
This is a repository copy of A Screening Test for Disclosed Vulnerabilities in FOSS
Components.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/129164/

Version: Accepted Version

Article:

Dashevskyi, S., Brucker, A.D. orcid.org/0000-0002-6355-1200 and Massacci, F. (2019) A
Screening Test for Disclosed Vulnerabilities in FOSS Components. IEEE Transactions on
Software Engineering, 45 (10). pp. 945-966. ISSN 0098-5589

https://doi.org/10.1109/TSE.2018.2816033

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

This is the author’s version of the work. It is posted at https://www.brucker.ch/bibliography/abstract/dashevskyi.ea-vulnerability-
screening-2018 for your personal use. Not for redistribution. The definitive version was published in IEEE Transaction on Software
Engineering, Vol. 44, pp. 1–23, 2018, doi: 10.1109/TSE.2018.2816033. BIBTEX, Word, EndNote, RIS

1

A Screening Test for Disclosed Vulnerabilities in
FOSS Components

Stanislav Dashevskyi, Achim D. Brucker, and Fabio Massacci

Abstract—Free and Open Source Software (FOSS) components are ubiquitous in both proprietary and open source applications.

Each time a vulnerability is disclosed in a FOSS component, a software vendor using this component in an application must decide

whether to update the FOSS component, patch the application itself, or just do nothing as the vulnerability is not applicable to the older

version of the FOSS component used. This is particularly challenging for enterprise software vendors that consume thousands of

FOSS components and offer more than a decade of support and security fixes for their applications. Moreover, customers expect

vendors to react quickly on disclosed vulnerabilities—in case of widely discussed vulnerabilities such as Heartbleed, within hours.

To address this challenge, we propose a screening test : a novel, automatic method based on thin slicing, for estimating quickly whether

a given vulnerability is present in a consumed FOSS component by looking across its entire repository. We show that our screening

test scales to large open source projects (e.g., Apache Tomcat, Spring Framework, Jenkins) that are routinely used by large software

vendors, scanning thousands of commits and hundred thousands lines of code in a matter of minutes.

Further, we provide insights on the empirical probability that, on the above mentioned projects, a potentially vulnerable component

might not actually be vulnerable after all.

Index Terms—Security maintenance; Security vulnerabilities; Patch Management; Free and Open Source Software

F

1 INTRODUCTION

A CCORDING to a recent Black Duck study [1], more than
65 percent of proprietary applications leverage Free

and Open Source Software (FOSS). This choice speeds up
application development [2], as FOSS components are often
used “as-is” without any modifications [3]. The price to pay
is that vulnerabilities discovered in a FOSS component may
affect the application that consumes it [4].

To avoid this problem a vendor could frequently and
automatically update one’s product (and thus its FOSS
components). Such a maintenance policy can be acceptable
for some applications, e.g., a web browser, but hardly so
for components used in business or industrial control sys-
tems which may require regression testing, re-certification
of compliance, or users’ training [5]. Therefore, economic
theory dictates that many customers will keep old, but
perfectly functioning versions of the main application [6],
[7], [8]. A simple, ‘poor man’ example is updating one’s free
version of Java: the new free Java component may disrupt
the (expensive) existing Matlab/Simulink toolkit which uses
it and whose updates are usually not free.

As a result, when a vulnerability about the current
version of the FOSS library is reported, the vendor must
provide maintenance support for a software bundled with a
FOSS release that was new then, but it is now several years
older than the presently available FOSS version.

• A. D. Brucker is with University of Sheffield, United Kingdom.

• S. Dashevskyi is with University of Luxembourg, Luxembourg (he
performed part of this work while being with University of Trento, Italy).

• F. Massacci is with University of Trento, Italy.

Different choices are possible: update, patch, or don’t
touch. The first choice may be appropriate if only few
APIs of the library have changed. The last one may be
the rational choice when the vulnerability doesn’t apply to
the actually deployed version and the cost of changes is
massive. Such choice should be made quickly and early, as it
requires to mobilize expertise in different areas: in the first
case, functional experts must adapt the main application
(just using the fixed release of the FOSS component); in the
last scenario, security experts should check that there really
is no problem.

Unfortunately, the strong economic advantage of using
a FOSS component as a “black box” turns into a severe
disadvantage when a software vendor that integrates this
component into its products must check it for defects [3], [9].
A vendor may try to test its application against a working
exploit, but for many vulnerabilities there are no public
exploits [10]. Even if published exploits exist, they must be
adapted to trigger the FOSS vulnerability in the context of
the consuming application. An alternative is to apply static
analysis tools against the FOSS component. Such analysis
requires a solid understanding of the FOSS source code [3],
as well as expertise in the tools [11], as they can generate
thousands of potentially false warnings for large projects.
Further, the analysis may require days for processing even a
single ‘FOSS-release’, ‘main-application’ pair [12]. If several
FOSS releases are used in many different products [13] the
above solutions do not scale.

Alternatively, one could rely on publicly available vul-
nerability data, such as the information published in the
US National Vulnerability Database1 (NVD). Among other
vulnerability characteristics, such data often provides the

1. https://nvd.nist.gov/

https://www.brucker.ch/bibliography/abstract/dashevskyi.ea-vulnerability-screening-2018
https://www.brucker.ch/bibliography/abstract/dashevskyi.ea-vulnerability-screening-2018
https://www.brucker.ch/bibliography/abstract/dashevskyi.ea-vulnerability-screening-2018
https://doi.org/10.1109/TSE.2018.2816033
https://nvd.nist.gov/

2

information about the versions affected by vulnerabilities,
but, due to effort constraints, it focuses only on the latest
supported releases—often containing statements such as
‘’and all previous versions.” Our research, actually, shows
that the NVD entries contain a substantial number of inaccu-
racies in both directions: first, listing versions as vulnerable
that are in fact secure and, second, omitting versions that
are vulnerable. While the fist inaccuracy may result “only”
in unnecessary security maintenance, the second may result
in not acting upon potentially severe vulnerabilities.

Our solution to the hurdles of identifying which older
versions of FOSS components are likely to be affected
by newly disclosed vulnerabilities lies in the direction of
“soundiness” [14] and is in the same spirit of Hindle et
al. [15]: “semantic properties of software are manifest in artificial
ways that are computationally cheap to detect automatically, in
particular when compared to the cost [. . .] of determining these
properties by sound (or complete) static analysis”.

We propose an automatic, scalable screening test for es-
timating if an older version of a component is affected by
a newly disclosed vulnerability, using the vulnerability fix.
The test is quick and can be used early in the process albeit
it is approximate. Several screening criteria can be used with
different level of precision. Static or dynamic tools can then
be used later in the analysis.

The original contribution of this work is to combine an
adaptation the thin slicing technique [16] for finding relevant
vulnerable source code statements with the SZZ approach
adapted from Śliwerski et al. [17] for tracking the vulnerable
code back to its introduction. We also build upon Fonseca
and Vieira [18] who classified typical source code changes
that fix injection security vulnerabilities, as well as Renieris
and Reiss [19] for their concept of code dependencies in
fault localization. To understand the limitations of proposed
screening test we analyzed, in collaboration with an inter-
national enterprise software vendor, several popular and
large scale FOSS projects. We selected the FOSS projects
based on the needs of our industrial partner, i.e., we selected
the most often used components across a wide spectrum
of enterprise applications and frameworks developed by
our partner. First, we performed a manual validation to
determine the potential error rate of different screening
criteria, and, second, we did a large scale empirical analysis
of the underlying assumptions (e.g., security fixes in our
projects are mostly local as in [20], in contrast to what
is found on normal bugs [21]), as well as the trade-offs
between the likelihood that an older version is affected by
a newly disclosed vulnerability and the maintenance effort
required for upgrading, showing that the approach scales to
thousands of revisions and MLoCs.

A side-effect of our validation is also an insight on the
empirical probability that a potential vulnerable component
might not actually be vulnerable if it is too old. Once again,
the default rule used by many security databases (“X is
vulnerable and all its previous versions”) is surely safe, but
might be not so effective.

The rest of the paper is structured as follows: we start
with the problem statement and research questions (sec-
tion 2), then continue with an overview of the related work
(section 3). Next, we introduce the general terminology
used throughout the paper (section 4), and introduce our

TABLE 1: Maintenance Cycles of Enterprise Software

Maintenance cycles of ten years or more are common for software used in enterprises.
During this period, vendors need to fix security issues without changing either
functionality or dependencies of the software.

Product Release EoLife ext. EoL

Microsoft Windows XP 2001 2009 2014

Microsoft Windows 8 2012 2018 2023

Apache Tomcat 2007 2016 n/a
Red Hat Ent. Linux 2012 2020 2023

SAP SRM 6.0 2006 2013 2016

Siemens WinCC V4.0 1997 2004 n/a
Symantec Altiris 2008 2013 2016

vulnerability screening test (section 5). Further, we discuss
the data selection (section 7) and validation of the screening
test (section 8). Finally, we discuss the security maintenance
decision support for FOSS components (section 9), threats
to validity (section 10), and conclude (section 11).

2 PROBLEM STATEMENT

If a new vulnerability is disclosed and fixed in the current
version of a FOSS component, the vendor of the consuming
application must assess (i) which releases are vulnerable and
(ii) what actions should be taken to resolve issues for its different
customers. This is far from trivial for most companies [3].

To illustrate the problem, Figure 1 shows the distribu-
tion in time (as of 2014) of the numbers of instances and
customers for the past releases of one ERP application from
a large industrial software vendor. Several customers used
releases which were between five and nine years old. These
releases included FOSS components that were “new” at the
time but are now several years old. The vendor must now
backtrack the FOSS release across its code base and for each
of them take a decision.

Manually verifying whether a newly disclosed vulner-
ability applies to older versions of software applications is
not only tedious, but is also expensive in terms of resources.
For example, if we consider the software illustrated at
Figure 1, this activity would require to manually examine
many different versions of a third-party FOSS component
for which the vulnerability was reported.

Long support lifecycles such as the one illustrated in
Figure 1 is not a characteristic only of ERP software. Table 1
provides an illustrative example of the life-cycle of several
products with respect to the maintenance, from operating
systems to web servers, from industrial control software to
security products. For example, Red Hat Enterprise Linux
released in 2012 has an extended support for 11 years (until
2023). Siemens WinCC v4.0 (software for industrial control
systems) had a lifetime of 7 years, and Symantec Altiris
(service-oriented management software) released in 2008
has an extended lifetime of 8 years.

Depending on each vulnerability, different teams of ex-
perts may be needed to resolve it in a software product.
For cases when the entire software product should be
updated (e.g., for applying the security fixes provided by
FOSS developers), it can be a team of software maintenance
experts (for instance, the software developers that have the
domain-specific knowledge about the software system and
its components). For cases when it is more preferable to

3

backport the security fixes provided by FOSS developers,
or implement own security fixes for different versions of the
product, a team of software security experts may be more
appropriate.

However, security experts, developers and customers
may, naturally, have different priorities when deciding
whether a component should be upgraded, fixed or left
alone: security experts want to minimize the attack surface
and, thus, prefer upgrades of potential vulnerable compo-
nents over staying with old versions. Developers and cus-
tomers try to minimize maintenance and operational risks
of changes and, thus, prefer staying with an old version if
the security risk in doing so is low.

0

20, 000

40, 000

60, 000

80, 000

100 ,000

120 ,000

1998 2004 2012

No. of Systems

No. of Customers

The distribution shows #systems (blue) and #customers (red) using the releases of one
ERP application that are x-years old with respect to 2014 (values on the y-axis are omitted
for confidentiality). In 2014, most business customers used releases (and corresponding
FOSS components) that were between 9 and 11 years old. Each product version is most
likely shipping different versions of different FOSS components. Hence, all these FOSS
versions must be assessed when a new vulnerability in one them becomes publicly known.

Fig. 1: Single ERP application life time from 1998 to 2014,
#systems and #customers using them in 2014.

Either way, we need to allocate resources to either port
each application release, or audit their security. For example,
developers could identify the vulnerable code fragment
from the vulnerable release (by examining the source code
with or without tools), thus focusing only on the relevant
subset of the vulnerable component. This vulnerable code
fragment could be later used in combination with running
a static analysis security testing tool (SAST) on a potentially
vulnerable version of a component to ascertain that the vul-
nerability is indeed not present. Unfortunately, precise SAST
tools do not scale well to large programs: tools providing a
precise analysis can take days for one version of a compo-
nent [12] or can generate too many false alarms [22], [23]
– the situation depicted in Figure 1, where we must assess
several FOSS versions at once, would be unmanageable.

To focus our efforts on the actual vulnerable products,
we must tentatively identify within minutes (not hours or
days) all products that are likely affected by the vulnerabil-
ity. We need the software equivalent of a clinical screening
test [24]: something that may be neither (formally) sound,
nor complete, but works well enough for practical problem
instances and is fast and inexpensive.2 Therefore, our first
research question is as follows:
RQ1: Given a disclosed security vulnerability in a FOSS com-

ponent, what could be an accurate and efficient screening
test to estimate its presence in the previous revisions of the
component?

2. A sound and complete solution is formally impossible to achieve:
Rice’s theorem [25, Proof 5.28, pp243] states that no recursive program
can take a non-trivial set of programs (e.g., all past releases of a FOSS
component) and produce the subset of programs satisfying a non-trivial
property (e.g., containing a semantically equivalent fragment of the
vulnerable code fragment).

Our main goal here is to identify and assess heuristics
that would be “cheap” enough for screening through a large
number of revisions of many FOSS components, allowing at
the same time to improve over purely syntactic methods
described in the literature (for example, Śliwerski et al. [17]
and Nguyen et al. [20]).

Once we have such a screening test, we may use it for
company-wise estimates to empirically assess the likelihood
that an older version of a FOSS component may be affected
by a newly disclosed vulnerability, as well as the potential
maintenance effort required for upgrading or fixing that
version. This raises the following question:
RQ2: For how long the vulnerable coding is persistent in FOSS

code bases since its introduction? What are the overall secu-
rity maintenance recommendations for such components?

3 RELATED WORK

3.1 Identifying the Vulnerable Coding

As our RQ1 is concerned with finding an appropriate
technique for capturing a vulnerable code fragment using
vulnerability fixes, we build upon Fonseca and Vieira [18]
as the basis for our idea of using an intra-procedural fix
dependency sphere that we introduce in Section 5.4. The
authors of [18] compared a large sample of fixes for injection
vulnerabilities to various types of software faults in order to
identify whether security faults follow the same patterns
as general software faults: their results show that only
a small subset of software faults are related to injection
vulnerabilities, also suggesting that faults that correspond to
this vulnerability type are rather simple and do not require
a complex fix.

While the work by Fonseca and Vieira [18] provides
only the analysis of security patches for injection vulner-
abilities, and does not consider tracking the presence of
corresponding vulnerable code fragments in software repos-
itories, we found the classification of changes for security
fixes proposed by the authors [18] to be extremely useful
for our purposes. However, as we were also interested in
other vulnerability types (see Section 7 for the vulnerability
demographics of FOSS components used by our industrial
partner), we had to extend the classification of fixes by Fon-
seca and Vieira [18] (shown in Table 4), as well as to identify
heuristics for tracking the vulnerable code fragments.

The work by Thome et al. [26] shows that sound pro-
gram slices for the injection security vulnerabilities can be
significantly smaller than traditional program slices, and
that control flow statements should be included into slices.
Therefore, we collect control-flow statements as well, in
contrast to the original approach of thin slicing [16] on which
we build our implementation for capturing vulnerable code
fragments using vulnerability fixes.

Modern static analysis tools such as Wala [16] or
Soot [27] can be used for extracting the vulnerable coding
using security fixes. These tools implement different slic-
ing algorithms that work over byte code, offering various
features and trade-offs such as redefining the notion of
relevance of statements to the seeds [16] or improving the
precision of intermediate program representation [28]; sim-
plifying the notion of inter-procedural dependencies for effi-
cient slicing of concurrent programs [29]; and defining slices

4

that capture specific classes of security vulnerabilities [26].
Acharya and Robinson [12] evaluated the applicability of
static slicing to identifying the impact of software changes.
Their findings suggest that for small programs (and change-
sets) static slicing can be used effectively, but it faces serious
challenges when applied routinely against large systems:
they report that the build time for the intermediate repre-
sentation of one version of a project took about four days
and observed that one must investigate and resolve various
accuracy trade-offs in order to make large-scale analysis
possible.

Thome et al. [26] implemented a lightweight program
slicer that operates on the bytecode of a Java program
and allows to extract all sources and sinks in the program
for computing a program chop that would help software
developers to perform faster audits of potential XML, XPath,
and SQL injection vulnerabilities. It runs significantly faster
than traditional slicing evaluated by Acharya and Robin-
son [12], however, still, it was close to impossible for our
scenario (assessing thousands of revisions within seconds)
to use precise tools based on byte code, as they require to
build source code and resolve all dependencies as well. We
found that for versions of Java projects which are older than
five years from now, the latter could be very challenging.
Moreover, we are interested in particular vulnerable code
fragments that correspond to confirmed vulnerability fixes,
but not in the whole set of slices that may contain all
possible potentially vulnerable code fragments. Still, the
approach by Thome et al. [26] can be used as a second-level
test after our screening.

Considering the above, we have reverted to thin slic-
ing [16] and modified the original algorithm to include the
control flow statements, and limit the scope of slicing to the
methods, where a security vulnerability was fixed.

To identify whether the library is called within the con-
text of an application that consumes it, the approach by Plate
et al. [30] can be also used as an additional test after our
screening. However, the approach [30] cannot replace our
own test as it requires to call a fully-fledged static analyzer
to extract the call graph and fail our requirement of being
inexpensive.

3.2 The SZZ Approach: Tracking the Origin of the Vul-

nerable Coding

It is well known that to manually identify when exactly
a certain vulnerability is introduced into a software com-
ponent is a long process. For example, Meneely et al. [31]
studied properties of source code repository commits that
introduce vulnerabilities – the authors manually explored
68 vulnerabilities of Apache HTTPD,3 and they took six
months to finish their analysis.

Many studies on mining software repositories aim at
solving the problem of manual analysis [17], [20], [32],
allowing to automate this tedious task. The seminal work
by Śliwerski, Zimmermann, and Zeller, widely known as
SZZ [17], provided an empirical study on the introduction
of bugs in software repositories, showing how to locate
bug fixes in commit logs and how to identify their root

3. We did not include this project to our sample as it is written in C,
while our current implementation supports only Java.

causes. Their method had inspired the work by Nguyen et
al. [20] on which we also build our approach. Unfortunately,
the original SZZ approach has several limitations [32]: for
instance, SZZ identifies the origin of a line of code with the
“annotate” feature of the version control system, therefore
it could fail to identify the true origin of that line of code
when the code base is massively refactored (e.g., the line
of code is moved to another position within its containing
method). In our case, such a limitation would be a problem,
since the code of the projects that we considered has been
massively changed over the course of time (for example, see
Figure 6 in Section 7). Therefore, we adopted the heuristics
by Kim et al. [32]: we perform cross-revision mapping of
individual lines from the initial vulnerability evidence and
associate them with their containing files and methods. This
allows us to track the origin of lines of code even if they
are moved, or their containing file or method is renamed, or
they are moved to another location within the code base.

3.3 Empirical Studies on Trade-offs Between the Se-

curity Risk Posed by the Presence of the Vulnerable

Coding and the Maintainability

Di Penta et al. [33] performed an empirical study analyzing
the decay of vulnerabilities in the source code as detected
by static analysis tools, using three open source software
systems. The decay likelihood observed by the authors [33]
showed that most of potential vulnerabilities tend to be
removed from the system before major releases (shortly after
their introduction), which implies that developers may pri-
oritize security issues resolution over regular code changes.
One of the questions that the authors in [33] aimed to
answer is similar to the first part of our RQ2, however we
use a different measure of the vulnerable coding: the lines of
code relevant to a security fix as opposed to the lines of code
relevant to a static analysis warning. Moreover, our main
focus is on distinct vulnerabilities that already have evaded
static analysis scans and testing by developers, therefore
they will likely show different decay.

For assessing various “global” trade-offs between a
vulnerability risk that a component (or a set of compo-
nents) imposes and its maintainability, one feasible option
is to employ various risk estimation models. Samoladas et
al. [34] proposed a model that supports automated software
evaluation, and specifically targets open source products.
The set of metrics considered by the model is represented
by various code quality metrics (including security), and
community quality metrics (e.g., mailing lists, the quality
of documentation and developer base). While this model
takes security aspects into account, they are represented
only by two source code metrics: “null dereferences” and
“undefined values”, which is largely insufficient to cover
the vulnerability fixes in our sample (see Table 4).

Zhang et al. [35] proposed an approach for estimating the
security risk for a software project by considering known
security vulnerabilities in its dependencies, however the
approach does not consider any evidence for the presence
of a vulnerability. Dumitras et al. [36] discussed a risk
model for managing software upgrades in enterprise sys-
tems. The model considers the number of bugs addressed
by an update and the probability of breaking changes, but

5

cannot be applied to assess individual components. As such
approaches would not allow to answer the second part of
our RQ2, we resort to the code-base evidence for telling
whether it is likely that a certain version of a component
imposes security risk.

4 TERMINOLOGY AND DEFINITIONS

In this section we briefly introduce the terminology used in
the rest of the paper:

Fixed revision r1: the revision (commit) in which certain
vulnerability was fixed.

Last vulnerable revision r0: the revision in a source code
repository that immediately precedes the fix r1 when
moving forward in time. Thus, r0 is the last vulnerable
revision when moving forward in time, and it is the first
vulnerable revision, when moving backward.

Initial vulnerability evidence E[r0]: the set of lines of code
that correspond to the vulnerable source code fragment
in r0, obtained using changes between r0 and r1.

Vulnerability evidence E[r−i]: the set of lines of code from
the initial vulnerability evidence, that are still present
in some revision r−i that precedes r0.

Repository difference diff(r−i, r−i+1): the set of lines of
code changed (deleted and added) when changes from
r−i to r−i+1 were made.

Deleted lines del(r−i, ri+1): the set of lines of code deleted
when changes from r−i to ri+1 were made, s.t.
del(r−i, ri+1) ⊆ diff(r−i, ri+1).

Added lines add(r−i, ri+1): the set of lines of code added
when changes from r−i to ri+1 were made, s.t.
add(r−i, ri+1) ⊆ diff(r−i, ri+1).

Source code of a revision code(r−i): the set of lines of code
that belong to the source code of r−i.

Set of relevant methods methods(locs, code(r−i)): set of
methods to which certain lines of code locs ⊆ code(r−i)
belong.

Set of lines of code relevant to a set of methods
code(methods−i): the set of lines of code that belong
to the specified set of methods, s.t. code(methods−i) ⊆
code(r−i).

Set of defined variables def(s): the function that returns a
set of variables which values are defined or re-defined
in a statement s.

Set of referenced variables ref(s): the function that re-
turns a set of variables which values are used in s.

Statement predicate isPredicateOf(s1, s2): this function in-
dicates whether a statement s1 is a conditional state-
ment, and a statement s2 is statement which execution
depends upon s1 (e.g., is a part of then or else branches
of a conditional expression in Java).

5 VULNERABILITY SCREENING

In this section we start answering RQ1 by discussing al-
ternative techniques for performing screening tests for the
likely presence of a vulnerability.

As the fixed version r1 of a FOSS component is usually
made available when a vulnerability is publicly disclosed,
the information about source code modifications for im-
plementing the fix transforming the last vulnerable version

r0 to r1 can be used to understand where the vulnerable
part in the source code is located [17], [37], [38]. Then,
the approximate code fragment that is responsible for a
vulnerability can be identified and tracked backwards in the
source code repository history to identify a version that is
not yet vulnerable [20].

Figure 2 illustrates an example for the vulnerability
evolution in Apache Tomcat 6 (CVE-2014-0033): developers
prohibited rewriting the URL string while handling session
identifiers but a flag was not checked correctly and attackers
could bypass the check and conduct session fixation attacks.
The vulnerability was fixed on 16/01/2014 in revision r1
(here: 1558822) by modifying the incorrect check (line 5)
in r0 (here: 1558788),4 making it impossible to set a dif-
ferent session identifier and rewrite the URL (lines 6 and
7). Searching for the presence of these lines in previous
versions, reveals that in r1−i (here: 1149130) created on
21/07/2011 neither the check, nor the session fixation lines
are present. At that point in time, the URL rewriting set-up
was not yet introduced by developers, and hence the code
base does not yet have this particular vulnerability.

Indeed, the absence of the vulnerable code fragment
in some version r−i that is older than the fixed r1 is an
evidence, as opposed to a proof , that this version is poten-
tially not vulnerable: the vulnerable lines of code might be
present in a different form or even in completely different,
refactored files. If security fixes are rather local [20], these
code lines constitute a prima facie evidence that we should
allocate SAST, testing, or code auditing resources to analyze
in depth the versions that correspond to the revisions where
the vulnerable coding is still present, whilst having a more
relaxed attitude on those versions preceding r−i.

Let code(r0) be a source code fragment that represents
a vulnerable version of software application r0 that also
contains a vulnerability V ⊆ code(r0), which is responsible
for an unwanted behavior. What is currently known, is that
r0 contains the vulnerability, and the next revision of this
program r1 is fixed. It is unknown, however, whether an
older variant of the program r−i where i ≥ 1 contains this
vulnerability as well.

The goal of our vulnerability screening test is similar
to screening tests used by clinicians to identify possible
presence of a disease in individuals [24] – quickly separate
the likely healthy portion of individuals from the portion
of individuals that is likely to have a certain disease. In
our case, we treat all revisions prior to r0 (which is surely
vulnerable) as those that potentially have the vulnerability,
while different vulnerability evidences obtained from the
fix are our metric that separates the vulnerable part of the
population from the non-vulnerable one.

Algorithm 1 illustrates a generic screening test for the
potential presence of the vulnerable coding:

1) Init(r0, r1) is an abstract function that, using diff(r0, r1)
operation from the source code repository, retrieves
the changes made during the fix and infers the code
fragment responsible for the vulnerability – the initial
vulnerability evidence E[r0]. An example of such evi-
dence can be the source code lines that were directly

4. Changes in one file may correspond to ordered but not necessarily
consecutive revisions, because Subversion uses repository global com-
mit IDs.

6

r
0
 (16/01/2014)r

i
 (21/07/2011) r

1
 (16/01/2014)

...

In Apache Tomcat 6, CVE-2014-0033 is fixed at revision 1558822 (=r0) on 16/01/2014. Revision 1558788 (=r1) is the last vulnerable revision that lacks a check if URL rewriting
is disabled. The revisions prior and including 1149130 (=ri) from 21/07/2011 and earlier are not vulnerable to CVE-2014-0033, as the vulnerable feature is not present in these
revisions.

Fig. 2: An example of the evolution of a vulnerable code fragment (CVE-2014-0033).

modified during a fix (such evidence is considered by
the original SZZ approach by Śliwerski et al. [17], as
well as by the method proposed by Nguyen et al. [20]).
However, these modified lines of code may be not the
ones actually responsible for the vulnerability, therefore
we consider several other alternatives which we discuss
in the next subsections.

2) for each revision r−i, where i ≥ 1, the current vulnera-
bility evidence is represented by the lines of code from
the initial vulnerability evidence that are still present
in r−i. We use the function Track(r−i, r−i+1, E[r−i])
that keeps track of these lines of code individually, as
suggested by Kim et al. [32].

3) for each revision r−i, where i ≥ 1, there is a test
Test(r−i) which is essentially a binary classifier that
tells whether r−i is likely vulnerable, based on whether
the current vulnerability evidence given a reliability
parameter δ. This parameter can be different for actual
screening tests that use different vulnerability evidence
extraction techniques.

Extract the vulnerability evidence using the last
vulnerable revision r0 and the fixed revision r1:

E[r0] ← Init(r0, r1) (1)

For each revision r−i, where i ≥ 1, the evidence is
computed as follows:

E[r−i] ← Track(r−i, r−i+1, E[r−i+1]) (2)

Check, whether the source code of r−i is still likely
to be vulnerable:

Test(r−i) =

{

r−i is vuln. if
|E[r

−i]|
|E[r0]|

> δ

r−i is not vuln. otherwise
(3)

Algorithm 1: Generic screening test using vulnerabil-
ity evidence

The key question, however, is how to identify the right
Init(r0, r1) function for the test? As this is the primary
concern of our RQ1, we start off with describing several
candidates and explaining how each of them works.

5.1 Deletion Screening Criterion

A prior work by Nguyen et al. [20] (inspired by the work
of Śliwerski et al. [17]) has shown that the presence of the
lines of code deleted during a security fix may be a good
indicator on the likelihood that older software versions are

still vulnerable: if at least one line of the initial evidence is
present in a certain revision, this revision is considered to
be still vulnerable. Also, the results in [20] suggest that the
functionality (i.e., files and methods) where a vulnerability
was fixed at some point in time may be not yet vulnerable at
the point in time where it was introduced into the code base,
and that there may be earlier versions in which most of the
relevant functionality (files and methods) already existed
but the vulnerability itself was not yet introduced.

The approach works as follows:

1) It starts by collecting the deleted lines of code from a
vulnerability fix – deletion vulnerability evidence;

2) Then, it goes iteratively over older commits/revisions
in the source code repository and checks for the pres-
ence of these lines;

3) Finally, it stops either when none of the lines from
the initial evidence are present, or when all com-
mits/revisions are processed. When a vulnerability is
fixed by only adding lines of code, there will be no
evidence to track, and the authors in [20] conservatively
assume that in such cases the whole version prior the
fix (namely, code(r0)) is vulnerable. This screening test
was appropriate for the empirical analysis of Vulnera-
bility Discovery Models [39], which are typically based
on the NVD and its cautious assumption “r0 is vulnera-
ble and so are all its previous versions” (see [20]), as this
would create a consistent approximation of the NVD.

Essentially, the overall approach can be seen as an
instance of the generic screening test that we defined in
Algorithm 1. In this particular case, threshold δ = 0, and
our functions are instantiated as follows:

Initd(r0, r1) =

{

code(r0) if del(r0, r1) = ∅

del(r0, r1) otherwise
(4)

Track(r−i, r−i+1, E[r−i+1]) = E[r−i+1] ∩ code(r−i)(5)

Test(r−i) = |E[r−i]| > δ = 0 (6)

For security management this may be at the same time
too conservative, and too liberal as the presence of the
deleted lines may not be necessary for the vulnerability to
exist (see [20] for a discussion on such cases).

7

5.2 Method Screening Criterion

An alternative simple heuristic is the following one:5 “if
a method that was changed during a security fix is still
present in an older version of a software product, this ver-
sion is still vulnerable”, under the conservative assumption
the methods modified during the fix are responsible for a
vulnerability. Again, this rule is likely imprecise but fast and
inexpensive.

We instantiate the screening test for this heuristic as
follows:

methods1 ← methods(add(r0, r1), code(r1)) (7)

methods0 ← methods(del(r0, r1), code(r0)) (8)

Initm(r0, r1) =

(code(r0) ∩ code(methods1)) ∪ code(methods0)

(9)

For Track and Test we use the same functions as for the
deletion screening. However, tracking the presence/absence
of vulnerable methods (or a change in their size) may be still
overly conservative, because for cases when a method did
not contain vulnerable code since it was first introduced, it
may be still reported as vulnerable.

5.3 “Combined” Deletion Screening Criterion

For the original deletion screening test (see Section 5.1), if
lines were only added during a fix, there are no cues on
where vulnerable code could be located. Therefore, we can
combine the original test with the method tracking: when
a vulnerability was fixed only adding lines of code, we
assume that the whole method (or methods) where these
lines were added are responsible, otherwise, the technique
works exactly as the original one (as before, δ = 0)

Inited(r0, r1) =

{

Initm(r0, r1) if del(r0, r1) = ∅

del(r0, r1) otherwise
(10)

Track(r−i, r−i+1, E[r−i+1]) = E[r−i+1] ∩ code(r−i) (11)

Test(r−i) = |E[r−i]| > 0 (12)

5.4 Fix Dependency Screening Criterion

Finally, we assume that not always the entire source code
of fixed methods is responsible for the occurrence of a vul-
nerability. For instance, Fonseca and Vieira [18] empirically
show that most of injection vulnerabilities may be due to a
missing call to a sanitizer function, which is typically located
at methods where user input is processed. Therefore, we
need to devise a better approximation of the vulnerability
evidence. This is our novel contribution.

Let F be the fixed lines of code obtained with diff(r0, r1).
In order to fix the lines of code F ⊆ code(r0), a devel-
oper might need to consider several other lines of code
related to F – the actual vulnerable code fragment F ′. Such

5. This heuristic was suggested by A. Sabetta from SAP Labs France
in a private conversation. It is also suggested by several anonymous
reviewers of a previous version of this paper.

expansion from F to F ′ can be progressively scaled by
a parameter k: an expansion Dk(code(r0) , F) that, given
a code fragment code(r0) and the fixed lines of code F ,
returns the lines of code that F depends-on or that are
dependent-on F for k steps according to some criteria for
the notion of dependency. By D∗(code(r0) , F) we iden-
tify the transitive closure of such dependencies such that
F ′ ⊆ D∗(code(r0) , F) ⊆ code(r0): – the fix dependency
sphere6 of the code fragment F .

Therefore, we instantiate another screening test that con-
siders the source code dependencies of the fixed source code
fragment as follows:

Initfd(r0, r1) =

D∗(code(r1) , add(r0, r1)) ∩D∗(code(r0) ,del(r0, r1))

(13)

Track(r−i, r−i+1, E[r−i]) = E[r−i+1] ∩ code(r−i) (14)

Test(r−i) =
|E[r−i]|

|E[r0]|
> δ (15)

6 IMPLEMENTING THE FIX DEPENDENCY SPHERE

If we had used traditional program slicing [40] for extracting
the vulnerable code, we would likely find out that (using the
words by Sridharan et al. [16]) “traditional slices often grow too
large” and “unwieldy slices arise primarily from an overly broad
definition of relevance, rather than from analysis imprecision;
while a traditional slice includes all statements that may affect
a point of interest, not all such statements appear equally relevant
to a human”.

Therefore, we implemented the dependency expansion
D∗ as a generalized intra-procedural version of thin slicing
introduced by Sridharan et al. [16], which improves over
the notion of statement relevance of the original slicing al-
gorithm by Weiser [40] to avoid collecting overly large slices.
In particular, the thin slicing approach captures only the
producer statements – the statements that either copy a value
to the seed statements, or take part in computing that value.
We further decided to limit the resulting slices to intra-
procedural boundaries, since our analysis of vulnerability
fixes (see Table 4) suggested that security fixes are rather
“local”: in all cases the vulnerable code is located closely
to the fixed lines of code (in most cases, within the same
method).

We do not perceive our adaptation of the original thin
slicing as the original contribution of this work: we only use
it as a tool for extracting the vulnerable coding from vulner-
ability fixes (as an implementation for the fix dependency
screening criterion discussed in Section 5.4). However, we
had to proceed with our own implementation due to the
important technical difference with the original implemen-
tation: our version had to work directly on the source code.

In our case, the lines modified during a vulnerability
fix are seeds, and, similarly to [16], a slice includes a set
of producer statements for these seeds. To identify simple
dependencies between statements we look for relevance

6. This concept is similar to the notion of k-dependency sphere intro-
duced by Renieris and Reiss [19] for dependencies in fault localization.

8

relations between variables in them. We also include as a
set of explainer statements that are relevant to the seeds. These
are the following types of statements:

1) Producer statements: “[. . .] statement s is a producer
for statement t if s is a part of a chain of assignments
that computes and copies a value to t” [16]. This is an
assignment of a value to a certain variable.

2) We distinguish the following types of explainer state-
ments:
a) Control flow statements: the statements that repre-

sent the expressions in the condition branches under
which a producer statement will be executed (this
concept is taken from [16] as well). A statement s
is control dependent on a conditional expression e
if e can affect whether s is executed. A statement s
is flow dependent on a statement t if it reads from
some variable v that is defined or changed at t, or
there exists a control flow path from t to s on which
v is not re-defined.

b) Sink statements – represents a statement that corre-
sponds to a method call that has a parameter to which
a value flows from a producer statement. Therefore,
a statement s is a relevant sink of the statement t if s
is a method call and s is flow-dependent upon t.

1) Set Relf (s)← def(s) if any of the following holds
a) s ∈ Seeds ∧ def(s) 6= ∅
b) there exists a preceding t such that:

i) ref(s) ∩Relf (t) 6= ∅, or
ii) isPredicateOf(t, s) ∧Relf (t) 6= ∅

2) Set Relf (s)← ref(s) if any of the following holds
a) s ∈ Seeds ∧ def(s) = ∅
b) there exists a preceding t s.t. ref(s) ∩Relf (t) 6= ∅

Otherwise Relf (s)← ∅

Algorithm 2: Forward Slices of Relevant Variables

Set Relb(s)← ref(s) if any of the following holds:
1) s ∈ Seeds
2) there exists a preceding line t s.t.

def(t) ∩Relb(s) 6= ∅
// conservative: ignore step (3) for “light” slicing

3) there exists a preceding line t s.t.
t ∈ Sinks ∧ ref(t) ∩Relb(s) 6= ∅

4) there exists a succeeding t s.t.
isPredicateOf(s, t) ∧Relb(t) 6= ∅

Otherwise set Relb(s)← ∅

Algorithm 3: Backward Slices of Relevant Variables

We use Algorithm 2 for recursively finding a set of
source code statements which are affected by the seeds (a
forward slice). For instance, if a statement s is a seed and
is an assignment, we collect all other statements that are
located below s and are flow-dependent upon s (steps “1,a”
and “2,b,i”). When s is a statement which execution depends
upon another preceding statement t (step “1,b,ii”), and t is
either a seed, or was collected because it is control- or flow-
dependent upon a seed or another collected statement, we
collect the statement s as well. When a statement s is not
an assignment and it is a seed, we simply collect s (step

“2,a”). When s is neither an assignment, nor a seed (i.e.,
it is an explainer statement) we collect s only if there is
a preceding statement t that was collected because of the
variables referenced in s.

In this way, if we collect s, and it is a control flow
statement (e.g., an “if” statement), we also collect all other
statements which execution can be affected by the values in
s (e.g., statements inside of the “then” and “else” branches
of an “if” statement). When s is a sink of the form s(x, y, z),
and we collect this statement because the parameter x is a
variable that is relevant at some other preceding statement
t, we conservatively consider that x becomes relevant at
s. However, we also consider the parameters y and z to
become relevant at s since x may be changed inside of s, as
well as its value may be passed to y and/or z. Since this may
be too conservative, as we may end up collecting too many
statements that are not actually relevant to the seeds, we
also implemented a light variant of this slicing that ignores
the effect of the parameters: if a statement s of the form
s(x, y, z) is included into a slice because of the parameter
x, then we assume that neither x, nor other parameters
are changed inside of s, therefore their relevance will not
be propagated further (we empirically compare these two
variants in Section 8).

Similarly, we use Algorithm 3 for recursively finding
a set of source code statements that affect the seeds (a
backward slice).

The original slicing algorithm by Weiser [40] requires
that the resulting slices are executable, however, by design
the slices that we yield do not have this requirement. As
we mentioned at the beginning of this Section, we have
deliberately sacrificed the precision in favor of scalability,
and expect our slices to be non-executable, as we consider
only syntactic dependencies. Therefore, our implementation
proceeds as follows:

1) We start with the set of seed statements Seeds as the
slicing criteria, where every criterion can be represented
as a tuple 〈s, V 〉 (similarly to Weiser’s slicing crite-
rion [40]) where s is the seed statement, and V is the set
of variables of interest in that statement: for each seed
statement s, the set V consists of the variables which
values are used in s.

2) Then, for every seed statement s, we iteratively identify
other statements that contain relevant variables that are
dependent on (Algorithm 2) or influence (Algorithm 3)
the set of relevant variables V in s (the statement sets
Relf and Relb).

3) The final slice will include all statements in the method,
for which there is at least one variable that is relevant
to the seeds, thus, will contain a union of statements
returned by Algorithm 2 and Algorithm 3 (Relf ∪Relb).

7 DATA SELECTION

During our previous empirical study on the drivers for the
security maintenance effort [13] we have collected data on a
sample of FOSS components used in various products of our
industrial partner – a large international software vendor.
Our main criteria for including a FOSS component into the
sample was its internal popularity: the number of internal
products into which the component was integrated by the

9

developers of our industrial partner for the last five years
(as of 2016). We included all components for which this
number was at least five, and this sample contained 166
FOSS components.

Figure 3 shows the descriptive statistics of the sample
of these 166 FOSS components. Figure 3a illustrates the
cumulative size of the code bases of all components broken
down by different programming languages in which these
components were implemented: this distribution suggests
that the largest code base corresponds to the components
implemented in Java. Further, Figure 3b shows the distribu-
tions of internal projects into which these FOSS components
are integrated divided by Java an non-Java components:
first, it shows that the number of internal projects that
are using a FOSS component is fairly large, and second, it
also suggests the prevalence of components implemented in
Java.

To check whether this prevalence of Java projects
was statistically significant, we applied non-parametric
Wilcoxon test, since the data that we collected are not nor-
mally distributed (Shapiro-Wilk test returned p < 0.5), and
contains unpaired samples. The results of the Wilcoxon test
confirmed that indeed Java components prevail in compar-
ison to other kinds of components used by the developers
of our industrial partner: the two distributions shown on
Figure 3b have small-to-medium and statistically significant
difference (p < 0.5, Cohen’s d = 0.44). Our follow-up
discussions with the developers only confirmed this obser-
vation. Therefore, we focused our efforts specifically on the
components implemented mainly in Java.

In order to stress-test our method, we have selected
several large Java-based components used by our industrial
partner with high internal popularity and high number of
reported vulnerabilities. These components are of similar
size, and have been actively maintained for several years (at
least seven). Table 2 lists these components.

However, the successful application of the proposed
screening test depends on the availability and the quality of
the relevant information that can be found in vulnerability
databases. Specifically, a vulnerability database entry has to
be a real vulnerability, and the information about its fix must
be available. For example, Śliwerski et al. [17] provide a set
of heuristics based on regular expressions that the authors
of [17] used for spotting commits that fixed bugs in source
code repositories. From our experience, this method may fail
(see also Bird et al. [41]), and when it fails, the information
about security fixes can be extracted from the vulnerability
description itself, found when examining a bug tracker of
the corresponding software project, mentioned in third-
party security bulletins or in the mailing list archives, as
well as exist in different other sources which may vary from
project to project [18].

We used all aforementioned heuristics for recovering the
vulnerability fix commits across the entire sample of vulner-
ability entries (CVEs) reported for the selected components
in the NVD (the “Total CVEs” column in Table 2). However,
while doing that we found that it may be very difficult to
establish the link between the CVEs and repository commits
that fix them, especially when this information is not readily
available in the NVD or other public information sources
(Bird et al. [41] had made an observation that such linkage is

often missing for regular bugs as well). Therefore, we were
able to recover fixes for only 55 CVEs across the selected
components (the “Processed CVEs column” in Table 2).

Figure 4 shows the distributions of vulnerability types
from the entire sample of 166 FOSS components (dark bars),
and the sample of 55 CVEs for the Java components selected
for the evaluation (light bars). Both of these distributions
suggest that the prevalent vulnerability types are “Injec-
tion” (including “Cross-Site Scripting”, “Cross-Site Request
Forgery”, and “Command/Code execution”), “Denial of
Service”, and “Broken authentication/access control”. The
distribution of vulnerability types for 55 Java CVEs did
not have the “Memory corruption/overflows” vulnerability
type since these are not typical for Java components (and if
found, such vulnerabilities are likely to happen due to im-
plementation bugs in the Java Virtual Machine rather than
the software that runs on it). From these two distributions
we conclude that the sample of 55 CVEs that we used for
evaluation is representative of the general distribution of
vulnerabilities in FOSS components used by our industrial
partner.

Figure 7 describes the software infrastructure that we set
up for running the proposed vulnerability screening tests.
After the vulnerability fix commit information is extracted,7

the Repository Utility invokes the Vulnerability Evidence Ex-
tractor component that extracts the vulnerable code frag-
ment according to a desired screening criterion (described
through Sections 5.2–5.4): for instance, our lightweight slicer
implementation (Section 6) is an instance of a fix depen-
dency screening criterion (Section 5.4), and its purpose is
to extract additional lines of code that have direct depen-
dencies with the fixed lines of code. Different other imple-
mentations for inferring the relevant vulnerable code can be
plugged into the Vulnerability Evidence Extractor component
instead, however, the rest of the proposed screening test will
remain the same: the Repository Utility tracks the evidence
backwards in the software repository and stores it in the
database for further analysis.

Existing program analysis frameworks (such as Wala
and Soot8) that support various program analyses can be
also used in place of the Vulnerability Evidence Extractor
component (Figure 7), and provide a refined screening test
criterion by helping to cover more programming languages
and potentially improving the precision/recall ratio of the
test. However, these frameworks do not provide other com-
ponents necessary for running the test.

As our main goal was is to identify whether even simple
heuristics that consider local data and control dependencies
can make a significant difference with respect to the purely
syntactic methods described in the literature (for example,
by Śliwerski et al. [17] and Nguyen et al. [20]), we leave
the evaluation of more precise (and more complex) program
analyses in place of the Vulnerability Evidence Extractor com-
ponent for the future work.

7. Currently, we perform this step manually as we must ensure that a
commit is indeed fixing the relevant vulnerability. However, identifying
vulnerability fix commits can be automated, see Levin and Yehudai [42].

8. Unfortunately, Soot does not support source code analysis out of
the box. Therefore, the whole linkage to the source code will be another
challenge that will complicate the approach significantly.

10

Fig. 3: Descriptive statistics of 166 FOSS components used by our industrial partner

We collected a sample of 166 FOSS components integrated into different internal projects: the figure on the left illustrates the sample in terms of the size of the cumulative code
bases implemented in specific programming languages; the figure on the right shows the number of internal applications into which these components are integrated divided by
Java and non-Java components.

(a) Relative size of cumulative code bases for different languages

Java (40%)

C++ (30%)

PHP (13%)

C (10%)

JavaScript (5%)

Other (2%)

(b) Internal projects relying on a component

0
50

10
0

15
0

20
0

25
0

30
0

#I
nt

er
na

l p
ro

je
ct

s

Java non−Java

Fig. 4: Distributions of vulnerability types

We compare the distributions of vulnerability types from the sample of 166 FOSS components used by our industrial partner and the subset of 55 Java CVEs that we used for
evaluation. Both distributions suggest that the most prevalent type of vulnerabilities are “Injection”, “Denial of service” and “Broken access control” (Java distribution did not
contain “Memory corruption/overflow” vulnerabilities).

Injection Broken access control Denial of service Information leak Path traversal Memory corrupt./overflows

Vulnerability types

P
er

ce
nt

ag
e

0
5

10
15

20
25

30

Full sample

Java sample

During our study in [13], we also had informal inter-
views with software developers and maintenance experts
of our industrial partner in order to better understand how
the maintenance decisions about vulnerable FOSS compo-
nents are typically made. As a result, we understood that
such decisions are usually taken on ad-hoc, component-
by-component basis: a component may be forked due to
porting or changes to a subset of features; custom fixes
for security bugs can be implemented and other technical
modifications can be performed, if necessary [43], [44], [45].

Thus, the unlikely but not rare decision to down-port

a security fix9 that a software vendor that relies on FOSS
components has to make may happen due to a combination
of reasons:

1) The community that maintains the component may
likely not provide the solution for the specific security
problem with an outdated version;10

2) The newer version of a FOSS component that provides
the fix is largely incompatible with the coding of the

9. An example of forking and long-term maintenance is SAP’s
decision to provide its own Java Virtual Machine for several
years “because of end of support for the partner JDK 1.4.2 solu-
tions”. See http://docplayer.net/22056023-Sap-jvm-4-as-replacement-
for-partner-jdks-1-4-2.html.

10. This could happen when the old version of a FOSS component
is affected by a vulnerability but it is not supported by its developers
(e.g., EOL of Tomcat 5.5), or it is not actively maintained at the moment.

http://docplayer.net/22056023-Sap-jvm-4-as-replacement-for-partner-jdks-1-4-2.html
http://docplayer.net/22056023-Sap-jvm-4-as-replacement-for-partner-jdks-1-4-2.html

11

TABLE 2: The sample of FOSS projects used in this paper

The FOSS components from our evaluation sample have been actively developed over several years (e.g., the commit speed is between 742 and 2551 commits per year). For each
component, we also specify the total number of CVEs reported in the NVD, and the number of CVEs that we analyzed.

Project
Total

commits
Age

(years)

Avg.
commits

(per year)

Total
contributors

Current
size

(KLoC)

Total
CVEs

Processed
CVEs

µ files
touched
per fix

Apache Tomcat
(v6-9)

15730 10.0 1784 30 883 65 22 1.5

Apache
ActiveMQ

9264 10.3 896 96 1151 15 3 1.5

Apache Camel 22815 9.0 2551 398 959 7 3 1.0

Apache Cxf 11965 8.0 1500 107 657 16 10 2.0

Spring
Framework

12558 7.6 1646 416 997 8 5 1.6

Jenkins 23531 7.4 2493 1665 505 56 9 1.9

Apache Derby 7940 10.7 742 36 689 4 3 2.7

application that consumes it, thus there is significant
effort involved in migrating the application;

3) The internal changes of the library are of limited con-
cern for the developers of the consuming application
unless the functionality has been changed – the latter
change is often being captured by a change in the APIs
(See [5], [46] for a discussion);

Considering the above, we understood that a simple
metric for change, the number of changed API of a com-
ponent, is considered to be more interesting by developers
as their focus is to use the FOSS component as a (black box)
library.

Therefore, to provide also an indication for the de-
mographics of the “number of API changes” (shown on
Figure 6) we include the Change Extractor component from
Figure 7 for calculating the changes in the APIs for each
commit in comparison to the fix:

1) For each commit, we identify all Java files; for each Java
file, we count and sum the number of public methods;

2) Then, we take the difference between the current com-
mit and the commit of the fix (difference in method
signatures) and count the number of public methods
that are not present in the fix, or could have been
changed.

3) We record the number of changed methods in the
current commit with respect to the fix using the above
two numbers.

After the vulnerability data is processed and all evi-
dences are extracted, they are aggregated and stored in a
CSV file or a SQLite database which can be used for further
analysis.

Figure 5 provides an intuition about the size of the
changes made when fixing the CVEs from our sample. It
combines the following three histograms: (1) the number of
modified files;11 (2) the number of modified Java methods;
(3) the number of distinct added/deleted lines of code. In
the majority of cases (51 out of 55), at most 5 files were
modified, while in 29 cases it was only 1 file. Additionally,
in 40 cases the number of added/deleted lines of code was
at most 50. This gives us an intuition that the majority of
fixes were rather “local” and not spanning across multiple

11. Here we count only Java files, excluding unit tests.

files, methods, and commits (which would possibly require
a more complex evidence extraction mechanism).

Number of modified Java files

N
um

be
r

of
 C

V
E

 fi
xe

s

5 10 15 20

0
10

20
30

40

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21

Number of modified Java methods

N
um

be
r

of
 C

V
E

 fi
xe

s

0 10 20 30 40 50

0
10

20
30

40

0 5 10 15 20 25 30 35 40 45 50 55

Number of added/deleted Java LoCs

N
um

be
r

of
 C

V
E

 fi
xe

s

0 100 200 300 400

0
10

20
30

40

0 50 100 150 200 250 300 350 400 450

The three histograms provide an intuition about the amount of changes made when fixing
CVEs from our sample. The majority of security fixes from our sample were rather “local”,
not spanning across many files, methods, and lines of code.

Fig. 5: The distribution of files and methods changed during
a security fix

12

For 49 out of 55 CVEs a fix was performed with a single
commit. For every of those 6 CVEs that were fixed with
several commits we used an ad-hoc procedure: for each
commit that was a part of the vulnerability fix, we calculated
the vulnerability evidence (lines of code) independently, and
then merged the sets of lines of code from these separate
evidences into a single set; afterwards, we tracked this
merged set as a single vulnerability evidence starting from
the oldest fix commit (exactly as we did it for vulnerabilities
fixed with only a single commit).

FOSS projects

N
um

be
r

of
 p

ub
lic

 J
av

a
m

et
ho

ds
 c

ha
ng

ed
 w

rt
. t

o
a

fix

ActiveMQ Camel Cxf Derby Jenkins Spring Tomcat

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
14

00
0

For every commit in which we tracked the vulnerable coding, we collected the number of
public methods that were changed with respect to the public methods in corresponding
fixes. The only exception was Jenkins – for this project we measured the number of changed
methods in all commits (not only in those in which the vulnerable coding was present),
as we found out that the repository history of this project was malformed (see Section 8
for an explanation). This distribution gives an intuition on the amount of such changes
within each project.

Fig. 6: API changes statistics per project

8 VALIDATION

In this section we describe the process of the validation
that we performed to answer the part of RQ1 about the
accuracy and performance of the vulnerability screening
test, and to assess the overall usefulness of the approach
for the problems outlined in Section 2.

The empirical evaluation of the lightweight slicer for
finding security features inherent for injection vulnerabili-
ties by Thome et al. [26] reports the running time between
50 seconds to 2 minutes on a project that has 28 KLoC on
average. Table 3 reports the runtime of our approach over
the entire repository: while we cannot directly compare the
running time of our implementation of extracting the fix
dependency sphere and the slicer by Thome et al. [26]12, the
running time of our entire approach is comparable, which
shows that it is practical.

Next, we review the vulnerabilities in our data set, and
analyze their fixes to understand whether the fix depen-
dency sphere would possibly capture them. The results of

12. As we only extract the relevant code within a set of methods (it
takes less than a millisecond), while the slicer by Thome et al. [26]
extracts all potentially relevant sources and sinks.

TABLE 3: Runtime performance of fix dependency screening

The vulnerability screening test can provide an approximate evidence (based on actual
code) about the presence of the newly discovered vulnerabilities by scanning the entire
lifetime of a FOSS project in matter of minutes. Precise (but costly) static analyses can
be deployed after that step, in surgical fashion.

Project Analyzed Data Time (in sec)
#Commits #MLoCs mean (std)

Apache Tomcat 141016 186.331 35 (19)
Apache ActiveMQ 11598 27.904 28 (21)
Apache Camel 8892 4.706 16 (7)
Apace Cxf 53822 28.525 49 (33)
Spring Framework 17520 3.854 44 (35)
Jenkins 8039 9.416 16 (10)
Apache Derby 7588 5.597 17 (11)

this analysis for the conservative fix dependency screening
are summarized in Table 4: it lists description of vulner-
ability types (taken from OWASP Top 1013), as well as
description of typical fixes for these vulnerabilities. The
“completeness” column describes the dependencies of a
fix that will be captured by the fix dependency sphere
D∗(code(r0) , F). We claim that for these vulnerability types
and fixes D∗(code(r0) , F) includes the fragment of the code
responsible for the vulnerability. Therefore, tracking the
evolution of D∗(code(r0) , F) from r0 and downwards may
be a satisfying indicator for the presence of a vulnerability.

For each of selected vulnerabilities, we identified the set
of ground truth values as follows:

1) We performed source code audits starting from the last
vulnerable revision r0, moving backwards through the
repository history.

2) When we observed that any of the files initially modi-
fied to fix a vulnerability had some changes in an earlier
revision, we manually checked whether the vulnerabil-
ity in that revision was still present.

3) We stopped the analysis either on a revision that we
find to be not yet vulnerable (this implies that all earlier
revisions are not vulnerable as well – we did several
spot checks going further past the first non-vulnerable
revision an that was indeed the case), or until we
reached the initial revision of the repository.

Typically, when we go backwards in the repository
history, we arrive at the initial commit that created the
repository – here if we use the diff tool, we will see that
no source code lines were deleted (because nothing existed
before that point), but many new files were created (looking
at the commit log we can confirm that it is indeed the initial
commit). This is what typically should happen.

With Jenkins component, however, there exist two such
points: the “true” initial commit where the repository was
created, and the commit that deletes all original files (the
very next commit adds them again) – it is unclear why
Jenkins developers did that. So if we rely only on the diff tool
to tell whether a certain file was created, our analysis will
stop at this “fake” initial commit. We kept Jenkins in the full
sample because the “true” and “fake” initial commits are
not far away from each other in time, therefore, the analysis
that we perform in Section 9 will still be valid. However,
we decided to remove Jenkins from the manually checked
sample as we wanted the ground truth to be accurate.

13. https://www.owasp.org/index.php/Category:OWASP_Top_
Ten_Project

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

13

The textual description of a vulnerability is taken from public vulnerability databases (e.g., the NVD) and then combined with a search for references to the actual commits fixing
that vulnerability – this information can be present in the NVD, the commit logs of the project’s software repository, or in various third-party sources. Once a vulnerability fix
commit is obtained, the Repository Utility invokes the Vulnerability Evidence Extractor component that extracts the vulnerable code fragment according to a chosen screening test
criterion. Once the vulnerable coding (evidence) is extracted, the Repository Utility tracks the evidence backwards in the software repository and stores it in the database. Please
note that the Vulnerability Evidence Extractor component can be replaced by any heuristic or tool for extracting a vulnerable code fragment with different levels of granularity;
in this work, to answer RQ1 we used only the criteria described throughout Sections 5.2–5.4. Additionally we used the Changes Extractor component (described in Section 7) in
order to identify a proxy for the update efforts for different software projects in different points in time.

Fig. 7: Software infrastructure for vulnerability screening

Size of modified methods (LoC) − log scale

S
iz

e
of

 v
ul

ne
ra

bi
lit

y
ev

id
en

ce
 (

Lo
C

)
−

 lo
g

sc
al

e

100 101 102 103

10
0

10
1

10
2

10
3

Apache ActiveMQ
Apache Camel
Apache CXF
Apache Derby
Apache Tomcat
Jenkins
Spring Framework

Our implementation of fix dependency sphere (see Section 6) could have “saturated” the
analysis by including the whole method where the vulnerable code was present. This
phenomenon may appear for general bug fixes [21], [47] but it was not present in our
projects, as the (vulnerable) security checks and the related fix are normally quite distinct
from the code of the method that implements other functionalities.

Fig. 8: Comparing the initial amount of lines of code ob-
tained with conservative fix dependency screening criterion
versus the initial size of the entire fixed method

The final sample for the manual assessment consisted
of 126 data points across the total of 126193 revisions that
correspond to the histories of 21 CVEs (randomly selected
across the projects shown in Table 2): we went backwards it-
eratively, and for many revisions the vulnerability evidence
did not change. Therefore, we had to check only those points
where it did actually change. In order to make sure that the
sample size for the manual assessment was sufficient, we
also approximated the potential error margin for the sample
using Agresti–Coull confidence interval (see Section 8).

The manual assessment was carried out by three experts.
At first, the experts had performed the assessment indepen-
dently, and then compared their results and cross-checked
them. The Kappa statistic for the inter-rater agreement
between the experts has reached 0.87 (the experts did not
reach perfect agreement for only 2 CVEs), which indicates
that the agreement level was more than adequate.

In this way, we manually annotated every revision from
r0 and backwards with ground truth values, and obtained
the ground truth binary classifier:

Testgt(ri) =

{

1 if ri is still vulnerable

0 otherwise

Then, we ran every variant of the vulnerability screening
test described in Section 5, and compared the results with
the ground truth classifier. For every revision ri < r0 (where
i < 0), this comparison had the following result:

1) True positive: a revision was correctly classified as vul-
nerable (e.g., a test marks the revision as vulnerable,
and we identified that it is indeed vulnerable with our
ground truth analysis);

2) False positive: a revision was incorrectly classified as
vulnerable (type I error of a classifier);

3) True negative: a revision was correctly classified as non-
vulnerable;

4) False negative: a revision was incorrectly classified as
non-vulnerable (type II error of a classifier).

As a part of the answer to RQ1, we wanted to under-
stand whether our fix dependency variants of the vulnera-
bility screening test (see Section 5.4) show results that are
significantly different in comparison to the existing work of
Nguyen et al. [20] and the simplest possible heuristic that
can be expressed as “if the vulnerable piece of code (meth-
ods that were fixed) does not exist yet, the vulnerability does
not exist as well”.

14

TABLE 4: Construction of a fix dependency sphere

The fix dependency sphere is a type of vulnerability evidence that is constructed by taking the initial set of lines of code modified during a security fix, and collecting local
dependencies of these lines (our implementation is intra-procedural, see Section 6). We illustrate how a typical security fix for a specific vulnerability type in the sample of
vulnerabilities that we verified manually looks like, and how a conservative fix dependency sphere is collected for these security fixes.

Vuln.
type

Description Fix Completeness

Injection
(SQLi, XSS,
code/command
execution)

There exists a flow of data where a value coming
from an insecure source (user input) can reach a
secure sink (database, command interpreter, web
browser) and be executed (e.g., CVE-2008-1947,
CVE-2014-0075).

The fix may:
1) break such a flow (delete the

source/sink statements), or insert
a sanitizer between the source and the
sink (add new method call inside of
the method where the user input gets
to the sensitive sink);

2) fix an incorrect sanitizer (the fix is in-
side the sanitizer method).

The fix dependency sphere includes:
1) statements that capture the faulty part

of the flow between the source and the
sink.

2) statements that capture the faulty part
of the flow flow within the sanitizer.

Path
traversal

There exists a flow of data from an insecure
source, which is used for constructing path
names intended to identify a resource located un-
derneath a restricted parent location (e.g., CVE-
2008-2370).

The fix may:
1) insert a sanitizer for the input used to

construct a path (add new method call
inside of the method where the path is
constructed);

2) fix the sanitizer, e.g., add missing char-
acter encoding (the fix is inside the
sanitizer method);

3) in case of URL construction, remove
the query string from the path before
the path is sanitized (re-arrange some
of the statements inside of the method
where the path is constructed);

The fix dependency sphere includes:
1) statements that capture the faulty flow

between the source and the sink;
2) statements that capture the faulty flow

within the sanitizer;
3) statements that capture faulty flow be-

tween the source and the sink as well
as the statements that represent the
altered control flow.

Info leak
(configuration,
usernames,
passwords)

Incorrectly implemented or extensive error mes-
sages allow attackers to identify configuration
details of an application and use it as a leverage
for exploiting other vulnerabilities (e.g., CVE-
2010-1157). Simple errors, such as passing a
wrong variable into a method call (e.g., CVE-
2014-0035) can lead to sending sensitive data
over the network unencrypted. In case, when
authentication functionality reveals too much
context information, this can be used for enumer-
ation of existing users and password guessing
(e.g., CVE-2009-0580, CVE-2014-2064).

The fix may:
1) replace an incorrect message;
2) change the control flow upon which

the message is shown;
3) neutralize an unhandled exception

that is triggered under specific error
conditions (add catch block);

4) replace an incorrect parameter passed
to a method call.

The fix dependency sphere includes:
1) the modified error message, as well

as control flow statements upon which
the message is generated;

2) the altered control statements as well
as the corresponding error message;

3) the whole “try” block that corresponds
to the added “catch” block, as well
as the relevant error message and it’s
control flow statements;

4) the faulty method call (sink) as well
as all statements that capture the
data flow of the replaced parameter
(source).

Cross-site
request forgery
(CSRF)

An application accepts web requests from an
authenticated user, but fails to verify whether
requests are unique to the user’s session (are
actually sent from am user’s browser).

The fix may:
1) implement a protection mechanism by

adding specific tokens and cookies
(place a token into a response body);

2) as most protection mechanisms for this
vuln. can be bypassed if there exists re-
lated cross-site scripting vulnerability,
a potential fix may actually be equiva-
lent to Injection vulnerability fixes.

The fix dependency sphere includes:
1) statements that capture a control flow

in which the protection mechanism is
inserted and under which this protec-
tion mechanism was lacking (e.g., a to-
ken is placed into the response body);

2) same as the fix dependency sphere for
Injection vulnerabilities.

Broken
authentica-
tion, access
control
flaws

Application fails to ensure the access control of
resources (e.g., CVE-2006-7216, CVE-2012-5633),
or user accounts (e.g., CVE-2014-0033, CVE-2013-
0239).

The fix may:
1) add (or replace) an ad-hoc access con-

trol rule to the resource (alter the con-
trol flow);

2) add new method that specifies ex-
plicit permissions of an object (e.g.,
for serialization and de-serialization);
add corresponding method call to a
method where corresponding object
was created;

The fix dependency sphere includes:
1) the statements that correspond the re-

source referenced at the point where
the new ad-hoc access control rule was
added by the fix (control-dependency
of the newly added rule), as well as
some additional control and data flow
dependencies;

2) the statements that correspond to the
control/data flows under which the
newly added statement is being called.

Denial of
service

Application becomes unavailable to users due to
errors in resource management that are exploited
by an attacker. This vulnerability may exist either
due to insufficient input validation (e.g., CVE-
2011-0534), logical flaws (e.g., CVE-2014-0230,
CVE-2012-2733), or the combination of both (e.g.,
CVE-2014-0095).

The fix may:
1) add or change existing conditions that

control the “expensive” resource oper-
ation (e.g., buffer limits, thread num-
bers, etc.);

2) move the condition under which an
“expensive” resource operation is in-
voked (e.g., under some conditions, an
operation may be invoked before the
check is performed), or add additional
checks;

3) alternatively, add a sanitizer that does
not allow user input to trigger the fault
(e.g., size of the data to be cached, data
validity checks, etc.).

The fix dependency sphere includes:
1) the statements that correspond to the

resource operation itself, as well as
control and data flows relevant to this
operation;

2) same as the above;
3) same as the fix dependency sphere for

Injection vulnerabilities.

15

TABLE 5: The versions affected by vulnerabilities

This table compares for all manually analyzed CVEs the range of vulnerable versions as published in the NVD with the version range identified by a manual expert analysis
(ground truth). We observe three cases: 1) the version range given in the NVD is equal to the ground truth (Ë), 2) the NVD specifies a larger set of versions, i.e., over
approximates the vulnerable versions (/) compared to the ground truth, and 3) the NVD gives a smaller set of versions (o) compared to the ground truth. The second case (over
approximation) results in unnecessary work created by “fixing” non-vulnerable consumption of components. In contrast, the third case (under approximation) results in not
addressing, potentially severe, security vulnerabilities. Note that, for a specific CVE, the three cases are not disjoint; i.e., the version range published in the NVD might miss
vulnerable versions as well as contain non-vulnerable versions at the same time.

Project CVE NVD Versions Ground Truth Assessment

Apache Tomcat CVE-2008-1947 6.0.0 – 6.0.16 6.0.0 – 6.0.16 Ë

CVE-2010-1157 6.0.0 – 6.0.26 6.0.20 – 6.0.26 /

CVE-2011-0013 6.0.0 – 6.0.29 6.0.0 – 6.0.29 Ë
7.0.0 – 7.0.5 7.0.0 – 7.0.5 Ë

CVE-2011-0534 6.0.0 – 6.0.30 6.0.15 – 6.0.30 /
7.0.0 – 7.0.6 7.0.0 – 7.0.6 Ë

CVE-2012-2733 6.0.0 – 6.0.35 6.0.0 – 6.0.35 Ë
7.0.0 – 7.0.27 7.0.0 – 7.0.27 Ë

CVE-2013-2067 6.0.21 – 6.0.36 6.0.21 – 6.0.36 Ë
7.0.0 – 7.0.32 7.0.0 – 7.0.32 Ë

CVE-2014-0075 6.0.0 – 6.0.39 6.0.0 – 6.0.39 Ë
7.0.0 – 7.0.52 7.0.0 – 7.0.52 Ë
8.0.0 – 8.0.3 8.0.0 – 8.0.3 Ë

CVE-2014-0095 7.0.47 – 7.0.52 o
8.0.0 – 8.0.3 8.0.0 – 8.0.3 Ë

CVE-2014-0099 6.0.0 – 6.0.39 6.0.0 – 6.0.39 Ë
7.0.0 – 7.0.52 7.0.0 – 7.0.52 Ë
8.0.0 – 8.0.3 8.0.0 – 8.0.3 Ë

CVE-2014-0230 6.0.0 – 6.0.33 6.0.0 – 6.0.33 Ë
7.0.0 – 7.0.54 7.0.0 – 7.0.54 Ë
8.0.0 – 8.0.8 8.0.0 – 8.0.8 Ë

Spring Framework CVE-2013-7315 3.0.0M1 – 3.2.3 3.2.0M2 – 3.2.3 /
4.0.0M1 – 4.0.0M2 4.0.0M1 – 4.0.0M2 Ë

CVE-2014-1904 3.0.0M1 – 3.2.7 3.0.0M1 – 3.2.7 Ë
4.0.0 – 4.0.1 4.0.0 – 4.0.1 Ë

Apache Camel CVE-2013-4330 1.1.0 – 2.9.7 /
2.10.0 – 2.10.6 /
2.11.0 – 2.11.1 /
2.12.0 /

2.12.4 – 2.12.5 o

2.13.0 – 2.13.4 o

2.14.0 o

CVE-2014-0002 1.1.0 – 2.11.3 2.8.3 – 2.8.6 /
2.9.0 – 2.9.8 Ë
2.10.0 – 2.10.7 Ë
2.11.0 – 2.11.3 Ë

2.12.0 – 2.12.2 2.12.0 – 2.12.2 Ë

CVE-2015-0263 1.1.0 – 2.11.3 /
2.14.0 – 2.14.1 2.14.1 /

Apache CXF CVE-2014-0034 2.1.0 – 2.6.11 2.4.3 – 2.4.10 /
2.5.0 – 2.5.11 Ë
2.6.0 – 2.6.11 Ë

2.7.0 – 2.7.8 2.7.0 – 2.7.8 Ë

CVE-2014-0035 2.1.0 – 2.6.12 2.1.5 – 2.1.10 /
2.2.0 – 2.2.12 Ë
2.3.0 – 2.3.11 Ë
2.4.0 – 2.4.11 Ë
2.5.0 – 2.5.11 Ë
2.6.0 – 2.6.12 Ë

2.7.0 – 2.7.9 2.7.0 – 2.7.9 Ë

CVE-2014-0109 2.1.0 – 2.6.13 2.1.0 – 2.6.13 Ë
2.7.0 – 2.7.10 2.7.0 – 2.7.10 Ë

CVE-2014-0110 2.1.0 – 2.6.13 2.2.6 – 2.2.12 /
2.3.0 – 2.3.11 Ë
2.4.0 – 2.4.11 Ë
2.5.0 – 2.5.11 Ë
2.6.0 – 2.6.13 Ë

2.7.0 – 2.7.10 2.7.0 – 2.7.10 Ë

Apache Derby CVE-2006-7216 10.0.2.1 – 10.2.1.6 10.0.2.1 – 10.2.1.6 Ë

CVE-2009-4269 10.0.2.1 – 10.6.1.0 10.0.2.1 – 10.6.1.0 Ë

16

Figure 8 provides a comparison between the amount
of lines of code of the entire vulnerable methods for the
55 CVEs in our sample versus the amount of potentially
vulnerable lines of code extracted with “conservative fix
dependency screening” criterion: a possible phenomenon that
we feared is that this criterion will over-approximate the
vulnerable lines of code and be no different from the “method
screening” criterion. However, this is not happening for our
sample of vulnerabilities: while in the left and the middle
parts of the graph the size of the methods tends to be small
(i.e., less than 100 lines of code), the amount of evidence is
close to the size of the relevant methods; however, as the size
of the relevant methods tend to grow, the difference with the
amount of the lines of code from the evidence becomes more
apparent. For example, the rightmost point (a blue triangle)
represents a case for Apache CXF in which the difference
between the size of the vulnerability evidence and the size
of the vulnerable method is more than three hundred lines
of code.

Figure 9 shows the performance of the variants of the
vulnerability screening test in terms of true positive (Sen-
sitivity) and false positive (1-Specificity) rates, when com-
pared to the ground truth classifier. We discuss the results
below.

The “method screening” test did not show very high
performance with most values of the threshold δ. However,
when δ is set to 0, the classifier is marking a revision
vulnerable based on just the presence or the absence of these
methods, which may be a good vulnerability indicator when
security is the only factor that matters, as its Sensitivity
is equal to 1. Still, this strategy may have too many false
positives in case affected methods were not vulnerable right
from the point when they were introduced (Specificity =
0.002). This may result in potentially high security mainte-
nance effort.

The “combined deletion screening” test showed similar
performance to the above variant of the test, however it has
slightly smaller Sensitivity (which does not contradict with
the false negative error rate reported by Nguyen et al. [20]),
as in several cases the deleted lines disappear before the
actual vulnerable part of a method is gone.

The “light fix dependency screening” test shows signifi-
cantly better performance when the threshold δ is set to 0.5
and 0.2. With δ = 0.5, Sensitivity = 0.863, with Specificity =
1.0 (no false positives); while with δ = 0.2, Sensitivity equals
to 1.0. However, in the latter there are much more false
positives (Specificity = 0.218). The amount of false positive
results may be not important for a security assurance team,
as long as Sensitivity is close to 1.0 [11]. On the other hand,
for making quick estimates, significantly cutting down the
number of false positives may be more preferable. Thus,
the above threshold values may represent the trade-offs
between the two conflicting goals: (1) the limited amount
of development resources that dictates to prioritize only
the work that is necessary, and (2) the requirement to
provide maximum security assurance regardless the cost.
In the first case, most of vulnerable revisions will be recog-
nized correctly so that the appropriate action can be taken
immediately, but there is still a small chance that some
significantly older vulnerable revisions will be marked as
safe. In the second case, no revisions will be incorrectly

classified as non-vulnerable, but developers may spend a
lot of additional work on false positives – this case is still
better than looking at the presence of a vulnerable method,
as it provides the same level of assurance with significantly
smaller number of false positives.

On the other hand, the “conservative fix dependency screen-
ing” test yields more false positives after δ > 0.5, however,
for δ > 0.2 it is the same as the light test. This is because
for some of the vulnerabilities from our manual sample, the
conservative test yields a larger initial vulnerability evidence
fragment capturing more lines of code within a method that
are not relevant to the vulnerable code fragment. Therefore,
in such cases initial vulnerability evidence decays slower
than the initial vulnerability evidence for the light test,
showing different results at certain thresholds.

TABLE 6: Performance of the screening tests

The Positive Predictive Value (PPV) for each test reflects the likelihood that a reported
vulnerable version is actually vulnerable, while the Negative Predictive Value (NVP)
suggests the opposite – the likelihood of a revision reported to be non-vulnerable is
correctly a non-vulnerable revision. The results show that either variant of the fix
dependency screening has better discriminative capabilities than the variants of the test
based on the presence of deleted lines, or the size the affected methods.

Screening
criterion

Threshold Sens. Spec. PPV NPV

Method δ > 0.0 1.000 0.002 0.927 1.000
screening δ > 0.2 0.905 0.002 0.920 0.002

(Section 5.2) δ > 0.5 0.801 0.224 0.929 0.082
δ > 0.8 0.653 1.000 1.000 0.186

“Combined”
deletion

screening
(Section 5.3)

δ > 0.0 0.982 0.002 0.925 0.010

Light fix δ > 0.2 1.000 0.218 0.941 1.000
dependency
screening

δ > 0.5 0.863 1.000 1.000 0.367

(Section 5.4) δ > 0.8 0.457 1.000 1.000 0.128
Conservative fix δ > 0.2 1.000 0.218 0.941 1.000

dependency
screening

δ > 0.5 0.742 1.000 1.000 0.235

(Section 5.4) δ > 0.8 0.458 1.000 1.000 0.128

However, Sensitivity and Specificity as general charac-
teristics of a test are particularly informative in presence of
a large prevalence of true positives in the population but
might be significantly hindered in other scenarios (See [24]
for a discussion on their limit). To discount for the preva-
lence [24] of the vulnerable revisions we also calculate the
Positive Predictive Value (PPV, also called Precision) and the
Negative Predictive Value (NPV) of the tests, that account
for the test predictive capabilities. These values are shown
in Table 6 alongside Specificity and Sensitivity. From these
metrics we see that the fix dependency screening variants
of the screening test have better discriminative capabilities
than other variants of the test we tried.

As can be seen from Table 6, the light fix dependency test
(δ > 0.5) had no false positives, but had false negatives; in
contrast, the conservative fix dependency test (δ > 0.2) had
no false negatives, but had false positives. We approximate
the potential error rates for both tests – we use the Agresti–
Coull confidence interval [48], that requires to solve for p
the following formula:

|p̂− p| = z ·
√

p · (1− p)/n, (16)

17

The “combined” deletion screening test could almost always identify a vulnerable revision (Sensitivity = 0.982), but almost always failed to distinguish a revision that is not
yet vulnerable. The method screening test with δ = 0 (a revision is classified as vulnerable when affected methods are present) could always identify a vulnerable revision
(Sensitivity = 1.0), but had the same problem as the deletion screening (Specificity = 0.002). At the same time, both light and conservative fix dependency screening tests show
significantly better performance than just looking at the deleted lines or the method(s) size: both in terms of true positive and false positive rates.

Fig. 9: ROC curves for different variants of the vulnerability screening test

where p – is the estimated proportion of vulnerable (non-
vulnerable) revisions; p̂ – is the sample size proportion of
vulnerable (non-vulnerable) revisions over the total sample
of revisions n; and z = 1.96 – is the coefficient for the
95% confidence interval. We have chosen a large sample of
CVEs for manual verification since it corresponds to a large
sample of revisions n, which ensures small margin of error.
Thus, we have a potential error rate for the tests as follows:

• The light fix dependency test with δ > 0.5 had the 0%
error rate when classifying non-vulnerable revisions (no
false positives), and 13.7% ± 0.2% error rate when
classifying vulnerable revisions (few false negatives);

• The conservative fix dependency test with δ > 0.2 had the
78.3%±0.8% error rate when classifying non-vulnerable
revisions (significant number of false positives), and 0%
error rate when classifying vulnerable revisions (no false
negatives).

As can be seen from Table 6 and Figure 9, the method
and deletion screening criteria are less effective, therefore we
do not report their error rates. Additionally, we compared
the vulnerable version ranges taken from the NVD with the
ranges identified by the expert analysis for the subset of 21
CVEs that were manually analyzed (the ground truth). This
comparison is shown in Table 5 Already, on this subset of
CVEs we observed the following three cases: (1) a vulner-
able version range given by the NVD is correct (in com-
parison to the ground truth); (2) the NVD specifies a larger
set of vulnerable versions, i.e., gives an over-approximation;
(3) the NVD specifies a smaller set of vulnerable versions,
i.e., gives an under-approximation. The cases in which the
NVD over-approximates the range of vulnerable versions
may result in unnecessary work that is created by resolving
vulnerabilities for non-vulnerable versions of the consumed
FOSS components (increased maintenance efforts). On the
other hand, the cases in which the NVD provides under-

approximations may result in not addressing potentially
severe security vulnerabilities (increased security risks).

Therefore, a screening test that is using the fix depen-
dency screening criterion with different threshold values
can be used to mitigate both under- and over-approximation
problems of the NVD, and to get better estimates about
potential maintenance efforts as well as security risks con-
nected with large consumption of FOSS components (we
provide more discussion in Section 9).

These results allow us to provide an answer to RQ1:
tracking the presence/absence of the vulnerable methods
or lines of code removed during a security fix may be not
sufficient from the security maintenance effort management
perspective. Still, fairly simple heuristics that capture lines
of code that are potentially relevant to the vulnerable part
of a method can be more beneficial for this task.

9 DECISION SUPPORT FOR SECURITY MAINTE-

NANCE

For those FOSS components, where upgrading to the latest
version is likely a low effort, we just might want to update
them – even if the risk is comparatively low. For components
where the upgrade (or fixing) effort is high, we still can do
a more expensive and more precise analysis. Still, getting an
immediate estimate on the trade-offs between the upgrade
effort and the likelihood of the security risk is the key
for not wasting the (limited) available resources on FOSS
components that are unlikely to be vulnerable, or are likely
easy to upgrade.

Therefore, to answer RQ2, and provide an insight on
whether developers could extract quick indicators for se-
curity maintenance decisions on FOSS components they
consume, we performed an empirical analysis of the per-
sistence of potentially vulnerable coding in source code

18

repositories of the chosen projects. We also extracted the
amount of changes between each revision and the fix in
terms of changed public API, which we use as a proxy
for the overall changes that may complicate component
updates, increasing maintenance costs (see Section 7).

First of all, upon disclosure of a new vulnerability, devel-
opers could use a “local” decision support that would allow
them to identify the vulnerability risk of for a version of a
FOSS component in question, as well as the likelihood that
the component can be updated without any major efforts.
If an easy update is not possible (and for considerably
older versions of software components this is rarely the
case), the value of the vulnerability risk indicated by the
presence of the vulnerable coding may be a useful indicator
for the maintenance planning. With Figure 10, we illustrate
such a decision support for developers: this information is
generated by running the conservative fix dependency screening
test for CVE-2014-0035 (Apache CXF). We take the value of
the vulnerability evidence as the potential security risk, and
measure the changes in the API between each revision and
the fix for this CVE as a proxy for the upgrade effort. If a ver-
sion of a FOSS component is not older than 2000 revisions
back from the fix (approx. 1-2 years), it may be preferable
to update the component, as most of the vulnerable coding
is present, and difference in the API with respect to the fix
is only starting to accumulate. On the other hand, if it is
older than 5000 revisions back from the fix (more than 5
years), it may be more preferable to take no action, as most
of the potentially vulnerable coding is gone, and changes
accumulated between that point in time and the fix are too
many. For cases when the version of interest lies somewhere
between these two areas, a custom fix may be implemented.

−8000 −7000 −6000 −5000 −4000 −3000 −2000 −1000 0

0
10

20
30

40
50

60
70

80
90

10
0

R
is

k:
 V

ul
n.

 e
vi

de
nc

e
(%

)

Approx.
 1−2 years
 (UPDATE)

Approx.
 3−5 years

 (AD−HOC SOLUTION)

More than
 5 years

 (DO NOT TOUCH)

← Older Revisions

E
ffo

rt
: #

A
P

I c
ha

ng
ed

10
00

30
00

50
00

70
00

90
00

11
00

0
13

00
0

Vulnerability evidence (%)
#API changes

As we move backward from the fix in the revision history, the coding that is responsible
for a vulnerability possibly disappears (red curve, shows the value of evidence in LoC),
whereas other changes in the code base start to accumulate (blue curve is the amount of
API that changed in a certain revision with respect to the fix that represents the effort of
upgrading from that point to the fix). A very old version may require to change 13000+
public methods for a vulnerability that may be very unlikely to be there (85% chances,
see Figure 11). Thus, the position of the revision of interest in this diagram provides
developers with a good insight on what decision to make.

Fig. 10: Trade-off curves for one vulnerability of Apache
CXF (CVE-2014-0035)

To sketch a trade-off model that would allow to perform
a retrospective analysis for “global” security maintenance
of the whole FOSS component, we attempt to generalize

the above “local” decision support. Similarly to Nappa et
al. [49], who employed survival analysis to analyze the time
after a security patch is applied to a vulnerable host, we
used it to analyze the persistence of vulnerable coding that
we extracted from the sample of FOSS projects (shown in
Table 2) with our screening tests. Survival analysis is the
field of statistics that analyzes the expected duration of time
before an event of interest occurs [50], and is being widely
used in biological and medical studies.

In our scenario, time goes backwards (from the fix),
and we identify the following event affecting every pair of
(CVE, FOSS) as an individual entity, depending on one’s
considerations:

Security Risk: the event whose probability we measure is
“the ratio of the vulnerability evidence E[ri−1]/E[r0]
in a screening test falls below δ”.

This event corresponds to the likelihood of the presence
of the coding that is responsible for the vulnerability. To
identify how this security risk may change over time, which
is the concern of our RQ2, we computed the survival
probabilities of vulnerable code fragments using the light
fix dependency screening with δ > 0.5, conservative fix depen-
dency screening with δ > 0.2, method screening with δ > 0,
and “combined” deletion screening tests (the variants of the
screening test which performance we show in Figure 9).
We performed survival analysis using the survfit14 package
in R, fitting the Kaplan-Meier non-parametric model (The
Nelson–Aalen model gives the same qualitative result).

Figure 11 shows these survival probabilities: the vulner-
able coding tends to start disappearing after 1000 commits
(approximately 1 year preceding the fix), as already at 2000
revisions back there are 60% chances that the vulnerable
coding is still there according to the evidence collected
by conservative fix dependency screening (red curve). At 6000
revisions back (approx. 4 years) there is only 30% chance
that the vulnerable coding survived, according to the same
evidence. The curve that represents the probability of being
vulnerable according to the evidence obtained with light
fix dependency screening (blue curve) decays even faster.
While the difference between the conservative fix dependency
screening and method/deletion evidence presence is not that
obvious on this figure, it is still significant (recall Figure 9).

Finally, we sketch the “global” decision support that
represents the trade-offs that can be considered for the
security maintenance of a FOSS project (RQ2), we further
combine the survival curves for vulnerability evidences
obtained with light and conservative fix screening tests over
the set of vulnerabilities for the Apache Tomcat project,
using the average values of API changes per project. Fig-
ure 12 represents the “global” trade-off decision support for
the Apache Tomcat project, that consists of the following
elements:

1) The dashed red line corresponds to the conservative
probability that the vulnerable coding has survived at
a certain point in time – this is based on the conservative
fix dependency screening with δ > 0.2 (our manual
assessment for this test in Section 8 showed no false
negatives, but a considerable amount of false positives).

14. https://cran.r-project.org/web/packages/survival/survival.pdf

https://cran.r-project.org/web/packages/survival/survival.pdf

19

← Older Revisions

S
ur

vi
va

l p
ro

ba
bi

lit
y

−12000 −11000 −10000 −9000 −8000 −7000 −6000 −5000 −4000 −3000 −2000 −1000 0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Approx.
 1−2 years

Approx.
 3−4 years

Approx.
 5−6 years

Approx.
 7−8 years

Rev. is still vulnerable (method(s) exists)
Rev. is still vulnerable (del. evd. exists)
Rev. is still vulnerable (conserv.,δ > 0.2)
Rev. is still vulnerable (light,δ > 0.5)

The vulnerable coding tends to start disappearing after 1000 commits (≤ 1 year preceding the fix), as already at 2000 revisions back
there are 60% chances that the vulnerable coding is still there according to the evidence collected by conservative fix dependency
screening (red curve). Further back (after approx. 6 years), there is only a small probability that a component is vulnerable.

Fig. 11: Survival probabilities of the vulnerable coding with respect to different variants of the screening test

2) The solid red line corresponds to the lightweight prob-
ability that the vulnerable coding is still there – this
is based on the light fix dependency screening with
δ > 0.5 (our manual assessment for this test in Section 8
showed no false positives and a low number of false
negatives).

3) Each point on the solid blue line corresponds the
number of the API changed in a certain revision in
comparison to the fix: these are the aggregated average
numbers taken for the whole project sample (the two
dashed lines are the 0.95% confidence interval).

Figure 12 gives a recommendation to developers to up-
date their versions of a component on a yearly basis, as after
that time the vulnerability risk is likely to be still high, and
the API changes tend to grow fast. The average amount of
API changes,15 as well as both risk values, suggest that the
security assessment should be performed when a version of
interest lags for around 3-4 years behind the fix (between
4000 and 6000 commits). Here the down-port decision could
be evaluated, considering that the conservative risk estimate
is still high at this point. Alternatively, if the lightweight risk
estimate is tolerable, developers may already prefer to take
no action at this point. Looking at both conservative and
lightweight probabilities for the vulnerability risk and the
average amount of the API changes, the point after 8000
commits could be the one at which the “do not touch”
decision might be the only reasonable choice.

The analysis presented in this section is based on the
conservative assumption that a software vendor has an up-

15. A certain older revision ry may actually have less API changes
with respect to the fix than a certain newer rx for a simple reason,
that ry has less functionality than rx – this may be the reason why the
amount of API changes that we observe in Figure 12 is not as “linear”
as in Figure 10.

to-date inventory of FOSS components that at least contains
the information about which FOSS components are used in
specific software products, as well as the information about
the versions of these components (e.g., Black Duck [1]).

When such an inventory is outdated or does not exist,
tracking the usage of FOSS components across the entire
software portfolio of large software vendors is a very chal-
lenging task [51]. Yet, the information about software and
its versions can be also extended by indicating the exact
functionalities of FOSS components that are being used
– this can further reduce the security risk as well as the
associated maintenance effort.

10 THREATS TO VALIDITY

In our approach the construct validity may potentially be
affected by the means of data collection and preparation,
the selected sample of FOSS projects, and the accuracy of
the information about security fixes in them:

• Misleading commit messages. As pointed by Bird et
al. [41] (and from our own experience), linking CVE
identifiers to specific commits in source code repos-
itories is not trivial: developers may not mention fix
commits in the NVD and security notes, and they may
not mention CVE identifiers within commit logs. Also,
automatic extraction of bug fix commits may introduce
bias due to misclassification (e.g., a developer mentions
a CVE identifier in a commit that is not fixing this
CVE). To minimize such bias, we collected this data
manually, using several data sources, including third-
party sources that do not belong to the actual projects.
Manual data collection allowed us to additionally ver-
ify that every vulnerability fix commit that we collected
is indeed a fix for a particular CVE, therefore we do not
have the latter bias of misclassification.

20

← Older Revisions
−12000 −11000 −10000 −9000 −8000 −7000 −6000 −5000 −4000 −3000 −2000 −1000 0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

P
ro

ba
bi

lit
y

of
 e

ve
nt

Approx.
 1−2 years

Approx.
 3−4 years

Approx.
 5−6 years

Approx.
 7−8 years

Rev. is still vulnerable (light, δ > 0.5)
Rev. is still vulnerable (conserv.,δ > 0.2)
#API changes#A

P
I c

ha
ng

ed
 (

av
er

ag
e)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00

As we move back from the fix in the revision history, the probability that a revision is still vulnerable (red solid and dashed curves)
holds high within the first 2 years before the fix (around 4000 revisions back). At the same time, the average amount of API changes
(blue curve, the two dashed blue curves are the 0.95% confidence interval) accumulates fast – this may be the right time for an update.
Further back, between approx. 3 and 4 years before the fix, the amount of changes does not grow significantly, but the vulnerability
risk is still relatively high – this may be the time frame for a thorough security assessment of a version in question. Further back (after
approx. 4 years before the fix), the vulnerability risk falls down, and changes begin to accumulate even more – here the “do not touch”
decision might be the only reasonable choice.

Fig. 12: “Global” trade-off curves for 22 vulnerabilities of Apache Tomcat

• Tangled code changes in vulnerability fixes. There is a po-
tential bias in bug-fix commits, such that along with fix-
ing relevant parts of the functionality, developers may
introduce irrelevant changes (e.g., refactor some unre-
lated code). Kawrykow and Robillard [47], and Herzig
et al. [21] explored to what extent bug-fix commits may
include changes irrelevant to the original purpose of
the fix: while they show that there may be significant
amount of irrelevant changes for general bugs, Nguyen
et al. [20] observed that for the majority of security fixes
this was not the case – this is also supported by our
findings of very “local” changes (Figure 5). The subset
of vulnerabilities that we checked manually did not
contain such refactorings.

• Incomplete or broken histories of source code repositories. The
commit history of FOSS projects may be incomplete
(e.g., migrating to different types of version control
systems, archiving or refactoring), limiting the analysis
capabilities. We checked the repository histories of all
seven projects in our sample finding them all to be com-
plete, except for Jenkins. In case of Jenkins, at one point
in time the whole repository layout was deleted, and
then re-created again. Our current implementation does
not handle such cases, as it works under the assumption
that repositories are complete and well-structured. Still,
such cases (and similar ones) can be handled automati-
cally, extending the current implementation with more
heuristics.

• Existence of complex “architectural” vulnerabilities. We im-
proved over the work by Nguyen et al. [20] by using
slicing over the source code albeit limiting the scope of

the slice to distinct Java methods. This may be not ade-
quate for sophisticated, “architectural”, vulnerabilities.
Nguyen et al. [20] have reported that less than 30% of
security fixes for Firefox and Chrome browsers (out of
the total of approximately 9,800 vulnerabilities that the
authors processed) involved more than 50 lines of code,
which implies that in most cases the changes to the code
base were rather small (which is also supported by our
sample of vulnerabilities). Hence, a prima facie evidence
is that complex vulnerability fixes can be considered
as outliers from the perspective of our methodology.
In such complex cases, additional analysis would be
anyhow needed.

• The lack of representativeness of the collected sample of
vulnerabilities on typical vulnerabilities found in software
projects. We believe that this threat is minimized, since
we selected large and popular software projects, as well
as checked whether the distribution of vulnerability
types in these projects corresponds to the vulnerability
type distribution of the large sample of FOSS compo-
nents integrated by our industrial partner.

• Human error. Our manual validation of the screening
tests over the subset of vulnerabilities might be biased
due to human errors and wrong judgment. In order to
minimize such bias, manual checks were performed by
three different experts, who were cross-checking and
discussing the results of each other.

The internal validity of the results depends on our inter-
pretation of the collected data with respect to the analysis
that we performed. We carefully vetted the data to minimize
the risk of wrong interpretations.

21

Additionally, like any other approach that is purely
static, the proposed screening test may be over- or under-
approximating the results, since the actual vulnerable be-
havior is an estimation. While we did not create exploits
to test the actual vulnerable behavior, of various versions
against selected vulnerabilities (as it is a very labor-intensive
task), we performed manual code audits that confirmed
the adequacy of the results. Moreover, the error margin of
the test that we calculated in Section 8 suggests that it is
satisfactory for the primary purpose of the screening test –
providing a quick and scalable method for estimating the
vulnerability status of a large amount of FOSS components
used by software vendors.

The external validity of our analysis lies in generalizing
to other FOSS components. It depends on the representa-
tiveness of our sample of FOSS applications from Table 2,
and the corresponding CVEs. As the FOSS projects that
we considered are widely popular, have been developed
for several years, and have a significant number of CVEs,
those threats are limited for FOSS using the same language
(Java), and having the same popularity. Generalization to
other languages (such as C/C++) should be done with care,
looking at Table 4.

11 CONCLUSIONS AND FUTURE WORK

We presented an automated, effective, and scalable ap-
proach for screening vulnerabilities and upgrade effort for
large FOSS components consumed by proprietary applica-
tions.

The main conclusion of our work is that the proposed
screening test can be useful for mitigating the over- and
under-approximation problems in the information about
vulnerable versions from public vulnerability databases
such as the NVD, which is of great help for large software
vendors that integrate many FOSS components into their
products in making security maintenance decisions when
new vulnerabilities in these components are published.

We empirically confirm our intuition that purely syntac-
tic heuristics for tracking the presence of vulnerable coding
in source code repositories proposed in earlier literature can
be further improved with the source code slicing that ex-
tracts local dependencies of the source code lines modified
during a security fix. Moreover, we find that there can be
different thresholds for the screening test that can represent
different trade-offs between the desired security risk and
the amount of maintenance effort that a software vendor
can tolerate.

Our approach represents an enhancement of the original
SZZ approach by Śliwerski et al. [17] and its successors
(e.g., Nguyen et al. [20]), and can be applied to identify
changes inducing generic software bugs. However, the fixes
of such bugs should have similar properties as the security
vulnerabilities that we discuss in this paper (see Table 4),
and should be “local”. Otherwise, different heuristics for
extracting the evidence may be needed.

While our current prototype is limited to vulnerabilities
in Java source code, the approach can be easily extended
to other programming languages and configurations. In
practice, it depends on the availability of a program slicer
for a particular programming language.

We see several lines of future work to better understand
the quality/speed trade-offs as well as to extend the scope
of our approach:

• Improve the quality of vulnerability evidence tracking
by handling changes across multiple files as well as
investigating the impact of more precise slicing algo-
rithms. We do not expect a significant improvement in
this direction as, in our experience, vulnerabilities were
mostly fixed locally by touching few lines.

• Improve the quality of estimation of the update effort
by including changes in build dependencies (direct and
transitive), which might influence the estimate.16

• Extend the approach to more programming languages
and test the approach on different types of projects.

Currently, our experimental validation has focused on a
selection of software components motivated by the needs of
the security team at large enterprise software vendor. It can
be easily adapted to support other scenarios: e.g., by devel-
opment teams to assess whether a vulnerable functionality
is actually invoked by a consuming application (as in Plate
et al. [30]), or by security researchers to improve the quality
of vulnerability database entries (as in Nguyen et al. [20]).

As the results of the empirical evaluation suggest, the
screening test approach did not have a significant false
positive problem, but, as we mentioned in Section 7, the pre-
cision/recall can be further refined with different versions
of the Vulnerability Evidence Extractor component (shown in
Figure 7).

ACKNOWLEDGMENTS

We would like to thank M. Bernhardt, H. Plate, S. Ponta,
A. Sabetta, and U. Sodan for many discussions on the
challenges faced by software vendors, and E. Blanzieri for
suggesting the name of “screening test” for our method.

This work has been partly supported by the Eu-
ropean Union under the grant 317387 SECENTIS
(FP7-PEOPLE-2012-IT), EU project VAMOSS (EIT/EIT
DIGITAL/SGA2016-16367), and CISCO Country Digitaliza-
tion Grant (Filiera Sicura).

REFERENCES

[1] “The tenth annual future of open source survey,” https://www.
blackducksoftware.com/2016-future-of-open-source, Black Duck
Software, 2016, last accessed 2016-05-22.

[2] M. Höst and A. Oručević-Alagić, “A systematic review of research
on open source software in commercial software product devel-
opment,” Inf. and Softw. Tech. Journ., vol. 53, no. 6, pp. 616–624,
2011.

[3] J. Li, R. Conradi, C. Bunse, M. Torchiano, O. P. N. Slyngstad,
and M. Morisio, “Development with off-the-shelf components: 10
facts,” IEEE Softw. Journ., vol. 26, no. 2, p. 80, 2009.

[4] Forrester Consulting, “Software integrity risk report. the critical
link between business risk and development risk.” Tech. Rep.,
2011.

[5] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers
react to API deprecation?: the case of a Smalltalk ecosystem,” in
Proc. of FSE’12, 2012.

16. For example, consider an application that only runs on Java
1.4 and a FOSS upgrade that would require Java 1.8: to resolve this
dependency conflict, either the fixes for the FOSS components need to
be back-ported to Java 1.4 or the whole applications needs to be ported
to Java 1.8.

https://www.blackducksoftware.com/2016-future-of-open-source
https://www.blackducksoftware.com/2016-future-of-open-source

22

[6] G. Ellison and D. Fudenberg, “The neo-luddite’s lament: Excessive
upgrades in the software industry,” RAND Journ. of Econ., vol. 31,
no. 2, pp. 253–272, 2000.

[7] C. Ioannidis, D. Pym, and J. Williams, “Information security trade-
offs and optimal patching policies,” Eu. Journ. of Op. Res., vol. 216,
no. 2, pp. 434 – 444, 2012.

[8] N. Mukherji, B. Rajagopalan, and M. Tanniru, “A decision support
model for optimal timing of investments in information technol-
ogy upgrades,” Deci. Supp. Sys. Journ., vol. 42, no. 3, pp. 1684–1696,
2006.

[9] I. Sahin and F. M. Zahedi, “Policy analysis for warranty, mainte-
nance, and upgrade of software systems,” Journ. of Softw. Maint.
and Evol., vol. 13, no. 6, pp. 469–493, 2001.

[10] L. Allodi and F. Massacci, “Comparing vulnerability severity and
exploits using case-control studies,” ACM Trans. on Inf. and Sys.
Sec. Journ., vol. 17, no. 1, pp. 1–20, 2014.

[11] D. Baca, K. Petersen, B. Carlsson, and L. Lundberg, “Static code
analysis to detect software security vulnerabilities-does experience
matter?” in Proc. of ARES’09, 2009.

[12] M. Acharya and B. Robinson, “Practical change impact analysis
based on static program slicing for industrial software systems,”
in Proc. of ICSE’11, 2011.

[13] S. Dashevskyi, A. D. Brucker, and F. Massacci, “On the security
cost of using a free and open source component in a proprietary
product,” in Proc. of ESSoS’16, 2016.

[14] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral,
B.-Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Var-
doulakis, “In defense of soundiness: A manifesto.” Comm. ACM,
vol. 58, no. 2, pp. 44–46, 2015.

[15] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proc. of ICSE’12, 2012.

[16] M. Sridharan, S. J. Fink, and R. Bodik, “Thin slicing,” ACM
SIGPLAN Notices, vol. 42, no. 6, pp. 112–122, 2007.

[17] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” ACM SIGSOFT SEN, vol. 30, no. 4, pp. 1–5, 2005.

[18] J. Fonseca and M. Vieira, “Mapping software faults with web
security vulnerabilities,” in Proc. of DSN’08, 2008.

[19] M. Renieris and S. P. Reiss, “Fault localization with nearest neigh-
bor queries,” in Proc. of ASE’03, 2003.

[20] V. H. Nguyen, S. Dashevskyi, and F. Massacci, “An automatic
method for assessing the versions affected by a vulnerability,”
Emp. Soft. Eng. Journ., vol. 21, no. 6, pp. 2268âĂŞ–2297, 2015.

[21] K. Herzig, S. Just, and A. Zeller, “The impact of tangled code
changes on defect prediction models,” Emp. Soft. Eng. Journ.,
vol. 21, no. 2, pp. 303–336, 2016.

[22] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and
G. Rothermel, “Predicting accurate and actionable static analysis
warnings: An experimental approach,” in Proc. of ICSE’08, 2008.

[23] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,
“Evaluating static analysis defect warnings on production soft-
ware,” in Proc. of PASTE’07, 2007.

[24] D. A. Grimes and K. F. Schulz, “Uses and abuses of screening
tests,” The Lancet, vol. 359, no. 9309, pp. 881 – 884, 2002.

[25] M. Sipser, Introduction to the Theory of Computation. Cengage
Learning, 2012.

[26] J. Thome, L. K. Shar, and L. Briand, “Security slicing for audit-
ing XML, XPath, and SQL injection vulnerabilities,” in Proc. of
ISSRE’15, 2015.

[27] A. Treffer and M. Uflacker, “Dynamic slicing with Soot,” in Proc.
of SOAP’14, 2014.

[28] J. Graf, “Speeding up context-, object- and field-sensitive SDG
generation,” in Proc. of SCAM’10, 2010.

[29] V. P. Ranganath and J. Hatcliff, “Slicing concurrent Java programs
using Indus and Kaveri,” Inter. Journ. on Softw. Tools for Tech. Transf.,
vol. 9, no. 5-6, pp. 489–504, 2007.

[30] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for
vulnerabilities in open-source software libraries,” in Proc. of IC-
SME’15, 2015.

[31] A. Meneely, H. Srinivasan, A. Musa, A. Rodriguez Tejeda,
M. Mokary, and B. Spates, “When a patch goes bad: Exploring
the properties of vulnerability-contributing commits,” in Proc. of
ESEM’13, 2013.

[32] S. Kim, T. Zimmermann, K. Pan, and J. E. Whitehead Jr., “Au-
tomatic identification of bug-introducing changes,” in Proc. of
ASE’06, 2006.

[33] M. Di Penta, L. Cerulo, and L. Aversano, “The life and death of
statically detected vulnerabilities: An empirical study,” Inf. and
Softw. Tech. Journ., vol. 51, no. 10, pp. 1469–1484, 2009.

[34] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos, “The SQO-
OSS quality model: measurement based open source software
evaluation,” in Proc. of IFIP OSS’08, 2008.

[35] S. Zhang, X. Zhang, X. Ou, L. Chen, N. Edwards, and J. Jin,
“Assessing attack surface with component-based package depen-
dency,” in Proc. of NSS’15, 2015.

[36] T. Dumitras, P. Narasimhan, and E. Tilevich, “To upgrade or not
to upgrade: Impact of online upgrades across multiple administra-
tive domains,” ACM SIGPLAN Notices, vol. 45, no. 10, pp. 865–876,
2010.

[37] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
Eclipse,” in Proc. of PROMISE’07, 2007.

[38] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting
vulnerable software components,” in Proc. of CCS’07, 2007.

[39] F. Massacci and V. H. Nguyen, “An empirical methodology to
evaluate vulnerability discovery models,” IEEE Trans. on Softw.
Eng. Journ., vol. 40, no. 12, pp. 1147–1162, 2014.

[40] M. Weiser, “Program slicing,” in Proc. of ICSE’81, 1981.
[41] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,

and P. Devanbu, “Fair and balanced?: Bias in bug-fix datasets,” in
Proc. of ESEC/FSE’09, 2009.

[42] S. Levin and A. Yehudai, “Boosting automatic commit classifica-
tion into maintenance activities by utilizing source code changes,”
in Proc. of PROMISE’17, 2017.

[43] L. Nyman and T. Mikkonen, “To fork or not to fork: Fork motiva-
tions in sourceforge projects,” in Proc. of IFIP OSS’11, 2011.

[44] S. Stanciulescu, S. Schulze, and A. Wasowski, “Forked and inte-
grated variants in an open-source firmware project,” in Proc. of
ICSME’15, 2015.

[45] G. Robles and J. M. González-Barahona, “A comprehensive study
of software forks: Dates, reasons and outcomes,” in Proc. of IFIP
OSS’11, 2012.

[46] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella,
“How the Apache community upgrades dependencies: an evolu-
tionary study,” Emp. Soft. Eng. Journ., vol. 20, no. 5, pp. 1275–1317,
2015.

[47] D. Kawrykow and M. P. Robillard, “Non-essential changes in
version histories,” in Proc. of ICSE’11, 2011.

[48] A. Agresti and C. A. Franklin, Statistics: the art and science of
learning from data. Pearson Higher Education, 2012.

[49] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras,
“The attack of the clones: a study of the impact of shared code
on vulnerability patching,” in Proc. of SSP’15, 2015.

[50] R. G. Miller Jr., Survival analysis. John Wiley & Sons, 2011, vol. 66.
[51] J. Davies, D. M. German, M. W. Godfrey, and A. Hindle, “Software

bertillonage: Finding the provenance of an entity,” in Proc. of
MSR’05, 2011.

23

Stanislav Dashevskyi received his Ph.D. in ICT
at University of Trento in 2017, under the super-
vision of Prof. Fabio Massacci. He worked as
a Quality Assurance Engineer in a software de-
velopment company before joining University of
Trento. Currently, he is a member of the SaToSS
research group at the University of Luxembourg,
working as a Research Associate under the su-
pervision of Prof. Sjouke Mauw. His interests
include software security, software vulnerability
analysis and security certification of third-party

software. Contact him at stanislav.dashevskyi@uni.lu.

Achim D. Brucker is a Senior Lecturer (As-
sociate Professor) and Consultant (for software
security) at the Computer Science Department
of The University of Sheffield, UK. He has a
Ph.D. in Computer Science from ETH Zurich
in Switzerland. Until December 2015, he was
a Research Expert (Architect), Security Testing
Strategist, and Project Lead in the Global Secu-
rity Team of SAP SE. He was involved in rolling
out static and dynamic application security test-
ing tools to the world-wide development organi-

zation of SAP. He represented SAP in OCL standardization process of
the OMG. Contact him at a.brucker@sheffield.ac.uk.

Fabio Massacci is a full professor at the Univer-
sity of Trento. He has a Ph.D. in Computing from
the University of Rome La Sapienza in 1998. He
has been in Cambridge (UK), Toulouse (FR) and
Siena (IT). Since 2001 he is in Trento. He has
published more than 250 articles on security and
his current research interest is in empirical meth-
ods for security. He participates to the FIRST
SIG on CVSS and was the European Coordi-
nator of the multi-disciplinary research project
SECONOMICS on socio-economic aspects of

security. Contact him at fabio.massacci@unitn.it.

	1 Introduction
	2 Problem Statement
	3 Related Work
	3.1 Identifying the Vulnerable Coding
	3.2 The SZZ Approach: Tracking the Origin of the Vulnerable Coding
	3.3 Empirical Studies on Trade-offs Between the Security Risk Posed by the Presence of the Vulnerable Coding and the Maintainability

	4 Terminology and Definitions
	5 Vulnerability Screening
	5.1 Deletion Screening Criterion
	5.2 Method Screening Criterion
	5.3 ``Combined'' Deletion Screening Criterion
	5.4 Fix Dependency Screening Criterion

	6 Implementing the fix Dependency Sphere
	7 Data Selection
	8 Validation
	9 Decision Support for Security Maintenance
	10 Threats to Validity
	11 Conclusions and Future Work
	References
	Biographies
	Stanislav Dashevskyi
	Achim D. Brucker
	Fabio Massacci

