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Removal of submicron particles from solid surfaces using surfactants
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ticle removal using aqueous surfactant solutions is proposed. The surfactants' cleaning efficiency is investigated
for all four combinations of hydrophilic (HL) and hydrophobic (HB) nanoparticles and surfaces, in order to find

the most successful cleaning method in each combination. Carbon and silica nanoparticles deposited onto Teflon
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and glass surfaces were used. Cationic, anionic and non-ionic surfactants with a range of CMCs and HLBs were
used in order to identify the best surfactant in each scenario.
© 2015 Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

The currently increasing focus on nanotechnology and the use of
microstructures is beneficial to a number of industries, as well as to
the ever improving quality of consumer products. However, nanoparti-
cles have a tendency to bind to solid surfaces with incredible strength
and can cause fouling to micro-structured devices [1]. This resilience is
due to various intermolecular forces between the particles and the
surface, such as Van der Waals, electrostatic forces and hydrogen
bonding [2]. The effect of nanoparticle fouling on microstructures, how-
ever, is relatively unknown despite rising industrial interest in their uses
[3].

There are a number of current methods to remove nanoparticles
from solid surfaces such as those using nanobubbles [4], megasonics
[5], lasers [6], aerosols [5] and chemical etching [7] among others.
Although the previously mentioned techniques have shown to be
effective at nanoparticle sizes as low as 10 nm, many have notable
drawbacks. Examples of this include the required use of highly
specialised equipment, which demand precise optimisation to be used
effectively and sensitivity to fluctuations in parameters such as temper-
ature [5]. Many of the methods, particularly those using lasers, operate
on a very small area, making the cleaning of larger surfaces significantly
more difficult.

The use of suitable selection of surfactants to remove two different
types of nanoparticles from solid surfaces is proposed below in order
to develop an easier and reliable procedure, which has the potential to
be carried out without astronauts interference inside a spacecraft.
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Below we investigate all possible scenarios with regard to the nature
of the surface and particles and surfactants. The surfactants used
were selected due to their range of properties, such as critical micelle
concentration (CMC) and hydrophile-lipophile balance (HLB), and
were used for all combinations of hydrophilic (HL) and hydrophobic
(HB) nanoparticles and surfaces in order to investigate the most effec-
tive for each of four possible scenarios. Experiments of spreading or/
and evaporation of nanosuspensions inside space crafts are supposed
to be undertaken in the future. However, the residual nano-particles
left on the solid surface after evaporation should be removed without
the interference of astronauts, that is, the cleaning method should
allow a complete automatisation. The method suggested below is
capable of solving the mentioned problem.

In order to have a clean glass slides to use in the experiments, the
slides were left for 45 min in a 1:1 volume solution of concentrated
sulphuric acid (>95%) and hydrogen peroxide (35%) known as Piranha
solution. After that, the slides were left in a beaker with reverse osmosis
water (RO-water) and heated to 70 °C for a further 45 min before being
used.

As a smooth surface was required the slides chosen were Corning
2947-75 x 25 mm Micro Slides (plain), with a thickness of 1 mm. The
Teflon film was Goodfellow LS389078 PTFE Film with a thickness of
0.05 mm. The contact angles of pure water on both substrates (clean
Glass and Teflon) were found to be 5.0 + 1 deg. and 109.6 + 0.2 deg.,
respectively.

The hydrophilic (HL) and hydrophobic (HB) particles, which were
selected for experiments were silica (0.5-10 um, approx. 80% between
1 and 5 pm; Sigma-Aldrich S5631) and carbon (<500 nm; Sigma-
Aldrich 699632), respectively. Suspensions were made of each particle
by adding the powders to RO-water, then agitated in an ultrasonic
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Table 1 bath for an hour to have a homogeneous suspension. The first half of
The CMC, HLB, pH and conductivity values of the used surfactants. the experiments (HB particles on HB substrate and HB particles on HL
CMC Cond. substrate) were conducted using the carbon suspensions and the latter
Type Surfactant HLB?* pH . .
mM ps/cm half (HL particles on HL substrates and HL particles on HB substrates)
Sodium dodecyl sulphate (SDS) ~ 82* 400 7 702 using silica suspensions. The HL and HB surfaces where the particles
Sodium 1-octanesulfonate B were deposited onto were glass slides (HL) and Teflon film (HB),
- 155 419 55 8529 . . . . -
Anionic  monohydrate (1-S0S) respectively. These materials were chosen due to the variety of industrial
?;’ds'ggsl)'dmecanesmfonate 7° 97 63 446 applications in which they are used, such as windows and containers for
Triton X-100 (T-X-100) 024F 135 62 180 gl‘ass and a range of aerospace components made of Teflon. After the
Non-ioni Tween 20 (T-20) 005 167 59 370 slides had been cleaned, as discussed above, a 5 pL droplet of a suspen-
on-ionic . . . . .
Novec™ FC-4430 0.17% - 6 18 sion was deposited onto the centre of each solid substrate using a micro-
A . . .
g";ec";' FF‘44§21 . 05 - 46 28 pipette. The slides were then covered in order to protect the droplets
br(;rf]%’e“(‘[')‘;%\g)ammon'um 1€ 12 67 1070 from contamination and left for 24 h to dry.
Cationic Myristyltrimethylammonium o » 57 aay Table 1 shows the chosen surfactants and their properties including

bromide (MTAB)

critical micelle concentration (CMC), hydrophilic-lipophilic balance

A: From experimental data; B: [8]; C: [9]; D: Sigma-Aldrich, 2015; E: [10]; F: [11];

G: [11].
2 All HLB values were calculated using the Davies method [12].
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Fig. 1. a—Schematic presentation of the methodology steps; b—diagram of the experimental apparatus.
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Droplets of 5 L of each suspension with a range of concentrations
for each type were deposited onto glass slides with and without Teflon
film attached to the slide. The Teflon film was attached to a slide using a
double sided tape. The droplets were then left for 24 h to evaporate,
allowing for the particle to be completely deposited onto the substrate
used. It has been decided that the residual particle deposits on the
corresponding solid support should be visible under a microscope. The
following concentrations were selected according to this requirement:
0.2% and 6% w/w for carbon and silica suspensions, respectively.

After that a bigger droplet (7.5 pL) of surfactant solutions (secondary
droplet) was deposited on the solid substrate to cover completely the
residual particles on the solid substrate. Solutions for each type of
surfactant were produced over a range of concentrations relative to
the corresponding CMC. The concentrations chosen were 0.5, 1, 5, 10
and 15 CMC for each type of surfactant.

It was necessary to select an exposure time after a deposition of the
secondary droplet to make sure that the removal of residual particles is
completed. It was found that 0.5 CMC droplets of SDS has the weakest
removal effect. That is droplets of 7.5 pL of SDS with a concentration of
0.5 CMC were applied to each sample and left for 1, 2, 4, 10 and
15 min. A concentration of 0.5 CMC (being the weakest concentration)
was used for these experiments as it should require the longest time
to finalise the process. This meant that the selected time period would
be suitable even for the worst case scenario in terms of time. The
duration of secondary droplet deposition was selected as 4 min.

The secondary droplets were then removed from the sample using
the same syringe with a precision vacuum operated at 5 kPa. It was
discovered previously that even as vacuum pressures as 100 kPa was
unable to remove the residual particles by itself. A pressure of 5 kPa
was therefore selected as it posed no threat of damage of the samples
and provided adequate suction for the removal of the secondary droplet
of surfactant.

In order to investigate the effect of the surfactant on the particles
removal the slide with the dry nanoparticle placed underneath a high
speed camera as shown in Fig. 1b. AVT Smart View software within a
PC was used to take and analyse the droplet images. Camera settings
were identical throughout.

A 7.5 pL droplet of surfactant was deposited to fully cover the
residual particles on the slide and left for 4 min to draw the particles
into solution. The droplet was then removed from the surface using
the precision vacuum and an image was taken. The schematic presenta-
tion of the methodology steps is shown in Fig. 1a. Deposition of the
secondary droplet and its removal was repeated until either the slide
was entirely clean (based on the naked eye observation) or until the
particles remained completely unchanged after five applications of
secondary droplets. For some samples which showed no change from
the start, 15 applications were used in order to allow the surfactant
sufficient opportunity to remove the particles.

The described above procedure was repeated for all surfactants and
for all combinations of HB and HL surfaces and particles.

To investigate the cleaning efficiency of the surfactant, the slide with
a residue after complete evaporation of the initial droplet was placed
underneath a high speed camera (640 x 480, 1:1.4) as shown in
Fig. 1b. The percentage of removal (cleaning) was calculated for each
sample by analysing the initial area of the droplet and the final residue
area covered by particles using Image]J software. The final residue area is
the summation of all particles, spots and cluster areas that are present in
the final image. In the case of samples which were seemed clean using
these camera resolution, a high resolution microscope (0.90 um/pix)
was used for further check and analysis any particles, spots and cluster
areas. Once all images had been collected, the percentage of removal
(cleaning) was calculated for each sample by analysing the initial and
final residues area with Image] software using Eq. (1). The cleaning
efficiency (E) is found by subtracting the summation of the final
particles area (A,), the final cluster area (A,c) and the final spots area
(Ays) from the initial droplet area (A;). The output is divided by the

initial droplet area in order to find the cleaning efficiency as a ratio of
the initial droplet area.

Ati_Z(ArmAm ~~~Ars)

E—
Agi

% 100. (1)

In the case of Hydrophobic Nanoparticles on a Hydrophilic Surface
(HB on HL) MTAB (cationic), FC-4432 (non-ionic), 1-SDDS (anionic)
and T-20 (non-ionic) are by far the most effective cleaning surfactants,
with samples consistently being above 90% cleaned: the surfactants
cleaning efficiency reaches peak values of 98.9, 98.0, 98.4 and 95.7%
for concentration of 5, 0.5, 10 and 5 CMC, respectively.

However, in the case of HB on HL, water alone turns out the best
cleaning agent: close to 100% cleaning efficiency.

For Hydrophilic Nanoparticles on a Hydrophilic Surface (HL on HL)
the surfactants generally followed clear relationships with increasing
concentration. From Fig. 2(a, b) the non-ionic surfactants (a) show
very poor cleaning efficiency, in general, less than 35% compared to
anionic (60%) and cationic surfactants (98%).

DoTAB shows the best performance in this case attaining a max
removal of 98.13% and levelling off at around 5 CMC. MTAB also
displayed a significant removal, though it only achieved its peak removal
of 82.93% at 10 CMC before declining. None of the other surfactants
attained removal values higher than 65%, as seen in Fig. 2(a, b). Further-
more, from the same figure, it can be seen that water alone is extremely
poor at removing HL nanoparticles, with a removal efficiency of 1.14%.

Hydrophobic Nanoparticles on a Hydrophobic Surface (HB on HB)
scenario all types of surfactants used in this research performed signifi-
cantly worse than in all other scenarios, with the highest percentage of
cleaning being 1-SDDS at a peak of 53%. Similarly to HB on HL scenario,
an anionic surfactant showed a better effective cleaning. Using only
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Fig. 2. Variation of the percentage of nanoparticle removal with respect to surfactant
concentration Hydrophilic Particles (Silica) on Hydrophilic Surface (Glass).
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Table 2
The average initial particle deposition area and standard deviation for each scenario.

Scenario Average initial area, mm? Standard deviation
HB on HL 38.60 3.62
HL on HL 26.01 142
HB on HB 4.23 0.60
HL on HB 2.28 0.36

water obtained a percentage of removal of 3.8%. This scenario turns out
to be the hardest for removal of residue particles and a different method
is required.

Next scenario investigated was Hydrophilic Nanoparticles on a
Hydrophobic Surface (HL on HB). The degree of cleaning in this scenario
(HL on HB) was by far the highest, with most surfactants achieving
removal values of almost 100%. In this case all surfactants were equally
effective and, when compared to water, show no benefit in using a
surfactant to clean the surface at all. In this case, the cleaning is so
easy that the use of water alone would be the most effective in terms
of results and cost.

In order to observe and compare the degree of wetting by the
suspensions used the initial areas and standard deviations of the
deposits once fully dry were recorded and presented in Table 2. There
is a clear difference between the HL and HB surfaces with regard to
deposited size: the initial areas for HL surfaces are much larger than
those of HB surfaces. This is due to the use of aqueous surfactant
solutions, which wet a HL surface more effectively. It should be noted
that the HB particle deposits in each case are slightly larger than those
of the HL particles.

For each scenario except for HB on HL, the standard deviation is low
(from 0.4 to 3.6) with regard to the average values. During the experi-
ments, it became apparent that the way that the carbon nanoparticles
arranged themselves onto the surface was very different.

A method of nanoparticle removal using aqueous surfactant solu-
tions is proposed. The surfactants' cleaning efficiency is investigated
for all four combinations of hydrophilic (HL) and hydrophobic (HB)
nanoparticles and surfaces, in order to find the most successful cleaning
method in each combination. Carbon and silica nanoparticles deposited
onto Teflon and glass surfaces were used. Cationic, anionic and non-
ionic surfactants with a range of CMCs were used in order to identify
the best surfactant in each scenario. It was found that for the HB on HL
and HL on HB scenarios, water is more effective than all surfactants in
terms of cleaning efficiency. For the HL on HL scenario, it was discovered
that cationic DoTAB surfactants were optimal as cleaning agents.
However, the HB on HB scenario proved resilient to water and each
surfactant used and will require further investigation.

This work has clearly demonstrated that the use of surfactants for
nanoparticle removal is viable for a range of scenarios. It has also been
shown that for certain scenarios, surfactants can be used to achieve

significantly high cleaning rates than using water alone, solidifying the
technique as a simple, effective and cost efficient method.

Abbreviations

HL hydrophilic

HB hydrophobic

CMC critical micelle concentration

HLB hydrophilic-lipophilic balance
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