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Abstract

Geostatistical modelling is widely used to describe data with spatial dependence structure. Such
modelling often assumes a Gaussian distribution, an assumption which is frequently violated due
to the asymmetric nature of variables in diverse applications. The Birnbaum-Saunders distribution
is asymmetrical and has several appealing properties, including theoretical arguments for describing
chemical data. This work examines a Birnbaum-Saunders spatial regression model and derives global
and local diagnostic methods to assess the influence of atypical observations on the maximum likeli-
hood estimates of its parameters. Modelling and diagnosticmethods are then applied to experimental
data describing the spatial distribution of magnesium and calcium in the soil in the Parana state of
Brazil. This application shows the importance of such a diagnostic analysis in spatial modelling with
chemical data.

Keywords Chemical data analysis; global and local influence; Matérnmodel; maximum likeli-
hood methods; non-normality; R software.

1 Introduction

Statistical distributions are largely used to model variables studied across a wide range of applica-
tions. These distributions may help to determining the expectation and covariance of data with spatial
dependence. Such data can be related to geochemical variables as fertilizer content for agricultural man-
agement, where deficiency and imbalance of nutrients in the soil are important aspects to be studied
(De Bastiani et al., 2015; Garcia-Papani et al., 2017). Due to their inherent variation, the geochemical
variables are considered as random and often following asymmetric statistical distributions with positive
skewness. Hence, the Gaussian distribution is inappropriate and should not be used to model this type of
random variable, which must be checked (Barros et al., 2014;Stehlı́k et al., 2014).

There is little literature investigating the use of asymmetric distributions to analyse spatial data.
Some of these few works are attributed to Allard and Naveau (2007) and Rimstad and Omre (2014), who
employed the skew-normal distribution to model random fields. However, data to be modeled spatially
often have support on the positive real line and then these distributions are inappropriate. Consequently,
the Birnbaum-Saunders (BS), exponential, gamma, inverse Gaussian, log-normal and Weibull distribu-
tions might be more suitable (Johnson et al., 1994, 1995; Leiva, 2016). In particular, the BS distribution
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has attractive properties, which are useful for modelling asymmetric data, specially in geochemistry.
For example, BS and normal distributions have a close relationship, but the BS model is defined in an
asymmetric framework, which is a good motivation for further investigations. Other properties of the BS
distribution are related to proportionality, reciprocity, diverse shapes for its hazard rate, and its member-
ship of the log-symmetry class. All of these properties provide wide flexibility for modelling different
phenomena and types of data, as well as an attraction for the BS distribution. In particular, the log-
symmetry class of distributions arises when a random variable has the same distribution as its reciprocal,
such as the log-normal distribution, but the BS distribution has an associated logarithmic version (log-
BS) which allows for bimodality and the log-normal distribution not; see more details of these properties
in Johnson et al. (1995), Leiva (2016) and Leão et al. (2017). In addition, the BS distribution has been
widely studied and applied across different fields, including geochemistry, which have been carried by
an international, transdisciplinary group of researchers; see, example, Leiva et al. (2011, 2015, 2016a),
Ferreira et al. (2012), Marchant et al. (2013) and Saulo et al. (2013). Despite its origins in material
fatigue, Leiva et al. (2015) confirmed the BS distribution asan adequate model to describe data from
chemical and environmental sciences using the proportionate-effect law. In particular, Xia et al. (2011)
and Garcia-Papani et al. (2017) introduced BS spatial models. However, both of these works only deal
with the spatial problem, whereas the extension to spatial regression models, allowing the inclusion of
explanatory variables (covariates hereafter), has not been considered to date.

Fitting a distribution to spatial data is useful in several areas (Cressie, 2015). For example, Cam-
bardella et al. (1994) indicated that, in the case of soil properties, it can be utilized to improve agri-
cultural management practices. Specifically, modelling the expectation and covariance of data allows
spatial dependence parameters to be estimated and this dependence to be quantified. Such a modelling
may be characterized by the variogram, whereas the responsevariable (response hereafter), described
by regression with covariates, may be modeled using Kriging(De Bastiani et al., 2015). For example,
Hengl et al. (2004) reported successful results when regression-Kriging is considered.

An essential step in all statistical modelling is the diagnostic analysis employed to detect the influ-
ence of atypical cases on the parameter estimates (Green andKalivas, 2002). Diagnostics can be carried
out using global or local influence. Global influence is oftenconducted by case-deletion methods. Two
well-know case-deletion methods are the Cook distance (CD)and the likelihood distance or displace-
ment (LD) (Cook et al., 1988). It is important to note that Cook-type approaches do not always correctly
identify influential points (Fung, 1995; Kim, 2013) and hence it is important to consider several contrast-
ing measures, as we are proposing in this work. For spatial data, Militino et al. (2006) considered global
influence for multivariate spatial linear models. However,single case-deletion cannot detect jointly in-
fluential cases. Instead, the local influence method may be used, which allows assessment of combined
influence of cases (Cook, 1987) . Local influence typically examines the normal curvature of an LD
after perturbing the model and/or data. Since the work of Cook (1987), many authors have considered
the local influence method. Additive perturbations in localinfluence for Gaussian linear models have
been extended to more general models by Galea et al. (2003) and Leiva et al. (2016b). Studies of local
influence in BS models were conducted by a number of authors; see, for example, Santana et al. (2011),
Leiva et al. (2014a,b), Marchant et al. (2016b), Garcia-Papani et al. (2017), Saulo et al. (2017) and
Desousa et al. (2018). For spatial models, Uribe-Opazo et al. (2012) derived local influence measures
in Gaussian spatial models, whereas Assumpção et al. (2014) considered the Student-t case. For non-
additive perturbations, Zhu et al. (2007) proposed a methodto find the most appropriate perturbation for
a specific model, whereas Gimenez and Galea (2013) applied this method to functional heteroscedastic
measurement-error models. Although the normal curvature approach proposed by Cook (1987) has been
extensively used, the conformal curvature proposed by Poonand Poon (1999) is more efficient, because
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the conformal approach is normalized and invariant under certain reparameterizations. De Bastiani et al.
(2015) utilized conformal curvature to study local influence in non-normal spatial models.

The main objective of this article is to derive diagnostic methods for BS spatial regression models.
On the one hand, assessment of global influence uses the single case-deletion method proposed by Pan
et al. (2014). On the other hand, the local influence method isalso considered, making perturbations in
the model by means of the response and some continuous covariate, employing the scheme suggested
by Zhu et al. (2007). The potential influence of a case is quantified using conformal curvature and its
associated measures. Furthermore, a generalised leverage(GL) study is conducted, which evaluates the
influence of the observed response on its estimated value (Leiva et al., 2014b). The diagnostic study
is applied to experimental spatial data collected by the authors related to contents of magnesium and
calcium in the soil.

The paper is organized as follows. In Section 2, background to the BS and log-BS distributions is
provided. In this section, the BS spatial regression model is also introduced and the maximum likelihood
(ML) method is considered for parameter estimation. Section 3 presents concepts related to diagnostic
analysis and discusses how to select the most appropriate perturbation scheme for the BS spatial regres-
sion model. Evaluation of the model by analysing experimental data is carried out in Section 4. Finally,
Section 5 gives some conclusions and possible future research.

2 The Birnbaum-Saunders spatial model

2.1 The Birnbaum-Saunders distribution

As mentioned, the BS distribution has its origins in material fatigue analysis based on the Miner
law. Details of its technical derivation using this law are available in Leiva (2016, pp. 5-11). However,
as also mentioned, despite its origins in material fatigue,the BS distribution can be utilized to model
chemical data. Details of its justification and theoreticalderivation based on the proportionate-effect law
are available in Leiva et al. (2015).

The BS distribution is unimodal and has shape (α > 0) and scale (σ > 0) parameters, in addition
to asymmetry to the right with positive support. Note thatσ is also a location parameter, because it
corresponds to the median of the distribution. The random variable

T = σ

(
αZ1/2 +

√
(αZ1/2)

2 + 1

)2

is said to follow a BS distribution with parametersα andσ if Z1 = (1/α)ξ(T/σ) ∼ N(0, 1), with
ξ(u) =

√
u − 1/

√
u = 2 sinh(log(

√
u)), which is denoted byT ∼ BS(α, σ). The corresponding

cumulative distribution function (CDF) is given by

FT (t;α, σ) = P(T ≤ t) = Φ

(
1

α
ξ(t/σ)

)
, t > 0, (1)

whereΦ is the standard normal CDF. Theqth quantile ofT is t(q;α, σ) = σ(αz(q)/2+
√
(αz(q)/2)2 + 1)2,

for 0 < q < 1, wherez(q) is theqth quantile of the standard normal distribution. Thus, ifq = 0.5, then
t(0.5) = σ and, as mentioned,σ is the median of the BS distribution. Note that the probability density
function (PDF) of the BS distribution can be directly obtained from its CDF defined in (1). The BS PDF
has increasing positive skewness asα increases and is approximately symmetrical aroundσ asα goes to
zero; see examples of its diverse shapes in Figure 1 (left).
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Some properties ofT ∼ BS(α, σ) are: (P1)W = (1/α2)ξ2(T/σ) ∼ χ2(1); (P2)r T ∼ BS(α, rσ),
for r > 0; (P3)1/T ∼ BS(α, 1/σ), that is, the BS distribution is related to the normal and chi-square
distributions, as well as belongs to the scale (proportionality) and closed under reciprocation (reciprocity)
families. In addition, (P4) the failure rate of the BS distribution admits several shapes, including the
unimodal and bimodal cases; see details in Azevedo et al. (2012) and Athayde et al. (2018). Furthermore,
(P5) the mean, variance and coefficients of variation (CV), skewness (CS) and kurtosis (CK ) ofT ∼
BS(α, σ) are, respectively, defined as

E(T ) =
σ

2
(2 + α2), Var(T ) =

σ2

4
(4α2 + 5α4), CV(T ) =

√
4α2 + 5α4

2 + α2
,

CS(T ) =
24α+ 44α3

√
(4 + 5α2)3

, CK(T ) = 3 +
240α2 + 558α4

(4 + 5α2)2
.

Modelling based on the BS distribution is often described interms of the log-BS distribution. Note
that a continuous random variableY follows a log-BS distribution with shape parameterα > 0 and
location parameterµ ∈ R, which is denoted by log-BS(α, µ), if and only if

Z2 =
2

α
sinh

(
Y − µ

2

)
∼ N(0, 1).

Thus, the CDF ofY is expressed as

FY (y;α, µ) = Φ

(
2

α
sinh

(
y − µ

2

))
, −∞ < y < +∞,−∞ < µ < +∞, α > 0. (2)

As in the BS distribution, note that the PDF of the log-BS distribution can be directly obtained from
its CDF defined in (2). IfY ∼ log-BS(α, µ), then the following properties hold: (P6)T = exp(Y ) ∼
BS(α, σ), with log(σ) = µ, which means that the log-BS PDF obtained from (2) may be established
from the standard normal PDF or from the BS PDF defined in (1); (P7) E(Y ) = µ, but no closed
form for the variance ofY is possible, although using an asymptotic approximation for its moment
generating function, we have that, ifα → 0, Var(T ) = α2 − α4/4, whereas that ifα → +∞, Var(T ) =
4(log2(

√
2α) + 2 − 2 log(

√
2α)); (P8) ifX = ±Y + d, thenX ∼ log-BS(α,±µ+ d); (P9) the log-BS

distribution is symmetric aroundµ, unimodal forα ≤ 2 and bimodal forα > 2; and (P10) it belongs
to the class of log-symmetric distributions, which also includes the log-normal distribution. This class
contains all random variables which have the same distribution as their reciprocal; for more details, see
Leão et al. (2017). Figure 1 (right) shows some shapes for the log-BS PDF.

2.2 Formulation of the spatial model

In order to model a set of spatially correlated data, consider a stochastic processT ≡ {T (s), s ∈ D},
defined on some regionD ⊂ R

2. It is assumed that the stochastic processT is stationary and isotropic,
and that, for given spatial locationssi, with i = 1, . . . , n, the response can be modeled by

T (si) = exp(µ(si)) η(si), i = 1, . . . , n, (3)

whereµ(si) = x⊤

i β, with xi = (xi1, . . . , xip)
⊤ being ap × 1 vector which contains the values of the

covariates. Here,xi1 = 1, for i = 1, . . . , n, andxij = xj(si), for j = 2, . . . , p, that is,xij is the value of
the covariateXj at the locationsi. In addition,β = (β1, . . . , βp)

⊤ is ap×1 vector of unknown regression
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Figure 1: PDF of BS(α, 1) (left) and log-BS(α, 0) (right) distributions for the indicated value ofα.

coefficients to be estimated. Furthermore,η(si) is the model random error atsi, for which we assume
thatη = (η(s1), . . . , η(sn))

⊤ ∼ BSn(α1n×1, 1n×1;Σ), with α > 0, where1n×1 is ann × 1 vector of
ones andΣ is ann× n (non-singular) scale-dependence matrix. More details about the multivariate BS
distribution can be found in Kundu et al. (2013). The spatialmodel defined in (3) may be linearized by
applying a logarithmic transformation as

Y (si) = log(T (si)) = x
⊤

i β + ε(si), i = 1, . . . , n, (4)

whereε(si) = log(η(si)). In matrix notation, the BS spatial log-linear regression model given in (4) can
be written as

Y =Xβ + ε, (5)

whereY = (Y1, . . . , Yn)
⊤ is ann×1 vector of responses, withYi = log(T (si));X = (x⊤

1 , . . . ,x
⊤

n )
⊤ is

ann×p design matrix; andε = (ε(s1), . . . , ε(sn))
⊤ is ann×1 vector of random errors of the stationary

process. Then,ε ∼ log-BSn(α1n×1, 0n×1;Σ), where0n×1 is ann × 1 vector of zeros, and therefore
E(ε) = 0n×1. More details about the multivariate log-BS distribution can be found in Marchant et al.
(2016a, 2018) and Garcia-Papani et al. (2017).

It is also assumed that the spatial dependence is determinedby ann × n scale matrixΣ, which is
symmetric, non-singular and positive definite. Note thatΣ is proportional to Cov(ε(si), ε(sj)), which
depends only on the Euclidean distance between the locationssi andsj , that is,

Cov(ε(si), ε(sj)) = ρ(hij), (6)

wherehij = ‖si − sj‖. In addition, it is assumed that the functionρ defined in (6) is expressed in terms
of the spatial dependence parameter vectorϕ = (ϕ1, ϕ2, ϕ3)

⊤ established in the relation

Σ = ϕ1In + ϕ2R(ϕ3), (7)

whereϕ1 is a nugget effect,ϕ2 is a scale parameter (sill),ϕ3 is a function of the spatial dependence
radius,In is then × n identity matrix, andR(ϕ3) = (rij) is ann × n symmetric matrix, with main
diagonal elements equal to one. Note thatR(ϕ3) depends on the theoretical covariance function adopted
to describe the spatial dependence (Mardia and Marshall, 1984). In the Matérn family model (Diggle
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and Ribeiro, 2007),rij is given by

rij =





1, i = j;

1

2δ−1Γ(δ)

(
hij

ϕ3

)δ

Kδ

(
hij

ϕ3

)
, i 6= j;

(8)

whereδ is a shape parameter,Γ is the standard gamma function andKδ is the modified Bessel function
of third kind with orderδ. Particular cases of the Matérn family model include the exponential and
Gaussian members, whenδ = 0.5 andδ → +∞, respectively.

2.3 Parameter estimation

The parameters of the model defined in (5) are summarized in the vectorθ =
(
β⊤,ϕ⊤, α

)⊤
, which

are unknown but can be estimated by the ML method as follows. From (5), we haveε =
(
Y −X⊤β

)
∼

log-BSn (α1n×1, 0n×1;Σ). Then, the logarithm of the likelihood (log-likelihood) function forθ, ignoring
constant terms, is given by

ℓ(θ) = −1

2
log (|Σ|)− n log(α)− 2

α2
V ⊤Σ−1V +

n∑

i=1

log

(
cosh

(
yi − x⊤

i β

2

))
, (9)

whereV = (V1, . . . , Vn)
⊤ is ann× 1 vector, with elementsVi = sinh((yi − x⊤

i β)/2), for i = 1, . . . , n,
andΣ is given in (7). Taking the derivative of (9), with respect tothe corresponding parameters, leads
to the(p+ 4)× 1 score vector defined as

ℓ̇ (θ) =

((
∂ℓ(θ)

∂β

)⊤

,

(
∂ℓ(θ)

∂ϕ

)⊤

,
∂ℓ(θ)

∂α

)⊤

=
(
ℓ̇(β1), . . . , ℓ̇(βp), ℓ̇(ϕ1), ℓ̇(ϕ2), ℓ̇(ϕ3), ℓ̇(α)

)⊤
. (10)

For details of the elements of the score vector given in (10),see Appendix A. In order to find the ML
estimateθ̂ of θ, the non-linear systeṁℓ(θ) = 0(p+4)×1, obtained from (10), must be solved. Since this

system does not provide a closed analytical solution,θ̂ must be computed using an iterative procedure
for non-linear systems (Nocedal and Wright, 1999). Theoptim function of theR software can be
employed to solve such a system (www.R-project.org, R Core Team, 2016). By default, the
optim command carries out a minimization, so that the instructioncontrol = list(fnscale =
-1) must be added to this command for maximization. Note that such an iterative procedure does not
necessary converge to a maximum, which can be an inflection point or a minimum. We compute the
eigenvalues of the Hessian matrix in order to assure that a maximum has been found.

2.4 Information matrix

Observe that the Hessian matriẍℓ(θ), for the BS spatial regression model presented in (5), is a
(p+ 4)× (p+ 4) diagonal block matrix. The Hessian matrix is obtained by taking the second derivative
of (9), with respect to the corresponding parameters, and isgiven by

ℓ̈(θ) =




∂2ℓ(θ)
∂β∂β⊤

∂2ℓ(θ)
∂β∂ϕ⊤

∂2ℓ(θ)
∂β∂α

∂2ℓ(θ)
∂ϕ∂β⊤

∂2ℓ(θ)
∂ϕ∂ϕ⊤

∂2ℓ(θ)
∂ϕ∂α

∂2ℓ(θ)
∂α∂β⊤

∂2ℓ(θ)
∂α∂ϕ⊤

∂2ℓ(θ)
∂α2


 =




ℓ̈(β) ℓ̈(βϕ) ℓ̈(βα)

ℓ̈(ϕβ) ℓ̈(ϕ) ℓ̈(ϕα)

ℓ̈(αβ) ℓ̈(αϕ) ℓ̈(α)


 , (11)
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where thep × p, p × 3 and3 × 3 sub-matrices̈ℓ(β), ℓ̈(βϕ) = (ℓ̈(ϕβ))⊤ andℓ̈(ϕ), respectively, have
elements detailed in Appendix A. Therefore, for the BS spatial regression model, the(p + 4)× (p + 4)
expected Fisher information matrix, obtained from (11), isexpressed as

K(θ) = E(−ℓ̈(θ)) =




K(β) K(βϕ) K(βα)
K(ϕβ) K(ϕ) K(ϕα)
K(αβ) K(αϕ) K(α)


 , (12)

whereK(β) = E(−ℓ̈(β)), K(ϕ) = E(−ℓ̈(ϕ)) andK(βϕ) = (K(ϕβ))⊤ = E(−ℓ̈(βϕ)) = 0p×3

arep × p, 3 × 3 andp × 3 sub-matrices, whereasK(βα) = (K(αβ))⊤ = E(−ℓ̈(βα)) = 0p×1 and
K(ϕα) = (K(αϕ))⊤ = E(−ℓ̈(ϕα)) arep× 1 and3× 1 vectors, respectively, whose elements also are
detailed in Appendix A.

2.5 Inference and asymptotic frameworks

Recalling thatθ =
(
β⊤,ϕ⊤, α

)⊤
and as usual for ML estimators, note that

√
n(θ̂ − θ) D→ Np+4(0(p+4)×1,J(θ)

−1), (13)

asn → +∞, where
D→ denotes convergence in distribution andJ(θ) = limn→+∞(1/n)K(θ), with

K(θ) being the expected Fisher information matrix given in (12).Details of the asymptotic behaviour
and performance of ML estimators will, of course, depend on the optimal design. This has been studied
in the case of Gaussian models (Baran et al., 2015), but it is an open question, worthy of further investi-
gations, for the case of BS models. The results presented in (12) and (13) can be used to find asymptotic
standard errors of the estimators from the inverse of the expected Fisher information matrix and to carry
out asymptotic inference on the model parameters. However,to infer on the spatial parameters, asymp-
totic properties of their estimators must be known, primarily because of their approximations in the case
of finite-samples. Nevertheless, applicability of asymptotic frameworks to spatial data is not an easy
aspect, due to there being at least two relevant frameworks,which can behave quite differently when
estimating the spatial dependence parameters (Zhang and Zimmerman, 2005). One of these asymptotic
frameworks is called “increasing-domain”, which requiresD, defined in Section 2.2, to tend toR2 in
an anisotropic fashion (same speed in all directions), witha constant density of sample points. The
other asymptotic framework is called “fixed-domain” (or “in-fill”), where the domainD is fixed, and the
density of points tends to+∞. The increasing-domain and fixed-domain asymptotic frameworks were
derived to obtain limiting distributions of ML estimators of the spatial dependence parameters in Gaus-
sian spatial models. As mentioned, the asymptotic properties of the ML estimators for these parameters
may be different in the two frameworks. In general, according to Zhang and Zimmerman (2005), the spa-
tial dependence parameters are not consistently estimatedupon a fixed-domain asymptotic framework
(Zhang, 2004; Stein, 2012), whereas upon an increasing-domain asymptotic framework, the parameters
are consistently estimated and their ML estimators are asymptotically normal distributed, subject to reg-
ularity conditions (Mardia and Marshall, 1984). In addition, parameters can be consistently estimated
in both asymptotic frameworks for some cases, but their convergence rates are different. Zhang and
Zimmerman (2005) suggested to use the fixed-domain asymptotic framework.
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3 Influence diagnostics

3.1 Global influence

Cook et al. (1988) proposed case-deletion based on the LD corresponding to the influence measure

LDi(θ) = 2(ℓ(θ̂)− ℓ(θ̂(i))), i = 1, . . . , n, (14)

whereℓ is the log-likelihood function, whereaŝθ and θ̂(i) are, respectively, the ML estimates ofθ
considering the full data set and the data set with the casei removed. Note that (14) may be used to
evaluate the global potential influence of the casei, that is, (14) measures the change in the LD with
estimated parameters when the casei is deleted. Another case-deletion method alternative to the LD
given in (14) is the CD, which has been generalised to severalnon-normal models (Desousa et al., 2018).
To facilitate the calculations, the first order approximation defined aŝθ−θ̂(i) ≈ ℓ̈−1

(i) (θ̂)ℓ̇(i)(θ̂), based on a

Taylor expansion around̂θ until the second order term, and the one-step-late Newton-Raphson estimate,
can be employed for the CD. Thus, an alternative measure of global influence (Pan et al., 2014) based on
the CD is given by

CDi(θ) = (ℓ̇(i)(θ̂))
⊤(−ℓ̈(i)(θ̂))−1(ℓ̇(i)(θ̂)), i = 1, . . . , n,

whereℓ̇(i)(θ) = ∂ℓ(i)(θ)/∂θ andℓ̈(i)(θ) = ∂ℓ2(i)(θ)/∂θ∂θ
⊤, with ℓ(i) being the log-likelihood function

obtained after deleting the casei. Pan et al. (2014) showed that it is possible to replaceℓ̈(i)(θ̂) by ℓ̈(θ̂)
or byK(θ) = −E(ℓ̈(θ)), obtaining, respectively, the measures of influence

CDi(θ) = (ℓ̇(i)(θ̂))
⊤(−ℓ̈(θ̂))−1(ℓ̇(i)(θ̂)) = (ℓ̇(i)(θ̂))

⊤K(θ̂)−1(ℓ̇(i)(θ̂)), i = 1, . . . , n.

Note that CDi(θ) is often preferred to LD(θ̂(i)), because it reduces the computational burden. In the case
of the BS spatial regression model, the matrixK(θ) given in (12) has a diagonal block structure and
then the CD for the vectorθ is given by

CDi(θ) = (ℓ̇(i)(θ̂))
⊤K(θ̂)−1(ℓ̇(i)(θ̂))

= (ℓ̇(i)(β̂))
⊤K(β̂)−1(ℓ̇(i)(β̂)) + (ℓ̇(i)(ψ̂))

⊤K(ψ̂)−1(ℓ̇(i)(ψ̂))

= CDi(β) + CDi(ψ), i = 1, . . . , n, (15)

whereβ̂, ψ̂ are the ML estimates ofβ,ψ =
(
ϕ⊤, α

)⊤
, whereaṡℓ(i)(β̂), ℓ̇(i)(ψ̂) are subvectors oḟℓ(i)(θ̂)

related to the vectorsβ,ψ, respectively. In addition,K(β̂),K(ψ̂) are the blocks of the expected Fisher
information matrix related to the vectorsβ,ψ and evaluated at̂β, ψ̂, respectively. If the value CDi(θ)
given in (15) is large, then the casei is potentially influential. There is no consensus about whatvalues
are considered large, but Cook and Weisberg (1982) stated that the definition of large depends on the
problem. Analogously, a large value of CDi(β) indicates that the casei is potentially influential in the
estimation ofβ, and similarly for CDi(ψ).

3.2 Local Influence

Local Influence consists of studying the changes in the estimated parameters when making small
perturbations in the data and/or the model assumptions. Cook (1987) evaluated local influence by exam-
ining

LD(θω) = 2(ℓ(θ̂)− ℓ(θ̂ω)), (16)
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whereθ̂ andθ̂ω are, respectively, the ML estimates ofθ in the proposed model and the model perturbed
by ω. Specifically, Cook (1987) studied the normal curvature of the influence graph LD(θω), in the
neighbourhood of the non-perturbation point,ω0 namely, in the direction of a unit vectord. Using
differential geometry, it was shown that the normal curvature in the direction vectord takes the form
Cd = 2|d⊤Bd|, where

B = −∆⊤ℓ̈(θ̂)−1∆, (17)

with ℓ̈(θ̂) being the Hessian matrix, evaluated atθ = θ̂ and∆ = ∂2ℓ(θ|ω)/∂θ∂ω⊤ being the pertur-
bation matrix, evaluated atθ = θ̂ andω = ω0. Further details of the perturbation matrix are given in
Appendix B. In addition, Cook (1987) stated that an important direction to consider isd = dmax, which
is related to the maximum normal curvature,Cdmax namely, given by the largest absolute eigenvalue of
the matrixB, wheredmax is the eigenvector associated with this eigenvalue. Thus, the plot of theith
element (in absolute value) ofdmax versus the indexi can detect points with the largest influence in the
neighbourhood of LD(θω)|ω=ω0. Hence, such a potentially influential case may be responsible for con-
siderable changes in the estimated parameters, under smallperturbations of the data. Another important
direction to assume isd = ei, whereei is a basis vector ofRn, whoseith coordinate is one and the
others are zero. In this case, the normal curvature is given by Ci = 2|bii|, wherebii is theith element on
the diagonal of the matrixB defined in (17), fori = 1, . . . , n. Similarly, the plot ofCi versus the index
i can be used to identify potentially influential points.

Although the normal curvature of Cook (1987) is often employed, other measures of local influence
have been studied. The conformal curvature of Poon and Poon (1999) is defined by

Bi =
Ci

tr(B)
, i = 1, . . . , n, (18)

whose calculation requires no more effort than the calculation of Ci. Note that (18) is invariant under
conformal reparametrization. Then, the conformal curvature given in (18) is a standardized measure,
making it easy to establish a cut-off point. As the curvaturesCi andBi differ only by a positive constant,
the eigenvectordmax also provides the maximum conformal curvatureBdmax . Poon and Poon (1999)
suggested that theith element (in absolute value) associated with the vectorBdmax presenting a value
greater than1/

√
n indicates it is a potentially influential point. With respect to conformal curvature

in the direction ofBi defined in (18), Poon and Poon (1999) mentioned that the casei is potentially
influential if Bi > 2B, whereB is the arithmetic mean of the basic conformal curvatures, that is, of
B1, . . . , Bn. Thus, the casei is potentially influential ifBi > B+2SD(B), where SD(B) is the standard
deviation (SD) ofB1, . . . , Bn.

Another measure used for local influence, formally defined byBillor and Loynes (1993), is given by

LD⋆(θω) = −2(ℓ(θ̂)− ℓ(θ̂ω|ω)), (19)

whereℓ(θω|ω) is the log-likelihood function perturbed byω. Note that LD(θω) defined in (16) and
LD⋆(θω) in (19) are different, because LD⋆(θω) has the first derivative with respect toω, evaluated at
ω0, equal to zero. Cook (1987) used the normal curvature (second order derivative) to evaluate the local
influence. Thus, the main advantage of LD⋆(θω), compared to LD(θω), is that the first derivative of
LD⋆(θω) is not zero atω0. Therefore, the slope can be employed to analyse the local change. Notice
that LD⋆(θω) considers the log-likelihood function based on the perturbed model and a negative sign
multiplying it to assure its positivity. Thus, a potentially influential point is detected when studying the
influence graph of the surfacea⋆(ω) = (w⊤, LD⋆(θω))

⊤. Observe that its first derivative (slope)Sd
in the direction vectord does not vanish, except in trivial cases. Particularly, themaximum slope and
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the corresponding maximum direction vector,Smax anddmax, respectively, are useful in detecting local
influence. The maximum direction of LD⋆(θω), evaluated atω0, is the direction of the gradient vector
∇LD⋆(θω). Consequently, the maximum slope (Longford, 2005) is givenby

Smax = ‖∇LD⋆(θω)‖ = 2

∥∥∥∥
∂ℓ(θ|ω)

∂ω

∥∥∥∥ ,

which must be evaluated atθ = θ̂ andω = ω0. The approach of Billor and Loynes (1993) allows the
individual components of the gradient vector∇LD⋆(θω) to be considered, and it can be used to identify
those cases which have the largest contribution to the maximum slope. Thus, the plot of theith element
(in absolute value) associated withSmax versus the indexi can also be employed to identify whether the
casei is potentially influential. Because the method based on (19)only involves first derivatives, and not
second derivatives, it is easier to utilize than the method based on (16).

Next, local influence results for the BS spatial regression model are provided, which consider per-
turbation schemes in the response and in one continuous covariate. Each scheme assumes the most
appropriate perturbation, according to the methodology proposed by Zhu et al. (2007). Such perturba-
tion schemes are used to assess the sensitivity of estimatedparameters utilizing the influence measures:
(i) conformal curvature in the direction ofBi, corresponding to maximum conformal curvature (Bdmax),
and (ii) slope displacement of the modified likelihood function (Smax). The perturbation matrices, for
each case, are provided in Appendix B.

Perturbation in the response: Consider the perturbationYω(s) = Y (s)+Aω, whereA is a symmet-
ric, non-singular matrix andω = (ω1, . . . , ωn)

⊤ ∈ R
n is the perturbation vector. Note thatω0 = 0n×1

is the non-perturbation vector. Then, the corresponding perturbed log-likelihood function, ignoring con-
stant terms, is given by

ℓ(θ|ω) = −1

2
log (|Σ|)− n log(α)− 2

α2
V ⊤

ω Σ−1Vω +

n∑

i=1

log

(
cosh

(
yi +Aiω − x⊤

i β

2

))
,

whereVω = (Vω1 , . . . , Vωn
)⊤, with Vωi

= sinh((yi +Aiω − x⊤

i β)/2), andAi is the ith row of the
matrixA, for i = 1 . . . , n. According to Zhu et al. (2007), the perturbationω is appropriate if and only
if G(θ|ω0) = cIn, wherec > 0 andG(θ|ω) = E(ℓ̇(θ|ω)ℓ̇⊤(θ|ω)), with ℓ̇(θ|ω) = ∂ℓ(θ|ω)/∂ω. For
the BS spatial regression model, we have

ℓ̇(θ|ω) = − 2

α2
AΣ−1Vω +

1

2
AVω.

Therefore, it conducts to

G(θ|ω) = A
(
α

4
Σ1/2 − 1

α
Σ−1/2

)2

A.

Now, in order to use the approach by Zhu et al. (2007), consider

A =

(
α

4
Σ

1
2 − 1

α
Σ−

1
2

)−1

. (20)

Thus, an appropriate perturbation scheme for the response is given by

Yω(s) = Y (s) +

(
α

4
Σ1/2 − 1

α
Σ−1/2

)−1

ω.
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Perturbation in a continuous covariate: Next, consider perturbations in a single continuous covariate,
which is assumed to be labelledXt. The other covariates are not perturbed, that is, the perturbation
scheme of the covariate isxt,ω(s) = xt(s) +Aω andxj,ω(s) = xj(s), for j 6= t, j = 1, . . . , p, where
ω ∈ R

n andω0 = 0n×1 are such as in the response perturbation scheme. In this case, the perturbed
log-likelihood function, ignoring constant terms, is given by

ℓ(θ|ω) = −1

2
log (|Σ|)− n log(α)− 2

α2
V ⊤

ω Σ−1Vω +

n∑

i=1

log

(
cosh

(
yi − x⊤

i,ωβ

2

))
,

whereVω = (Vω1, . . . , Vωn
)⊤, with Vωi

= sinh((yi − x⊤

i,ωβ)/2), for i = 1, . . . n. Thus, we have

ℓ̇(θ|ω) = ∂ℓ(θ|ω)
∂ω

=
2βt

α2
AΣ−1Vω − βt

2
AVω,

and consequently

G(θ|ω) = E
(
ℓ̇(θ|ω)ℓ̇(θ|ω)⊤

)
= β2

tA

(
α

4
Σ

1
2 − 1

α
Σ−

1
2

)2

A

is obtained. Now, as in the case of the response perturbationwithA given in (20), the most appropriate
covariate perturbation scheme is given by

xt,ω(s) = xt(s) +

(
α

4
Σ

1
2 − 1

α
Σ−

1
2

)−1

ω.

3.3 Generalised leverage

The leverage in linear regression models can be used to measure the influence that individual cases
have on their predicted values (Leiva et al., 2014b). The GL matrix has the form

GL(θ) =
∂Ŷ

∂Y ⊤
= Ḋ(θ)

(
− ℓ̈(θ)

)−1
ℓ̈(θY ), (21)

whereḊ(θ) = ∂µ/∂θ⊤, withµ =Xβ being the expected value ofY , −ℓ̈(θ) is the observed informa-
tion matrix andℓ̈(θY ) = ∂2ℓ(θ)/∂θ∂Y ⊤. The element GLii of the matrix GL(θ̂) is the instantaneous
rate of change in the predicted valuei with respect to its observed value. Thus, the main diagonal ele-
ments of the matrix GL(θ̂) with large values indicate the leverage points, that is, points whose observed
value has high influence on its predicted value. Here, it is proposed that the casei is potentially influence
if GL ii > GL+2SD(GL), whereGL and SD(GL) are the mean and SD of GL11, . . . ,GLnn, respectively.
For the BS spatial regression model, the GL given in (21) defines its components as

X =




1 x12 . . . x1p

1 x22 . . . x2p
...

...
. . .

...
1 xn2 . . . xnp


 ; θ =

(
β⊤,ϕ⊤, α

)⊤
,

recalling thatβ = (β1, . . . , βp)
⊤ andϕ = (ϕ1, ϕ2, ϕ3)

⊤ , whereas then× (p+ 4) matrixḊ(θ) is

Ḋ(θ) =




1 x12 . . . x1p 0 0 0 0
1 x22 . . . x2p 0 0 0 0
...

...
. . .

...
...

...
...

...
1 xn2 . . . xnp 0 0 0 0


 = (X, 0n×4) .
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In addition,ℓ̈(θY ) = (ℓ̈(βY ), ℓ̈(ϕY ), ℓ̈(αY ))⊤, whereℓ̈(βY ) is thep× n matrix with elements

∂2ℓ(θ)

∂βj∂yi
=

1

α2

((
S⊤

i ⊙ x⊤

j

)
Σ−1V +

(
ℓ̇⊤ ⊙ xj

)
Σ−1Fi

)
− 1

4

(
sech

(
yi − x⊤

i β

2

))2

xij ,

whereSi andFi aren× 1 vectors, with elements sinh((yi −x⊤

i β)/2) and cosh((yi −x⊤

i β)/2), respec-
tively, at the positioni and zero in the other positions, fori = 1, . . . , n andj = 1, . . . , p. Furthermore,
ℓ̈(ϕY ) is a3× n matrix with elements defined as

∂2ℓ(θ)

∂ϕj∂yi
=

2

α2
F⊤

i Σ−1 ∂Σ

∂ϕj
Σ−1V , i = 1, . . . , n, j = 1, 2, 3,

whereas̈ℓ(αY ) is a1× n vector with elements expressed by

∂2ℓ(θ)

∂α∂yi
=

4

α3
F⊤

i Σ−1V , i = 1, . . . , n.

4 Application to chemometrical data

4.1 Background

An important problem in agricultural management is the identification of imbalances and deficiencies
of key nutrients in the soils. One such nutrient is magnesium(Mg), which is an elemental component of
the chlorophyll molecule allowing plants to absorb energy from light and to combine water (H2O) and
carbon dioxide (CO2), to produce sugar molecules. In turn, these are used to synthesise starch, protein,
fat and vitamins. Deficiency in Mg also inhibits developmentof the root system, which reduces the
absorption for other nutrients. Hence, low levels of Mg havea significant adverse effect on plant growth
and vitality. In addition to decreased crop yield, inadequate levels of Mg also effects key properties, such
as protein content in grains and flavour, colour, sweetness and tenderness in fruits and vegetables. When
these deficiencies become visible, it is usually too late to make corrections, meaning that the whole crop
year is effected dramatically reducing farming profitability. Thus, regular soil analysis is essential to
allow intervention before symtoms are visible (Wolter, 2007). Although the controlling of individual
soil nutrients is very important, monitoring the relationship between nutrients has been identified as
equally important. For example, and to be considered here, it is well known that calcium (Ca) competes
with Mg for absorption in the root system. That is, excess in levels of one may inhibit the absorption of
the other and then restrict plant growth and vitality (Lopes, 1998).

4.2 Description and exploratory analysis of the spatial data

The data set corresponds to measurements taken at 82 locations during the crop year 2014/2015
within an area of approximately 167 ha. This area is located at Cascavel city, in the west of the state
of Parana, Brazil. In general, the Brazilian soils are poor in nutrients and have Ca and Mg at very low
levels. The response (T ) is the content of Mg in the soil (cmolc/dm3) and the covariate (X) is the content
of Ca in the soil (cmolc/dm3). The locations were georeferenced and the regular samplinggrid can be
seen in Figure 2 (left). The box-plot of Mg content data is displayed in Figure 2 (right), where five
outliers are detected. Figure 3 (left) displays the sampledpoints divided by quartiles, with the locations
of the outliers being again identified. The directional variogram in Figure 3 (right) shows that there is
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no preferred direction, that is, an omni-directional semi-variogram is appropriate. Thus, the associated
stochastic process can be considered as isotropic. To estimate the spatial dependence parameters, a
variogram model in the Matérn family is assumed withδ = 0.25, a value selected by cross-validation.
Note that, although the variogram in Figure 3 (right) seems to be flat, indicating a possible lack of spatial
structure, we must have in mind the following. Once the spatial parameters are estimated, it is possible
to calculate the value of the relative nugget effect (RNE) asRNE = ϕ1/(ϕ1 + ϕ2), which indicates
the degree of spatial dependence (Cambardella et al., 1994): if RNE < 0.25, the data present a strong
spatial dependence; if0.25 ≤ RNE < 0.75, the data indicate an average spatial dependence; and if
RNE ≥ 0.75, the data show a weak spatial dependence. In the case of the example considered here,
we haveϕ̂1 = 0.0301 andϕ̂2 = 0.0156. Therefore.R̂NE = 0.6586, indicating that the data present an
average spatial dependence, which supports the use of the spatial model proposed in this study.
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Figure 2: grid of sampled data (left) and box-plot of Mg content data (right).
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Figure 3: sampled points divided by quartiles and location of outliers (left) and directional semi-
variograms (right) for Mg content data.

Figure 4 provides the QQ plot of the residuals, transformed by the Wilson-Hilferty approximation
(Marchant et al., 2016b), which shows that the model fits the Mg content data reasonably well. In
particular, when the four lower values of the QQ plot (left) are removed, an adequate fit is detected, with
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Figure 4: QQ plots of residuals using the Wilson-Hilferty approximation for Mg content data.

most points closely scattered around the y = x line, and all ofthem inside the envelope. When using the
robust Jarque-Beran test (Gel and Gastwirth, 2008; Stehlı́k et al., 2014), we obtain a p-value less than
0.0001 for the full data set and a p-value of 0.03 for the data set with the mentioned four values removed,
that is, we pass from a highly significant result to a non-significant result at 1%, favoring normality
of the residuals, which is coherent with the graphical analysis based on the QQ plots. This suggests
that a BS spatial log-linear regression model with heavier tails, such as a BS spatial Student-t log-linear
regression model, might improve the fit to the full data set—this is out of the scope of this work but will
be considered for future research. Observe in Figure 4 (left) that the cases #2, #12, #62 and #66 produce
this bad fit in the QQ plot. First, the case #12 is an outlier with a high value and identified as potentially
influential by practically all diagnostic plots. Second, the case #62 is identified as potentially influential
by local influence plots. Thus, there exist cases that are identified as potentially influential by some
graphs but not by others. Therefore, third, the case #2, although it has not been identified as potentially
influential nor an outlier, this could be identified as potentially influential by the plot of the CD, because
it is very close to the cutoff. Recall that there is no consensus in the literature about the most suitable
cutoff. Fourth, the case #66 can be assessed as potentially influential as well, although it is not an outlier.
These four extreme residuals are associated with Mg values higher than those surrounding and where the
Ca value also does not support a raised Mg value.

The ML estimates of the model parameters, with the corresponding estimated asymptotic standard
errors shown in brackets, are:̂α = 0.9185(1.0439), β̂0 = −0.9619(0.1046), β̂1 = 0.2731(0.0144),
ϕ̂1 = 0.0301(0.0656), ϕ̂2 = 0.0156(0.0403) andϕ̂3 = 1.1375(0.0120). Thus, the estimated model is

M̂g(si) = exp(−0.9619 + 0.2731Ca(si)), i = 1, . . . , 82,

where the scale-dependence matrix is estimated asΣ̂ = 0.0301I82 + 0.0156R(1.1375), with R(ϕ3)
given from (8) forδ = 0.25 and evaluated atϕ3 = ϕ̂3 = 1.1375.

4.3 Comparison of BS and Gaussian models

We compare the BS and Gaussian spatial regression models using the Akaike information criterion
(AIC) and the Schwarz Bayesian information criterion (BIC). The AIC and BIC are given respectively
by AIC = −2ℓ(θ̂) + 2d and BIC= −2ℓ(θ̂) + d log(n), whereℓ(θ̂) is the log-likelihood function for the
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parameterθ associated with the model evaluated atθ = θ̂, d is the dimension of the parameter space, and
n the size of the data set. Both criteria are based on the log-likelihood function and penalize the model
with more parameters. A model whose information criterion has a smaller value is better (Ferreira et al.,
2012). Thus, according to Table 1, we detect that the BS spatial log-linear regression model outperforms
the Gaussian spatial linear regression model.

Table 1: comparison of BS and Gaussian models for Mg content data.

Model ℓ(θ̂) AIC BIC
BS 94.79 −177.58 −163.14
Gaussian −43.89 97.78 109.81

4.4 Diagnostic analysis

Figure 5 shows the potentially influential cases in the ML estimates of the parameter vectorθ =(
β⊤,ψ⊤

)⊤
, according to the CD as criterion of global influence. Note that the cases #12 and #27

influence both estimates of the vectorsβ = (β0, β1)
⊤ andψ = (ϕ⊤, α)⊤, whereas the case #15 is

potentially influential only for the estimate ofβ. The only potentially influence case detected also as an
outlier is the case #12. Note that the case #12 is an outlier inthe crop year 2014/2015, presenting a high
Mg level in relation to the other Mg levels during the same period. However, in the crop year 2013/2014,
the case #12 is not an outlier, which is located at the first quartile of the data distribution. This fact
can be explained as follows. The farmer responsible for a particular agricultural area obtains a chemical
analysis of the soil each year. Then, the farmer makes a chemical correction of the soil in an appropriate
way, that is, a corrective application is carried out depending on the need. During 2013/2014, the farmer
could have observed that the case #12 needed to be corrected.Once this correction was made, this case
had a high value due to an over correction, leading to the case# 12 appearing as an outlier in the next
period 2014/2015.

The local influence study is conducted assuming two types of scheme: perturbation in the response
and perturbation in the covariate Ca. As mentioned, three measures of influence are considered: con-
formal curvature in the direction of basis vectors (Bi), maximum conformal curvature (Bdmax) and slope
displacement of the modified likelihood function (Smax). The local influence graphs for perturbations in
the response are shown in Figure 6, whereas Figure 7 presentslocal influence graphs when the covari-
ate Ca is perturbed. The cases #12 and #27, identified by the global influence plots, are also identified
as locally influential by the plots forBi, Bdmax andSmax, when the response is perturbed. The case
#15, identified as globally influential, is also indicated bythe local influence plots forBi andSmax. For
the other cases identified, at least two of the three graphs detect the cases #62 and #67. For covariate
perturbation, the three graphs identify as potentially influential points the same cases #12, #27 and #62.

From Figure 8, observe that the cases #14, #15, #81 and #82 aredetected as potentially influential
by their predicted values (leverage points). The case #12, identified as an outlier, is also identified as
influential in almost all influence index plots. Cases identified as locally influential are not identified as
outliers, which agrees with other studies, such as Assumpção et al. (2014). The cases #14, #15, #81 and
#82 are possible points that exert a potential influence on the parameter estimates, that is, their individual
or join removal from the data set can lead to different conclusions and decisions. Note that an analysis
of mineral content in the soil is carried out to decide whether it is necessary to correct some mineral
or not, since the mineral content can affect the agricultural productivity. Then, the removal of these
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potentially influential cases from the data set may lead to a change of decision, that is, whether minerals
must be added to the soil or not. Therefore, we need to detect potential influential points. Observe that, in
spatial statistics, an influential point is not necessarilyan outlier, as well as an outlier is not necessarily an
influential point. The concept of influence depends, in addition to the value of the variable, on its location
and value of the variable in neighboring locations. Note that, in Figure 2 (left), the case #12 presents a
value in the fourth quartile of the data distribution. However, neighboring locations have values in the
first or second quartile. Thus, the case #12 is an outlier, because it is an atypical value within the data
set, but it also is an influential point, since it has a very high value, but it is surrounded by points with
low values. It is very noticeable that most of the points identified as influential are peripheral to the
study region. The cases #12 and #14 are in the far right and also have high Ca values, with the case #12
having the highest Mg value. Similarly, the cases #15 and #27are in the far left, with high Mg values.
Also, the cases #81 and #82 are at the very top with almost the lowest Ca and Mg value. The remaining
influential points, the cases #62 and #67, are not peripheralbut they correspond to high values surround
by lower values, with the highest Ca value for the case #67.

As mentioned, we have presented several measures of global (CD, GL) and local (Bi, Bdmax, Smax)
influence, considering response and covariate perturbations. In order to conduct a study about the relative
change (RC) when the case detected as potentially influential is removed, we select the points that were
detected as influential by most of these measures, that is, the cases #12, #15, #27 and #62. We consider
individual and joint removal of these cases. The impact of the influential cases on the parameter estimates
is checked by computing RCθj(I) = |(θ̂j − θ̂j(i))/θ̂j | × 100%, where θ̂j(I) is the ML estimate ofθj
after removing the set of case(s)I, for j = 1, . . . , 6 and I = 1, . . . , 15, with θ1 = β0, θ2 = β1,
θ3 = ϕ1, θ4 = ϕ2, θ5 = ϕ3 andθ6 = α. Table2 reports the RCs in the parameter estimates obtained
by considering the data with removed cases. Note that, in general, the RCs for the parametersβ0, β1, ϕ1

andϕ2 are large, with the RC forϕ2 being the largest. From the results obtained, it is verified that the
removal of the potentially influential cases greatly modifies the spatial dependence of the data — though
the radius of spatial dependence,ϕ3, is not modified — recalling that the variance of the data is given
by ϕ1 + ϕ2, whereasϕ1 is the nugget effect of the semi-variogram. Note that, with the exception of
the case #62, which only influences the ML estimate of the parameterϕ2, all other cases influence both
spatial dependence and model mean. Remind that the model prediction is carried out by Kriging, which
depends onβ0, β1, φ1 andφ2, all which are affected by the influential cases, and therefore, the model
prediction is also affected.
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Figure 5: CD forθ (left), β (center) andϕ (right) with Mg content data.
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Table 2: relative change (RC) in % of ML estimates for the indicated parameter and removed cases.

Removed case(s) β0 β1 ϕ1 ϕ2 ϕ3 α

#12 5.8530 4.5771 10.2990 19.8718 0.0000 0.0762
#15 3.1084 2.6730 7.3090 14.1026 0.0000 0.0544
#27 1.9129 1.9407 8.9701 17.3077 0.0000 0.0544
#62 0.0000 0.1098 6.9767 13.4615 0.0000 0.0544
#12,#15 6.4872 5.3826 14.2857 27.5641 0.0000 0.0871
#12,#27 5.2396 4.6137 15.9468 30.7692 0.0000 0.0871
#12,#62 3.3371 2.5632 13.2890 25.6410 0.0000 0.0762
#15,#27 2.4639 2.6730 12.6246 57.0513 0.0000 0.0762
#15,#62 0.6134 0.6591 10.2990 19.8718 0.0000 0.0653
#27,#62 0.6030 0.0732 11.9601 23.0769 0.0000 0.0653
#12,#15,#27 5.8842 5.4559 19.9336 38.4615 0.0000 0.0871
#12,#15,#62 4.0129 3.4053 16.9435 32.6923 0.0000 0.1089
#12,#27,#62 2.7862 2.6730 18.6047 93.5897 0.0000 0.0871
#15,#27,#62 0.0104 0.6957 15.9468 30.7692 0.0000 0.0762
#12,#15,#27,#62 3.4723 3.5152 22.9236 44.2308 0.0000 0.0980
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Figure 6: response perturbation forBi (left), Bdmax (center) andSmax (right) with Mg content data.

5 Conclusions and future work

The main contribution of this work is the derivation of diagnostic methods of global and local influ-
ence for Birnbaum-Saunders spatial regression models. These models make it possible to describe the
spatial dependence of strictly positive data with a distribution which is skewed to the right. The pro-
posed methods are used to analyse geochemical data. Specifically, an agricultural management problem
in Brazil was addressed to evaluate its effects. Because agricultural systems are exposed to deficiency
and imbalance of nutrients in the soil, the magnesium content in the soil and its relation to the calcium
content has been studied. The relationship between these components was found to be significant sta-
tistically. Thus, a Birnbaum-Saunders spatial regressionmodel has been fitted to predict the magnesium
content in the soil using the calcium content at different spatial locations. The diagnostic measures de-
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Figure 7: covariate perturbation forBi (left), Bdmax (center) andSmax (right) with Mg content data.
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rived in this work have been employed to evaluate the effect of atypical cases. Based on the application
shown here, the individual or join removal of atypical casesfrom the data set can lead to different deci-
sions compared to when they are not removed. This shows the importance of a diagnostic analysis in the
statistical modelling.

Some possible issues to be addressed in future studies are the following. First, because the Birnbaum-
Saunders distribution is based on the Gaussian distribution, parameter estimation can be influenced by
atypical cases, which are known to have an adverse effect on spatial maps. Instead, an estimation pro-
cedure robust to atypical data, for example based on the Birnbaum-Saunders Student-t spatial regression
model, can be considered to reduce their effects. This will allow comparison of the Birnbaum-Saunders
spatial log-linear regression model with its analogous model based on the BS-Student-t distribution, and
could also include comparison with the regular Student-t model (Azevedo et al., 2012). Second, in ad-
dition to fixed effects added to the spatial modelling by regression, random effects can also be added by
mixed models, which can produce a more sophisticated model and close to reality (Villegas et al., 2011).
Third, spatio-temporal models in the line of the model studied in this paper may be considered as well
(Reich, 2016). Fourth, other parameters different to the mean can be described by spatial models, for
example, some quantile, such as the median which is one of theparameters of the Birnbaum-Saunders
distribution, or dispersion parameters (Noufaily and Jones, 2013). Fifth, other parameterizations of the
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Birnbaum-Saunders distribution might be considered, which allow us to assume non-linear structures
under a framework of generalized linear models (Leiva et al., 2014b; Santos-Neto et al., 2016). Sixth,
we can assume more than one random variable in the spatial modelling using the multivariate Birnbaum-
Saunders distribution (Marchant et al., 2016a,b, 2018). Seventh, we have not performed normality tests
directly from the data since, in spatial statistics, we haveone observation (trajectory of the process) in
each spatial point, that is, no replicated data are available, which are needed in order to carry out any
goodness-of-fit analysis. When replicated data are available, we can conduct goodness-of-fit tests di-
rectly with the data, for example, following the work by Barros et al. (2014) and Stehlı́k et al. (2014).
As alternative approaches for goodness of fit, discrimination and model selection based on the available
data, we have provided a comparison between the Gaussian andBirnbaum-Saunders models and used
residual analysis to check goodness of fit of the model to the data. The comparison showed that the
Birnbaum-Saunders model is more suitable to the studied data than the Gaussian model, whereas the
residual analysis provided evidence about the distributional adequacy. Research on these seven issues is
currently in progress and their findings will be reported in afuture paper.

Appendix A: Score vector and Fisher information matrix

Score vector: The elements of the(p + 4)× 1 score vector given in (10) are detailed as

ℓ̇(βj) =
∂ℓ(θ)

∂βj
=
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− 2
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ℓ̇(ϕj) =
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Σ−1V , j = 1, 2, 3;

ℓ̇(α) =
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∂α
=

∂
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(
−n log(α)− 2

α2
V ⊤Σ−1V

)
= −n

α
+

4

α3
V ⊤Σ−1V ;

where⊙ denotes the Hadamard product (Caro-Lopera et al., 2012); tr(A) denotes the trace ofA;W = (W1, . . . ,Wn)
⊤ ,

withWi = cosh((yi − x⊤

i β)/2), for i = 1, . . . , n; V = (V1, . . . , Vn)
⊤ is defined in (9); andxj = (x1j , . . . , xnj)

⊤ ,
for j = 1, . . . p. It is worth to remember thatxi1 = 1, for i = 1, . . . , n, and that

∂Σ

∂ϕ1
= In,

∂Σ

∂ϕ2
= R(ϕ3),

∂Σ

∂ϕ3
= ϕ2

∂R(ϕ3)

∂ϕ3
.

For the Matérn model given in (8),R(ϕ3)
′ = ∂R(ϕ3)/∂ϕ3 = (∂rij/∂ϕ3), with elements defined as

∂rij
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= −
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1
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)(
δrij +
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2δ−1Γ(δ)
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hij
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K ′

δ
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))
,

for i 6= j, i, j = 1, . . . , n, andK ′

δ(u) = −(1/2)(Kδ−1(u) +Kδ+1(u)), recalling thatKδ is the modified Bessel
function of the third kind and orderδ.
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Information matrix: Note that the observed Fisher information matrix is defined by −ℓ̈(θ), which must be
evaluated atθ = θ̂, whereℓ̈(θ) is the Hessian matrix. For the BS spatial regression model presented in (5), the
Hessian matrix given in (11) has elements expressed as

ℓ̈(βjβl) =
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for i 6= j, i, j = 1, . . . , n, with K ′

δ(u) = −(1/2)(Kδ−1(u) +Kδ+1(u)), K ′′

δ (u) = (1/4)(Kδ−2(u) + 2Kδ(u) +

Kδ+2(u)). In addition, thep × 1 and3 × 1 vectorsℓ̈(βα) = (ℓ̈(αβ))⊤ and ℓ̈(ϕα) = (ℓ̈(αϕ))⊤, respectively,
have elements given by
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Furthermore, the scalar̈ℓ(α) is expressed as
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Therefore, for the BS spatial regression model, the(p+4)× (p+4) expected Fisher information matrix, obtained
from (11) and given in (12), is specified as
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which are obtained using the approximations sech(x) = 1/cosh(x) ≈ 1, with cosh(x) ≈ 1, and standard results of
the matrix differential calculus (Magnus and Neudecker, 2007), as well as assuming that(2/α)V ∼ Nn(0n×1,Σ),
for V = (V1, . . . , Vn)

⊤, with Vi = sinh((Yi − x⊤

i β)/2), that is,(2/α)Vi ∼ N(0, 1). Approximations employed
for the cosh and sinh functions are based on a Taylor expansion of first order, around zero, similar to that employed
by Rieck and Nedelman (1991) for sinh. Note thatK(βϕ) = (K(ϕβ))⊤ = E(−ℓ̈(βϕ)) = (K(βjϕl)) is ap× 3
matrix, with elements defined as
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In addition, we have thatK(ϕ) = E(−ℓ̈(ϕ)) = (K(ϕjϕl)) is a symmetric3× 3 matrix, with elements expressed
as
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Also, observe thatK(βα) = (K(αβ))⊤ = E(−ℓ̈(βα)) = (K(βjα)) andK(ϕα) = (K(αϕ))⊤ =E(−ℓ̈(ϕα)) =
(K(ϕjα)) arep× 1 and3× 1 vectors, respectively, with elements given by
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since(2/α)V ∼ Nn(0n×1,Σ). Furthermore, the scalarK(α) is expressed as
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because((2/α)V ⊤)Σ−1((2/α)V ) ∼ χ2(n).

Appendix B: Perturbation matrices for the BS spatial model

Perturbation in the response: For the model defined in (5) and its log-likelihood function expressed in (9),
perturbing the response, we have
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i β)/2), for i = 1, . . . , n, andAi is theith row of
the matrixA defined in (20). Thus, the corresponding(p+ 4)× n perturbation matrix is given by
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whose elements are specified as
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Additional details about∂Σ1/2/∂ϕi can be found in De Bastiani et al. (2015). Moreover, we have
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Perturbation in a continuous covariate: As in the perturbation scheme of the response, but now perturbing
the covariateXt, we have
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∂βt∂ω⊤

= V ⊤

ω

(
2

α2
Σ−1 − 1

2
In

)
A+ βt

∂V ⊤
ω

∂βt

(
2

α2
Σ−1 − 1

2
In

)
A

=

(
V ⊤

ω − βt
2
(xt +Aω)

)(
2

α2
Σ−1 − 1

2
In

)
A;

∂ℓ2(θ|ω)
∂βj∂ω⊤

= βt
∂V ⊤

ω

∂βj

(
2

α2
Σ−1 − 1

2
In

)
A = −βtx

⊤

j

(
2

α2
Σ−1 − 1

2
In

)
A, j = 1, . . . , p, j 6= t.

In addition, we get

∆(ϕ) =
∂ℓ2(θ|ω)
∂ϕ∂ω⊤

=

(
∂ℓ2(θ|ω)
∂ϕ1∂ω⊤

,
∂ℓ2(θ|ω)
∂ϕ2∂ω⊤

,
∂ℓ2(θ|ω)
∂ϕ3∂ω⊤

)⊤

,

whose elements, forj = 1, 2, 3, are expressed as

∂ℓ2(θ|ω)
∂ϕj∂ω⊤

= βt
∂V ⊤

ω

∂ϕj

(
2

α2
Σ−1 − 1

2
In

)
A+ βtV

⊤

ω

(
− 2

α2
Σ−1 ∂Σ

∂ϕj
Σ−1A+

(
2

α2
Σ−1 − 1

2
In

)
∂A

∂ϕj

)

= −β2
t

2
ω⊤A

(
1

α
Σ−

1
2
∂Σ

1
2

∂ϕj
Σ−

1
2 +

α

4

∂Σ
1
2

∂ϕj

)
A

(
2

α2
Σ−1 − 1

2
In

)
A

+βtV
⊤

ω

(
2

α2
Σ−1 ∂Σ

∂ϕj
Σ−1A

(
2

α2
Σ−1 − 1

2
In

)
A

(
1

α
Σ−

1
2
∂Σ

1
2

∂ϕj
Σ−

1
2 +

α

4

∂Σ
1
2

∂ϕj
A

))
.

Finally, we get

∆(α) =
∂ℓ2(θ|ω)
∂α∂ω⊤

= βt
∂V ⊤

ω

∂α

(
2

α2
Σ−1 − 1

2
In

)
A+ βtV

⊤

ω

(
− 4

α3
Σ−1A+

(
2

α2
Σ−1 − 1

2
In

)
∂A

∂α

)

= −β2
t

2
ω⊤A

(−1

α2
Σ−

1
2 − 1

4
Σ

1
2

)
A

(
2

α2
Σ−1 − 1

2
In

)
A

+βtV
⊤

ω

(−4

α3
Σ−1A+

(
2

α2
Σ−1 − 1

2
In

)
A

(−1

α2
Σ−

1
2 − 1

4
Σ

1
2

)
A

)

=

(
β2
t

2
ω⊤A− βtV

⊤

ω

)
A

(
1

α2
Σ−

1
2 +

1

4
Σ

1
2

)
A

(
2

α2
Σ−1 − 1

2
In

)
− 4βt

α3
V ⊤

ω Σ−1A.
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