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1. Introduction

Complex three dimensional flows in the atmosphere and oceans are modelled assuming that the Earth’s
surface is an approximate sphere. Then it is natural to model the global atmospheric circulation on Earth
(and large planets) using the Navier–Stokes equations (NSE) on 2-dimensional sphere coupled to classical
thermodynamics [34]. This approach is relevant for geophysical flow modeling.

Many authors have studied the deterministic NSEs on the unit sphere. Notably, Il’in and Filatov [30,32]
considered the existence and uniqueness of solutions to these equations and estimated the Hausdorff
dimension of their global attractors [31]. Temam and Wang [42] considered the inertial forms of NSEs on
sphere while Temam and Ziane [43], see also [4], proved that the NSEs on a 2-dimensional sphere is a limit
of NSEs defined on a spherical shell [43]. In other directions, Cao et al. [14] proved the Gevrey regularity of
the solution and found an upper bound on the asymptotic degrees of freedom for the long-time dynamics.

Concerning the numerical simulation of the deterministic NSEs on sphere, Fengler and Freeden [25]
obtained some impressive numerical results using the spectral method, while the numerical analysis of a
pseudo- spectral method for these equations has been carried out in Ganesh et al. [27].

In our earlier paper [9] we analysed the Navier–Stokes equations on the 2-dimensional sphere with
Gaussian random forcing. We proved the existence and uniqueness of solutions and continuous dependence
on data in various topologies. We also studied qualitative properties of the stochastic NSEs on the unit
sphere in the context of random dynamical systems.

Building on those preliminary studies, in the current paper, we prove the existence of random attractors
for the stochastic NSEs on the 2-dimensional unit sphere. Let us recall here that, given a probability space,
a random attractor is a compact random set, invariant for the associated random dynamical system and
attracting every bounded random set in its basis of attraction (see Definition 4.4).

In the area of SPDEs the notions of random and pullback attractors were introduced by Brzeźniak et
al. [7], and by Crauel and Flandoli [16]. These concepts have been later used to obtain crucial information
on the asymptotic behaviour of random [7], stochastic [2,16,17,26] and non-autonomous PDEs [13,33,36].
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We do not know if our system is dissipative in H1. Therefore, despite the fact that the embedding
H1 →֒ L2 is compact, the asymptotic compactness approach seems to be the only method available in
the L2-setting to yield the existence of an attractor, hence of an invariant measure.

The paper is organised as follows. In Sect. 2, we recall the relevant properties of the deterministic
NSEs on the unit sphere, outline key function spaces, and recall the weak formulation of these equations.
In Sect. 3, we define the stochastic NSEs on the unit sphere. The stochastic NSEs is decomposed into
an Ornstein–Uhlenbeck process and a deterministic NSEs with random forcing. First we construct a
stationary solution of the Ornstein–Uhlenbeck process (associated with the linear part of the stochastic
NSEs) and then identify a shift-invariant subset of full measure satisfying a strong law of large numbers.
We then review the key existence and uniqueness results obtained in [9]. In Sect. 4 we prove the existence
of a random attractor of the stochastic NSEs on the 2-d sphere, which is the main result of the paper. In
doing so, we present Lemma 4.8, which is a corrected version of [9, Lemma 6.5]. Based on the asymptotic
results in the lemma, a new class of functions R is defined in Definition 4.11. The class DR of all closed
and bounded random sets is then defined using functions in the class R. The main results are given in
Theorem 4.14, which asserts that the random dynamical system ϕ generated by the NSEs on the unit
sphere is DR-asymptotically compact. Hence, in view of a result on existence of a random attractor
(Theorem 4.6), the existence of a random attractor of ϕ is deduced.

The paper is concluded with a simple proof of the existence of an invariant measure and some comments
on the question of its uniqueness.

In our paper a special attention is given to the noise with low space regularity. While many works
on random attractors consider only finite dimensional noise, we follow here the approach from Brzeźniak
et al. [8] and consider an infinite dimensional driving Wiener process with minimal assumptions on its
Cameron-Martin space (known also as the Reproducing Kernel Hilbert Space), see Remark 3.5 and the
Introduction to [8] for motivation.

2. The Navier–Stokes Equations on a Rotating Unit Sphere

The sphere is a very special example of a compact Riemannian manifold without boundary hence one
could recall all the classical tools from differential geometry developed for such manifolds. However we
have decided to follow a different path of using the polar coordinates and defining all such objects directly.

Our presentation here is a self-contained version of an analogous introductory section from our com-
panion paper [9]. A reader who is familiar with the last reference can skip reading this section.

2.1. Preliminaries

By S
2 we will denote the standard 2-dimensional unit sphere, i,e, a subset of the Euclidean space R

3

described by

S
2 = {x = (x1, x2, x3) ∈ R

3 : |x|2 = x2
1 + x2

2 + x2
3 = 1}. (2.1)

Let us now define the surface gradient ∇ and curl operators acting on tangent vector fields and the
surface gradient acting on scalar functions, all with respect to scalar product in the tangent spaces TxS

2

inherited from R
3.

Suppose that u and v are two tangent vector fields on S
2 and f is real valued function on S

2, all of C1

class. By some classical results, see for instance [23] or [22, Definition 3.31], there exist a neighbourhood

U of S
2 in R

3 and vector fields ũ : U → R
3, ṽ : U → R

3 and a function f̃ : U → R
3 such that ũ|S2 = u,

ṽ|S2 = v and f̃ |S2 = f . Then we put, for x ∈ S
2,

(∇ vu)(x) = πx

( 3∑

i=1

ṽi(x)∂iũ(x)
)

= πx

(
(ṽ(x) · ∇̃)ũ(x)

)
, (2.2)
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(curl u)(x) = (id − πx)
(
(∇̃ × ũ)(x)

)
=
(
x · (∇̃ × ũ)(x)

)
x, (2.3)

(∇f)(x) = πx

(
∇̃f̃(x)

)
, (2.4)

where ∇̃ is the gradient in R
3 and, for x ∈ S

2, the map πx : R
3 → TxS

2 is the orthogonal projection, i.e.

πx : R
3 ∋ y �→ y − (x · y)x = −x × (x × y) ∈ TxS

2. (2.5)

Let us point out that the definitions of (∇ vu) and curl u above are independent of the choice of the
extensions ũ and ṽ. In the former case, this can be shown either using a general approach from the
references above or, as in our companion paper [9] by exploiting a well known formula for the R

3-vector
product1 to get

(ũ · ∇̃)ũ = ∇̃
|ũ|2

2
− ũ × (∇̃ × ũ). (2.6)

If follows from the definition (2.3) that curl u is a normal vector field on S
2, i.e. curl u(x) ⊥ TxS

2 for
every x ∈ S

2. Since the co-dimension of TxS
2 in R

3 is equal to 1, this normal vector field can be identified
with a scalar function on S

2 denoted by curlu by

(curlu(x))x = [curl u](x), x ∈ S
2.

Note that it follows that
curlu(x) := x · (∇̃ × ũ)(x), x ∈ S

2. (2.7)

Lemma 2.1. If ũ and ṽ are R
3-valued vector fields on S

2, and u and v are tangent vector fields on S
2,

defined by u(x) = πx(ũ((x))) and v(x) = πx(ṽ(x)), x ∈ S
2, then the following identity holds

πx(ũ(x) × ṽ(x)) = u(x) × ((x · v(x))x) + (x · u(x))x × v(x), x ∈ S
2. (2.8)

Proof. Let us fix x ∈ S
2. Then we can decompose vectors ũ = ũ(x) and ũ = ṽ(x) into the tangential

u = u(x) ∈ TxS
2 and v = v(x) ∈ TxS

2, and the normal component as follows

ũ = u + u⊥ with u⊥ = (u · x)x

ṽ = v + v⊥ with v⊥ = (v · x)x

Thus, as u × v is normal to TxS
2 so that πx(u × v) = 0, and u × v⊥,u⊥ × v ∈ TxS

2, we infer that

πx

(
ũ × ṽ

)
= πx

(
u × v + u × v⊥ + u⊥ × v

)
= u × v⊥ + u⊥ × v.

Hence the lemma is proved. �

Suppose now that u is a tangent vector field on S
2 and ũ is a R

3-valued vector field defined in some
neighbourhood U of S

2 in R
3 such that ũ|S2 = u. Applying formula (2.8) to the vector fields,2 ũ and

ṽ = ∇̃ × ũ, since also (ũ · x) = 0 we get

πx(ũ × (∇̃ × ũ)) = u × ((x · (∇̃ × ũ))x) + (ũ · x)x × (∇̃ × ũ) (2.9)

= u ×
(
(x · (∇̃ × ũ))x

)
= (x · (∇̃ × ũ))

(
u × x

)
, x ∈ S

2. (2.10)

Hence by formulae (2.10), (2.7) and the above definitions we obtain

πx[ũ × (∇̃ × ũ)](x) = [u(x) × x] curlu(x) = u(x) × curl u(x) x ∈ S
2, (2.11)

Here, we use the following notation. Given another tangential vector field v on S
2, we will denote by

v × curl u a tangential vector field defined as the R
3 vector product of vectors, tangent v and normal

curl u, i.e.
[v × curl u](x) := v(x) × (curl u(x)), x ∈ S

2. (2.12)

1

a × (b × c) = (a · c)b − (a · b)c, a,b, c ∈ R
3
.

2Or rather their respective restrictions to the sphere S2.
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Thus from the above and (2.13) we infer that

∇ uu = ∇
|u|2

2
− u × curlu. (2.13)

We will use the classical spherical coordinates to describe (in a non-unique way) the points on the
sphere S

2

x = x̂(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ), 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. (2.14)

With a bit of ambiguity, if x = x̂(θ, φ) as in (2.14), the angles θ and φ will be denoted by θ(x) and
φ(x), or just θ and φ.

For (θ, φ) ∈ [0, π] × [0, 2π), by eθ = eθ(θ, φ) and eφ = eφ(θ, φ) we will denote an orthonormal basis in
the tangent plane TxS

2, where x = x̂(θ, φ), defined by

eθ = (cos θ cos φ, cos θ sin φ,− sin θ), eφ = (− sin φ, cos φ, 0). (2.15)

If f : S
2 → R is C1 a class function, then we can show that the surface gradient of f has the following

form

∇f =
∂f̂

∂θ
eθ +

1

sin θ

∂f̂

∂φ
eφ, (2.16)

where x = x̂(θ, φ) and f̂ : [0, π] × [0, 2π) → R is such that f(x̂(θ, φ)) = f̂(θ, φ) for all (θ, φ). In what

follows, we will often not distinguish between functions f and f̂ and use the notation f for both.
Similarly, if u is a (tangential) vector field on S

2 which can be written in a form u = (uθ, uφ) with
respect to the (moving) basis eθ, eφ, that is

u(θ, φ) = uθ(θ, φ)eθ(θ, φ) + uφ(θ, φ)eφ(θ, φ)

we define the surface divergence with respect to the surface area on S
2 by the formula

div u =
1

sin θ

(
∂

∂θ
(uθ sin θ) +

∂

∂φ
uφ

)
. (2.17)

With slight abuse of notation, for x ∈ S
2,

curlu(x) = x · (∇̃ × ũ) = x1(∂2u3 − ∂3u2) + x2(∂3u1 − ∂1u3) + x3(∂1u2 − ∂2u1)

= ∂1(x3u2 − x2u3) + ∂2(x1u3 − x3u1) + ∂3(x2u1 − x1u2)

= div(ũ × x) = −div(x × ũ). (2.18)

Finally, see [30], if f a scalar function on S
2, then we define a tangent vector field Curl f by

[Curl f ](x) = −x × ∇f(x), x ∈ S
2 (2.19)

The surface diffusion operator acting on tangential vector fields on S
2 is denoted by ∆ (known as the

vector Laplace-Beltrami or Laplace-de Rham operator) and is defined as

∆u = ∇div u − Curl curlu. (2.20)

Using (2.18) and (2.19), one can derive the following relations connecting the above operators:

div Curlψ = 0, curl Curlψ = −∆ψ, ∆Curlψ = Curl ∆ψ. (2.21)

The Navier–Stokes equations (NSEs) for the evolution of the (tangential) velocity vector field u(t,x) =
(uθ(t,x), uφ(t,x)) on the 2-dimensional rotating unit sphere S

2 under the influence of an external force
f(x) = (fθ, fφ) takes the following form [24,40]

∂tu + ∇uu − νLu + ω × u +
1

ρ
∇p = f , div u = 0, u(0, ·) = u0. (2.22)

Let us describe the notations used above in more details. Firstly, ν and ρ are two positive constants
which can be seen as simplified physical constants called the viscosity and the density of the fluid. The
word “rotational” refers to the Coriolis acceleration ω which is normal vector field defined by
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ω = 2Ωcos
(
θ(x)

)
x, x ∈ S

2, (2.23)

where Ω is a given constant. Note that if x = (x1, x2, x3) then θ(x) = cos−1(x3).
In what follows we will identify the normal vector field ω with the corresponding scalar function ω

defined by

ω(x) = 2Ω cos
(
θ(x)

)
, x ∈ S

2.

The operator L is given by [40]
L = ∆ + 2Ric, (2.24)

where ∆ is the Laplace-de Rham operator, see (2.20), and Ric denotes the Ricci tensor of the two-
dimensional sphere S

2. It is well known that (see e.g. [45, p. 75])

Ric =

[
1 0
0 sin2 θ

]
. (2.25)

We remark that in papers in [14,30,32,42] the authors consider NSEs with L = ∆ but the analysis in
our paper are still valid in that case.

2.2. Function Spaces on the Sphere

In what follows we denote by dS the Lebesgue integration with respect to the surface measure (or
the volume measure when S

2 is seen as a Riemannian manifold). In the spherical coordinates we have,
locally, dS = sin θdθdφ. For p ∈ [1,∞) we will use the notation Lp = Lp(S2) for the space Lp

(
S

2, R
)

of

p-integrable scalar functions on S
2 endowed with the norm

‖v‖Lp =

(∫

S2

|v(x)|p dS(x)

)1/p

.

For p = 2 the corresponding inner product is denoted by

(v1, v2) = (v1, v2)L2(S2) =

∫

S2

v1v2 dS.

We will denote by L
p = L

p(S2) the space Lp
(
S

2, TS
2
)

of vector fields v : S
2 → TS

2 endowed with the
norm

‖v‖Lp =

(∫

S2

|v(x)|p dS(x)

)1/p

,

where, for x ∈ S
2, |v(x)| stands for the length of v(x) in the tangent space TxS

2. For p = 2 the
corresponding inner product is denoted by

(v1,v2) = (v1,v2)L2 =

∫

S2

v1 · v2(S) dS.

Throughout the paper, the induced norm on L
2(S2) is denoted by ‖·‖ and for other inner product spaces,

say X with inner product (·, ·)X , the associated norm is denoted by ‖ · ‖X .
We have the following identities for appropriate scalar and vector fields [30, (2.4)–(2.6)]:

(∇ψ, v) = −(ψ, div v), (2.26)

(Curlψ, v) = (ψ, curlv), (2.27)

(Curl curlw, z) = (curlw, curl z). (2.28)

In (2.27), the L
2(S2) inner product is used on the left hand side and the L2(S2) inner product is used

on the right hand side. We now introduce Sobolev spaces Hs(S2) = Hs,2(S2) and H
s(S2) = H

s,2(S2) of
scalar functions and vector fields on S

2 respectively.
Let ψ be a scalar function and let u be a vector field on S

2, respectively. For s ≥ 0 we define

‖ψ‖2
Hs(S2) = ‖ψ‖2 + ‖(−∆)s/2ψ‖2, (2.29)



232 Z. Brzeźniak et al. JMFM

and
‖u‖2

Hs(S2) = ‖u‖2 + ‖(−∆ )s/2u‖2, (2.30)

where ∆ is the Laplace–Beltrami and ∆ is the Laplace–de Rham operator on the sphere. In particular,
for s = 1,

‖u‖2
H1(S2) = ‖u‖2 + (u,−∆u)

= ‖u‖2 + ‖div u‖2 + ‖Curlu‖2, (2.31)

where we have used formulas (2.20),(2.26)–(2.28).
We note that for k = 0, 1, 2, . . . and θ ∈ (0, 1) the space Hk+θ(S2) can be defined as the interpolation

space between Hk(S2) and Hk+1(S2). We can apply the same procedure for H
k+θ(S2).

One has the following Poincaré inequality [32, Lemma 2]

λ1‖u‖ ≤ ‖div u‖ + ‖Curlu‖, u ∈ H
1(S2), (2.32)

for some positive constant λ1.
The space of smooth (C∞) tangential fields on S

2 can be decomposed into three components, one
in the space of all divergence-free fields and the others through the Hodge decomposition theorem [3,
Theorem 1.72]:

C∞(TS
2) = G ⊕ V ⊕ H, (2.33)

where
G = {∇ψ : ψ ∈ C∞(S2)}, V = {Curlψ : ψ ∈ C∞(S2)}, (2.34)

while H is the finite-dimensional space of harmonic fields, i.e. H contains all the vector fields v so that
Curl (v) = div (v) = 0. Since the two dimensional sphere is simply connected, H = {0} [37, p. 80]. We
introduce the following spaces

H = closure of V in L
2(S2),

V = closure of V in H
1(S2).

Since V is densely and continuously embedded into H and H can be identified with its dual H ′, we have
the following imbeddings:

V ⊂ H ∼= H ′ ⊂ V ′. (2.35)

We say that the spaces V,H and V ′ form a Gelfand triple.

2.3. The Weak Formulation

We consider the linear Stokes problem

νCurl curlu − 2νRic(u) + ∇p = f , div u = 0. (2.36)

By taking the inner product of the first equation of (2.36) with v ∈ V and then using (2.28), we obtain

ν(curlu, curlv) − 2ν(Ric u,v) = (f ,v) ∀v ∈ V. (2.37)

Next, we define a bilinear form a : V × V → R by

a(u,v) := ν(curlu, curlv) − 2ν(Ric u,v), u,v ∈ V.

In view of (2.31) and (2.25), the bilinear form a satisfies

a(u,v) ≤ ‖u‖H1‖v‖H1 ,

and hence it is continuous on V . So by the Riesz Lemma, there exists a unique operator A : V → V ′,
where V ′ is the dual of V , such that a(u,v) = (Au,v), for u,v ∈ V . Using the Poincaré inequality (2.32),
we also have a(u,u) ≥ α‖u‖2

V , with α = λ1 − 2ν, which means a is coercive in V whenever λ1 > 2ν.
In practice, usually one has λ1 ≫ 2ν. Hence by the Lax-Milgram theorem the operator A : V → V ′ is
an isomorphism. Furthermore, by using [39, Theorem 2.2.3], we conclude that the operator A is positive
definite, self-adjoint in H and D(A1/2) = V .
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Next we define an operator A in H as follows:
{

D(A) := {u ∈ V : Au ∈ H},
Au := Au, u ∈ D(A).

(2.38)

Let P be the Leray orthogonal projection from L
2(S2) onto H. It can be shown [28] that D(A) =

H
2(S2) ∩ V and A = −P (∆ + 2Ric), and A∗ = A. It can also be shown that V = D(A1/2) and

‖u‖2
V ∼ (Au,u), u ∈ D(A),

where A ∼ B indicates that there are two positive constants c1 and c2 such that c1A ≤ B ≤ c2A.
We consider the trilinear form b on V × V × V , defined as

b(v,w, z) = (∇ vw, z) =

∫

S2

∇ vw · z dS, v,w, z ∈ V. (2.39)

Using the following identity

2∇ wv = − curl (w × v) + ∇(w · v) − v div w

+ w div v − v × curlw − w × curlv. (2.40)

and (2.27), for divergence free tangential vector fields v,w, z, the trilinear form can be written as

b(v,w, z) =
1

2

∫

S2

[−v × w · curl z + curlv × w · z − v × curlw · z] dS. (2.41)

Moreover [30, Lemma 2.1]

b(v,w,w) = 0, b(v, z,w) = −b(v,w, z) v ∈ V,w, z ∈ H
1(S2). (2.42)

The Coriolis operator C1 : L
2
(
S

2
)

→ L
2
(
S

2
)
, is defined by the formula

(C1v)(x) = (2Ω cos θ(x))x × v(x), x ∈ S
2.

Clearly, C1 is linear and bounded in L
2
(
S

2
)
. In the sequel we will need the operator C = PC1 which is

well defined and bounded in H. Furthermore, for u ∈ H

(Cu,u) = (C1u,Pu) =

∫

S2

2Ω cos θ(x)
(
(x × u) · u(x)

)
dS(x) = 0. (2.43)

Using (2.20), (2.27), (2.38), and (2.41), a weak solution of the Navier–Stokes equations (2.22) is a
function u ∈ L2([0, T ];V ) with u(0) = u0 that satisfies the weak form of Eq. (2.22), i.e.

(∂tu,v) + b(u,u,v) + ν(curlu, curlv) − 2ν(Ric u,v) + (Cu,v) = (f ,v), v ∈ V. (2.44)

This weak formulation can be written in operator equation form on V ′, the dual of V . Let f ∈ L2([0, T ];V ′)
and u0 ∈ H. We want to find a function u ∈ L2([0, T ];V ), with ∂tu ∈ L2([0, T ];V ′) such that

∂tu + νAu + B(u,u) + Cu = f , u(0) = u0, (2.45)

where the bilinear form B : V × V → V ′ is defined by

(B(u,v),w) = b(u,v,w) w ∈ V. (2.46)

With a slight abuse of notation, we also denote B(u) = B(u,u).
The following are some fundamental properties of the trilinear form b; see [25]: there exists a constant

C > 0 such that

|b(u,v,w)| ≤ C

⎧
⎪⎨

⎪⎩

‖u‖1/2‖u‖
1/2
V ‖v‖

1/2
V ‖Av‖1/2‖w‖, u ∈ V,v ∈ D(A),w ∈ H,

‖u‖1/2‖Au‖1/2‖v‖V ‖w‖, u ∈ D(A),v ∈ V,w ∈ H,

‖u‖1/2‖u‖
1/2
V ‖v‖V ‖w‖1/2‖w‖

1/2
V , u,v,w ∈ V.

(2.47)

We also need the following estimates:
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Lemma 2.2. [9, Lemma 2.2] There exists a positive constant C such that

|b(u,v,w)| ≤ C‖u‖‖w‖(‖curlv‖L∞ + ‖v‖L∞), u ∈ H,v ∈ V,v ∈ H, (2.48)

and

|b(u,v,w)| ≤ C‖u‖‖v‖V ‖w‖1/2‖Aw‖1/2, u ∈ H,v ∈ V,w ∈ D(A). (2.49)

and

|b(u,v,w)| ≤ C‖u‖L4‖v‖V ‖w‖L4 , v ∈ V,u,w ∈ H
1(S2). (2.50)

In view of (2.50), b is a bounded trilinear map from L
4(S2)×V × L

4(S2) to R. Moreover, we have the
following result:

Lemma 2.3. The trilinear map b : V × V × V → R has a unique extension to a bounded trilinear map
from L

4(S2) ∩ H × L
4(S2) × V to R.

It can be seen from (2.50) that b is a bounded trilinear map from L
4(S2) × V × L

4(S2) to R. It
follows that B maps L

4(S2)∩H (and so V ) into V ′ and by using the following inequality from [32, p. 12]

‖u‖L4 ≤ C‖u‖1/2‖u‖
1/2
V , u ∈ H

1(S2), (2.51)

we have

‖B(u)‖V ′ ≤ C1‖u‖2
L4 ≤ C2‖u‖‖u‖V ≤ C3‖u‖2

V , u ∈ V. (2.52)

3. The Stochastic Navier–Stokes Equations on a Rotating Unit Sphere

3.1. Preliminaries

Let us recall that for a real separable Hilbert space K and a real separable Banach space X, a linear
operator U : K → X is called γ-radonifying iff γK ◦U−1 is σ-additive. Here γK is the canonical Gaussian
cylindrical measure on K. If a linear map U : K → X is γ−radonifying, then γK ◦ U−1 has a unique
extension to a Borel probability measure denoted by νU on X. By R(K,X) we denote the Banach space
of γ-radonifying operators from K to X with the norm

‖U‖R(K,X) :=

(∫

X

|x|2XdνU (x)

)1/2

, U ∈ R(K,X).

From now on we will freely use notation introduced in the former sections. It follows from [12, Theorem
2.3] that for a self adjoint operator U ≥ cI in H, where c > 0, such that U−1 is compact, the operator
U−s : H → L

p(S2) is γ-radonifying iff

∫

S2

[
∑

ℓ

λ−2s
ℓ |eℓ(x)|2

]p/2

dS(x) < ∞, (3.1)

where {eℓ} is an orthonormal basis of H corresponding to U . This implies the following result.

Lemma 3.1. Let ∆ denote the Laplace-de Rham operator on S. Then the operator

(−∆ )−s : H → L
4(S2) is γ − radonifying iff s > 1/2. (3.2)

Proof. Let us recall the following well know facts.

(i) All distinct eigenvalues of −∆ are given by a sequence λℓ = ℓ(ℓ+1), ℓ = 0, 1, . . . and the correspond-
ing eigenfunctions are given by the divergence free vector spherical harmonics Yℓ,m for |m| ≤ ℓ,
ℓ ∈ N [44, p. 216].
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(ii) The Vector Spherical Harmonics Addition Theorem, see [44, p. 221, formula (81)],

∑

|m|≤ℓ

|Yℓ,m(x)|2 =
2ℓ + 1

4π
Pℓ(1), x ∈ S

2, (3.3)

where the RHS is independent of x ∈ S
2.

(iii) If Pℓ being the Legendre polynomial of degree ℓ, then Pℓ(1) = 1.

Therefore, condition (3.1) yields

∫

S2

⎡

⎣
∞∑

ℓ=0

(ℓ(ℓ + 1))−2s
∑

|m|≤ℓ

|Yℓ,m(x)|2

⎤

⎦
4/2

dS(x)

=

∫

S2

[
∞∑

ℓ=0

(ℓ(ℓ + 1))−2s 2ℓ + 1

4π
Pℓ(1)

]2

dS(x) < ∞ (3.4)

if and only if s > 1
2 and the lemma follows. �

Let

X = L
4(S2) ∩ H

denote the Banach space endowed with the norm

‖x‖X = ‖x‖H + ‖x‖L4(S2).

Remark 3.2. It follows from Lemma 3.1 that if s > 1/2 then the operator

A−s : H → L
4(S2) ∩ H

is γ-radonifying.

Let us recall, that X is an M -type 2 Banach space, see [6] for details.
The Stokes operator −A restricted to X is an infinitesimal generator of an analytic semigroup. We will
consider an operator in X defined by the formula

Â = νA + C, dom(Â) = dom(A),

where ν > 0, and C is the Coriolis operator. For the reader’s convenience we recall a result presented in
[9].

Proposition 3.3. [9, Proposition 5.3] The operator Â with the domain dom(Â) = dom(A) generates an

analytic C0-semigroup
(
e−tÂ

)
in X. Moreover, there exist a constant μ > 0 such that for any δ ≥ 0 there

exists Mδ ≥ 1 such that

‖Â
δ
e−tÂ‖L(X,X) ≤ Mδt

−δe−μt t > 0.

Let E denote the completion of X with respect to the image norm ‖v‖E = ‖A−δv‖X , v ∈ X. For
ξ ∈ (0, 1/2) we set

Cξ
1/2(R, E) :=

{
ω ∈ C(R, E) : ω(0) = 0, sup

t,s∈R

|ω(t) − ω(s)|E
|t − s|ξ(1 + |t| + |s|)1/2

< ∞

}
.

The space Cξ
1/2(R, E) equipped with the the norm

‖ω‖Cξ
1/2(R,E) = sup

t�=s∈R

|ω(t) − ω(s)|E
|t − s|ξ(1 + |t| + |s|)1/2

is a nonseparable Banach space. However, the closure of {ω ∈ C∞
0 (R) : ω(0) = 0} in Cξ

1/2(R, E), denoted

by Ω(ξ, E), is a separable Banach space.
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Let us denote by C1/2(R, X) the space of all continuous functions ω : R → X such that

‖ω‖C1/2(R,E) = sup
t∈R

|ω(t)|E
1 + |t|1/2

< ∞.

The space C1/2(R, E) endowed with the norm ‖ · ‖C1/2(R,E) is a nonseparable Banach space.

We denote by F the Borel σ-algebra on Ω(ξ, E). One can show [5] that for ξ ∈ (0, 1/2), there exists a
Borel probability measure P on Ω(ξ, E) such that the canonical process wt, t ∈ R, defined by

wt(ω) := ω(t), ω ∈ Ω(ξ, E), (3.5)

is a two-sided Wiener process. The Cameron-Martin (or Reproducing Kernel Hilbert space) of the Gauss-
ian measure L(w1) on E is equal to K. For t ∈ R, let Ft := σ{ws : s ≤ t}. Since for each t ∈ R the map
z ◦ it : E∗ → L2(Ω(ξ, E),Ft, P), where it : Ω(ξ, E) ∋ γ �→ γ(t) ∈ E, satisfies E|z ◦ it|

2 = t|z|2K , there
exists a unique extension of z ◦ it to a bounded linear map Wt : K → L2(Ω(ξ, E),Ft, P). Moreover, the
family (Wt)t∈R is an H-cylindrical Wiener process on a filtered probability space (Ω(ξ, E), F, P), where
F =

(
Ft)t∈R in the sense of e.g. [11].

3.2. Ornstein–Uhlenbeck Process

The following is our standing assumption.

Assumption 3.4. Suppose K ⊂ H ∩ L
4(S2) is a Hilbert space such that

A−δ : K → H ∩ L
4(S2) is γ-radonifying (3.6)

for some δ ∈ (0, 1
2 ).

Remark 3.5. It follows from Remark 3.2 that if K ⊂ D
(
As) with s > 0, then Assumption 3.4 is satisfied.

See also Remark 6.1 in [10] and Remark 5.2 in [9].

On the space Ω(ξ, E) we consider a flow ϑ = (ϑt)t∈R defined by

ϑtω(·) = ω(· + t) − ω(t), ω ∈ Ω(ξ, E), t ∈ R.

For ξ ∈ (δ, 1/2) and ω̃ ∈ Cξ
1/2(R, X) we define

ẑ(t) = ẑ(Â; ω̃)(t) =

∫ t

−∞

Â
1+δ

e−(t−r)Â(ω̃(t) − ω̃(r))dr, t ∈ R. (3.7)

By Proposition 3.3, for each δ > 0 there exists C = C(δ) > 0 such that

‖Â
δ
e−tÂ‖L(X,X) ≤ Ct−δe−μt, t ≥ 0. (3.8)

This was an assumption in [10, Proposition 6.2]. Rewriting that proposition in a slightly more general
form we have

Proposition 3.6. For any α ≥ 0, the operator −(Â + αI) is a generator of an analytic semigroup

{e−t(Â+αI)}t≥0 in X such that

‖Â
δ
e−t(Â+αI)‖L(X,X) ≤ Ct−δe−(μ+α)t, t ≥ 0.

If t ∈ R, then ẑ(t) defined in (3.7) is a well-defined element of X and for each t ∈ R the mapping ω̃ �→ ẑ(t)

is continuous from Cξ
1/2(R, X) to X. Moreover, the map ẑ : Cξ

1/2(R, X) → C1/2(R, X) is well defined,

linear and bounded. In particular, there exists a constant C < ∞ such that for any ω̃ ∈ Cξ
1/2(R, X)

|ẑ(ω̃)(t)| ≤ C(1 + |t|1/2)‖ω̃‖C1/2(R,X). (3.9)

The following results for the operator Â follow from Corollary 6.4, Theorem 6.6 and Corollary 6.8 in
from [10], respectively.
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Corollary 3.7. For all −∞ < a < b < ∞ and t ∈ R, for ω̃ ∈ Cξ
1/2(R, X) the map

ω̃ �→ (ẑ(ω̃)(t), ẑ(ω̃)) ∈ X × L4(a, b;X)

is continuous. Moreover, the above result is valid with the space Cξ
1/2(R, X) being replaced by Ω(ξ,X).

Theorem 3.8. For any ω ∈ Cξ
1/2(R, X),

ẑ(ϑsω(t)) = ẑ(ω)(t + s), t, s ∈ R.

In particular, for any ω ∈ Ω and all t, s ∈ R, ẑ(ϑsω)(0) = ẑ(ω)(s).

For ξ ∈ C1/2(R, X) we put

(τsζ)(t) = ζ(t + s), t, s ∈ R.

Thus, τs is a linear a bounded map from C1/2(R, X) into itself. Moreover, the family (τs)s∈R is a C0

group on C1/2(R, X).
Using this notation Theorem 3.8 can be rewritten in the following way.

Corollary 3.9. For s ∈ R, τs ◦ ẑ = ẑ ◦ ϑs, i.e.

τs(ẑ(ω)) = ẑ(ϑs(ω)), ω ∈ Cξ
1/2(R, X).

We define

zα(ω) := ẑ(Â + αI; (Â + αI)−δω) ∈ C1/2(R, X),

i.e. for any t ≥ 0,

zα(ω)(t) :=

∫ t

−∞

(Â + αI)1+δe−(t−r)(Â+αI)

[(Â + αI)−δω(t) − (Â + αI)−δω(r)]dr (3.10)

For ω ∈ C∞
0 (R) with ω(0) = 0, by the fundamental theorem of calculus, we obtain

dzα(t)

dt
= −(Â + αI)

∫ t

−∞

(Â + αI)1+δe−(t−r)(Â+αI)

[(Â + αI)−δω(t) − (Â + αI)−δω(r)]dr + ω̇(t),

where ω̇(t) = dω(t)/dt. Hence zα(t) is the solution of the following equation

dzα(t)

dt
+ (Â + αI)zα = ω̇(t), t ∈ R. (3.11)

It follows from Theorem 3.8 that

zα(ϑsω)(t) = zα(ω)(t + s), ω ∈ Cξ
1/2(R, X), t, s ∈ R. (3.12)

We can view the formula (3.10) as a definition of a process zα(t), t ∈ R, on the probability space
(Ω(ξ, E),F , P). Equation (3.11) suggests that this process is an Ornstein–Uhlenbeck process.

Proposition 3.10. The process zα(t), t ∈ R, is a stationary Ornstein–Uhlenbeck process. It is the solution
of the equation

dzα(t) + (Â + αI)zαdt = dw(t), t ∈ R,

i.e. for all t ∈ R, a.s.

zα(t) =

∫ t

−∞

e−(t−s)(Â+αI)dw(s), (3.13)

where the integral is the Itô integral on the M -type 2 Banach space X in the sense of [6].
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In particular, for some constant C depending on X,

E‖zα(t)‖4
X ≤ C

(∫ ∞

0

e−2αs‖e−sÂ‖2
R(K,X)ds

)2

.

Moreover, E‖zα(t)‖4
X tends to 0 as α → ∞.

Proof. Stationarity of the process zα follows from Eq. (3.12). The equality (3.13) follows by finite-
dimensional approximation.

By the Burkholder inequality, see [6] and [35], we have

E‖zα(t)‖4
X = E

∥∥∥∥
∫ t

−∞

e−(Â+αI)(t−s)dw(s)

∥∥∥∥
4

X

≤ C

(∫ t

−∞

‖e−(Â+αI)(t−s)‖2
R(K,X)ds

)2

(3.14)

≤ C

(∫ ∞

0

e−2αs‖e−sÂ‖2
R(K,X)ds

)2

. (3.15)

Using [9, Proposition 5.3] with Â = −∆ , V = −2νRic + C and observation (3.2), we conclude that
∫ ∞

0

‖e−sÂ‖2
R(K,X)ds < ∞. (3.16)

Hence, we conclude that the last integral (3.15) is finite. Finally, the last statement follows from (3.15)
by applying the Lebesgue Dominated Convergence Theorem. �

By Proposition 3.10, zα(t), t ∈ R, is a stationary and ergodic X-valued process, hence by the Strong
Law for Large Numbers (see Da Prato and Zabczyk [21] for a similar argument),

lim
t→∞

1

t

∫ 0

−t

‖zα(s)‖4
Xds = E‖zα(0)‖4

X , P-a.s. on Cξ
1/2(R, X). (3.17)

It also follows from Proposition 3.10 that we can find α0 such that for all α ≥ α0,

E‖zα(0)‖4
X <

8ν4λ1

27C4
, (3.18)

where λ1 is the constant appearing in the Poincaré inequality (2.32) and C > 0 is a certain universal
constant.

By adding a white noise term to (2.22) the stochastic NSEs on the sphere is

∂tu + ∇uu − νLu + ω × u + ∇p = f + n(x, t), div u = 0, u(x, 0) = u0,

where we assume that u0 ∈ H, f ∈ V ′ and n(t, x) is a Gaussian random field which is a white noise in
time. In the same way as in the deterministic case we apply the operator of projection onto the space of
divergence free fields and reformulate the above equation as an Itô type equation

du(t) + Au(t)dt + B(u(t),u(t))dt + Cu = fdt + GdW (t), u(0) = u0. (3.19)

Here f is the deterministic forcing term and u0 is the initial velocity. We assume that W is a cylindrical
Wiener process on a certain Hilbert space K defined on a probability space (Ω,F , P), see [20] and [11].
G is a linear continuous operator from K to H. The space K, which is the RKHS of the Wiener process,
determines the spatial smoothness of the noise term, will satisfy further assumptions to be specified later.

Roughly speaking, a solution to problem (3.19) is a process u(t), t ≥ 0, which can be represented in
the form

u(t) = v(t) + zα(t), t ≥ 0,
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where zα(t), t ∈ R, is a stationary Ornstein–Uhlenbeck process with drift −νA−C−αI, i.e. a stationary
solution of

dzα + (νA + C + α)zαdt = GdW (t), t ∈ R, (3.20)

and v(t), t ≥ 0, is the solution to the following problem (with v0 = u0 − zα(0)):

∂tv = −νAv − B(v + zα,v + zα) − Cv + αzα + f , (3.21)

v(0) = v0. (3.22)

Definition 3.11. Suppose that z ∈ L4
loc([0,∞); L4(S2)), f ∈ V ′ and v0 ∈ H. A vector field v ∈ C([0,∞);

H) ∩ L2
loc([0,∞);V ′) ∩ L4

loc([0,∞); L4(S2)) is a solution to problem (3.21)–(3.22) if and only if v(0) = v0

and (3.21) holds in the weak sense, i.e. for any φ ∈ V ,

∂t(v, φ) = −ν(v,Aφ) − b(v + z,v + z, φ) − (Cv, φ) + (αz + f , φ). (3.23)

We remark that for (3.23) to make sense, it is sufficient to assume that v ∈ L2(0, T ;V )∩L∞(0, T ;H).
We have proved the following major theorems on the existence and uniqueness of the solution of

(3.21)–(3.22) in [9].

Theorem 3.12. [9, Theorem 3.1] Assume that α ≥ 0, z ∈ L4
loc([0,∞); L4(S2)) ∩ L2

loc([0,∞);V ′), v0 ∈ H
and f ∈ V ′. Then then there exists a unique solution v of problem (3.21)–(3.22).

Theorem 3.13. [9, Theorem 3.2] Assume that T > 0 is fixed. If u0n → u0 in H,

zn → z in L4([0, T ]; L4(S2)) ∩ L2(0, T ;V ′), fn → f in L2(0, T ;V ′).

then

v(·, zn, fn,u0n) → v(·, z, f ,u0) in C([0, T ];H) ∩ L2(0, T ;V ),

where v(t, z, f ,u0) is the solution of problem (3.21)–(3.22) and v(t, zn, fn,u0n) is the solution of problem
(3.21)–(3.22) with z, f ,u0 being replaced by zn, fn,u0n. In particular, v(T, zn,u0n) → v(T, z,u0) in H.

4. Attractors for Random Dynamical Systems Generated by the Stochastic NSEs on the

Sphere

4.1. Preliminaries

A measurable dynamical system (DS) is a triple

T = (Ω,F , ϑ),

where (Ω,F) is a measurable space and ϑ : R × Ω ∋ (t, ω) �→ ϑtω ∈ Ω is a measurable map such that for
all t, s ∈ R, ϑt+s = ϑt ◦ ϑs. A metric DS is a quadruple

T = (Ω,F , P, ϑ),

where (Ω,F , P) is a probability space and (Ω,F , ϑ) is a measurable DS such that for each t ∈ R, ϑt : Ω → Ω
preserves P.

Denote by Ωα(ξ, E) the set of those ω ∈ Ω(ξ, E) for which the equality (3.17) holds true. It follows
from Corollary 3.9 that this set is invariant with respect to the flow ϑ, i.e. for all α ≥ 0 and all t ∈ R,
ϑt(Ωα(ξ, E)) ⊂ Ωα(ξ, E). Therefore, the same is true for a set

Ω̂(ξ, E) =
∞⋂

n=0

Ωn(ξ, E).

It follows that as a model for a metric dynamical system we can take either the quadruple (Ω(ξ, E),F , P, ϑ)

or the quadruple (Ω̂(ξ, E), F̂ , P̂, ϑ̂), where F̂ ,P̂, and ϑ̂ are respectively the natural restrictions of F , P and

ϑ to Ω̂(ξ, E).
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Proposition 4.1. The quadruple (Ω̂(ξ, E), F̂ , P̂, ϑ̂) is a metric DS. For each ω ∈ Ω̂(ξ, E) the limit in (3.17)
exists.

Suppose also that (X, d) is a Polish space (i.e. complete separable metric space) and B is its Borel
σ−field. Let R

+ = [0,∞).

Definition 4.2. Given a metric DS T and a Polish space X, a map ϕ : R
+ ×Ω×X(t, ω, x) �→ ϕ(t, ω)x ∈ X

is called a measurable random dynamical system (RDS) (on X over T) iff

(i) ϕ is (B(R+) ⊗ F ⊗ B,B)-measurable.
(ii) ϕ(t + s, ω) = ϕ(t, ϑsω) ◦ ϕ(s, ω) for all s, t ∈ R

+ and ϕ(0, ω) = id, for all ω ∈ Ω. (Cocycle property)

An RDS ϕ is said to be continuous or differentiable iff for all (t, ω) ∈ R
+ × Ω, ϕ(t, ·, ω) : X → X

is continuous or differentiable, respectively. Similarly, an RDS ϕ is said to be time continuous iff for all
ω ∈ Ω and for all x ∈ X, ϕ(·, x, ω) : R

+ → X is continuous.
For two nonempty sets A,B ⊂ X, we put

d(A,B) = sup
x∈A

d(x,B) and ρ(A,B) = max{d(A,B), d(B,A)}.

In fact, ρ restricted to the family CB of all nonempty closed subsets on X is a metric, and it is called
the Hausdorff metric. From now on, let X be the σ-field on CB generated by open sets with respect to
the Hausdorff metric ρ; see [15].

A set-valued map C : Ω → CB is said to be measurable iff C is (F ,X )-measurable. Such a map is
often called a closed random set.

For a given closed random set B, the Ω-limit set of B is defined to be the set

Ω(B,ω) = ΩB(ω) =
⋂

T≥0

⋃

t≥T

ϕ(t, ϑ−tω)B(ϑ−tω). (4.1)

Definition 4.3. A closed random set K(ω) is said to (a) attract, (b) absorb, (c) ρ-attract another closed
random set B(ω) iff for all ω ∈ Ω, respectively,

(a) limt→∞ d(ϕ(t, ϑ−tω)B(ϑ−tω),K(ω)) = 0;
(b) there exists a time tB(ω) such that

ϕ(t, ϑ−tω)B(ϑ−tω) ⊂ K(ω) for all t ≥ tB(ω).

(c)

lim
t→∞

ρ(ϕ(t, ϑ−tω)B(ϑ−tω),K(ω)) = 0.

We denote by Fu the σ−algebra of universally measurable sets associated to the measurable space
(Ω,F). As far as we are aware, the following definition appeared for the first time as Definition 3.4 in the
fundamental work by Flandoli and Schmalfuss [26], see also [8, Definition 2.6] (where however the first
sentence below is missing).

Definition 4.4. Let us assume that D is a family of random closed and bounded sets. A random set
A : Ω → CB(X) is a random D-attractor iff

(i) A is a compact random set,
(ii) A is ϕ-invariant, i.e. P-a.s.

ϕ(t, ω)A(ω) = A(ϑtω)

(iii) A is D-attracting, in the sense that, for all D ∈ D it holds

lim
t→∞

d(ϕ(t, ϑ−tω)D(ϑ−tω), A(ω)) = 0.
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Definition 4.5. We say that an RDS ϑ-cocycle ϕ defined on a separable Banach space X is D-asympto-
tically compact iff for each D ∈ D, for every ω ∈ Ω, for any positive sequence (tn) such that tn → ∞ and
for any sequence {xn} such that

xn ∈ D(ϑ−tn
ω), for all n ∈ N,

the set {ϕ(tn, ϑ−tn
ω)xn : n ∈ N} is relatively compact in X.

Now we need to state a result on the existence of a random D-attractor, see Theorem 2.8 in [8] and
references therein.

Theorem 4.6. Assume that T = (Ω,F , P, ϑ) is a metric DS, X is a Polish space, D is a nonempty class
of closed and bounded random sets on X and ϕ is a continuous, D-asymptotically compact RDS on X
(over T). Assume that there exists a D-absorbing closed and bounded random set B on X, i.e. for any
given D ∈ D there exists t(D) ≥ 0 such that ϕ(t, ϑtω)D(ϑ−tω) ⊂ B(ω) for all t ≥ t(D). Then, there
exists D-attractor A given by

A(ω) = ΩB(ω), ω ∈ Ω, (4.2)

with

ΩB(ω) =
⋂

T≥0

⋃

t≥T

ϕ(t, ϑ−tω,B(ϑ−tω)), ω ∈ Ω.

which is Fu-measurable.3

Remark 4.7. If D contains every bounded and closed nonempty deterministic subsets of X, then as a
consequence of our Theorem 4.6, [19, Theorem 2.1] and of [18, Corollary 5.8] we deduce that the random
attractor A is given by

A(ω) =
⋃

C⊂X

ΩC(ω) P − a.s., (4.3)

where the union in equality (4.3) is taken over all bounded and closed nonempty deterministic subsets C
of X.

4.2. Random Dynamical Systems Generated by the NSEs

We fix δ < 1/2 and ξ ∈ (δ, 1/2) and put Ω = Ω(ξ, E). Then we define a map ϕ = ϕα : R+ × Ω × H → H
by

ϕ : R+ × Ω × H ∋ (t, ω,x) �→ v(t, z(ω),x − z(ω)(0)) + z(ω)(t) ∈ H, (4.4)

where v(t, ω,v0) = zα(t, ω,v0) is the solution to problem (3.21–3.22). Because z(ω) ∈ C1/2(R, X), z(ω)(0)
is a well-defined element of H and hence ϕ is well defined. It can be shown that (ϕ, ϑ) is a random
dynamical system ([9, Theorem 6.1]).

Suppose that Assumption 3.4 is satisfied. If us ∈ H, s ∈ R, f ∈ V ′ and Wt, t ∈ R is a two-sided Wiener
process introduced after (3.5) such that the Cameron-Martin (or Reproducing Kernel Hilbert) space of
the Gaussian measure L(w1) is equal to K. A process u(t), t ≥ 0, with trajectories in C([s,∞);H) ∩
L2

loc([s,∞);V ) ∩ L2
loc([s,∞); L4(S2)) is a solution to problem (3.19) iff u(s) = us and for any φ ∈ V ,

t > s,

(u(t), φ) = (u(s), φ) − ν

∫ t

s

(Au(r), φ)dr −

∫ t

s

b(u(r),u(r), φ)dr

−

∫ t

s

(Cu(r), φ)dr +

∫ t

s

(f , φ)dr +

∫ t

s

〈φ, dWr〉. (4.5)

3By Fu we understand the σ-algebra of universally measurable sets associated to the measurable space (Ω, F), see the
monograph [17] by Crauel.
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In the framework as above, suppose that u(t) = zα(t)+vα(t), t ≥ s, where vα is the unique solution to
problem (3.21)–(3.22) with initial data u0 − zα(s) at time s. If the process u(t), t ≥ s, has trajectories in
C([s,∞);H) ∩ L2

loc([s,∞);V ) ∩ L2
loc([s,∞); L4(S2)), then it is a solution to problem (3.19). Vice-versa, if

a process u(t), t ≥ s, with trajectories in C([s,∞);H)∩L2
loc([s,∞);V )∩L2

loc([s,∞); L4(S2)) is a solution
to problem (3.19), then for any α ≥ 0, a process vα(t), t ≥ s, defined by zα(t) = u(t) − vα(t), t ≥ s, is a
solution to (3.21) on [s,∞).

Our previous results yield the existence and the uniqueness of solutions to problem (3.19) as well as
its continuous dependence on the data (in particular on the initial value u0 and the force f). Moreover,
if we define, for x ∈ H, ω ∈ Ω, and t ≥ s,

u(t, s;ω,u0) := ϕ(t − s;ϑsω)u0 = v(t, s;ω,u0 − z(s)) + z(t), (4.6)

then for each s ∈ R and each u0 ∈ H, the process u(t), t ≥ s, is a solution to problem (3.19).
We have the Poincaré inequalities

‖u‖2
V ≥ λ1‖u‖2, for all u ∈ V,

‖Au‖2 ≥ λ1‖u‖2, for all u ∈ D(A) ∩ V.
(4.7)

For any u,v ∈ V , we define a new scalar product [·, ·] : V × V → R by the formula [u,v] =
ν(u,v)V − ν λ1

2 (u,v). Clearly, [·, ·] is bilinear and symmetric. From (2.32), we can prove that [·, ·] define

an inner product in V with the norm [·] = [·, ·]1/2, which is equivalent to the norm ‖ · ‖V .
The following lemma is given in [9, Lemma 6.5], however the proof there is not quite correct. The

bound on the nonlinear term b(v, z,v) there was not treated correctly, hence the power on the stochastic
term ‖z‖L4 was not correctly stated. The error propagated to the rest of the paper. We present a corrected
proof here.

Lemma 4.8. Suppose that v is a solution to problem (3.21) on the time interval [a,∞) with z ∈ L4
loc(R

+,
L

4(S2))∩L2
loc(R

+, V ′) and α ≥ 0. Denote g(t) = αz(t)−B(z(t), z(t)), t ∈ [a,∞). Then, for any t ≥ τ ≥ a,

‖v(t)‖2 ≤ ‖v(τ)‖2 exp

(
−νλ1(t − τ) +

27C4

4ν3

∫ t

τ

‖z(s)‖4
L4ds

)

+
3

ν

∫ t

τ

(‖g(s)‖2
V ′ + ‖f(s)‖2

V ′) exp

(
−νλ1(t − τ) +

27C4

4ν3

∫ t

s

‖z(ξ)‖4
L4dξ

)
ds (4.8)

‖v(t)‖2 = ‖v(τ)‖2e−νλ1(t−τ)

+ 2

∫ t

τ

e−νλ1(t−s)(b(v(s), z(s),v(s)) + 〈g(s),v(s)〉 + 〈f ,v(s)〉 − [v(s)]2)ds (4.9)

Proof. Since assumptions of [41, Lemma III.1.2] are satisfied, we infer that 1
2∂t‖v(t)‖2 = (∂tv(t),v(t)).

Hence
1

2

d

dt
‖v‖2 = −ν(Av,v) − (Cv,v) − (B(v,v),v) − (B(z,v),v)

− (B(v, z),v) + 〈g,v〉 + 〈f ,v〉

= −ν‖v‖2
V − b(v, z,v) + 〈g,v〉 + 〈f ,v〉.

(4.10)

From (2.50) and invoking the Young inequality, we have

|b(v, z,v)| ≤ C‖v‖L4‖v‖V ‖z‖L4

≤ C‖v‖1/2‖v‖
3/2
V ‖z‖L4

≤
ν

2
‖v‖2

V +
27C4

32ν3
‖v‖2‖z‖4

L4 ,

and
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|〈g,v〉 + 〈f ,v〉| ≤ ‖g‖V ′‖v‖V + ‖f‖V ′‖v‖V

≤
ν

3
‖v‖2

V +
3

2ν
‖g‖2

V ′ +
3

2ν
‖f‖2

V ′ .

Hence from (4.10) and (4.7), we get

d

dt
‖v(t)‖2 ≤ −ν‖v(t)‖2

V +
27C4

4ν3
‖z(t)‖4

L4‖v(t)‖2 +
3

ν
‖g(t)‖2

V ′ +
3

ν
‖f‖2

V ′

≤

(
−νλ1 +

27C4

16ν3
‖z(t)‖4

L4

)
‖v(t)‖2 +

3

ν
‖g(t)‖2

V ′ +
3

ν
‖f‖2

V ′ .

Next, using the Gronwall Lemma, we arrive at (4.8).
By adding and subtracting ν λ1

2 ‖v(t)‖2 from (4.10) we find that

d

dt
‖v(t)‖2 + νλ1‖v(t)‖2 + 2[v(t)]2 (4.11)

= 2b(v(t), z(t),v(t)) + 2〈g(t),v(t)〉 + 2〈f(t),v(t)〉. (4.12)

Hence (4.8) follows by the variation of constants formula. �

Lemma 4.9. Under the above assumptions, for each ω ∈ Ω(ξ, E),

lim
t→−∞

‖z(ω)(t)‖2 exp

(
νλ1t +

27C4

16ν3

∫ 0

t

‖z(ω)(s)‖4
L4ds

)
= 0.

Lemma 4.10. Under the above assumptions, for each ω ∈ Ω(ξ, E),

∫ 0

−∞

[1 + ‖z(ω)(t)‖2
L4 + ‖z(ω)(t)‖4

L4 ] exp

(
νλ1t +

27C4

16ν3

∫ 0

t

‖z(ω)(s)‖4
L4ds

)
< ∞.

Definition 4.11. A function r : Ω → (0,∞) belongs to the class R if and only if

lim sup
t→−∞

r(ϑ−tω)2 exp

(
νλ1t +

27C4

16ν3

∫ 0

t

‖z(ω)(s)‖4
L4ds

)
= 0,

where C > 0 is the constant appearing in (3.18).
We denote by DR the class of all closed and bounded random sets D on H such that the function

ω �→ r(D(ω)) := sup{‖x‖H : x ∈ D(ω)} belongs to the class R.

Proposition 4.12. Define functions ri : Ω → (0,∞), i = 1, 2, 3, 4, 5 by the following formulae, for ω ∈ Ω,

r2
1(ω) := ‖z(ω)(0)‖2

H ,

r2
2(ω) := sup

s≤0
‖z(ω)(s)‖2

H exp

(
νλ1s +

27C4

16ν3

∫ 0

s

‖z(ω)(r)‖4
L4 dr

)

r2
3(ω) :=

∫ 0

−∞

‖z(ω)(s)‖2
H exp

(
νλ1s +

27C4

16ν3

∫ 0

s

‖z(ω)(r)‖4
L4 dr

)
ds

r2
4(ω) :=

∫ 0

−∞

‖z(ω)(s)‖4
L4 exp

(
νλ1s +

27C4

16ν3

∫ 0

s

‖z(ω)(r)‖4
L4 dr

)
ds

r2
5(ω) :=

∫ 0

−∞

exp

(
νλ1s +

27C4

16ν3

∫ 0

s

‖z(ω)(r)‖4
L4 dr

)
ds.

Then all these functions belong to the class R.

Proof. Since by Theorem 3.8, z(ϑ−tω)(s) = z(ω)(s − t), we have
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r2
2(ϑ−tω) = sup

s≤0
‖z(ϑ−tω)(s)‖2 exp

(
νλ1s +

27C4

16ν3

∫ 0

s

‖z(ϑ−tω)(r)‖4
L4 dr

)

= sup
s≤0

‖z(ω)(s − t)‖2 exp

(
νλ1s +

27C4

16ν3

∫ 0

s

‖z(ω)(r − t)‖2
L4 dr

)

= sup
s≤0

‖z(ω)(s − t)‖2 exp

(
νλ1(s − t) +

27C4

16ν3

∫ −t

s−t

‖z(ω)(r)‖4
L4 dr

)
eνλ1t

= sup
σ≤−t

‖z(ω)(σ)‖2 exp

(
νλ1σ +

27C4

16ν3

∫ −t

σ

‖z(ω)(r)‖4
L4 dr

)
eνλ1t

Hence, multiplying the above by exp
(
−νλ1t + 27C4

16ν3

∫ 0

−t
‖z(ω)(r)‖4

L4 dr
)

we get

r2
2(ϑ−tω) exp

(
−νλ1t +

27C4

16ν3

∫ 0

−t

‖z(ω)(r)‖4
L4 dr

)

≤ sup
σ≤−t

‖z(ω)(σ)‖2 exp

(
νλ1σ +

27C4

16ν3

∫ 0

σ

‖z(ω)(r)‖4
L4 dr

)
.

This, together with Lemma 4.9 concludes the proof in the case of function r2. In the case of r1, we have

r2
1(ϑ−tω) exp

(
−νλ1t +

27C4

16ν3

∫ 0

−t

‖z(ω)(r)‖4
L4 dr

)

= ‖z(ω)(−t)‖2 exp

(
−νλ1t +

27C4

16ν3

∫ 0

−t

‖z(ω)(r)‖4
L4 dr

)
.

Thus, by Lemma 4.9 we infer that r1 also belongs to the class R. The argument in the case of function
r3 is similar but for the sake of the completeness we include it here. From the first part of the proof we
infer that

r2
3(ϑ−tω) exp

(
−νλ1t +

27C4

16ν3

∫ 0

−t

‖z(ω)(r)‖4
L4 dr

)

≤

∫ −t

−∞

‖z(ω)(σ)‖2 exp

(
νλ1σ +

27C4

16ν3

∫ 0

σ

‖z(ω)(r)‖4
L4 dr

)
dσ.

Since by Lemma 4.10,
∫ 0

−∞
‖z(ω)(σ)‖2 exp

(
νλ1σ + 27C4

16ν3

∫ 0

σ
‖z(ω)(r)‖4

L4 dr
)

dσ is finite, by the Lebesgue

Monotone Convergence Theorem we conclude that
∫ −t

−∞

‖z(ω)(σ)‖2 exp

(
νλ1σ +

27C4

16ν3

∫ 0

σ

‖z(ω)(r)‖4
L4 dr

)
dσ → 0 as t → ∞.

The proof in the other cases is analogous. �

We have the following trivial results.

Proposition 4.13. The class R is closed with respect to sum, multiplication by a constant and if r ∈ R,
0 ≤ r̄ ≤ r, then r̄ ∈ R.

Now we are ready to state and prove the main result of this paper. A result of similar type for the
Navier–Stokes equations on some 2-dimensional unbounded domain has been discussed in [8].

Theorem 4.14. Consider the metric DS T =
(
Ω̂(ξ,E), F̂ , P̂, ϑ̂

)
from Proposition 4.1, and the RDS ϕ

on H over T generated by the stochastic Navier–Stokes equations on the 2-dimensional unit sphere with
additive noise (3.19) satisfying Assumption 3.4. Then the following properties hold.

(i) there exists a DR-absorbing set B ∈ DR;
(ii) the RDS ϕ is DR-asymptotically compact;
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(iii) the family A of sets defined by A(ω) = ΩB(ω) for all ω ∈ Ω, is the minimal DR-attractor for ϕ, is

F̂-measurable, and

A(ω) =
⋃

C⊂H

ΩC(ω) P̂ − a.s., (4.13)

where the union in (4.13) is taken over all bounded and closed nonempty deterministic subsets C of
H.

Proof. In view of Theorem 4.6 and Remark 4.7, it is enough to show (i) and (ii). The proof of (ii) will be
done in the next proposition.
Proof of (i)

With a fixed ω ∈ Ω, let D(ω) be a random set from the class DR with radius rD(ω), i.e. rD(ω) :=
sup{|x|H : x ∈ D(ω)}.

For given s ≤ 0 and x ∈ H, let v be the solution of (3.21) on time interval [s,∞) with the initial
condition v(s) = x − z(s). By applying (4.8) with t = 0, τ = s ≤ 0, we get

‖v(0)‖2 ≤ 2‖x‖2 exp

(
νλ1s +

27C4

16ν3

∫ 0

s

‖z(r)‖4
L4 dr

)
(4.14)

+ 2‖z(s)‖2 exp

(
νλ1s +

27C4

16ν3

∫ 0

s

‖z(r)‖4
L4 dr

)

+
3

ν

∫ 0

s

{‖g(t)‖2
V′ + ‖f‖2

V′} exp

(
νλ1t +

27C4

16ν3

∫ 0

t

‖z(r)‖4
L4 dr

)
dt. (4.15)

Set, for ω ∈ Ω,

r11(ω)2 = 2 + sup
s≤0

{
2‖z(s)‖2 exp

(
νλ1s +

27C4

16ν3

∫ 0

s

‖z(r)‖4
L4 dr

)

+
3

ν

∫ 0

s

{‖g(t)‖2
V′ + ‖f‖2

V′} exp

(
νλ1t +

27C4

16ν3

∫ 0

t

‖z(r)‖4
L4 dr

)
dt

}
, (4.16)

and

r12(ω) = ‖z(0)(ω)‖H . (4.17)

Using Lemma 4.10 and Proposition 4.12 we conclude that both r11 and r12 belong to R and that
r13 := r11 + r12 belongs to R as well. Therefore, the random set B defined by B(ω) := {u ∈ H : ‖u‖ ≤
r13(ω)} belongs to the family DR.

Now we will show that B absorbs D. Let ω ∈ Ω be fixed. Since rD ∈ R there exists tD(ω) ≥ 0, such
that

rD(ϑ−tω)2 exp

(
−νλ1t +

27C4

16ν3

∫ 0

−t

‖z(ω)(s)‖4
L4 ds

)
≤ 1, for t ≥ tD(ω).

Thus, if x ∈ D(ϑ−tω) and s ≥ tD(ω), then by (4.14), ‖v(0, s;ω,x − z(s))‖ ≤ r11(ω). Thus we infer that

‖u(0, s;ω,x)‖ ≤ ‖v(0, s;ω,x − z(s))‖ + ‖z(0)(ω)‖ ≤ r13(ω).

In other words, u(0, s;ω,x) ∈ B(ω), for all s ≥ tD(ω). This proves that B absorbs D. �

Proposition 4.15. Assume that for each random set D belonging to DR, there exists a random set B
belonging to DR such that B absorbs D. Then the RDS ϕ is DR-asymptotically compact.

The proof of the proposition is adapted from [8], in which a RDS generated by NSEs on some 2-
dimensional unbounded domain was considered. The proposition generalises the asymptotically compact-
ness of the RDS in [10, Proposition 8.1] to the DR- asymptotically compactness of the RDS.
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Proof. Suppose that B is a closed random set from the class DR and K ∈ DR is a close random set
which absorbs B. We fix ω ∈ Ω. Let us take an increasing sequence of positive numbers (tn)∞

n=1 such that
tn → ∞ and an H-valued sequence (xn)n such that xn ∈ B(ϑ−tn

ω), for all n ∈ N.

Step I. Reduction. Since K(ω) absorbs B, for n ∈ N sufficiently large, ϕ(tn, ϑ−tn
ω)B ⊂ K(ω). Since

K(ω) is closed and bounded, and hence weakly compact, without loss of generality we may assume that
ϕ(tn, ϑ−tn

ω)B ⊂ K(ω) for all n ∈ N and, for some y0 ∈ K(ω),

ϕ(tn, ϑ−tn
ω)xn → y0 weakly in H. (4.18)

Since z(0) ∈ H, we also have

ϕ(tn, ϑ−tn
ω)xn − z(0) → y0 − z(0) weakly in H.

In particular,
‖y0 − z(0)‖ ≤ lim inf

n→∞
‖ϕ(tn, ϑ−tn

ω)xn − z(0)‖. (4.19)

We claim that it is enough to prove that for some subsequence {n′} ⊂ N

‖y0 − z(0)‖ ≥ lim sup
n′→∞

‖ϕ(tn′ , ϑ−tn′
ω)xn′ − z(0)‖. (4.20)

Indeed, since H is a Hilbert space, (4.19) in conjunction with (4.20) imply that

ϕ(tn, ϑ−tn
ω)xn − z(0) → y0 − z(0) strongly in H

which implies that

ϕ(tn, ϑ−tn
ω)xn → y0 strongly in H.

Therefore, in order to show that {ϕ(tn, ϑ−tn
ω)xn}n is relatively compact in H we need to prove that

(4.20) holds true.

Step II. Construction of a negative trajectory, i.e. a sequence (yn)0n=−∞ such that yn ∈ K(ϑnω), n ∈ Z
−,

and yk = ϕ(k − n, ϑnω)yn, n < k ≤ 0.
Since K(ϑ−1ω) absorbs B, there exists a constant N1(ω) ∈ N, such that

{ϕ(−1 + tn, ϑ1−tn
ϑ−1ω)xn : n ≥ N1(ω)} ⊂ K(ϑ−1ω).

Hence we can find a subsequence {n′} ⊂ N and y−1 ∈ K(ϑ−1ω) such that

ϕ(−1 + tn′ , ϑ−tn′
ω)xn′ → y−1 weakly in H. (4.21)

We observe that the cocycle property, with t = 1, s = tn′ − 1, and ω being replaced by ϑ−tn′
ω, reads as

follows:

ϕ(tn′ , ϑ−tn′
ω) = ϕ(1, ϑ−1ω)ϕ(−1 + tn′ , ϑtn′

ω).

Hence, by the last part of Theorem 3.13, from (4.18) and (4.21) we infer that ϕ(1, ϑ−1ω)y−1 = y0. By
induction, for each k = 1, 2, . . . , we can construct a subsequence {n(k)} ⊂ {n(k−1)} and y−k ∈ K(ϑ−kω),
such that ϕ(1, ϑ−kω)y−k = y−k+1 and

ϕ(−k + tn(k) , ϑ−t
n(k)

ω)xn(k) → y−k weakly in H, as n(k) → ∞. (4.22)

As above, the cocycle property with t = k, s = tn(k) and ω being replaced by ϑ−t
n(k)

ω yields

ϕ(tn(k) , ϑ−t
n(k)

ω) = ϕ(k, ϑ−kω)ϕ(tn(k) − k, ϑ−t
n(k)

ω), k ∈ N. (4.23)

Hence, from (4.22) and by applying the last part of Theorem 3.13, we get

y0 = w − lim
n(k)→∞

ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k)

= w − lim
n(k)→∞

ϕ(k, ϑ−kω)ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k)

= ϕ(k, ϑ−kω)(w − lim
n(k)→∞

ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k))

= ϕ(k, ϑ−kω)y−k,

(4.24)
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where w-lim denotes the limit in the weak topology on H. The same proof yields a more general property:

ϕ(j, ϑ−kω)y−k = y−k+j if 0 ≤ j ≤ k.

Before continuing with the proof, let us point out that (4.24) means precisely that y0 = u(0,−k;ω,
y−k), where u is defined in (4.6).

Step III. Proof of (4.20). From now on, unless explicitly stated, we fix k ∈ N, and we will consider problem
(3.19) on the time interval [−k, 0]. From (4.6) and (4.23), with t = 0 and s = −k, we have

‖ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k) − z(0)‖2

= ‖ϕ(k, ϑ−kω)ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(0)‖2

= ‖v(0,−k;ω, ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(−k))‖2.

(4.25)

Let v be the solution to (3.21) on [−k,∞) with z = zα(·, ω) and the initial condition at time −k:
v(−k) = ϕ(tn(k) − k, ϑ−t

n(k)
ω)xn(k) − z(−k). In other words,

v(s) = v
(
s,−k;ω, ϕ(tn(k) − k, ϑ−t

n(k)
ω)xn(k) − z(−k)

)
, s ≥ −k.

From (4.25) and (4.8) with t = 0 and τ = −k we infer that

‖ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k) − z(0)‖2 = e−νλ1k‖ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(−k)‖2

+ 2

∫ 0

−k

eνλ1s(b(v(s), z(s),v(s)) + 〈g(s),v(s)〉 + 〈f ,v(s)〉 − [v(s)]2)ds.
(4.26)

It is enough to find a nonnegative function h ∈ L1(−∞, 0) such that

lim sup
n(k)→∞

‖ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k) − z(0)‖2 ≤

∫ −k

−∞

h(s)ds + ‖y0 − z(0)‖2. (4.27)

For, if we define the diagonal process (mj)
∞
j=1 by mj = j(j), j ∈ N, then for each k ∈ N, the sequence

(mj)
∞
j=k is a subsequence of the sequence (n(k)) and hence by (4.27), lim supj ‖ϕ(tmj

, ϑ−tmj
ω)xmj

−

z(0)‖2 ≤
∫ −k

−∞
h(s)ds + ‖y0 − z(0)‖2. Taking the k → ∞ limit in the last inequality we infer that

lim sup
j

‖ϕ(tmj
, ϑ−tmj

ω)xmj
− z(0)‖2 ≤ ‖y0 − z(0)‖2,

which proves claim (4.20).

Step IV. Proof of (4.27). We begin with estimating the first term on the RHS of (4.26). If −tn(k) < −k,
then by (4.6) and (4.8) we infer that

‖ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(−k)‖2

= ‖v(−k,−tn(k) ;ϑ−kω,xn(k) − z(−tn(k))‖2e−νλ1k

≤ e−νλ1k

{
‖xn(k) − z(−tn(k))‖2 exp

(
−νλ1(tn(k) − k) +

27C4

16ν3

∫ −k

−t
n(k)

‖z(s)‖4
L4ds

)

+
3

ν

∫ −k

−t
n(k)

[‖g(s)‖2
V ′ + ‖f‖2

V ′ ] exp

(
−νλ1(−k − s) +

27C4

16ν3

∫ −k

s

‖z(ζ)‖4
L4dζ

)}

≤ 2In(k) + 2IIn(k) +
3

ν
IIIn(k) +

3

ν
IVn(k) , (4.28)

where
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In(k) = ‖xn(k)‖2 exp

(
−νλ1tn(k) +

27C4

16ν3

∫ −k

−t
n(k)

‖z(s)‖4
L4ds

)

IIn(k) = ‖z(tn(k))‖2 exp

(
−νλ1tn(k) +

27C4

16ν3

∫ −k

−t
n(k)

‖z(s)‖4
L4ds

)

IIIn(k) =

∫ −k

−t
n(k)

‖g(s)‖2
V ′ exp

(
−νλ1s +

27C4

16ν3

∫ −k

s

‖z(ζ)‖4
L4dζ

)

IVn(k) =

∫ −k

−t
n(k)

‖f(s)‖2
V ′ exp

(
−νλ1s +

27C4

16ν3

∫ −k

s

‖z(ζ)‖4
L4dζ

)

First we will find a nonnegative function h ∈ L1(−∞, 0) such that

lim sup
n(k)→∞

‖ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(−k)‖2e−νλ1k ≤

∫ −k

−∞

h(s)ds, k ∈ N. (4.29)

This will be accomplished as soon as we prove the following four lemmas.

Lemma 4.16. lim supn(k)→∞ In(k) = 0.

Lemma 4.17. lim supn(k)→∞ IIn(k) = 0.

Lemma 4.18.
∫ 0

−∞
‖g(s)‖2

V ′ exp
(
−νλ1s + 27C4

16ν3

∫ 0

s
‖z(ζ)‖4

L4dζ
)

< ∞.

Lemma 4.19.
∫ 0

−∞
exp

(
−νλ1s + 27C4

16ν3

∫ 0

s
‖z(ζ)‖4

L4dζ
)

< ∞.

Proof of Lemma 4.16. We recall that for α ∈ N, z(t) = zα(t), t ∈ R, being the Ornstein–Uhlenbeck
process from Sect. 3.2, one has

E‖z(0)‖4
X = E‖zα(0)‖4

X <
8ν4λ1

27C4
.

Let us recall that the space Ω̂(ξ, E) was constructed in such a way that

lim
n(k)→∞

1

−k − (−tn(k))

∫ −k

t
n(k)

‖zα(s)‖4
Xds = E‖z(0)‖4

X < ∞.

Therefore, since the embedding X →֒ L
4(S2) is a contraction, we have for n(k) sufficiently large,

27C4

16ν3

∫ −k

t
n(k)

‖zα(s)‖4
L4ds <

νλ1

2
(tn(k) − k). (4.30)

Since the set B is bounded in H, there exists ρ1 > 0 such that for all n(k), ‖xn(k)‖ ≤ ρ1. Hence

lim sup
n(k)→∞

‖xn(k)‖2 exp

(
−νλ1tn(k) +

27C4

16ν3

∫ −k

−t
n(k)

‖z(s)‖4
L4ds

)
≤ lim sup

n(k)→∞

ρ2
1e

−
νλ1
2 (t

n(k)−k) = 0. (4.31)

�

Proof of Lemma 4.19. We denote by

p(s) = νλ1s +
27C4

16ν3

∫ 0

s

‖z(s)‖4
L4 .

As in the proof of Lemma 4.16 we have, for s ≤ s0, p(s) < νλ1

2 s. Hence
∫ 0

−∞
ep(s)ds < ∞, as required. �
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Proof of Lemma 4.17. Because of (3.9), we can find ρ2 ≥ 0 and s0 < 0, such that,

max

(
‖z(s)‖

|s|
,
‖z(s)‖V ′

|s|
,
‖z(s)‖L4

|s|

)
≤ ρ2, for s ≤ s0. (4.32)

Hence by (4.30) we infer that

lim sup
n(k)→∞

‖z(−tn(k))‖2 exp

(∫ −k

−t
n(k)

(−νλ1 +
27C4

16ν3
‖z(s)‖4

L4)ds

)

≤ lim sup
n(k)→∞

‖z(−tn(k))‖2

|tn(k) |2
lim sup
n(k)→∞

|tn(k) |2e−
νλ1
2 (t

n(k)−k) ≤ 0. (4.33)

This concludes the proof of Lemma 4.17. �

Proof of Lemma 4.18. Since ‖g(s)‖2
V ′ = ‖αz(s)+2B(z(s))‖2

V ′ ≤ 2α2‖z(s)‖2
V ′ +2C‖z(s)‖4

L4 , we only need
to show that the integrals

∫ 0

−∞

‖z(s)‖4
L4 exp

(
νλ1s +

27C4

16ν3

∫ 0

s

‖z(ζ)‖4
L4dζ

)
ds

and
∫ 0

−∞

‖z(s)‖2
V ′ exp

(
νλ1s +

27C4

16ν3

∫ 0

s

‖z(ζ)‖4
L4dζ

)
ds

are finite.
It is enough to consider the case of ‖z(s)‖4

L4 since the proof will be similar for the remaining case.
Reasoning as in (4.30), we can find t0 ≥ 0 such that for t ≥ t0,

∫ −t0

−t

(
−νλ1 +

27C4

6ν3
‖z(ζ)‖4

L4

)
dζ ≤ −

νλ1

2
(t − t0).

Taking into account the inequality (4.32), we have ‖z(t)‖ ≤ ρ2(1 + |t|), t ∈ R. Therefore, with ρ3 :=

exp(
∫ 0

−t0
(−νλ1 + 27C4

16ν3 ‖z(ζ)‖4
L4)dζ, we have

∫ −t0

−∞

‖z(s)‖4
L4 exp

(∫ 0

s

(νλ1 +
27C4

16ν3
‖z(ζ)‖4

L4)dζ

)
ds

= ρ3

∫ −t0

−∞

‖z(s)‖4
L4 exp

(∫ −t0

s

(νλ1 +
27C4

16ν3
‖z(ζ)‖4

L4)dζ

)
ds

≤ ρ4
2ρ3e

νλ1t0/2

∫ t0

−∞

|s|4eνλ1s/2ds < ∞.

By the continuity of all relevant functions, we can let t0 → 0 to get the result. �

Therefore, the proof of (4.29) is concluded, and it only remains to finish the proof of (4.27). Let us
denote by

vn(k)(s) = v(s,−k;ω, ϕ(tn(k) − k, ϑ−t
n(k)

ω)xn(k) − z(−k)), s ∈ (−k, 0),

vk(s) = v(s,−k;ω,y−k − z(−k)), s ∈ (−k, 0).

From (4.22) and the last part of Theorem 3.13 we infer that

vn(k) → vk weakly in L2(−k, 0;V ). (4.34)

Since eνλ1·g, eνλ1·f ∈ L2(−k, 0;V ′), we get

lim
n(k)→∞

∫ 0

−k

eνλ1s〈g(s),vn(k)(s)〉ds =

∫ 0

−k

eνλ1s〈g(s),vk(s)〉ds (4.35)
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and

lim
n(k)→∞

∫ 0

−k

eνλ1s〈f ,vn(k)(s)〉ds =

∫ 0

−k

eνλ1s〈f ,vk(s)〉ds. (4.36)

On the other hand, using the same methods as those in the proof of Theorem 3.12, there exists a
subsequence of {vn(k)}, which, for the sake of simplicity of notation, is denoted as the old one which
satisfies

vn(k) → vk strongly in L2(−k, 0; L2
loc(S

2)). (4.37)

Next, since z(t) is an L
4-valued process, so is eνλ1tz(t). Thus by [9, Corollary 4.1], (4.34) and (4.37),

we infer that

lim
n(k)→∞

∫ 0

−k

eνλ1sb(vn(k)(s), z(s),vn(k)(s))ds

=

∫ 0

−k

eνλ1sb(vk(s), z(s),vk(s))ds.

(4.38)

Moreover, since the norms [·] and ‖ · ‖V are equivalent on V , and since for any s ∈ (−k, 0], e−νkλ1 ≤

eνλ1s ≤ 1, (
∫ 0

−k
eνλ1s[·]2ds)1/2 is a norm in L2(−k, 0;V ) equivalent to the standard one. Hence, from

(4.34) we obtain,

∫ 0

k

eνλ1s[vk(s)]2ds ≤ lim inf
n(k)→∞

∫ 0

−k

eνλ1s[vn(k)(s)]2ds.

In other words,

lim sup
n(k)→∞

(
−

∫ 0

−k

eνλ1s[vn(k)(s)]2ds

)
≤ −

∫ 0

−k

eνλ1s[vk(s)]2ds. (4.39)

From (4.26), (4.29), (4.38) and (4.39) we infer that

lim sup
n(k)→∞

‖ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k) − z(0)‖2

≤

∫ −k

−∞

h(s)ds + 2

∫ 0

−k

eνλ1s
{
b(vk(s), z(s),vk(s))

+〈g(s),vk(s)〉 + 〈f ,vk(s)〉 − [vk(s)]2
}
ds (4.40)

On the other hand, from (4.24) and (4.8), we have

‖y0 − z(0)‖2 = ‖ϕ(k, ϑ−kω)yk − z(0)‖2 = ‖v(0,−k;ω,yk − z(−k))‖2

= ‖yk − z(−k)‖2e−νλ1k + 2

∫ 0

−k

eνλ1s
{
〈g(s),vk(s)〉

+ b(vk(s), z(s),vk(s)) + 〈f ,vk(s)〉 − [vk(s)]2
}
ds. (4.41)

Hence, by combining (4.40) with (4.41), we get

lim sup
n(k)→∞

‖ϕ(tn(k) , ϑ−t
n(k)

ω)xn(k) − z(0)‖2

≤

∫ −k

−∞

h(s)ds + ‖y0 − z(0)‖2 − ‖yk − z(−k)‖2e−νλ1k

≤

∫ −k

−∞

h(s)ds + ‖y0 − z(0)‖2,

which proves (4.27), and hence the proof of Proposition 4.15 is finished. �
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5. Invariant Measure

In this section we consider the existence of an invariant measure. The main result in this section, i.e.
Theorem 5.2 is a direct consequence of Corollary 4.4 [16] and Theorem 4.14 from the present paper about
the existence of an attractor for the RDS generated by the stochastic Navier–Stokes equations (3.19).

Let ϕ be the RDS corresponding to the SNSEs (3.19) which has been defined in (4.4). We define the
transition operator Pt by a standard formula. For g ∈ Bb(H), we put

Ptg(x) =

∫

Ω

[g(ϕ(t, ω,x))] dP(ω), x ∈ H. (5.1)

As in [10, Proposition 3.8] we have the following result whose proof is simply a repetition of the proof
from [10]

Proposition 5.1. The family (Pt)t≥0 is Feller, i.e. Ptg ∈ Cb(H) if g ∈ Cb(H). Moreover, for any g ∈
Cb(X), Ptg(x) → g(x) as t ց 0.

Following [16] one can prove that ϕ is a Markov RDS, i.e. Pt+s = PtPs for all t, s ≥ 0. Hence by [10,
Corollary 3.10] which says that a time-continuous and continuous asymptotically compact, Markov RDS
ϕ admits a Feller invariant probability measure μ, i.e. a Borel probability measure μ

P ∗
t μ = μ, t ≥ 0, (5.2)

where

P ∗
t μ(Γ) =

∫

H

Pt(x,Γ)μ(dx), Γ ∈ B(H),

and Pt(x, ·) is the transition probability, Pt(x,Γ) = Pt1Γ(x), x ∈ H.
A Feller invariant probability measure for a Markov RDS ϕ on H is, by definition, an invariant probability
measure for the semigroup (Pt)t≥0 defined by (5.1). Therefore, we obtain the following result.

Theorem 5.2. There exists an invariant measure for the stochastic NSE (3.19).

Remark 5.3. We believe that the uniqueness of an invariant measure for nondegenerate noise will follow
from the classical procedure based on Doob’s Theorem, see e.g. Seidler’s paper [38] and references therein.
If the noise is degenerate and spatially smooth, it seems that the results from a recent paper by Hairer
and Mattingly [29] should be applicable in our setting. In particular, [29, Theorem 8.4], which gives
a sufficient conditions for uniqueness in terms of controllability, should be applicable. Details will be
published elsewhere. One should point out that these authors use the “vorticity” formulation and their
initial data belongs to the L2 space. This corresponds to our approach with the initial data belonging
to the finite enstrophy space H1. However, we work in the space of finite energy, which seems to be
physically more natural. On the other hand, verifying the sufficient conditions could be more challenging.
For the NSE without the Coriolis force this problems has been investigated in [1]. Corresponding NSE
with the Coriolis force study is postponed till the next publication.
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[8] Brzeźniak, Z., Caraballo, T., Langa, J.A., Li, Y., Lukaszewicz, G., Real, J.: Random attractors for stochastic 2d-Navier–

Stokes equations in some unbounded domains. J. Differ. Equ. 255(11), 3897–3919 (2013)
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