UNIVERSITY OF LEEDS

This is a repository copy of Birnbaum-Saunders spatial regression models: Diagnostics
and application to chemical data.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/128914/

Version: Accepted Version

Article:

Garcia-Papani, F, Leiva, V, Uribe-Opazo, MA et al. (1 more author) (2018)
Birnbaum-Saunders spatial regression models: Diagnostics and application to chemical
data. Chemometrics and Intelligent Laboratory Systems, 177. pp. 114-128. ISSN
0169-7439

https://doi.org/10.1016/j.chemolab.2018.03.012

© 2018 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’'t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Birnbaum-Saunders spatial regression models:
Diagnostics and application to chemical data

Fabiana Garcia-Papant, Victor Leiva?3, Miguel A. Uribe-Opazo!, Robert G. Aykroyd*
!Postgraduate Program in Agricultural Engineering, and
Center of Exact Sciences and Technology, Universidadel&atalo Oeste do Parana, Brazil
2School of Industrial Engineering, Pontificia Universidaat@lica de Valparaiso, Chile
3Faculty of Administration, Accounting and Economics, UWsisidade Federal de Goias, Brazil
4Department of Statistics, University of Leeds, UK

Abstract

Geostatistical modelling is widely used to describe dath spatial dependence structure. Such
modelling often assumes a Gaussian distribution, an aggumwhich is frequently violated due
to the asymmetric nature of variables in diverse applicatioThe Birnbaum-Saunders distribution
is asymmetrical and has several appealing propertiesjdimg theoretical arguments for describing
chemical data. This work examines a Birnbaum-Saundergabpegression model and derives global
and local diagnostic methods to assess the influence otatygservations on the maximum likeli-
hood estimates of its parameters. Modelling and diagnostihiods are then applied to experimental
data describing the spatial distribution of magnesium aidiwm in the soil in the Parana state of
Brazil. This application shows the importance of such amlisgic analysis in spatial modelling with
chemical data.

Keywords Chemical data analysis; global and local influence; Matéauel; maximum likeli-
hood methods; non-normality; R software.

1 Introduction

Statistical distributions are largely used to model vdgalstudied across a wide range of applica-
tions. These distributions may help to determining the etgien and covariance of data with spatial
dependence. Such data can be related to geochemical ear&blertilizer content for agricultural man-
agement, where deficiency and imbalance of nutrients in dllease important aspects to be studied
(De Bastiani et al., 2015; Garcia-Papani et al., 2017). Dudeir inherent variation, the geochemical
variables are considered as random and often following asstnic statistical distributions with positive
skewness. Hence, the Gaussian distribution is inappiterad should not be used to model this type of
random variable, which must be checked (Barros et al., 28tehlik et al., 2014).

There is little literature investigating the use of asynmcedistributions to analyse spatial data.
Some of these few works are attributed to Allard and Nave@Q{2and Rimstad and Omre (2014), who
employed the skew-normal distribution to model random §eldowever, data to be modeled spatially
often have support on the positive real line and then thestalalitions are inappropriate. Consequently,
the Birnbaum-Saunders (BS), exponential, gamma, inveasssian, log-normal and Weibull distribu-
tions might be more suitable (Johnson et al., 1994, 199%al €016). In particular, the BS distribution
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has attractive properties, which are useful for modellisgnametric data, specially in geochemistry.
For example, BS and normal distributions have a close ogistiip, but the BS model is defined in an
asymmetric framework, which is a good motivation for furtheestigations. Other properties of the BS
distribution are related to proportionality, reciprocithverse shapes for its hazard rate, and its member-
ship of the log-symmetry class. All of these properties ptewvide flexibility for modelling different
phenomena and types of data, as well as an attraction for $hdigribution. In particular, the log-
symmetry class of distributions arises when a random vigriads the same distribution as its reciprocal,
such as the log-normal distribution, but the BS distributi@s an associated logarithmic version (log-
BS) which allows for bimodality and the log-normal distrilaun not; see more details of these properties
in Johnson et al. (1995), Leiva (2016) and Leao et al. (20kvaddition, the BS distribution has been
widely studied and applied across different fields, inahgdjeochemistry, which have been carried by
an international, transdisciplinary group of researcheee, example, Leiva et al. (2011, 2015, 2016a),
Ferreira et al. (2012), Marchant et al. (2013) and Saulo.ef28l13). Despite its origins in material
fatigue, Leiva et al. (2015) confirmed the BS distributionaasadequate model to describe data from
chemical and environmental sciences using the propotiesifect law. In particular, Xia et al. (2011)
and Garcia-Papani et al. (2017) introduced BS spatial nsodbwever, both of these works only deal
with the spatial problem, whereas the extension to spagkission models, allowing the inclusion of
explanatory variables (covariates hereafter), has not beesidered to date.

Fitting a distribution to spatial data is useful in sevenaas (Cressie, 2015). For example, Cam-
bardella et al. (1994) indicated that, in the case of soipprbes, it can be utilized to improve agri-
cultural management practices. Specifically, modellirg @Rkpectation and covariance of data allows
spatial dependence parameters to be estimated and thisddgge to be quantified. Such a modelling
may be characterized by the variogram, whereas the respanisble (response hereafter), described
by regression with covariates, may be modeled using Kridideg Bastiani et al., 2015). For example,
Hengl et al. (2004) reported successful results when regned<riging is considered.

An essential step in all statistical modelling is the diagfimanalysis employed to detect the influ-
ence of atypical cases on the parameter estimates (Gredfadivds, 2002). Diagnostics can be carried
out using global or local influence. Global influence is oftemducted by case-deletion methods. Two
well-know case-deletion methods are the Cook distance @id)the likelihood distance or displace-
ment (LD) (Cook et al., 1988). It is important to note that €dgpe approaches do not always correctly
identify influential points (Fung, 1995; Kim, 2013) and heriids important to consider several contrast-
ing measures, as we are proposing in this work. For spatia) t4litino et al. (2006) considered global
influence for multivariate spatial linear models. Howesgngle case-deletion cannot detect jointly in-
fluential cases. Instead, the local influence method may &, wehich allows assessment of combined
influence of cases (Cook, 1987) . Local influence typicallgreines the normal curvature of an LD
after perturbing the model and/or data. Since the work ofkGda887), many authors have considered
the local influence method. Additive perturbations in loicdluence for Gaussian linear models have
been extended to more general models by Galea et al. (2063)eava et al. (2016b). Studies of local
influence in BS models were conducted by a number of authees;far example, Santana et al. (2011),
Leiva et al. (2014a,b), Marchant et al. (2016b), GarciaaPaet al. (2017), Saulo et al. (2017) and
Desousa et al. (2018). For spatial models, Uribe-Opazo. €2@12) derived local influence measures
in Gaussian spatial models, whereas Assumpcao et al4j2@hsidered the Student-t case. For non-
additive perturbations, Zhu et al. (2007) proposed a methdidd the most appropriate perturbation for
a specific model, whereas Gimenez and Galea (2013) applgeth#thod to functional heteroscedastic
measurement-error models. Although the normal curvafpecach proposed by Cook (1987) has been
extensively used, the conformal curvature proposed by RadrPoon (1999) is more efficient, because



the conformal approach is normalized and invariant undeaicereparameterizations. De Bastiani et al.
(2015) utilized conformal curvature to study local influeme non-normal spatial models.

The main objective of this article is to derive diagnostictihhoels for BS spatial regression models.
On the one hand, assessment of global influence uses the sagg-deletion method proposed by Pan
et al. (2014). On the other hand, the local influence methatkis considered, making perturbations in
the model by means of the response and some continuous ateyamploying the scheme suggested
by Zhu et al. (2007). The potential influence of a case is dii@tusing conformal curvature and its
associated measures. Furthermore, a generalised le\@hystudy is conducted, which evaluates the
influence of the observed response on its estimated valuea(lke¢ al., 2014b). The diagnostic study
is applied to experimental spatial data collected by théastrelated to contents of magnesium and
calcium in the soil.

The paper is organized as follows. In Section 2, backgroarttié BS and log-BS distributions is
provided. In this section, the BS spatial regression madalso introduced and the maximum likelihood
(ML) method is considered for parameter estimation. Sacipresents concepts related to diagnostic
analysis and discusses how to select the most appropridtelpgion scheme for the BS spatial regres-
sion model. Evaluation of the model by analysing experimaletéta is carried out in Section 4. Finally,
Section 5 gives some conclusions and possible future @sear

2 The Birnbaum-Saunders spatial model

2.1 The Birnbaum-Saunders distribution

As mentioned, the BS distribution has its origins in matefatéigue analysis based on the Miner
law. Details of its technical derivation using this law avaiéable in Leiva (2016, pp. 5-11). However,
as also mentioned, despite its origins in material fatighhe,BS distribution can be utilized to model
chemical data. Details of its justification and theoretamiivation based on the proportionate-effect law
are available in Leiva et al. (2015).

The BS distribution is unimodal and has shapex{ 0) and scaled > 0) parameters, in addition
to asymmetry to the right with positive support. Note thaits also a location parameter, because it
corresponds to the median of the distribution. The randomnalvie

2
T=o0o (aZl/Q +1/(aZ,/2)* + 1)
is said to follow a BS distribution with parametetisand o if Z; = (1/a){(T/o) ~ N(0, 1), with
o

¢(u) = yu —1/y/u = 2sinh(log(y/u)), which is denoted byl" ~ BS(«, o). The corresponding
cumulative distribution function (CDF) is given by

Fr(t:a,0) = P(T <) = & (ég(t/a)) >0, )

where® is the standard normal CDF. Thth quantile ofT"ist(q; o, o) = o(az(q)/2++/ (az(q)/2)? + 1)?,
for 0 < g < 1, wherez(q) is theqth quantile of the standard normal distribution. Thug, # 0.5, then
t(0.5) = o and, as mentioned, is the median of the BS distribution. Note that the probabdensity
function (PDF) of the BS distribution can be directly obtdrfrom its CDF defined in (1). The BS PDF
has increasing positive skewnessaacreases and is approximately symmetrical arotaga goes to
zero; see examples of its diverse shapes in Figure 1 (left).
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Some properties df ~ BS(a, o) are: (PLW = (1/a*)&3(T /o) ~ x*(1); (P2)r T ~ BS(«, r0),
forr > 0; (P3)1/T ~ BS(a, 1/0), that is, the BS distribution is related to the normal andsthiare
distributions, as well as belongs to the scale (proportityd@nd closed under reciprocation (reciprocity)
families. In addition, (P4) the failure rate of the BS dilstiiion admits several shapes, including the
unimodal and bimodal cases; see details in Azevedo et dl2)2ihd Athayde et al. (2018). Furthermore,
(P5) the mean, variance and coefficients of variation (Ckgwsess (CS) and kurtosis (CK ) &f ~
BS(«a, o) are, respectively, defined as

2 2 1

= Z@+a’ = 7 (40 + 50 _ via® 45t

E(T) = S(2+a%), Var(T) = (4o +5a%), CV(T) = ————.
24 + 440’ 2400” + 5580
cyr) — et o) 2 gy 24007558

V(4 +5a2)3 (4 +5a2)

Modelling based on the BS distribution is often describeteims of the log-BS distribution. Note
that a continuous random variab¥e follows a log-BS distribution with shape parameter> 0 and
location parameter € R, which is denoted by log-B%, ), if and only if

Zy = gsinh(%) ~ N(0,1).

«

Thus, the CDF ot is expressed as
' B 2 . Y — U
Fy(y;a,pu) = asmh ) ™ <y < 400, —00 < j < +00,a > 0. (2)

As in the BS distribution, note that the PDF of the log-BS rilisttion can be directly obtained from
its CDF defined in (2). 1Y ~ log-BS«, 1), then the following properties hold: (P&) = exp(Y') ~
BS(«a, o), with log(c) = p, which means that the log-BS PDF obtained from (2) may bebkskeed
from the standard normal PDF or from the BS PDF defined in ®),) E(Y) = u, but no closed
form for the variance olt” is possible, although using an asymptotic approximationt®omoment
generating function, we have thataif— 0, Var(T') = o — a*/4, whereas that ifv — +oo, Var(T') =
4(log*(v/2a) + 2 — 2log(v/2a)); (P8) if X = +Y + d, thenX ~ log-BS(a, = + d); (P9) the log-BS
distribution is symmetric around, unimodal fora < 2 and bimodal fora > 2; and (P10) it belongs
to the class of log-symmetric distributions, which alsdiiles the log-normal distribution. This class
contains all random variables which have the same distobuats their reciprocal; for more details, see
Leao et al. (2017). Figure 1 (right) shows some shapes ®loipBS PDF.

2.2 Formulation of the spatial model

In order to model a set of spatially correlated data, comsidtochastic proceds = {7'(s), s € D},
defined on some regioR C R?. It is assumed that the stochastic procgss stationary and isotropic,

and that, for given spatial locatioss, with7 = 1, ..., n, the response can be modeled by
T(‘Sl) = eXp(M(‘SZ)) n(si)7 1= 17 NP (3)
wherepu(s;) = ] 3, with z; = (241, . .. ,xip)T being ap x 1 vector which contains the values of the

covariates. Herey;; = 1,fori =1,...,n, andz;; = z,(s;), for j = 2, ..., p, thatis,z;; is the value of
the covariateX; at the locatiors;. In addition,3 = (53,, ..., 3,)" is apx 1 vector of unknown regression
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Figure 1: PDF of B&y, 1) (left) and log-BS«, 0) (right) distributions for the indicated value of

coefficients to be estimated. Furthermayés;) is the model random error at, for which we assume
thatn = (7(s1),...,n(s,))" ~ BS,(al,x1, 113 ), With o > 0, wherel,,,; is ann x 1 vector of
ones and is ann x n (non-singular) scale-dependence matrix. More detailsiatte multivariate BS
distribution can be found in Kundu et al. (2013). The spatiablel defined in (3) may be linearized by
applying a logarithmic transformation as

Y(SZ> = |Og(T(SZ)) = m;r,B -+ €<Si>7 1=1,...,n, (4)

wherezs(s;) = log(n(s;)). In matrix notation, the BS spatial log-linear regressiavded given in (4) can
be written as

Y =XB+e, (5)
whereY = (Y;,...,Y,)" isann x 1 vector of responses, wifti = log(7'(s;)); X = (z{,...,z})"is
ann x p design matrix; ané = (¢(s),...,&(s,)) " is ann x 1 vector of random errors of the stationary

process. Therg ~ 10g-BS,(al,«1,0,x1; %), Where0,,.; is ann x 1 vector of zeros, and therefore
E(e) = 0,«1. More details about the multivariate log-BS distributiande found in Marchant et al.
(20164, 2018) and Garcia-Papani et al. (2017).

It is also assumed that the spatial dependence is deterroynadn x n scale matrix3, which is
symmetric, non-singular and positive definite. Note that proportional to CoVe(s;), c(s;)), which
depends only on the Euclidean distance between the losatj@nds;, that is,

Cov(e(sy), e(s;)) = p(hi;), (6)

whereh;; = ||s; — s;||. In addition, it is assumed that the functipmalefined in (6) is expressed in terms
of the spatial dependence parameter vegter (¢, s, <p3)T established in the relation

3= SOIIn + ()OQR(SO?))a (7)

wherey; is a nugget effecty, is a scale parameter (sill; is a function of the spatial dependence
radius, I, is then x n identity matrix, andR(y3) = (r;;) is ann x n symmetric matrix, with main
diagonal elements equal to one. Note tRato3;) depends on the theoretical covariance function adopted
to describe the spatial dependence (Mardia and Marsha)19n the Matérn family model (Diggle



and Ribeiro, 2007);;; is given by

{1, i=J; S

Tij = 1 <hij) (h”) . . (8)
e (L) K (L), 45

2071T(0) \ 3 *\ s 7

whered is a shape parametét,is the standard gamma function aAd is the modified Bessel function
of third kind with orderd. Particular cases of the Matérn family model include thpamential and
Gaussian members, whén= 0.5 andé — +oo, respectively.

2.3 Parameter estimation

The parameters of the model defined in (5) are summarizectiagttord = (BT, e, a)T, which
are unknown but can be estimated by the ML method as follovesnK5), we have = (Y — X ' 3) ~
log-BS, (a1,x1,0,x1; ). Then, the logarithm of the likelihood (log-likelihood)fation for@, ignoring
constant terms, is given by

1 2 Twe—1 = Yi — w;l'ﬁ
0(0) = ~3 log (|X]) — nlog(a) — ?V XV + ;log <COSh (? , 9)
whereV = (Vi,...,V,)" isann x 1 vector, with element¥; = sinh((y; — =] 3)/2), fori =1,...,n,

andX is given in (7). Taking the derivative of (9), with respecttbh@ corresponding parameters, leads
to the(p + 4) x 1 score vector defined as

i)~ ((a“")),T(W’)),Ta‘;f)) = (6B, 105, o0) i) i), E) . 20)

B Op

For details of the elements of the score vector given in (46, Appendix A. In order to find the ML
estimated of 8, the non-linear syste(#) = 0,,.4)«1, Obtained from (10), must be solved. Since this

system does not provide a closed analytical solutbbmust be computed using an iterative procedure
for non-linear systems (Nocedal and Wright, 1999). i i mfunction of theR software can be
employed to solve such a systemm{v. R- pr oj ect. org, R Core Team, 2016). By default, the
opt i mcommand carries out a minimization, so that the instruationt rol = | i st(fnscale =

- 1) must be added to this command for maximization. Note that sunciterative procedure does not
necessary converge to a maximum, which can be an inflectiort ppa minimum. We compute the
eigenvalues of the Hessian matrix in order to assure thatémuan has been found.

2.4 Information matrix

Observe that the Hessian matrif((B), for the BS spatial regression model presented in (5), is a
(p+4) x (p+4) diagonal block matrix. The Hessian matrix is obtained byrtgithe second derivative
of (9), with respect to the corresponding parameters, agivén by

9%¢(0) 0%¢(0)  9%¢(0)
. aggaﬁT BgacpT 0p0a
6(0) 9%0(0)  9%0(0)  9°4(0) _

. .o .

£B) 4Be) ¥Ba) )
( :

(
eB) Lp) pa)
£aB) Llap) ¢

(cv

(11)

T | 30087 FpdpT  Bpda
920(0)  920(0)  926(0)
0adB"  dadp " Oa?




where thep x p, p x 3 and3 x 3 sub-matrice€(3), £(B¢) = (£(¢B3))T and#(y), respectively, have
elements detailed in Appendix A. Therefore, for the BS sppaéigression model, the + 4) x (p + 4)
expected Fisher information matrix, obtained from (11gxpressed as

. K(B) K(Bp) K(Ba)
K(0)=E(-#0) = | K(¢B) K(p) Klpa) |,
K(aB) Klap) K(a)

(12)

where K (8) = E(—£(8)), K(¢) = E(~£(y)) and K (B¢) = (K(#8))" = E(—£(B¢)) = 0Opxs
arep x p, 3 x 3 andp x 3 sub-matrices, wherea& (Ba) = (K(aB))" = E(—£€(Ba)) = 0, and

K(pa) = (K(ap))" = E(—£(pa)) arep x 1 and3 x 1 vectors, respectively, whose elements also are
detailed in Appendix A.

2.5 Inference and asymptotic frameworks

Recalling that = (37, ¢, a)T and as usual for ML estimators, note that

Vi@ —0) B Nya(0praxa, J(0)7), (13)

asn — +oo, where> denotes convergence in distribution afiP) = lim, . (1/n)K(0), with

K (0) being the expected Fisher information matrix given in (12gtails of the asymptotic behaviour
and performance of ML estimators will, of course, dependhendptimal design. This has been studied
in the case of Gaussian models (Baran et al., 2015), but it @gpan question, worthy of further investi-
gations, for the case of BS models. The results presentd@)rafd (13) can be used to find asymptotic
standard errors of the estimators from the inverse of theaep Fisher information matrix and to carry
out asymptotic inference on the model parameters. Howaverfer on the spatial parameters, asymp-
totic properties of their estimators must be known, pritgdrécause of their approximations in the case
of finite-samples. Nevertheless, applicability of asyniptérameworks to spatial data is not an easy
aspect, due to there being at least two relevant framewearkigh can behave quite differently when
estimating the spatial dependence parameters (Zhang anmdetiman, 2005). One of these asymptotic
frameworks is called “increasing-domain”, which requif@sdefined in Section 2.2, to tend R? in

an anisotropic fashion (same speed in all directions), wittonstant density of sample points. The
other asymptotic framework is called “fixed-domain” (or-fifi”"), where the domainD is fixed, and the
density of points tends te¢-oc. The increasing-domain and fixed-domain asymptotic fraanksvwere
derived to obtain limiting distributions of ML estimator§the spatial dependence parameters in Gaus-
sian spatial models. As mentioned, the asymptotic pragsedi the ML estimators for these parameters
may be different in the two frameworks. In general, accaydonZzhang and Zimmerman (2005), the spa-
tial dependence parameters are not consistently estimatad a fixed-domain asymptotic framework
(Zhang, 2004; Stein, 2012), whereas upon an increasingtoasymptotic framework, the parameters
are consistently estimated and their ML estimators are pgytically normal distributed, subject to reg-
ularity conditions (Mardia and Marshall, 1984). In additjgparameters can be consistently estimated
in both asymptotic frameworks for some cases, but their e@mance rates are different. Zhang and
Zimmerman (2005) suggested to use the fixed-domain asyimfrianework.



3 Influence diagnostics

3.1 Global influence
Cook et al. (1988) proposed case-deletion based on the Liespmnding to the influence measure

where/ is the log-likelihood function, whereag and 5(2-) are, respectively, the ML estimates @f
considering the full data set and the data set with the ¢asmoved. Note that (14) may be used to
evaluate the global potential influence of the casinat is, (14) measures the change in the LD with
estimated parameters when the casedeleted. Another case-deletion method alternative eoth
givenin (14) is the CD, which has been generalised to semerahormal models (Desousa et al., 2018).
To facilitate the calculations, the first order approxiroatilefined a8 — 0 E (O)E y(0), basedona

Taylor expansion aroun@l until the second order term, and the one-step Iate NewtphBon estimate,
can be employed for the CD. Thus, an alternative measur@bédinfluence (Pan et al., 2014) based on
the CD is given by

CDi(0) = (£1)(0)) " (—€1(8)) ' (€»(8)), i=1,....n,

wherel;(0) = 0, (0)/06 and€;(6) = (%, (0) /06067, with (; being the log-likelihood function
obtained after deleting the casePan et al. (2014) showed that it is possible to repfagéd) by #(6)
or by K () = —E(£(8)), obtaining, respectively, the measures of influence

CDi(6) = (£(0)) " (—(6)) ™ (£(0)) = (£:(0)) K ()" (€;)(0)), i=1,...,n.

Note that CD(0) is often preferred to LI(ﬁ(Z-)), because it reduces the computational burden. In the case
of the BS spatial regression model, the matkX @) given in (12) has a diagonal block structure and
then the CD for the vectd is given by

CDi(0) = (b (0)TK(E)" 6y (0) A
= (6o(B) K (B) " (lo(B) + (& o ) K () (o))
CD/(8) +CDi(¥), i =1,.

whereg, ¢ are the ML estimates @, ¢ = (¢, ) ', Whereasé(i) (8), £ (1) are subvectors df;(6)
related to the vectors, v, respectively. In additionk (3), K (4) are the blocks of the expected Fisher
information matrix related to the vectofk v» and evaluated eﬁ, 1,2 respectively. If the value CID9)
given in (15) is large, then the cases potentially influential. There is no consensus about whates
are considered large, but Cook and Weisberg (1982) stagtdhé definition of large depends on the
problem. Analogously, a large value of GB) indicates that the cagds potentially influential in the
estimation of3, and similarly for CQ()).

(15)

3.2 Local Influence

Local Influence consists of studying the changes in the estichparameters when making small
perturbations in the data and/or the model assumptionsk (®@87) evaluated local influence by exam-
ining R R

LD(6.,) = 2(¢(6) — £(6.,)), (16)
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wheref andéw are, respectively, the ML estimateséin the proposed model and the model perturbed
by w. Specifically, Cook (1987) studied the normal curvaturehef influence graph L[®,,), in the
neighbourhood of the non-perturbation poiafy; namely, in the direction of a unit vectat. Using
differential geometry, it was shown that the normal curvatn the direction vectod takes the form
Cq = 2|d" Bd|, where

B=-AT#6)"'A, (17)

with Z(é) being the Hessian matrix, evaluatedfat= 6 and A = 0*(0|w) /000w being the pertur-
bation matrix, evaluated & = 6 andw = wp. Further details of the perturbation matrix are given in
Appendix B. In addition, Cook (1987) stated that an impdrtirection to consider i = d,,.., Which
is related to the maximum normal curvatu€g; .. namely, given by the largest absolute eigenvalue of
the matrix B, whered,,,.. is the eigenvector associated with this eigenvalue. Thgsplot of theith
element (in absolute value) &, .. versus the index can detect points with the largest influence in the
neighbourhood of LA, )|.-.,. Hence, such a potentially influential case may be resptentibcon-
siderable changes in the estimated parameters, undersenaitbations of the data. Another important
direction to assume id = e;, wheree; is a basis vector oR", whoseith coordinate is one and the
others are zero. In this case, the normal curvature is giyer b= 2|b;;|, whereb;; is theith element on
the diagonal of the matriB defined in (17), fori = 1, ..., n. Similarly, the plot ofC; versus the index
1 can be used to identify potentially influential points.

Although the normal curvature of Cook (1987) is often emplbyother measures of local influence
have been studied. The conformal curvature of Poon and P&@®&9] is defined by

Ci .

BZ_tr(B)’ i=1,...,n, (18)
whose calculation requires no more effort than the calmradf C;. Note that (18) is invariant under
conformal reparametrization. Then, the conformal cumeatyiven in (18) is a standardized measure,
making it easy to establish a cut-off point. As the curvatidrgand B; differ only by a positive constant,
the eigenvectod,,.,. also provides the maximum conformal curvatdtg .. Poon and Poon (1999)
suggested that th&h element (in absolute value) associated with the veBigr  presenting a value
greater than //n indicates it is a potentially influential point. With respec conformal curvature
in the direction ofB; defined in (18), Poon and Poon (1999) mentioned that the icespotentially
influential if B; > 2B, whereB is the arithmetic mean of the basic conformal curvatures, i) of
By, ..., B,. Thus, the casgis potentially influential if3; > B +2SD(B), where SO B) is the standard
deviation (SD) ofBy, .. ., B,.

Another measure used for local influence, formally define®itipr and Loynes (1993), is given by

LD*(0.,) = —2(£(0) — ¢(Bu|w)), (19)

where/(0,,|w) is the log-likelihood function perturbed hy. Note that LO6,,) defined in (16) and
LD*(6,,) in (19) are different, because E[®,,) has the first derivative with respectdq evaluated at
wo, equal to zero. Cook (1987) used the normal curvature (secader derivative) to evaluate the local
influence. Thus, the main advantage of*I(B,,), compared to LDA,,), is that the first derivative of
LD*(6,,) is not zero atv,. Therefore, the slope can be employed to analyse the loealgeh Notice
that LD*(0,,) considers the log-likelihood function based on the pegdrimodel and a negative sign
multiplying it to assure its positivity. Thus, a potentiaihfluential point is detected when studying the
influence graph of the surface(w) = (w',LD*(6,,))". Observe that its first derivative (slop&)

in the direction vectorl does not vanish, except in trivial cases. Particularly,tfaximum slope and
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the corresponding maximum direction vectsy,., andd,,..., respectively, are useful in detecting local
influence. The maximum direction of D8, ), evaluated atv, is the direction of the gradient vector
VLD*(6,,). Consequently, the maximum slope (Longford, 2005) is glwen

Suax = || VLD*(8,)]| = 2 HW

Y

Ow

which must be evaluated 8t= 6 andw = w,. The approach of Billor and Loynes (1993) allows the
individual components of the gradient vec®LD*(6,,) to be considered, and it can be used to identify
those cases which have the largest contribution to the marisiope. Thus, the plot of théh element

(in absolute value) associated with,., versus the indexcan also be employed to identify whether the
case is potentially influential. Because the method based onghB)involves first derivatives, and not
second derivatives, it is easier to utilize than the methasktd on (16).

Next, local influence results for the BS spatial regressiaaehare provided, which consider per-
turbation schemes in the response and in one continuousiatevaEach scheme assumes the most
appropriate perturbation, according to the methodologppsed by Zhu et al. (2007). Such perturba-
tion schemes are used to assess the sensitivity of estimatacheters utilizing the influence measures:
(i) conformal curvature in the direction @f;, corresponding to maximum conformal curvatuig (. ),
and (ii) slope displacement of the modified likelihood fuant(S,,..). The perturbation matrices, for
each case, are provided in Appendix B.

Perturbation in theresponse:  Consider the perturbatio¥i,(s) = Y (s) + Aw, whereA is a symmet-
ric, non-singular matrix and = (wy,...,w,)" € R" is the perturbation vector. Note that = 0,,,.;
is the non-perturbation vector. Then, the correspondimigeed log-likelihood function, ignoring con-
stant terms, is given by

1 2 - i+ Aw —x)
((6]w) = —5 log (|2]) — nlog(a) — @VJE_IVw +3 log <cosh (y + Aw -z, ﬁ)) 7
=1

2

whereV,, = (V,,.... V)", with V, = sinh((y; + A;w — 2] 3)/2), and A; is theith row of the
matrix A, fori = 1...,n. According to Zhu et al. (2007), the perturbatiwors appropriate if and only
if G(0|wy) = cI,,, wherec > 0 andG(0|w) = E(£(0|w)fT (0|w)), with £(8|w) = 3¢(0|w)/dw. For
the BS spatial regression model, we have

. 2 1
L0 =AYV, +-AV,,.
(0lw) = +3
Therefore, it conducts to

«v

2
G(Olw) = A (%21/2 - lz*”) A.

Now, in order to use the approach by Zhu et al. (2007), conside

-1
A= (%2% - éz—%> . (20)

Thus, an appropriate perturbation scheme for the respsrggean by

1 -1
Y.(s)=Y(s)+ (%21/2 _ a2—1/2) w.

10



Perturbation in a continuous covariate: Next, consider perturbations in a single continuous cateyi
which is assumed to be labelled,. The other covariates are not perturbed, that is, the fetion

scheme of the covariate s .,(s) = x.(s) + Aw andx; ., (s) = x;(s), forj #t,j =1,...,p, where

w € R" andw, = 0,4 are such as in the response perturbation scheme. In thistbasperturbed
log-likelihood function, ignoring constant terms, is giMey

! 2 - Yi — x,
((Olw) = —3 log (|%]) — nlog(a) — ?VJE_IV“, i Zlog cosh % |

i=1
whereV,, = (Vi,,,..., V)", with V. = sinh((y; — x/,B)/2),fori =1,...n. Thus, we have

£(0|lw) = agf,f“") - i—%Az-lvw . %AVM

w
and consequently
: : T B
G(Olw) =E <£(0|w)£(0|w)T> = 2A <g22 - —2-2) A
4 «
is obtained. Now, as in the case of the response perturbattbnA given in (20), the most appropriate
covariate perturbation scheme is given by

1o\
Tiw(s) = x(s) + (—22 - —2_2) w.
a

3.3 Generalised leverage

The leverage in linear regression models can be used to neetiiuinfluence that individual cases
have on their predicted values (Leiva et al., 2014b). The Glrimhas the form
oY . .

GL(0) = YT = D(0)(—£(6)) £(6Y), (21)
whereD(6) = 9 /00", with . = X 3 being the expected value &f, —¢(8) is the observed informa-
tion matrix andé(8Y) = 92((8)/900Y T. The element G}, of the matrix GL(6) is the instantaneous
rate of change in the predicted valueith respect to its observed value. Thus, the main diagdeal e
ments of the matrix G{#) with large values indicate the leverage points, that isp{sovhose observed
value has high influence on its predicted value. Here, itappsed that the casés potentially influence
if GL; > GL+2SD(GL), whereGL and SOIGL) are the mean and SD of GL,. . ., GL,,,,, respectively.
For the BS spatial regression model, the GL given in (21) dsfits components as

1 T12 ... Tip

1 Tog ... Typ T
X = . . . ) 0:(/61—7901—70‘) )

I @po oo Ty

recalling thatB = (31,...,,)" andy = (@1, ¢, 3) ' , whereas the, x (p + 4) matrix D () is

1 T12 ... Tip 00 0O
. To2 ... T2 0 0 O
D(0) = _ S = (X 0,4).
1 2o ... xpp 00 00
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In addition,£(0Y) = (£(BY), £(pY ). £(aY))T, wherel(BY) is thep x n matrix with elements

O°U6) _ 1 Tozl)nt ;T -1 1 v~z BY\’
mw%_?(@mmwz V+@Cm021®—zem%—7_0>%ﬁ

whereS; and F; aren x 1 vectors, with elements sifhy; — =, 3)/2) and cosk(y; — = 3)/2), respec-
tively, at the position and zero in the other positions, for= 1,...,n andj = 1,...,p. Furthermore,
£(pY) is a3 x n matrix with elements defined as

9%0(0) 2 X

=_—_F'Yy'"=2'Vv i=1,... 1 =1,2.3
8%0‘7 ayl (){2 1 8%0‘7 Y 7’ ) Y n? j Y ) Y

wheread(aY) is al x n vector with elements expressed by

0*(0) 4 -
=—F'%'V, i=1,...,n
dady; a3’ T el

4 Application to chemometrical data

4.1 Background

Animportant problem in agricultural management is the tdigation of imbalances and deficiencies
of key nutrients in the soils. One such nutrient is magnegiMg), which is an elemental component of
the chlorophyll molecule allowing plants to absorb enemgnT light and to combine water @@) and
carbon dioxide (C@), to produce sugar molecules. In turn, these are used tbesise starch, protein,
fat and vitamins. Deficiency in Mg also inhibits developmehthe root system, which reduces the
absorption for other nutrients. Hence, low levels of Mg hawgnificant adverse effect on plant growth
and vitality. In addition to decreased crop yield, inadequevels of Mg also effects key properties, such
as protein content in grains and flavour, colour, sweetnegs$eamderness in fruits and vegetables. When
these deficiencies become visible, it is usually too latea@ercorrections, meaning that the whole crop
year is effected dramatically reducing farming profitapili Thus, regular soil analysis is essential to
allow intervention before symtoms are visible (Wolter, ZR0Although the controlling of individual
soil nutrients is very important, monitoring the relatibis between nutrients has been identified as
equally important. For example, and to be considered hieieewiell known that calcium (Ca) competes
with Mg for absorption in the root system. That is, exces®irels of one may inhibit the absorption of
the other and then restrict plant growth and vitality (LqHE398).

4.2 Description and exploratory analysis of the spatial da

The data set corresponds to measurements taken at 82 tecdtining the crop year 2014/2015
within an area of approximately 167 ha. This area is locateddascavel city, in the west of the state
of Parana, Brazil. In general, the Brazilian soils are poanutrients and have Ca and Mg at very low
levels. The responsé is the content of Mg in the soil (cmolc/dinand the covariateX) is the content
of Ca in the soil (cmolc/df). The locations were georeferenced and the regular samglidgan be
seen in Figure 2 (left). The box-plot of Mg content data igptiiged in Figure 2 (right), where five
outliers are detected. Figure 3 (left) displays the samptedts divided by quartiles, with the locations
of the outliers being again identified. The directional @gram in Figure 3 (right) shows that there is
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no preferred direction, that is, an omni-directional semniiogram is appropriate. Thus, the associated
stochastic process can be considered as isotropic. Toagstittne spatial dependence parameters, a
variogram model in the Matérn family is assumed witk- 0.25, a value selected by cross-validation.
Note that, although the variogram in Figure 3 (right) seemisetflat, indicating a possible lack of spatial
structure, we must have in mind the following. Once the gpatrameters are estimated, it is possible
to calculate the value of the relative nugget effect (RNER&KE = ¢ /(¢1 + 2), which indicates
the degree of spatial dependence (Cambardella et al., 1BRINE < 0.25, the data present a strong
spatial dependence; £25 < RNE < 0.75, the data indicate an average spatial dependence; and if
RNE > 0.75, the data show a weak spatial dependence. In the case of dngpkxconsidered here,
we havep; = 0.0301 andp, = 0.0156. Therefore.RNE = 0.6586, indicating that the data present an
average spatial dependence, which supports the use ofdtialspodel proposed in this study.

120
4o

480
47318

y-coordinate

7237000 7237500 7238000 7238500
Mg content

239500 240000 240500 4241000
z-coordinate

Figure 2: grid of sampled data (left) and box-plot of Mg coniteata (right).
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Figure 3: sampled points divided by quartiles and locatibroutliers (left) and directional semi-
variograms (right) for Mg content data.

Figure 4 provides the QQ plot of the residuals, transformgthle Wilson-Hilferty approximation

(Marchant et al., 2016b), which shows that the model fits thge ddntent data reasonably well. In
particular, when the four lower values of the QQ plot (lefg eemoved, an adequate fit is detected, with
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Figure 4: QQ plots of residuals using the Wilson-Hilfertypagximation for Mg content data.

most points closely scattered around the y = x line, and @hein inside the envelope. When using the
robust Jarque-Beran test (Gel and Gastwirth, 2008; &tehlal., 2014), we obtain a p-value less than
0.0001 for the full data set and a p-value of 0.03 for the dettavgh the mentioned four values removed,
that is, we pass from a highly significant result to a non-$igamt result at 1%, favoring normality
of the residuals, which is coherent with the graphical asialpased on the QQ plots. This suggests
that a BS spatial log-linear regression model with heaw#s,tsuch as a BS spatial Student-t log-linear
regression model, might improve the fit to the full data sétis-s out of the scope of this work but will
be considered for future research. Observe in Figure 9 {ledt the cases #2, #12, #62 and #66 produce
this bad fit in the QQ plot. First, the case #12 is an outliehwithigh value and identified as potentially
influential by practically all diagnostic plots. Seconck ttase #62 is identified as potentially influential
by local influence plots. Thus, there exist cases that amtifteel as potentially influential by some
graphs but not by others. Therefore, third, the case #2p@dfh it has not been identified as potentially
influential nor an outlier, this could be identified as poialhyt influential by the plot of the CD, because
it is very close to the cutoff. Recall that there is no conssria the literature about the most suitable
cutoff. Fourth, the case #66 can be assessed as potentialignitial as well, although it is not an outlier.
These four extreme residuals are associated with Mg valgbsihthan those surrounding and where the
Ca value also does not support a raised Mg value.

The ML estimates of the model parameters, with the corredipgrestimated asymptotic standard
errors shown in brackets, arél = 0.9185(1.0439), 5y = —0.9619(0.1046), 8; = 0.2731(0.0144),
©1 = 0.0301(0.0656), g2 = 0.0156(0.0403) andps = 1.1375(0.0120). Thus, the estimated model is

o~

Mg(s;) = exp(—0.9619 + 0.2731C4a(s;)), i=1,...,82,

where the scale-dependence matrix is estimate® as 0.03011s, + 0.0156 R(1.1375), with R(ys3)
given from (8) foro = 0.25 and evaluated gt; = p3 = 1.1375.

4.3 Comparison of BS and Gaussian models

We compare the BS and Gaussian spatial regression mode{stasi Akaike information criterion
(AIC) and the Schwarz Bayesian information criterion (BIThe AIC and BIC are given respectively

-~ ~ ~

by AIC = —2/(0) + 2d and BIC= —2((0) + dlog(n), wherel(8) is the log-likelihood function for the
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parametef associated with the model evaluatedat 0, d is the dimension of the parameter space, and
n the size of the data set. Both criteria are based on the kegjHood function and penalize the model
with more parameters. A model whose information criterias & smaller value is better (Ferreira et al.,
2012). Thus, according to Table 1, we detect that the BSapadj-linear regression model outperforms
the Gaussian spatial linear regression model.

Table 1: comparison of BS and Gaussian models for Mg conteat d

Model  ¢(6) AIC BIC
BS 94.79 —177.58 —163.14
Gaussian —43.89 97.78 109.81

4.4 Diagnostic analysis

Figure 5 shows the potentially influential cases in the Mlineates of the parameter vect8r—=
(BT,wT)T, according to the CD as criterion of global influence. Notattthe cases #12 and #27
influence both estimates of the vectgds= (3;,3,)" andy = (¢',a)", whereas the case #15 is
potentially influential only for the estimate @%. The only potentially influence case detected also as an
outlier is the case #12. Note that the case #12 is an outlibeicrop year 2014/2015, presenting a high
Mg level in relation to the other Mg levels during the samaqukrHowever, in the crop year 2013/2014,
the case #12 is not an outlier, which is located at the firsttgeaf the data distribution. This fact
can be explained as follows. The farmer responsible for acpdar agricultural area obtains a chemical
analysis of the soil each year. Then, the farmer makes a clakoarrection of the soil in an appropriate
way, that is, a corrective application is carried out dep@mndn the need. During 2013/2014, the farmer
could have observed that the case #12 needed to be corr€nted.this correction was made, this case
had a high value due to an over correction, leading to the #dseappearing as an outlier in the next
period 2014/2015.

The local influence study is conducted assuming two typeslodérae: perturbation in the response
and perturbation in the covariate Ca. As mentioned, threasores of influence are considered: con-
formal curvature in the direction of basis vectols), maximum conformal curvatureésg, . ) and slope
displacement of the modified likelihood functiofi.(..). The local influence graphs for perturbations in
the response are shown in Figure 6, whereas Figure 7 prdeeatsnfluence graphs when the covari-
ate Ca is perturbed. The cases #12 and #27, identified by dbalghfluence plots, are also identified
as locally influential by the plots foB;, Bg,,.. andS,.x, when the response is perturbed. The case
#15, identified as globally influential, is also indicatedtbg local influence plots foB; andS,,.... For
the other cases identified, at least two of the three grapiestide cases #62 and #67. For covariate
perturbation, the three graphs identify as potentiallyiefitial points the same cases #12, #27 and #62.

From Figure 8, observe that the cases #14, #15, #81 and #&Rteted as potentially influential
by their predicted values (leverage points). The case #Entified as an outlier, is also identified as
influential in almost all influence index plots. Cases idgedi as locally influential are not identified as
outliers, which agrees with other studies, such as Assamptal. (2014). The cases #14, #15, #81 and
#82 are possible points that exert a potential influence @panameter estimates, that is, their individual
or join removal from the data set can lead to different cosiolus and decisions. Note that an analysis
of mineral content in the soll is carried out to decide wheihé necessary to correct some mineral
or not, since the mineral content can affect the agricultpraductivity. Then, the removal of these
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potentially influential cases from the data set may lead teamge of decision, that is, whether minerals
must be added to the soil or not. Therefore, we need to detéenfal influential points. Observe that, in
spatial statistics, an influential point is not necessailyutlier, as well as an outlier is not necessarily an
influential point. The concept of influence depends, in adidiio the value of the variable, on its location
and value of the variable in neighboring locations. Noté,timFigure 2 (left), the case #12 presents a
value in the fourth quartile of the data distribution. Howewneighboring locations have values in the
first or second quartile. Thus, the case #12 is an outliegumeit is an atypical value within the data
set, but it also is an influential point, since it has a veryhhiglue, but it is surrounded by points with
low values. It is very noticeable that most of the points idfesd as influential are peripheral to the
study region. The cases #12 and #14 are in the far right anchalge high Ca values, with the case #12
having the highest Mg value. Similarly, the cases #15 anda21n the far left, with high Mg values.
Also, the cases #81 and #82 are at the very top with almosbtiest Ca and Mg value. The remaining
influential points, the cases #62 and #67, are not peripbetdhey correspond to high values surround
by lower values, with the highest Ca value for the case #67.

As mentioned, we have presented several measures of globalGL) and local B;, By,.., Smax)
influence, considering response and covariate perturizatla order to conduct a study about the relative
change (RC) when the case detected as potentially influgntemoved, we select the points that were
detected as influential by most of these measures, thaeisabes #12, #15, #27 and #62. We consider
individual and joint removal of these cases. The impactefitfiuential cases on the parameter estimates
is checked by computing RC, = [(0; — 0;))/0;| x 100%, whered; is the ML estimate ob),
after removing the set of case(g)for j = 1,...,6 and/ = 1,...,15, with 6, = By, 6, = f,

03 = 1, 04 = 9, 05 = 3 andfs = a. Table2 reports the RCs in the parameter estimates obtained
by considering the data with removed cases. Note that, inrgérthe RCs for the parametets 31, ¢1
andy, are large, with the RC fop, being the largest. From the results obtained, it is verified the
removal of the potentially influential cases greatly moditige spatial dependence of the data — though
the radius of spatial dependencgeg, is not modified — recalling that the variance of the data \&gi

by 1 + 9, Whereasp; is the nugget effect of the semi-variogram. Note that, wité éxception of
the case #62, which only influences the ML estimate of therpatary,, all other cases influence both
spatial dependence and model mean. Remind that the modittwa is carried out by Kriging, which
depends o1y, 51, o1 andes, all which are affected by the influential cases, and theegfine model
prediction is also affected.
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Figure 5: CD for@ (left), 3 (center) andp (right) with Mg content data.
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Table 2: relative change (RC) in % of ML estimates for the ¢atied parameter and removed cases.

Removed case(s) /3

A

P1 P2 ©3 o

#12 5.8530 4.5771 10.2990 19.8718 0.0000 0.0762
#15 3.1084 2.6730 7.3090 14.1026 0.0000 0.0544
#27 1.9129 1.9407 8.9701 17.3077 0.0000 0.0544
#62 0.0000 0.1098 6.9767 13.4615 0.0000 0.0544
#12 #15 6.4872 5.3826 14.2857 27.5641 0.0000 0.0871
#12,#27 5.2396 4.6137 15.9468 30.7692 0.0000 0.0871
#12,#62 3.3371 2.5632 13.2890 25.6410 0.0000 0.0762
#15,#27 2.4639 2.6730 12.6246 57.0513 0.0000 0.0762
#15,#62 0.6134 0.6591 10.2990 19.8718 0.0000 0.0653
#27 #62 0.6030 0.0732 11.9601 23.0769 0.0000 0.0653
#12 #15,#27 5.8842 5.4559 19.9336 38.4615 0.0000 0.0871
#12,#15,#62 4.0129 3.4053 16.9435 32.6923 0.0000 0.1089
#12,#27,#62 2.7862 2.6730 18.6047 93.5897 0.0000 0.0871
#15,#27 #62 0.0104 0.6957 15.9468 30.7692 0.0000 0.0762

#12 #15,#27 #62 3.4723 3.5152 22.9236 44.2308 0.000080.09
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Figure 6: response perturbation By (left), B, .. (center) and,,.. (right) with Mg content data.

max

5 Conclusions and future work

The main contribution of this work is the derivation of diagtic methods of global and local influ-
ence for Birnbaum-Saunders spatial regression modelsselimedels make it possible to describe the
spatial dependence of strictly positive data with a distidn which is skewed to the right. The pro-
posed methods are used to analyse geochemical data. Sgibgiéin agricultural management problem
in Brazil was addressed to evaluate its effects. Becauseudigral systems are exposed to deficiency
and imbalance of nutrients in the soil, the magnesium camteie soil and its relation to the calcium
content has been studied. The relationship between thesparents was found to be significant sta-
tistically. Thus, a Birnbaum-Saunders spatial regressiodel has been fitted to predict the magnesium
content in the soil using the calcium content at differeratis locations. The diagnostic measures de-
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Figure 7: covariate perturbation fét; (left), By .. (center) and,,., (right) with Mg content data.
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Figure 8: index plot of the GL for log(Mg) data.

rived in this work have been employed to evaluate the effeatypical cases. Based on the application
shown here, the individual or join removal of atypical caem the data set can lead to different deci-
sions compared to when they are not removed. This shows thariance of a diagnostic analysis in the
statistical modelling.

Some possible issues to be addressed in future studiesdmdltiwing. First, because the Birnbaum-
Saunders distribution is based on the Gaussian distribpyp@rameter estimation can be influenced by
atypical cases, which are known to have an adverse effegatrabmaps. Instead, an estimation pro-
cedure robust to atypical data, for example based on théd&imm-Saunders Student-t spatial regression
model, can be considered to reduce their effects. This Wolvecomparison of the Birnbaum-Saunders
spatial log-linear regression model with its analogous ehbdsed on the BS-Student-t distribution, and
could also include comparison with the regular Student-tieh¢Azevedo et al., 2012). Second, in ad-
dition to fixed effects added to the spatial modelling by esgion, random effects can also be added by
mixed models, which can produce a more sophisticated modetlase to reality (Villegas et al., 2011).
Third, spatio-temporal models in the line of the model stddin this paper may be considered as well
(Reich, 2016). Fourth, other parameters different to thamaan be described by spatial models, for
example, some quantile, such as the median which is one @fataneters of the Birnbaum-Saunders
distribution, or dispersion parameters (Noufaily and 302€13). Fifth, other parameterizations of the
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Birnbaum-Saunders distribution might be considered, Wwiaikow us to assume non-linear structures
under a framework of generalized linear models (Leiva et2@l14b; Santos-Neto et al., 2016). Sixth,
we can assume more than one random variable in the spati@liingdising the multivariate Birnbaum-
Saunders distribution (Marchant et al., 2016a,b, 2018)e8#, we have not performed normality tests
directly from the data since, in spatial statistics, we hawe observation (trajectory of the process) in
each spatial point, that is, no replicated data are availafshich are needed in order to carry out any
goodness-of-fit analysis. When replicated data are avajlaie can conduct goodness-of-fit tests di-
rectly with the data, for example, following the work by Basret al. (2014) and Stehlik et al. (2014).
As alternative approaches for goodness of fit, discrimameéind model selection based on the available
data, we have provided a comparison between the GaussiaBiarhum-Saunders models and used
residual analysis to check goodness of fit of the model to #ta.dThe comparison showed that the
Birnbaum-Saunders model is more suitable to the studieal tthain the Gaussian model, whereas the
residual analysis provided evidence about the distribaliadequacy. Research on these seven issues is
currently in progress and their findings will be reported ftarre paper.

Appendix A: Score vector and Fisher information matrix

Score vector: The elements of thé + 4) x 1 score vector given in (10) are detailed as

. 85(9) 0 2 _ - Z—a:;rﬁ
(B;) = 95, = 8—53 (—?VTZ lV—I—Zlog (cosh (%)))

1=1

2 1 —  —x
= ?<WT®.’B]-T)Z_lV—izwnh(W)xij, j=1....p;
i=1

. oL(0 0 1 2 _
i) = G = 2 (~Gou(E) - ZvTEY)

1 b 2 b
= ——tr (2_13_> + —QVTz—la—z—lv, j=1,2,3;
2 2 o 2
0 2 4
9Ue) _ 9 (—nlog(a) - —2VT2‘1V> =Ty —Vis'v,
o o [0

da Oa

where® denotes the Hadamard product (Caro-Lopera et al., 2012);)tdenotes the trace of; W = (Wy,...,W,) ",

with W; = cosH(y; — =] 8)/2),fori=1,...,n;V = (V1,...,V,)  isdefinedin (9); anet; = (21, ...,2n;)

forj =1,...p. Itis worth to remember that;; = 1,fori =1,...,n, and that

s ) )> OR(p3)

—=1I,, — = R(p3), =
01 0pa (3) O0p3 72 O0p3

For the Matérn model given in (8R(y3) = 0R(y3)/0p3 = (0r;j/0¢s), with elements defined as

arij ( 1 ) 1 (hij>5+1 , (hw‘)
=—|— oryi + ———— | — K| = ,
O3 ©3 ( 7 20711(8) \ s "\ p3
fori#j,4,7 =1,...,n,andKj(u) = —(1/2)(Ks_1(u) + Ks1+1(u)), recalling that/s is the modified Bessel
function of the third kind and orde.
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Information matrix: Note that the observed Fisher information matrix is defingd-#(6), which must be
evaluated ab = 0, where£(0) is the Hessian matrix. For the BS spatial regression modsigoted in (5), the
Hessian matrix given in (11) has elements expressed as

((B;B1) = 0°Uo) - _ Oﬂtm @x)z*V—i«wﬂ®¢Uz*0V®x)
W eg0p  o? : a? J l
T 2
<+i§:<}ed<gij;Lg>> xijTi, g l=1,...,p;
=1
325( ) 2 To 195 .
(/Bj(pl) 8,8]8(,01 - _g (W >2 a lz V7 j_17"'7p7l_172737
. 00(0) 1 ( 182 182 1 ?x > 2 T < 0¥ 08
Upjp) = = ——tr(-%" »- + X SR VAN I YRt it )
(eie1) D0y 2 Iy p; 0 0p; a? Iy ®j
0°% 0¥ 0%
> < >t —2—1—2—1>> VvV, j,1=1,23,
0p10pj dpj Oy J
with
0’x 0’x 0?x 0’x ?x ?x

2 — QOZR”(QO?))al = 172737

= R/(¢3), a0
3

— 3 = 0
DpjOpr  0p0p;’ Op10pr D5 Dpa0ps
andR(p3)" = 0> R(yp3)/0¢3 = (0%r;;/0¢3). Note that the elements @2(p3)” are defined by

T e () (e ()4 () 2 (2))
= + 5+ 1)K + K :
I3 ©3 ©320°1T(0) \ 3 20+ DK ©3 ©3 ©3

fori# j,i,5 =1,...,n, with Kj(u) = —(1/2)(K5:1(u) +K5j1( u)), K (u ) (1/4)(K5 o(u) + 2K5(u) +
Ks.o(u)). In addition, thep x 1 and3 x 1 vectorsé(Ba) = (£(a3))" and€(pa) = (£(agp))", respectively,
have elements given by

. 0%0(0) 4 T o ™ ae .
{(Bja) = aﬁjaa:_$<w @a:j)zlv, i=1,....p,

) 0200) 41 [ 02 .

Furthermore, the scaldta) is expressed as

0%(O) n 12t
= = — - —vizlv,
) dada a2 ot v v
Therefore, for the BS spatial regression model,(ihe 4) x (p + 4) expected Fisher information matrix, obtained

from (11) and given in (12), is specified as

) K@) 0 0 K@B) o
K(0) = E(—£(0)) = 0 K(p) K(pa) | = )
( 0 Klagp) K(a)) ( 0 K“”)

whereK (8) = E(—#(3

) =
K(B;8) = <i2 a:j@a:l)T> 2—1V>+E<a (WT(DCIJ >2_1(W®azl)>
+E

3 T,B 1
Z (sech( >> Ty | = —2:10;2_1:13, 3 l=1,...p;
— o
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(K(B;B)) is ap x p matrix, with elements given by



which are obtained using the approximations $e¢h= 1/cosh(z) ~ 1, with cosh(z) ~ 1, and standard results of
the matrix differential calculus (Magnus and Neudeckef7)Pas well as assuming th@/a)V ~ N, (0, x1, %),

for V.= (Vi,...,V,) T, with V; = sinn((Y; — =] 3)/2), thatis,(2/a)V; ~ N(0,1). Approximations employed
for the cosh and sinh functions are based on a Taylor expaons$iwst order, around zero, similar to that employed
by Rieck and Nedelman (1991) for sinh. Note thét3¢) = (K(¢8))" = E(—£(B)) = (K (B;¢1)) is ap x 3
matrix, with elements defined as

0%

2 1 > 2
K(Bjp1) = E (E (WT ® m}) ) aﬂz*v) _ L1 98 (—V) —0,j=1,...,p,l=1,2,3.

a ’ dyy e

In addition, we have thak (¢) = E(—£()) = (K (p;¢;)) is a symmetric x 3 matrix, with elements expressed
as

2
K(pjp) = E<1tr<—2‘1a—2 —18—E+2—1 o’ >>+E<%VT <2—16_2 ~10% —1> V)

2 1ol%) 8<pj 8<pl(9<,0j 0 Pj
2 1 (e T 2 (108 0%
-El=SV | X b 1% El=V | —XY¥ " —X 1%
<a2 < Dp10p; + a? Dp; Doy
1 0x 0
= —tr 2—1—2—1—>, i, 1=1,2,3.
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Also, observe thak (Ba) = (K (a8))" = E(—£(Ba)) = (K (8a)) andK (pa) = (K (ap))" =E(—£(pa)) =
(K(p;a)) arep x 1 and3 x 1 vectors, respectively, with elements given by

4 4
K(B;0) E <$ (WT ® ij> 2—1V> —E <$m;2_1V> —0, j=1,....p;

. _ 4 —182 —1 _1 _182 . .
K(pja) = E<a3V<Z a(’ij >V>—atl’<2 90, ) ji=1,23;

since(2/a)V ~ N, (0,x1, X). Furthermore, the scaldf («) is expressed as

K(0) = E(~i(a) = E (—@ i ;sz—w) o

becausé(2/a)V E"1((2/a)V) ~ x%(n).

Appendix B: Perturbation matrices for the BS spatial model

Perturbation in the response:  For the model defined in (5) and its log-likelihood functiompeessed in (9),
perturbing the response, we have
90(8|w)
OwT

2 1
_ T ~1
=V <—@2 + 5In> A,
whereV,, = (V,,,,..., V), with V., = sinh((y; + A;w — z B)/2), fori = 1,...,n, and A; is theith row of
the matrixA defined in (20). Thus, the correspondifig+ 4) x n perturbation matrix is given by

2 w
a= 209 _ (a@) aw).a0)"

where

L 0POw)  [(92(0lw)  02Olw)\ |
AB) = FBowT (aﬁlaw’“" ag,,aw) ’
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whose elements are specified as
ot (0lw) oV, 2 ., 1 Lo+ +( 24 1 ,
= —-=> I, | A=W, I — > I, ) A j=1,...,p, 22
98007 9, \ a2~ T2 g e O\ T Ty J N

with W, = (W,,,..., W, )" andW,, = cosh((y; + A;w — =] 3)2), fori = 1,...,n. In addition, adv’,, =
cosh((y; + A;w — x/ B)/2) =~ 1, (22) reduces to

oPOw) (14 1
e =" (@ ik 4

Furthermore, note that
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with M = (M, ..., M,)", M; = l;w andl; being thejth row of the matrix

1/2 1/2
L= A( 51295 Ty 0O )A, j=1,....n
«

0p; 4 Op;

Additional details aboudX!/2 /d¢; can be found in De Bastiani et al. (2015). Moreover, we have
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whereD = (Dy,...,D,)", with D; = lw andl; being thejth row of the matrix

1 1
L=A (QE‘W + Zzl/2> A j=1,...,n

Perturbation in a continuous covariate: As in the perturbation scheme of the response, but now éntyr
the covariateX,, we have
9¢(6]w) T 2a 1
V) [S21-21, ) A,
Oow’ = b a? 2
whereV, = (V,,,..., V)", with V,, = sinh((y; — x| B — B;A;w)/2), fori = 1,...,n and A defined in
(20). Thus, the corresponding + 4) x n perturbation matrix is given by
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000w T
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where
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In addition, we get
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Finally, we get
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