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Abstract 

Many real-world decisions rely on active sensing, a dynamic process for directing our 

sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though 

ecologically pervasive, limited work has focused on identifying neural correlates of the 

active sensing process. In tactile perception, we often make decisions about an 

object/surface by actively exploring its shape/texture. Here we investigate the neural 

correlates of active tactile decision-making by simultaneously measuring 

electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic 

surface to make perceptual judgments. Since sensorimotor behavior underlies decision 

formation in active sensing tasks, we hypothesized that the neural correlates of decision-

related processes would be detectable by relating active sensing to neural activity. σovel 

brain-behavior correlation analysis revealed that three distinct EEG components, 

localizing to right-lateralized occipital cortex (LτC), middle frontal gyrus (MFG), and 

supplementary motor area (SMA), respectively, were coupled with active sensing as their 

activity significantly correlated with finger kinematics. To probe the functional role of these 

components, we fit their single-trial-couplings to decision-making performance using a 

hierarchical-drift-diffusion-model (HDDM), revealing that the LτC modulated the 

encoding of the tactile stimulus whereas the MFG predicted the rate of information 

integration towards a choice. Interestingly, the MFG disappeared from components 

uncovered from control subjects performing active sensing but not required to make 

perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding 

and evidence accumulation processes, this study delineated, for the first time, the 

functional role of cortical areas in active tactile decision-making.   
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Highlights 

1. Activity in three brain regions was coupled with active tactile sensing kinematics 

2. Active touch correlated with visual but not somatosensory cortex activity  

3. Brain-behavior correlations accounted for single-trial decision-making 

performance 

4. V1 and MFG activations predicted non-decision time and drift rate, respectively 

5. Control experiment validated the roles of V1 and MFG in active tactile tasks 
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1. Introduction 

Perceptual decisions rely on the integration of sensory evidence from the 

environment (Heekeren et al., 2004; Hanks and Summerfield, 2017). The quality of 

sensory evidence depends highly on our actions, as our movements affect how we 

sample, process and integrate information from the external world (Najemnik and Geisler, 

2005; Renninger et al., 2007; Navalpakkam et al., 2010; Schroeder et al., 2010; 

Chukoskie et al., 2013; Toscani et al., 2013; Yang et al., 2016a; Tomassini et al., 2017; 

Tomassini and D'Ausilio, 2017). Hence, to optimize the speed and accuracy of our 

perceptual decisions we need to direct our actions so as to efficiently gather sensory 

information, a process called active sensing (Kleinfeld et al., 2006; Yang et al., 2016b). 

Importantly, the processing of sensory information acquired actively and its translation 

into perceptual choices requires the interaction of multiple neural processes (and 

consequently multiple brain areas) over time (Philiastides and Sajda, 2006, 2007; 

Heekeren et al., 2008; Summerfield and de Lange, 2014; Rahnev et al., 2016). However, 

despite recent scientific interest in active sensing and decision-making, its neural 

underpinnings remain poorly understood. 

Here we address this gap using a response-time active tactile decision-making 

task in which we simultaneously measured the electroencephalogram (EEG), active 

sensing behavior (movement kinematics) and task performance (accuracy and response 

time - RT) of subjects, the goal being to uncover the patterns of neural activity and 

sensorimotor behavior that drive active perceptual decisions. 

To achieve this goal, we proceed in two steps. We first aim to characterize 

prominent components of active sensing brain entrainment. To this end, we correlate the 
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recorded EEG signals with the behavioral kinematics and extract components of neural 

activity coupled with components of sensorimotor behavior. Specifically, we hypothesize 

that changes in the speed with which subjects explore the tactile stimulus are indicative 

of the strategy they employ for acquiring and accumulating perceptual information and 

thus reflect active sensing behavior. Hence, we use the velocity profiles of the finger 

movements performed on each trial as correlates of the EEG recordings in order to 

uncover the neural underpinnings of active tactile sensing. The main advantage of this 

methodology is that it replaces unspecific measures of neural activations with measures 

that directly quantify the coupling between the components of continuous finger 

movement and brain activity, thereby tapping more directly into the neural correlates of 

tactile active exploration.  

We further hypothesize that one’s active sensing behavior, and the neural activity 

that underlies it, provides a view into the processes leading to decision formation. Thus, 

we ask if the perceptual, cognitive and motor processes involved in active tactile decision-

making are modulated by the strength of the identified brain-behavior couplings. To 

dissect the constituent processes of decision-making during active sensing we employ a 

hierarchical drift diffusion model (HDDM) analysis. To assess if these processes bear any 

relation to the extracted brain-behavior correlated components, we integrate the HDDM 

with a regression analysis that uses the brain-behavior correlations as predictors for the 

HDDM parameters. The HDDM framework therefore provides a principled approach to 

investigate whether the neural representations of active tactile sensory processing drive 

decision formation and enables one to identify which of its integral processes may be 

predictive of behavior. Ultimately, we find that two distinct processes, namely tactile 



ϲ 

 

stimulus encoding and evidence accumulation, are driven by two distinct components of 

brain-behavior coupling.  

 

2. Materials and Methods 

β.1 Active tactile texture discrimination task.  Fifteen healthy right-handed subjects 

(6 female, aged β6±β years) performed a two-alternative forced choice (βAFC) texture 

discrimination task during which they had to compare the amplitudes of two sinusoidal 

textures of the same frequency. All experimental procedures have been reviewed and 

approved by the Institutional Review Board (IRB) at Columbia University. 

Subjects performed the task using a haptic device, called a Pantograph (Campion 

et al., β005; Frissen et al., β01β), which can be judiciously programmed to generate tactile 

sensations that resemble exploring real surfaces (see Figure 1A). For this binary 

discrimination task, the workspace of the Pantograph (of dimensions 110mm x 60mm) 

was split into two subspaces (left - L and right - R, 55mm x 60 mm each) and subjects 

experienced continuous sinusoidal forces of different amplitudes (but same wavelength 

of 10mm) in the two subspaces (Figure 1B). Subjects were asked to report as quickly 

and as accurately as possible which of the two subspaces had the higher texture 

amplitude. They placed their right index finger on the plate of the Pantograph, which was 

hidden behind a black curtain, and were allowed to move it freely in the Pantograph 

workspace to explore the textures of both subspaces before reporting their choice by 

pressing one of two buttons on a keyboard (left arrow for L, right arrow for R). During the 

experiment, the curtain blocked the subjects’ view to their fingers, the subjects had no 

other visual input and were instructed to fixate on the keyboard they used to report their 



ϳ 

 

choices. 

τn each trial, subjects compared between the reference amplitude 1 (presented 

either on the left or right subspace) and one of six other amplitude levels (0.5, 0.75, 0.9, 

1.1, 1.β5, 1.5). Each subject performed β0 trials for each amplitude level, resulting in β0 

trials x 6 amplitudes = 1β0 trials in total. The full experiment was split into γ blocks of 40 

trials. τne subject showed poor behavioral performance (accuracy was not significantly 

different from chance level) and another subject’s EEG recordings were significantly 

contaminated with eye movement artifacts, thus data from these two subjects were 

removed from any subsequent analyses. We report results from the remaining 1γ 

subjects.   

β.β Control experiment.  We recruited ten healthy right-handed subjects (4 

females, aged β4±β years) that were naïve to the experimental setup and the tactile 

discrimination experiment described above, and asked them to participate in a second 

experiment. The subjects were asked to actively explore the virtual surface generated by 

the Pantograph using their right index finger. During the experiment, the participants 

experienced the same tactile stimulation as for the tactile discrimination task, i.e. 

continuous sinusoidal forces of different amplitudes in the two subspaces, but, in contrast 

to the first experiment, they did not have to make any perceptual choice. Hence, this 

control experiment served to compare the EEG and kinematic signals between a 

decision-making and a non-decision-making haptic task. It therefore allowed us to 

individuate the components of neural activity and active sensing that can be solely 

attributed to decision-making behavior.     

β.β Data recording and pre-processing. Movement kinematics (x, y coordinates of 
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finger position) and applied forces were measured at a sampling frequency of 1000Hz. 

Single-trial movement velocity waveforms were computed using the derivatives of the 

recorded position. During performance of the task, we also recorded EEG signals at β048 

sampling frequency using a Biosemi EEG system (ActiveTwo AD-box, 64 Ag-AgCl active 

electrodes, 10-10 montage). EEG recordings were preprocessed using EEGLab 

(Delorme and Makeig, β004) as follows. EEG signals were first down-sampled to 1000Hz 

to match movement kinematics and dynamics. Then, they were bandpass filtered to 1-

50Hz using a Hamming windowed FIR filter. To isolate the purely neural component of 

the EEG data, we used the following procedure: we first reduced the dimensionality of the 

EEG data by reconstituting the data using only the top γβ principal components derived 

from Principal Component Analysis (PCA). Thereafter, an Independent Component 

Analysis (ICA) decomposition of the data was performed using the Infomax algorithm (Bell 

and Sejnowski, 1995). We then used an ICA-based artifact removal algorithm called 

MARA (Winkler et al., β011) to remove ICs attributed to blinks, horizontal eye movements 

(HEτG), muscular activity (EMG), and any loose or highly noisy electrodes. MARA 

assigned each IC a probability of being an artifact; we removed components with 

probabilities above 0.5. 

β.γ EEGβBehaviour analysis. To identify correlations between the EEG recordings 

and the subjects’ active sensory experience, we used a novel methodology, termed 

EEGβBeh(avior). EEGβBeh extends the previously developed framework StimβEEG 

(Dmochowski et al., β017) to make it applicable to simultaneously recorded neural activity 

and sensorimotor behavioural signals (see Figure 2 for a graphical illustration of the 

procedure). In the following, we used finger velocity as the kinematic feature representing 
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active sensing behavior, but we also note that using finger position yielded qualitatively 

very similar results.  

The method is based on the temporal filtering of the velocity signals s(t) and the 

spatial integration of EEG signals ݉௜ሺݐሻ recorded from i electrodes (Figure 2): 

ሻݐሺݑ                                        ൌ ݄ሺݐሻ כ ሻݐሺݒ    ሻ ǡݐሺݏ ൌ ෍ ݃௜݉௜ሺݐሻ௜                                                  ሺͳሻ   
where *  in the first equation denotes convolution between two signals, whereas 

the second equation is a weighted summation. The temporal filter h(t) and spatial filter gi 

are found by maximizing the correlation ߩሺݑǡ  ሻ between the filtered movement velocityݒ

u(t) and the filtered EEG activity v(t): 

ǡݑሺߩ                                                    ሻݒ ൌ σ ሻ௧ඥσݐሺݒሻݐሺݑ ሻ௧ݐଶሺݒሻݐଶሺݑ                                                 ሺʹሻ    
To learn the filters that yield maximally correlated EEG and kinematic components, 

we performed Canonical Correlation Analysis (Hotelling, 19γ6; De Cheveigne et al., β017) 

(CCA), which provides multiple pairs of solutions. Each pair c captures in ݃௖௜ a spatial 

filter of EEG activity and in ݄ ௖ሺݐሻ a temporal filter of the movement velocity. Here we chose 

the temporal aperture of the temporal filters to be [-1s,1s] (varying the filter aperture did 

not change qualitatively the results). This choice of temporal filter window allowed both 

positive and negative lags between the EEG and the velocity signals, which was crucial 

for investigating the mutual causal dependencies between the brain and the behavioural 

signals. In other words, by allowing the EEG signals to both precede and follow the 

velocity signals (within a 1s period), we could identify patterns of brain activity that both 

drive and are driven by the sensorimotor behavior. 
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To visualize the spatial distribution of neural activity associated with each filter, we 

computed the EEG components ݓ using the “forward model” formalism as follows (Parra 

et al., β00β; Parra et al., β005; Haufe et al., β014): 

                                                                ܹ ൌ ܴ௠௠ܩሺ்ܴܩ௠௠ܩሻିଵ                                                  ሺ͵ሻ         
where ܴ௠௠ is the autocovariance matrix of the EEG data matrix ܯ ൌሾ݉ଵǡ ݉ଶǡ ڮ ǡ ݉ூሿ and ܩ ൌ ሾ݃ଵǡ ݃ଶǡ ڮ ǡ ݃஼ሿ is a matrix containing the C CCA-derived spatial 

filters. The corresponding forward models are the columns of matrix ܹ ൌ ሾݓଵǡ ଶǡݓ ڮ ǡ  .஼ሿݓ
Hence this approach extracts C pairs of temporal kinematic components and 

spatial EEG components (݄௧ǡ ଵߩ ௜ in decreasing orderߩ ௦ሻ௜ that correlate with strengthݓ ൐ߩଶ ൐ ڮ ൐  .஼ߩ

To determine statistical significance of the correlations at each learned component 

pair (ȡk > 0), we randomized the phase spectrum of the EEG signals, which disrupted the 

temporal relationship between the EEG activity and the kinematics while preserving the 

autocorrelation structure of the signals (Theiler et al., 199β). We generated 1000 phase-

randomized surrogates of the EEG data and computed EEGβBeh correlations with the 

kinematics to define the null distribution from which we estimated p-values. In contrast to 

a standard shuffling procedure that disrupts any coordination across EEG sensors, this 

phase-randomization procedure maintains the magnitude spectrum of the EEG signals, 

thus conserving their autocorrelation structure, which is a fundamental feature of the 

original signals when the significance of cross-correlation is assessed. Hence, using this 

procedure, the obtained surrogates that define the null distribution are a more plausible 

comparison (resulting in a stricter statistical test) than randomly shuffled surrogates.  
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β.4 Source Localization. To identify the brain regions that generated the EEG 

component activations we performed a source reconstruction analysis. We used 

Brainstorm (Tadel et al., β011), an open-source Matlab package for M/EEG signal 

processing, to translate the obtained forward models into distributions of underlying 

cortical activity. A standardized head model based on the average template brain of the 

Montreal σeurological Institute (MσI) was used as single subject MRI data were not 

available. To estimate the sources, we used the whitened and depth-weighted linear Lβ-

minimum norm estimates algorithm with no noise modelling (noise covariance equal to 

the identity matrix) and estimated amplitude SσR of the recordings equal to γ (default -  

used to compute the regularization parameter). We constrained the orientation of the 

source model by modelling at each grid point only one dipole that is oriented normally to 

the cortical surface.  

β.5 Hierarchical Drift Diffusion Modelling of performance data with EEGβBeh 

regressors. We fit the subjects’ performance, i.e. accuracy and response time (RT), with 

a hierarchical drift diffusion model (HDDM) (Wabersich and Vandekerckhove, β014) which 

assumes a stochastic accumulation of sensory evidence over time, toward one of two 

decision boundaries corresponding to correct and incorrect choices (Ratcliff, β00β; 

Ratcliff and McKoon, β008; Ratcliff et al., β015; Ratcliff et al., β016). The model returns 

estimates of internal components of processing such as the rate of evidence 

accumulation (drift rate), the distance between decision boundaries controlling the 

amount of evidence required for a decision (decision boundary), a possible bias towards 

one of the two choices (starting point) and the duration of non-decision processes (non-

decision time), which include stimulus encoding and response production. As per 
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common practice, we assumed that stimulus differences affected the drift rate (Ratcliff 

and Frank, β01β).  

In short, the model iteratively adjusts the above parameters to maximize the 

summed log likelihood of the predicted mean response time (RT) and accuracy. The DDM 

parameters were estimated in a hierarchical Bayesian framework, in which prior 

distributions of the model parameters were updated on the basis of the likelihood of the 

data given the model, to yield posterior distributions (Kruschke, β010b; Wiecki et al., 

β01γ; Wabersich and Vandekerckhove, β014). The use of Bayesian analysis, and 

specifically the hierarchical drift diffusion model has several benefits relative to traditional 

DDM analysis. First, posterior distributions directly convey the uncertainty associated with 

parameter estimates (Gelman, β00γ; Kruschke, β010a). Second, the Bayesian 

hierarchical framework has been shown to be especially effective when the number of 

observations is low (Ratcliff and Childers, β015). Third and more importantly, this 

framework supports the use of other variables as regressors of the model parameters to 

assess relations of the model parameters with other physiological or behavioral data 

(Cavanagh et al., β011; Cavanagh et al., β014; Frank et al., β015; σunez et al., β015; 

Turner et al., β015; Pedersen et al., β016; σunez et al., β017). This property of the HDDM 

allowed us to establish the link between the results of the brain-behavior coupling analysis 

and the decision parameters of the model. 

To implement the hierarchical DDM, we used the JAGS Wiener module (Wabersich 

and Vandekerckhove, β014) in JAGS (Plummer, β00γ), via the Matjags interface in Matlab 

to estimate posterior distributions. For each trial, the likelihood of accuracy and RT was 

assessed by providing the Wiener first-passage time (WFPT) distribution with the four 
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model parameters (boundary separation, starting point, non-decision time, and drift rate). 

Parameters were drawn from uniformly distributed priors and were estimated with non-

informative mean and standard deviation group priors. The starting point was set as the 

midpoint between the two decision boundaries as the experimental design induced no 

bias towards one of the two choices (Philiastides et al., β011). There were 5,500 samples 

drawn from the posterior; the first 500 were discarded (as “burn-in”) and the rest were 

subsampled (“thinned”) by a factor of 50 following the conventional approach to MCMC 

sampling whereby initial samples are likely to be unreliable due to the selection of a 

random starting point and neighboring samples are likely to be highly correlated (Wiecki 

et al., β01γ; Wabersich and Vandekerckhove, β014). The remaining samples constituted 

the probability distributions of each estimated parameter.  

As part of the model fitting within the HDDM framework, we used the single-trial 

EEGβBeh correlations of the identified components as regressors of the decision 

parameters (non-decision time, Ĳ and drift rate, į) as follows: 

                                                         ߬ ൌ ଴ߚ ൅ ଵߚ כ ଵଶߩ ൅ ଶߚ  כ ଶଶߩ   ൅ ଷߚ  כ  ଷଶ                                        ሺͶሻߩ

ߜ                                                           ൌ ଴ߛ ൅ ଵߛ כ ଵଶߩ ൅ ଶߛ  כ ଶଶߩ  ൅ ଷߛ  כ  ଷଶ                                        ሺͷሻߩ

In these regressions, ߩ௜ଶ are the squared single-trial EEGβBeh correlations of the 

three components respectively. The coefficients ߚ௜ (ߛ௜) weight the slope of the non-

decision time (drift rate) by the values of ߩ௜ଶ on that specific trial, with an intercept ߚ଴ (ߛ଴). 

By using these eight regression coefficients we were able to test the influences of each 

of the three identified components on either of the model parameters (Cavanagh et al., 

β014). Posterior probability densities of each regression coefficient were estimated using 

the sampling procedure described above and were graphically represented as violin plots 
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(see Figure 4B-C for examples). Significantly positive (negative) effects were determined 

when >99% of the posterior density was higher (lower) than 0. 

For comparison with alternate models, we used the Deviance Information Criterion 

(DIC), a measure widely used for fit assessment and comparison of hierarchical models 

(Spiegelhalter et al., β00β). DIC selects the model that achieves the best trade-off 

between goodness-of-fit and model complexity. Lower DIC values favor models with the 

highest likelihood and least degrees of freedom. 

A detailed account of the analysis pipeline implemented in this study is given 

graphically in the form of a flowchart in Figure 3. 

 

3. Results 

3.1 Tactile discrimination performance. To generate tactile stimulation that can be  

actively sensed, we employed a haptic stimulator (Campion et al., 2005; Frissen et al., 

2012) (Figure 1A) and programmed it to render a virtual grating texture with different 

amplitudes (Figure 1B). In particular, we split the workspace of the haptic stimulator into 

two regions (left - L and right - R) and asked fifteen subjects to actively explore the virtual 

surface and report as quickly and as accurately as possible which of the two subspaces 

had higher texture amplitude. One of the two regions (termed reference) had a fixed virtual 

amplitude while the other subspace (termed comparison) had a varying amplitude for 

each trial. On each trial, subjects actively moved their finger to scan the two regions in 

order to compare a reference texture amplitude (which was randomly presented in one of 

the two regions) and a comparison texture with higher or lower amplitude (six amplitude 

differences: -0.5, -0.25, -0.1, 0.1, 0.25. 0.5) (Figure 1C). We found that task performance 
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improved significantly with increasing stimulus difference, as reflected by a larger fraction 

of correct choices (p<10-7, F(2, 36)=27.03) and faster RTs (p<0.05, F(2, 36)=4.04) 

(Figure 1D,F). 

3.2 Active sensing behavioral kinematics. During this active tactile decision-

making task, we also recorded a) the subjects’ finger position, offering a detailed account 

of their active sensing strategy and b) their EEG activity reflecting the neural dynamics 

that underlie performance of this task. First, we examined what aspects of the active 

sensing strategy used by the subjects were affected by task difficulty. We found that 

subjects switched between the two textures (in order to compare their amplitudes before 

reaching a decision) more times when the task was harder, but this dependence of the 

number of crossings on stimulus differences was not significant at the population level 

(p=0.17, F(2,36)=1.87, Figure 1E). Interestingly, the time-averaged speed with which the 

subjects scanned the textures was independent of the stimulus difference (Figure 1G). 

However, instantaneous finger velocity varied considerably within each trial suggesting 

that subjects modulated their tactile exploration speed in order to actively sense the two 

surfaces before making a choice (Figure 1H).    

3.3. EEG activity. After characterizing the subjects’ active sensing behavior, we 

aimed to investigate the structure of their whole-brain activity during performance of this 

task. We thus applied Principal Component Analysis (PCA) to the EEG recordings pooled 

across all participants to extract the main dimensions of EEG variation and then 

performed source localization analysis to the first three PCs to identify the neuronal 

origins of these brain activations. We found that the most prominent EEG components 

localized to premotor, motor and supplementary motor areas (first PC, Figure 1J), and 



ϭϲ 

 

right-lateralized somatosensory as well as other parietal areas (second and third PC, 

Figure 1K-L).   

3.4 Three distinct brain to active sensing couplings. Following the aforementioned 

general characterization of EEG activity in this task, we then probed the relationship 

between the subjects’ brain activity and their active sensory experience. We hypothesized 

that the subjects’ active sensing strategy is represented by their finger kinematics and in 

particular their movement velocity which they varied in order to actively explore the two 

surfaces. To relate movement velocity with the recorded EEG signals, we capitalized on 

a novel computational approach, termed “Stim2EEG” (Dmochowski et al., 2017), for the 

fusion of neuroimaging and dynamic stimulus signals. We extended the applicability of 

this approach to sensorimotor behavioral measurements (kinematic signals here) and 

termed this analytical method as “EEG2Beh(avior)”. EEG2Beh aims to identify 

components of brain – sensorimotor behavior coupling using an optimization procedure 

based on Canonical Correlation Analysis (CCA) (Hotelling, 1936). Specifically, EEG2Beh 

selects a spatial filter w to apply to the EEG signals and a temporal filter h to apply to the 

kinematic feature (i.e. velocity) time series such that the resulting filter outputs are 

maximally correlated in time (Figure 2). Ultimately, this approach outputs multiple spatial 

EEG components matched with multiple temporal kinematic components as well as the 

coefficient of determination (square of the correlation coefficient) of the filter outputs ߩଶ,  

a measure of the brain-behavior coupling for each pair of components. 

To identify EEGβBeh components that describe performance of this task 

consistently across subjects, we pooled the pre-processed EEG and velocity data across 

all subjects and applied them to the EEGβBeh algorithm. The algorithm extracted three 
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pairs of distinct EEG (spatial) and kinematic (temporal) components (Figure 2) showing 

significant EEGβBeh coupling (p<0.05, corrected for multiple comparisons using 

Bonferroni correction). Source localization of the first EEG component revealed a 

neuronal origin in the right lateral occipital complex (LτC) (Figure 4A). The brain source 

of the second EEG component was localized to the right middle frontal gyrus (MFG) 

(Figure 4B), whereas the third component had its origin in the supplementary motor area 

(SMA) and premotor cortex (Figure 4C). Interestingly, the first two components with the 

highest brain-behavior couplings did not correspond to the EEG components that 

accounted for the highest variance in the data (see sources of the three first PCs in Figure 

1J). This finding suggests that the components carrying most of the power in the EEG 

recordings did not correlate with active sensing; instead brain areas with lower activity 

(less than 10% of the variance of the EEG data) were more strongly coupled with the 

movement kinematics.    

To evaluate whether the three extracted EEGβBeh components characterized the 

EEG-kinematics relationship for each individual subject, we filtered the single-subject 

EEG and velocity signals with the identified spatial and temporal filters respectively and 

computed the EEGβBeh correlations ߩଶ of each subject. To test for statistical significance 

of the single-subject correlations, we performed a permutation test using phase-

randomized EEG data (see Materials and Methods for details). First, the phase-spectrum 

of the EEG time series of each subject was randomized and then the resulting surrogate 

EEG data were filtered by the spatial filters before computing the correlations with the 

temporally filtered velocity signals. Using this test (repeated 1000 times), we found that 

EEG2Beh couplings were significant (p<0.05, corrected for multiple comparisons using 
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Bonferroni correction) for all but three subjects for each component (different subjects for 

each component, so each subject had at least two of the three components), which 

suggests that the identified components were present in the majority of the subjects.  

3.5 Brain-behavior correlations predict HDDM parameters. Having specified the 

main components of brain activity and active sensing behavior that describe this task, we 

then aimed to establish the missing link between this brain-behavior coupling and 

decision-making performance. We asked whether trial-to-trial fluctuations in the brain-

behavior coupling have a direct influence on behavior and, in particular, which decision-

making processes they may be implicated in. To address this question, we first quantified 

the brain-behavior coupling in single trials, i.e. computed single-trial ߩଶ values by filtering 

the single-trial EEG and kinematic data with the identified spatial and temporal filters 

respectively. Then, we integrated the single-trial ߩଶ values into a hierarchical drift diffusion 

model (HDDM) (Ratcliff and McKoon, 2008; Wiecki et al., 2013), a cognitive model of 

decision-making behavior that decomposes task performance, i.e. accuracy and RT, into 

the internal components of processing representing the rate of sensory information 

integration (drift rate, į), the amount of evidence required to make a choice (decision 

boundary separation, Į), and the duration of other processes (non-decision time, Ĳ), i.e. 

stimulus encoding and response production. 

As part of the fitting of the HDDM model, we estimated regression coefficients (ȕ, 

Ȗ) to determine the relationship between trial-to-trial variations in ߩଶ  and the main 

decision parameters. Our hypothesis was that that the strength of the brain-behavior 

couplings pertains to decision formation. Hence, this approach served to assess whether 

any of the HDDM parameters representing distinct decision formation components 
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showed any relation to the identified brain-behavior correlations on single trials.  

Our results revealed that the task performance data were fit well by the HDDM with 

trial-dependent drift rate, non-decision time and decision boundary separation (R2=0.81, 

see Figure 5A for the model fits of the behavioral accuracies and RTs). This finding 

indicates that the HDDM model can explain behavior during such a task that, in contrast 

to most speeded decision-making tasks, includes active sampling and exploration of both 

alternatives and consequently longer response times. In particular, we found considerably 

longer non-decision times (1.71s±0.01s) than those typically found during rapid 

perceptual decisions (0.3s-0.4s), which suggests that these longer non-decision time 

durations likely capture the extra time needed to sense both stimuli and switch between 

them. 

More importantly, the HDDM model with EEG2Beh regressors of the non-decision 

times and drift rates, provided a better trade-off between goodness-of-fit and complexity 

(as assessed by the Deviance Information Criterion - DIC for model selection 

(Spiegelhalter et al., 2002)) compared to alternative HDDM models (see Figure 5Ǻ for 

DIC comparisons). Specifically, the model of choice (shown in Figure 6A) provided a 

better fitting of the task performance data than a) a model that did not include EEG2Beh 

regressors, b) models that included regressors of the non-decision times only or the drift 

rates only, or c) a model that included a regressor of the decision boundary separation. 

Thus, we deduced that using the brain-behavior couplings as predictors of single-trial 

non-decision times and drift rates yielded better HDDM model performance.     

Central to our study, we then examined whether any of the EEG2Beh regressors 

were significantly predictive of the HDDM model parameters. We found that the brain-
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behavior correlations of the first (occipital) component were significantly negatively 

correlated to the non-decision times (ȕ1<0 with p<0.01, i.e. the stronger the coupling the 

shorter the non-decision times, Figure 6B) and the correlations of the second (prefrontal) 

component were predictive of the drift rate (Ȗ2>0 with p<0.01, i.e. higher drift rates for 

stronger couplings, Figure 6C). Interestingly, the estimated effects (Ȗ2) of the ߩଶ of the 

second component on drift rate were not significantly different for the three difficulty levels 

(Figure 5C) indicating that this relationship is not modulated by the amount of sensory 

evidence. In contrast, the constant term (Ȗ0) showed a significant increase (p<0.001) with 

the amount of sensory evidence. Taken together, these results suggest that the drift rate 

was proportional to the amount of sensory evidence and its trial-to-trial fluctuations were 

modulated by the brain-behavior couplings over prefrontal areas. Finally, the third 

component showed similar relations to the HDDM parameters as the ones described 

above (negative for the non-decision times and positive for the drift rates) but none of the 

two were significant (p>0.05).  

3.6 No MFG activation when performing active sensing but not decision-making. 

To validate the functional roles of the identified components as revealed by the HDDM 

analysis, we also applied the EEG2Beh analysis to EEG and kinematic signals recorded 

while naïve subjects actively interrogated the same stimuli but did not have to make a 

perceptual choice. The obtained neural components localized to SMA (first and third 

component) and LOC (all three components, see Figure 7). The presence of these 

activations in such a non-decision-making task corroborates their involvement in active 

sensing behavior. In particular, these results are consistent with the identified implication 

of LOC in the formation of tactile stimulus representations, i.e. a sensory/stimulus-
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encoding role, and a neither sensory nor decision (but likely a motor) related role for SMA. 

Importantly, no MFG activation was found in this control experiment which indicates that 

this component is present only when a perceptual choice is made and reflects a decision-

related signal.   

 

4. Discussion     

In this study, we probed the components of brain activity and sensorimotor 

behavior involved in active perceptual decisions and showed that the sensorimotor 

strategy employed for active sensing drives the perceptual and cognitive processes 

leading to decision formation. In particular, the quality of tactile stimulus encoding and 

evidence accumulation pertains to the coupling between the kinematic patterns of the 

subject’s motion and the neural activity that drives (and is driven by) this motion. The 

significance of our approach and the implications of the findings are discussed in the 

following. 

4.1 Active sensing as a window onto the neural processes of decision-making. 

There has been significant progress in the study of the neural processes of perceptual 

decision-making (Heekeren et al., 2008; Donner et al., 2009; Rushworth et al., 2009; 

O'Connell et al., 2012; Wyart et al., 2012; Lou et al., 2014; Hanks and Summerfield, 

2017). However, in most decision-making research, sensory information sampling, 

processing, and integrating takes place passively, whereas in real-world settings most 

perceptual decisions are made during active behaviors (e.g eye movements to gather 

information about a visual stimulus (Najemnik and Geisler, 2005; Kleinfeld et al., 2006; 

Renninger et al., 2007; Najemnik and Geisler, 2008; Navalpakkam et al., 2010; Chukoskie 
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et al., 2013; Toscani et al., 2013) or hand/finger movements to explore a tactile surface 

(Lederman and Klatzky, 1986; Lederman and Klatzky, 1987; Oddo et al., 2017; Rongala 

et al., 2017)). This process entails the integration of information from multiple locations in 

order to both select the next movement and solve the task (Hayhoe and Ballard, 2005; 

Rothkopf et al., 2007; Schroeder et al., 2010; Chukoskie et al., 2013; Morillon et al., 2015; 

Schroeder and Ritt, 2016; Yang et al., 2016a; Yang et al., 2016b). Here we investigated 

this sensorimotor coupling in a decision making task using a novel approach which 

decodes a pattern of neural activity that encodes a pattern of the movement kinematics 

(Dmochowski et al., 2017). The development of similar approaches relating neural activity 

to continuous stimulus or behavioral variables has been a topic of major recent interest 

(Crosse et al., 2016; De Cheveigne et al., 2017; Ince et al., 2017; Oddo et al., 2017).   

4.2 A distributed neural network for active perceptual decision-making. Here, we 

found that movement kinematics are encoded in different brain regions and the respective 

brain-behaviour coupling was predictive of dissociable decision-making processes.  

First, the coupling of right occipital cortical activity with the movement kinematics 

was shown to modulate the non-decision time duration of the decision formation 

procedure. This parameter includes the durations of a) the stimulus encoding and b) the 

motor response to indicate the choice made. From these two processes, the latter is not 

expected to vary significantly from trial to trial in this experimental paradigm and 

furthermore, motor actions are not localized in occipital areas. Hence, we deduce that the 

correlation of the first pair of EEG2Beh components is likely associated with the stimulus 

encoding process. We further discuss the role of visual cortex in tactile decision-making 

in the next section. 
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Second, we found that the component localizing to prefrontal cortex was predictive 

of the rate of evidence accumulation towards a tactile decision, which is also compatible 

with previous work. The prefrontal cortex has been shown to play an important role in 

decision-making and, in particular, it has been implicated in perceptual (but also 

economic) information integration (Heekeren et al., 2006; Philiastides et al., 2011; 

Rahnev et al., 2016; Sterzer, 2016).  We should note that, in this study, the contribution 

of prefrontal cortex to evidence accumulation may be direct, i.e. by representing a 

decision variable, or indirect, i.e. by playing a role in regulating other cognitive processes 

such as task engagement, attention or arousal that impact on the rate at which evidence 

is accumulated. Also, our findings do not rule out the possibility that other brain areas – 

not directly related to active sensing - may contribute to regulating evidence accumulation 

in this task. 

We also identified a third component localizing to the supplementary motor area 

that showed significant EEG-kinematics coupling but did not correlate with any DDM 

model parameter. SMA participates in producing motor behavior and has been previously 

demonstrated to be involved in tactile decision-making (Pleger et al., 2006) and, in 

particular, to correlate with perceptual sensitivity to tactile roughness (Kim et al., 2015). 

SMA has also been implicated in the calculation of motor plans during continuous 

movements (Pereira et al., 2017). We thus aim to further elucidate the role of SMA in 

active tactile decisions in future work involving simultaneous EEG and fMRI recordings.  

Taken together, our results suggest that active perceptual decision-making is 

based on the interaction of different neural networks, which have complementary roles in 

decision formation (Philiastides et al., 2006; Philiastides and Sajda, 2007; Ploran et al., 
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2007; Heekeren et al., 2008; Mostert et al., 2015; Delis et al., 2016). 

4.3 Deciphering the role of visual cortex in tactile decision-making. Our findings 

are consistent with prior work associating the lateral occipital cortex with tactile 

processing (Sathian, 2005; Zhang et al., 2005; Stilla et al., 2008; Lucan et al., 2010; 

Sathian, 2016) and assigning a multimodal role to the visual cortex (Lacey et al., 2007; 

Stilla and Sathian, 2008; Lacey and Sathian, 2011, 2012, 2014, 2015; Murray, 2016; 

Murray et al., 2016). Importantly, Zangaladze and collaborators demonstrated the causal 

involvement of occipital cortex in tactile discrimination performance (Zangaladze et al., 

1999). Here we investigated further its role in tactile behaviors in which decision times 

are under subjects' control and showed that occipital cortex contributes to the 

transmission of information from the sensory organs to the evidence accumulation 

process. In contrast to current belief that visual cortex represents the features of tactile 

stimuli that lead to a “tactile object” (tactile features provide explicit information about 

shape, orientation etc.) rather than fine grain tactile textures (as in our experiment) 

(Zangaladze et al., 1999), our data showed that the representation of the fine tactile 

textures indeed localized to visual cortex.  

So why do we see visual cortex in a fine grain tactile discrimination task? We 

believe that the difference is due to active sensing. Previous work referenced above used 

very controlled, short trial-based paradigms where subjects were presented with stimuli 

without a need to actively sense. What is unique to our work is that the process of active 

sensing likely results in subjects dynamically forming a representation of the tactile 

surface into an object. For example, as they move their finger, exploring the fine texture 

enables them to integrate information so that they can represent spatial locations of the 
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textural boundaries and the spatial extent of the textures themselves. Though subjects 

do not need to report those object-related properties here, having a representation of 

such properties enables them to potentially make more efficient decisions — e.g. using a  

representation of the tactile boundary to guide rapid comparisons of textural differences.   

Though additional experiments are needed to investigate the interaction of the 

representation and the task objective (textural decision vs. object-level decision), our 

current work provides evidence that active sensing itself allows the brain to take simple 

stimuli and tasks and build more complex representations that would be of greater utility 

than just solving the simple task at hand. 

4.4 Informed cognitive modeling to uncover latent neural processes. An important 

contribution of our study is the dissociation of the roles of the identified neural/kinematic 

patterns. This was only made possible by the joint cognitive modeling of behavioral and 

neural/kinematic data that linked the neural correlates of sensori-motor behavior with the 

cognitive processes involved in decision-making. Similar model-based cognitive 

neuroscience approaches have been proposed recently and have been shown to be 

effective in characterizing the neural underpinnings of behavioral components (Turner et 

al., 2015; Turner et al., 2017). By means of this approach, neural and other physiological 

measures of various cognitive processes have been identified (Ratcliff et al., 2009; 

Cavanagh et al., 2011; Ratcliff and Frank, 2012; Cavanagh et al., 2014; Dmochowski and 

Norcia, 2015; Frank et al., 2015; Nunez et al., 2017). Here we asked whether the neural 

representations of active sensing are used to generate decision-making behavior and in 

particular if their trial-to-trial fluctuations affect decision-making performance. We found 

that the trial-to-trial variability of the brain-behavior coupling in a) occipital and b) 
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prefrontal cortices – indexes the efficiency of a) stimulus encoding and b) integration of 

perceptual information respectively.  

Overall, this study indicates that active sensing provides a window into 

understanding the patterns of brain activity and sensorimotor behavior that drive 

perceptual decision-making and offers the first direct evidence on the neural networks 

underlying active tactile decisions. In particular, we demonstrate that, during active tactile 

sensing, the right occipital (presumably “visual”) cortex has a central role in forming tactile 

stimulus representations whereas the middle frontal gyrus contributes to regulating how 

quickly perceptual evidence accumulates towards a choice.    

 

Figure Captions 

Figure1. Experimental design, behavioral results and principal components of EEG 

signals. A. The Pantograph is a haptic device used to render virtual surfaces that can be 

actively sensed. B. The stimulus. We programmed the Pantograph to generate a virtual 

grating texture. The workspace was split into two subspaces (left - L and right - R) that 

differed in the amplitude of the virtual surface that the subjects actively sensed. τne of 

the two sides (randomly assigned) had the reference amplitude (equal to 1) and the other 

had the comparison amplitude that varied on each trial taking one of the values: 0.5, 0.75, 

0.9, 1.1, 1.β5, and 1.5. C. Index finger trajectory indicating the scanning pattern of the 

virtual texture in one trial. The two red dots indicate the starting point and endpoint. τn 

this trial, the subject actively sensed the left subspace first, then moved to the right 

subspace and explored it before coming back to the left subspace again and reporting 

their choice. D. Psychometric curve indicating the percentage of non-reference choices 
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for all stimulus differences. Dots indicate average proportion of choices across subjects 

and errorbars are standard error of the means (sem) across subjects. Data are fit using 

a cumulative Gaussian function. E. Response times for all stimulus differences shown as 

averages (± sem) across subjects. F. σumber of crossings (i.e. switchings between the 

two stimuli) for all stimulus differences shown as averages (± sem) across subjects. G. 

Average finger velocities for all stimulus differences shown as averages (± sem) across 

subjects.  H. Velocity profile of the finger movement during the example trial. J-K-L. Brain 

sources of the first three principal components of the recorded EEG signals across 

subjects. 

Figure2. Schematic view of EEGβBeh(avior) and the identified . Subjects move their 

fingers to actively sense a surface while their brain activity (e.g. EEG signals) ri(t) is 

recorded. The relevant kinematic features of the sensorimotor behavior (the movement 

velocity here) are extracted, resulting in a time series s(t). An optimization procedure, 

implemented via canonical correlation analysis, then computes spatial filters w to apply 

to the neural signals and temporal filters h(t) to apply to the velocity such that the resulting 

filter outputs are maximally correlated in time. The algorithm output is a set of multiple 

EEG-kinematic components and their coupling strengths ȡβ. Three pairs of EEG 

components (scalp maps of neural activity) and their matching kinematic components 

(temporal profiles of velocity filters) were found to show significant correlations. 

Figure3. Illustration of the analysis framework implemented in this study. To characterize 

active tactile decision-making, three types of measurements are simultaneously made: a) 

EEG recordings, b) sensorimotor signals (movement kinematics), and c) task 

performance measures (accuracy and response time - RT). EEG and kinematic signals 
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are input to the EEGβBeh algorithm that outputs pairs of brain – behavior coupling 

components (scalp maps and temporal kinematic filters) and their correlation measures 

ȡβ. The brain (EEG) components are input to a source localization algorithm to identify 

their neuronal origins. The EEGβBeh coupling strengths ȡβ inform the hierarchical drift 

diffusion modelling (HDDM) of the task performance data. HDDM uses the ȡβ to translate 

accuracy and RT into the components of decision-making processing (such as evidence 

accumulation or stimulus encoding) thereby characterizing the functional role of each 

EEGβBeh component. 

Figure4. Brain sources of the three EEG components showing significant brain-behavior 

couplings.  

Figure5. HDDM fitting and model comparisons. ǹ. Choice proportions and RT 

distributions are captured by EEGβBeh-informed HDDM. Behavioral RT distributions (in 

green) are shown for each stimulus difference together with posterior predictive 

simulations from the HDDM (in blue). σegative values in the time axis correspond to 

incorrect choices and positive values represent correct choices. Higher histogram values 

in the positive time axis indicate higher proportion of correct choices. Fitting accuracy is 

worse with lower stimulus differences. B. Comparison with alternate models. We 

compared the HDDM model of choice with alternative HDDM models using the Deviance 

Information Criterion (DIC). We tested HDDM models where either the drift rate (į) or the 

non-decision time (Ĳ) or both were not dependent on the EEGβBeh correlations and a 

model where the decision boundary (Į) was dependent on the EEGβBeh correlations. 

Positive difference DIC values (DICmodel – DICoptimal) for all four models indicate that 

the model of choice achieved a better trade-off between goodness-of-fit and number of 
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free parameters. 

Figure6. Formulation of best HDDM model and regression results. A. Graphical model 

showing hierarchical estimation of Drift Diffusion Model parameters with EEGβBeh 

regressors. Round nodes represent continuous random variables and double-bordered 

nodes represent deterministic variables, defined in terms of other variables. Shaded 

nodes represent recorded or computed signals, including single-trial behavioral data 

(accuracy, RT) and EEGβBeh coupling measures (ȡβ). τpen nodes represent 

unobserved latent parameters. Parameters are modelled as random variables with 

inferred means ȝ and variances ıβ. Plates denote that multiple random variables share 

the same parents and children. The outer plate is over difficulty levels d while the inner 

plate is over trials n. For example, each single-trial boundary separation an,d shares the 

same parents ȝĮ and ıĮβ that define the distribution across trials and difficulty levels. 

Single-trial variations of non-decision time Ĳ and drift rate į are determined by EEGβBeh 

couplings with regression coefficients ȕi and Ȗi. B. Violin plots showing the distribution of 

the regression coefficients ȕi (100 samples drawn from the distribution) of the coupling 

strengths ȡiβ of the three EEGβBeh components for the prediction of single-trial non-

decision times Ĳ. C. Violin plots showing the distribution of the regression coefficients Ȗi 

(100 samples drawn from the distribution) of the coupling strengths ȡiβ of the three 

EEGβBeh components for the prediction of single-trial drift rates į. 

Figure7. Brain sources of the three significant EEGβBeh components extracted from the 

data of the control experiment, i.e. when subjects actively explored the tactile stimuli but 

did not make any perceptual choice. 
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DŵŽĐŚŽǁƐŬŝ JP͕  Kŝ JJ͕ DĞGƵǌŵĂŶ P͕  SĂũĚĂ P͕  PĂƌƌĂ LC ;ϮϬϭϳͿ EǆƚƌĂĐƚŝŶŐ ŵƵůƚŝĚŝŵĞŶƐŝŽŶĂů ƐƚŝŵƵůƵƐͲƌĞƐƉŽŶƐĞ 
ĐŽƌƌĞůĂƚŝŽŶƐ ƵƐŝŶŐ ŚǇďƌŝĚ ĞŶĐŽĚŝŶŐͲĚĞĐŽĚŝŶŐ ŽĨ ŶĞƵƌĂů ĂĐƚŝǀŝƚǇ͘ NĞƵƌŽIŵĂŐĞ͘ 

DŽŶŶĞƌ TH͕ SŝĞŐĞů M͕ FƌŝĞƐ P͕  EŶŐĞů AK ;ϮϬϬϵͿ BƵŝůĚƵƉ ŽĨ ĐŚŽŝĐĞͲƉƌĞĚŝĐƚŝǀĞ ĂĐƚŝǀŝƚǇ ŝŶ ŚƵŵĂŶ ŵŽƚŽƌ ĐŽƌƚĞǆ 
ĚƵƌŝŶŐ ƉĞƌĐĞƉƚƵĂů ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ͘ CƵƌƌ BŝŽů ϭϵ͗ϭϱϴϭͲϭϱϴϱ͘ 

FƌĂŶŬ MJ͕ GĂŐŶĞ C͕ NǇŚƵƐ E͕ MĂƐƚĞƌƐ S͕ WŝĞĐŬŝ TV͕ CĂǀĂŶĂŐŚ JF͕  BĂĚƌĞ D ;ϮϬϭϱͿ ĨMRI ĂŶĚ EEG ƉƌĞĚŝĐƚŽƌƐ 



ϯϭ 

 

ŽĨ ĚǇŶĂŵŝĐ ĚĞĐŝƐŝŽŶ ƉĂƌĂŵĞƚĞƌƐ ĚƵƌŝŶŐ ŚƵŵĂŶ ƌĞŝŶĨŽƌĐĞŵĞŶƚ ůĞĂƌŶŝŶŐ͘ J NĞƵƌŽƐĐŝ ϯϱ͗ϰϴϱͲϰϵϰ͘ 
FƌŝƐƐĞŶ I͕ )ŝĂƚ M͕ CĂŵƉŝŽŶ G͕ HĂǇǁĂƌĚ V͕ GƵĂƐƚĂǀŝŶŽ C ;ϮϬϭϮͿ TŚĞ ĞĨĨĞĐƚƐ ŽĨ ǀŽůƵŶƚĂƌǇ ŵŽǀĞŵĞŶƚƐ ŽŶ 

ĂƵĚŝƚŽƌǇͲŚĂƉƚŝĐ ĂŶĚ ŚĂƉƚŝĐͲŚĂƉƚŝĐ ƚĞŵƉŽƌĂů ŽƌĚĞƌ ũƵĚŐŵĞŶƚƐ͘ AĐƚĂ PƐǇĐŚŽů ;AŵƐƚͿ ϭϰϭ͗ϭϰϬͲϭϰϴ͘ 
GĞůŵĂŶ A ;ϮϬϬϯͿ A BĂǇĞƐŝĂŶ ĨŽƌŵƵůĂƚŝŽŶ ŽĨ ĞǆƉůŽƌĂƚŽƌǇ ĚĂƚĂ ĂŶĂůǇƐŝƐ ĂŶĚ ŐŽŽĚŶĞƐƐͲŽĨͲĨŝƚ ƚĞƐƚŝŶŐ͘ IŶƚ SƚĂƚ 

RĞǀ ϳϭ͗ϯϲϵͲϯϴϮ͘ 
HĂŶŬƐ TD͕ SƵŵŵĞƌĨŝĞůĚ C ;ϮϬϭϳͿ PĞƌĐĞƉƚƵĂů DĞĐŝƐŝŽŶ MĂŬŝŶŐ ŝŶ RŽĚĞŶƚƐ͕ MŽŶŬĞǇƐ͕ ĂŶĚ HƵŵĂŶƐ͘ NĞƵƌŽŶ 

ϵϯ͗ϭϱͲϯϭ͘ 
HĂƵĨĞ S͕ MĞŝŶĞĐŬĞ F͕  GŽƌŐĞŶ K͕ DĂŚŶĞ S͕ HĂǇŶĞƐ JD͕ BůĂŶŬĞƌƚǌ B͕ BŝĞƐƐŵĂŶŶ F ;ϮϬϭϰͿ OŶ ƚŚĞ ŝŶƚĞƌƉƌĞƚĂƚŝŽŶ 

ŽĨ ǁĞŝŐŚƚ ǀĞĐƚŽƌƐ ŽĨ ůŝŶĞĂƌ ŵŽĚĞůƐ ŝŶ ŵƵůƚŝǀĂƌŝĂƚĞ ŶĞƵƌŽŝŵĂŐŝŶŐ͘ NĞƵƌŽIŵĂŐĞ ϴϳ͗ϵϲͲϭϭϬ͘ 
HĂǇŚŽĞ M͕ BĂůůĂƌĚ D ;ϮϬϬϱͿ EǇĞ ŵŽǀĞŵĞŶƚƐ ŝŶ ŶĂƚƵƌĂů ďĞŚĂǀŝŽƌ͘  TƌĞŶĚƐ ŝŶ CŽŐŶŝƚŝǀĞ SĐŝĞŶĐĞƐ ϵ͗ϭϴϴͲϭϵϰ͘ 
HĞĞŬĞƌĞŶ HR͕ MĂƌƌĞƚƚ S͕ UŶŐĞƌůĞŝĚĞƌ LG ;ϮϬϬϴͿ TŚĞ ŶĞƵƌĂů ƐǇƐƚĞŵƐ ƚŚĂƚ ŵĞĚŝĂƚĞ ŚƵŵĂŶ ƉĞƌĐĞƉƚƵĂů 

ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ͘ NĂƚ RĞǀ NĞƵƌŽƐĐŝ ϵ͗ϰϲϳͲϰϳϵ͘ 
HĞĞŬĞƌĞŶ HR͕ MĂƌƌĞƚƚ S͕ BĂŶĚĞƚƚŝŶŝ PA͕ UŶŐĞƌůĞŝĚĞƌ LG ;ϮϬϬϰͿ A ŐĞŶĞƌĂů ŵĞĐŚĂŶŝƐŵ ĨŽƌ ƉĞƌĐĞƉƚƵĂů 

ĚĞĐŝƐŝŽŶͲŵĂŬŝŶŐ ŝŶ ƚŚĞ ŚƵŵĂŶ ďƌĂŝŶ͘ NĂƚƵƌĞ ϰϯϭ͗ϴϱϵͲϴϲϮ͘ 
HĞĞŬĞƌĞŶ HR͕ MĂƌƌĞƚƚ S͕ RƵĨĨ DA͕ BĂŶĚĞƚƚŝŶŝ PA͕ UŶŐĞƌůĞŝĚĞƌ LG ;ϮϬϬϲͿ IŶǀŽůǀĞŵĞŶƚ ŽĨ ŚƵŵĂŶ ůĞĨƚ 

ĚŽƌƐŽůĂƚĞƌĂů ƉƌĞĨƌŽŶƚĂů ĐŽƌƚĞǆ ŝŶ ƉĞƌĐĞƉƚƵĂů ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ ŝƐ ŝŶĚĞƉĞŶĚĞŶƚ ŽĨ ƌĞƐƉŽŶƐĞ ŵŽĚĂůŝƚǇ͘ 
P NĂƚů AĐĂĚ SĐŝ USA ϭϬϯ͗ϭϬϬϮϯͲϭϬϬϮϴ͘ 

HŽƚĞůůŝŶŐ H ;ϭϵϯϲͿ RĞůĂƚŝŽŶƐ ďĞƚǁĞĞŶ ƚǁŽ ƐĞƚƐ ŽĨ ǀĂƌŝĂƚĞƐ͘ BŝŽŵĞƚƌŝŬĂ Ϯϴ͗ϯϮϭͲϯϳϳ͘ 
IŶĐĞ RA͕ GŝŽƌĚĂŶŽ BL͕ KĂǇƐĞƌ C͕ RŽƵƐƐĞůĞƚ GA͕ GƌŽƐƐ J͕ SĐŚǇŶƐ PG ;ϮϬϭϳͿ A ƐƚĂƚŝƐƚŝĐĂů ĨƌĂŵĞǁŽƌŬ ĨŽƌ 

ŶĞƵƌŽŝŵĂŐŝŶŐ ĚĂƚĂ ĂŶĂůǇƐŝƐ ďĂƐĞĚ ŽŶ ŵƵƚƵĂů ŝŶĨŽƌŵĂƚŝŽŶ ĞƐƚŝŵĂƚĞĚ ǀŝĂ Ă ŐĂƵƐƐŝĂŶ ĐŽƉƵůĂ͘ HƵŵ 
BƌĂŝŶ MĂƉƉ ϯϴ͗ϭϱϰϭͲϭϱϳϯ͘ 

Kŝŵ J͕ CŚƵŶŐ YG͕ PĂƌŬ JY͕  CŚƵŶŐ SC͕ WĂůůƌĂǀĞŶ C͕ BƵůƚŚŽĨĨ HH͕ Kŝŵ SP ;ϮϬϭϱͿ DĞĐŽĚŝŶŐ AĐĐƵƌĂĐǇ ŝŶ 
SƵƉƉůĞŵĞŶƚĂƌǇ MŽƚŽƌ CŽƌƚĞǆ CŽƌƌĞůĂƚĞƐ ǁŝƚŚ PĞƌĐĞƉƚƵĂů SĞŶƐŝƚŝǀŝƚǇ ƚŽ TĂĐƚŝůĞ RŽƵŐŚŶĞƐƐ͘ PůŽƐ OŶĞ 
ϭϬ͘ 

KůĞŝŶĨĞůĚ D͕ AŚŝƐƐĂƌ E͕ DŝĂŵŽŶĚ ME ;ϮϬϬϲͿ AĐƚŝǀĞ ƐĞŶƐĂƚŝŽŶ͗ ŝŶƐŝŐŚƚƐ ĨƌŽŵ ƚŚĞ ƌŽĚĞŶƚ ǀŝďƌŝƐƐĂ ƐĞŶƐŽƌŝŵŽƚŽƌ 
ƐǇƐƚĞŵ͘ CƵƌƌĞŶƚ OƉŝŶŝŽŶ ŝŶ NĞƵƌŽďŝŽůŽŐǇ ϭϲ͗ϰϯϱͲϰϰϰ͘ 

KƌƵƐĐŚŬĞ JK ;ϮϬϭϬĂͿ WŚĂƚ ƚŽ ďĞůŝĞǀĞ͗ BĂǇĞƐŝĂŶ ŵĞƚŚŽĚƐ ĨŽƌ ĚĂƚĂ ĂŶĂůǇƐŝƐ͘ TƌĞŶĚƐ ŝŶ CŽŐŶŝƚŝǀĞ SĐŝĞŶĐĞƐ 
ϭϰ͗ϮϵϯͲϯϬϬ͘ 

KƌƵƐĐŚŬĞ JK ;ϮϬϭϬďͿ BĂǇĞƐŝĂŶ ĚĂƚĂ ĂŶĂůǇƐŝƐ͘ WŝƌĞƐ CŽŐŶ SĐŝ ϭ͗ϲϱϴͲϲϳϲ͘ 
LĂĐĞǇ S͕ SĂƚŚŝĂŶ K ;ϮϬϭϭͿ MƵůƚŝƐĞŶƐŽƌǇ ŽďũĞĐƚ ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ͗ ŝŶƐŝŐŚƚƐ ĨƌŽŵ ƐƚƵĚŝĞƐ ŽĨ ǀŝƐŝŽŶ ĂŶĚ ƚŽƵĐŚ͘ 

PƌŽŐ BƌĂŝŶ RĞƐ ϭϵϭ͗ϭϲϱͲϭϳϲ͘ 
LĂĐĞǇ S͕ SĂƚŚŝĂŶ K ;ϮϬϭϮͿ RĞƉƌĞƐĞŶƚĂƚŝŽŶ ŽĨ OďũĞĐƚ FŽƌŵ ŝŶ VŝƐŝŽŶ ĂŶĚ TŽƵĐŚ͘ IŶ͗ TŚĞ NĞƵƌĂů BĂƐĞƐ ŽĨ 

MƵůƚŝƐĞŶƐŽƌǇ PƌŽĐĞƐƐĞƐ ;MƵƌƌĂǇ MM͕ WĂůůĂĐĞ MT͕  ĞĚƐͿ͘ BŽĐĂ RĂƚŽŶ ;FLͿ͘ 
LĂĐĞǇ S͕ SĂƚŚŝĂŶ K ;ϮϬϭϰͿ VŝƐƵŽͲŚĂƉƚŝĐ ŵƵůƚŝƐĞŶƐŽƌǇ ŽďũĞĐƚ ƌĞĐŽŐŶŝƚŝŽŶ͕ ĐĂƚĞŐŽƌŝǌĂƚŝŽŶ͕ ĂŶĚ ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ͘ 

FƌŽŶƚŝĞƌƐ ŝŶ ƉƐǇĐŚŽůŽŐǇ ϱ͗ϳϯϬ͘ 
LĂĐĞǇ S͕ SĂƚŚŝĂŶ K ;ϮϬϭϱͿ CƌŽƐƐŵŽĚĂů ĂŶĚ MƵůƚŝƐĞŶƐŽƌǇ IŶƚĞƌĂĐƚŝŽŶƐ ďĞƚǁĞĞŶ VŝƐŝŽŶ ĂŶĚ TŽƵĐŚ͘ 

SĐŚŽůĂƌƉĞĚŝĂ ũŽƵƌŶĂů ϭϬ͗ϳϵϱϳ͘ 
LĂĐĞǇ S͕ CĂŵƉďĞůů C͕ SĂƚŚŝĂŶ K ;ϮϬϬϳͿ VŝƐŝŽŶ ĂŶĚ ƚŽƵĐŚ͗ ŵƵůƚŝƉůĞ Žƌ ŵƵůƚŝƐĞŶƐŽƌǇ ƌĞƉƌĞƐĞŶƚĂƚŝŽŶƐ ŽĨ 

ŽďũĞĐƚƐ͍ PĞƌĐĞƉƚŝŽŶ ϯϲ͗ϭϱϭϯͲϭϱϮϭ͘ 
LĞĚĞƌŵĂŶ S͕ KůĂƚǌŬǇ RL ;ϭϵϴϲͿ EǆƉůŽƌĂƚŽƌǇ HĂŶĚ MŽǀĞŵĞŶƚƐ ĂŶĚ OďũĞĐƚ PĞƌĐĞƉƚŝŽŶ͘ B PƐǇĐŚŽŶŽŵŝĐ SŽĐ 

Ϯϰ͗ϯϮϮͲϯϮϮ͘ 
LĞĚĞƌŵĂŶ SJ͕ KůĂƚǌŬǇ RL ;ϭϵϴϳͿ HĂŶĚ MŽǀĞŵĞŶƚƐ Ͳ Ă WŝŶĚŽǁ ŝŶƚŽ HĂƉƚŝĐ OďũĞĐƚ RĞĐŽŐŶŝƚŝŽŶ͘ CŽŐŶŝƚŝǀĞ 

ƉƐǇĐŚŽůŽŐǇ ϭϵ͗ϯϰϮͲϯϲϴ͘ 
LŽƵ B͕ Lŝ Y͕  PŚŝůŝĂƐƚŝĚĞƐ MG͕ SĂũĚĂ P ;ϮϬϭϰͿ PƌĞƐƚŝŵƵůƵƐ ĂůƉŚĂ ƉŽǁĞƌ ƉƌĞĚŝĐƚƐ ĨŝĚĞůŝƚǇ ŽĨ ƐĞŶƐŽƌǇ ĞŶĐŽĚŝŶŐ 

ŝŶ ƉĞƌĐĞƉƚƵĂů ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ͘ NĞƵƌŽIŵĂŐĞ ϴϳ͗ϮϰϮͲϮϱϭ͘ 
LƵĐĂŶ JN͕ FŽǆĞ JJ͕ GŽŵĞǌͲRĂŵŝƌĞǌ M͕ SĂƚŚŝĂŶ K͕ MŽůŚŽůŵ S ;ϮϬϭϬͿ TĂĐƚŝůĞ ƐŚĂƉĞ ĚŝƐĐƌŝŵŝŶĂƚŝŽŶ ƌĞĐƌƵŝƚƐ 

ŚƵŵĂŶ ůĂƚĞƌĂů ŽĐĐŝƉŝƚĂů ĐŽŵƉůĞǆ ĚƵƌŝŶŐ ĞĂƌůǇ ƉĞƌĐĞƉƚƵĂů ƉƌŽĐĞƐƐŝŶŐ͘ HƵŵ BƌĂŝŶ MĂƉƉ ϯϭ͗ϭϴϭϯͲ
ϭϴϮϭ͘ 



ϯϮ 

 

MŽƌŝůůŽŶ B͕ HĂĐŬĞƚƚ TA͕ KĂũŝŬĂǁĂ Y͕  SĐŚƌŽĞĚĞƌ CE ;ϮϬϭϱͿ PƌĞĚŝĐƚŝǀĞ ŵŽƚŽƌ ĐŽŶƚƌŽů ŽĨ ƐĞŶƐŽƌǇ ĚǇŶĂŵŝĐƐ ŝŶ 
ĂƵĚŝƚŽƌǇ ĂĐƚŝǀĞ ƐĞŶƐŝŶŐ͘ CƵƌƌ OƉŝŶ NĞƵƌŽďŝŽů ϯϭ͗ϮϯϬͲϮϯϴ͘ 

MŽƐƚĞƌƚ P͕  KŽŬ P͕  ĚĞ LĂŶŐĞ FP ;ϮϬϭϱͿ DŝƐƐŽĐŝĂƚŝŶŐ ƐĞŶƐŽƌǇ ĨƌŽŵ ĚĞĐŝƐŝŽŶ ƉƌŽĐĞƐƐĞƐ ŝŶ ŚƵŵĂŶ ƉĞƌĐĞƉƚƵĂů 
ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ͘ SĐŝĞŶƚŝĨŝĐ ƌĞƉŽƌƚƐ ϱ͗ϭϴϮϱϯ͘ 

MƵƌƌĂǇ M ;ϮϬϭϲͿ TŚĞ ŵƵůƚŝƐĞŶƐŽƌǇ ĨƵŶĐƚŝŽŶ ŽĨ ǀŝƐƵĂů ĐŽƌƚŝĐĞƐ͘ IŶƚ J PƐǇĐŚŽƉŚǇƐŝŽů ϭϬϴ͗ϭϭͲϭϭ͘ 
MƵƌƌĂǇ MM͕ TŚĞůĞŶ A͕ TŚƵƚĚ G͕ RŽŵĞŝ V͕ MĂƌƚƵǌǌŝ R͕ MĂƚƵƐǌ PJ ;ϮϬϭϲͿ TŚĞ ŵƵůƚŝƐĞŶƐŽƌǇ ĨƵŶĐƚŝŽŶ ŽĨ ƚŚĞ 

ŚƵŵĂŶ ƉƌŝŵĂƌǇ ǀŝƐƵĂů ĐŽƌƚĞǆ͘ NĞƵƌŽƉƐǇĐŚŽůŽŐŝĂ ϴϯ͗ϭϲϭͲϭϲϵ͘ 
NĂũĞŵŶŝŬ J͕ GĞŝƐůĞƌ WS ;ϮϬϬϱͿ OƉƚŝŵĂů ĞǇĞ ŵŽǀĞŵĞŶƚ ƐƚƌĂƚĞŐŝĞƐ ŝŶ ǀŝƐƵĂů ƐĞĂƌĐŚ͘ NĂƚƵƌĞ ϰϯϰ͗ϯϴϳͲϯϵϭ͘ 
NĂũĞŵŶŝŬ J͕ GĞŝƐůĞƌ WS ;ϮϬϬϴͿ EǇĞ ŵŽǀĞŵĞŶƚ ƐƚĂƚŝƐƚŝĐƐ ŝŶ ŚƵŵĂŶƐ ĂƌĞ ĐŽŶƐŝƐƚĞŶƚ ǁŝƚŚ ĂŶ ŽƉƚŝŵĂů ƐĞĂƌĐŚ 

ƐƚƌĂƚĞŐǇ͘ J VŝƐ ϴ͗ϰ ϭͲϭϰ͘ 
NĂǀĂůƉĂŬŬĂŵ V͕ KŽĐŚ C͕ RĂŶŐĞů A͕ PĞƌŽŶĂ P ;ϮϬϭϬͿ OƉƚŝŵĂů ƌĞǁĂƌĚ ŚĂƌǀĞƐƚŝŶŐ ŝŶ ĐŽŵƉůĞǆ ƉĞƌĐĞƉƚƵĂů 

ĞŶǀŝƌŽŶŵĞŶƚƐ͘ PƌŽĐ NĂƚů AĐĂĚ SĐŝ U S A ϭϬϳ͗ϱϮϯϮͲϱϮϯϳ͘ 
NƵŶĞǌ MD͕ SƌŝŶŝǀĂƐĂŶ R͕ VĂŶĚĞŬĞƌĐŬŚŽǀĞ J ;ϮϬϭϱͿ IŶĚŝǀŝĚƵĂů ĚŝĨĨĞƌĞŶĐĞƐ ŝŶ ĂƚƚĞŶƚŝŽŶ ŝŶĨůƵĞŶĐĞ ƉĞƌĐĞƉƚƵĂů 

ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ͘ FƌŽŶƚŝĞƌƐ ŝŶ ƉƐǇĐŚŽůŽŐǇ ϲ͘ 
NƵŶĞǌ MD͕ VĂŶĚĞŬĞƌĐŬŚŽǀĞ J͕ SƌŝŶŝǀĂƐĂŶ R ;ϮϬϭϳͿ HŽǁ ĂƚƚĞŶƚŝŽŶ ŝŶĨůƵĞŶĐĞƐ ƉĞƌĐĞƉƚƵĂů ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ͗ 

SŝŶŐůĞͲƚƌŝĂů EEG ĐŽƌƌĞůĂƚĞƐ ŽĨ ĚƌŝĨƚͲĚŝĨĨƵƐŝŽŶ ŵŽĚĞů ƉĂƌĂŵĞƚĞƌƐ͘ JŽƵƌŶĂů ŽĨ MĂƚŚĞŵĂƚŝĐĂů 
PƐǇĐŚŽůŽŐǇ ϳϲ͗ϭϭϳͲϭϯϬ͘ 

OΖCŽŶŶĞůů RG͕ DŽĐŬƌĞĞ PM͕ KĞůůǇ SP ;ϮϬϭϮͿ A ƐƵƉƌĂŵŽĚĂů ĂĐĐƵŵƵůĂƚŝŽŶͲƚŽͲďŽƵŶĚ ƐŝŐŶĂů ƚŚĂƚ ĚĞƚĞƌŵŝŶĞƐ 
ƉĞƌĐĞƉƚƵĂů ĚĞĐŝƐŝŽŶƐ ŝŶ ŚƵŵĂŶƐ͘ NĂƚ NĞƵƌŽƐĐŝ ϭϱ͗ϭϳϮϵͲϭϳϯϱ͘ 

OĚĚŽ CM͕ MĂǌǌŽŶŝ A͕ SƉĂŶŶĞ A͕ EŶĂŶĚĞƌ JMD͕ MŽŐĞŶƐĞŶ H͕ BĞŶŐƚƐƐŽŶ F͕  CĂŵďŽŶŝ D͕ MŝĐĞƌĂ S͕ JŽƌŶƚĞůů H 
;ϮϬϭϳͿ AƌƚŝĨŝĐŝĂů ƐƉĂƚŝŽƚĞŵƉŽƌĂů ƚŽƵĐŚ ŝŶƉƵƚƐ ƌĞǀĞĂů ĐŽŵƉůĞŵĞŶƚĂƌǇ ĚĞĐŽĚŝŶŐ ŝŶ ŶĞŽĐŽƌƚŝĐĂů 
ŶĞƵƌŽŶƐ͘ SĐŝĞŶƚŝĨŝĐ ƌĞƉŽƌƚƐ ϳ͘ 

PĂƌƌĂ L͕ AůǀŝŶŽ C͕ TĂŶŐ A͕ PĞĂƌůŵƵƚƚĞƌ B͕ YĞƵŶŐ N͕ OƐŵĂŶ A͕ SĂũĚĂ P ;ϮϬϬϮͿ LŝŶĞĂƌ ƐƉĂƚŝĂů ŝŶƚĞŐƌĂƚŝŽŶ ĨŽƌ 
ƐŝŶŐůĞͲƚƌŝĂů ĚĞƚĞĐƚŝŽŶ ŝŶ ĞŶĐĞƉŚĂůŽŐƌĂƉŚǇ͘ NĞƵƌŽŝŵĂŐĞ ϭϳ͗ϮϮϯͲϮϯϬ͘ 

PĂƌƌĂ LC͕ SƉĞŶĐĞ CD͕ GĞƌƐŽŶ AD͕ SĂũĚĂ P ;ϮϬϬϱͿ RĞĐŝƉĞƐ ĨŽƌ ƚŚĞ ůŝŶĞĂƌ ĂŶĂůǇƐŝƐ ŽĨ EEG͘ NĞƵƌŽIŵĂŐĞ Ϯϴ͗ϯϮϲͲ
ϯϰϭ͘ 

PĞĚĞƌƐĞŶ ML͕ FƌĂŶŬ MJ͕ BŝĞůĞ G ;ϮϬϭϲͿ TŚĞ ĚƌŝĨƚ ĚŝĨĨƵƐŝŽŶ ŵŽĚĞů ĂƐ ƚŚĞ ĐŚŽŝĐĞ ƌƵůĞ ŝŶ ƌĞŝŶĨŽƌĐĞŵĞŶƚ 
ůĞĂƌŶŝŶŐ͘ PƐǇĐŚŽŶŽŵŝĐ ďƵůůĞƚŝŶ Θ ƌĞǀŝĞǁ͘ 

PĞƌĞŝƌĂ M͕ SŽďŽůĞǁƐŬŝ A͕ MŝůůĂŶ JDR ;ϮϬϭϳͿ AĐƚŝŽŶ MŽŶŝƚŽƌŝŶŐ CŽƌƚŝĐĂů AĐƚŝǀŝƚǇ CŽƵƉůĞĚ ƚŽ SƵďŵŽǀĞŵĞŶƚƐ͘ 
ĞNĞƵƌŽ ϰ͘ 

PŚŝůŝĂƐƚŝĚĞƐ MG͕ SĂũĚĂ P ;ϮϬϬϲͿ TĞŵƉŽƌĂů ĐŚĂƌĂĐƚĞƌŝǌĂƚŝŽŶ ŽĨ ƚŚĞ ŶĞƵƌĂů ĐŽƌƌĞůĂƚĞƐ ŽĨ ƉĞƌĐĞƉƚƵĂů ĚĞĐŝƐŝŽŶ 
ŵĂŬŝŶŐ ŝŶ ƚŚĞ ŚƵŵĂŶ ďƌĂŝŶ͘ CĞƌĞď CŽƌƚĞǆ ϭϲ͗ϱϬϵͲϱϭϴ͘ 

PŚŝůŝĂƐƚŝĚĞƐ MG͕ SĂũĚĂ P ;ϮϬϬϳͿ EEGͲŝŶĨŽƌŵĞĚ ĨMRI ƌĞǀĞĂůƐ ƐƉĂƚŝŽƚĞŵƉŽƌĂů ĐŚĂƌĂĐƚĞƌŝƐƚŝĐƐ ŽĨ ƉĞƌĐĞƉƚƵĂů 
ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ͘ J NĞƵƌŽƐĐŝ Ϯϳ͗ϭϯϬϴϮͲϭϯϬϵϭ͘ 

PŚŝůŝĂƐƚŝĚĞƐ MG͕ RĂƚĐůŝĨĨ R͕ SĂũĚĂ P ;ϮϬϬϲͿ NĞƵƌĂů ƌĞƉƌĞƐĞŶƚĂƚŝŽŶ ŽĨ ƚĂƐŬ ĚŝĨĨŝĐƵůƚǇ ĂŶĚ ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ 
ĚƵƌŝŶŐ ƉĞƌĐĞƉƚƵĂů ĐĂƚĞŐŽƌŝǌĂƚŝŽŶ͗ Ă ƚŝŵŝŶŐ ĚŝĂŐƌĂŵ͘ J NĞƵƌŽƐĐŝ Ϯϲ͗ϴϵϲϱͲϴϵϳϱ͘ 

PŚŝůŝĂƐƚŝĚĞƐ MG͕ AƵŬƐǌƚƵůĞǁŝĐǌ R͕ HĞĞŬĞƌĞŶ HR͕ BůĂŶŬĞŶďƵƌŐ F ;ϮϬϭϭͿ CĂƵƐĂů ƌŽůĞ ŽĨ ĚŽƌƐŽůĂƚĞƌĂů ƉƌĞĨƌŽŶƚĂů 
ĐŽƌƚĞǆ ŝŶ ŚƵŵĂŶ ƉĞƌĐĞƉƚƵĂů ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ͘ CƵƌƌ BŝŽů Ϯϭ͗ϵϴϬͲϵϴϯ͘ 

PůĞŐĞƌ B͕ RƵĨĨ CC͕ BůĂŶŬĞŶďƵƌŐ F͕  BĞƐƚŵĂŶŶ S͕ WŝĞĐŚ K͕ SƚĞƉŚĂŶ KE͕ CĂƉŝůůĂ A͕ FƌŝƐƚŽŶ KJ͕ DŽůĂŶ RJ ;ϮϬϬϲͿ 
NĞƵƌĂů ĐŽĚŝŶŐ ŽĨ ƚĂĐƚŝůĞ ĚĞĐŝƐŝŽŶƐ ŝŶ ƚŚĞ ŚƵŵĂŶ ƉƌĞĨƌŽŶƚĂů ĐŽƌƚĞǆ͘ JŽƵƌŶĂů ŽĨ NĞƵƌŽƐĐŝĞŶĐĞ 
Ϯϲ͗ϭϮϱϵϲͲϭϮϲϬϭ͘ 

PůŽƌĂŶ EJ͕ NĞůƐŽŶ SM͕ VĞůĂŶŽǀĂ K͕ DŽŶĂůĚƐŽŶ DI͕ PĞƚĞƌƐĞŶ SE͕ WŚĞĞůĞƌ ME ;ϮϬϬϳͿ EǀŝĚĞŶĐĞ ĂĐĐƵŵƵůĂƚŝŽŶ 
ĂŶĚ ƚŚĞ ŵŽŵĞŶƚ ŽĨ ƌĞĐŽŐŶŝƚŝŽŶ͗ DŝƐƐŽĐŝĂƚŝŶŐ ƉĞƌĐĞƉƚƵĂů ƌĞĐŽŐŶŝƚŝŽŶ ƉƌŽĐĞƐƐĞƐ ƵƐŝŶŐ ĨMRI͘ JŽƵƌŶĂů 
ŽĨ NĞƵƌŽƐĐŝĞŶĐĞ Ϯϳ͗ϭϭϵϭϮͲϭϭϵϮϰ͘ 

PůƵŵŵĞƌ M ;ϮϬϬϯͿ JAGS͗ A ƉƌŽŐƌĂŵ ĨŽƌ ĂŶĂůǇƐŝƐ ŽĨ BĂǇĞƐŝĂŶ ŐƌĂƉŚŝĐĂů ŵŽĚĞůƐ ƵƐŝŶŐ GŝďďƐ ƐĂŵƉůŝŶŐ IŶ͗ ϯƌĚ 
IŶƚĞƌŶĂƚŝŽŶĂů WŽƌŬƐŚŽƉ ŽŶ DŝƐƚƌŝďƵƚĞĚ SƚĂƚŝƐƚŝĐĂů CŽŵƉƵƚŝŶŐ͘ 

RĂŚŶĞǀ D͕ NĞĞ DE͕ RŝĚĚůĞ J͕ LĂƌƐŽŶ AS͕ DΖEƐƉŽƐŝƚŽ M ;ϮϬϭϲͿ CĂƵƐĂů ĞǀŝĚĞŶĐĞ ĨŽƌ ĨƌŽŶƚĂů ĐŽƌƚĞǆ ŽƌŐĂŶŝǌĂƚŝŽŶ 
ĨŽƌ ƉĞƌĐĞƉƚƵĂů ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ͘ PƌŽĐ NĂƚů AĐĂĚ SĐŝ U S A ϭϭϯ͗ϲϬϱϵͲϲϬϲϰ͘ 



ϯϯ 

 

RĂƚĐůŝĨĨ R ;ϮϬϬϮͿ A ĚŝĨĨƵƐŝŽŶ ŵŽĚĞů ĂĐĐŽƵŶƚ ŽĨ ƌĞƐƉŽŶƐĞ ƚŝŵĞ ĂŶĚ ĂĐĐƵƌĂĐǇ ŝŶ Ă ďƌŝŐŚƚŶĞƐƐ ĚŝƐĐƌŝŵŝŶĂƚŝŽŶ 
ƚĂƐŬ͗ FŝƚƚŝŶŐ ƌĞĂů ĚĂƚĂ ĂŶĚ ĨĂŝůŝŶŐ ƚŽ Ĩŝƚ ĨĂŬĞ ďƵƚ ƉůĂƵƐŝďůĞ ĚĂƚĂ͘ PƐǇĐŚŽŶŽŵŝĐ ďƵůůĞƚŝŶ Θ ƌĞǀŝĞǁ 
ϵ͗ϮϳϴͲϮϵϭ͘ 

RĂƚĐůŝĨĨ R͕ MĐKŽŽŶ G ;ϮϬϬϴͿ TŚĞ ĚŝĨĨƵƐŝŽŶ ĚĞĐŝƐŝŽŶ ŵŽĚĞů͗ TŚĞŽƌǇ ĂŶĚ ĚĂƚĂ ĨŽƌ ƚǁŽͲĐŚŽŝĐĞ ĚĞĐŝƐŝŽŶ ƚĂƐŬƐ͘ 
NĞƵƌĂů CŽŵƉƵƚĂƚŝŽŶ ϮϬ͗ϴϳϯͲϵϮϮ͘ 

RĂƚĐůŝĨĨ R͕ FƌĂŶŬ MJ ;ϮϬϭϮͿ RĞŝŶĨŽƌĐĞŵĞŶƚͲďĂƐĞĚ ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ ŝŶ ĐŽƌƚŝĐŽƐƚƌŝĂƚĂů ĐŝƌĐƵŝƚƐ͗ ŵƵƚƵĂů 
ĐŽŶƐƚƌĂŝŶƚƐ ďǇ ŶĞƵƌŽĐŽŵƉƵƚĂƚŝŽŶĂů ĂŶĚ ĚŝĨĨƵƐŝŽŶ ŵŽĚĞůƐ͘ NĞƵƌĂů CŽŵƉƵƚ Ϯϰ͗ϭϭϴϲͲϭϮϮϵ͘ 

RĂƚĐůŝĨĨ R͕ CŚŝůĚĞƌƐ R ;ϮϬϭϱͿ IŶĚŝǀŝĚƵĂů DŝĨĨĞƌĞŶĐĞƐ ĂŶĚ FŝƚƚŝŶŐ MĞƚŚŽĚƐ ĨŽƌ ƚŚĞ TǁŽͲCŚŽŝĐĞ DŝĨĨƵƐŝŽŶ MŽĚĞů 
ŽĨ DĞĐŝƐŝŽŶ MĂŬŝŶŐ͘ DĞĐŝƐŝŽŶ ϮϬϭϱ͘ 

RĂƚĐůŝĨĨ R͕ PŚŝůŝĂƐƚŝĚĞƐ MG͕ SĂũĚĂ P ;ϮϬϬϵͿ QƵĂůŝƚǇ ŽĨ ĞǀŝĚĞŶĐĞ ĨŽƌ ƉĞƌĐĞƉƚƵĂů ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ ŝƐ ŝŶĚĞǆĞĚ ďǇ 
ƚƌŝĂůͲƚŽͲƚƌŝĂů ǀĂƌŝĂďŝůŝƚǇ ŽĨ ƚŚĞ EEG͘ PƌŽĐ NĂƚů AĐĂĚ SĐŝ U S A ϭϬϲ͗ϲϱϯϵͲϲϱϰϰ͘ 

RĂƚĐůŝĨĨ R͕ SŵŝƚŚ PL͕ MĐKŽŽŶ G ;ϮϬϭϱͿ MŽĚĞůŝŶŐ RĞŐƵůĂƌŝƚŝĞƐ ŝŶ RĞƐƉŽŶƐĞ TŝŵĞ ĂŶĚ AĐĐƵƌĂĐǇ DĂƚĂ WŝƚŚ ƚŚĞ 
DŝĨĨƵƐŝŽŶ MŽĚĞů͘ CƵƌƌ Dŝƌ PƐǇĐŚŽů SĐŝ Ϯϰ͗ϰϱϴͲϰϳϬ͘ 

RĂƚĐůŝĨĨ R͕ SŵŝƚŚ PL͕ BƌŽǁŶ SD͕ MĐKŽŽŶ G ;ϮϬϭϲͿ DŝĨĨƵƐŝŽŶ DĞĐŝƐŝŽŶ MŽĚĞů͗ CƵƌƌĞŶƚ IƐƐƵĞƐ ĂŶĐ HŝƐƚŽƌǇ͘ 
TƌĞŶĚƐ ŝŶ CŽŐŶŝƚŝǀĞ SĐŝĞŶĐĞƐ ϮϬ͗ϮϲϬͲϮϴϭ͘ 

RĞŶŶŝŶŐĞƌ LW͕ VĞƌŐŚĞƐĞ P͕  CŽƵŐŚůĂŶ J ;ϮϬϬϳͿ WŚĞƌĞ ƚŽ ůŽŽŬ ŶĞǆƚ͍ EǇĞ ŵŽǀĞŵĞŶƚƐ ƌĞĚƵĐĞ ůŽĐĂů ƵŶĐĞƌƚĂŝŶƚǇ͘  
J VŝƐ ϳ͗ϲ͘ 

RŽŶŐĂůĂ UB͕ MĂǌǌŽŶŝ A͕ OĚĚŽ CM ;ϮϬϭϳͿ NĞƵƌŽŵŽƌƉŚŝĐ AƌƚŝĨŝĐŝĂů TŽƵĐŚ ĨŽƌ CĂƚĞŐŽƌŝǌĂƚŝŽŶ ŽĨ NĂƚƵƌĂůŝƐƚŝĐ 
TĞǆƚƵƌĞƐ͘ IĞĞĞ T NĞƵƌ NĞƚ LĞĂƌ Ϯϴ͗ϴϭϵͲϴϮϵ͘ 

RŽƚŚŬŽƉĨ CA͕ BĂůůĂƌĚ DH͕ HĂǇŚŽĞ MM ;ϮϬϬϳͿ TĂƐŬ ĂŶĚ ĐŽŶƚĞǆƚ ĚĞƚĞƌŵŝŶĞ ǁŚĞƌĞ ǇŽƵ ůŽŽŬ͘ J VŝƐŝŽŶ ϳ͘ 
RƵƐŚǁŽƌƚŚ MFS͕ MĂƌƐ RB͕ SƵŵŵĞƌĨŝĞůĚ C ;ϮϬϬϵͿ GĞŶĞƌĂů ŵĞĐŚĂŶŝƐŵƐ ĨŽƌ ŵĂŬŝŶŐ ĚĞĐŝƐŝŽŶƐ͍ CƵƌƌĞŶƚ 

OƉŝŶŝŽŶ ŝŶ NĞƵƌŽďŝŽůŽŐǇ ϭϵ͗ϳϱͲϴϯ͘ 
SĂƚŚŝĂŶ K ;ϮϬϬϱͿ VŝƐƵĂů ĐŽƌƚŝĐĂů ĂĐƚŝǀŝƚǇ ĚƵƌŝŶŐ ƚĂĐƚŝůĞ ƉĞƌĐĞƉƚŝŽŶ ŝŶ ƚŚĞ ƐŝŐŚƚĞĚ ĂŶĚ ƚŚĞ ǀŝƐƵĂůůǇ ĚĞƉƌŝǀĞĚ͘ 

DĞǀĞůŽƉŵĞŶƚĂů ƉƐǇĐŚŽďŝŽůŽŐǇ ϰϲ͗ϮϳϵͲϮϴϲ͘ 
SĂƚŚŝĂŶ K ;ϮϬϭϲͿ AŶĂůǇƐŝƐ ŽĨ ŚĂƉƚŝĐ ŝŶĨŽƌŵĂƚŝŽŶ ŝŶ ƚŚĞ ĐĞƌĞďƌĂů ĐŽƌƚĞǆ͘ J NĞƵƌŽƉŚǇƐŝŽů ϭϭϲ͗ϭϳϵϱͲϭϴϬϲ͘ 
SĐŚƌŽĞĚĞƌ CE͕ WŝůƐŽŶ DA͕ RĂĚŵĂŶ T͕  SĐŚĂƌĨŵĂŶ H͕ LĂŬĂƚŽƐ P ;ϮϬϭϬͿ DǇŶĂŵŝĐƐ ŽĨ AĐƚŝǀĞ SĞŶƐŝŶŐ ĂŶĚ 

ƉĞƌĐĞƉƚƵĂů ƐĞůĞĐƚŝŽŶ͘ CƵƌƌ OƉŝŶ NĞƵƌŽďŝŽů ϮϬ͗ϭϳϮͲϭϳϲ͘ 
SĐŚƌŽĞĚĞƌ JB͕ Rŝƚƚ JT ;ϮϬϭϲͿ SĞůĞĐƚŝŽŶ ŽĨ ŚĞĂĚ ĂŶĚ ǁŚŝƐŬĞƌ ĐŽŽƌĚŝŶĂƚŝŽŶ ƐƚƌĂƚĞŐŝĞƐ ĚƵƌŝŶŐ ŐŽĂůͲŽƌŝĞŶƚĞĚ 

ĂĐƚŝǀĞ ƚŽƵĐŚ͘ JŽƵƌŶĂů ŽĨ NĞƵƌŽƉŚǇƐŝŽůŽŐǇ ϭϭϱ͗ϭϳϵϳͲϭϴϬϵ͘ 
SƉŝĞŐĞůŚĂůƚĞƌ DJ͕ BĞƐƚ NG͕ CĂƌůŝŶ BR͕ ǀĂŶ ĚĞƌ LŝŶĚĞ A ;ϮϬϬϮͿ BĂǇĞƐŝĂŶ ŵĞĂƐƵƌĞƐ ŽĨ ŵŽĚĞů ĐŽŵƉůĞǆŝƚǇ ĂŶĚ 

Ĩŝƚ͘ J RŽǇ SƚĂƚ SŽĐ B ϲϰ͗ϱϴϯͲϲϭϲ͘ 
SƚĞƌǌĞƌ P ;ϮϬϭϲͿ MŽǀŝŶŐ ĨŽƌǁĂƌĚ ŝŶ ƉĞƌĐĞƉƚƵĂů ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ͘ PƌŽĐ NĂƚů AĐĂĚ SĐŝ U S A ϭϭϯ͗ϱϳϳϭͲϱϳϳϯ͘ 
SƚŝůůĂ R͕ SĂƚŚŝĂŶ K ;ϮϬϬϴͿ SĞůĞĐƚŝǀĞ ǀŝƐƵŽͲŚĂƉƚŝĐ ƉƌŽĐĞƐƐŝŶŐ ŽĨ ƐŚĂƉĞ ĂŶĚ ƚĞǆƚƵƌĞ͘ HƵŵ BƌĂŝŶ MĂƉƉ Ϯϵ͗ϭϭϮϯͲ

ϭϭϯϴ͘ 
SƚŝůůĂ R͕ HĂŶŶĂ R͕ HƵ X͕ MĂƌŝŽůĂ E͕ DĞƐŚƉĂŶĚĞ G͕ SĂƚŚŝĂŶ K ;ϮϬϬϴͿ NĞƵƌĂů ƉƌŽĐĞƐƐŝŶŐ ƵŶĚĞƌůǇŝŶŐ ƚĂĐƚŝůĞ 

ŵŝĐƌŽƐƉĂƚŝĂů ĚŝƐĐƌŝŵŝŶĂƚŝŽŶ ŝŶ ƚŚĞ ďůŝŶĚ͗ Ă ĨƵŶĐƚŝŽŶĂů ŵĂŐŶĞƚŝĐ ƌĞƐŽŶĂŶĐĞ ŝŵĂŐŝŶŐ ƐƚƵĚǇ͘ J VŝƐ ϴ͗ϭϯ 
ϭϭͲϭϵ͘ 

SƵŵŵĞƌĨŝĞůĚ C͕ ĚĞ LĂŶŐĞ FP ;ϮϬϭϰͿ EǆƉĞĐƚĂƚŝŽŶ ŝŶ ƉĞƌĐĞƉƚƵĂů ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ͗ ŶĞƵƌĂů ĂŶĚ ĐŽŵƉƵƚĂƚŝŽŶĂů 
ŵĞĐŚĂŶŝƐŵƐ͘ NĂƚ RĞǀ NĞƵƌŽƐĐŝ ϭϱ͗ϳϰϱͲϳϱϲ͘ 

TĂĚĞů F͕  BĂŝůůĞƚ S͕ MŽƐŚĞƌ JC͕ PĂŶƚĂǌŝƐ D͕ LĞĂŚǇ RM ;ϮϬϭϭͿ BƌĂŝŶƐƚŽƌŵ͗ Ă ƵƐĞƌͲĨƌŝĞŶĚůǇ ĂƉƉůŝĐĂƚŝŽŶ ĨŽƌ 
MEGͬEEG ĂŶĂůǇƐŝƐ͘ CŽŵƉƵƚĂƚŝŽŶĂů ŝŶƚĞůůŝŐĞŶĐĞ ĂŶĚ ŶĞƵƌŽƐĐŝĞŶĐĞ ϮϬϭϭ͗ϴϳϵϳϭϲ͘ 

TŚĞŝůĞƌ J͕ EƵďĂŶŬ S͕ LŽŶŐƚŝŶ A͕ GĂůĚƌŝŬŝĂŶ B͕ FĂƌŵĞƌ JD ;ϭϵϵϮͿ TĞƐƚŝŶŐ ĨŽƌ NŽŶůŝŶĞĂƌŝƚǇ ŝŶ TŝŵĞͲSĞƌŝĞƐ Ͳ ƚŚĞ 
MĞƚŚŽĚ ŽĨ SƵƌƌŽŐĂƚĞ DĂƚĂ͘ PŚǇƐŝĐĂ D ϱϴ͗ϳϳͲϵϰ͘ 

TŽŵĂƐƐŝŶŝ A͕ DΖAƵƐŝůŝŽ A ;ϮϬϭϳͿ PĂƐƐŝǀĞ ƐĞŶƐŽƌŝŵŽƚŽƌ ƐƚŝŵƵůĂƚŝŽŶ ƚƌŝŐŐĞƌƐ ůŽŶŐ ůĂƐƚŝŶŐ ĂůƉŚĂͲďĂŶĚ 
ĨůƵĐƚƵĂƚŝŽŶƐ ŝŶ ǀŝƐƵĂů ƉĞƌĐĞƉƚŝŽŶ͘ J NĞƵƌŽƉŚǇƐŝŽů͗ũŶ ϬϬϰϵϲ ϬϮϬϭϳ͘ 

TŽŵĂƐƐŝŶŝ A͕ AŵďƌŽŐŝŽŶŝ L͕ MĞĚĞŶĚŽƌƉ WP͕  MĂƌŝƐ E ;ϮϬϭϳͿ TŚĞƚĂ ŽƐĐŝůůĂƚŝŽŶƐ ůŽĐŬĞĚ ƚŽ ŝŶƚĞŶĚĞĚ ĂĐƚŝŽŶƐ 
ƌŚǇƚŚŵŝĐĂůůǇ ŵŽĚƵůĂƚĞ ƉĞƌĐĞƉƚŝŽŶ͘ ĞLŝĨĞ ϲ͘ 

TŽƐĐĂŶŝ M͕ VĂůƐĞĐĐŚŝ M͕ GĞŐĞŶĨƵƌƚŶĞƌ KR ;ϮϬϭϯͿ OƉƚŝŵĂů ƐĂŵƉůŝŶŐ ŽĨ ǀŝƐƵĂů ŝŶĨŽƌŵĂƚŝŽŶ ĨŽƌ ůŝŐŚƚŶĞƐƐ 



ϯϰ 

 

ũƵĚŐŵĞŶƚƐ͘ PƌŽĐ NĂƚů AĐĂĚ SĐŝ U S A ϭϭϬ͗ϭϭϭϲϯͲϭϭϭϲϴ͘ 
TƵƌŶĞƌ BM͕ ǀĂŶ MĂĂŶĞŶ L͕ FŽƌƐƚŵĂŶŶ BU ;ϮϬϭϱͿ IŶĨŽƌŵŝŶŐ CŽŐŶŝƚŝǀĞ AďƐƚƌĂĐƚŝŽŶƐ TŚƌŽƵŐŚ NĞƵƌŽŝŵĂŐŝŶŐ͗ 

TŚĞ NĞƵƌĂů DƌŝĨƚ DŝĨĨƵƐŝŽŶ MŽĚĞů͘ PƐǇĐŚŽůŽŐŝĐĂů RĞǀŝĞǁ ϭϮϮ͗ϯϭϮͲϯϯϲ͘ 
TƵƌŶĞƌ BM͕ FŽƌƐƚŵĂŶŶ BU͕ LŽǀĞ BC͕ PĂůŵĞƌŝ TJ͕ VĂŶ MĂĂŶĞŶ L ;ϮϬϭϳͿ AƉƉƌŽĂĐŚĞƐ ƚŽ ĂŶĂůǇƐŝƐ ŝŶ ŵŽĚĞůͲ

ďĂƐĞĚ ĐŽŐŶŝƚŝǀĞ ŶĞƵƌŽƐĐŝĞŶĐĞ͘ JŽƵƌŶĂů ŽĨ MĂƚŚĞŵĂƚŝĐĂů PƐǇĐŚŽůŽŐǇ ϳϲ͗ϲϱͲϳϵ͘ 
WĂďĞƌƐŝĐŚ D͕ VĂŶĚĞŬĞƌĐŬŚŽǀĞ J ;ϮϬϭϰͿ EǆƚĞŶĚŝŶŐ JAGS͗ A ƚƵƚŽƌŝĂů ŽŶ ĂĚĚŝŶŐ ĐƵƐƚŽŵ ĚŝƐƚƌŝďƵƚŝŽŶƐ ƚŽ JAGS 

;ǁŝƚŚ Ă ĚŝĨĨƵƐŝŽŶ ŵŽĚĞů ĞǆĂŵƉůĞͿ͘ BĞŚĂǀ RĞƐ MĞƚŚŽĚƐ ϰϲ͗ϭϱͲϮϴ͘ 
WŝĞĐŬŝ TV͕ SŽĨĞƌ I͕ FƌĂŶŬ MJ ;ϮϬϭϯͿ HDDM͗ HŝĞƌĂƌĐŚŝĐĂů BĂǇĞƐŝĂŶ ĞƐƚŝŵĂƚŝŽŶ ŽĨ ƚŚĞ DƌŝĨƚͲDŝĨĨƵƐŝŽŶ MŽĚĞů 

ŝŶ PǇƚŚŽŶ͘ FƌŽŶƚŝĞƌƐ ŝŶ ŶĞƵƌŽŝŶĨŽƌŵĂƚŝĐƐ ϳ͗ϭϰ͘ 
WŝŶŬůĞƌ I͕ HĂƵĨĞ S͕ TĂŶŐĞƌŵĂŶŶ M ;ϮϬϭϭͿ AƵƚŽŵĂƚŝĐ ĐůĂƐƐŝĨŝĐĂƚŝŽŶ ŽĨ ĂƌƚŝĨĂĐƚƵĂů ICAͲĐŽŵƉŽŶĞŶƚƐ ĨŽƌ 

ĂƌƚŝĨĂĐƚ ƌĞŵŽǀĂů ŝŶ EEG ƐŝŐŶĂůƐ͘ BĞŚĂǀŝŽƌĂů ĂŶĚ ďƌĂŝŶ ĨƵŶĐƚŝŽŶƐ ͗ BBF ϳ͗ϯϬ͘ 
WǇĂƌƚ V͕ ĚĞ GĂƌĚĞůůĞ V͕ SĐŚŽůů J͕ SƵŵŵĞƌĨŝĞůĚ C ;ϮϬϭϮͿ RŚǇƚŚŵŝĐ ĨůƵĐƚƵĂƚŝŽŶƐ ŝŶ ĞǀŝĚĞŶĐĞ ĂĐĐƵŵƵůĂƚŝŽŶ 

ĚƵƌŝŶŐ ĚĞĐŝƐŝŽŶ ŵĂŬŝŶŐ ŝŶ ƚŚĞ ŚƵŵĂŶ ďƌĂŝŶ͘ NĞƵƌŽŶ ϳϲ͗ϴϰϳͲϴϱϴ͘ 
YĂŶŐ SC͕ LĞŶŐǇĞů M͕ WŽůƉĞƌƚ DM ;ϮϬϭϲĂͿ AĐƚŝǀĞ ƐĞŶƐŝŶŐ ŝŶ ƚŚĞ ĐĂƚĞŐŽƌŝǌĂƚŝŽŶ ŽĨ ǀŝƐƵĂů ƉĂƚƚĞƌŶƐ͘ ĞLŝĨĞ ϱ͘ 
YĂŶŐ SCH͕ WŽůƉĞƌƚ DM͕ LĞŶŐǇĞů M ;ϮϬϭϲďͿ TŚĞŽƌĞƚŝĐĂů ƉĞƌƐƉĞĐƚŝǀĞƐ ŽŶ ĂĐƚŝǀĞ ƐĞŶƐŝŶŐ͘ CƵƌƌ OƉŝŶ BĞŚĂǀ SĐŝ 

ϭϭ͗ϭϬϬͲϭϬϴ͘ 
)ĂŶŐĂůĂĚǌĞ A͕ EƉƐƚĞŝŶ CM͕ GƌĂĨƚŽŶ ST͕  SĂƚŚŝĂŶ K ;ϭϵϵϵͿ IŶǀŽůǀĞŵĞŶƚ ŽĨ ǀŝƐƵĂů ĐŽƌƚĞǆ ŝŶ ƚĂĐƚŝůĞ 

ĚŝƐĐƌŝŵŝŶĂƚŝŽŶ ŽĨ ŽƌŝĞŶƚĂƚŝŽŶ͘ NĂƚƵƌĞ ϰϬϭ͗ϱϴϳͲϱϵϬ͘ 
)ŚĂŶŐ M͕ MĂƌŝŽůĂ E͕ SƚŝůůĂ R͕ SƚŽĞƐǌ M͕ MĂŽ H͕ HƵ X͕ SĂƚŚŝĂŶ K ;ϮϬϬϱͿ TĂĐƚŝůĞ ĚŝƐĐƌŝŵŝŶĂƚŝŽŶ ŽĨ ŐƌĂƚŝŶŐ 

ŽƌŝĞŶƚĂƚŝŽŶ͗ ĨMRI ĂĐƚŝǀĂƚŝŽŶ ƉĂƚƚĞƌŶƐ͘ HƵŵ BƌĂŝŶ MĂƉƉ Ϯϱ͗ϯϳϬͲϯϳϳ͘ 

 



 

Fig. 1. Experimental design, behavioral results and principal components of EEG signals. A. The Pantograph is a haptic device used to render virtual surfaces that can be actively sensed. B. The 

stimulus. We programmed the Pantograph to generate a virtual grating texture. The workspace was split into two subspaces (left - L and right - R) that differed in the amplitude of the virtual 

surface that the subjects actively sensed. One of the two sides (randomly assigned) had the reference amplitude (equal to 1) and the other had the comparison amplitude that varied on each trial 

taking one of the values: 0.5, 0.75, 0.9, 1.1, 1.25, and 1.5. C. Index finger trajectory indicating the scanning pattern of the virtual texture in one trial. The two red dots indicate the starting point 

and endpoint. On thistrial, the subject actively sensed the left subspace first, then moved to the right subspace and explored it before coming back to the left subspace again and reporting their 

choice. D. Psychometric curve indicating the percentage of non-reference choices for all stimulus differences. Dots indicate average proportion of choices across subjects and errorbars are standard 



error of the means (sem) across subjects. Data are fit using a cumulative Gaussian function. E. Response times for all stimulus differences shown as averages (±sem) across subjects. F. Number of 

crossings (i.e. switchings between the two stimuli) for all stimulus differences shown as averages (±sem) across subjects. G. Average finger velocities for all stimulus differences shown as averages 

(±sem) across subjects. H. Velocity profile of the finger movement during the example trial. J-K-L. Brain sources of the first three principal components of the recorded EEG signals across subjects. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

 

 

Fig. 2. Schematic view of EEG2Beh(avior) and the identified. Subjects move their fingers to actively sense a surface while their brain activity (e.g. EEG signals) ri(t) is recorded. The relevant 

kinematic features of the sensorimotor behavior (the movement velocity here) are extracted, resulting in a time series s(t). An optimization procedure, implemented via canonical correlation 

analysis, then computes spatial filters w to apply to the neural signals and temporal filters h(t) to apply to the velocity such that the resulting filter outputs are maximally correlated in time. The 

algorithm output is a set of multiple EEG-kinematic components and their coupling strengths ρ2. Three pairs of EEG components (scalp maps of neural activity) and their matching kinematic 

components (temporal profiles of velocity filters) were found to show significant correlations. 

  



 

Fig. 3. Illustration of the analysis framework implemented in this study. To characterize active tactile decision-making, three types of measurements are simultaneously made: a) EEG recordings, 

b) sensorimotor signals (movement kinematics), and c) task performance measures (accuracy and response time - RT). EEG and kinematic signals are input to the EEG2Beh algorithm that outputs 

pairs of brain ֈ behavior coupling components (scalp maps and temporal kinematic filters) and their correlation measures ρ2. The brain (EEG) components are input to a source localization 

algorithm to identify their neuronal origins. The EEG2Beh coupling strengths ρ2 inform the hierarchical drift diffusion modelling (HDDM) of the task performance data. HDDM uses the ρ2 to 

translate accuracy and RT into the components of decision-making processing (such as evidence accumulation or stimulus encoding) thereby characterizing the functional role of each EEG2Beh 

component. 

 

 

 

Fig. 4. Brain sources of the three EEG components showing significant brain-behavior couplings. 

  



 

 

Fig. 5. HDDM fitting and model comparisons. Α. Choice proportions and RT distributions are captured by EEG2Beh-informed HDDM. Behavioral RT distributions (in green) are shown for each 

stimulus difference together with posterior predictive simulations from the HDDM (in blue). Negative values in the time axis correspond to incorrect choices and positive values represent correct 

choices. Higher histogram values in the positive time axis indicate higher proportion of correct choices. Fitting accuracy is worse with lower stimulus differences. B. 

Comparison with alternate models. We compared the HDDM model of choice with alternative HDDM models using the Deviance Information Criterion (DIC). We tested HDDM models where either 

the drift rate (δ) or the non-decision time (τ) or both were not dependent on the EEG2Beh correlations and a model where the decision boundary (α) was dependent on the EEG2Beh correlations. 

Positive difference DIC values (DICmodel ֈ DICoptimal) for all four models indicate that the model of choice achieved a better trade-off between goodness-of-fit and number of free parameters. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
 

 

 

Fig. 6. Formulation of best HDDM model and regression results. A. Graphical model showing hierarchical estimation of Drift Diffusion Model parameters with EEG2Beh regressors. Round nodes 

represent continuous random variables and double-bordered nodes represent deterministic variables, defined in terms of other variables. Shaded nodes represent recorded or computed signals, 

including single-trial behavioral data (accuracy, RT) and EEG2Beh coupling measures (ρ2). Open nodes represent unobserved latent parameters. Parameters are modelled as random variables with 

inferred means μ and variances σ2. Plates denote that multiple random variables share the same parents and children. The outer plate is over difficulty levels d while the inner plate is over trials n. 

For example, each single-trial boundary separation an,d shares the same parents μα and σα2 that define the distribution across trials and difficulty levels. Single-trial variations of non-decision time τ 

and drift rate δ are determined by EEG2Beh couplings with regression coefficients βi and γi. B. Violin plots showing the distribution of the regression coefficients βi (100 samples drawn from the 

distribution) of the coupling strengths ρi2 of the three EEG2Beh components for the prediction of single-trial non-decision times τ. C. Violin plots showing the distribution of the regression 

coefficients γi (100 samples drawn from the distribution) of the coupling strengths ρi2 of the three EEG2Beh components for the prediction of single-trial drift rates δ. 

  



 

 

Fig. 7. Brain sources of the three significant EEG2Beh components extracted from the data of the control experiment, i.e. when subjects actively explored the tactile stimuli but did not make any 

perceptual choice. 


