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The modular control hypothesis suggests that motor commands are built from precoded

modules whose specific combined recruitment can allow the performance of virtually

any motor task. Despite considerable experimental support, this hypothesis remains

tentative as classical findings of reduced dimensionality in muscle activity may also result

from other constraints (biomechanical couplings, data averaging or low dimensionality

of motor tasks). Here we assessed the effectiveness of modularity in describing muscle

activity in a comprehensive experiment comprising 72 distinct point-to-point whole-body

movements during which the activity of 30 muscles was recorded. To identify invariant

modules of a temporal and spatial nature, we used a space-by-time decomposition

of muscle activity that has been shown to encompass classical modularity models.

To examine the decompositions, we focused not only on the amount of variance they

explained but also on whether the task performed on each trial could be decoded from

the single-trial activations of modules. For the sake of comparison, we confronted these

scores to the scores obtained from alternative non-modular descriptions of the muscle

data. We found that the space-by-time decomposition was effective in terms of data

approximation and task discrimination at comparable reduction of dimensionality. These

findings show that few spatial and temporal modules give a compact yet approximate

representation of muscle patterns carrying nearly all task-relevant information for a variety

of whole-body reaching movements.

Keywords: modularity, muscle synergies, space-by-time decomposition, task discrimination, whole-body

pointing, single-trial analysis

1. INTRODUCTION

Human motor control has been hypothesized to rely on a modular organization of muscle
activity (the so-called muscle synergies or motor primitives) since Bernstein (1967) and the
seminal works of Bizzi’s group (Bizzi et al., 1991). This hypothesis postulates that the central
nervous system (CNS) exploits modularity as a simplifying mechanism to control the many
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neuromusculoskeletal degrees of freedom underlying goal-
directed voluntary movements (Flash and Hochner, 2005;
Bizzi et al., 2008). The standard approach to studying motor
modularity consists in recording electromyographic (EMG)
activity during performance of various motor tasks and then
applying dimensionality reduction techniques to decompose the
EMG signals into a set of putative synergies. This approach has
held substantial evidence supporting the modularity hypothesis
(Berniker et al., 2009; Nazarpour et al., 2012a; Overduin et al.,
2012; Berger et al., 2013) as well as contradicting (Kutch et al.,
2008; Valero-Cuevas et al., 2009) or questioning it (de Rugy et al.,
2013; Zelik et al., 2014; Inouye and Valero-Cuevas, 2016).

Arguably, an effective modular decomposition must allow
reconstructing the original muscle patterns with good
approximation. However, it is known that small errors may
be amplified during the control of a non-linear dynamical system
such as the musculoskeletal plant. Therefore, without an accurate
model of the body apparatus, complementary indirect analyses
are necessary to investigate muscle synergies. In particular,
actions are defined in task space and an evaluation of the validity
of muscle synergies may conceivably require relating them to task
parameters (Nazarpour et al., 2012b; Ting et al., 2012; Todorov
et al., 2005). Hence, our approach here is to evaluate modularity
models from these two complementary points of view. On the
one hand, modularity models are typically assessed based on
their ability to approximate the recorded EMG data. However,
an absolute expectation on the EMG data reconstruction
(quantified as variance accounted for, VAF) is quite arbitrary as
high VAF values may also result in overfitting, i.e., the resulting
decomposition may contain modules that explain task-irrelevant
variance in the EMG recordings, which can be considered as
“noise.” In other words, VAF measures focus on approximating
EMG activations and ignore the task-relevance of the resulting
representations. On the other hand, the modular control theory
also implies that the CNS must be able to map a desired motor
task onto an adequate activation of modules. For distinct enough
motor tasks for which EMG signals differ beyond measurement
noise, this suggests that the projection of muscle patterns onto
invariant synergies should preserve task discriminability. This
inquiry requires contrasting between-task and within-task
variability (that may arise from the system’s redundancy and a
minimal intervention principle; Todorov and Jordan, 2002) and
assessing the extent to which distinct goal-directed movements
are discriminable from the way modules are activated on single
movements. Without this property, the relevance of a modular
description of muscle patterns would be questionable. Indeed,
even though it may yield a very good data approximation, it
would mean that the description of muscle patterns in synergy
space actually diminished between-task differences in such a way
that it becomes hard to decipher which task was really performed
on each single trial (Alessandro et al., 2013b; Delis et al., 2013b,
2015).

In this study, we examine a modular description of muscle
patterns and compare it with non-modular structures of
comparable dimensionality in terms of these two evaluation
metrics (VAF and single-trial task decoding). We combine
(a) a highly comprehensive experiment with (b) a unifying

modularity model of EMG activity (Delis et al., 2014). Our
experimental design comprises surface EMG recordings from a
large number of muscles (30) spread across the human body
on both hemibodies. Importantly, muscle activity is recorded
during performance of a large number of whole-body pointing
movements (72 distinct motions or “tasks”) in the 3-dimensional
space (Stapley et al., 2000; Leonard et al., 2009). This protocol
imposes no further constraints and spans a wide range of
movements requiring whole-body coordination including upper
and lower limbs while preserving equilibrium. Furthermore,
multiple repetitions (30) of the movements are recorded, which
allows considering within-task variations and contrasting them
with between-task variations in synergy space. In particular,
we apply a generic model of modularity, named space-by-
time decomposition, which assumes the concurrent existence
of spatial and temporal modules (Delis et al., 2014). The use
of such a unifying model limits the dependence of conclusions
upon the decomposition model used, as temporal, spatial or
spatiotemporal modular decompositions have been commonly
assumed separately before (Ivanenko et al., 2005; d’Avella et al.,
2006; Bizzi et al., 2008). To compute task decoding scores, we
employ a single-trial task decoding analysis described in depth
in previous studies (Delis et al., 2013a,b) to assess how well
we can distinguish the task performed in synergy space, which
would be impossible to estimate if trial-averaged data or a
limited set of tasks were considered. To compare the VAF and
decoding scores obtained with other values obtained from more
simple representations of the muscle patterns, we also consider
“non-modular” alternative descriptions of the data. The aim of
this analysis is to assess whether assuming an advanced model
of modularity involving optimization algorithms yields a gain
compared to describing muscle activity using parameters directly
taken from EMG signals. These analyses show the effectiveness of
the space-by-time decomposition model in both approximating
muscle patterns and explaining between-task differences in a
low dimensional space, during a variety of whole-body pointing
movements.

2. MATERIALS AND METHODS

2.1. Experimental Procedures
2.1.1. Subjects
Four healthy participants (2 males and 2 females, aged = 25 ±

3 years old, height = 1.72 ± 0.08 m, weight = 70 ± 7 kg, all
values presented hereafter refer to mean ± s.e.m.) voluntarily
agreed to participate in this study and performed the experiment.
None of them had any previous history of neuromuscular
disease. All subjects were made aware of the protocol, and
written consents were obtained before the study. Experimental
protocol and procedures were approved by the Dijon Regional
Ethics Committee and conducted according to the Declaration of
Helsinki. As the study focused on intra-individual analyses, few
subjects were included in the study.

2.1.2. Motor Task
Participants were asked to execute whole-body point-to-point
movements in various directions at a self-selected pace. The
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experimental protocol (illustrated in Figure 1) specified 9 targets
on 3 vertical bars. Subjects stood barefooted and performed
pointing movements between all pairs of targets, termed tasks
throughout the paper, using the index fingertip of their dominant
arm (right) while standing (i.e., a total of 72 different tasks). No
constraint was imposed on the left arm. Each participant repeated
each task 30 times for a total of 2,160 recorded movements per
participant. Given the large amount of movements, we separated
the whole experiment in two sessions (approximately 2 h for
each session) to avoid participants’ fatigue, with 24 h between
the two visits. Movements were pseudo-randomized: the same
movement was never repeated successively and the same number
of trials for each of the 72 motion directions (15 on day 1
and 15 on day 2) were performed in each block. We marked
electrode placement on participants’ skin to limit measurement
noise due to recording position changes. As reported previously,
EMG recordings from different days yield highly similar modular
structures (Santuz et al., 2016). Here, we also verified that the
removal of electrodes between the two sessions did not critically
affect the EMG recordings as well as the identified modules.

We computed the correlations between each module of the first
session and each module of the second session, separately for
temporal and spatial modules. We found a highly significant
mean correlation coefficient of 0.89 ± 0.09 for spatial modules
and 0.99 ± 0.01 for temporal modules (for each correlation:
p < 0.01) between the two recording sessions of each subject,
which shows that the extraction method was robust and that a
single extraction including both sessions could be performed.We
therefore present the extraction with the 30 repetitions in the
Results section.

2.1.3. Kinematics and EMG Recording and

Preprocessing

Kinematics

We recorded the 3D positions of 20 retroreflective markers
(diameter = 20 mm) using an optoelectronic measuring device
(Vicon Motion System, Oxford, UK) at a sampling frequency
of 100 Hz. 16 passive markers were fixed symmetrically on the
two hemibodies (acromial process, humeral lateral condyle, ulnar
styloid process, apex of the index finger, greater trochanter, knee

FIGURE 1 | (A) Illustration of the experimental protocol. Placement of the 9 targets and the position of the three bars supporting the targets are based on the

subject’s height (shown as percentages in figure). Subjects performed point-to-point movements between all pairs of targets (a total of 72 tasks) and repeated each

movement 30 times for each direction. (B) Top-view of the task. (C) Typical raw electromyographic data, for subject S2 and condition T1–T9 (illustrated by the

kinematic of initial and final postures and finger trajectories recorded for the associated typical trial). The recorded activity of 30 muscles, normalized in amplitude

(divided by the maximum across the whole experiment for each muscle), are plotted from time t0-0.1sec to time tend+0.1 s. Raw activations are shown in gray and

filtered signals, used as input to the module extraction algorithm, are shown in black. Movement onset t0 and offset tend (chosen as the initial and final time-point of a

time period in which the fingertip velocity was continuously above 5% of its maximum) are shown in the figure as dotted vertical lines for each muscle.
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interstitial joint space, external malleolus, and fifth metatarsal
head of foot). We added external cantus of the eye on the right
face, auditory meatus on the left, and head apex and the first
thoracic vertebra (T1) at the middle. The kinematic data were
low-pass filtered (Butterworth filter, cut-off frequency of 20 Hz)
and numerically differentiated to compute tangential velocity
and acceleration of each marker. To restrict our analysis to
movement-related activity, we defined movement onset (t0) and
end (tend) times as the beginning and end of a time interval in
which the fingertip velocity was continuously above 5% of its
maximum, and which contained this maximum (Figure 1; Delis
et al., 2013b). The average duration of the pointing movements
was 1,363 ms (± 147) with a minimum of 1,055 ms (± 189;
T3->T6) and a maximum of 1,635 ms (± 305; T9->T1).

EMGs

We simultaneously recorded the activations of 30 muscles
by means of an Aurion (Milan, Italy) wireless surface
electromyographic system. The skin was shaved before electrode
placement, and abraded softly. EMG electrodes were placed
symmetrically on the two sides of the body on the following
muscles: tibialis anterior (Ta), soleus (So), peroneus (Pr),
gastrocnemius (Ga), vastus lateralis (Vl), rectus femoris (Rf),
biceps femoris (Bf), gluteus maximus (Gm), erector spinae (Es),
pectorialis superior (Ps), trapezius (Tz), anterior deltoid (Da),
posterior deltoid (Dp), biceps brachii (Bb), triceps brachii (Tb).
These muscles were chosen because they are involved in whole-
body reaching, and importantly, they not only cover a large
part of the human body but they are also easily recordable
via a surface-EMG systems. Correct electrode placement was
verified by observing the activation of eachmuscle during specific
movements known to involve it (Kendall et al., 2005). During
this procedure, EMG signals were monitored in order to optimize
recording quality and minimize cross-talk from adjacent muscles
during isometric contractions. The trial definition (time interval
from t0 to tend) captured the principal EMG signal variations
related to the considered conditions. For each trial, the EMGs
were rectified, low-pass filtered to obtain smooth envelopes of
EMG activity (Butterworth filter, cut-off frequency of 3 Hz, zero-
phase distortion; Ivanenko et al., 2004) and normalized to 1,000
time steps. A final waveform of 50 time steps was then obtained
by using trapezoidal integration of the latter signal on a uniform
temporal grid, i.e., we binned the timecourse of the signal into
50 bins and computed the area under the curve in each bin.
Movement artifacts were visually removed by discarding the
associated trials (<2% of the total number of trials). The data
were then normalized in amplitude on a muscle-per-muscle basis
by dividing each single-trial muscle signal by its maximal value
attained throughout the experiment. A potential detachment
of EMG electrodes was assessed, for each subject, by visually
checking a posteriori that none of the recorded muscles showed
an abnormal change in signal amplitude across trials. For each
subject, we finally formed an EMG matrix of (50 time steps ×
30 muscles) in rows and 2,160 trials in columns consisting of
all the movement-related EMG activity (rectified and filtered) of
the 30 muscles for all recorded trials. This matrix was used as
input to the modular decomposition algorithm to characterize

the spatial and temporal structure of muscle activations for
this set of movements. Figure 1 (right-down panel) presents
movement kinematics (initial and final posture as well as fingertip
trajectories) and (both raw and filtered) EMG signals for one
pointing condition T1–T9 (diagonal movement from top right
to bottom left). Main results were qualitatively the same when
defining trials from t0 − 100 to tend + 100 to account for the
electromechanical delay between EMG activity and real force
production.

2.2. Space-by-Time Modular
Decomposition of Muscle Activity
2.2.1. Space-by-Time Decomposition Model
To represent muscle activity as a structured modular
decomposition, we used a space-by-time decomposition
model (Delis et al., 2014). This modularity model decomposes
muscle activity in separate but concurrent spatial and temporal
modules and combines them in single trials using scalar
coefficients in order to approximate the recorded EMG activity.
More formally, according to the space-by-time decomposition,
a single-trial muscle pattern ms(t) ∈ R

T×M
+ can be written as

follows (s representing each trial and T andM being the number
of time frames and muscles, respectively):

ms(t) =

P∑

i=1

N∑

j=1

wi(t)a
s
ijwj + residual, (1)

where wi(t) ∈ R
T×1
+ and wj ∈ R

1×M
+ are the temporal and

spatial modules respectively, and asij ∈ R+ is a single-trial scalar

activation coefficient. The free parameters P and N correspond
to the number of temporal and spatial modules, respectively, and
are set by the user. The dimensionality of the synergy space is thus
P × N .

2.2.2. Variance Accounted for (VAF)
To assess how well the space-by-time decomposition
approximates the recorded EMG activity, we computed
the variance accounted for (VAF) by the space-by-time
decomposition. VAF is defined as the total reconstruction error
normalized by the total variance of the dataset as follows:

VAF = 1−

∑
s ||m

s(t)−

P∑

i=1

N∑

j=1

wi(t)a
s
ijwj||

2

∑
s ||m

s(t)− m̄||2
, (2)

where S is the total number of trials, m̄ is the mean muscle
activity across all trials, time steps and muscles and ||.|| denotes
the Frobenius norm. Note that different VAFs could be defined by
replacing m̄ by zero or any other reference value (Torres-Oviedo
et al., 2006), indicating that VAF values may differ depending on
the precise definition of m̄.

2.2.3. Module Extraction
To extract the space-by-time representation of muscle activity
in the set of movements under consideration, we applied
sNM3F, a Non-negative Matrix Factorization (NMF) based
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module extraction algorithm that implements effectively the
space-by-time decomposition and identify meaningful spatial
and temporal modules (Delis et al., 2014). The advantage of
NMF-based decompositions is that they restrict the extracted
modules and activations to be non-negative, which makes them
physiologically relevant for EMG signals reflecting well the “pull
only” behavior of muscles (i.e., muscles cannot be activated
“negatively”). We input the preprocessed EMG matrix (see
above) of each subject to sNM3F and extracted P temporal
modules, N spatial modules and P×N× S activation coefficients
capturing all the variations across trials and tasks. The numbers
of spatial and temporal modules (P and N respectively) are free
parameters of the algorithm, thus we varied P = 1, . . . , 10 and
N = 1, . . . , 10 and computed the decomposition for all the
100 possible (P,N) pairs. The smallest set of modules describing
best the data was then estimated using a decoding analysis (see
section 2.4).

2.3. Task Decoding Analysis
We complemented VAF evaluation by an additional metric
allowing to quantify the plausibility of muscle synergies in task
space. Our aim was to assess the reliability of the mapping
between module activations and task performance. To quantify
this, we used a single-trial decoding analysis that evaluates how
well the single-trial coefficients of individual synergies are able to
discriminate the 72 different tasks.

The single-trial activation coefficients asij were used to

predict the task performed in each trial by means of a linear
discriminant analysis (LDA) in conjunction with a leave-one-
out cross-validation (Delis et al., 2013b). We quantified decoding
performance as the percentage of correctly decoded trials and
reported results in the form of confusion matrices. The values
on a given row i and column j of the confusion matrix C(i, j)
represent the fraction of trials on which the executed task j was
decoded as the task i. If decoding is perfect, the confusion matrix
has entries equal to one along the diagonal and zero everywhere
else. The large number of tasks in this study gives a low chance
level decoding value (equal to 1/72= 1.4%).

2.4. Module Selection and Clustering
2.4.1. Selecting the Number of Modules
Based on the decoding performance evaluation, we used a
previously validated automated procedure to select the most
compact and task-discriminative space-by-time decompositions
(Delis et al., 2013a,b). Our rationale is that VAF includes
both the “interesting variance” (related to variations in synergy
recruitment across tasks) and the “less interesting variance”
(unrelated to variations in synergy recruitment across tasks and
that may partly reflect different sources of noise or within-
task variability). The presence of the latter variance may make
difficult the selection of the correct number of synergies.
Also, the removal of “noise” variance using VAF requires the
experimenter’s intuition and partly arbitrary or ad hoc criteria
(Delis et al., 2013a,b). This complementary evaluation overcomes
this problem by singling out (by single-trial task decoding)
only the task-discriminating variance and then studying the

dependence upon the number of synergies of this part of the
variance.

We thus implemented the selection of the number of modules
as follows. For each subject, we progressively evaluated the
statistical significance of the task-discriminating information
added when increasing gradually the number of temporal
and spatial modules (P, N respectively) in the decomposition
model. The number of modules was then selected as the step
at which adding a supplementary module did not give any
significant decoding gain (p > 0.05). To assess the significance
of decoding performance, we employed a permutation test
where we randomly shuffled the coefficients corresponding
to the added module (while the distributions of all other
coefficients were unaffected) and computed discrimination
performance. For instance, for a given value N, we compared
the decoding performance of the synergy parameters when
using the N synergies with the decoding performance of the
parameters of all subsets consisting of N − 1 synergies plus
the parameters of the N-th synergy pseudo-randomly permuted
(“shuffled”) across conditions. We repeated this shuffling
procedure 100 times to obtain a non-parametric distribution
of decoding performance values in the null hypothesis that
the additional synergy does not add to the decoding power
of the synergy decomposition. This procedure ensured the
detection of modules that explain the “task-relevant” variability
and the exclusion of other sources of noise (“task-irrelevant”
variability) (for a more detailed description, see Delis et al.
2013a,b).

2.4.2. Clustering Analysis
To compare modules of the same type (spatial or temporal)
extracted from different subjects, we grouped them using an
agglomerative hierarchical cluster analysis (Hastie et al., 2009).
Although it was not crucial for the present study, such a
clustering can be useful for visualization purpose and for
comparison of our results with other studies. In particular,
it is worth mentioning that the modular control hypothesis
does not impose that different subjects must have the same
modules but that states that each subject may rely on its
a modular structure to generate genuine muscle patterns.
In the following, we will present the procedure used for
clustering in detail for spatial modules, but the same procedure
was followed also for clustering the temporal modules. We
quantified the similarity between spatial modules i and j as their
correlation coefficient (Ri,j). We considered spatial modules as
M-dimensional vectors and computed correlation coefficients
between all pairs of modules across all pairs of subjects. Using Ri,j
as distance measure, we created a hierarchical cluster tree from
all module pairs (Matlab function “linkage” with the “average”
distance method, i.e., using as distance between two clusters
the average distance between all pairs of objects across the
two clusters). The number of clusters was set to the maximum
number of spatial modules across subjects (i.e., 7 here). The
correlation between modules was then computed as the mean
pairwise correlation between all pairs of modules within each
cluster.
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2.5. Significance of Identified
Decompositions
We used a permutation test to assess the ability of the identified
decompositions to uncover meaningful structure in the data. We
compared the VAF and decoding performance of the identified
decompositions with the VAF and decoding performance values
obtained when decomposing structureless data. We generated
structureless data from the recorded data by randomly permuting
the muscles for each time step of each trial in every movement.
The input matrix thus had exactly the same numerical values
but was devoid of biomechanical significance. For each subject,
we performed 10 different permutations, which resulted in
10 simulated datasets on which we applied sNM3F to extract
space-by-time decompositions and computed VAF and decoding
performance of the resulting decompositions. We considered
as significance level the maximum of the VAF and decoding
performance obtained for these decompositions. Quality of the
VAF and decoding performance obtained for the recorded data
was then evaluated relative to this significance level.

2.6. Comparison With Non-modular Muscle
Pattern Descriptions
To compare the efficiency of the extracted modular
decompositions with non-modular alternatives, we computed
decoding performance and VAF of non-modular descriptions
of the data with equal number of parameters as the modular
decompositions. In particular, we examined whether alternative
descriptions of muscle activity that do not rely on an explicit
modularity model are more or less effective than the space-by-
time decomposition in (a) discriminating the task performed
and (b) approximating the EMG signals. This analysis also
served to investigate whether a subset of the recorded muscles
or a shorter temporal window of muscle activity suffices for the
characterization of (a) the recorded EMG signals and (b) the task
differences in single-trials. Thus, we compared task decoding
and VAF results of the space-by-time decomposition with those
obtained by artificially reducing the spatial dimensions (i.e.,
choosing a subset of muscles) or the temporal dimensions (i.e.,
splitting muscle activity into shorter temporal windows) or a
combination of the two. To this aim, we divided the muscle
activity of each of the M muscles (spatial dimension) into B
bins (temporal dimension) and computed the root-mean-square
(rms) of the EMG signal of each muscle within each temporal
bin. This procedure yielded M × B parameters for each trial,
which we refer to as “non-modular” parameters. This gives
an approximation of the EMG signals that does not rely on
any modularity model that can be straightforwardly compared
to the approximation achieved by the modular model. In
fact, the non-modular approximation relies on parameters
extracted directly from the signals and when the number of
parameters reaches the number of data points, it becomes a
perfect reconstruction of the original signal. Hence, by gradually
reducing the number of parameters, we can obtain a fair
comparison between the modular model performance and the
non-modular approximation. To perform a fair comparison, we
then matched the number of non-modular parameters with the

dimensions of the space-by-time decomposition, i.e., selected an
identical number of parameters for both descriptions, in three
different ways.

Firstly, we examined whether adding more spatial dimensions
(and ignoring the temporal structure of the data) would enhance
task discrimination performance. Thus, the first set of non-
modular parameters described only the spatial dimension of
muscle activity by varying the number of muscles retained (M =

N × P) and keeping only one temporal dimension (B = 1).
Secondly, we examined the effect of adding more temporal
dimensions (and ignoring the spatial structure of the data). Thus,
to obtain the second set of non-modular parameters, we varied
the number of temporal bins (B = N × P) and kept only
one spatial dimension (M = 1). Thirdly, we selected equal
numbers of spatial and temporal dimensions with the space-
by-time decomposition (M = N, B = P) and asked whether
we could achieve higher task discrimination using the non-
modular parameters instead of the modular parameters. We
repeated parameter selection for each of the three sets 20 times
(by randomly selecting muscles and/or bins, when appropriate).
We used these three sets of parameters to compute the decoding
performance of the non-modular muscle activity descriptions
and compare it with the decoding performance of the space-by-
time decomposition. Note that the VAF could not be evaluated
from some these non-modular decompositions because they
involve only a subset of the recorded muscles; thus, they can
reconstruct only a part of the EMG recordings.

To resolve this issue, we then quantified the maximal
decoding and maximal VAF that can be achieved by the dataset
under investigation using non-modular descriptions of the data
involving all recorded muscles. We described EMG activity in
single trials using the rms values from the single-trial recordings
of all M = 30 muscles, binned into increasing numbers of
temporal bins (B varying from 1 to 50). We input these values
to LDA and computed the maximal “non-modular” decoding
performance (for B = 50 the non-modular description was
identical to the one given by the original data set). Computing the
VAF was also possible here, using the following procedure: the
reconstructed EMG matrix of this non-modular decomposition
was obtained by assuming all time points within each bin to be
equal to the rms value of that bin (i.e., a piece-wise constant
function). The resulting reconstructed data matrixms

B(t) for each
trial had equal dimensions as the original single-trial EMG data
matrixms(t) and was defined as follows:

ms
B(t) =

M∑

i=1

B∑

j=1

asij1i,j(t)+ residual, (3)

where 1i,j(t) ∈ R
M is the indicator vector function that is

equal to 1 on the ith component if t belongs to bin j and to
0 elsewhere, and asij is the rms value of muscle i for bin j and

trial s. Hence, the VAF of the non-modular decomposition can be
computed from Equation (2) by replacing the double sum term
by

∑M
i=1

∑B
j=1 a

s
ij1i,j(t).

It is worth mentioning that the non-modular models
tested here may be sub-optimal in terms of VAF or decoding
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performance. Indeed, for the same number of parameters, better
results could be obtained by selecting different spatiotemporal
representations of the muscle patterns. The subsequent
comparison will be done between the results achieved by the
modular model, which maximizes VAF and results achieved
by the non-modular models that do not attempt to maximize
neither the VAF nor the decoding scores. The choice of the
non-modular descriptions used in the present study was guided
by simplicity and to provide a basis of comparison.

3. RESULTS

3.1. Basic Kinematic Features
The four subjects performed 72 different point-to-point
movements between pairs of targets among 9 predefined target
points. All finger velocity profiles appeared to be bell-shaped
across subjects and conditions, as previously observed in whole-
body reaching movement (Thomas et al., 2005; Berret et al.,
2009). Targets were attained with an overall mean spatial error
of 10 mm ± 2 mm (from 8 to 15 mm for T6–T3 and T9–T5
respectively). Raw EMG data, associated with the task T1–T9,
for a typical trial of subject S2, are shown in the Figure 1. These
recordings for all conditions and trials formed the EMG matrix
that was used for module decomposition.

3.2. Low-Dimensional Modular
Decomposition in Space and Time
We extracted a space-by-time representation of muscle activity
by applying the sNM3F algorithm to the EMG recordings of each
subject. Figure 2 illustrates the VAF and decoding performance
graphs (upper surfaces in all plots) as a function of the number
of spatial and temporal modules for one typical subject. These
graphs provide insights about the number of spatial and temporal
dimensions that are necessary to describe the set of tasks at
hand. For all subjects, VAF exhibits a smooth increase with the
number of temporal and spatial modules with no clear saturation
point. In contrast, task decoding performance grows quickly and
reaches a plateau for all subjects. The 3D decoding graphs show
a larger effect of the spatial dimension on decoding compared
to the temporal one indicating that precise muscle groupings
may carry more task-related information than precise timing of
muscle activations. The sets of temporal and spatial modules were
selected as the dimensions of the space-by-time decompositions
for which no statistically significant gain (p < 0.05) in decoding
was obtained when adding more (spatial or temporal) modules.
In particular, four temporal modules (P = 4) appear to carry
all decoding power for all subjects, whereas the number of
spatial modules varies across subjects and is usually higher (S1:
N = 4, S2: N = 6, S3: N = 7, S4: N = 5). The resulting
decompositions achieved on average across subjects (mean ±

sem) a VAF value of 68%± 5% and decoding performance of 86%
± 1%. The corresponding graphs for all subjects are presented
in Figure 2. VAF values may appear relatively small compared
to other studies, especially if one sets a somewhat arbitrary
threshold such as 90% for selecting the number of modules (Hart
and Giszter, 2004; Ting and Macpherson, 2005; Torres-Oviedo
et al., 2006). This discrepancy is partly due to the fact that data

were not averaged across trials here (for comparison, the VAF
obtained from averaged data was 90% ± 6% when considering
the optimal number of modules for each subject, see section 4 for
more details on these VAF differences).We assessed the statistical
significance of these VAF values by performing a permutation test
(see section 2 for details on this computation). The lower surfaces
in each plot of Figure 2 represent significance levels for VAF
and decoding values for unstructured data, which we compared
to the ones obtained from the space-by-time decompositions.
For the selected number of modules, significance level for VAF
is 9% ± 3% and for decoding performance 19% ± 5% across
subjects. Note that, for decoding, significance level is higher
than theoretical chance level (~1.4%) because our permutation
technique preserved the order of trials and tasks (only muscles
were shuffled for each time step). Overall, VAF and decoding
scores were significantly larger than their corresponding chance
and significance levels. These results validate that the identified
space-by-time decompositions account for relevant features of
the recorded EMG data and are not just an artifactual output of
the methods.

3.3. Consistency, Task-Independence and
Generalizability of Spatial/Temporal
Modules
We then examined the composition and shape of the extracted
spatial and temporal modules, and their similarity across
subjects. In the space-by-time decomposition, temporal modules
are T-dimensional vectors containing time-varying patterns,
accounting for the timing of muscle activity. Here, the identified
temporal modules were highly consistent across subjects (mean
correlation coefficient r = 0.92 ± 0.06 in each cluster). Each
temporal module was composed of a single activation burst
(Figure 3) and the four modules were successive in time to
describe the temporal profile of muscle activity in different
temporal windows of the full movement duration, which is
a common finding in literature (Ivanenko et al., 2004, 2005;
Chiovetto et al., 2010, 2013). This result may be the consequence
of the common organization of all movements consisting in an
acceleration phase followed by a deceleration phase.

Spatial modules are M-dimensional vectors of muscle
activation levels. The identified spatial modules exhibited higher
variability across subjects (mean correlation coefficient r =

0.92 ± 0.15) than the temporal ones, which might be partly
explained as a result of differences in movement kinematics,
the subject-specific number of spatial modules (thus requiring
different muscle groupings) and/or physical discrepancies
between participants (muscle sizes, skin conductance etc.). We
determined four clusters of spatial modules across subjects. Each
spatial module activated muscles spread across the whole body
(and on both hemibodies, Figure 4). This suggests that the
extracted spatial modules represent functional muscle couplings
for performing the movement at hand rather than purely
anatomical groupings of muscles controlling the same joints or
body parts.

To quantify whether the extracted modules were able to
generate muscle patterns underlying new tasks, we ran two
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FIGURE 2 | Influence of the number of temporal (P = 1...10) and spatial modules (N = 1...10) on VAF (left) and decoding performance (right), for each subject (S1,

S2, S3, S4). In each graph, the upper surface corresponds to the decoding performance and VAF of the space-by-time decomposition as a function of the number of

spatial and temporal modules. The lower surface represents significance levels for VAF and decoding values, computing as the maximum decoding and VAF values

obtained from a permutation test where synergies were extracted from a random shuffling of the EMG data matrix across muscles.
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FIGURE 3 | Representation of the four temporal modules identified by the

space-by-time decomposition for all subjects.

additional tests. We extracted spatial and temporal modules
using only a subset of the motor tasks (75% of all tasks)
and then quantified the similarity of these modules with those
extracted from the full dataset. To simplify these tests, we ran the
decomposition on averaged data (trial-averaged for each task) for
each subject and for the optimal number of modules. We first
performed the decomposition on a task subset selected randomly
to encompass 75% of the total number of tasks (i.e., 54 tasks out
of 72). We repeated this process 10 times for each subject. The
results showed a high correlation between the modules extracted
from subsets of tasks and the initial decomposition (containing
all tasks): averaged r values across best-matching pairs of modules
and subjects was 0.96 ± 0.03 for the spatial modules, and 0.99
± 0.01 for the temporal modules. Accordingly, the modular
decompositions of the task subsets approximated the test EMG
data equally well as the original decomposition that included all
tasks (VAF= 90%± 6%).

In our second test, we chose specific subsets of tasks to assess
the effect of target location on the extracted modules. For each
subject, we tested four different subsets (of 54 tasks out of 72):

(1) discarding all tasks ending at any target of the top row: r =
0.90 ± 0.11 (mean r across pairs of modules and subjects) (2)
discarding all tasks ending at any target of the bottom row: r =
0.93± 0.10 (3) discarding all tasks ending at any target of the left
bar: r = 0.92 ± 0.07 (4) discarding all tasks ending at any target
of the right bar: r = 0.98 ± 0.01. Also for this test, the obtained
VAF values were on average the same as the original ones
(VAF= 90%± 6%).

Therefore, the high similarity and good generalization we
found in all cases supports the relevance of the extracted modules
to approximate and construct genuine muscle patterns.

3.4. Efficiency of the Identified
Space-by-Time Decomposition in Task
Discrimination
In this part, we aimed to assess the effectiveness of the identified
space-by-time decompositions with respect to task decoding
performance. To this end, we used the single-trial parameters
of the decompositions, i.e., the N × P activation coefficients,
to decode which of the 72 tasks was performed on each trial.
Decoding results are shown as confusion matrix for all subjects
(Figure 5). Each entry of the confusion matrix C(i, j) represents
the percentage of times task j was decoded as task i. In Figure 5,
only the matrix diagonal shows high values (on average higher
than 90%), which indicates highly accurate direction decoding
from the way modules are recruited on single trials. We also
observe two light blue lines parallel to the diagonal (one above
and one below the diagonal) indicating incorrect classifications
for some pairs of tasks (corresponding to 11% of decoding errors
on average). These decoding errors concerned tasks starting
from neighboring points on the same bar and ending at the
same point on a different bar, for which the between-task
and within-task variability of muscle patterns was likely less
distinguishable. In particular, starting points T1–T3 (higher level)
were confused as T4–T6 (middle level) respectively and vice-
versa (see Figure 1 for target positions). Hence, these confusions
suggest that decoding is harder between tasks that have the same
spatial direction (left or right) and the same endpoint and their
starting locations differ only in the height dimension. Starting
points at the lower level were confused less often (<10% decoding
errors) probably because of the higher involvement of lower body
muscles required for these movements, which distinguishes them
from the middle and higher level starting points. To gain more
intuition on how activation coefficients are modulated by the
task, we also plotted the trial-averaged activation coefficients for
each initial and final target (see Figure 6 for a subject S2 and
Supplementary Material A for other subjects). For all subjects,
some coefficients are clearly modulated by changes in the final
position (e.g., S1:A44, S2:A34, S3:A14, S4:A44), and others by
changes in the initial position (e.g., S1:A31, S2:A11, S3:A21,
S4:A31). We also observed a few coefficients that were less
clearly linked to the modulation of just initial or final position.
These coefficients may encode other task parameters. However,
verifying this point requires a more thorough decoding analysis
on other task parameters (e.g., amplitude, direction) and is out of
the scope of the present study.
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FIGURE 4 | Representation of the main four spatial modules for all subjects. Each panel presents the four first spatial modules of each subject (S1 left-high, S2

right-high, S3 left-low, S4 right-low). Spatial modules were sorted for each subject relative to their similarity with the four modules of S1. Note however that we found

more than 4 spatial modules for some subjects, but we only depict 4 of them here for convenience. The 30 muscles are represented by vertical bars (white filled if

placed on the right hemibody, black on the left hemibody). For S1 only 27 muscles were recorded, the three absent muscles have zero values in the S1 panel.

3.5. Effectiveness of Space-by-Time
Modularity as Compared to
Non-modularity
To compare the effectiveness of the modular decomposition in
terms of task discrimination, we confronted its decoding power
with the ones obtained with the same number of parameters

but taken directly from the recorded muscle activity, that is,

without assuming any advanced modularity model (see section

2 for details on the extraction of non-modular parameters).

Here to treat all subjects with the same methodology, we

first computed the decoding performance of the space-by-

time decomposition with 9, 16, and 25 single-trial coefficients
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FIGURE 5 | Confusion matrix of the four subjects. For each graph, rows correspond to the decoded task and columns to the task actually performed by the subject.

Each color-scaled entry of the matrix C(i, j) represents the percentage of times the task j was decoded as the task i (yellow corresponds to 100% correct decoding

and blue is 0%).

[i.e., (N, P) = (3, 3), (N, P) = (4, 4) and (N, P) = (5, 5),
respectively, Figure 7, black curve]. We then compared the
decoding performance of the modular decomposition with the
95% confidence intervals of decoding performance obtained
using three simple sets of parameters of equal dimensionality
(red, green and blue areas) that capture the spatial, temporal
and spatiotemporal structure of the EMG data respectively
(see section 2 for details on these computations). For all
subjects, the space-by-time decomposition carried higher task
discrimination power than the three sets of parameters. Notably,
the worst decoding performance was obtained when decoding
was based only on the temporal parameters of an individual
muscle (red area) suggesting that temporal dimension carries less
information about task differences, possibly because all reaches
were made of one acceleration and one deceleration phases with
similar timings. On the contrary, when exploiting the spatial
dimension (overall activation of a set of muscles, green area)
decoding results were higher. This finding suggests that direction
information was mainly carried by the relative activation levels
of different muscles (i.e., the spatial dimension), whereas the
precise timing of muscle activations did not contribute to the
discrimination of different movements. It is noteworthy that not

only was decoding lower for the tested sets of non-modular
parameters but also these parameters can reconstruct only a
subset of the EMG data and thus VAF cannot be evaluated
for them (i.e., they are not able to construct complete muscle
patterns).

In order to be able to also evaluate the VAF, we considered a
non-modular model describing muscle patterns with piece-wise
constant functions (see Equation 3). This model included all
30 muscles -as the spatial dimension carries most of the task
information- and contained a varying number of bins to test
different temporal resolutions. When all bins and all muscles
were considered, the model yielded a complete and exact
description of the original muscle patterns. We observed that
the maximal decoding performance that could be attained with
the activation parameters of such a model was 95% ± 4% across
subjects, with 5 temporal bins (i.e., 150 decoding parameters,
black curve in Figure 8A). Increasing further the number of bins
turned to decrease the decoding performance first slightly and
then drastically, confirming our previous findings about the small
contribution of temporal precision to decoding. In comparison,
the maximum decoding performance obtained by the space-
by-time decomposition was 91% ± 3% (for N = 10, P = 10,
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FIGURE 6 | Dependence of the activation coefficients on the initial and final posture. Each graph represents the value of an ai,j coefficient as a function of the initial

position (from T1 to T9; gray-dotted vertical bars) and the final position (from T1 to T9; violet-dotted vertical bars), with i being the number associated to temporal

modules (from 1 to 4) and j to spatial modules (from 1 to 4). Each panel represents one temporal module (1-left up, 2-right up, 3-left down, 4-right down), each color

one spatial module (1-gray, 2-red, 3-green, 4-blue). Results are shown for the data of subject S2.

i.e., 100 parameters, gray curve in Figure 8A). Interestingly,
a smaller set of parameters for themodularmodel (25 parameters,
N = 5, P = 5) already achieved decoding performance of
84% ± 5%. For a comparable number of parameters, decoding
performance was 86% ± 3% for 36 modular parameters (see
gray curve in Figure 8A) vs. 75% ± 5% for 30 non-modular
parameters (see black curve in Figure 8A). Note that in these
analyses only the number of parameters that must be specified
for each single movement to create a full muscle pattern are
counted. Notably, the extracted space-by-time decomposition
using the optimal number of parameters for each subject (S1:
N = 4, P = 4, S2: N = 6, P = 4, S3: N = 7, P = 4,
S4: N = 5, P = 4, i.e., 22 ± 1 parameters across subjects)
yielded 86% ± 1% decoding, whereas the decoding performance
of the non-modular decomposition with 30 parameters was
75%± 1%.

Regarding data approximation, we observed that increasing
the number of bins led to a gradual increase of the VAF
values up to a maximum of 100% when the full muscle
patterns (50 time bins for 30 muscles, i.e., 1,500 parameters
specified for each single movement) was used (see black curve
in Figure 8B). For the modular decomposition (gray curve
in Figure 8B) and small numbers of parameters (from 1 to
100), VAF values were qualitatively equal or higher than the
ones associated with the non-modular descriptions of muscle
patterns (e.g., for 64 modular parameters: VAF = 79% ±

1% vs. for 60 non-modular parameters: VAF = 75% ± 1%).

Again, the extracted space-by-time decomposition using the
optimal number of parameters for each subject (22 ± 1
parameters across subjects) yielded 68% ± 1% VAF, which is
higher than the VAF of the non-modular decomposition with
30 parameters (55% ± 3%). When increasing the number of
parameters, the non-modular decomposition achieves higher
VAF values reaching 100%, as expected when all data points
are used, which is also the case when choosing N = M
and P = T for the extraction of modules (although it
would be meaningless regarding the modularity hypothesis as
there would be no muscle grouping and no dimensionality
reduction).

4. DISCUSSION

In this study, we analyzed the effectiveness of space-by-
time modularity in describing muscle patterns underlying
a set of complex goal-directed movements. We designed
a comprehensive experiment comprising 72 distinct whole-
body pointing movements and collected 30 EMG channels.
We assessed the extent to which a space-by-time modular
decomposition of muscle activity could (a) approximate the
rectified/filtered EMG data on single trials and (b) convey
task-relevant information. Although descriptive, the present
study shows that space-by-time modularity provides a relevant
overview of how muscle patterns may be formed during whole-
body voluntary movements, as discussed below.
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FIGURE 7 | Comparison of decoding power between the space-by-time decomposition and three other sets of EMG parameters of equal dimensionality for each

subject. The different sets of parameters were compared in terms of their decoding power for three different dimensionalities (9, 16, and 25 parameters corresponding

to (P,N) = (3, 3),(4, 4),(5, 5) spatial and temporal modules respectively). For each subject’s graph, the black line represents the decoding power of the space-by-time

decomposition. For the three other sets of decoding parameters, we plot the 95% confidence interval for the decoding performance results obtained across 20

repetitions. The red area represents the decoding performance for one randomly selected muscle and 9, 16, and 25 temporal bins (M = 1, B = N× P). The green

area represents the decoding performance for 9, 16, and 25 randomly chosen muscles and one temporal bin per muscle (M = N× P, B = 1). The blue area

represents the decoding performance for N randomly chosen muscles and P bins per muscle (M = N, B = P). M refers to the number of muscles, B to the number of

temporal bins per muscle and P, N represent the number of temporal and spatial modules respectively.

4.1. Parsimonious Representation of EMG
Data in Space and Time
Four bursts of muscle activation characterized the timing of
movement-related EMG activity. Notably, this set of temporal
modules was very consistent across subjects and more temporal
precision did not improve the characterization of the task
performed using decoding analysis. Refining the number of
temporal modules only contributed to increasing the VAF, i.e.,
yielded a better reconstruction of EMG patterns. This finding
shows that the task-relevant information is mainly conveyed in
four successive temporal recruitments that may correspond to
different phases of the goal-directedmovement. The nature of the
task may have defined the four temporal phases observed here:
postural stabilization over starting point, movement initiation,
movement deceleration and stabilization over endpoint. The
obtained temporal modules have a particular form similar to
bursts of muscle activity. It is, however, important to note that no
mathematical constraint was imposed on the selection of these
modules. In other words, the modules were only constrained to
be non-negative and no specific shape was imposed on them
(e.g., Gaussian). In addition, similar temporal modules have
been described in different studies (different motor tasks and
different animal models) using different extraction techniques
(Hart and Giszter, 2004; Ivanenko et al., 2004, 2005; Dominici

et al., 2011), which suggests that the obtained shapes are likely
not a by-product of the algorithm or the task constraints but
are physiological. This supports the robustness of the identified
temporal structure of motor modules irrespective of the study-
specific signal preprocessing procedure (Kargo and Giszter, 2008;
Hart and Giszter, 2010). We also note that when using an
extension of the model that includes temporal shifts/delays in
the temporal modules (as derived in Delis et al., 2014), we
did not obtain any task discrimination gain but VAF could be
higher. This suggests that the task-related temporal structure
of muscle patterns is well explained by the extracted temporal
modules and that any minor variations in muscle timings
likely require time shifts of those modules. Also it is worth
noting that the preprocessing of EMG data tends to filter out
measurement noise such that the analyzed signals comprised
mostly of physiological within-task and between-task variations

whose relative weight was indirectly assessed via the decoding

analysis.
In space, the module extraction algorithm grouped muscles

into a few (4–7) spatial modules consisting of muscles from

different body parts and hemibodies suggesting that groupings

did not contain only anatomically coupled or neighboring
muscle groups. Also, each spatial module was typically activated
to perform many different movements and each movement

Frontiers in Computational Neuroscience | www.frontiersin.org 13 April 2018 | Volume 12 | Article 20

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Hilt et al. Whole-Body Spatiotemporal Modularity

FIGURE 8 | Comparison of decoding performance (A) and VAF (B) as a function of the number of single-trial parameters between the modular and non-modular

decompositions. Gray lines represent the average decoding performance and VAF across subjects of the modular decomposition using 3, 4, 5, 6, 7, 8, 9, and 10

temporal and spatial modules, which correspond to a total of 9, 16, 25, 36, 49, 64, 81, and 100 single-trial parameters respectively (top gray x-axis). Black lines

represent the average decoding performance and VAF across subjects of the non-modular decomposition. As single-trial parameters of the non-modular

decomposition, we used the rms values of the EMG signals of all (30) muscles binned in 1, 2, 5, 10, 25, 50 temporal windows, which corresponds to a total of 30, 60,

150, 300, 750, 1,500 single-trial parameters respectively (bottom x-axis).

was performed using the simultaneous activation of many
spatial modules (see Figure 6 and Supplementary Material A:
modulation of the a coefficients as a function of the initial an
final position). This suggests that the spatial modules are not
direction-specific but rather functional groups of muscles shared
across movements whose weighted recruitment actually codes
the task being performed (Tresch et al., 1999; d’Avella et al.,
2006, 2008; Torres-Oviedo et al., 2006; Delis et al., 2013b, 2014).
The spatial modules were also more variable across participants
than the temporal ones. First, this could be due to the fact

that subjects had a different optimal number of spatial modules,
thus requiring different muscle groupings. Second, such inter-
subject differences in muscle synergies have been reported in
previous studies (Guidetti et al., 1996; Hug et al., 2010; Frère
and Hug, 2012) and are expected to be more pronounced
when more muscles are recorded. Indeed, in complex motor
tasks (e.g., whole-body-reaching), spatial variability may increase
for multiple reasons: different skin conductions or muscle
characteristics, different motion kinematics and dynamics, etc.
Furthermore, different muscle groupings across individuals may
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be the outcome of learning or developmental processes, which
have recently started to be investigated (Dominici et al., 2011).
Therefore, the modular control hypothesis is compatible with the
finding that different participants could exhibit different motor
modules. However, somemuscles such as left tibialis anterior and
peroneus appeared to work in synergy for all participants.

4.2. VAF and Discrimination Power
Compared to Other Studies
We found that a small set of spatial and temporal modules
described muscle activations during performance of a wide
range of whole-body pointing movements. This parsimonious
representation explained a large part of the between- and within-
task variability of the EMG recordings (significantly more than
chance), although the actual VAF values we obtained here may
be relatively low compared to other studies. One main reason
is that the present muscle patterns exhibited a higher level of
variability than other studies as a result of (a) extracting modules
from single-trial data (30 trials for each motion direction),
i.e., not resorting to averaging and (b) studying a very large
set of different tasks (72 distinct movement types, which gives
a total of 2,160 trials). When extracting modules from trial-
averaged data, the average VAF across subjects was 90%, which
is comparable to VAF values found in other studies using a
smaller number of distinct movements and time-shifts (d’Avella
et al., 2006). However, decoding scores could not be evaluated if
using averaged data. Note also that our formula for computing
the VAF was relatively conservative compared to other formulas
that could give arbitrarily larger VAF values, for instance by
replacing the mean muscle pattern by zero in the denominator
of Equation (2) (Torres-Oviedo et al., 2006). Notwithstanding
this, the low VAF and the residual reconstruction error could be
taken as evidence that space-by-time modularity can only give
a crude description of muscle patterns unless the number of
modules is increased. This was already noticed in another study
where highVAF levels were needed to accurately reproduce single
muscle patterns (Zelik et al., 2014). Here we showed that the
low-dimensional EMG description was nevertheless associated
to a surprisingly high decoding performance in spite of the fact
that task decoding is not an objective of the decomposition
algorithm.

Interestingly, the spatial (muscle) dimension of EMG activity
appeared to carry more task information than the temporal
dimension, which is consistent with previous findings (Delis
et al., 2014). The low task information carried by the temporal
modules may be partly explained by the fact that muscle
signals need to be normalized in time to have equal lengths
before being input to matrix factorization algorithms. Time
normalization is useful in order to align trials with different
durations (and mandatory in current NMF-based methods),
however its impact on the task information carried by the
resulting signals needs to be investigated further. It is also
unlikely that varying the speed instructions (i.e., including
different speed conditions in the analysis) would have improved
the task discrimination power of the temporal modules as this
was not the case for planar arm reaching movements (Delis
et al., 2013b). Strikingly, however, our decoding results are

comparable and even higher than the ones obtained in the
simpler 2-dimensional arm reaching study mentioned above
(86% vs. 80%) as well as in other studies investigating grasping
movements (Weiss and Flanders, 2004; Overduin et al., 2010;
Leo et al., 2016). This decoding gain can be explained by
two main differences with prior work. First, we used a more
flexible model of muscle activation modularity, namely the
space-by-time decomposition, which was shown to have higher
movement discrimination power compared to alternative models
(Delis et al., 2014). Second, we investigated a whole-body
reaching task, for which, in contrast to arm reaching and
grasping, (a) a large number of muscles with complementary
functional roles can be recorded using surface EMGs and (b)
activations of several muscles are expected to be markedly
different across tasks. We also note that, in this study, a
larger number of temporal and spatial modules was required
to achieve these decoding values. This difference indicates that
the number of dimensions is dependent on the set of tasks
under consideration, hence, to draw more general conclusions
about dimensionality, it is important to examine other motor
behaviors that are as unconstrained as possible. The task
dependency of the modules can be understood if we consider
similar reaching movements (e.g., to neighboring targets). In
this case, task decoding would be considerably more difficult
than discriminating between very different motor behaviors as
considered here, where ensemble EMG patterns differ clearly.
This point is confirmed via our confusion matrix analyses.
Overall, the decoding analysis reveals that recruitment of muscle
groupings (spatial modules) is highly dependent on the direction
of hand displacement. Their combination with adequate timing
signals (temporal modules) via the descending motor commands
(activation coefficients) leads to unequivocal characterization of
distinct movements.

4.3. Space-by-Time Modularity for Motor
Control
Considering the neural basis of a space-by-time modular scheme,
our modeling implicitly assumes that the (invariant) spatial and
temporal modules may be stored in certain CNS areas. Then,
the (variable) activation coefficients may be triggered by higher-
level cortical structures that would generate the descending
neural command which would recruit a specific set of modules
to coordinate the task-specific recruitment of several muscles
and execute the movement at hand. This view is compatible
with evidence that, when stimulated, the motor cortex in the
primate brain is able to coordinate behaviorally relevant actions,
whereby neuronal activity may trigger such goal-directed,
multijoint reaching movements (Graziano, 2006). Recently,
similar evidence for a high-level encoding of ethological actions
has been found in the precentral gyrus of patients undergoing
brain surgery (Desmurget et al., 2014). Our findings are not
incompatible with such a hierarchical neural implementation
of action since the tested modular decomposition was quite
effective for task encoding and muscle pattern approximation.
However, it is undeniable that the space-by-time decomposition
gives only a crude picture of the recorded muscle patterns
on single trials. Theoretically, all trial-to-trial EMG variations
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should be captured by the model (neglecting measurement
noise) but a much larger number of modules would be required
to achieve VAF above a 90% threshold for instance. This
issue was already identified with other existing muscle synergy
models for locomotion (Zelik et al., 2014). While we have
provided some computational arguments explaining why the
VAF is lower than the one observed in prior studies on
the topic, we cannot dismiss a potential departure from the
proposed feedforward modular control scheme. Indeed, the role
of feedback is largely neglected in such models where it might
be relevant to better replicate the recorded muscle patterns.
Hence we speculate that the high movement discrimination
capacity but approximate muscle pattern reconstruction ability
may reflect the fact that feedback and/or intermittent control
processes occur duringmotor execution and thus, these processes
should be modeled in muscle synergy studies (see below).
More generally, the question of falsifying the muscle synergy
hypothesis has proved to be difficult although it has been
tackled by several neurophysiological and computational works
as discussed hereafter.

4.4. Critical Evaluation of Modular Motor
Control
A large number of recent studies attempted to assess modular
organizations in terms of their effectiveness in motor control
and learning (Valero-Cuevas et al., 2009; d’Avella and Pai, 2010;
Kutch and Valero-Cuevas, 2012; Berger et al., 2013; Berger
and d’Avella, 2014; Bengoetxea et al., 2014; Inouye and Valero-
Cuevas, 2016). In the same vein, other authors have proposed
approaches to address the plausibility of modularity in motor
control (Giszter, 2015). In particular, monkey electrophysiology
(Graziano et al., 2002; Holdefer and Miller, 2002; Overduin
et al., 2012, 2014, 2015), human neuroimaging (Asavasopon et al.,
2014; Rana et al., 2015) and computational studies (Laine et al.,
2015) were employed to investigate the neural origins of motor
modularity. Also, modeling studies examined whether optimal
motor control can be implemented by modular control schemes
(Nori and Frezza, 2005; Chhabra and Jacobs, 2006; Berniker et al.,
2009; Neptune et al., 2009; Alessandro et al., 2013a). Finally,
studies of human motor behavior investigated the robustness
of modules by imposing alterations on muscle coordination of
healthy individuals (de Rugy et al., 2012, 2013; Nazarpour et al.,
2012a; Steele et al., 2015) and testingmuscle activations in clinical
populations (Clark et al., 2010; Gizzi et al., 2011; Cheung et al.,
2012; Roh et al., 2013).

Here, we tried to approach this issue in agreement with the
guidelines developed by Gao andGanguli (2015) in neuroscience.
First, to assess whether modularity may be employed as
a strategy for “simplifying” the degrees-of-freedom problem
of motor control, modularity should be examined in high-
dimensional spaces. In this vein, we propose the design of
an experiment that comprises as many movements as possible
(with numerous repetitions of the same movement) and involves
time-varying EMG recordings of as many muscles as possible
(Steele et al., 2013, 2015). Our experiment here comprises
more tasks (understand movement types here) than most other

studies and also considers a complex daily-life motor behavior
of whole-body reaching while standing for which a large inter-
individual and intra-individual variability may exist (Berret et al.,
2009; Hilt et al., 2016). Second, we evaluated the functional
role of the model by looking at the extent to which it could
represent such a wide variety of muscle patterns with between-
task and within-task variabilities. Third, we compared the
performance of themodularmodel with alternative non-modular
models in terms of task decoding, data approximation and
dimensionality reduction (i.e., the number of parameters to
be specified on a single trial). Here, we could only provide
qualitative observations and comparisons with parameters of the
non-modular models that were chosen empirically, thus they
were not fully optimized. Nevertheless, at equivalent number of
parameters, the modular model provided a better description
of muscle patterns from both task discrimination and data
approximation viewpoints, though more participants and a more
thorough search in the parameter space of the EMG signal would
be required to confirm such a tendency. Future work in this
direction is needed, in particular to understand if higher VAF
could be achieved with more advanced synergy models and if
temporal modules that carry more task information could be
identified.

4.5. Future Work
Future research directions should involve investigating
alternative formulations of the modular control hypothesis
that allow refining motor programs by adapting the modular
decompositions for specific task demands, possibly assuming
intermittent control (Karniel, 2013). Considering how well
the extracted modules allow reconstructing individual muscle
activities (Zelik et al., 2014) seems also pertinent to understand
if all critical features of muscle activity are considered when
generating genuine muscle patterns from a small number
of invariant modules. Finally, considering variants of the
module extraction algorithm may improve the quality of data
approximation and task discrimination. For example, a method
that incorporates the task discrimination objective within the
module extraction process was shown to identify decompositions
with nearly perfect task discrimination power while preserving
the same levels of VAF (Delis et al., 2015). Developing methods
allowing to avoid time normalization and binning and allowing
to consider recruitment of modules via feedback signals would
also be very useful especially in order to understand better which
neural pathways contribute to the recorded muscle activity and
shape the modular organization we identified here. Of particular
interest will be to inform our computational framework with
a more detailed account of the underlying physiology of the
motor system including the response latencies of different
neural pathways as well as the interactions of descending
drives and peripheral impulses (Burke et al., 1992; Galea and
Darian-Smith, 1997; Maier et al., 2005; Darian-Smith et al.,
2013; Chakrabarty and Martin, 2011). In conclusion, further
computational and experimental work is required to investigate
the motor modularity hypothesis for the neural control of
movement.
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