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Comparison of Maximum Common Subgraph Isomorphism
Algorithms for the Alignment of 2D Chemical Structures

Edmund Duesbury,*[a, b] John Holliday,[b] and Peter Willett[b]

Introduction

The maximum common subgraph (MCS) plays an important

role in drug-discovery projects because it provides a simple, in-

tuitive and chemically meaningful way of showing molecular

similarity relationships by highlighting the substructural fea-

tures common to two (or more) chemical graphs.[1–3] There are

two distinct types of MCS. The connected MCS (hereafter

cMCS) represents the largest single fragment (in terms of

either the number of atoms or the number of bonds) common

to two compounds when they are aligned; whereas the dis-

connected MCS (hereafter dMCS) can contain multiple frag-

ments and is the set of fragments that maximises the number

of atoms or bonds in the MCS. The connected and disconnect-

ed forms of the MCS are illustrated in Figure 1. There are two

additional subdivisions of the MCS: the maximum common

edge-induced subgraph (MCES) representing all the edges (i.e. ,

bonds) between two graphs; and the maximum common

node-induced subgraph (MCIS) representing the nodes (i.e. ,

atoms) in common between two graphs with their respective

end-points preserved. In this work, we have focused on the

more intuitive MCES, with example applications including reac-

tion mapping,[4] clustering,[5] matched molecular pairs analy-

sis,[6, 7] chemical space network representation,[8] and three-di-

mensional molecular alignment[9] inter alia.

Determination of the MCS is an example of a non-determin-

istic polynomial time complete (NP-complete) problem. If a

polynomial solution can be found for one NP-complete prob-

lem, then all other NP-complete problems can be transformed

to become solvable in polynomial time too.[10,11] As an example

of the MCS being an NP-complete problem, finding the MCS

can be transformed into finding the maximum clique in the

modular product of two graphs.[12,13] Considerable progress

has been made in improving the efficiency of clique algorithms

but no polynomial-time solution currently exists that would

enable the detection of an exact MCS solution. There has, how-

ever, been recent work on the development of fast and ap-

proximate solutions to finding the MCS. Building on earlier

work,[14–16] one approach involves the use of the topologically

constrained dMCS (hereafter tdMCS)[17,18] Finding the tdMCS

relies on deleting those edges in the modular product of two
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The identification of the largest substructure in common when

two (or more) molecules are overlaid is important for several

applications in chemoinformatics, and can be implemented

using a maximum common subgraph (MCS) algorithm. Many

such algorithms have been reported, and it is important to

know which are likely to be the useful in operation. A detailed

comparison was hence conducted of the efficiency (in terms of

CPU time) and the effectiveness (in terms of the size of the

MCS identified) of eleven MCS algorithms, some of which were

exact and some of which were approximate in character. The

algorithms were used to identify both connected and discon-

nected MCSs on a range of pairs of molecules. The fastest

exact algorithms for the connected and disconnected prob-

lems were found to be the fMCS and MaxCliqueSeq algo-

rithms, respectively, while the ChemAxon_MCS algorithm was

the fastest approximate algorithm for both types of problem.

Figure 1. Types of MCES (the MCS in each pair of compounds represented
by bold edges): a) cMCS between the two molecular graphs; b) dMCS be-
tween the same two molecular graphs.
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chemical graphs that correspond to pairs of node that have

differing topological distance differences to each other. The

tdMCS has been found to yield more realistic alignments than

the standard dMCS, despite it being significantly faster to

detect, and it has also been suggested that it is more effective

than the dMCS in virtual screening applications:[15,17] As in the

work of Kawabata,[17] we shall use V to describe the allowed

topological distance difference, as illustrated in Figure 2. A

topological distance difference constraint (corresponding to

V=0) was also one of the comprehensive, but complex, set of

heuristics introduced by Raymond et al.[19] to expedite the

identification of an MCS equivalent to, or at least similar in size

to, the dMCS. These heuristics are applicable to several of the

algorithms considered here and are described in detail by

Duesbury in his doctoral thesis,[20] who found that use of the

heuristics did indeed yield reductions (and substantial reduc-

tions in some cases) of the running times of these algorithms.

However, this increase in efficiency was often accompanied by

a reduction in the size of the MCS that was identified, and the

results for this approach (which is referred to as hMCS by

Duesbury) have hence not been included in the results report-

ed here.

There have been relatively few empirical comparisons of

MCS algorithms in chemoinformatics and those that have been

reported are either now quite dated, e.g. , the studies by Brint

and Willett[21] and by Gardiner et al. ,[22] or have involved only a

limited number of different algorithms, e.g. , the studies by

Rahman et al.[23] and by Hariharan et al.[24] (who consider the

alignment of multiple molecules rather than just two as here).

This article reports an extended comparison of eleven different

MCS algorithms, both in terms of time performance (i.e. , the

efficiency of the algorithms), and MCS size (i.e. , their effective-

ness) when used for the alignment of pairs of 2D chemical

structures using the three different definitions of an MCS (i.e. ,

cMCS, dMCS and tdMCS) described above.

The algorithms tested in this study are listed in Table 1,

where the names are those in the original publication. They

have been characterised in the table by being either exact or

approximate in nature, and by the number and types of MCS

that they are able to identify. Details of the algorithms can be

found in the original cited articles[17–19,23,25–31] and in the thesis

by Duesbury.[20] The performance of these algorithms has been

assessed using the two datasets that are shown in Tables 2

and 3 and that are described in detail in the Experimental sec-

tion of the paper.

Results and Discussion

The results are shown in Figures 3 and 4, in addition to Tables

SI1–SI8 (Supporting Information). In the aforementioned Fig-

ures, violin plots have been used to represent time and MCS

size distributions for each algorithm-MCS type combination. A

violin plot is an extension of the box-and-whisker plot, where

each “violin” is a plot of the density function of a histogram

produced from the data.[44] This has some advantages over

simple box plots, for it shows how the data are distributed (for

example, a box plot would not distinguish a bimodal distribu-

tion from a uniform one). In this work, the maximum width for

each “violin” is constant, the width representing the probability

density at a given point. Maxima and minima of the com-

pound times are represented by the corresponding extremes

for each “violin.” The black dots represent the median of the

data. The tables show the same information as the violin plots,

but in more detail, should the reader desire. The efficiency is

denoted by the median run time (in seconds) and the median

absolute deviation averaged over the ten runs for each algo-

rithm (the latter is absent if the algorithm failed to complete

Figure 2. a) The dMCS between two chemical graphs, and b) the corre-
sponding tdMCS (V=0). In this example MCS, some of the bonds in the
two compounds have been mapped to yield an alignment that in geometric
terms would be chemically unfeasible. The difference in distance between
the two circled bond pairs in the dMCS is 5 (7�2). By limiting the size of this
difference we can decrease the search space and yield more sensible align-
ments, as represented by the tdMCS.

Table 1. Types of MCS algorithm included in this study, with the types of
MCS detection for which they are applicable denoted by an X. The
kcombu algorithm identifies k (a user-defined value) MCSs.

Output Algorithm and reference cMCS dMCS tdMCS Number
of MCSs

Exact VFLibMCS[23] X >1
Small Molecule
Subgraph Detector[23]

X >1

fMCS[25] X 1
MaxCliqueSeq[26] X X 1
Bron–Kerbosch[27] X X X all
Carraghan–Pardalos[28] X X 1
RASCAL[19, 29] X X 1

Approximate CDKMCS[23] X >1
kcombu[17] X X X k

consR[30] X 1
ChemAxon_MCS[18, 31] X X 1
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all of the runs), and the effectiveness by the size (in terms of

numbers of bonds) of the MCS that was identified. The results

for the most efficient and the most effective performers are

bold-faced. If a time has been italicised then the median was

Figure 3. Charts showing performance information of each algorithm (including the same algorithm ran on different MCS types) for the S, N, and M com-
pound pairs. a) Time taken; b) MCS size (in bonds); c) number of non-completions for a method.
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calculated excluding any results that failed to run to comple-

tion. Results that only comprised non-completions are also ita-

licised, with the median absolute deviation being set to zero

as it was not calculated.

We consider first, in Table SI1 and Figure 3, the results for

the pairs of molecules in Table 2 when searching for the dMCS.

It will be seen that BK was slowest in all of the cases tested

here, an unsurprising result in that it is designed to retrieve all

maximal cliques rather than just a single maximum clique. Car-

raghan–Pardalos (hereafter CP) was only marginally superior

(obtaining a solution within the time-limit for one of the ten

pairs of molecules) but normally found larger solutions than

Bron–Kerbosch (hereafter BK). The other two exact algo-

rithms—RASCAL and MaxCliqueSeq—obtained solutions for

most of the pairs, with the latter normally being the faster of

the two. Turning now to the three approximate dMCS algo-

rithms, ChemAxon_MCS (hereafter CA_MCS) was notably faster

than the other two (kcombu and consR) and (hardly surprising-

ly) than the exact algorithms: it identified the largest MCS for

ten of the pairs and had the fastest median run time for seven

of them, thus demonstrating the effectiveness of the heuristics

in this algorithm. Of the other two approximate algorithms,

kcombu normally out-performed consR. Overall, MaxCliqueSeq

and CA_MCS would appear to be the algorithms of choice for

this type of MCS search.

The tdMCS results for V=2 and V=0 are shown in Tables

SI2 and SI3, respectively, for BK, CP, MaxCliqueSeq, RASCAL,

and kcombu; it was not possible to make the necessary modi-

fications to the basic dMCS algorithms for CA_MCS and consR.

The increased constraints mean that the run times here are

faster and the maximum sizes smaller than in Table SI1. This is

particularly noticeable for BK (which was now able to provide

solutions for two of the pairs when V=2 and for ten of them

when V=0) and to a lesser extent for CP. The approximate

kcombu was generally the fastest for V=2 (albeit often with a

markedly sub-optimal MCS) but this was not the case for V=

0. Overall, MaxCliqueSeq gave the best performance here: it

always found the largest MCS and was, at least for V=0, also

often the fastest algorithm.

The seven sets of cMCS results are shown in Table SI4.

CDKMCS was faster than the other two CDK algorithms

(VFLibMCS and Small Molecule Subgraph Detector (hereafter

SMSD)) but the best performers here were clearly fMCS and

CA_MCS. The approximate nature of the latter meant that the

MCSs that it detected were occasionally smaller than those

identified by fMCS (and also those identified by BK but the

run-times here were totally uncompetitive); against that fMCS

was much slower than CA_MCS, for two of the symmetric mol-

ecule pairs (S4 and S5). Even so, fMCS is probably the algo-

rithm of choice for this particular application.

Figure 4 and Tables SI5–SI8 give the analogous performance

information for the 25 pairs of molecules in Table 3. The runs

were generally faster and had less non-completions than for

the pairs of molecules in Table 2. MaxCliqueSeq was again con-

sistently superior to the other exact clique detection algo-

rithms in terms of both MCS size and speed; it also outper-

formed the approximate CA_MCS in terms of size, though was

still slower in the dMCS runs. The CP results here were notably

better than those discussed previously, nearing the other two

high-performance algorithms in size and time performance (al-

though it had more non-completions). In particular, it was

faster than all of the other applicable algorithms for tdMCS

(q=0), suggesting that CP is most appropriate for simpler

pairs of molecules and MCS solutions.

Unfortunately, some inconsistencies in the results for the

exact cMCS algorithms shed questions as to whether the algo-

rithms actually provide exact answers. For example, the

VFLibMCS and SMSD algorithms failed to identify the MCS for

the N1 pair, and the same algorithms plus fMCS failed for M2,

despite the algorithms converging. Whilst the source code for

fMCS was translated from Python to Java and mistakes may

have occurred during the translation, the original source code

for VFLibMCS and SMSD was used. For the Franco compound

pairs, 92a and 96a present particularly interesting outliers as

the VFLibMCS and SMSD algorithms actually outperformed

other exact solutions. Presumably, this can only reflect abnor-

malities in the coding of these algorithms. The same can be

said for RASCAL of upon inspection of the three incomplete

convergences for the Franco compounds for tdMCS (V=0),

perhaps hinting at a missing detail in the original algorithm

lacking in our program version.

Conclusions

Benchmark studies in chemoinformatics, e.g. , comparisons of

fingerprint-types or similarity coefficients etc. , often conclude

with a recommendation for a “best buy” approach, and this

work was undertaken with the expectation that it would be

possible to make analogous recommendations here. However,

the results in Figures 3 and 4, in addition to Tables SI1–SI8,

demonstrate clearly that the algorithm of choice is determined

in large part by the precise nature of the MCS that is to be

identified. Specifically, we suggest that the MaxCliqueSeq algo-

rithm described by Depolli et al.[26] be used for aligning pairs of

molecules by means of the dMCS and the fMCS algorithm de-

scribed by Dalke[25] be used for aligning pairs of molecules by

means of the simpler cMCS definition. It is possible to increase

substantially the speed of the first of these by the imposition

of progressively stricter topological distance constraints,

though the resulting tdMCS will often be smaller than the

dMCS. Both MaxCliqueSeq and fMCS are exact algorithms that

are guaranteed to identify the true MCS (given sufficient time

in some cases): of the approximate algorithms that were

tested, CA_MCS provides an efficient and an effective way of

identifying both the cMCS and the dMCS.

Experimental Section

The hardware used in this study featured an Intel(R) CoreTM i7-2600
CPU @ 3.40 GHz processor with 16 GB of DDR3 RAM clocked at
1333 MHz, running Kubuntu 13.10. The Konstanz Information
Miner (KNIME) 2.8.2[42] running Java 1.6 was used for all experimen-
tal aspects in this study, and the Chemistry Development Kit 1.5.3
(CDK) was used for all chemoinformatics functionality, unless other-
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Table 2. Compounds selected for use in the first dataset for benchmarking.

Number Compound 1 Compound 2 Reference(s)

S1 [29]

S2 [19]

S3 [35]

S4 [35]

S5 [36]

S6 [37]

N1 CHEMBL39130, CHEMBL46316

N2 CHEMBL26440, CHEMBL15848

N3 CHEMBL55423, CHEMBL1204752

M1 [38, 39]

M2 [40, 41]

M3 N/A
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wise noted[43] All eight CPU cores were used for each algorithm. R
with the ggplot2 package was used to produce plots.

The algorithms tested in this study are listed in Table 1. They were
implemented as closely as possible to how they were described in
the original publications, using Java for the KNIME platform (these
implementations are detailed by Duesbury).[20] For algorithms

Figure 4. Charts showing performance information of each algorithm (including the same algorithm ran on different MCS types) for the Franco compound
pairs. a) Time taken; b) MCS size (in bonds); c) number of non-completions for a method.
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Table 3. Franco compound pairs to be evaluated, sorted in descending order of mECFP4 similarity, as depicted in the “Similarity” column.

Number[a] Compound 1 Compound 2 Similarity

F80a 1.000

F89a 0.824

F2a 0.739

F57a 0.723

F92a 0.678

F31a 0.636

F19a 0.587

F100a 0.544

F91a 0.500

F94a 0.481

F72a 0.444

F18a 0.415
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Table 3. (Continued)

Number[a] Compound 1 Compound 2 Similarity

F34a 0.391

F47a 0.366

F69a 0.279

F28a 0.214

F96a 0.186

F50a 0.170

F8a 0.152

F13a 0.138

F45a 0.134
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where the source code existed, but in a different language, the
source code was translated manually to Java (including BK, CP,
fMCS, MaxCliqueSeq, and kcombu). The sole exception was Chem-
Axon_MCS (hereafter CA_MCS), which is a proprietary algorithm
for which we do not have precise details, but which is based on
the procedures described by Englert and Kovacs[18] and by Grosso
et al.[31] It is important to note that the transcription and/or transla-
tion to Java code for each algorithm, was done to eliminate poten-
tial performance differences arising from using different program-
ming languages. However, this does not perfectly reflect the origi-
nal algorithm’s performance—for instance, MaxCliqueSeq was orig-
inally implemented in C+ + , thus the original algorithm generally
is expected to perform faster than the Java version implemented
here.

All of the clique detection algorithms (BK, CP, MaxCliqueSeq and
RASCAL), fMCS, SMSD and VFLibMCS were implemented with a
time-out condition. This was not done for the four approximate al-
gorithms, as these did not exceed the time constraint (and CA_
MCS is proprietary). Of the exact clique-detection algorithms imple-
mented here, Hariharan et al.[24] describe a cMCS solution for the
Bron–Kerbosch algorithm; however, it was not possible to apply
their modification to the other three such algorithms due to the
particular heuristics that each of them use, and we were thus able
to compute only the dMCS and tdMCS for these algorithms.

We used two very different datasets to assess the performance of
the eleven MCS algorithms when they were used to align pairs of
2D molecules. The efficiency of each algorithm was assessed by
means of the average run-time taken to identify the maximum
common substructure, and the effectiveness by the size in terms
of the number of bonds of that common substructure. Factors that
are known to influence search time include the sizes of the graphs
that are being compared, the level of symmetry in the graphs and
the average degree of the nodes comprising the graphs.

The first dataset comprised twelve pairs of compounds, these
being in the three subsets comprising Table 2 (where the bold-
faced bonds constitute the dMCS in each case). The first subset
(denoted by S1–S6) consists of pairs of highly symmetric com-
pounds, as Raymond et al. noted that the degree of symmetry was
negatively correlated with the speed of MCS detection.[19] There
are then three pairs of non-cyclic molecules (N1–N3), where it will
be seen that the dMCS is quite fragmented, and the table is com-
pleted by three pairs of miscellaneous molecules. There are two
pairs of nonplanar molecules (M1 and M2), as Dalke has suggested
that planar and nonplanar graphs might yield different per-
formance statistics,[32] and the final pair, M3, has been chosen to
see how well the algorithms deal with large, highly connected
graphs.

The pairs of molecules in Table 2 were chosen specifically to test
the performance of the algorithms, and many of them are hence
rather more complex than the sorts of molecules that might be en-
countered in conventional MCS applications such as reaction in-
dexing or pharmacophore mapping. The second dataset hence
contained pairs of drug-like molecules from the DrugBank 3.0 data-
base.[33] Franco et al. selected 100 such pairs from the database as
part of a study to assess the extent of the agreement between
human-based and fingerprint-based judgements of molecular simi-
larity.[34] These 100 pairs were sorted here into descending similari-
ty order (based on RDKit Morgan Fingerprint similarity) and then
every fourth pair chosen to give the dataset shown in Table 3.
These examples hence provide pairs of molecules that exhibit a
wide range of levels of structural similarity.

Each algorithm was run ten times on each of the pairs in Tables 2
and 3 in turn, using the MCS definitions that were appropriate for
that algorithm as listed in Table 1; for example, VFLibMCS was run
to identify just the cMCS whereas the Bron–Kerbosch runs addi-
tionally sought the dMCS and tdMCS. Runs exceeding 300 seconds

Table 3. (Continued)

Number[a] Compound 1 Compound 2 Similarity

F12a 0.129

F30a 0.117

F20a 0.105

F88a 0.091

[a] Name of the compound pair that the authors originally assigned.
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were recorded as being incomplete. All reported MCS results are
derived from the MCES (edge-induced), where atoms were
matched based on atomic number, and bonds based on bond
order (and matching atom types in both bonds).

Acknowledgements

E.D. was supported by a University of Sheffield studentship.

Conflict of interest

The authors declare no conflict of interest.

Keywords: chemoinformatics · drug discovery · maximum

common subgraph · maximum common substructure ·

molecular alignment

[1] J. W. Raymond, P. Willett, J. Comput.-Aided Mol. Des. 2002, 16, 521–533.
[2] H. C. Ehrlich, M. Rarey, Wiley Interdiscip. Rev. : Comput. Mol. Sci. 2011, 1,

68–79.
[3] E. Duesbury, J. D. Holliday, P. Willett, MATCH-Commun. Math. Comput.

Chem. 2017, 77, 213–232.
[4] D. Fooshee, A. Andronico, P. Baldi, J. Chem. Inf. Model. 2013, 53, 2812–

2819.
[5] A. Bçcker, J. Chem. Inf. Model. 2008, 48, 2097–2107.
[6] A. G. Leach, H. D. Jones, D. A. Cosgrove, P. W. Kenny, L. Ruston, P. Mac-

Faul, J. M. Wood, N. Colclough, B. Law, J. Med. Chem. 2006, 49, 6672–
6682.

[7] E. Griffen, A. G. Leach, G. R. Robb, D. J. Warner, J. Med. Chem. 2011, 54,
7739–7750.

[8] B. Zhang, M. Vogt, G. M. Maggiora, J. Bajorath, J. Comput. Aided-Mol.

Des. 2015, 29, 937–950.
[9] T. Kawabata, H. Nakamura, J. Chem. Inf. Model. 2014, 54, 1850–1863.

[10] “The Complexity of Theorem-Proving Procedures”, S. A. Cook, STOC ’71

Proceedings of the Third Annual ACM Symposium on Theory of Comput-

ing, 1971, pp. 151–158, http://doi.acm.org/10.1145/800157.805047 (ac-
cessed June 22, 2017).

[11] M. R. Garey, D. S. Johnson, Computers and Intractability, W. H. Freeman,
San Francisco, 1979.

[12] G. Levi, CALCOLO 1973, 9, 341–352.
[13] H. G. Barrow, R. M. Burstall, Inf. Process. Lett. 1976, 4, 83–84.
[14] Y. Takahashi, M. Sukekawa, S. Sasaki, J. Chem. Inf. Comput. Sci. 1992, 32,

639–643.
[15] S. Klinger, J. Austin J. Weighted Superstructures for Chemical Similarity

Searching, 2006, https://www.cs.york.ac.uk/arch/publications/byyear/
2006/2006_WeightedSuperstructuresForChemicalSimilarity_234.pdf/at_
download/2006_WeightedSuperstructuresForChemicalSimilarity_
234.pdf (accessed June 22, 2017).

[16] E. J. Barker, D. Buttar, D. A. Cosgrove, E. J. Gardiner, P. Kitts, P. Willett,
V. J. Gillet, J. Chem. Inf. Model. 2006, 46, 503–511.

[17] T. Kawabata, J. Chem. Inf. Model. 2011, 51, 1775–1787.

[18] P. Englert, P. Kov�cs, J. Chem. Inf. Model. 2015, 55, 941–955.
[19] J. W. Raymond, E. J. Gardiner, P. Willett, J. Chem. Inf. Comput. Sci. 2002,

42, 305–316.
[20] E. Duesbury, Applications and Variations of the Maximum Common Sub-

graph for the Determination of Chemical Similarity, PhD Thesis, University
of Sheffield, 2015, http://etheses.whiterose.ac.uk/view/creators/Dues-
bury=3AEdmund=3A=3A.default.html (accessed June 22, 2017).

[21] A. T. Brint, P. Willett, J. Chem. Inf. Comput. Sci. 1987, 27, 152–158.
[22] E. J. Gardiner, P. J. Artymiuk, P. Willett, J. Mol. Graphics Modell. 1997, 15,

245–253.
[23] S. A. Rahman, M. Bashton, G. L. Holliday, R. Schrader, J. M. Thornton, J.

Cheminf. 2009, 1, 12.
[24] R. Hariharan, A. Janakiraman, R. Nilakantan, B. Singh, S. Varghese, G.

Landrum, A. Schuffenhauer, J. Chem. Inf. Model. 2011, 51, 788–806.
[25] A. Dalke, Varkony Reconsidered 2013, http://www.dalkescientific.com/

writings/diary/archive/2013/07/27/varkony_reconsidered.html (accessed
June 22, 2017).

[26] M. Depolli, J. Konc, K. Rozman, R. Trobec, D. Janežič, J. Chem. Inf. Model.
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