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Abstract 

Human vertical bouncing motion is studied using a system identification method. A multi-scale 

mathematical model is identified directly from real experimental data to characterise the nonlinear 

oscillation associated with the vertical bouncing. A new method which combines the restoring force 

surface method and the iterative orthogonal forward regression algorithm is proposed to determine 

the model structure and estimate the associated parameters. Two types of sub-models are used to 

study the nonlinear oscillations in different scales. Results show that the model predicted outputs 

provide excellent predictions of the experimental data and the models are capable of reproducing the 

nonlinear oscillations in both time and frequency domain.  

Key words: iterative orthogonal forward regression, iOFR, restoring force surface method, multi-

scale, radial basis function, hybrid model 

1. Introduction 
 

Studies of the induced dynamic load that arises from people walking and bouncing is an important 

subject in many fields including biomechanics, medical science, sports science, robotics, control 

systems, and also civil engineering. Many authors have studied the motion of the human body in 

walking, jumping, and bouncing from different aspects (Blickhan, 1989; Ernesto & Tianjian, 2009; 

Harman, Rosenstein, Frykman, Rosenstein, & Kraemer, 1991; Hof, Van Zandwijk, & Bobbert, 2002; 
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Vitomir Racic & Chen, 2015; V. Racic & Pavic, 2010a, 2010b; V. Racic, Pavic, & Brownjohn, 2009; 

Spägele, Kistner, & Gollhofer, 1999a, 1999b; van Werkhoven & Piazza, 2013).   

A complete representation of body motion introduced by bouncing includes the modelling of vertical, 

lateral, and longitudinal motions (Garcia, 1999). The vertical component is often studied as part of the 

crowd-structure interaction in civil engineering while the lateral and longitudinal components are 

often studied for the lateral stability of the human body during walking and bouncing.  In this paper, 

only the vertical motion due to human bouncing will be investigated. 

In this paper, the motion of a marked point on the chest of a test subject during bouncing is recorded 

and investigated using a system identification method. The modelling of the motion of human body 

can be very complicated because of the following difficulties. Firstly, the human body is composed of 

several connected segments: head, trunk, arms, legs, feet and so on. These segments are connected 

by joints and interact with each other in motion. Each of these segments may have a complex effect 

on the motion of a specific point and the effect is unknown. For instance, the motion of the head 

depends on the movements of trunk, legs, ankles, and so on. In the robotics, especially in the 

investigation of the stability of robots, the motion of a robot is often simplified as a multi-link inverted 

pendulum. The movement of the top-end could be very complex because of the effects from the lower 

segments of the system. Another source of complexity is that the mass of the human body is neither 

lumped in a mass centre nor distributed uniformly. Therefore, modelling the motion of the marked 

point using a first principles method can be very difficult. In this paper a system identification method 

is used to study the motion of a marked point of human body which is on a relatively high position of 

the human body and the motion of this point is of rich dynamics. In the investigation of complex 

systems, a system identification method often has significant advantages. The system to be identified 

is considered as a black box, which avoids the complex underlying mechanism in the system. The data 

of interest are collected through experimental methods and the relationships between these 

observations are studied.  

In this paper, a continuous time model will be identified for the body motion in vertical bouncing by 

studying the relationships between the displacement, velocity and accelerations. This method is 

known as the restoring force surface method (RFS). Restoring force surface method as an ideal method 

for the study of nonlinear dynamics has been widely used since the first introduction (Masri, Bekey, 

Sassi, & Caughey, 1982; Masri & Caughey, 1979). Restoring force surface method which converts the 

problem of modelling nonlinear dynamics into the surface fitting in the state space significantly 

simplified the modelling process. The restoring force surface is usually reconstructed using the 

Chebyshev polynomials and nonparametric methods. The nonparametric restoring force surface often 
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yields insight into the physical system. This allows one to qualitatively study the primary difficulties 

encountered in nonlinear system identification: what nonlinearities involve in the system and how 

these nonlinearities affect the dynamics behaviours of the system. For some more complex cases 

where the restoring force surface cannot be represented using a uniform nonlinear function, a 

piecewise models (Allen, Sumali, & Epp, 2008) and local restoring force surface method have been 

studied (S. W. R. Duym, Schoukens, & Guillaume, 1996). For a complete discussion of the restoring 

force surface method, readers are referred ƚŽ WŽƌĚĞŶ ĂŶĚ TŽŵůŝŶƐŽŶ͛Ɛ ďŽŽŬ (Worden & Tomlinson, 

2001) and the related papers (Worden, 1990a, 1990b). Some quantitative methods have also been 

intensively studied especially the direct parameter estimation methods (Worden & Tomlinson, 2001). 

However, the problems that which set of nonlinearities are involved in the system dynamics and how 

to get a minimum set of nonlinearities which is sufficient to represent the systems seems not to be 

perfectly answered.  

In this paper, a new method which combines the restoring force surface method with the iterative 

orthogonal forward regression (iOFR) algorithm (Yuzhu Guo, L.Z. Guo, S. A. Billings, & H. L. Wei, 2015c) 

will be introduced to try to give a satisfying answer to these problems. The orthogonal forward 

regression algorithm (is also known as forward orthogonal least squares regression algorithm) and the 

associated error reduction ratio (ERR ) have been proved to be powerful tools for determination of 

nonlinear model structures in various ranges of applications (S. A. Billings, 2013). The OFR algorithm 

has recently been used to identify nonlinear continuous time models (Yuzhu Guo, Guo, Billings, & Lang, 

2015; Yuzhu Guo, Guo, Billings, & Wei, 2016). The iOFR algorithm is an improvement to the classic OFR 

algorithm. The iOFR has been proved to work better under a non-persistent excited condition (Yuzhu 

Guo, L. Z. Guo, S. A. Billings, & H. L. Wei, 2015b). In the application of the orthogonal forward 

regression algorithm, a very wide range of terms can be used according the needs of the practical 

systems, such as, polynomials, rational functions, spline functions, radial basis functions (RBFs), 

wavelet functions, and so on (Stephen A. Billings, Wei, & Balikhin, 2007; Wei, Zhu, Billings, & Balikhin, 

2007). Because of the complexity of the system under consideration, three different types of 

regressors will be used in this paper to model the body motion due to vertical bouncing: the 

polynomials, multi-scale radial basis functions (or wavelets) and the hybrid regressors which combine 

the first two kinds of functions.  

The iterative orthogonal forward regression restoring force surface method is capable to model a 

complex restoring force surface. For example the non-uniform restoring force surface can be 

identified using piecewise spline functions or radial basis functions as regressors to obtain a parsimony 

model structure. In this paper, a hybrid model which combines the polynomial and radial basis 
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functions (S. A. Billings & Wei, 2005) will be combined with the restoring force surface method to give 

a coarse to fine representation of the nonlinear oscillation in body motion.  

Since the body motion in this study is the source of the human-introduced dynamic forces the study 

of the nonlinear oscillation is of a significant meaning in study of the ground reaction force. The 

introduce method can also be directly used to study the relations between the body motion and the 

ground reaction forces by replacing the measured restoring force with the ground reaction force(Y. 

Guo et al., 2017). The nonlinear oscillation of the marked point on body trunk instead of the ground 

reaction force is studied because experimental data show that the motion of body trunk is of a richer 

dynamics compared with the ground reaction force. A direct recovering of the ground reaction forces 

using the same method will be studied in a separate paper. 

This paper is organised as follows: Section 2 briefly explained the experiment from which data were 

collected and the preliminary analysis of these data. Section 3 introduced the new iterative orthogonal 

forward regression restoring force surface method. Three different kinds of sub-models are used to 

identify the body motion in section 4. The advantages and disadvantages of each model are discussed. 

The conclusions are finally drawn in section 5. 

2. Experiment and data analysis 
 

2.1 Experiment 

The experiment was conducted in the Department of Civil and Structural Engineering, the University 

of Sheffield, Sheffield, UK. This study has been approved by the Research Ethics Committee of the 

University of Sheffield and conforms to the ethical guidelines. 

A test subject bounced on an AMTI BP-400600 force plate following a 1.2 Hz metronome beat. The 

body motion was measured using optical motion capture technology. Two markers were attached on 

the chest and pelvis of the test subject, respectively. Cameras recorder the movements 

(displacements, velocities and accelerations) of the target markers in real time. The test last 35s and 

the recorded signals were sampled at 200Hz. Figure 1 shows the recorded displacement, velocity, and 

the acceleration signals of the chest marker. 

In this paper the vertical motion of the marker on chest is studied. This point is studied because this 

point is at a relatively high position of the human body.  The effects from the lower parts of human 

body are involved in the motion. This makes the motion of this point possesses rich dynamics. At the 
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same time, since this point was chosen on the line of symmetry of the body the influent from the 

lateral movement is small and negligible.  

 

Figure 1 Recorded signals 

2.2 Analysis of the experimental data 

Fast Fourier transforms of the recorded displacement, velocity, acceleration series show that the main 

spectral component of these signals is at 1.2 Hz and the second order harmonic at 2.4 Hz. The higher-

order harmonic components are small. The spectrum of the displacement at the frequencies over 3 

Hz is very smooth and the higher-order harmonics can hardly be observed. This is because the 

displacement signal is integratal of the velocity and acceleration and the integrands have typical low 

pass property. Since there is no external excitation in this autonomous system the harmonics in these 

signals are introduced by nonlinearities.  

 

Figure 2 The frequency spectra of the displacement, velocity, and acceleration signals 

The nonlinearities can obviously be observed in the phase portrait of these signals which are shown 

in Fig 3, especially in the acceleration- displacement phase plane in Fig 3 (c). The system is nonlinear 

because the phase portrait of a linear second order autonomous system should be on a three 
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dimensional plane. Namely, the displacement  y t  , velocity  y t  and the acceleration  y t  satisfy 

a linear equation 

 0my cy ky     (1) 

Rearrangeing equation (1) yields 

 my cy ky     (2) 

The right hand side of the equation represents the restoring force of a linear system composed of the 

elastic force ky   and the damping force cy , where c  and k   are the dumping coefficient and 

stiffness, respectively. Fig 3 (b) shows that the scattering of data in the three-dimensional state space 

is flat in the acceleration direction which forms a surface in the state space. However the scattering 

of the data is far from a plane. That is the data does not satisfy the linear relationship (1) but a 

nonlinear one. A general form for nonlinear second order systems can be given as 

  ,my f y y   (3) 

where the internal restoring force is a nonlinear function of the displacement and the velocity. 

Equation (3)  shows the basic idea of the restoring force surface method (Masri & Caughey, 1979) 

which will be used to identify the model of the system in the next section. 

A further observation of Fig 3 (a), (d), and (b) shows that the phase portrait of the system is almost 

symmetrical about the plane 0y  . That is the marked point moves at certain acceleration when the 

displacement and the amplitude of velocity are specified disregarding the direction of the velocity. 

Moreover, the change of acceleration along the velocity direction is insignificant. That is, the 

directional derivative of the restoring force along the velocity is small. This means that the influence 

of the velocity on the restoring force is insignificant and the restoring force mainly comes from a 

nonlinear elastic force which is a function of displacement. As a result it is reasonable to assume that 

the restoring force (or acceleration) does not depends on the value of the velocity and can be 

described as a univariate function of displacement. This assumption simplifies the system 

identification procedure in the next section. Under the above assumption the study of the restoring 

force surface in a three dimensional state space reduces to a study of the nonlinear elastic restoring 

force in the acceleration-displacement plane.  

The nonlinear relationship between acceleration and displacement is shown in the projection of the 

phase portrait on the acceleration-displacement plane. Fig 3 (c) shows that acceleration and 

displacement are of a complex nonlinear relationship which is hardly to be represented using a 
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uniform nonlinear function in the whole phase plane. This nonlinear relationship will be studied in 

next section using three different types of nonlinear terms: polynomial terms, multi-scale radial basis 

functions, and the hybrid term set which combines the previous two kinds of terms. 

 

 

 (a)                                                                              (b) 

 

 (c)                                                                            (d) 

Figure 3 Data in the phase space 

3. Orthogonal forward regression restoring force surface method 
 

TŚĞ ƌĞƐƚŽƌŝŶŐ ĨŽƌĐĞ ŵĞƚŚŽĚ ŝƐ ďĂƐĞĚ ŽŶ NĞǁƚŽŶ͛Ɛ ƐĞĐŽŶĚ ůĂǁ 

    ,my f y y u t    (4) 
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where  ,f y y  is the restoring force which is generally a non-linear function of the displacement and 

velocity. A trivial re-arrangement of equation (4) gives 

    1 1
,y u t f y y

m m
    (5) 

For a certain time instance it  , a triplet      , ,i i iy t y t y t  is specified where the first two values 

indicate a point in the phase plane and the third gives the height of the restoring force above that 

point. The main idea of the restoring force surface method is to reconstruct the restoring force as a 

function of velocity and displacement using measured force (or acceleration) and kinematic data at 

discrete time instants.  

In this paper, the orthogonal forward regression algorithm is employed to determine the structure of 

the nonlinear restoring force surface. It is well known that the orthogonal forward regression 

algorithm and the ERR criterion are very effective nonlinear system identification method and have 

been successfully used to identify nonlinear systems in various applications. In this algorithm, a large 

enough term dictionary is firstly constructed. Any type of linear and nonlinear terms and their 

combination can be included in the candidate term set. The significant terms in the dictionary will be 

selected into the final model one by one based on the ERR criterion until a stop criterion is satisfied. 

The candidate terms are orthogonalised in each step to minimise the information redundancy in the 

final model. The obtained models which include the least number of terms and possess a strong 

descriptive power are often near to optimal. 

By applying the orthogonal forward regression algorithm, various ranges of terms can be used to 

recover the restoring force surface such as: polynomial terms, rational functions, radial basis functions, 

wavelets functions, and so on, and also the hybrid models which combining different type of terms. 

This will greatly extend the application of the restoring force surface method to the dynamic systems 

with complex nonlinearities. 

The new orthogonal forward regression restoring force surface method can then be summarised as: 

(i) Design the experiment and prepare data. For example, select appropriate input signals to produce 

good data for the next identification. Record all the displacement, velocity, and acceleration data or 

obtain the data using a numerical integral or differentiation. This step is exactly same as the classical 

restoring force surface method. 

(ii) Construct a candidate term dictionary which should be large enough to cover all the correct 

nonlinearities involved in the system. The term dictionary can be composed of any type of terms, 
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polynomials, wavelets, trigonometric functions, and so on. All these terms are function of either 

displacement or velocity or both. 

(iii) Apply the iOFR algorithm to select the significant terms from the dictionary and construct a 

parsimony model.  

(iv) Verify the obtained models using model validation methods or model perdition. A commonly used 

model validation method is the high order correlation test method (S. A. Billings & Zhu, 1994; BlLlings 

& Voon, 1986). Two kinds of predictions are often used for model validation: one-step-ahead 

prediction and model predicted output. The model predicted output predicts the long term 

behaviours of a system. A good model predicted output often means that the identify model can 

represents the original system.  

A very important issue encountered when applying the restoring force surface method is to design an 

appropriate excitation signals. One of the important criteria is that the phase trajectory covers as 

much of the phase plane as possible thus allowing one to construct a connected and continuous force 

surface (S. Duym & Schoukens, 1995; Worden, 1990a). Therefore the restoring force surface method 

is often used for the modelling of the nonlinear dynamical systems with external inputs. Directly 

applying the restoring force surface method to an autonomous nonlinear system could be difficult(Y. 

Guo, L. Z. Guo, S. A. Billings, & H.-L. Wei, 2015a). This is because the scattering points are sparse in a 

three-dimensional state space for a nonlinear oscillation.  

The nonlinear dynamics of the body motion which considered in this paper is autonomous and the 

external force  u t   is zero.  However, according to the assumption in subsection 2.2 that the 

restoring force is a univariate function of displacement, equation (5) can then be written as  

  1
y f y

m
   (6) 

This assumption makes the identification process enforceable since the data is sufficient for the 

recovering of a restoring force curve in the two-dimensional displacement-acceleration plane (see fig 

3 (c)) although the data scattering is sparse in a three dimensional state space.  

It  is worthy mentioning that this assumption seems not to be sufficiently supported because of the 

sparseness of the data in the phase space. However, the identification results prove the correctness 

of the assumption. That is a univariante restoring surface is adequate to represent the nonlinear body 

motion. 
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4. Identification of the nonlinear oscillations 
 

As what has been observed, the motion of the marked point in the vertical bouncing behaves as a 

nonlinear oscillation. In this section, this nonlinear oscillation will be modelled using the new 

introduced orthogonal forward regression restoring force surface method. Three different types of 

candidate terms are used to represent the nonlinear system, including polynomial model, multi-scale 

radial basis function model, and a hybrid model. The advantages and disadvantages of each model are 

discussed in detail. 

4.1 Identification of a polynomial model 

 

Polynomial nonlinearities are widely used for the identification of nonlinear system because of the 

inherent advantages of this kind of model. The nonlinear relationship between acceleration and the 

displacement is firstly identified using this kind of model. Following the identification programme 

given in section 3, a third order polynomial model is obtained. The identified model is given as follows 

and the results are shown in Table 1. A total number of four terms are selected in the final model. 

 2 324485.68 60276.76 49365.42 13451.68y y y y       (7) 

It can be observed that, using the iOFR algorithm, the first select term does not have a very large ERR, 

which is different from the classic OFR algorithm. A less dominant first term may make the term 

selection less greedy and a better model structure can be obtained (Yuzhu Guo, Guo, et al., 2015c).  In 

the obtained model the constant term produced the greatest ERR because the restoring force curve 

does not go through the origin of the acceleration-displacement plane.  

Table 1 The results of the forward regression 

Terms Err (%) Coefficient Standard Deviations 

3y  0.3714 13451.68 526.7102 

1 79.6868 -24485.68 1033.9431 

2y  13.1757 -49365.42 1978.9077 

y  0.6663 60276.76 2477.8056 

 

Based on the simple polynomial model, the restoring force surface can be reconstructed as Fig 4 (a). 
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 (a)                                                                           (b) 

Figure 4 Reconstruction of the restoring force surface using the polynomial model 

Simulating the polynomial model, the comparison of the model predicted outputs with the 

experimental data is shown in Fig 5. Details of the predicted acceleration signal are shown in Fig 6 by 

zooming in Fig 5. Figure 4 (b) shows the predicated trajectory in the phase space. Figure 4, 5 and 6 

show that the obtained polynomial model captures the main morphology of the experimental data 

but misses some details.  

 

Figure 5 The model predicted output of the polynomial model 
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Fig 6 Enlarged plot of the acceleration signal 

Fig 7 shows the comparison of the frequency spectra of the model predicted output and the 

experimental data.  It is shown that the simple polynomial model is capable to reproduce the basic 

frequency component and the harmonics.  

 

Fig 7 Frequency components of the model prediction output  

The nonlinear terms in model (7) represent the nonlinear stiffness in the system, which plays a crucial 

role in the generation of the harmonics. The polynomial models inherently possess many significant 

advantages. (i) The polynomial model is of a very simple structure and easy to simulate and to realise 

as a real physical system. (ii) Owing to the polynomial structure, the model can be easily used for 

further analysis in both time and frequency domains. There are many mature techniques for the 

analysis of systems with polynomial nonlinearities. For example, the perturbation method and 

bifurcation analysis (Khalil, 2002), the describing function method (Kochenburger, 1950), and the 

Volterra series theory and the associated generalised frequency response functions (Chua & Yaw-

Shing, 1982; Rugh, 1981). (iii) The output of the system is strictly harmonic signals. That is all the higher 

frequencies are strict integer times of a basic frequency component.  

However, problems start to occur when the restoring force surfaces are complex. This is simply 

because the discontinuities and nonuniformities are very difficult to model using inherently smooth 

polynomial terms. What make the condition worse is that the higher order polynomial model may 

easily sink into the difficulty of instability. This is easy to explain. In order to satisfy the requirement 

of a best fit some of the higher-order stiffness with negative coefficients may emerge in the final model 

with a large coefficient. These terms are physically sensible and yield instability results. 
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4.2 Radial basis function model 

 

In order to characterise the system more accurately, radial basis functions are used as the term 

dictionary of the iterative orthogonal forward regression restoring force surface method in this section. 

Radial basis functions (RBF) whose value depends on the distance from the centre points can 

efficiently characterise the position related local information. The radial basis functions should be a 

good choice for the nonlinearity in this case.  

The nonlinear restoring force surface is then represented as the linear combination of a series radial 

basis functions  i y , ( i =ϭ͕ Ϯ͕ ͙͕ Ŷ),  with the weights 1w , 2w ͕ ͙͕ nw , respectively  . 

    
1

n

i i
i

f y w y


   (8) 

TŚĞ GĂƵƐƐŝĂŶ ĨƵŶĐƚŝŽŶƐ ĂƌĞ ĐŚŽƐĞŶ ĂƐ ƚŚĞ ͞ŵŽƚŚĞƌ͟ ĨƵŶĐƚŝŽŶ ŽĨ ƚŚĞ ŵƵůƚŝ-scale radial basis functions.  

 

2

22( )
i

i

x c

i x e 




   (9) 

where  is the norm to define the distance from x  to the ith centre ic . 

According to the information show in the phase portrait the candidate term dictionary is constructed 

as follows. The centres ic  choose values between 1.2 and 1.3 for every 0.001 unit where the limits of 

the centres are determined by the phase plane trajectory. The scales i  change from 0.001 to 0.020 

for every 0.001 unit to produce a sufficient cover to the range of the displacement, that is, the interval 

[1.2, 1.3]. An appropriate choice of candidate term set is crucial for the identification process. A large 

enough term set is needed to make sure that the underlying dynamics of the system can be well 

approximated using the candidate model building blocks. However, a very large term set will make 

the identification computationally intensive. The range of scales for the radial basis functions can be 

efficiently determined  through an iterative process. Initially, select a relatively small range of scales 

in the dictionary and apply the orthogonal forward regression algorithm. Examine the obtained model 

to check whether more than one RBF functions with the same centre but different scales are selected. 

This often means that the dictionary is often not large enough because these RBF functions may be 

approached by less RBFs of a larger scale. Enlarge the range of scales and repeat the process until this 

condition does not happen in the final model. 
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The iOFR algorithm is then employed to select the significant terms from the term dictionary. The 

results are shown in Table 2. A total number of 9 terms are selected in the final model. These RBFs are 

shown in Fig 8. Adding these weighted terms together yields the final model. 

 

 

 

Table 2 Sub-models of the system 

Terms 
Err (%) Coefficient 

Standard 

Deviations 
ic  i  

1.211 0.0138 63.0126 3.3423 0.0149 

1.276 0.0152 30.9499 -1.4356 0.0126 

1.260 0.0026 0.4368 -0.7464 0.0278 

1.227 0.0028 0.3922 0.6278 0.0262 

1.248 0.0030 0.3286 0.4774 0.0252 

1.237 0.0022 0.1971 -0.4468 0.0291 

1.201 0.0044 0.1517 2.0520 0.1485 

1.281 0.0028 0.1328 -0.3726 0.0244 

1.291 0.0014 0.0923 -0.3560 0.0331 

 

 

Figure 8 The terms in the final RBF model 
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The model predicted outputs are shown in Fig 9. The restoring force surface and the phase trajectory 

are show in Fig 10 (a) and (b), respectively. It is easy to observe that the RBF model represents the 

nonlinear restoring force better than the polynomial model did. 

 

Figure 9 The model predicted outputs of the RBF model 

 

 

(a)                                                                         (b) 

Figure 10 Reconstruction of the restoring force surface using the RBF model 

The spectral analysis of the model predictions is shown in Fig 11. Although the RBF model prediction 

fits the experimental data better in the time domain and in the state space, the polynomial model 

prediction fits the data better in the frequency domain. There are more energy leaks around the 

harmonic frequencies. 
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Figure 11 The spectra of the model prediction outputs of the RBF model 

Fig 9, 10 and 11 show that the model predicted outputs agree with the experimental data. The results 

show that the radial basis functions successfully overcome the divergence problem which may happen 

in the high order polynomial model fitting. This shows the powerful fitting ability of the radial basis 

function model. Theoretically, the multi-scale radial basis functions are able to recover any complex 

restoring force surface and the multi-scale radial basis function approximations are asymptotically 

optimal, in the sense of convergence rate (Stephen A. Billings et al., 2007). This means a parsimonious 

model can be obtained.  

However one obvious disadvantage of the method is that the model is unphysical and the coefficients 

obtained for the expansion cannot directly yield information about the physical quantities in the 

system, such as the damping and stiffness of the structure. Another disadvantage, which was shown 

in the spectral analysis of the reproduced signals, is that the reproduced signals may have much richer 

frequency components than a harmonic signal. This is not what expected because additional 

frequency components which are not in the experimental data may be introduced through the RBF 

model. 

4.3 Hybrid model combining the polynomial and radial basis functions 

 

According to the analysis in the previous sections, a model which possesses the advantages of both 

the polynomial model and the radial basis function model is expected. That is, the hybrid model can 

not only give an accurate description of the nonlinear dynamics but also  accurately characterise the 

system in frequency domain. In this section a two-level hybrid model will be identified to describe the 

nonlinear oscillations in multi-scale from coarse to fine (Stephen A. Billings et al., 2007; Wei et al., 

2007).  
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A hybrid model which includes both polynomial and RBF terms were used to describe the dynamics. 

The iOFR algorithm is again used to select the significant terms from the mixed term dictionary consists 

of polynomial and RBF candidate terms. This time, the centres of the radial basis functions keep same 

however the scales of the RBF terms are selected in a relatively smaller range from 0.0005 to 0.0030 

to avoid the information overlap with the polynomial terms. This is because the hybrid model 

represents the behaviours of the nonlinear system in two different levels. The polynomials recover 

the main shape of the system and generate harmonic signals while the RBFs to characterise the local 

details. Therefore, the scale of the RBFs is chosen to focus on the local information and shield off the 

global information. While the polynomial terms characterise the large-scale information but neglect 

the local details. The determination of an appropriate scale range for the RBFs is easy to realise in the 

identification. Choose a relatively larger scale range, for example, the maximum scale in Table 2, and 

set the initial range as 0.0005 ~ 0.0152. Reduce the upper limit and apply the orthogonal forward 

regression algorithm until the polynomial terms start to appear in the model. In this example the scale 

range is chosen as 0.0005 ~ 0.0030. 

Apply the orthogonal forward regression algorithm and stop the forward selection process as the sum 

of ERRs reaches 0.95 (Wei, Billings, & Liu, 2004). The obtained model structure and the associated 

coefficients are given as Table 3. The list of the ERRs shows that the polynomial terms play important 

roles in the final model. The comparison of the model predicted outputs and the real data is shown in 

Fig 12. The comparison of the frequency spectra of the predicted outputs and the real data is show in 

Fig 13. The results show that the model predicted outputs excellently agree with the experimental 

data both in the time domain and also in frequency domain. 

Table 3 Sub-models of the hybrid model 

Terms 
Err (%) Coefficients 

Standard 

Deviations 
ic  i  

1.216 0.0030 0.3818 -0.0053 0.0696 

1.282 0.0030 0.1576 -0.3656 0.0271 

1.225 0.0030 0.1417 0.4694 0.0517 

1.208 0.0030 0.0925 -0.7889 0.0987 

3y  0.0751 761.67 18.0948 

1 0.0535 784.30 18.1019 

2y  0.0402 -1454.4 34.2119 

1.248 0.0030 0.0087 2.5037 0.3514 
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1.237 0.0023 0.0016 -0.4164 0.0466 

1.260 0.0023 0.0017 -0.4009 0.0451 

1.277 0.0030 0.0013 -0.2166 0.0305 

1.291 0.0015 0.00064382 -0.3461 0.0477 

1.229 0.0020 0.00049928 0.3819 0.0394 

1.214 0.0010 0.00035982 -0.3333 0.0466 

1.248 0.0026 0.00023084 -1.7875 0.3565 

1.268 0.0016 7.2807e-05 0.1849 0.0455 

1.287 0.0008 6.3289e-05 0.0878 0.0296 

1.254 0.0016 4.8444e-05 0.1114 0.0447 

 

 

Figure 12 Model predicted output of the hybrid model 

 

Figure 13 Spectra of the model predicted output of the hybrid model 

However the hybrid model has not shown significant advantages over the RBF model so far. It is 

expected that the polynomial part of the hybrid model can also give an acceptable description of the 

system behaviours neglecting the details. Comparing Table 3 with Table 1, it can be observed that the 
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three polynomial terms in the hybrid model is exactly same as the first three terms in the purely 

polynomial model.  

Extracting the polynomial terms from the hybrid model yields a new polynomial model as 

 2 3784.30 1454.4 761.67y y y     (10) 

Plot the hybrid model and the extracted polynomial model (10) in the displacement-acceleration 

phase plane. Fig 14 shows that model (10) fits the experimental data very well. 

 

 

Fig 14 The fitness of the hybrid model in the displacement-acceleration phase plane 

The model predicted output of the polynomial part (model(10)) and the spectra of the prediction are 

shown in Fig 15 and 16 respectively.  Although the model predicted outputs do not fit the data very 

well after 6 seconds the model predictions perfectly reproduced the frequency spectra of the 

experimental data, which is even better than the pure polynomial model (7) did. This means that the 

polynomial part of the hybrid model is capable to represent the global behaviours neglecting some 

local details. This is because the Fourier transform always gives average information of the whole time 

series. Simulations show that the hybrid model works stably at an arbitrary long time. 
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Fig 15 The model predicted output of the polynomial part 

 

 

 

Fig 16 Spectra of the model predicted outputs by model (10)  

To sum up, the hybrid model successfully provides a two-level coarse-to-fine, representation of the 

nonlinear systems. The polynomial terms give a coarse description which could characterise the main 

frequency components of the nonlinear oscillations whereas the complete model gives a more 

accurate description of both the local and global behaviours of the system. 

5. Conclusions 
 

The nonlinear oscillations existing in human bouncing has been investigated. A new system 

identification method which combines the restoring force method and the iterative orthogonal 

forward regression algorithm has been introduced. The system identification based method which 

avoids the difficulties in a first principle method is simple to carry out in the practical applications.  

The obtained models have been shown to be able to reproduce the nonlinear oscillation both in the 

time and frequency domain. The new identification method itself extends the restoring force method 

to a more wide class of system with complex nonlinearities. Although a special example where the 

external input is zero and the effect of the velocity can be ignored has been studied in this paper this 

does not prevent the new orthogonal forward regression restoring force surface method to be a 

general choice for the investigation of the nonlinear dynamics. 
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