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Abstract 

Palaeoproteomics is an emerging neologism used to describe the application of mass            

spectrometry (MS)-based approaches to the study of ancient proteomes. As with palaeogenomics            

(the study of ancient DNA, aDNA), it intersects evolutionary biology, archaeology and            

anthropology, with applications ranging from the phylogenetic reconstruction of extinct species           

to the investigation of past human diets and ancient diseases. However, there is currently no               

explicit consensus regarding standards for data reporting, data validation measures, or the use of              

suitable contamination controls in ancient protein studies. Additionally, in contrast to the aDNA             

community, no consolidated guidelines have been proposed by which researchers, reviewers and            



editors can evaluate palaeoproteomics data, in part due to the novelty of the field. Here we                

present a series of precautions and standards for ancient protein research that can be              

implemented at each stage of analysis, from sample selection to data interpretation. These             

guidelines are not intended to impose a narrow or rigid list of authentication criteria, but rather to                 

support good practices in the field and to ensure the generation of robust, reproducible results.               

As the field grows and methodologies change, so too will best practices. It is therefore essential                

that researchers continue to provide necessary details on how data were generated and             

authenticated so that the results can be independently and effectively evaluated. We hope that              

these proposed standards of practice will help to provide a firm foundation for the establishment               

of palaeoproteomics as a viable and powerful tool for archaeologists, anthropologists, and            

evolutionary biologists. 

Introduction  

The advent of high-sensitivity mass spectrometry in the past two decades has allowed             

palaeoproteomics to become increasingly relevant in the fields of archaeology and evolutionary            

biology. Not only can individual proteins from archaeological and palaeontological contexts be            

studied, but one can also analyse the complex mixtures of proteins produced by individual              

organisms (proteomes) or groups of organisms (metaproteomes) found within ancient samples1–3.           

This has facilitated the phylogenetic reconstruction of extant and extinct species2,4–6, including            

that of hominins7, the mechanistic investigation of protein degradation pathways8, studies of            

diagenetic and in vivo protein post-translational modifications (PTMs) 9–11, the reconstruction of           

human diet and subsistence patterns3,12, and the characterization of past human diseases3,13–16. The             

range of tissues and substrates that can be analyzed is similarly broad, including bone, antler,               

dentine and enamel1,7,17–19, eggshell8,20, skin and soft tissues13,14, dental calculus21, preserved food            

remains22–25, potsherds and ceramic vessels 26–28, bindings and glues28–31, paint binders32–34,           

textiles and leather35,36 parchment37, mortars38–40 and soil41. 

While palaeoproteomics is a relatively young discipline, the survival of ancient proteins            

over archaeological and geological timescales has been studied since Abelson’s discovery of            

amino acids in fossils in 195442. Important studies in organic geochemistry were conducted, for              
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example, on mechanisms of degradation 43–46, including on the likelihood of finding collagen in              

dinosaur bones, 47, and on the difference between preservation of soft tissues and of              

molecular-level information48. These studies highlighted that proteins are more resistant to           

degradation than DNA due to their chemical and physical properties, but that diagenesis             

nonetheless affects the protein sequences, so that short and altered peptide fragments tend to be               

recovered from ancient substrates, providing the first challenge for protein identification and            

authentication. While these early technologies might be outdated, the conclusions that were            

drawn from them are not, and these initial studies represent the foundation for distinguishing              

between endogenous (albeit degraded) proteins and contamination. 

Palaeoproteomics, as a relatively young discipline, faces many of the same           

epistemological and analytical challenges that the field of ancient DNA did roughly two decades              

ago. Recent proteomic studies of ancient proteins exhibit a wide disparity in data reporting              

standards, protein authentication measures, and procedures taken to avoid protein contamination           

(Supplementary Table 1). Many of the principles put forward in the field of ancient DNA, such                

as isolation of work areas, the inclusion of negative controls, and the demonstration of              

appropriate molecular behaviour, provide a useful starting point, but additional measures are            

necessary. In particular, the conserved nature of proteins compared to DNA renders the             

authentication of ancient protein sequences more challenging than that of ancient DNA. For             

example, within palaeogenomics, the presence of multiple mitochondrial DNA sequences within           

a single DNA extract can be used to both detect and quantify modern human contamination49,50.               

In contrast, the low amount of intraspecific amino acid sequence variation generally makes it              

impossible to use protein sequence variation as a criterion by which to detect the presence of                

multiple contributing individuals of the same species to a single sample. Nevertheless, many             

concrete steps can be taken in the field, in the laboratory, and during analysis to mitigate the dual                  

challenges posed by contamination and degradation and to improve the identification of            

endogenous proteins. Authentication criteria are essential because reporting the identification of           

extraordinary, purportedly ancient proteins without sufficient evidence of authentication can          

damage the credibility of this emerging research area51. 
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Here we collate and suggest a number of “best practices” for the sampling, generation,              

analysis, and reporting of ancient protein sequence data in the scientific literature (summarized in              

Box 1), which we hope will be useful to researchers, reviewers and editors. Building on our                

collective experiences across six different palaeoproteomics laboratories and in our roles as both             

researchers and reviewers, our suggestions are intended to complement - not replace - previously              

established guidelines for modern proteomic studies (e.g.for example 52). Some aspects might appear             

common practice, but we state them nevertheless as the emerging research area encompasses             

scholars in a variety of disciplines (for example, analytical chemistry, evolutionary biology,            

organic geochemistry, archaeology, paleontology). Criteria that may appear obvious or standard           

to members of one field may be perceived as innovative or novel to members of another. One                 

aim of this article is therefore to establish a common foundation so that researchers across               

disciplinary backgrounds can contribute to the growth of this new field. We are aware that as                

new experimental and data analysis strategies emerge these guidelines will no doubt require             

further refinement and amendment. However, in the spirit of the influential ancient DNA             

research principles proposed by Gilbert et al53, we emphasise that, at a minimum, researchers              

must provide details on how data were generated and authenticated, so that others may be able to                 

effectively evaluate ancient protein identifications. 

 

Towards a Standardised Practice of Palaeoproteomics  

1. Selection and Sampling 

In order to publish high-impact studies within a competitive research climate, it can be              

tempting to apply “fast science” - to focus immediately on exceptional samples of great              

antiquity, rarity or their perceived importance. However, archaeological and palaeontological          

samples are irreplaceable, and have high cultural value. Therefore, preceding the inception of             

research projects, researchers must consider whether destructive sampling is necessary, whether           

alternative non-destructive methodologies54–56 could be employed, and/or what techniques can be           

utilized to reduce the sample size necessary for analysis57. Further research is also needed to               

explore the integration of multiple biomolecular analyses from minimally-sized samples. This is            
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especially vital as new methodological advances will no doubt led to further insights from              

samples in the future. Finally, pilot studies should be conducted in order to test the efficiency of                 

the analytical method using less precious materials and/or artificial diagenesis on modern            

analogues.  

In selecting samples for destructive analysis, several considerations should be kept in            

mind. The choice of samples should be governed by an awareness of the nature and impact of                 

diagenesis - the physico-chemical changes that affect both the organic and inorganic components             

of a sample through time. Diagenesis is driven by a complex network of reactions, including               

chemical degradation (e.g., temperature- and age-inducing peptide bond hydrolysis and amino           

acid racemisation) and molecular breakdown driven by environmental factors during burial and            

storage (e.g., microbial decomposition, acid decalcification and water fluctuation) 58,59. In           

general, this will reduce the concentration of endogenous proteins, alter their sequences (e.g.,             

some amino acids will be deamidated), and provide opportunities for exogenous proteins            

(contamination) to be incorporated in the sample. Some substrates may harbor better potential for              

preserving endogenous proteins than others. For example, mineralized samples (such as bone,            

dental calculus and eggshell) provide a better preservational environment for proteins than other             

substrates. The presence of a mineral phase can provide protection from degradation driven by              

external factors, and mineral-organic binding may facilitate the survival of certain peptides by             

slowing down peptide bond breakdown8. There may also be differences in protein preservation             

among different mineralized substrates. For example, peptides may persist longer in closed            

systems such as eggshell than open systems such as bone8,60. However, despite these broad              

generalisations, preservation among individual samples is often highly variable, even from           

within the same archaeological site 61. Although reduced sample preservation in the form of low               

peptide abundance poses technical challenges, the increasing sensitivity of mass spectrometers           

partially mitigates this problem and enables protein identification from very low-abundance           

peptides 8. 

Several steps can be taken prior to palaeoproteomics analysis in order to evaluate protein              

preservation and to identify potential sources of contamination during burial and storage. One             
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approach is to assess the elemental composition of samples, as organic nitrogen is a proxy for                

protein. Pyrolysis-GC/MS and LC (HPLC) can be used to detect the presence of amino acids 62                

in any putative proteinaceous sample. This is especially important for very old samples, whereby              

an absence of amino acids in a given archaeological or paleontological sample have been used to                

challenge claims for the detection of protein sequences in fossil samples 63. Concentration and              

compositional analyses can additionally assess the yield, and in some cases, the character of the               

preserved proteins64–66. For example, because decomposition products are retained in closed           

systems (e.g., bleached eggshells), the proportion of free amino acids can reveal the extent of               

diagenetic hydrolysis, and this can be complemented by assessment of amino acid racemization,             

i.e., the increase in concentration of D-amino acids8. In samples containing collagen, peptide             

mass fingerprinting (also termed ZooMS, for Zooarchaeology by Mass Spectrometry)17 may also            

be useful as a screening technique to assess the extent of preservation and of              

diagenetically-induced glutamine deamidation67,68 prior to large-scale application of this method          

at a site or in advance of laborious and more expensive shotgun proteomic analysis. Regardless               

of the technique used to assess protein preservation and integrity, it is recommended to first               

analyze a small subset of samples in order to establish feasibility for a proteomics study of a                 

given collection before proceeding to destructive analysis of a larger batch of samples. Such              

assessment and screening should be reported alongside other downstream measures of           

authentication and interpretation.  

In addition to critical sample choice and pilot screening, at the sampling stage researchers              

should also be mindful that the application of consolidants, resins and glues may introduce              

contamination or mass spectrometry interference. The use of chemical stabilizers is widespread            

in museum conservation practice69, and such treatment may result in the unintentional            

introduction of modern proteins, such as animal collagens in glues, plant proteins in natural              

resins, or insect proteins in shellac. Hence, researchers should be mindful of the post-excavation              

history of samples and know that records of such treatments are often missing for 19th and early                 

20th century collections (Figure 1). Additionally, researchers and curators should avoid the use             

of plastic films, such as parafilm, as these polymers can cause mass spectrometry interference.              
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Furthermore, material intended for ancient protein analysis should only be handled with            

non-latex gloves, as skin proteins and latex may introduce additional contamination.  

2. Laboratory Considerations  

Contamination is a central concern in any palaeoproteomics project as it potentially            

provides false insights into protein composition, phylogeny, and protein modification.          

Contamination can be introduced at nearly any stage of burial, excavation, storage and analysis              

(Figure 1), but a number of concrete measures can be taken to reduce contamination from               

modern proteins in the laboratory environment, as well as cross-contamination between ancient            

samples. Such measures should be described in publications and at a minimum include extraction              

blanks, the wearing of protective clothing including non-latex gloves (latex is a natural product,              

containing proteins), the use of clean surfaces and equipment (e.g., washed with bleach solution,              

70% ethanol, or baked glassware), chemically pure reagents, and no reuse of consumables.  

Laboratories analysing ancient proteins should make attempts to reduce the presence of            

proteinaceous material in the background laboratory environment, including keratins from wool,           

hair, and skin, as well as common protein-based laboratory reagents70. Steps to achieve this may               

include wearing synthetic or cotton clothing (no wool, silk, rubber, or leather), covering exposed              

skin on the hands and arms at all times, and using facemasks and hairnets. Additionally,               

protein-based laboratory reagents, such as bovine serum albumin (BSA) and chicken lysozyme,            

should be avoided. If available, the use of a dead air box or positive pressure laminar flow hood                  

is also encouraged in order to provide a sterile or semi-sterile environment where ancient              

samples can be handled safely. 

Cross-contamination from modern proteins can be minimized by separating as much as            

possible the initial stages of ancient protein research (sampling, extraction, and protein digestion)             

from other laboratories or environments where modern proteins are handled, as is common in the               

field of ancient DNA. The extraction and digestion of ancient proteins should be performed in a                

location separate from experiments working with modern material (e.g., modern food products,            

cell cultures or tissue studies). In the absence of full separation, spurious contamination events              

can still occur even if precautions are undertaken to reduce cross-contamination, contributing to             
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doubt when unexpected or extraordinary findings are observed. For example, a recent study             

reported the identification of two Crimean-Congo hemorrhagic fever virus (CCHFV) peptides in            

five of six early Iron Age (750-400 BCE) mortuary vessels from Germany 71. Today, the               

distribution of this tick-borne virus is limited to the Balkans and parts of Asia and Africa, and                 

little is known about its origins or history, hence making its incidental discovery in Iron Age                

Germany an extraordinary finding. However, it cannot be overlooked that the research was             

performed at the University of Texas Medical Branch in Galveston, Texas, a world leader in the                

study of viral pathogenesis (including CCHFV), nor that the two CCHFV peptides identified are              

also components of synthetic vectors (reverse genetics vectors pT7-M and pT7-M-ASKA) used            

to study viral virulence72. Hence, to avoid instances of cross contamination, as well as lingering               

doubts over possible cross-contamination events, we advocate the use of dedicated extraction            

environments for ancient proteins.  

Cross contamination from ancient proteins, as opposed to modern, should also be            

minimized through cleaning of sample processing areas and equipment, by avoiding the reuse of              

consumables, and by preparing fresh reagents for each set of sample extractions. Care should              

also be taken when opening sample tubes to avoid splashing, dripping or aerosol formation, and               

samples should not be crowded into tube racks or centrifuges, but rather spaced out with one or                 

more empty wells between samples. 

In order to characterize and monitor background laboratory contamination (including the           

presence of potential contaminants in reagents or consumables), blank extractions should be            

performed alongside extractions, and this data should be analyzed, reported and made available             

in a similar manner to the ancient samples under investigation. This applies to both small-scale               

experiments on highly valuable samples, as well as to large-scale studies involving hundreds to              

thousands of samples, such as ZooMS collagen peptide mass fingerprinting of ancient bone             

fragments 17.  

We note that several ancient protein studies report the use of chemical pre-treatments to              

remove potential surface contamination prior to protein extraction (including         

ammonium-bicarbonate73, EDTA 74, or bleaching60,75,76). Such steps have proven moderately         
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successful in ancient DNA studies77–79, but to our knowledge these techniques have not been              

rigorously tested on ancient protein samples, with the exception of bleaching on carbonate             

substrates. Research on the effectiveness of protein decontamination techniques on different           

sample substrates is much needed. For example, although mechanical surface removal may be             

effective for some sample types, bone is highly porous and if the sample has been exposed to                 

phases of wetting, or even significant changes of humidity, there is the potential that surface               

contaminants have migrated below the surface. Additionally, although strong chemical oxidants           

are potentially useful for removing both surface and subsurface contaminants, they also have the              

potential to damage surviving endogenous proteins as well, unless the ancient proteins are             

protected within the intra-crystalline fraction of the mineral matrix75,76,80.  

A number of protocols have been reported for the extraction of ancient proteins,             

particularly for the extraction of bone protein 81–83, and include protocols based on SDS buffers               

and polyacrylamide gels ( 24,84), Filter-Aided Sample Preparation (FASP) 1,85,86, and Gel-Aided          

Sample Preparation (GASP) 87,88. However, the efficacy of these protocols, their downstream           

effect on protein identification and resulting chemically-induced modification have not been           

systematically compared in studies of ancient proteins, although examples exist that compare            

their performance on modern material 89,90.  

3. Mass Spectrometry 

The current generation of mass spectrometers are powerful high-performance instruments, and           

the hardware and operational costs of such systems typically exceed the budget of individual              

labs. Consequently, most palaeoproteomics research projects utilize mass spectrometers at          

institutional core facilities, such as those available at many universities, medical schools, and             

hospitals. In keeping with standards for modern proteomic analyses, instrument parameters such            

as the LC column type, MS/MS model, and collision cell type should be described in the                

manuscript, even when ancient protein extractions are run at an external core facility91. These              

core facilities typically analyze hundreds of samples (LC-MS/MS) to thousands of spots            

(MALDI-TOF-MS) per year on a single instrument. Because of this, instrument carryover (i.e.,             

the delayed elution of peptides from previous LC runs using the same HPLC column) is a serious                 
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concern, as clients may have little control over how frequently the instrument is cleaned, how               

often the HPLC columns are changed, or which samples are analyzed before an ancient protein               

study. It is important that palaeoproteomics researchers discuss their requirements directly with            

the researchers and/or technicians in charge of analysing their samples. Palaeoproteomics           

projects must also build controls into their own research design in order to detect and mitigate                

potential cross-project and cross-sample carryover events.  

Injection blanks or wash buffers should be run before and between each sample during              

LC-MS/MS analysis in order to clean the column and identify peptide carryover, as peptides              

persisting in LC columns have the potential to contaminate subsequent protein injections during             

an MS/MS run (Figure 2). The results of these injection blanks (which are distinct from               

extraction blanks) should be reported in publications, with semi-quantitative analyses of the data             

(see Demarchi et al.8; Figure 4). Researchers may need to investigate the extent of carryover in                

their mass spectrometry set-up before proceeding with sample loading and analysis. In particular,             

peptides that display strong binding affinities to mineral phases in          

archaeological/palaeontological material and thus persist through time, may also be those           

peptides that adhere to LC columns. Therefore, carryover may particularly impact those peptides             

that we wish to characterise, and thus monitoring the presence of peptides in injection blanks is                

vital. After flushing the system prior to beginning a palaeoproteomics run, it is recommended to               

to inject old, very precious samples first but otherwise randomize the order of the samples in                

order to avoid batch effects, but to record the sample order so that any suspicious data patterns                 

(e.g., very old samples testing positive for a given protein only if they are run immediately after a                  

very young sample) that may arise can be identified and the samples reanalyzed, if necessary.               

Details on the injection device and LC columns (such as those relating to the autosampler loop,                

flow rate and cartridge systems) can be provided in manuscripts.  

Replication is optimal for validating results, in particular for critical samples or for             

extremely novel results8. There are several strategies for validating through replication, including            

experimental replication through the complete re-extraction of the same sample in the same             

laboratory (or, more optimally, in an independent laboratory), or an analytical replication            
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through repeated MS/MS analyses of the same protein extract. We recognize that in cases of               

small amounts of starting material or very rare or precious specimens, it may not be possible to                 

perform multiple experimental replications. We also realize that replication in independent           

laboratories might place a significant burden on newly establishing research groups due to the              

high cost of the analyses and the relatively small number of laboratories currently specializing in               

ancient protein analysis. Nevertheless, independent replication is a powerful method of           

validation that should be performed, if at all possible, when reporting novel, extraordinary or              

unexpected findings. However, it should be noted that in both cases any contestimated peptide              

and protein false discovery rates (FDR) amination occurring prior to the introduction of a              

sample into an ancient protein laboratory will not be identified or resolved by replication (Figure               

1), reiterating the need for care during sample selection.  

4. Peptide and Protein Identification 

Once mass spectra have been generated, their interpretation will lead to the identification of              

peptides sequences and, subsequently, of proteins. As with modern studies92 , at a minimum,              

essential information should be provided on search tolerances (both MS1 and MS2), fixed and              

variable protein modifications, peptide-spectrum matches (PSM) score cut-offs, peptide e-values,          

whether de novo and/or error-tolerant matches were allowed, and which algorithm was used to              

conduct these searches (e.g. Mascot, Sequest). In keeping with modern protein studies, protein             

identifications should be made on the basis of a minimum of two supporting peptides, and should                

be reported. Protein sequence databases should be accessible, either as supplementary           

information or by clear directions to online repositories (e.g., UniProt, including the date at              

which a repository was accessed or downloaded). All novel amino acid sequences should be              

supported by more than one MS/MS peptide-spectrum match (PSM) 4. Where possible, manual            

de novo verification should be used as a support for novel amino acid sequences8. 

Spectral analysis should allow for the types of diagenetic protein modifications typically            

encountered when dealing with archaeological and palaeontological material, such as glutamine           

and asparagine deamidation, possibly methionine and tryptophan (di-)oxidation, the formation of           

pyroglutamic acid, as well as peptide cleavages unrelated to experimentally-derived enzymatic           
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digestion. However the increased dynamic range of instruments mean that low abundance            

peptides from non-standard tryptic cleavage93 and variations in both commercial trypsin           

performance94 and in-source fragmentation95 may be mistaken for hydrolytic damage. Given the            

high error rate (both false-negatives and false-positives) associated with de novo and            

error-tolerant search engines, researchers should substantiate claims based on the identification           

of novel protein sequences. This can be achieved using statistical parameters requiring            

near-complete fragment ion series in multiple spectra overlapping the position of interest, and/or             

actualistic bioinformatic experiments where the correct sequence is known but removed from the             

searched database before analyzing ancient samples using a similar bioinformatic workflow           

when no modern reference sequences are available4. Validation of novel peptide sequences can             

be achieved by incorporating such modified amino acid sequences into a second round of              

analysis with a modified sequence database4,7. 

Additionally, researchers should carefully consider their selection of reference databases          

during data analysis, and should always include microbial and/or common contaminant reference            

databases as appropriate. The failure to select appropriate databases may result in peptide             

misassignment or even protein misidentification, and taxonomic misassignment is an especially           

common problem when using small, curated databases. For example, Swiss-Prot, a manually            

annotated and non-redundant protein sequence database of reviewed protein sequences, contains           

the nearly complete proteomes of many model organisms, such as mouse ( Mus musculus ) and              

human ( Homo sapiens), but only partial proteomes of other taxa, such as sheep ( Ovis aries), goat                

( Capra hircus), cow ( Bos taurus ), and pig ( Sus scrofa). Eukaryotic peptide searches against             

Swiss-Prot tend to result in accurate protein assignments, however incorrect species           

identification may occur due to protein homology and when non-model organisms are absent or              

underrepresented in the database. For example, in a recent analysis of proteins extracted from a               

medieval sheep tooth using Swiss-Prot as the search database, it was found that only 20% of the                 

identified eukaryotic proteins were assigned to sheep, while the remaining proteins were            

misassigned to cattle, human, mouse, pig, and goat 3. In each case, the incorrect species was                

assigned when the relevant sheep protein was absent from the Swiss-Prot database            

(Supplementary Table 2). Such database bias is obvious when analyzing archaeological tissues            
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that originate from a single animal, but it poses more serious problems when analyzing              

metaproteomes, such as those extracted from ceramic residues or dental calculus. Here, multiple             

species might be expected from a single sample, and database bias must be accounted for in                

order to avoid the reporting of analytical artifacts and “phantom” taxa.  

Because handling of archaeological and palaeontological specimens during excavation         

and curation provides plenty of opportunities for human or animal protein contamination or             

cross-contamination from other artefacts (Figure 1), it is recommended to include possible            

human contaminating proteins in reference databases in searches of non-human tissues (for            

example, animal bones). Ideally this also includes human collagen type I sequences, given this              

particular protein’s resilience to degradation and its presence in the dermis of the skin.              

Additionally, other skin proteins such as desmoglein-1 (DSG1), dermcidin (DCD), junctional           

plakoglobin (JUP), and of course keratins (both from humans and animals) are recurring             

contaminants. Contaminating keratins may derive from skin and clothing, but also potentially            

from brushes or other equipment used in sample preparation and conservation. Future studies             

focusing on the analysis of mummified skin, ancient furs and textiles will need to address the                

problem of how to reliably distinguish ancient from modern skin proteins (e.g., through the study               

of diagenetic protein modifications). Supplementary Data 1 contains a list of commonly            

encountered contaminants in proteomics laboratories, including the common Repository of          

Adventitious Proteins (cRAP) 96. Additional lists containing common background contaminants         

can be found in the Contaminant Repository for Affinity Purification (CRAPome) 97. One should             

keep in mind that some of the proteins in Supplementary Data 1 may represent endogenous               

proteins depending on the type of sample analyzed (e.g., keratins in furs, egg white proteins in                

paintings, or albumin in bone). 

5. Data Interpretation and Authentication 

Following data generation, several additional analyses can be performed to further           

authenticate and affirm the validity of the results. Like DNA, proteins undergo predictable forms              

of diagenetic alteration over time, so much so that there is an established field of amino acid /                  

protein diagenesis geochronometry98, and documentation of diagenetic changes in ancient          

https://paperpile.com/c/Pv7Agn/dpc0x
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samples has been suggested as a useful authentication tool. In particular, diagenetically-induced            

modifications such as glutamine and asparagine deamidation and the presence of non-enzymatic            

cleavages of individual proteins are expected to occur in ancient samples3,7,8,12,15,16. Some studies             

have aimed to contrast such diagenetically-derived protein modifications between different          

proteins identified in the same sample7,99, allowing the potential separation of endogenous human             

proteins from contaminating human proteins.  

Researchers should also be mindful that amino acid modifications can result in an amino              

acid position having a total mass equaling that of another amino acid. For example, in the case of                  

the whey protein beta-lactoglobulin reported in Warinner et al.12, it was observed that one of the                

protein variant sites that distinguishes Bovinae (cattle, yak, and buffalo) from Caprinae (sheep             

and goats) is an amino acid residue that is aspartic acid in Bovinae, asparagine in sheep, and                 

lysine in goats (Figure 3a). However, the deamidation of asparagine results in its conversion to               

aspartic acid (Figure 3b) and hence it is not possible to distinguish an unmodified Bovinae               

residue (D) from a deamidated sheep residue (de. N) at this position (Figure 3c). Only the                

identification of an unmodified asparagine (N) or a lysine (K) would therefore allow species              

discrimination at this site in most situations7,12. The presence of diagenetic modifications is             

particularly challenging for older samples, where deamidation might have converted all           

surviving endogenous asparagines andr glutamines to aspartic acid and glutamic acid           

respectively, an issue encountered recently for a Middle Pleistocene rhinoceros proteome 99.            

Another example of sequence ambiguity relevant to the most common bone protein, collagen, is              

the incomplete fragmentation of a proline-serine peptide bond, which produces a peptide            

fragment ion isobaric to hydroxyproline-alanine. Cleavage N-terminal to Pro (‘the proline           

effect’) is enhanced whilst cleavage C-terminal to proline in MS 2 is depressed100. Proline             

hydroxylation is the most common post-translational modification of collagen, and Ser/Ala is            

one of the most common substitution pairs; therefore differentiating serine (in effect            

hydroxyalanine) from alanine C-terminal to (hydoxy)proline is especially difficult10,101.  

6. Data Integration, Data Sharing and Review 
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Combining proteomic approaches with other biomolecular techniques, where possible, is          

encouraged, as multiple approaches can be used to supplement or support novel proteomic             

findings. For example, ancient mtDNA sequences have been used to support palaeoproteomic            

analyses of hominin taxonomy 7, lipid and proteomic approaches have been used in combination              

to detect early Bronze Age cereal grains88, and proteomic and isotopic approaches have been              

used together to identify ancient milk consumption12. 

In the era of ‘big data’ many research communities are mandating the long-term curation              

of raw datasets in a publicly accessible form, and an updated list of community-recognised              

repositories is maintained by the journal Scientific Data 102. The sharing of raw and processed              

mass spectrometric data in public repositories such as the ProteomeXchange103 is therefore            

considered a necessity. Accessing and reanalysing raw data is one way that other researchers can               

test a study’s bioinformatic workflow in their own environment. Additionally, archiving allows            

data to be re-searched in future analyses, and may lead to the identification of additional proteins                

as reference sequence databases are updated and expanded. This is especially relevant for             

valuable cultural heritage and human/hominin remains, which might not be available for            

subsequent re-extraction and destructive analysis. Finally, the public sharing of ancient protein            

data allows such data to be integrated with future biomolecular analysis using different or similar               

methods, and more generally “help[s] build rigorous and reliable scientific practices even in the              

presence of complex experimental challenges” 104. 

Fundamentally, we call for a critical approach towards the validation of results and data              

presented in ancient proteins studies, and stress that “checking all the tick boxes” does not               

automatically validate a study. Following Gilbert et al.53, we suggest that reviewers and editors              

consider whether the following questions are sufficiently addressed: 1) Are sufficient measures            

taken to minimize contamination in the laboratory, and do data analysis strategies take potential              

contamination and degradation into consideration?; 2) Is adequate proof of authentic, ancient            

protein identification presented?; and 3) Is sufficient information presented for independent           

bioinformatic replication and can the resulting data be examined? We also suggest that editors              

include modern proteomics experts when evaluating ancient protein studies, particularly for           
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ancient protein studies employing novel technical and methodological tools, in addition to            

experts in the archaeological or palaeontological context of the research. 

Perspective 

Palaeoproteomics holds enormous potential to dramatically expand archaeological,        

palaeontological and evolutionary research. In light of this promise, we have raised key             

considerations and have recommended standards for the generation and reporting of ancient            

protein data with the view that these suggestions will aid non-specialist readers and reviewers of               

ancient protein publications, as well as assist researchers improve palaeoproteomic study           

designs. Undoubtedly, with the emergence of new experimental and bioinformatic strategies for            

characterizing protein degradation and contamination, as well as improved tools for protein            

validation and authentication, these guidelines will require debate within the community, as well             

as further refinement and updating. However, it is our hope that the standards of practice               

presented here will help to provide a firm foundation for the consolidation of palaeoproteomics              

as a robust tool for evolutionary biology, anthropology and archaeology. 
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Supplementary Data 1 . FASTA formatted file containing proteins (in)frequently identified as           

likely contaminants in standard palaeoproteomic research. This contains commonly encountered          

contaminants in proteomics laboratories, and consists of the common Repository of Adventitious            

Proteins, with the addition of several protein sequences we sometimes encounter as contaminants             

in our experiments. 

 

 

 

 

 

  



 

 

Figure 1. Schematic depiction of ancient proteome compositional changes through time. Initially, the proteome 
is solely composed of endogenous proteins (green), which may already represent a mixture of taxonomic origins in 
cases of microbiome samples, food residues, or infected tissues. After deposition, substrates will be rapidly 
colonized by bacteria and fungi (yellow), some of which might be of interest in future studies. During excavation, 
curation, and storage, additional contamination can occur, primarily due to human handling and through 
protein-based consolidants (for example human keratins or animal-based glues; in red). A definitive source of 
contamination is introduced during sample preparation through the deliberate addition of trypsin, or another 
protease. Laboratory cross-contamination from both modern and ancient sources can occur during both extraction 
and LC-MS/MS analysis. Throughout the scheme, proteome complexity and protein concentration of the 
endogenous proteome decrease. Conversely, there is an increase in the proportion of contaminating proteins, both of 
vertebrate and non-vertebrate origin. Time not to scale. Proportions are used to illustrate general developments and 
do not necessarily reflect observed frequencies. Modified from Welker105. 
 
 
  

https://paperpile.com/c/Pv7Agn/GdYbi/?noauthor=1


 

 
 
 
Figure 2. Injection blanks in LC-MS/MS. (a) Each sample is preceded and followed by at least one injection 
blank within the LC column, which (b ) allows the assessment of peptide carryover between different experiments 
and samples (following Demarchi et al.8). Within this scheme, the extraction blank is analyzed as if representing one 
of the samples. 
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Figure 3. Damage-induced sequence ambiguity affects peptide taxonomic assignment for the whey protein 
beta-lactoglobulin. (a) An important variant site that distinguishes Bovinae (cattle, yak, and buffalo) from Caprinae 
(sheep and goats) is an amino acid residue that is aspartic acid (D) in Bovinae, asparagine (N) in sheep, and lysine 
(K) in goats. However, the deamidation of asparagine results in its conversion to aspartic acid (b ) and Mascot 
protein identification software is unable to distinguish an unmodified Bovinae residue (D) from a deamidated sheep 
residue (de. N) at this position (c). Data from 12. Incorrect precursor selection during MS analysis can result in 
similar ambiguity by selecting isotope-containing peaks for fragmentation, instead of the monoisotopic peak. 
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Summary Box 1. Crucial aspects of a palaeoproteomics workflow, from sample selection to data sharing.  

 

  



Supplementary Table 1. Reporting of extraction blanks, injection blanks, evidence of protein degradation and              

MS data reporting in MS/MS-based anciprotein analysis publications. Extraction and injection blanks are             

marked as present when they are explicitly mentioned in the manuscript; if marked as absent, this does not                  

necessarily suggest that these blanks were in fact not run or analyzed in the experiment, but they are not reported.                    

MALDI-TOF-MS, MALDI-TOF/TOF-MS and antibody-based studies are not included. Accession numbers in the            

final column refer to datasets stored in ProteomeXchange, otherwise the name of other repositories is given; in one                  

case this refers to a university-based ftp page that can be accessed using details provided in the relevant paper.                   
1Degradation noted by the presence of smeared gels. 

Supplementary Table 2. Demonstration of misleading species assignments in Mascot outputs. Of the top 20               

eukaryotic proteins (ranked by score) identified from sheep tooth cementum, only 4 are assigned to sheep. Although                 

the protein identifications themselves are expected for bone/dentine/cementum, misleading species assignments to            

Bos taurus, Homo sapiens and Mus musculus are made when the SwissProt database lacks the relevant sheep                 

reference protein.  
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