fn,n) = t. Denote by ⌧ a t-expression defining Fn,n and by tree(⌧) the

rooted tree representing ⌧ . The subtree of tree(⌧) rooted at a node x will be denoted

tree(x, ⌧). This subtree corresponds to a subgraph of Fn,n, which will be denoted F (x).

The label of a vertex v of the graph Fn,n at the node x is defined as the label that v has

immediately prior to applying the operation x.

Let a be a lowest �-node in tree(⌧) such that F (a) contains a full column of Fn,n.

Denote the children of a in tree(⌧) by b and c. Let us colour all vertices in F (b) blue and

all vertices in F (c) red, and the remaining vertices of Fn,n yellow. Note that by the choice

of a the graph Fn,n contains a non-yellow column (i.e. a column each vertex of which is

non-yellow), but none of its columns are entirely red or blue. We denote a non-yellow

column of Fn,n by r. Without loss of generality we assume that r  dn/2e and that the

column r contains at least n/2 red vertices, since otherwise we could consider the columns

in reverse order and swap the colours red and blue.

Observe that edges of Fn,n between di↵erent coloured vertices are not present in F (a).

Therefore, if a non-red vertex distinguishes two red vertices u and v, then u and v must

have di↵erent labels at the node a. We will use this fact to show that F (a) contains a set

U of at least bn/2c vertices with pairwise di↵erent labels at the node a. Such a set can be

constructed by the following procedure.

1. Set j = r, U = ; and I = {i : vi,r is red}.

2. Set K = {i 2 I : vi,j+1 is non-red}.

3. If K 6= ;, add the vertices {vk,j : k 2 K} to U . Remove members of K from I.
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4. If I = ;, terminate the procedure.

5. Increase j by 1. If j = n, choose an arbitrary i 2 I, put U = {vi,m : r  m  n� 1}

and terminate the procedure.

6. Go back to Step 2.

It is not di�cult to see that this procedure must terminate. To complete the proof, it

su�ces to show that whenever the procedure terminates, the size of U is at least bn/2c

and the vertices in U have pairwise di↵erent labels at the node a

First, suppose that the procedure terminates in Step 5. Then U is a subset of red

vertices from at least bn/2c consecutive columns of row i. Consider two vertices vi,l , vi,m 2

U with l < m. According to the above procedure, vi,m+1, is red. Since Fn,n does not

contain an entirely red column, there must exist a non-red vertex w in the column m+1.

According to the structure of Fn,n, vertex w is adjacent to vi,m and non-adjacent to vi,l.

We conclude that vi,l and vi,m have di↵erent labels. Since vi,l and vi,m have been chosen

arbitrarily, the vertices of U have pairwise di↵erent labels.

Now suppose that the procedure terminates in Step 4. By analyzing Steps 2 and 3, it

is easy to deduce that U is a subset of red vertices of size at least bn/2c. Suppose that

vi,l and vk,m are two vertices in U with l  m. The procedure certainly guarantees that

i 6= k and that both vi,l+1 and vk,m+1 are non-red. If m 2 {l, l + 2}, then it is clear that

vi,l+1 distinguishes vertices vi,l and vk,m, and therefore these vertices have di↵erent labels.

If m /2 {l, l + 2}, we may consider vertex vk,m�1 which must be red. Since Fn,n does not

contain an entirely red column, the vertex vk,m must have a non-red neighbor w in the

column m� 1. But w is not a neighbour of vi,l, trivially. We conclude that vi,l and vk,m

have di↵erent labels, and therefore, the vertices of U have pairwise di↵erent labels. This

shows that the clique-width of the graph Fn,n is at least bn/2c.

5.2.2 Other classes

In this section, we discover more hereditary classes of graphs of unbounded clique-width

by showing that for all n 2 N such classes have graphs containing Fn,n as a vertex-minor.
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Lemma 21. Let ↵ be an infinite binary word containing infinitely many 1s. Then the

clique-width of graphs in the class G↵ is unbounded.

Proof. First fix an even number n. Let � be a factor of ↵ containing precisely n occurrences

of 1, starting and ending with 1. We denote the length of � by ` and consider the subgraph

Gn of P↵ induced by `+1 consecutive columns corresponding to � and by any n rows. We

will now show that Gn contains the graph Fn,n defined in Theorem 20 as a vertex-minor.

If � contains 00 as a factor, then there are three columns Vi, Vi+1, Vi+2 such that each

of Vi [Vi+1 and Vi+1 [Vi+2 induces a 1-regular graph. We apply a local complementation

to each vertex of Gn in column Vi+1 and then delete the vertices of Vi+1 from Gn. Under

this operation, our graph transforms into a new graph where column Vi+1 is absent,

while columns Vi and Vi+2 induce a 1-regular graph. In terms of words, this operation is

equivalent to removing one 0 from the factor 00. Applying this transformation repeatedly,

we can reduce Gn to an instance corresponding to a word � with no two consecutive 0s.

Now assume � contains 01 as a factor, and let Vj , Vj+1 and Vj+2 be three consecutive

columns such that Vj [ Vj+1 induces a 1-regular graph, while the edges between Vj+1 and

Vj+2 form the bipartite complement of a 1-regular graph. We apply a local complemen-

tation to each vertex of Vj+1 in turn and then delete the vertices of Vj+1 from Gn. It is

not di�cult to see that in the transformed graph the edges between Vj and Vj+2 form the

bipartite complement of a matching. Looking at the vertices in Vj+2 we see that for any

two vertices x and y in this column, when a local complementation is applied at z 2 Vj+1

the adjacency between x and y is complemented if and only if both x and y are adjacent

to z. Since |Vj+2| = n is even, we conclude that after n applications of local complemen-

tation Vj+2 remains an independent set. In terms of words, this operation is equivalent

to removing 0 from the factor 01. Applying this transformation repeatedly, we can reduce

Gn to an instance corresponding to a word � which is free of 0s.

The above discussion shows that Gn can be transformed by a sequence of local com-

plementations and vertex deletions into Fn,n. Therefore, Gn contains the graph Fn,n as

a vertex-minor. Since n can be arbitrarily large, we conclude that the rank-width, and

hence the clique-width, of graphs in G↵ is unbounded.
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5.2.3 Minimality of classes G↵ with a periodic ↵

In the previous section, we proved that any class G↵ with infinitely many 1s in ↵ has

unbounded clique-width. In the present section, we will show that if ↵ is periodic, then G↵

is a minimal hereditary class of graphs of unbounded clique-width, provided that ↵ contains

at least one 1. In other words, we will show that in any proper hereditary subclass of G↵

the clique-width is bounded. Moreover, we will show that proper hereditary subclasses

of G↵ have bounded linear clique-width. To this end, we first prove a technical lemma,

which strengthens a similar result given in [46] from clique-width to linear clique-width.

Let us repeat that by µ(U) we denote the number of similarity classes with respect to an

equivalence relation defined in Section 5.1.

Lemma 22. Let m � 2 and ` be positive integers. Suppose that the vertex set of G can

be partitioned into sets U1, U2, . . . where for each i,

(1) lcwd(G[Ui])  m,

(2) µ(Ui)  ` and µ(U1 [ · · · [ Ui)  `.

Then lcwd(G)  `(m+ 1).

Proof. If G[U1] can be constructed with at most m labels and µ(U1)  `, then G[U1]

can be constructed with at most m` di↵erent labels in such a way that in the process of

construction any two vertices in di↵erent equivalence classes of U1 have di↵erent labels,

and by the end of the process any two vertices in the same equivalence class of U1 have the

same label. In other words, we build G[U1] with at most m` labels and finish the process

with at most ` labels corresponding to the equivalence classes of U1.

Now assume we have constructed the graph Gi = G[U1 [ · · · [ Ui] using m` di↵erent

labels making sure that the construction finishes with a set A of at most ` di↵erent labels

corresponding to the equivalence classes of U1 [ · · · [ Ui. By assumption, it is possible

to construct G[Ui+1] using a set B of at most m` di↵erent labels such that we finish the

process with at most ` labels corresponding to the equivalence classes of Ui+1. We choose

labels so that A and B are disjoint. As we construct G[Ui+1] join each vertex to its

neighbours in Gi to build the graph Gi+1 = G[U1 [ · · · [ Ui [ Ui+1]. Notice that any two

vertices in the same equivalence class of U1[· · ·[Ui or Ui+1 belong to the same equivalence
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class of U1 [ · · · [ Ui [ Ui+1. Therefore, the construction of Gi+1 can be completed with

a set of at most ` di↵erent labels corresponding to the equivalence classes of the graph.

The conclusion now follows by induction.

Now let ↵ be an infinite binary periodic word of period p with at least one 1. For

constants k and t, let us denote by

Hk,t the subgraph of P↵ induced by the first k rows and any t columns.

It is not di�cult to see that

Lemma 23. A graph with n vertices in G↵ is an induced subgraph of Hk,t for any k � n

and any t � n(p+ 1).

Now, with the help of Lemma 22 we derive the following conclusion.

Lemma 24. The linear clique-width of Hk,t is at most 4t.

Proof. Denote by Ui the i-th row of Hk,t. Since each row induces a path forest (i.e. a

disjoint union of paths), it is clear that lcwd(G[Ui])  3 for every i. Trivially, µ(Ui)  t,

since |Ui| = t. Also, denoting Wi := U1[ . . .[Ui, it is not di�cult to see that µ(Wi)  t for

every i, since the vertices of the same column are Wi-similar. Now the conclusion follows

from Lemma 22.

Next we use Lemmas 22, 23 and 24 to prove the following result.

Lemma 25. For any fixed k � 1, the linear clique-width of Hk,k-free graphs in the class

G↵ is bounded by a function of k.

Proof. Let G be an Hk,k-free graph in G↵. By Lemma 23, the graph G is an induced

subgraph of Hn,n for some n. For convenience, assume that n is a multiple of k, say

n = tk. We fix an arbitrary embedding of G into Hn,n and call the vertices of Hn,n that

induce G black. The remaining vertices of Hn,n will be called white.

For 1  i  t, let us denote by Wi the subgraph of Hn,n induced by the k consecutive

columns (i � 1)k + 1, (i � 1)k + 2, . . . , ik. We partition the vertices of G into subsets

U1, U2, . . . , Ut according to the following procedure:
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1. For 1  j  t, set Uj = ;. Add every black vertex of W1 to U1. Set i = 2.

2. For j = 1, . . . , n,

• if row j of Wi is entirely black, then add the first vertex of this row to Ui�1 and

the remaining vertices of the row to Ui.

• otherwise, add the (black) vertices of row j preceding the first white vertex to

Ui�1 and add the remaining black vertices of the row to Ui.

3. Increase i by 1. If i = t+ 1, terminate the procedure.

4. Go back to Step 2.

Let us show that the partition U1, U2, . . . , Ut given by the procedure satisfies the as-

sumptions of Lemma 22 with m and ` depending only on k.

The procedure clearly assures that each G[Ui] is an induced subgraph of G[V (Wi) [

V (Wi+1)]. By Lemma 24, we have lcwd(G[V (Wi) [ V (Wi+1)]) = lcwd(Fn,2k)  8k. Since

the linear clique-width of an induced subgraph cannot exceed the linear clique-width of the

parent graph, we conclude that lcwd(G[Uj ])  8k, which shows condition (1) of Lemma 22.

To show condition (2) of Lemma 22, let us call a vertex vj,m of Ui boundary if either

vj,m�1 belongs to Ui�1 or vj,m+1 belongs to Ui+1 (or both). It is not di�cult to see that

a vertex of Ui is boundary if it belongs either to the second column of an entirely black

row of Wi or to the first column of an entirely black row of Wi+1. Since the graph G is

Hk,k-free, the number of rows of Wi which are entirely black is at most k � 1. Therefore,

the boundary vertices of Ui introduce at most 2(k � 1) equivalence classes in Ui.

Now consider two non-boundary vertices of Ui from the same column. It is not di�cult

to see that these vertices have the same neighborhood outside of Ui. Therefore, the non-

boundary vertices of the same column of Ui are Ui-similar and hence the non-boundary

vertices give rise to at most 2k equivalence classes in Ui. Thus, µ(Ui)  4k � 2 for all i.

Similar argument show that µ(U1 [ . . .[Ui)  3k� 1  4k� 2 for all i. Therefore, by

Lemma 22, we conclude that lcwd(G)  (4k � 2)(8k + 1), which completes the proof.

Theorem 29. Let ↵ be an infinite binary periodic word containing at least one 1. Then

the class G↵ is a minimal hereditary class of graphs of unbounded clique-width and linear
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clique-width.

Proof. By Lemma 21, the clique-with of graphs in G↵ is unbounded. Therefore, linear

clique-width is unbounded too. To prove the minimality, consider a proper hereditary

subclass X of G↵ and let G 2 G↵ �X. By Lemma 23, G is an induced subgraph of Hk,k

for some finite k. Therefore, each graph in X is Hk,k-free. Observe that the value of k is

the same for all graphs in X. It depends only on G and the period of ↵. Therefore, by

Lemma 25, the linear clique-width (and hence clique-width) of graphs in X is bounded by

a constant.

5.3 More classes of graphs of unbounded clique-width

In this section, we extend the alphabet from {0, 1} to {0, 1, 2} in order to construct more

classes of graphs of unbounded clique-width. Let ↵ be an infinite word over the alphabet

{0, 1, 2}. We remind the reader that the letter 1 stands for the operation of bipartite

complementation between two consecutive columns Vj and Vj+1 of the graph P, i.e. if

↵j = 1, then two vertices vi,j 2 Vj and vk,j+1 2 Vj+1 are adjacent in P↵ if and only if they

are not adjacent in P.

The new letter 2 will represent the operation of “forward” complementation, i.e. if

↵j = 2, then two vertices vi,j 2 Vj and vk,j+1 2 Vj+1 with i < k are adjacent in P↵ if

and only if they are not adjacent in P. In other words, this operation adds edges between

vi,j and vk,j+1 with i < k. The bipartite graph induced by two consecutive columns

corresponding to the letter 2 is known in the literature as a chain graph.

Of special interest for the topic of this paper is the word 21 = 222 . . .. The class G21

is also known as the class of bipartite permutation graphs and this is one of the first two

minimal classes of graphs of unbounded clique-width discovered in the literature [46]. We

will denote by

Xn,n the subgraph of P21 induced by n consecutive columns and and any n rows. Fig-

ure 5.2 represents an example of the graph Xn,n with n = 6.

The unboundedness of clique-width in the class G21 follows from the following result

proved in [16].

64



r r r r r r
r r r r r r
r r r r r r
r r r r r r
r r r r r r
r r r r r r

@

@

@

A

A

A

A

A

A

B

B

B

B

B

B

B

B
B

C

C

C

C

C

C

C

C

C

C

C
C

D

D

D

D

D

D

D

D

D

D

D

D

D

DD

@

@

@

A

A

A

A

A

A

B

B

B

B

B

B

B

B
B

C

C

C

C

C

C

C

C

C

C

C
C

D

D

D

D

D

D

D

D

D

D

D

D

D

DD

@

@

@

A

A

A

A

A

A

B

B

B

B

B

B

B

B
B

C

C

C

C

C

C

C

C

C

C

C
C

D

D

D

D

D

D

D

D

D

D

D

D

D

DD

@

@

@

A

A

A

A

A

A

B

B

B

B

B

B

B

B
B

C

C

C

C

C

C

C

C

C

C

C
C

D

D

D

D

D

D

D

D

D

D

D

D

D

DD

@

@

@

A

A

A

A

A

A

B

B

B

B

B

B

B

B
B

C

C

C

C

C

C

C

C

C

C

C
C

D

D

D

D

D

D

D

D

D

D

D

D

D

DD

@

@

@

A

A

A

A

A

A

B

B

B

B

B

B

B

B
B

C

C

C

C

C

C

C

C

C

C

C
C

@

@

@

A

A

A

A

A

A

B

B

B

B

B

B

B

B
B

C

C

C

C

C

C

C

C

C

C

C
C

@

@

@

A

A

A

A

A

A

B

B

B

B

B

B

B

B
B

C

C

C

C

C

C

C

C

C

C

C
C

@

@

@

A

A

A

A

A

A

B

B

B

B

B

B

B

B
B

C

C

C

C

C

C

C

C

C

C

C
C

@

@

@

A

A

A

A

A

A

B

B

B

B

B

B

B

B
B

C

C

C

C

C

C

C

C

C

C

C
C

@

@

@

A

A

A

A

A

A

B

B

B

B

B

B

B

B
B

@

@

@

A

A

A

A

A

A

B

B

B

B

B

B

B

B
B

@

@

@

A

A

A

A

A

A

B

B

B

B

B

B

B

B
B

@

@

@

A

A

A

A

A

A

B

B

B

B

B

B

B

B
B

@

@

@

A

A

A

A

A

A

B

B

B

B

B

B

B

B
B

@

@

@

A

A

A

A

A

A

@

@

@

A

A

A

A

A

A

@

@

@

A

A

A

A

A

A

@

@

@

A

A

A

A

A

A

@

@

@

A

A

A

A

A

A

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

Figure 5.2: The graph X6,6

Lemma 26. The clique-width of Xn,n is at least n/6.

In what follows, we will prove that every class G↵ with infinitely many 2s in ↵ has

unbounded clique-width by showing that graphs in this class contain Xn,n as a vertex

minor for arbitrarily large values of n. We start with the case when the letter 1 appears

finitely many times in ↵.

Lemma 27. Let ↵ be an infinite word over the alphabet {0, 1, 2}, containing the letter 2

infinitely many times and the letter 1 finitely many times. Then the class G↵ has unbounded

clique-width.

Proof. First fix a constant n. Let � be a factor of ↵ containing precisely n instances of the

letter 2, starting and ending with the letter 2 and containing no instances of the letter 1

(since letter 2 appears infinitely many times and letter 1 finitely many times in ↵, we can

always find such a factor). We denote the length of � by ` and consider the subgraph Gn

of P↵ induced by ` + 1 consecutive columns corresponding to � and by any n2n�1 rows.

We will now show that Gn contains the graph Xn,n as a vertex-minor.

Using arguments identical to those in Theorem 21, we can show that any instance of

00 can be replaced by 0 with the help of local complementations and vertex deletions.

Now each instance of 0 is surrounded by 2s in �. Consider any factor 02 of � and

let Vj , Vj+1, Vj+2 be three columns such that Vj [ Vj+1 induces a 1-regular graph and

Vj+1 [ Vj+1 induces a chain graph. If we apply a local complementation to each vertex

of Vj+1 in turn, it is easy to see that the edges between Vj and Vj+2 form a chain graph.
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Looking at the vertices in the column Vj+2 we see that for any two vertices x and y, when

a local complementation is applied at z 2 Vj+1 the edge between x and y is complemented

if and only if both x and y are adjacent to z. Therefore, x and y are adjacent if and only

if min{|N(x) \ Vj+1|, |N(y) \ Vj+1|} is odd. Hence the vertices of Vj+2 in the even rows

induce an independent set. So, applying a local complementation to each vertex of Vj+1

in turn and then deleting column Vj+1 together with the odd rows allows us to reduce the

factor 02 to 2. This transformation also reduces the number of rows two times. Since the

factor 02 can appear at most n � 1 times, in at most n � 1 transformations we reduced

Gn to a graph containing Xn,n. Therefore, Gn contains Xn,n as a vertex minor.

Since n can be arbitrarily large, we conclude with the help of Lemma 26 that graphs

in G↵ can have arbitrarily large clique-width.

To extend the last lemma to a more general result, we again refer to [53], which

introduces another useful transformation, called pivoting. For a graph G and an edge xy,

the graph obtained by pivoting xy is defined to be the graph obtained by applying local

complementation at x, then at y and then at x again. They then show that in the case of

bipartite graphs pivoting xy is identical to complementing the edges between N(x) \ {y}

and N(y) \ {x}. We will use this transformation to prove the following result.

Lemma 28. Let ↵ be an infinite word over the alphabet {0, 1, 2}, containing the letter 2

infinitely many times. Then the class G↵ has unbounded clique-width.

Proof. First, fix a constant n. Let � be a factor of ↵ containing precisely n instances of

the letter 2, starting and ending with the letter 2. Let Gn be the subgraph of P↵ induced

by the columns corresponding to � and by any n2n + n2 rows. To prove the lemma, it is

enough to show that Gn contains either Fn,n or Xn,n as a vertex minor.

Consider any two consecutive appearances of 2 in � and denote the word between them

by �. In other words, � is a (possibly empty) word in the alphabet {0, 1}. If � contains at

least n instances of 1, then by Lemma 21 Gn contains Fn,n as a vertex minor. Therefore,

we assume that the number of 1s in � is at most n�1. If � contains no instance of 1, then

we apply the idea of Lemma 27 to reduce it to the empty word. If � contains at least one

instance of 1, we apply the idea of Lemma 21 to eliminate all 0s from it.
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Suppose that after this transformation � contains at least two 1s, i.e. � contains 211

as a factor. Let Vj , Vj+1, Vj+2 and Vj+3 be the four columns such that Vj+1 [ Vj+2 and

Vj+2[Vj+3 induce bipartite complements of 1-regular graph and Vj [Vj+1 induces a chain

graph. Let x be the vertex in the first row of column Vj+1 and y be the vertex in the last

row of column Vj+2. It is not di�cult to see that if we pivot the edge xy and delete the

first and the last row, then the graphs induced by Vj+1 [Vj+2 and by Vj+2 [Vj+3 become

a 1-regular. In other words, we transform the factor 211 into 200. Then we apply the idea

of Lemma 21 to further transform it into 2.

Repeated applications of the above transformation allows us to assume that � contains

exactly one 1, i.e. � contains 212 as a factor. Let Vj , Vj+1, Vj+2 and Vj+3 be the four

columns such that Vj [Vj+1 and Vj+2 [Vj+3 induce chain graphs and Vj+1 [Vj+2 induces

the bipartite complement of a 1-regular graph. Let x be the vertex in the first row of

column Vj+1 and y be the vertex in the last row of column Vj+2. It is not di�cult to

see that if we pivot the edge xy and delete the first and the last row, then the graph

induced by Vj+1 [ Vj+2 becomes 1-regular, while the graphs induced by Vj [ Vj+1 and by

Vj+2 [ Vj+3 remain chain graphs. In other words, we transform the factor 212 into 202.

Then we apply the idea of Lemma 27 to further transform it into 22.

The above procedure applied at most n � 1 times allows us to transform � into the

word of n consecutive 2s. In terms of graphs, Gn transforms into a sequence of n chain

graphs. Moreover, it is not di�cult to see that if initially Gn contains n2n+n2 rows, then

the resulting graph has at least n rows, i.e. it contains Xn,n as a vertex minor.

5.4 Conclusion and open problems

In the preceding sections, we have described a new family of hereditary classes of graphs

of unbounded clique-width. For many of them, we proved the minimality. Our results

allow us to make the following conclusion.

Theorem 30. There exist infinitely many minimal hereditary classes of graphs of un-

bounded clique-width and linear clique-width.

Proof. Let n be a natural number and ↵(n) = (0n1)1. Since ↵(n) is an infinite periodic

67



word, by Theorem 29 G↵(n) is a minimal class of unbounded clique-width and linear clique-

width.

If n < m, then G↵(n) and G↵(m) do not coincide, since G↵(n) contains an induced

C2(n+2), while G↵(m) does not (which it is not di�cult to see). Therefore, G↵(1) , G↵(2) , . . .

is an infinite sequence of minimal hereditary classes of graphs of unbounded clique-width

and linear clique-width.

A full description of minimal classes of the form G↵ remains an open question. To pro-

pose the conjecture addressing this question, we first define the notion of almost periodic

word. An infinite word ↵ is almost periodic if for each factor � of ↵ there exists a constant

`(�) such that every factor of ↵ of length at least `(�) contains � as a factor.

Conjecture 1. Let ↵ be an infinite word over the alphabet {0, 1, 2} with at least one

appearance of 1 or 2. The class G↵ is a minimal hereditary class of unbounded clique-

width if and only if ↵ is almost periodic.

Note that the conditions of Conjecture 1 imply that either 1 or 2 appears in ↵ infinitely

many times. It is not hard to verify that this condition is necessary for the class G↵ to

have unbounded clique-width, in other words if ↵ contains finitely many 1s and 2s the

class G↵ has bounded clique-width.

We conclude this section by discussing an intriguing relationship between clique-width

in a hereditary class X and the existence of infinite antichains in X with respect to the

induced subgraph relation. In particular, the following question was asked in [28]: is it

true that if the clique-width in X is unbounded, then it necessarily contains an infinite

antichain? Recently, this question was answered negatively in [49]. However, in the case

of so-called labelled induced subgraphs, the question remains open.

Labelled induced subgraphs. We define this notion for two labels (or colors), which

is the simplest case where the above question is open. Assume we deal with graphs

whose vertices are colored by two colors, say white and black. We say that a graph

H is a labelled induced subgraph of G if there is an embedding of H into G that

respects the colors. With this strengthening of the induced subgraph relation, some

graphs that are comparable without labels may become incomparable if equipped

68



with labels. Consider, for instance, two chordless paths Pk and Pn. Without labels,

one of them is an induced subgraph of the other. Now imagine that we color the

endpoints of both paths black and the remaining vertices white. Then clearly they

become incomparable with respect to the labelled induced subgraph relation (if k 6=

n). Therefore, the set of all paths colored in this way create an infinite labelled

antichain. Let us denote it by A0.

In [28], it was conjectured that hereditary classes of graphs of unbounded clique-width

necessarily contain infinite labelled antichains. We believe this is true. Moreover, we

propose the following strengthening of the conjecture from [28].

Conjecture 2. Every minimal hereditary class of graphs of unbounded clique-width con-

tains a canonical infinite labelled antichain.

The notion of a canonical antichain was introduced by Guoli Ding in [29] and can be

defined for hereditary classes as follows. An infinite antichain A in a hereditary class X

is canonical if any hereditary subclass of X containing only finitely many graphs from A

has no infinite antichains. In other words, speaking informally, an antichain is canonical

if it is unique in the class.

To support Conjecture 2, let us observe that it is valid for all minimal classes G↵

described in Theorem 29. Indeed, all of them contain arbitrarily large chordless paths and

hence all of them contained the infinite labelled antichain A0 defined above. Moreover,

this antichain is canonical, because by forbidding all paths of length greater than k for

some fixed k, we are left with subgraphs of P↵ occupying at most k consecutive columns,

in which case the clique-width of such graphs is at most 4k by Lemma 24.

There exist many other infinite labelled antichains, but all available examples are

obtained from the antichain A0 by various transformations. We believe that any infinite

labelled antichain can be transformed from A0 in a certain way and that any minimal

hereditary class of unbounded clique-width can be transformed from P↵ (for some ↵) in

a similar way. Describing the set of these transformations is a challenging research task.
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Chapter 6

Factorial properties and implicit

representations of graphs

Every simple graph on n vertices can be represented by a binary word of length
�n
2

�
(half

of the adjacency matrix), and if no a priory information about the graph is known, this

representation is best possible in terms of its length. However, if we know that our graph

belongs to a particular class (possesses a particular property), this representation can be

shortened. For instance, the Prüfer code allows representing a labelled tree with n vertices

by a word of length (n � 2) log n (in binary encoding)1. For labelled graphs, i.e. graphs

with vertex set {1, 2, . . . , n}, we need log n bits for each vertex just to represent its label.

That is why graph representations requiring O(log n) bits per vertex have been called in

[38] implicit.

Throughout this section by representing a graph we mean its coding, i.e. representing

by a word in a finite alphabet (in our case the alphabet is always binary). Moreover, we

assume that di↵erent graphs are mapped to di↵erent words (i.e. the mapping is injective)

and that the graph can be restored from its code. For an implicit representation, we

additionally require that the code of the graph consists of the codes of its vertices, each of

length O(log n), and that the adjacency of two vertices, i.e. the element of the adjacency

matrix corresponding to these vertices, can be computed from their codes.

Not every class of graphs admits an implicit representation, since a bound on the total

1All logarithms in this section are of base 2
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length of the code implies a bound on the number of graphs admitting such a representa-

tion. More precisely, only classes containing 2O(n logn) graphs with n vertices can admit an

implicit representation. However, this restriction does not guarantee that graphs in such

classes can be represented implicitly. A simple counter-example can be found in [65]. Even

with further restriction to hereditary classes, i.e. those that are closed under taking in-

duced subgraphs, the question is still not so easy. The authors of [38], who introduced the

notion of an implicit representation, conjectured that every hereditary class with 2O(n logn)

graphs on n vertices admits an implicit representation, and this conjecture is still open.

In the terminology of [11], hereditary classes containing 2O(n logn) labelled graphs on

n vertices are at most factorial, i.e. have at most factorial speed of growth. Classes

with speeds lower than factorial are well studied and have a very simple structure. The

family of factorial classes is substantially richer and the structure of classes in this family

is more diverse. It contains many classes of theoretical or practical importance, such as

line graphs, interval graphs, permutation graphs, threshold graphs, forests, planar graphs

and, even more generally, all proper minor-closed graph classes [52], all classes of graphs

of bounded vertex degree, of bounded clique-width [6], etc.

In spite of the crucial importance of the family of factorial classes, except the definition

very little can be said about this family in general, and the membership in this family is

an open question for many specific graph classes. To simplify the study of this question,

we will introduce a number of tools and apply them to reveal new members of this family.

For some of them, we do even better and find an implicit representation.

6.1 Tools

6.1.1 Modular decomposition

Given a graph G and a subset U ⇢ V (G), we say that a vertex x outside of U distinguishes

U if it has both a neighbour and a non-neighbour in U . A proper subset of V (G) is called

a module if it is indistinguishable by the vertices outside of the set. A module is trivial if

it consists of a single vertex, no vertices or every vertex. A graph every module of which

is trivial is called prime.

It is well-known (and not di�cult to see) that a graph G which is connected and co-
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connected (the complement to a connected graph) admits a unique partition into maximal

modules. Moreover, for any two maximal modules M1 and M2, the graph G contains

either all possible edges between M1 and M2 or none of them. Therefore, by contracting

each maximal module into a single vertex we obtain a graph which is prime (due to the

maximality of the modules). This property allows a reduction of various graph problems

from the set of all graphs in a hereditary class X to prime graphs in X. In what follows,

we show that the question of deciding whether a hereditary class is at most factorial also

allows such a reduction. We start with the following technical lemma.

Lemma 29. For any positive integers k < n, and n1, n2, . . . , nk such that n1 + n2 + · · ·+

nk = n, the following inequality holds:

k log k + n1 log n1 + n2 log n2 + . . .+ nk log nk  n log n.

Proof. For k = 1, the statement is trivial. Let k > 1. The derivative of fa(x) = x log x+

(a� x) log(a� x) is log x� log(a� x), which is non-negative for x � a
2 . In particular, this

implies that for any two integers m � n > 1 we have fn+m(m)  fn+m(m+ 1). Hence,

m logm+ n log n  (m+ 1) log(m+ 1) + (n� 1) log(n� 1). (6.1)

Denote n0 = k and let s be a number in {0, 1, . . . , k} such that ns � ni for all i = 0, 1, . . . , k.

Applying inequality (6.1) (n0 � 1) + . . .+ (nk � 1)� (ns � 1) = n� ns times we obtain:

n0 log n0+. . .+nk log nk  (ns+n�ns) log(ns+n�ns)+1 log 1+. . .+1 log 1 = n log n.

Theorem 31. Let X be a hereditary class of graphs. If the number of prime n-vertex

graphs in X is 2O(n logn)
, then the number of all n-vertex graphs in X is 2O(n logn)

.

Proof. For convenience, let us extend the notion of prime graphs by including in it all

complete and all empty graphs. For each n > 2, this extension adds to the set of prime

graphs just two graphs, so we may assume the number of graphs in our class is at most

2cn logn for a constant c > 0.

For n � 2, let fn be an injection from the set of prime n-vertex graphs in X to the

binary sequences of length at most cn log n. For each prime graph P on n � 2 vertices,

let f(P ) = |nbin|fn(P )|, where nbin is the binary expression of n. Thus, f is an injection
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from the set of prime graphs in X to the set of ternary words (i.e. words in the alphabet

of three symbols {0, 1, |}). For each n-vertex prime graph P 2 X the length of the word

f(P ) is at most cn log n + log n + 3. Observe that cn log n + log n + 3  (c + 2)n log n

for n � 2. Therefore, each n-vertex prime graph in X is represented by a ternary word

of length at most (c + 2)n log n for n � 2. We claim that all the graphs in Xn can be

represented by di↵erent ternary words of length at most (c+ 3)n log n+ n.

Given a graph G 2 Xn we construct a modular decomposition tree T of G in which each

node x corresponds to an induced subgraph of G, denoted Gx, and has a label, denoted

Lx. For the root, we define Gx = G. To define the children of x and its label, we proceed

as follows.

• Assume Gx has at least two vertices, then

– If Gx is disconnected, we decompose it into connected components, associate

each connected component with a child of x, and define Lx = f(Ok), where k

is the number of connected components.

– If Gx is the complement to a disconnected graph, then we decompose it into

co-components (connected components of the complement), associate each co-

component with a child of x, and define Lx = f(Kk), where k is the number of

co-components.

– If both Gx and its complement are connected, then we decompose G into max-

imal modules, associate each module with a child of x, and define Lx = f(G⇤
x),

where G⇤
x is the prime graph obtained from Gx by contracting each maximal

module into a single vertex.

• Assume Gx has just one vertex, and let j 2 {1, 2, . . . , n} be the label of that vertex

in G. Then we define x to be a leaf in T and Lx = jbin, where jbin is the binary

expression of j of length log n.

If x is a non-leaf node of T , then it has k � 2 children, in which case its label has

length at most (c+2)k log k. Otherwise x is a leaf and its label has length log n. Let f(G)

be the concatenation of the labels of all the nodes of T in the order they appear in the

depth-first search algorithm applied to T . Since the labels record the number of children
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for each node, it is not hard to see that we can reconstruct the original tree T from the

word f(G), and hence we can reconstruct the graph G from f(G), i.e. f is an injection.

Let us prove that the length of the word f(G) is at most (c + 3)n log n+ n. The leaf

nodes of T contribute n log n bits to f(G). Now by induction on n � 2 we show that the

remaining nodes of T contribute at most (c + 2)n log n + n symbols to f(G). For n = 2,

this follows from the first part of the proof. Now assume n > 2. Let the root of the tree T

have k children corresponding to induced subgraphs G1, . . . , Gk of G of sizes n1, n2, . . . nk

with n1 + n2 + · · ·+ nk = n. Since ni < n, by the induction hypothesis the internal nodes

of TGi contribute at most (c+ 2)ni log ni + ni symbols to f(Gi), where TGi is the subtree

of T rooted at the vertex corresponding to subgraph Gi. Also, the label of the root has

length at most (c + 2)k log k. Clearly the set of internal (non-leaf) nodes of T coincides

with the union of internal nodes of TG1 . . . TGk and the root of T . Hence, by Lemma 29,

the internal nodes of T contribute at most (c+ 2)n log n+ n symbols to f(G).

Since we used 3 letters to represent graphs from X, the number of graphs in Xn is

at most 3(c+3)n logn+n  3(c+4)n logn = 2c
0n logn, where c0 = (c + 4) log 3, i.e. |Xn| =

2O(n logn).

Corollary 32. If the set of prime graphs in a hereditary class X belongs to a class which

is at most factorial, then X is at most factorial.

6.1.2 Functional vertices

In this section, we introduce one more tool which is helpful in deciding whether a given

class of graphs is factorial or not. We repeat that by m(x, y) we denote the element of the

adjacency matrix corresponding to vertices x and y.

Definition 12. For a graph G = (V,E), we say that a vertex y 2 V is a function of a

set of vertices x1, . . . , xk 2 V if there exists a Boolean function f : Bk ! B of k variables

such that for any vertex z 2 V \ {y, x1, . . . , xk},

m(y, z) = f(m(x1, z), . . . ,m(xk, z)).

Theorem 33. Let X be a hereditary class of graphs and c be a constant. If for every

graph G in X there is a vertex y and two disjoint sets U and R each of at most c vertices
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such that y is a function of U in the graph G \R, then |Xn| = 2O(n logn)
.

Proof. To prove the theorem, we will show by induction on n that any n-vertex graph in

this class can be described by (2c + 1)n log n + (2c + 2c)n bits. This is clearly true for

n = 1 or n = 2, so assume that every (n � 1)-vertex graph in X admits a description by

a binary word of length at most (2c+ 1)(n� 1) log(n� 1) + (2c + 2c)(n� 1). Let G be a

graph in X with n vertices, y a vertex in G and U = {x1, . . . , xk}, R two sets as described

in the statement of the theorem. For ease of notation we will call y the functional vertex.

To obtain a description of G, we start by describing the label of y by a binary word of

length log n. Next, we list each of the labels of the vertices in R, following each with a 0 if

y is not adjacent to the vertex and a 1 if y is adjacent to the vertex. As there are at most

c vertices in R, this requires at most c log n + c bits. Next, we list each of the labels of

the vertices in U , following each with a 0 if y is not adjacent to the vertex and a 1 if y is

adjacent to the vertex. Similarly, this requires at most c log n+ c bits. Then, as we know

that y is a function of the vertices in U in the graph G \ R, there is a Boolean function

that describes the adjacencies of the vertices in G\{U [R[y} to y. List the image of this

function next. This requires at most 2c bits, as there are at most c vertices in U . Finally,

append the description of the graph G\{y} which requires at most (2c+1)(n�1) log(n�

1) + (2c + 2c)(n � 1) bits by induction. So we have a description of G by a binary word

of length at most (2c+ 1) log n+ (2c + 2c) + (2c+ 1)(n� 1) log(n� 1) + (2c + 2c)(n� 1)

bits. Finally we see that

(2c+ 1) log n+ (2c + 2c) + (2c+ 1)(n� 1) log(n� 1) + (2c + 2c)(n� 1) 

(2c+ 1) log n+ (2c + 2c) + (2c+ 1)(n� 1) log n+ (2c + 2c)(n� 1) =

(2c+ 1)n log n+ (2c + 2c)n

hence the result holds by induction.

For any two di↵erent vertices in G this description can be used to identify if they are

adjacent or not. If both vertices are di↵erent from y, their adjacency can be determined

from the description of the graph G \ {y}. Assume now that one of the vertices is y and

let z be the other vertex. If z 2 R [ U , then the bit m(y, z) is explicitly included in the

description of G. If z 2 V (G) \ {U [ R [ y}, then m(y, z) = f(m(x1, z), . . . ,m(xk, z)).
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Note that the bits m(x1, z), . . . ,m(xk, z) can be determined from the description of the

graph G\{y}, while the value of the function f can be found in the description of G. This

completes the proof of the theorem.

A trivial example of a functional vertex is a vertex of bounded degree or co-degree, in

which case the set U of variable vertices is empty. In this case, we can make a stronger

conclusion.

Lemma 30. Let X be a hereditary class and d a constant. If every graph in X has a

vertex of degree or co-degree at most d, then X admits an implicit representation.

Proof. Since X is hereditary, every graph G in X admits a linear order P = (vi1 , . . . , vin)

of its vertices so that vij has degree or co-degree at most d in the subgraph induced

by vertices (vij , vij+1 , . . . , vin). Then an implicit representation for G can be obtained by

recording for each vertex v its position in the linear order P and at most d of its neighbours

or non-neighbours among the vertices following v in P . One more bit is needed to indicate

whether v has at most d neighbours or at most d non-neighbours. Clearly, this description

completely defines the graph and hence provides an implicit representation for G.

The case when y is a functional vertex with U = {x} and f being a Boolean function

of one variable mapping 0 to 0 and 1 to 1 can be described as follows: |N(x)�N(y)| 

c, where � denotes the symmetric di↵erence of two sets. This observation implies the

following corollary which will be frequently used in the subsequent sections.

Corollary 34. Let X be a hereditary class of graphs and c be a constant. If for every

graph G in X there exist two vertices x, y such that |N(x)�N(y)|  c, then X is at most

factorial.

6.1.3 Covering of graphs

Locally bounded covering

The idea of locally bounded coverings was introduced in [48] to study factorial properties

of graphs. This idea can be described as follows.

Let G be a graph. A set of graphs H1, . . . , Hk is called a covering of G if the union of

H1, . . . , Hk coincides with G, i.e. if V (G) =
kS

i=1
V (Hi) and E(G) =

kS
i=1

E(Hi).
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Lemma 31 ([48]). Let X be a class of graphs and c a constant. If every graph G 2 X

can be covered by graphs from a class Y with log Yn = O(n log n) in such a way that every

vertex of G is covered by at most c graphs, then logXn = O(n log n).

Now we derive a similar result for implicit representations of graphs.

Lemma 32. Let X be a class of graphs and c a constant. If every graph G 2 X can be

covered by graphs from a class Y admitting an implicit representation in such a way that

every vertex of G is covered by at most c graphs, then graphs in X also admit an implicit

representation.

Proof. Let H1, . . . , Hk 2 Y be a covering of a graph G 2 X such that every vertex of G is

covered by at most c graphs, where c is a constant independent of G. Denote ni = |V (Hi)|,

n = |V (G)|. Then

k 
kX

i=1

ni  cn. (6.2)

Let �i be an implicit representation of Hi, i.e. a binary word containing for each vertex

of Hi a code of length O(log ni) so that the adjacency of two vertices can be computed

from their codes.

Now we construct an implicit representation of G as follows. To each vertex j 2 V (G)

we assign a binary word  j containing for each graph Hi covering j the index i and the

code of vertex j in the representation �i of Hi. Clearly, the adjacency of two vertices

j, k 2 V (G) can be determined from their codes  j and  k, because they are adjacent in

G if and only if there is a graph Hi which covers both of them and in which these vertices

are adjacent. Since each vertex j 2 V (G) is covered by at most c graphs, the length of  j

is at most c log k +
cP

i=1
O(log nji) = c(log k + O(log n)). Together with (6.2) this implies

that | j | = O(log n) and hence { j : j = 1, . . . , n} is an implicit representation of G.

Partial covering

One more tool was introduced in [27] and can be stated as follows.

Lemma 33. Let X be a hereditary class. If there is a constant d 2 N and a hereditary

class Y with at most factorial speed of growth such that every graph G = (V,E) 2 X
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contains a non-empty subset A ✓ V such that G[A] 2 Y and each vertex a 2 A has either

at most d neighbours or at most d non-neighbours in V �A, then X is at most factorial.

Now we derive a similar result for implicit representations. This result can be viewed

as a generalization of Lemma 30.

Lemma 34. Let X be a hereditary class. If there is a constant d 2 N and a hereditary

class Y which admits an implicit representation such that every graph G = (V,E) 2 X

contains a non-empty subset A ✓ V such that G[A] 2 Y and each vertex a 2 A has either

at most d neighbours or at most d non-neighbours in V � A, then X admits an implicit

representation.

Proof. First, we represent G[A] implicitly (which is possible, because G[A] 2 Y and Y

admits an implicit representation) and then add to the code of each vertex v of G[A] the

list of at most d neighbours or non-neighbours of v in the rest of the graph. This describes

G[A] and its adjacency to the rest of the graph implicitly, i.e. with O(log n) bits per each

vertex of A. Then the set A can be deleted (or simply ignored) and the procedure can

be applied to the rest of the graph, which is possible because X is a hereditary class.

Eventually, we obtain an ordered sequence of sets A0 = A,A1, A2, . . . , Ak (k  n) such

that for each i � 0, the graph G[Ai] and its adjacency to the vertices in Ai+1, . . . , Ak are

described implicitly. To complete the description of G, we assign to each vertex v 2 V (G)

the index the set Ai it belongs to. Now the adjacency of two vertices u, v 2 V (G) can

be tested as follows: if both of them belong to the same set Ai, then their adjacency can

be determined through their codes in the implicit representation of G[Ai], and if u 2 Ai

and v 2 Aj with i < j, then their adjacency can be determined by looking at the list of

neighbours (or non-neighbours) of u which is stored in the label of u.

6.1.4 Remarks

In Theorem 33, Lemma 30, Corollary 34, Lemmas 33 and 34, to prove the corresponding

statements for a class X, we require that every graph in X has a subset of vertices (or

a single vertex) satisfying certain properties. This requirement can be relaxed if some

graphs in X belong to a class Z that satisfy conditions of the corresponding statement. In

this case, the existence of a subset (or a vertex) with a particular property can be required
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only for graphs in X � Z. For easy reading, we do not introduce this relaxation into the

text of the corresponding results. But we keep it in mind when we apply these results in

the next section.

6.2 Applications

In this section, we apply the tools developed in the previous one in order to reveal new

factorial classes of graphs. In some cases, we show that these classes admit an implicit

representation. To simplify the study of factorial graph properties, in [47] the following

conjecture was proposed.

Conjecture 3. A hereditary graph property X is factorial if and only if the fastest of

the following three properties is factorial: bipartite graphs in X, co-bipartite graphs in X,

split graphs in X.

To justify this conjecture we observe that if in the text of the conjecture we replace the

word “factorial” by any of the lower layers (constant, polynomial or exponential), then the

text becomes a valid statement. Also, the “only if” part of the conjecture is true, because

all minimal factorial classes are subclasses of bipartite, co-bipartite or split graphs. Also,

in [47] this conjecture was verified for all hereditary classes defined by forbidden induced

subgraphs with at most 4 vertices.

The above conjecture reduces the question of deciding the membership in the factorial

layer from the family of all hereditary properties to those which are bipartite, co-bipartite

and split. Taking into account the obvious relationship between bipartite, co-bipartite

and split graphs, this question can be further reduced to hereditary properties of bipartite

graphs only.

When we talk about bipartite graphs, we assume that each graph is given together

with a bipartition of its vertex set into two parts (independent sets), say top and bottom,

and we denote a bipartite graph with parts A and B by G = (A,B,E), where E, as before,

stands for the set of edges. The bipartite complement of a bipartite graph G = (A,B,E)

is the bipartite graph eG = (A,B,E0), where two vertices a 2 A and b 2 B are adjacent in
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G if and only if they are not adjacent in eG. By On,m we denote the bipartite complement

of Kn,m.

For connected graphs, the bipartition into two independent sets is unique (up to sym-

metry). A disconnected bipartite graph can admit several di↵erent bipartitions, and this

distinction between di↵erent bipartitions can be crucial if our graph is forbidden. Consider,

for instance, the graph 2K1,2 (a disjoint union of two copies of K1,2). Up to symmetry, it

admits two di↵erent bipartitions and by forbidding one of them we obtain a subclass of

bipartite graphs which is factorial, while by forbidding the other we obtain a superfactorial

subclass of bipartite graphs. This is because the bipartite complement of one of them does

not contain any cycle, while the bipartite complement of the other contains a C4. More

generally, in [5] the following result was proved.

Theorem 35. Let G be a bipartite graph. If either G or its bipartite complement contains

a cycle, then the class of G-free bipartite graphs is superfactorial. If both G and its bipartite

complement are acyclic and G is di↵erent from P7, then the class of G-free bipartite graphs

is at most factorial.

Moreover, for most bipartite graphs G such that neither G nor its bipartite complement

contains a cycle, paper [5] proves a stronger result. To state this result, let us observe

that when we say that a bipartite graph G contains a bipartite graph H as an induced

subgraph, we do not specify which part of H is mapped to which part of G. However,

sometimes this specification is important and if all induced copies of H appear in G with

all bottom parts of H being in the same part of G, then we say that H is contained in G

one-sidedly. If at least one of the two possible appearances of H is missing in G, we say

that G contains no one-sided copy of H.

Theorem 36 ([5]). If both G and its bipartite complement are acyclic and G is di↵erent

from P7, S1,2,3, S1,2,2 and from the bipartite complement of S1,2,2, then the class of bipartite

graphs containing no one-sided copy of G is at most factorial.

According to Theorem 35, the class of P7-free bipartite graphs is the only subclass of

bipartite graphs defined by a single forbidden induced subgraph for which the membership

in the factorial layer is unknown. However, more recently in [50] it was proved that the

class of P7-free bipartite graphs is indeed at most factorial.
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To better understand the structure of P7-free bipartite graphs, in this section we study

subclasses of this class defined by one additional forbidden induced subgraph and prove,

using di↵erent methods to those in [50], that for every graph G with at most 6 vertices

the class of (P7, G)-free bipartite graphs is at most factorial.

Many of our results can be extended, with no extra work, to the more general case

of bipartite graphs of bounded chordality, i.e. (Ck, Ck+1, . . .)-free bipartite graphs for

a constant k (the chordality of a graph is the length of a longest chordless cycle). For

k = 4, the class of (Ck, Ck+1, . . .)-free bipartite graphs coincides with forests and this class

is factorial. However, for any k > 4, the class of (Ck, Ck+1, . . .)-free bipartite graphs is

superfactorial. In particular, the class of (C6, C8, . . .)-free bipartite graphs, also known

as chordal bipartite graphs, is superfactorial, as the number of n-vertex labelled graphs

in this class is 2⇥(n log2 n) [64]. Moreover, the class of chordal bipartite graphs is not a

minimal superfactorial class, which is due to the following result proved in [27], where 2C4

denotes the disjoint union of 2 copies of C4, and 2C4 + e is the graph obtained from 2C4

by adding one edge between the two copies of C4.

Lemma 35. The class of (2C4, 2C4 + e)-free chordal bipartite graphs is superfactorial.

On the other hand, most of the hereditary subclasses of chordal bipartite graphs studied

in the literature, such as forests, bipartite permutation, convex graphs, are factorial. Also,

several results on factorial properties of chordal bipartite graphs were obtained in [27] and

[51]. In particular, in [51] the following result was proved.

Lemma 36. For any forest F , the class of F -free chordal bipartite graphs is at most

factorial.

This result cannot be extended to (Ck, Ck+1, . . .)-free bipartite graphs for k > 6, be-

cause, for instance, (C10, C11, . . .)-free bipartite graphs contain all P8-free bipartite graphs,

which is a superfactorial class (as the bipartite complement of P8 contains a C4), and

(C8, C10, . . .)-free bipartite graphs contain P7-free bipartite graphs, a class for which the

membership in the factorial layer is an open question.

However, for some graphs G containing a cycle, it is possible to prove the membership

of (G,Ck, Ck+1, . . .)-free bipartite graphs in the factorial layer for any value of k. For
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k = 6 (i.e. for chordal bipartite graphs) several results of this type have been obtained in

[27]. In Section 6.2.1, we extend these results to bipartite graphs of chordality at most k

for arbitrary value of k. We also obtain a number of new results for such classes.

In Section 6.2.2, we restrict ourselves further and consider subclasses of P7-free bipar-

tite graphs, which is a special case of (C8, C10, . . .)-free bipartite graphs. We systematically

study subclasses of P7-free bipartite graphs defined by one additional forbidden induced

subgraph and show that for every graph G with at most 6 vertices the class of (P7, G)-free

bipartite graphs is at most factorial.

6.2.1 Bipartite graphs of small chordality

In this section, we study (Ck, Ck+1, . . .)-free bipartite graphs. For k = 6, this class is

known as chordal bipartite graphs and is known to be superfactorial [64]. Therefore,

bipartite graphs of chordality at most k constitute a superfactorial class for all k � 6.

Various factorial properties of chordal bipartite graphs were studied in [27]. In the present

section, we generalize most of them to arbitrary values of k and obtain a number of new

results for such classes. We start with the following general result.

Lemma 37. For any natural numbers p � 2 and k � 6, the class of (Kp,p, Ck, Ck+1, . . .)-

free bipartite graphs admits an implicit representation and hence is at most factorial.

Proof. In [45], it was shown that for every graph H and for every natural p, there exists

d = d(H, p) such that every graph of average degree at least d contains either a Kp,p

as a (not necessarily induced) subgraph or an induced subdivision of H. This implies

that every (Kp,p, Ck, Ck+1, . . .)-free bipartite graph G contains a vertex of degree less than

d(Ck, p), since otherwise the average degree of G is at least d(Ck, p), in which case it must

contain either an induced subdivision of Ck (which is forbidden) or a Kp,p as a subgraph

(which is forbidden either, else an induced copy of Kp,p or K3 arises). This implies, by

Lemma 30, that the class of (Kp,p, Ck, Ck+1, . . .)-free bipartite graphs admits an implicit

representation and hence is at most factorial.

For k = 6, i.e. for chordal bipartite graphs, the result of Lemma 37 was derived,

by di↵erent arguments, in [27]. In particular, in that paper it was proved that Kp,p-free

82



chordal bipartite graphs have bounded tree-width. This is a stronger conclusion and we

believe that the same conclusion holds for Kp,p-free bipartite graphs of chordality at most

k for each value of k. More generally we conjecture:

Conjecture. For all r, p and k, there is a t = t(r, p, k) such that any (Kr,Kp,p)-free

graph of chordality at most k has tree-width at most t.

We leave this conjecture for future research. In this section, we extend the result of

Lemma 37 in a di↵erent way. In [27], it was proved that the class of chordal bipartite graphs

containing no induced Kp,p+K1 is at most factorial by showing that every Kp,p+K1-free

bipartite graph containing a Ks,s with s = p(2p�1+1) contains a vertex which has at most

2p � 2 non-neighbours in the opposite part. Together with Lemma 30, this immediately

implies the following extension of Lemma 37.

Lemma 38. For any natural p � 2 and k � 6, the class of (Kp,p +K1, Ck, Ck+1, . . .)-free

bipartite graphs admits an implicit representation and hence is at most factorial.

Below we further extend this result and obtain a number of other results for subclasses

of bipartite graphs of bounded chordality.

Q(p)-free bipartite graphs of bounded chordality

We denote by Q(p) the graph obtained from Kp,p + K1 by adding a new vertex to the

smaller part of the graph and connecting it to every vertex in the opposite side. The graph

Q(2) is represented in Figure 6.1.

Figure 6.1: Graph Q(2)

Theorem 37. For any natural k and p, the class of Q(p)-free bipartite graphs of chordality

at most k admits an implicit representation and hence is at most factorial.
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Proof. Let G be a Q(p)-free bipartite graph of chordality at most k. If G contains no

Kp2,p2 , it admits an implicit representation by Lemma 37. Therefore, we assume that G

contains a Kp2,p2 . Moreover, by Lemma 32 we may assume that G is connected.

We denote the two parts in the bipartition of G by A and B and extend the Kp2,p2

contained in G to a maximal (with respect to set inclusion) complete bipartite graph H

with parts A0 ✓ A and B0 ✓ B. The set A � A0 can further be split into the set A1 of

vertices that have neighbours in B0 and the set A2 of vertices that have no neighbours

in B0. Observe that due to the maximality of H each vertex of A1 has at least one

non-neighbour in B0. We further split A1 into the set A0
1 of vertices with at most p � 1

non-neighbours in B0 and the set A00
1 of vertices with at least p non-neighbours in B0. The

set B �B0 can be split into B0
1, B

00
1 and B2 analogously. We claim that

(1) A00
1 = B00

1 = ;. Suppose this is not true and let x be a vertex in A00
1 (without loss of

generality). By definition x must have a neighbour y and p non-neighbours in B0.

Then these vertices together with any p vertices in A0 induce a Q(p).

(2) A2 = B2 = ;. Suppose to the contrary that A2 contains a vertex x. Then because

of Claim (1) and due to the connectedness of G, vertex x must have a neighbour

y 2 B0
1. Since y has at most p� 1 non-neighbours in A0, it has at least p neighbours

in A0. Then these p neighbours together with x, y and any p vertices in B0 induce

a Q(p).

(3) The subgraph of G induced by A0
1[B0

1 is Kp,p+K1-free. Assume G[A0
1[B0

1] contains

an induced Kp,p + K1 and let, without loss of generality, the p + 1 vertices of this

graph belong to A0
1. Each of this p + 1 vertices has at most p � 1 non-neighbours

in B0 and since B0 contains at least p2 vertices we conclude that there must be a

vertex in B0 adjacent to each of the p + 1 vertices of the copy of Kp,p + K1. But

then together (that vertex and the copy of Kp,p +K1) induce a Q(p) in G.

Claim (3) implies by Lemma 38 that G[A0
1 [ B0

1] admits an implicit representation.

Besides, every vertex of A0
1[B0

1 has at most p�1 non-neighbours in the rest of the graph.

Therefore, by Lemma 34 (as well as by Lemma 32) we conclude that G admits an implicit

representation.
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L(s, p) +O0,1-free bipartite graphs of bounded chordality

By L(s, p) we denote a bipartite graph obtained from K2,p by adding s pendant edges to

one of the vertices of degree p. By adding an isolated vertex to the bottom part of the

graph, we obtain L(s, p) +O0,1 (see example of L(2, 2) +O0,1 in Figure 6.2).

Figure 6.2: Graph L(2, 2) +O0,1

Theorem 38. For any natural k, s, p, the class of L(s, p) + O0,1-free bipartite graphs of

chordality at most k is at most factorial.

Proof. Let G be an L(s, p)+O0,1-free bipartite graph of chordality at most k. If G contains

no K2,p +O0,1, it admits an implicit representation by Lemma 38. Therefore, we assume

that G contains an induced copy of K2,p+O0,1 and let x, y be the two vertices of degree p

in that copy. Vertex x cannot have s or more private neighbours (i.e. neighbours which are

not adjacent to y), since otherwise any s of these neighbours together with the K2,p+O0,1

would induce an L(s, p) + O0,1. The analogous statement also holds for y. Therefore,

|N(x)�N(y)|  2(s � 1) and hence, by Corollary 34, the class of L(s, p) + O0,1-free

bipartite graphs of chordality at most k is at most factorial.

Observe that the result of Theorem 38 is best possible in the sense that by increasing

either of the indices of the second term in the definition of the forbidden graph we obtain

a superfactorial class. More precisely:

Observation 1. For any s, p � 1 and k � 8, the classes of L(s, p) + O1,1-free, L(s, p) +

O0,2-free and L(s, p)+O2,0-free bipartite graphs of chordality at most k are superfactorial.

This conclusion follows from the fact that L(s, p) +O1,1 , L(s, p) +O0,2 and L(s, p) +

O2,0, as well as all bipartite cycles of length more than 8 contain eC4, and hence the

corresponding classes contain all eC4-free bipartite graphs, which form a superfactorial

class by Theorem 35.
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M(p)-free bipartite graphs of bounded chordality

ByM(p) we denote the graph obtained from L(1, p) by adding one vertex which is adjacent

only to the vertex of degree 1 in the L(1, p). Figure 6.3 represents the graph M(3).

Figure 6.3: Graph M(3)

Theorem 39. For any natural k and p, the class of M(p)-free bipartite graphs of chordality

at most k is at most factorial.

Proof. Let G be an M(p)-free bipartite graph of chordality at most k. If G contains no

Kp2,p2 , it admits an implicit representation by Lemma 37. Therefore, we assume that G

contains a Kp2,p2 . Moreover, by Theorem 31 we may assume that G is prime and hence

is connected. We denote the two parts in the bipartition of G by A and B and split them

into A0, A0
1, A

00
1, A2 and B0, B0

1, B
00
1 , B2 as in Theorem 37.

Let M⇤(p) denote the subgraph of M(p) obtained by deleting the vertex of degree p+1

(i.e. the only vertex in the smaller part which dominates the other part). By Theorem 36,

(1) The class of bipartite graphs containing no one-sided copy of M⇤(p) is at most fac-

torial.

The rest of the proof will follow from a series of claims.

(2) A2 = B2 = ;. Suppose this is not true, then as G is connected there must be a vertex

x 2 A2 [ B2 with a neighbour y 2 A1 [ B1. Without loss of generality assume that

x 2 A2, then x, y, a neighbour and a non-neighbour of y in A0, and any p vertices

in B0 induce an M(p) in G.

(3) No vertex in A00
1 has a neighbour in B1. Indeed, if a vertex x 2 A00

1 is adjacent to a

vertex y 2 B1, then x, y together with p non-neighbours of x in B0, a neighbour and

a non-neighbour of y in A0 induce an M(p) in G.
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(4) No vertex in B00
1 has a neighbour in A1 by analogy with (3).

(5) The subgraph of G induced by A0
1 and B0

1 is M⇤(p)-free. Assume G[A0
1[B0

1] contains

an induced M⇤(p) and let, without loss of generality, the p+1 vertices of this graph

belong to A0
1. Each of this p + 1 vertices has at most p � 1 non-neighbours in B0

and since B0 contains at least p2 vertices we conclude that there must be a vertex

in B0 adjacent to each of the p+1 vertices of the copy of M⇤(p). But then together

(that vertex and the copy of M⇤(p)) induce an M(p) in G.

(6) The graphs G[A0 [ B1] and G[B0 [ A1] do not contain a one-sided copy of M⇤(p).

Indeed, if, say, G[A0 [B1] contains a one-sided copy of M⇤(p) with p+1 vertices in

A0, then this copy together with any vertex in B0 induces an M(p) in G.

This structure obtained for graphs in the class of M(p)-free bipartite graphs containing

a Kp2,p2 implies that such graphs can be covered by finitely many graphs from a finite

union of classes with at most factorial speed of growth. By Lemma 31 we conclude that

the class of M(p)-free bipartite graphs of chordality at most k is at most factorial for any

values of k and p.

N(p)-free bipartite graphs of bounded chordality

By N(p) we denote the graph L(1, p)+O1,0, i.e. the graph obtained from L(1, p) by adding

an isolated vertex to the smaller part of graph. Figure 6.4 represents the graph N(3).

Figure 6.4: Graph N(3)

Theorem 40. For any natural k and p, the class of N(p)-free bipartite graphs of chordality

at most k is at most factorial.

Proof. Let G be an N(p)-free bipartite graph of chordality at most k. If G contains no

Kp2,p2 , it admits an implicit representation by Lemma 37. Therefore, we assume that G
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contains a Kp2,p2 . Moreover, by Theorem 31 we may assume that G is prime and hence

is connected. We denote the two parts in the bipartition of G by A and B and split them

into A0, A0
1, A

00
1, A2 and B0, B0

1, B
00
1 , B2 as in Theorem 37.

Let N⇤(p) denote the subgraph of N(p) obtained by deleting the vertex of degree p+1

(i.e. the only vertex in the smaller part which dominates the other part). By Theorem 36,

(1) The class of bipartite graphs containing no one-sided copy of N⇤(p) is at most fac-

torial.

The rest of the proof will follow from a series of claims.

(2) The subgraph of G induced by A0 and B1 [B2 contains no one-sided copy of N⇤(p).

Assume by contradiction that this subgraph contains a copy of N⇤(p) with the larger

part belonging to A0. Then this copy together with any vertex of B0 induce an N(p).

(3) Every vertex in A1 is adjacent to every vertex in B00
1 [B2.

To prove this, assume a vertex x 2 A1 has a non-neighbour y 2 B00
1[B2. By definition

of B00
1 and B2, vertex y has at least p non-neighbours in A0, while x has a neighbour

and a non-neighbour in B0. But then x, y, a neighbour and a non-neighbour of x in

B0 and any p non-neighbours of y in A0 induce an N(p).

(4) Every vertex in B1 is adjacent to every vertex in A00
1 [A2 by analogy with (3).

(5) The subgraph of G induced by A2 and B2 contains no one-sided copy of N⇤(p).

To show this, we first observe that if A2 [ B2 is not empty, then A1 [ B1 is not

empty, since otherwise the graph G is disconnected. Therefore, if A2 [ B2 is not

empty, we may consider a vertex x 2 A1 (without loss of generality). Then the

subgraph G[A2 [ B2] contains no copy of N⇤(p) with the larger part belonging to

B2, since otherwise this copy together with vertex x induce an N(p).

(6) The subgraph of G induced by A0
1 and B0

1 is N⇤(p)-free.

Assume G[A0
1[B0

1] contains an induced N⇤(p) and let the p+1 vertices of this graph

belong to A0
1. Each of this p + 1 vertices has at most p � 1 non-neighbours in B0

and since B0 contains at least p2 vertices we conclude that there must be a vertex
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in B0 adjacent to each of the p+ 1 vertices of the copy of N⇤(p). But then together

(that vertex and the copy of N⇤(p)) induce an N(p) in G.

This structure obtained for graphs in the class of N(p)-free bipartite graphs containing

a Kp2,p2 implies that such graphs can be covered by finitely many graphs from a finite

union of classes with at most factorial speed of growth. By Lemma 31 we conclude that

the class of N(p)-free bipartite graphs of chordality at most k is at most factorial for any

values of k and p.

According to Observation 1, the result obtained in Theorem 40 is, in a sense, best

possible.

A-free bipartite graphs of bounded chordality

By A we denote the graph represented in Figure 7.2.

v
v
v

v
v
v

Figure 6.5: The graph A

Theorem 41. For each natural k, the class of A-free bipartite graphs of chordality at

most k is at most factorial.

Proof. Let G be an A-free bipartite graph of chordality at most k. If G contains no C4,

it admits an implicit representation by Lemma 37. Therefore, we assume that G contains

a C4. Moreover, by Theorem 31 we may assume that G is prime.

We extend the C4 contained in G to a maximal (with respect to set inclusion) complete

bipartite graph H with parts A and B. Observe that |A| � 2 and |B| � 2, since H contains

a C4. We denote by C the set of neighbours of B outside A (i.e. the set of vertices outside
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A each of which has at least one neighbour in B) and by D the set of neighbours of A

outside B. Notice that

(1) C and D are non-empty, since otherwise B or A is a non-trivial module, contradicting

the primality of G;

(2) each vertex of C has a non-neighbour in B and each vertex of D has a non-neighbour

in A due to the maximality of H.

We also claim that

(3) C[D induces a complete bipartite graph. Indeed, assume there are two non-adjacent

vertices c 2 C and d 2 D. Consider a neighbour b1 and a non-neighbour b2 of c

in B, and a neighbour a1 and a non-neighbour a2 of d in A. Then the six vertices

a1, a2, b1, b2, c, d induce an A in G, a contradiction.

(4) V (G) = A [B [C [D. To show this, assume there is a vertex x 62 A [B [C [D.

Without loss of generality we may assume that x is adjacent to a vertex c 2 C (since

G is prime and hence is connected). Let d be any vertex of D, b any neighbour of c

in B, and a1, a2 a neighbour and a non-neighbour of d in A. Then the six vertices

a1, a2, b, c, d, x induce an A in G, a contradiction.

(5) every vertex of D has at most one non-neighbour in A. Assume, by contradiction,

that a vertex d 2 D has two non-neighbours a1, a2 in A. Since G is prime, there must

exist a vertex distinguishing a1 and a2 (otherwise {a1, a2} is a non-trivial module).

Let d0 be such a vertex. Clearly, d0 belongs to D. Finally, consider any vertex c 2 C

and any of its neighbours b 2 B. Then the six vertices a1, a2, b, c, d, d0 induce an A

in G, a contradiction.

(6) every vertex of A has at most one non-neighbour in D. Assume, to the contrary,

that a vertex a 2 A has two non-neighbours d1, d2 in D. Then, by (3) and (5), a

is the only non-neighbour of d1 and d2. But then {d1, d2} is a non-trivial module,

contradicting the primality of G.

Claims (5) and (6) show that the bipartite complement of G[A [D] is a graph of vertex

degree at most 1. Moreover, in this graph at most one vertex of A and at most one

90



vertex of D have degree less than 1 (since G is prime). By symmetry, the bipartite

complement of G[B [C] is a graph of degree at most 1 with at most one vertex of degree

0 in each part. Therefore, G can be covered by at most 4 graphs each of which admits an

implicit representation (by Lemma 30). As a result, by Lemma 32, G admits an implicit

representation and hence the class under consideration is at most factorial.

6.2.2 P7-free bipartite graphs

As we mentioned earlier, the class of P7-free bipartite graphs was only recently proven

to be a member of the factorial layer. To better understand this case, in this section

we systematically study subclasses of P7-free bipartite graphs obtained by forbidding one

more graph.

First, we observe that all the results obtained in the previous section are applicable to

P7-free bipartite graphs, because these graphs are (C8, C9, . . .)-free.

Next, we list a number of subclasses of P7-free bipartite graphs for which the mem-

bership in the factorial layer is either known or easily follows from some known results.

In particular, from Theorem 35 we know that (P7, G)-free bipartite graphs constitute a

factorial class for any graph G 6= P7 such that neither G nor its bipartite complement

contains a cycle. Also, two more results follow readily from Lemma 36.

Corollary 42. The classes of (P7, C6)-free and (P7, 3K2)-free bipartite graphs are facto-

rial.

Proof. Both classes contain 2K2-free bipartite graphs, which proves a lower bound. To

show an upper bound, we observe that the class of (P7, C6)-free bipartite graphs coincides

with P7-free chordal bipartite graphs and hence is at most factorial by Lemma 36. Also,

the class of (P7, 3K2)-free bipartite graphs coincides with the bipartite complements of

(P7, C6)-free bipartite graphs and hence is at most factorial too.

(P7, Sp,p)-free bipartite graphs

By Sp,q we denote a double star, i.e. the graph obtained from two stars K1,p and K1,q by

connecting their central vertices with an edge.
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Theorem 43. For any p, the class of (P7, Sp,p)-free bipartite graphs admits an implicit

representation and hence is at most factorial.

Proof. Let G be a (P7, Sp,p)-free bipartite graph. By Lemma 32 we assume that G is

connected. If G does not contain Kp,p as an induced subgraph, then G can be described

implicitly by Lemma 37. So suppose G contains a Kp,p. If G = Kp,p, then obviously it

can be described implicitly. Therefore, we assume that the set of neighbours of the Kp,p

is non-empty. We denote this set by A and apply Lemma 34 (keeping in mind remarks of

Section 6.1.4).

First, we show that G[A] can be represented implicitly. To this end, for each edge

uv of the Kp,p, we denote by Huv the subgraph of A induced by the neighbours of u

and the neighbours of v. This subgraph must be Op,p-free, since otherwise any copy of

this subgraph together with u and v would induce an Sp,p. Clearly, every pair of vertices

of A (from di↵erent parts of the bipartition) belongs to at least one subgraph Huv and

hence the set of all these subgraphs gives a covering of G[A]. Also each vertex of A is

covered by at most p2 subgraphs in the covering, because p2 is the total number of such

subgraphs. Finally, we observe that each Huv admits an implicit representation, because

each of them is the bipartite complement of a (P7,Kp,p)-free bipartite graph, which admit

such a representation by Lemma 37. Therefore, by Lemma 32, G[A] admits an implicit

representation.

Second, we show that each vertex of A has at most 2p � 1 neighbours outside of this

set. Indeed, each vertex of A has at most p neighbours in the Kp,p. Now assume a vertex

u 2 A has at least p neighbours outside of Kp,p [ A. Observe that u must also have a

neighbour v in the Kp,p. But then vertices u and v together with the neighbours of v in

the Kp,p and the p neighbours of u outside of Kp,p [A induce an Sp,p. This contradiction

shows that each vertex u of A has at most p� 1 neighbours outside of Kp,p [A and hence

at most 2p� 1 neighbours outside of A.

Combining the two facts above, we conclude by Lemma 34 that G can be represented

implicitly.

To conclude this section, we observe that the result of Theorem 43 cannot be extended

to graphs of bounded chordality, because
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Remark 1. For any p � 2, the class of (P8, Sp,p)-free bipartite graphs is superfactorial.

This conclusion follows from the fact that for any p � 2, the class of (P8, Sp,p)-free

bipartite graphs contains all eC4-free graphs.

(P7,Kp,p +O0,p)-free bipartite graphs

By B(p, q) we denote the bipartite Ramsey number, i.e. the minimum number such that

every bipartite graph with at least B(p, q) vertices in each of the parts contains either Kp,q

or Op,q as an induced subgraph.

Lemma 39. For every p 2 N, any (Kp,p + O0,p)-free bipartite graph G = (A,B,E) is

either Kt,t-free or Ot,t-free, where t = B(p, p) + p� 1.

Proof. Suppose for the contradiction that G contains Kt,t and Ot,t as an induced sub-

graphs. Denote by AK ✓ A, BK ✓ B the parts of the Kt,t and by AO ✓ A, BO ✓ B the

parts of the Ot,t.

Obviously, either AK \ AO = ; or BK \ BO = ;. Without loss of generality, assume

that AK \ AO = ;. If |BK \ BO| � p then any p vertices from AK , any p vertices from

BK \BO and any p vertices from A0 induce forbidden Kp,p+O0,p. If |BK \BO| < p, then

|BK \BO| � B(p, p) and |BO \BK | � B(p, p) > p. Therefore, G[BK \BO [ AO] contains

either Kp,p or an induced Op,p. In the former case G[BK \BO [ AO [ BO \BK ] contains

Kp,p+O0,p as an induced subgraph and in the latter case G[AK [BK \BO [AO] contains

the forbidden induced subgraph. This contradiction proves the lemma.

Theorem 44. For every p 2 N, the class of (P7,Kp,p + O0,p)-free bipartite graphs is at

most factorial.

Proof. From Lemma 39 it follows that the class of (P7,Kp,p + O0,p)-free bipartite graphs

is contained in the union Free(P7,Kt,t)[ Free( eP7, Ot,t), where t = B(p, p) + p� 1. Since

P7 = eP7, from Lemma 37 it follows that both classes in the union are at most factorial.

Therefore, the class of (P7,Kp,p +O0,p)-free bipartite graphs also is at most factorial.

By analogy with Remark 1, we conclude that
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Remark 2. For any p � 2, the class of (P8,Kp,p + O0,p)-free bipartite graphs is superfac-

torial.

Therefore, Theorem 44 cannot be extended to graphs of bounded chordality.

(P7,K1,2 + 2K2)-free bipartite graphs

K1,2 + 2K2

Lemma 40. Let G = (V,E) be a (P7,K1,2 + 2K2)-free bipartite graph. Then G either is

3K2-free or has two vertices a, b such that |N(a)�N(b)| = 2.

Proof. We will show that if G contains 3K2 as an induced subgraph, then it has two

vertices a, b such that |N(a)�N(b)| = 2.

Suppose that a set of vertices M = {x1, y1, x2, y2, x3, y3} ✓ V induces a 3K2 such that

(xi, yi) 2 E for i = 1, 2, 3. If some vertex v /2M has a neighbour in A = {x1, x2, x3}, then

it has at least two neighbours in this set, because otherwise v, x1, y1, x2, y2, x3, y3 would

induce a forbidden K1,2 + 2K2.

If two vertices v and w have exactly two neighbours in A, then N(v)\A = N(w)\A.

Indeed, if say v is adjacent to x1, x2 and w is adjacent to x2, x3, then y1, x1, v, x2, w, x3, y3

induce a P7, which is impossible.

Thus each vertex outside M either has no neighbours in A, or is adjacent to all ver-

tices of A, or is adjacent to exactly two particular vertices, say x1, x2. This implies that

N(x1)�N(x2) = {y1, y2}.

This lemma together with Corollaries 34, 42 and remarks of Section 6.1.4 imply the

following conclusion.

Theorem 45. The class of (P7,K1,2 + 2K2)-free bipartite graphs is factorial.
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(P7, P5 +K2)-free bipartite graphs

P5 +K2

Lemma 41. Every 2K2-free bipartite graph with at least three vertices has two vertices x

and y which are in the same part and |N(x)�N(y)|  1.

Proof. Let G = (V1, V2, E) be a 2K2-free bipartite graph. It is known that the vertices

in each of the parts can be ordered linearly with respect to inclusion of their neigh-

bourhoods. Suppose that |V1| = n1 � |V2| and let V1 = {x1, x2, . . . , xn1} such that

N(x1) ◆ N(x2) . . . ◆ N(xn1). If |N(x1)�N(x2)| > 1 then there are at least two vertices

in N(x1) \ N(x2). All these vertices have the same neighbourhood {x1} and hence any

two of them meet the condition of the statement.

Lemma 42. Let G = (V1, V2, E) be a {P7, P5 +K2}-free bipartite graph. Then G either

is 3K2-free or has two vertices a, b such that |N(a)�N(b)|  4.

Proof. Suppose that G contains 3K2 as an induced subgraph. We will show that G has

two vertices a, b such that |N(a)�N(b)|  4.

Let {(x1, y1), (x2, y2), . . . , (xs, ys)} ✓ E, s � 3 be a maximum induced matching in G

such that M1 = {x1, . . . , xs} ✓ V1 and M2 = {y1, . . . , ys} ✓ V2.

Every vertex v outside M1(M2) either has no neighbours in M2(M1) or it is connected

to all vertices from M2(M1) or it has exactly one neighbour in M2(M1). Indeed, if say

v 2 V1 is adjacent to yi, yj 2 M2 and is not adjacent to yk 2 M2, i, j, k 2 {1, . . . , s}, then

xi, yi, v, yj , xj , xk, yk induce a forbidden P5 +K2.

According to this observation, we denote by A1(A2) the set of vertices which are

adjacent to every vertex in M2(M1) and by B1(B2) the set of vertices with exactly one

neighbor in M2 (M1). Let C1 = V1 \ (A1 [M1 [ B1) and C2 = V2 \ (A2 [M2 [ B2).

Let Xi = NB2(xi) and Yi = NB1(yi) for i = 1, . . . , s. From the definition it follows that

B1(B2) is the union of disjoint sets Yi (Xi), i = 1, . . . , s.
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A1

A2

x1 x2 xs

M1

y1 y2 ys

M2

B1

B2

C1

C2

(1) Let i, j 2 {1, . . . , s} and i 6= j. Then no vertex in Xi has a neighbour in Yj.

Assume by contradiction that v 2 Xi is adjacent to u 2 Yj . But then vertices yi, xi,

v, u, yj , xk, yk with k 2 {1, . . . , s}, k 6= i and k 6= j induce P5 +K2.

(2) Every vertex from A1(A2) is adjacent to every vertex from B2(B1).

For the sake of definiteness, suppose that v 2 A1 is not adjacent to u 2 Xi ✓ B2,

i 2 {1, . . . , s}. But then xj , yj , v, yk, xk, xi, u, where j 6= i, k 6= i and j, k 2 {1, . . . , s},

would induce forbidden P5 +K2.

(3) Every vertex from C1(C2) has neighbours in at most one of the sets Xi(Yi), i =

1, . . . , s.

Assume for the contradiction that v 2 C1 is adjacent to u1 2 Xi and to u2 2 Xj ,

i 6= j, but then yi, xi, u1, v, u2, xj , yj would induce a forbidden P7.

From (3) it follows that C1(C2) is a union of disjoint sets R,R1, . . . , Rs (Q,Q1, . . . , Qs),

where R(Q) is the set of vertices which have no neighbours in B2(B1) and Ri(Qi), i 2

{1, . . . , s}, is the set of vertices which have at least one neighbour in Xi(Yi) and have no

neighbour in Xj(Yj), j 6= i and j 2 {1, . . . , s}.

(4) Every vertex from A1(A2) is adjacent to every vertex in C2 \Q (C1 \R)

Indeed, if say v 2 A1 is not adjacent to u 2 Qi ✓ C2 \ Q and w is a neighbour of

u in Yi, then xj , yj , v, yk, xk, w, u, where j 6= i, k 6= i and i, j, k 2 {1, . . . , s}, would

induce a forbidden P5 +K2.

Note that for every i 2 {1, . . . , s}, G[Xi [C2 [ Yi [C1] is 2K2-free, because otherwise

M would not be maximum. For the same reason there are no edges between C1 and C2.
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We may assume that there exists i 2 {1, . . . , s} such that |Xi| � 2 and |Yi| � 2,

otherwise there are at least ds/2e vertices in one of the parts M1,M2 which have at

most one neighbour in B1 [ B2 and hence for any two of these vertices a, b we have

|N(a)�N(b)|  4. Consider graph G[Xi [ Qi [ Yi [ Ri]. As it is 2K2-free then by

Lemma 41 it has two vertices v, u which are in the same part, say Yi [ Ri, such that

|NXi[Qi(v)�NXi[Qi(u)|  1. Note that |NM2(v)�NM2(u)|  1. Also from (2) and (4)

it follows that |NA2(v)�NA2(u)| = 0. Together with (1) it implies that |N(v)�N(u)| 

2.

This lemma together with Corollaries 34, 42 and remarks of Section 6.1.4 imply the

following conclusion.

Theorem 46. The class of (P7, P5 +K2)-free bipartite graphs is factorial.

(P7, C4 +K2)-free bipartite graphs

C4 +K2

Lemma 43. Let H = (A,B,E) be a (2K2, C4)-free bipartite graph. Then in each part

at most one vertex has degree more then 1 and all vertices with degree 1 have the same

neighborhood.

Proof. We prove the statement for the part A. For the part B the same arguments are

true. Let x, y be some vertices from A. If degree of each of these vertices more then 0,

then N(x) ✓ N(y) or N(y) ✓ N(x), otherwise forbidden 2K2 would arise. From this in

particular follows that all vertices with degree 1 have the same neighborhood. Also, for

the same reason, there is at most one vertex with degree more then 1 in A, otherwise

forbidden C4 would arise.

Lemma 44. Let G = (V1, V2, E) be a (P7, C4 +K2)-free bipartite graph. Then G either

is 3K2-free or has two vertices a, b such that |N(a)�N(b)|  8.
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Proof. We suppose that G contains 3K2 as an induced subgraph and show that it has two

vertices a, b such that |N(a)�N(b)|  8.

Let {(x1, y1), (x2, y2), . . . , (xs, ys)} ✓ E, s � 3 be a maximum induced matching in

G such that M1 = {x1, . . . , xs} ✓ V1 and M2 = {y1, . . . , ys} ✓ V2. Denote by A1 (A2)

the set of vertices which are adjacent to every vertex in M2 (M1) and by B1 (B2) all

other vertices which have neighbors in M2 (M1). Let C1 = V1 \ (A1 [ M1 [ B1) and

C2 = V2 \ (A2 [M2 [B2). Then

(1) for any two vertices v, u 2 B1 (B2), either NM2(v) \ NM2(u) = ; or NM2(v) ✓

NM2(u) or NM2(u) ✓ NM2(v) (either NM1(v) \ NM1(u) = ; or NM1(v) ✓ NM1(u)

or NM1(u) ✓ NM1(v)).

Suppose for the contradiction that there are v, u in B1 and yi, yj , yk in M2 such that

(v, yi) 2 E, (v, yk) 2 E, (v, yj) /2 E, (u, yj) 2 E, (u, yk) 2 E and (u, yi) /2 E. But

then xi, yi, v, yk, u, yj , xj induce a forbidden P7.

(2) for any two vertices yi, yj 2 M2, |NB1(yi) \ NB1(yj)|  1 (for any two vertices

xi, xj 2M1, |NB2(xi) \NB2(xj)|  1).

Suppose for the contradiction that there are yi, yj in M2 such that there are two

di↵erent vertices v and u in NB1(yi) \NB1(yj). From (1) it follows that NM2(v) ✓

NM2(u) or NM2(u) ✓ NM2(v). Without loss of generality, assume that NM2(v) ✓

NM2(u). By definition of B1, there is vertex yk in M2 which is not adjacent to u and

hence is not adjacent to v. Therefore xk, yk, v, u, yi, yj induce a forbidden C4 +K2.

(3) for any vertex yi 2M2, at most one vertex from NB1(yi) has neighbor in M2 di↵erent

from yi.

Suppose that there are two vertices v and u in NB1(yi) such that there are yj and

yk in M2 di↵erent from yi and (v, yj) 2 E and (u, yk) 2 E. We have (v, yk) /2 E and

(u, yj) /2 E, otherwise yi and yk or yi and yj have more then one common neighbor

in B1, which contradicts (2). But then xj , yj , v, yi, u, yk, xk induce a forbidden P7.

(4) Let v 2 B1 be adjacent to exactly one vertex from M2, say yi. Then v is adjacent to

at most two vertices from B2.
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Suppose by contradiction that v has three neighbors c, d, e in B2. Assume c is

adjacent to xi. Remember that c must also have a non-neighbour xj 2M1. But then

vertices c, xi, yi, v together with xj , yj induce a forbidden C4+K2. This contradiction

shows that c is not adjacent to xi. Similarly, d and e are not adjacent to xi.

Let L1 = M1 \ {xi}. We claim that the graph G[L1 [ {c, d, e}] is (2K2, C4)-free.

Indeed, if, say, c, xj , d, xk induce a 2K2, then yj , xj , c, v, d, xk, yk induce a forbidden

P7, and if, say, c, xj , d, xk induce a C4, then c, xj , d, xk together with xi, yi induce a

forbidden C4 +K2.

From Lemma 43 it follows that there are two vertices in {c, d, e} say c, d which have

the same neighborhood in L1 consisting of exactly one vertex, say xk. But then

v, c, d, xk, xj , yj , where xj 2 L1 and xj 6= xk, induce a forbidden C4 +K2.

(5) Let v 2 B1 be adjacent to exactly one vertex from M2, say yi. Then v is adjacent to

all but at most one vertex from A2.

Suppose for the contradiction that u,w 2 A2 are not adjacent to v. But then

yi, v, u, w, xj , xk, where j, k are di↵erent from i, induce forbidden C4 +K2.

(6) Let Ri ✓ B1 be the set of vertices which are adjacent only to yi in M2. Then

G[Ri [ C2] is a (2K2, C4)-free graph.

If G[Ri[C2] contains an induced 2K2, then this contradicts to the maximality of the

matching {(x1, y1), (x2, y2), . . . , (xs, ys)}. If G[Ri [ C2] contains a C4 then (xk, yk),

where k 6= i, together with the C4 constitute a forbidden C4 +K2.

(7) G has two vertices a, b such that |N(a)�N(b)|  8.

If M2 has no vertices with more than 3 neighbors in B1, then we can take as a

and b any two vertices from M2. Otherwise, if there is vertex yi in M2 which

has at least 4 neighbors in B1, then by (3) NB1(yi) contains three vertices, say

c, d, e, which are adjacent only to yi in M2. From (6) and Lemma 43 it follows that

for two of these vertices, say c, d, |NC2(c)�NC2(d)|  1. From (5) it follows that

|NA2(c)�NA2(d)|  2 and from (4) it follows that |NB2(c)�NB2(d)|  4. Therefore

|N(c)�N(d)|  7 and we can take c and d as a and b.
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This lemma together with Corollaries 34, 42 and remarks of Section 6.1.4 imply the

following conclusion.

Theorem 47. The class of (P7, C4 +K2)-free bipartite graphs is factorial.

(P7, domino)-free bipartite graphs

domino

Theorem 48. The class of (P7, domino)-free bipartite graphs is factorial.

Proof. This class contains all 2K2-free bipartite graphs (one of the three minimal factorial

classes of bipartite graphs) and hence is at least factorial. Now let us show an upper

bound.

Since (P7, C4)-free bipartite graphs is at most factorial (Lemma 37), we consider a

(P7, domino)-free bipartite graph containing a C4. We extend this C4 to a maximal biclique

in G with parts denoted by A and B of size at least 2. Then we define C = N(B)\A,

D = N(A)\B, E = N(D)\(A [ C), F = N(C)\(B [ D), I = N(F )\(A [ C [ E),

J = N(E)\(B [D [ F ). Now we prove a series of claims.

(1) The set C [D is independent. Suppose, by contradiction, there is an edge cd with

c 2 C and d 2 D. By definition c must have a neighbour b1 in B. Also, as

G[A [ B] is a maximal biclique, c has a non-neighbour b0 in B. Similarly d has a

neighbour a1 and a non-neighbour a0 in A. But then G contains a domino induced

by c, d, a0, a1, b0, b1.

(2) The subgraph induced by A[D does not contain one-sided copy of a P5 with 3 vertices

in A, and hence it is (P6, C6)-free. Assume G[A[D] contains a one-sided copy of a

P5 with 3 vertices in A. Then this copy together with any vertex b 2 B induces a

domino, a contradiction.

(3) By symmetry, the subgraph induced by B [ C is (P6, C6)-free.
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(4) The set F [ E is independent. Suppose, by contradiction, there is an edge ef with

e 2 E and f 2 F . Then pick a neighbour c 2 C of f and a neighbour d 2 D of

e, which must exist by definition of E and F . Let b 2 B be a non-neighbour of c,

and let a1 2 A and a2 2 A be a neighbour and a non-neighbour of d. Then vertices

a1, b, a2, d, e, f, c induce a P7, a contradiction.

(5) The subgraph induced by F [ C is C6-free. Suppose by contradiction there is a

C6 induced by c1, f1, c2, f2, c3, f3 with c1, c2, c3 2 C and f1, f2, f3 2 F . If there

is a vertex b 2 B adjacent to all c1, c2, c3, then G contains a domino induced

by b, c1, f1, c2, f2, c3. Also, if there is a vertex b 2 B adjacent to exactly one of

c1, c2, c3, say c1, then together with any vertex a 2 A we have a P7 induced by

a, b, c1, f1, c2, f2, c3. If there is a vertex b1 2 B not adjacent to any of c1, c2, c3, then

take a vertex b2 2 B adjacent to 2 of them, say c1 and c3, and together with any

vertex a 2 A form a P7 induced by b1, a, b2, c1, f1, c2, f2. Therefore, each vertex

of B is adjacent to exactly two of c1, c2, c3 and since all vertices in C have a non-

neighbour in B, each pair must appear. So, pick vertex b1 adjacent to c1 and c2,

pick vertex b2 adjacent to c2 and c3 and pick vertex b3 adjacent to c3 and c1. Now

G[{c1, b1, c2, b2, c3, b3}] is a C6, contradicting our claim 3. This contradiction shows

that the graph G[F [ C] is C6-free.

(6) By symmetry, the subgraph induced by E [D is C6-free.

(7) The set I [ J is independent. If not, assume ij is an edge with i 2 I and j 2 J .

Then take a neighbour e 2 E of j, a neighbour d 2 D of e, a neighbour a1 and a

non-neighbour a2 of d in A and an arbitrary vertex b in B. Then i, j, e, d, a1, b, a2

induce a P7, a contradiction.

(8) The subgraph induced by J [ E is C6-free. Suppose by contradiction there is a C6

induced by e1, j1, e2, j2, e3, j3 with e1, e2, e3 2 E and j1, j2, j3 2 J . Now if there

is a vertex d 2 D joined to all e1, e2, e3, then G contains a domino induced by

d, e1, j1, e2, j2, e3. Otherwise, there is a vertex d 2 D having a neighbour and a

non-neighbour in the set {e1, e2, e3}, say d is non-adjacent to e1 and adjacent to e2.

Then pick a neighbour a1 2 A of d and a non-neighbour a2 2 A of d. Pick arbitrary
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b 2 B. Then e1, j1, e2, d, a1, b, a2 induce a P7 in G, a contradiction.

(9) By symmetry, the subgraph induced by I [ F is C6-free.

(10) If G is connected, then V (G) = A [ B [ C [ D [ E [ F [ I [ J . Suppose that

if N(J)\E 6= ; and take an edge jk with j 2 J and k 2 N(J)\E. Then take a

neighbour e 2 E of j, a neighbour d 2 D of e, a neighbour a1 and a non-neighbour

a2 of d in A and an arbitrary vertex b in B. Then i, j, e, d, a1, b, a2 induce a P7.

This contradiction shows that N(J)\E = ;. By symmetry, N(I)\F = ;. Hence the

claim.

This series of claim shows that every connected (P7, domino)-free bipartite graph can

be covered by finitely many graphs each coming from a class which is at most factorial.

By Lemma 31 this implies that the class of (P7, domino)-free bipartite graphs is at most

factorial.

(P7,K3,3-e)-free bipartite graphs

The graph K3,3-e is obtained from K3,3 by deleting an edge.

Theorem 49. The class of (P7,K3,3-e)-free bipartite graphs is factorial.

Proof. The class of (P7,K3,3-e)-free bipartite graphs contains all graphs of degree at most

one (one of the three minimal factorial classes of bipartite graphs) and hence is at least

factorial. Now we show an upper bound. In the proof we follow the structure and notation

of the proof of Theorem 48. In particular, we assume that a connected (P7,K3,3-e)-free

bipartite graph G contains a K4,4 and denote by A,B,C,D,E, F, I, J the subsets defined

in the proof of Theorem 48. From this theorem we know that these subsets partition the

vertex set of G and that I [J is an independent set, since otherwise an induced P7 arises.

Also, by definition, the subgraph of G induced by A[B is complete bipartite with at least

4 vertices in each part. Now we derive a number of claims as follows.

(1) Every vertex outside of A [ B has at most one neighbour in A [ B. To show this,

consider a vertex x 62 A [ B which has at least two neighbours in A. By definition,

G[A[B] is a maximal biclique and hence x also has a non-neighbour in A. But then
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a non-neighbour and two neighbours of x in A together with x and any two vertices

of B induce a K3,3-e.

(2) The subgraph induced by C [ D [ F [ J is domino-free. To prove this, assume by

contradiction that this subgraph contains a domino induced by vertices x1, x2, x3 2

C and y1, y2, y3 with x2 and y2 being the vertices of degree 3 in the induced domino.

By definition, x1 has a neighbour z in B. Also, since vertices x1, x2 and x3 have

collectively at most 3 neighbours in B and the size of B is at least 4, there must

exist a vertex b 2 B adjacent to none of x1, x2, x3. For the same reason, one can

find a vertex a in A which is adjacent to none of y1, y2, y3. Now if z is not adjacent

to x2, then vertices b, a, z, x1, y1, x2, y3 induce a P7 in G, and if z is not adjacent to

x3, then vertices b, a, z, x1, y2, x3, y3 induce a P7 in G, and if z is adjacent to both

x2 and x3, then vertices z, x1, x2, x3, y2, y3 induce a K3,3-e in G. A contradiction in

all possible cases proves the claim.

(3) The subgraph induced by E [ F [ J is domino-free. This can be proved by analogy

with (2). We assume by contradiction that this subgraph contains a domino induced

by vertices x1, x2, x3 2 E and y1, y2, y3 and consider a neighbour z of x1 in D, a

neighbour a of z in A and an arbitrary vertex b in B. Then the very same arguments

as in (2) lead to a contradiction.

By symmetry we conclude that the subgraphs of G induced by D [ C [ E [ I and by

F [ E [ I are domino-free. Therefore, G can be covered by finitely many domino-free

graphs. Together with Lemma 31 and Theorem 48 this completes the proof.

Bipartite complements of P7-free bipartite graphs

Since the bipartite complement of P7 is again P7, from the preceding sections we derive

the following conclusion.

Theorem 50. Let H be the bipartite complement of any of the following graphs: Q(p),

L(s, p) +O0,1, M(p), N(p), A, Sp,p, Kp,p +Op,p, K1,2 +2K2, P5 +K2, C4 +K2, domino,

K3,3-e. The class of (P7, H)-free bipartite graphs is at most factorial.
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This theorem together with the results of the preceding sections implies, in particular,

that for any graph H with at most 6 vertices the class of (P7, H)-free bipartite graphs is

at most factorial.
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Chapter 7

Hereditary properties of graphs of

high speed

According to the Alekseev-Bollobás-Thomason Theorem, in the family of hereditary classes

there are precisely three minimal classes with non-zero entropy: bipartite, co-bipartite and

split graphs. Therefore, by Theorem 13, a hereditary class X has zero entropy if and only

if VC-dimension is bounded for graphs in X. In this chapter, we study some hereditary

properties of graphs with non-zero entropy.

7.1 Estimating the entropy of some hereditary graph classes

In our e↵ort to estimate the entropy of some hereditary graph classes, we will start with a

few simpler ones and then end the section with a discussion on word-representable graphs.

7.1.1 Perfect graphs

According to the Strong Perfect Graph Theorem [19] the class of perfect graphs is precisely

the class of graphs containing no odd cycles of length at least 5 and no complements of

these cycles. Since perfect graphs contain all bipartite graphs, the index of perfect graphs

is at least 2. For the upper bound, we observe that C5 belongs to all four minimal classes

of index 3, i.e. to E3,0, E2,1, E1,2 and E0,3. Therefore, perfect graphs contain none of these

classes and hence the index of perfect graphs is precisely 2.
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7.1.2 AT-free graphs

Three vertices in a graph form an asteroidal triple if every two of them are connected by

a path which avoids the neighbourhood of the third. A graph is called AT-free if it does

not contain an asteroidal triple. It is easy to see that the set of AT-free graphs forms

a hereditary graph class. The index of the class of AT-free graphs is at least 2 because

it contains the class E0,2, the class of complements of bipartite graphs. To see this, note

that given a graph in E0,2 any choice of three vertices will have at least two vertices in

the same part and hence they belong in the neighbourhood of each other. To obtain an

upper bound on the index consider the graph G pictured below. This graph contains

an asteroidal triple, indicated by the vertices x, y and z, so it does not belong to the

class of AT-free graphs. Now G belongs to all four minimal classes of index 3, therefore

similar to perfect graphs AT-free graphs contain none of these classes and hence has index

precisely 2.

G

x

zy

7.1.3 Kn-free graphs

The class Ei,0 is a subclass of Kn-free graphs for each 1  i  n�1. However, the graph Kn

belongs to each class Ei,j with i+ j = n by taking each vertex to be either an independent

set or clique of size one. Therefore the class of Kn-free graphs has index precisely n� 1.

7.1.4 Cn-free graphs

The class E0,dn
2 e�1 is a subclass of Cn-free graphs for any n > 3. This can easily be seen

by noting that if Cn 2 E0,dn
2 e�1 then each part contains at most 2 vertices as Cn is triangle

free, which leads to a contradiction. After a little thought, we can check that the graph

Cn belongs to each class Ei,j with i + j = dn2 e. Therefore the class of Cn-free graphs has

index precisely dn2 e � 1.
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7.2 Word-representable graphs

We say G is word-representable if there exists a word w over the alphabet V such that

letters x and y alternate in w if and only if (x, y) 2 E for each x 6= y.

The notion of word-representable graphs has its roots in the study of the celebrated

Perkins semigroup [39, 63]. These graphs possess many attractive properties (e.g. a maxi-

mum clique in such graphs can be found in polynomial time), and they provide a common

generalization of several important graph families, such as circle graphs, comparability

graphs, 3-colorable graphs, graphs of vertex degree at most 3 (see [17] for definitions of

these families).

Recently, a number of fundamental results on word-representable graphs were obtained

in the literature [35, 36, 40, 41, 42]. In particular, Halldórsson et al. [36] have shown that a

graph is word-representable if and only if it admits a semi-transitive orientation. However,

our knowledge on these graphs is still very limited and many important questions remain

open. For example, how hard is it to decide whether a given graph is word-representable

or not? What is the minimum length of a word that represents a given graph? How many

word-representable graphs on n vertices are there? Does this family include all graphs of

vertex degree at most 4?

The last question was originally asked in [36]. In this section we answer this question

negatively by exhibiting a graph of vertex degree at most 4 which is not word-representable.

This result allows us to obtain an upper bound on the asymptotic growth of the number

of n-vertex word-representable graphs. Combining this result with a lower bound that

follows from some previously known facts, we conclude that the number of n-vertex word-

representable graphs is 2
n2

3 +o(n2).

All preliminary information related to the notion of word-representable graphs can be

found in Section 7.2.1. In Section 7.2.2, we prove our negative result about graphs of

degree at most 4 and in Section 7.2.3, we derive the asymptotic formula on the number of

word-representable graphs.
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Figure 7.1: Three word-representable graphs M (left), the complete graph K4 (middle),

and the Petersen graph (right)

7.2.1 Word-representable graphs: definition, examples and related re-

sults

Distinct letters x and y alternate in a word w if the deletion of all other letters from the

word results in either xyxy · · · or yxyx · · · . A graph G = (V,E) is word-representable

if there exists a word w over the alphabet V such that letters x and y alternate in w

if and only if (x, y) 2 E for each x 6= y. For example, the graph M in Figure 7.1 is

word-representable, because the word w = 1213423 has the right alternating properties,

i.e. the only non-alternating pairs in this word are 1,3 and 1,4 that correspond to the only

non-adjacent pairs of vertices in the graph.

If a graph is word-representable, then there are infinitely many words representing

it. For instance, the complete graph K4 in Figure 7.1 can be represented by words 1234,

3142, 123412, 12341234, 432143214321, etc. In general, to represent a complete graph on

n vertices, one can start with writing up any permutation of length n and adjoining from

either side any number of copies of this permutation.

If each letter appears exactly k times in a word representing a graph, the graph is

said to be k-word-representable. It is known [40] that any word-representable graph is

k-word-representable for some k. For example, a 3-representation of the Petersen graph
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shown in Figure 7.1 is

1387296(10)7493541283(10)7685(10)194562.

It is not di�cult to see that a graph is 1-representable if and only if it is complete. Also,

with a bit of work one can show that a graph is 2-representable if and only if it is a

circle graph, i.e. the intersection graph of chords in a circle. Thus, word-representable

graphs generalize both complete graphs and circle graphs. They also generalize two other

important graph families, comparability graphs and 3-colorable graphs. This can be shown

through the notion of semi-transitive orientation.

A directed graph (digraph) G = (V,E) is semi-transitive if it has no directed cycles

and for any directed path v1v2 · · · vk with k � 4 and vi 2 V , either v1vk 62 E or vivj 2 E

for all 1  i < j  k. In the second case, when v1vk 2 E, we say that v1vk is a shortcut.

The importance of this notion is due to the following result proved in [36].

Theorem 51 ([36]). A graph is word-representable if and only if it admits a semi-transitive

orientation.

From this theorem and the definition of semi-transitivity it follows that all compara-

bility (i.e. transitively orientable) graphs are word-representable. Moreover, the theorem

implies two more important corollaries.

Theorem 52 ([36]). All 3-colorable graphs are word-representable.

Proof. Partitioning a 3-colorable graph in three independent sets, say I, II and III, and

orienting all edges in the graph so that they are oriented from I to II and III, and from II

to III, we obtain a semi-transitive orientation.

Theorem 53 ([36]). All graphs of vertex degree at most 3 are word-representable.

Proof. By Brooks’ Theorem, every connected graph of vertex degree at most 3, except

for the complete graph K4, is 3-colorable, and hence word-representable by Theorem 52.

Also, as we observed earlier, all complete graphs are word-representable. Therefore, all

connected graphs of degree at most 3 and hence all graphs of degree at most 3 are word-

representable.
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Whether all graphs of degree at most 4 are word-representable is a natural question

following from Theorem 53, which was originally asked in [36]. In the next section, we

settle this question negatively.

7.2.2 A non-representable graph of vertex degree at most 4

The main result of this section is that the graph A represented in Figure 7.2 is not word-

representable. To prove this, we will show that this graph does not admit a semi-transitive

orientation. This is a su�cient condition due to Theorem 51.

Figure 7.2: The graph A

Our proof is a case analysis and the following lemma will be used frequently in the proof.

Lemma 45. Let D be a K4-free graph admitting a semi-transitive orientation. Then no

cycle of length 4 in this orientation has three consecutively oriented edges.

Proof. If a semi-transitive orientation of D contains a cycle of length four with three

consecutively oriented edges, then the fourth edge has to be oriented in the opposite

direction to avoid an oriented cycle. However, the fourth edge now creates a shortcut.

Hence the cycle must contain both chords to make it transitive, which is impossible because

D is K4-free.

Theorem 54. The graph A does not admit a semi-transitive orientation.

Proof. In order to prove that A does not admit a semi-transitive orientation, we will

explore all orientations of this graph and will show that each choice leads to a contradiction.

At each step of the proof we choose a vertex and split the analysis into two cases depending

on the orientation of the chosen edge. The chosen edge and its orientation will be shown

110



by a solid arrow ( ). This choice of orientation may lead to other edges having an

orientation assigned to them to satisfy Lemma 45. The orientations forced by the solid

arrow through an application of Lemma 45 will be shown by means of double arrows ( ).

When we use Lemma 45 to derive a double arrow, we always apply it with respect to a

particular cycle of length 4. This cycle will be indicated by four white vertices. Since the

graph A has many cycles of length 4, repeated use of Lemma 45 applied to di↵erent cycles

may lead to a contradiction, where one more cycle of length 4 has three consecutively

oriented edges. We will show that in all possible cases a contradiction of this type arises.

The proof is illustrated by diagrams.

Case 1: We start by choosing the orientation for the edge indicated in the diagram below.

Case 1.1: Now we orient one more edge (solid arrow), which leads to two more orientations

being assigned due to Lemma 1 (double arrows).

Case 1.1.1: One more edge is oriented (solid arrow) and this choice leads to a contradiction

through repeated use of Lemma 1 (a cycle of four white vertices with three consecutively

oriented edges in the final of the four diagrams below).
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Case 1.1.2: In this case the orientation of the edge chosen in Case 1.1.1 is reversed.

Case 1.1.2.1: By orienting one more edge (solid arrow) we obtain a contradiction through

repeated use of Lemma 1 (a cycle of four white vertices with three consecutively oriented

edges in the final diagram).

Case 1.1.2.2: Now we reverse the orientation of the edge chosen in Case 1.1.2.1.

Case 1.1.2.2.1: By orienting one more edge (solid arrow) we obtain a contradiction through

repeated use of Lemma 1.
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Case 1.1.2.2.2: By reversing the orientation of the edge chosen in Case 1.1.2.2.1 we obtain

a contradiction again. This completes the analysis of Case 1.1.

Case 1.2: The orientation of the edge chosen in Case 1.1 is reversed.
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Case 1.2.1: We orient one more edge (solid arrow) and derive one consequence (double

arrow).

Case 1.2.1.1: One more edge is oriented (solid arrow) leading to a contradiction.

Case 1.2.1.2: The orientation of the edge chosen in Case 1.2.1.1 is reversed.

Case 1.2.1.2.1: One more edge is oriented (solid arrow) leading to a contradiction.
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Case 1.2.1.2.2: The orientation of the edge chosen in Case 1.2.1.2.1 is reversed leading a

contradiction again. This completes the analysis of Case 1.2.1.

Case 1.2.2: The orientation of the edge chosen in Case 1.2.1 is reversed (solid arrow) and

one consequence is derived (double arrow).
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Case 1.2.2.1: One more edge is oriented (solid arrow) leading to a contradiction.

Case 1.2.2.2: The orientation of the edge chosen in Case 1.2.2.1 is reversed.

Case 1.2.2.2.1: One more edge is oriented (solid arrow) leading to a contradiction.
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Case 1.2.2.2.2: The orientation of the edge chosen in Case 1.2.2.2.1 is reversed.

Case 1.2.2.2.2.1: One more edge is oriented (solid arrow) leading to a contradiction.
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Case 1.2.2.2.2.2: The orientation of the edge chosen in Case 1.2.2.2.2.1 is reversed, which

leads to a contradiction again. This completes the analysis of Case 1.

Case 2. In this case, we reverse the orientation of the edge chosen in Case 1 and complete

the proof by symmetry, i.e. by reversing the orientations obtained in Case 1.

7.2.3 Asymptotic enumeration of word-representable graphs

Clearly, if G is a word-representable graph and w is a word representing G, then for any

vertex x 2 V (G) the word obtained from w by deleting all appearances of x represents

G� x. This observation leads to the following obvious conclusion.

Proposition 55. The class of word-representable graphs is hereditary.

We now apply the Alekseev-Bollobás-Thomason Theorem in order to derive an asymp-

totic formula for the number of word-representable graphs. We start with the number of

n-vertex labelled graphs in this class, which we denote by bn.

Theorem 56.

lim
n!1

log2 bn�n
2

� =
2

3
.

Proof. By Theorem 52, E3,0 is a subclass of the class of word-representable graphs and

hence its index is at least 3. In order to show that the index does not exceed 3, we

observe that the graph A represented in Figure 7.2 belongs to all minimal classes of index
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4. Indeed, the set of vertices of A can be partitioned into two subsets, one inducing a path

on 4 vertices P4 (the four vertices in the middle of the graph) and the other an induced

subgraph of a P4. It is easy to check that P4 (and hence any of its induced subgraphs)

is bipartite (belongs to E2,0), co-bipartite (belongs to E0,2) and split (belongs to E1,1).

Therefore, A belongs to E4,0, E3,1, E2,2, E1,3 and E0,4. Since A is not word-representable

(Theorems 54), the family of word-representable graphs does not contain any of these

minimal classes. Therefore, the index of the class of word-representable graphs is precisely

3.

We now proceed to the number of unlabelled n-vertex word-representable graphs, which

we denote by an.

Theorem 57.

lim
n!1

log2 an�n
2

� =
2

3
.

Proof. Clearly, bn  n!an and log2 n!  log2 n
n = n log2 n. Therefore,

lim
n!1

log2 bn�n
2

�  lim
n!1

log2(n!an)�n
2

� = lim
n!1

log2 n! + log2 an�n
2

�  lim
n!1

n log2 n+ log2 an�n
2

� = lim
n!1

log2 an�n
2

� .

On the other hand, obviously bn � an and hence limn!1
log2 bn
(n2)

� limn!1
log2 an
(n2)

.

Combining, we obtain limn!1
log2 bn
(n2)

= limn!1
log2 an
(n2)

. Together with Theorem 56, this

proves the result.

Corollary 2.

an = 2
n2

3 +o(n2).
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[32] P. Erdős and J. Spencer, Probabilistic methods in combinatorics, Probability and

Mathematical Statistics, Vol. 17. Academic Press, New York-London, 1974.
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